Research on manufacturing service behavior modeling based on block chain theory
NASA Astrophysics Data System (ADS)
Zhao, Gang; Zhang, Guangli; Liu, Ming; Yu, Shuqin; Liu, Yali; Zhang, Xu
2018-04-01
According to the attribute characteristics of processing craft, the manufacturing service behavior is divided into service attribute, basic attribute, process attribute, resource attribute. The attribute information model of manufacturing service is established. The manufacturing service behavior information is successfully divided into public and private domain. Additionally, the block chain technology is introduced, and the information model of manufacturing service based on block chain principle is established, which solves the problem of sharing and secreting information of processing behavior, and ensures that data is not tampered with. Based on the key pairing verification relationship, the selective publishing mechanism for manufacturing information is established, achieving the traceability of product data, guarantying the quality of processing quality.
Ivezic, Nenad; Potok, Thomas E.
2003-09-30
A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.
Integrated control system for electron beam processes
NASA Astrophysics Data System (ADS)
Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.
2018-03-01
The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.
Performance measurement integrated information framework in e-Manufacturing
NASA Astrophysics Data System (ADS)
Teran, Hilaida; Hernandez, Juan Carlos; Vizán, Antonio; Ríos, José
2014-11-01
The implementation of Internet technologies has led to e-Manufacturing technologies becoming more widely used and to the development of tools for compiling, transforming and synchronising manufacturing data through the Web. In this context, a potential area for development is the extension of virtual manufacturing to performance measurement (PM) processes, a critical area for decision making and implementing improvement actions in manufacturing. This paper proposes a PM information framework to integrate decision support systems in e-Manufacturing. Specifically, the proposed framework offers a homogeneous PM information exchange model that can be applied through decision support in e-Manufacturing environment. Its application improves the necessary interoperability in decision-making data processing tasks. It comprises three sub-systems: a data model, a PM information platform and PM-Web services architecture. A practical example of data exchange for measurement processes in the area of equipment maintenance is shown to demonstrate the utility of the model.
NASA Astrophysics Data System (ADS)
Collins, P. C.; Haden, C. V.; Ghamarian, I.; Hayes, B. J.; Ales, T.; Penso, G.; Dixit, V.; Harlow, G.
2014-07-01
Electron beam direct manufacturing, synonymously known as electron beam additive manufacturing, along with other additive "3-D printing" manufacturing processes, are receiving widespread attention as a means of producing net-shape (or near-net-shape) components, owing to potential manufacturing benefits. Yet, materials scientists know that differences in manufacturing processes often significantly influence the microstructure of even widely accepted materials and, thus, impact the properties and performance of a material in service. It is important to accelerate the understanding of the processing-structure-property relationship of materials being produced via these novel approaches in a framework that considers the performance in a statistically rigorous way. This article describes the development of a process model, the assessment of key microstructural features to be incorporated into a microstructure simulation model, a novel approach to extract a constitutive equation to predict tensile properties in Ti-6Al-4V (Ti-64), and a probabilistic approach to measure the fidelity of the property model against real data. This integrated approach will provide designers a tool to vary process parameters and understand the influence on performance, enabling design and optimization for these highly visible manufacturing approaches.
NASA Astrophysics Data System (ADS)
Korshunov, G. I.; Petrushevskaya, A. A.; Lipatnikov, V. A.; Smirnova, M. S.
2018-03-01
The strategy of quality of electronics insurance is represented as most important. To provide quality, the processes sequence is considered and modeled by Markov chain. The improvement is distinguished by simple database means of design for manufacturing for future step-by-step development. Phased automation of design and digital manufacturing electronics is supposed. The MatLab modelling results showed effectiveness increase. New tools and software should be more effective. The primary digital model is proposed to represent product in the processes sequence from several processes till the whole life circle.
Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection
Hedberg, Thomas; Lubell, Joshua; Fischer, Lyle; Maggiano, Larry; Feeney, Allison Barnard
2016-01-01
A number of manufacturing companies have reported anecdotal evidence describing the benefits of Model-Based Enterprise (MBE). Based on this evidence, major players in industry have embraced a vision to deploy MBE. In our view, the best chance of realizing this vision is the creation of a single “digital thread.” Under MBE, there exists a Model-Based Definition (MBD), created by the Engineering function, that downstream functions reuse to complete Model-Based Manufacturing and Model-Based Inspection activities. The ensemble of data that enables the combination of model-based definition, manufacturing, and inspection defines this digital thread. Such a digital thread would enable real-time design and analysis, collaborative process-flow development, automated artifact creation, and full-process traceability in a seamless real-time collaborative development among project participants. This paper documents the strengths and weaknesses in the current, industry strategies for implementing MBE. It also identifies gaps in the transition and/or exchange of data between various manufacturing processes. Lastly, this paper presents measured results from a study of model-based processes compared to drawing-based processes and provides evidence to support the anecdotal evidence and vision made by industry. PMID:27325911
2017-08-01
of metallic additive manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics...manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics methods will accelerate that...geometries, we develop a methodology that couples experimental data and modelling to convert the scan paths into spatially resolved local thermal histories
Discrete State Change Model of Manufacturing Quality to Aid Assembly Process Design
NASA Astrophysics Data System (ADS)
Koga, Tsuyoshi; Aoyama, Kazuhiro
This paper proposes a representation model of the quality state change in an assembly process that can be used in a computer-aided process design system. In order to formalize the state change of the manufacturing quality in the assembly process, the functions, operations, and quality changes in the assembly process are represented as a network model that can simulate discrete events. This paper also develops a design method for the assembly process. The design method calculates the space of quality state change and outputs a better assembly process (better operations and better sequences) that can be used to obtain the intended quality state of the final product. A computational redesigning algorithm of the assembly process that considers the manufacturing quality is developed. The proposed method can be used to design an improved manufacturing process by simulating the quality state change. A prototype system for planning an assembly process is implemented and applied to the design of an auto-breaker assembly process. The result of the design example indicates that the proposed assembly process planning method outputs a better manufacturing scenario based on the simulation of the quality state change.
Economic assessment of single-walled carbon nanotube processes
NASA Astrophysics Data System (ADS)
Isaacs, J. A.; Tanwani, A.; Healy, M. L.; Dahlben, L. J.
2010-02-01
The carbon nanotube market is steadily growing and projected to reach 1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling 1,906, 1,706, and 485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.
Computational Process Modeling for Additive Manufacturing
NASA Technical Reports Server (NTRS)
Bagg, Stacey; Zhang, Wei
2014-01-01
Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.
Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra
2013-03-01
Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulvatunyou, Boonserm; Wysk, Richard A.; Cho, Hyunbo
2004-06-01
In today's global manufacturing environment, manufacturing functions are distributed as never before. Design, engineering, fabrication, and assembly of new products are done routinely in many different enterprises scattered around the world. Successful business transactions require the sharing of design and engineering data on an unprecedented scale. This paper describes a framework that facilitates the collaboration of engineering tasks, particularly process planning and analysis, to support such globalized manufacturing activities. The information models of data and the software components that integrate those information models are described. The integration framework uses an Integrated Product and Process Data (IPPD) representation called a Resourcemore » Independent Operation Summary (RIOS) to facilitate the communication of business and manufacturing requirements. Hierarchical process modeling, process planning decomposition and an augmented AND/OR directed graph are used in this representation. The Resource Specific Process Planning (RSPP) module assigns required equipment and tools, selects process parameters, and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a prototype system is developed and demonstrated with an exemplary part. Java and XML (Extensible Markup Language) are used to ensure software and information portability.« less
NASA Astrophysics Data System (ADS)
Chicea, Anca-Lucia
2015-09-01
The paper presents the process of building geometric and kinematic models of a technological equipment used in the process of manufacturing devices. First, the process of building the model for a six axes industrial robot is presented. In the second part of the paper, the process of building the model for a five-axis CNC milling machining center is also shown. Both models can be used for accurate cutting processes simulation of complex parts, such as prosthetic devices.
NASA Astrophysics Data System (ADS)
Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji
Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.
Toward a space materials systems program
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. F.
1981-01-01
A program implementation model is presented which covers the early stages of space material processing and manufacturing. The model includes descriptions of major program elements, development and experiment requirements in space materials processing and manufacturing, and an integration of the model into NASA's long range plans as well as its evolution from present Materials Processing in Space plans.
Mining manufacturing data for discovery of high productivity process characteristics.
Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou
2010-06-01
Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.
Manufacturing stresses and strains in filament wound cylinders
NASA Technical Reports Server (NTRS)
Calius, E. P.; Kidron, M.; Lee, S. Y.; Springer, G. S.
1988-01-01
Tests were performed to verify a previously developed model for simulating the manufacturing process of filament wound cylinders. The axial and hoop strains were measured during cure inside a filament wound Fiberite T300/976 graphite-epoxy cylinder. The measured strains were compared to those computed by the model. Good agreements were found between the data and the model, indicating that the model is a useful representation of the process. For the conditions of the test, the manufacturing stresses inside the cylinder were also calculated using the model.
3D model of filler melting with micro-beam plasma arc based on additive manufacturing technology
NASA Astrophysics Data System (ADS)
Chen, Weilin; Yang, Tao; Yang, Ruixin
2017-07-01
Additive manufacturing technology is a systematic process based on discrete-accumulation principle, which is derived by the dimension of parts. Aiming at the dimension mathematical model and slicing problems in additive manufacturing process, the constitutive relations between micro-beam plasma welding parameters and the dimension of part were investigated. The slicing algorithm and slicing were also studied based on the dimension characteristics. By using the direct slicing algorithm according to the geometric characteristics of model, a hollow thin-wall spherical part was fabricated by 3D additive manufacturing technology using micro-beam plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schraad, Mark William; Luscher, Darby Jon
Additive Manufacturing techniques are presenting the Department of Energy and the NNSA Laboratories with new opportunities to consider novel component production and repair processes, and to manufacture materials with tailored response and optimized performance characteristics. Additive Manufacturing technologies already are being applied to primary NNSA mission areas, including Nuclear Weapons. These mission areas are adapting to these new manufacturing methods, because of potential advantages, such as smaller manufacturing footprints, reduced needs for specialized tooling, an ability to embed sensing, novel part repair options, an ability to accommodate complex geometries, and lighter weight materials. To realize the full potential of Additivemore » Manufacturing as a game-changing technology for the NNSA’s national security missions; however, significant progress must be made in several key technical areas. In addition to advances in engineering design, process optimization and automation, and accelerated feedstock design and manufacture, significant progress must be made in modeling and simulation. First and foremost, a more mature understanding of the process-structure-property-performance relationships must be developed. Because Additive Manufacturing processes change the nature of a material’s structure below the engineering scale, new models are required to predict materials response across the spectrum of relevant length scales, from the atomistic to the continuum. New diagnostics will be required to characterize materials response across these scales. And not just models, but advanced algorithms, next-generation codes, and advanced computer architectures will be required to complement the associated modeling activities. Based on preliminary work in each of these areas, a strong argument for the need for Exascale computing architectures can be made, if a legitimate predictive capability is to be developed.« less
NASA Astrophysics Data System (ADS)
Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda
2018-05-01
This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.
NASA Astrophysics Data System (ADS)
Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda
2018-01-01
This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.
A comparison of BPMN 2.0 with other notations for manufacturing processes
NASA Astrophysics Data System (ADS)
García-Domínguez, A.; Marcos, Mariano; Medina, I.
2012-04-01
In order to study their current practices and improve on them, manufacturing firms need to view their processes from several viewpoints at various abstraction levels. Several notations have been developed for this purpose, such as Value Stream Mappings or IDEF models. More recently, the BPMN 2.0 standard from the Object Management Group has been proposed for modeling business processes. A process organizes several activities (manual or automatic) into a single higher-level entity, which can be reused elsewhere in the organization. Its potential for standardizing business interactions is well-known, but there is little work on using BPMN 2.0 to model manufacturing processes. In this work some of the previous notations are outlined and BPMN 2.0 is positioned among them after discussing it in more depth. Some guidelines on using BPMN 2.0 for manufacturing are offered, and its advantages and disadvantages in comparison with the other notations are presented.
NASA Astrophysics Data System (ADS)
Kumbhar, N. N.; Mulay, A. V.
2016-08-01
The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.
A Process Management System for Networked Manufacturing
NASA Astrophysics Data System (ADS)
Liu, Tingting; Wang, Huifen; Liu, Linyan
With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.
NASA Astrophysics Data System (ADS)
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2017-07-01
Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.
Desktop Manufacturing Technologies.
ERIC Educational Resources Information Center
Snyder, Mark
1991-01-01
Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)
Computer Modeling of Direct Metal Laser Sintering
NASA Technical Reports Server (NTRS)
Cross, Matthew
2014-01-01
A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.
Modelling of additive manufacturing processes: a review and classification
NASA Astrophysics Data System (ADS)
Stavropoulos, Panagiotis; Foteinopoulos, Panagis
2018-03-01
Additive manufacturing (AM) is a very promising technology; however, there are a number of open issues related to the different AM processes. The literature on modelling the existing AM processes is reviewed and classified. A categorization of the different AM processes in process groups, according to the process mechanism, has been conducted and the most important issues are stated. Suggestions are made as to which approach is more appropriate according to the key performance indicator desired to be modelled and a discussion is included as to the way that future modelling work can better contribute to improving today's AM process understanding.
Remote Collaborative 3D Printing - Process Investigation
2016-04-01
transferring, receiving, manipulating, and printing a digital 3D model into an additively manufactured component. Several digital models were...into an additively manufactured component. Several digital models were exchanged, and the steps, barriers, workarounds, and results have been...ABBREVIATIONS ABS Acrylonitrile Butadiene Styrene AM Additive Manufacturing AMRDEC SAFE Aviation and Missile Research Development and Engineering
Enhancing Manufacturing Process Education via Computer Simulation and Visualization
ERIC Educational Resources Information Center
Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter
2014-01-01
Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research develops mathematical modeling of these processes that provide a theoretical framework for understanding the process variables…
PLYMAP : a computer simulation model of the rotary peeled softwood plywood manufacturing process
Henry Spelter
1990-01-01
This report documents a simulation model of the plywood manufacturing process. Its purpose is to enable a user to make quick estimates of the economic impact of a particular process change within a mill. The program was designed to simulate the processing of plywood within a relatively simplified mill design. Within that limitation, however, it allows a wide range of...
Graphic model of the processes involved in the production of casegood furniture
Kristen G. Hoff; Subhash C. Sarin; R. Bruce Anderson; R. Bruce Anderson
1992-01-01
Imports from foreign furniture manufacturers are on ,the rise, and American manufacturers must take advantage of recent technological advances to regain their lost market share. To facilitate the implementation of these technologies for improving productivity and quality, a graphic model of the wood furniture production process is presented using the IDEF modeling...
Using a simulation assistant in modeling manufacturing systems
NASA Technical Reports Server (NTRS)
Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.
1988-01-01
Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.
Roll-to-Roll Advanced Materials Manufacturing DOE Lab Consortium - FY16 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus; Wood, III, David L.; Krumdick, Gregory
2016-12-01
A DOE laboratory consortium comprised of ORNL, ANL, NREL and LBNL, coordinating with Kodak’s Eastman Business Park (Kodak) and other selected industry partners, was formed to address enhancing battery electrode performance and R2R manufacturing challenges. The objective of the FY 2016 seed project was to develop a materials genome synthesis process amenable to R2R manufacturing and to provide modeling, simulation, processing, and manufacturing techniques that demonstrate the feasibility of process controls and scale-up potential for improved battery electrodes. The research efforts were to predict and measure changes and results in electrode morphology and performance based on process condition changes; tomore » evaluate mixed, active, particle size deposition and drying for novel electrode materials; and to model various process condition changes and the resulting morphology and electrode performance.« less
Numerical simulation of complex part manufactured by selective laser melting process
NASA Astrophysics Data System (ADS)
Van Belle, Laurent
2017-10-01
Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo
2018-01-01
Additive manufacturing (AM) processes produce parts with improved physical, chemical, and mechanical properties compared to conventional manufacturing processes. In AM processes, intricate part geometries are produced from multicomponent alloy powder, in a layer-by-layer fashion with multipass laser melting, solidification, and solid-state phase transformations, in a shorter manufacturing time, with minimal surface finishing, and at a reasonable cost. However, there is an increasing need for post-processing of the manufactured parts via, for example, stress relieving heat treatment and hot isostatic pressing to achieve homogeneous microstructure and properties at all times. Solidification in an AM process controls the size, shape, and distribution of the grains, the growth morphology, the elemental segregation and precipitation, the subsequent solid-state phase changes, and ultimately the material properties. The critical issues in this process are linked with multiphysics (such as fluid flow and diffusion of heat and mass) and multiscale (lengths, times and temperature ranges) challenges that arise due to localized rapid heating and cooling during AM processing. The alloy chemistry-process-microstructure-property-performance correlation in this process will be increasingly better understood through multiscale modeling and simulation.
Hattori, Yusuke; Otsuka, Makoto
2017-05-30
In the pharmaceutical industry, the implementation of continuous manufacturing has been widely promoted in lieu of the traditional batch manufacturing approach. More specially, in recent years, the innovative concept of feed-forward control has been introduced in relation to process analytical technology. In the present study, we successfully developed a feed-forward control model for the tablet compression process by integrating data obtained from near-infrared (NIR) spectra and the physical properties of granules. In the pharmaceutical industry, batch manufacturing routinely allows for the preparation of granules with the desired properties through the manual control of process parameters. On the other hand, continuous manufacturing demands the automatic determination of these process parameters. Here, we proposed the development of a control model using the partial least squares regression (PLSR) method. The most significant feature of this method is the use of dataset integrating both the NIR spectra and the physical properties of the granules. Using our model, we determined that the properties of products, such as tablet weight and thickness, need to be included as independent variables in the PLSR analysis in order to predict unknown process parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
Kastner, Elisabeth; Kaur, Randip; Lowry, Deborah; Moghaddam, Behfar; Wilkinson, Alexander; Perrie, Yvonne
2014-12-30
Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows for reproducible mixing in miliseconds on the nanoliter scale. Here we investigate microfluidics-based manufacturing of liposomes. The aim of these studies was to assess the parameters in a microfluidic process by varying the total flow rate (TFR) and the flow rate ratio (FRR) of the solvent and aqueous phases. Design of experiment and multivariate data analysis were used for increased process understanding and development of predictive and correlative models. High FRR lead to the bottom-up synthesis of liposomes, with a strong correlation with vesicle size, demonstrating the ability to in-process control liposomes size; the resulting liposome size correlated with the FRR in the microfluidics process, with liposomes of 50 nm being reproducibly manufactured. Furthermore, we demonstrate the potential of a high throughput manufacturing of liposomes using microfluidics with a four-fold increase in the volumetric flow rate, maintaining liposome characteristics. The efficacy of these liposomes was demonstrated in transfection studies and was modelled using predictive modeling. Mathematical modelling identified FRR as the key variable in the microfluidic process, with the highest impact on liposome size, polydispersity and transfection efficiency. This study demonstrates microfluidics as a robust and high-throughput method for the scalable and highly reproducible manufacture of size-controlled liposomes. Furthermore, the application of statistically based process control increases understanding and allows for the generation of a design-space for controlled particle characteristics. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
The Development of Model for Measuring Railway Wheels Manufacturing Readiness Level
NASA Astrophysics Data System (ADS)
Inrawan Wiratmadja, Iwan; Mufid, Anas
2016-02-01
In an effort to grow the railway wheel industry in Indonesia and reduce the dependence on imports, Metal Industries Development Center (MIDC) makes the implementation of the railway wheel manufacturing technology in Indonesia. MIDC is an institution based on research and development having a task to research the production of railway wheels prototype and acts as a supervisor to the industry in Indonesia, for implementing the railway wheel manufacturing technology. The process of implementing manufacturing technology requires a lot of resources. Therefore it is necessary to measure the manufacturing readiness process. Measurement of railway wheels manufacturing readiness was in this study done using the manufacturing readiness level (MRL) model from the United States Department of Defense. MRL consists of 10 manufacturing readiness levels described by 90 criteria and 184 sub-criteria. To get a manufacturing readiness measurement instrument that is good and accurate, the development process involved experts through expert judgment method and validated with a content validity ratio (CVR). Measurement instrument developed in this study consist of 448 indicators. The measurement results show that MIDC's railway wheels manufacturing readiness is at the level 4. This shows that there is a gap between the current level of manufacturing readiness owned by MIDC and manufacturing readiness levels required to achieve the program objectives, which is level 5. To achieve the program objectives at level 5, a number of actions were required to be done by MIDC. Indicators that must be improved to be able to achieve level 5 are indicators related to the cost and financing, process capability and control, quality management, workers, and manufacturing management criteria.
NASA Astrophysics Data System (ADS)
Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur
In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control
NASA Astrophysics Data System (ADS)
Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming
2017-09-01
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
P80 SRM low torque flex-seal development - thermal and chemical modeling of molding process
NASA Astrophysics Data System (ADS)
Descamps, C.; Gautronneau, E.; Rousseau, G.; Daurat, M.
2009-09-01
The development of the flex-seal component of the P80 nozzle gave the opportunity to set up new design and manufacturing process methods. Due to the short development lead time required by VEGA program, the usual manufacturing iterative tests work flow, which is usually time consuming, had to be enhanced in order to use a more predictive approach. A newly refined rubber vulcanization description was built up and identified on laboratory samples. This chemical model was implemented in a thermal analysis code. The complete model successfully supports the manufacturing processes. These activities were conducted with the support of ESA/CNES Research & Technologies and DGA (General Delegation for Armament).
Towards a commercial process for the manufacture of genetically modified T cells for therapy
Kaiser, A D; Assenmacher, M; Schröder, B; Meyer, M; Orentas, R; Bethke, U; Dropulic, B
2015-01-01
The recent successes of adoptive T-cell immunotherapy for the treatment of hematologic malignancies have highlighted the need for manufacturing processes that are robust and scalable for product commercialization. Here we review some of the more outstanding issues surrounding commercial scale manufacturing of personalized-adoptive T-cell medicinal products. These include closed system operations, improving process robustness and simplifying work flows, reducing labor intensity by implementing process automation, scalability and cost, as well as appropriate testing and tracking of products, all while maintaining strict adherence to Current Good Manufacturing Practices and regulatory guidelines. A decentralized manufacturing model is proposed, where in the future patients' cells could be processed at the point-of-care in the hospital. PMID:25613483
Analytic network process model for sustainable lean and green manufacturing performance indicator
NASA Astrophysics Data System (ADS)
Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik
2014-09-01
Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.
Microeconomics of process control in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.
2003-06-01
Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.
Simulation Environment Synchronizing Real Equipment for Manufacturing Cell
NASA Astrophysics Data System (ADS)
Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro
Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.
NASA Technical Reports Server (NTRS)
Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.
1993-01-01
Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.
Cost Models for MMC Manufacturing Processes
NASA Technical Reports Server (NTRS)
Elzey, Dana M.; Wadley, Haydn N. G.
1996-01-01
Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.
NASA Technical Reports Server (NTRS)
Bao, Han P.; Samareh, J. A.
2000-01-01
The primary objective of this paper is to demonstrate the use of process-based manufacturing and assembly cost models in a traditional performance-focused multidisciplinary design and optimization process. The use of automated cost-performance analysis is an enabling technology that could bring realistic processbased manufacturing and assembly cost into multidisciplinary design and optimization. In this paper, we present a new methodology for incorporating process costing into a standard multidisciplinary design optimization process. Material, manufacturing processes, and assembly processes costs then could be used as the objective function for the optimization method. A case study involving forty-six different configurations of a simple wing is presented, indicating that a design based on performance criteria alone may not necessarily be the most affordable as far as manufacturing and assembly cost is concerned.
NASA Astrophysics Data System (ADS)
Ward, M. J.; Walløe, S. J.
2004-06-01
Numerical models are used extensively in the aerospace sector to identify appropriate manufacturing parameters, and to minimize the risk associated with new product introduction and manufacturing change. This usage is equally prevalent in original equipment manufacturers (OEMs), and in their supply chains. The wide range of manufacturing processes and production environments involved, coupled with the varying degrees of technology maturity associated with numerical models of different processes leads to a situation of significant complexity from the OEM perspective. In addition, the intended use of simulation technology can vary considerably between applications, from simple geometric assessment of die shape at one extreme, to full process design or development at the other. Consequently there is an increasing trend towards multi-scale modelling, i.e. the use of several different model types, with differing attributes in terms of accuracy and speed to support a range of different new product introduction decisions. This makes the allocation of appropriate levels of activity to the research and implementation of new capabilities a difficult problem. This paper uses a number of industrial cases studies to illustrate a framework for making such allocation decisions such that value to the OEM is maximized, and investigates how such a framework is likely to shift over the next few years based on technological developments.
Key technologies for manufacturing and processing sheet materials: A global perspective
NASA Astrophysics Data System (ADS)
Demeri, Mahmoud Y.
2001-02-01
Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.
Information flow analysis and Petri-net-based modeling for welding flexible manufacturing cell
NASA Astrophysics Data System (ADS)
Qiu, T.; Chen, Shanben; Wang, Y. T.; Wu, Lin
2000-10-01
Due to the development of advanced manufacturing technology and the introduction of Smart-Manufacturing notion in the field of modern industrial production, welding flexible manufacturing system (WFMS) using robot technology has become the inevitable developing direction on welding automation. In WFMS process, the flexibility for different welding products and the realizing on corresponding welding parameters control are the guarantees for welding quality. Based on a new intelligent arc-welding flexible manufacturing cell (WFMC), the system structure and control policies are studied in this paper. Aiming at the different information flows among every subsystem and central monitoring computer in this WFMC, Petri net theory is introduced into the process of welding manufacturing. With its help, a discrete control model of WFMC has been constructed, in which the system status is regarded as place and the control process is regarded as transition. Moreover, grounded on automation Petri net principle, the judging and utilizing of information obtained from welding sensors are imported into net structure, which extends the traditional Petri net concepts. The control model and policies researched in this paper have established foundation for further intelligent real-time control on WFMC and WFMS.
Modeling of Powder Bed Manufacturing Defects
NASA Astrophysics Data System (ADS)
Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.
2018-01-01
Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.
Application of agent-based system for bioprocess description and process improvement.
Gao, Ying; Kipling, Katie; Glassey, Jarka; Willis, Mark; Montague, Gary; Zhou, Yuhong; Titchener-Hooker, Nigel J
2010-01-01
Modeling plays an important role in bioprocess development for design and scale-up. Predictive models can also be used in biopharmaceutical manufacturing to assist decision-making either to maintain process consistency or to identify optimal operating conditions. To predict the whole bioprocess performance, the strong interactions present in a processing sequence must be adequately modeled. Traditionally, bioprocess modeling considers process units separately, which makes it difficult to capture the interactions between units. In this work, a systematic framework is developed to analyze the bioprocesses based on a whole process understanding and considering the interactions between process operations. An agent-based approach is adopted to provide a flexible infrastructure for the necessary integration of process models. This enables the prediction of overall process behavior, which can then be applied during process development or once manufacturing has commenced, in both cases leading to the capacity for fast evaluation of process improvement options. The multi-agent system comprises a process knowledge base, process models, and a group of functional agents. In this system, agent components co-operate with each other in performing their tasks. These include the description of the whole process behavior, evaluating process operating conditions, monitoring of the operating processes, predicting critical process performance, and providing guidance to decision-making when coping with process deviations. During process development, the system can be used to evaluate the design space for process operation. During manufacture, the system can be applied to identify abnormal process operation events and then to provide suggestions as to how best to cope with the deviations. In all cases, the function of the system is to ensure an efficient manufacturing process. The implementation of the agent-based approach is illustrated via selected application scenarios, which demonstrate how such a framework may enable the better integration of process operations by providing a plant-wide process description to facilitate process improvement. Copyright 2009 American Institute of Chemical Engineers
Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing
2016-04-30
FDM include plastic jet printing (PJP), fused filament modeling ( FFM ), and fused filament fabrication (FFF). FFF was coined by the RepRap project to...additive manufacturing processes? • Fused deposition modeling (FDM) trademarked by Stratasys • Fused filament modeling ( FFM ) and fused filament
Hummel, Jonathan; Pagkaliwangan, Mark; Gjoka, Xhorxhi; Davidovits, Terence; Stock, Rick; Ransohoff, Thomas; Gantier, Rene; Schofield, Mark
2018-01-17
The biopharmaceutical industry is evolving in response to changing market conditions, including increasing competition and growing pressures to reduce costs. Single-use (SU) technologies and continuous bioprocessing have attracted attention as potential facilitators of cost-optimized manufacturing for monoclonal antibodies. While disposable bioprocessing has been adopted at many scales of manufacturing, continuous bioprocessing has yet to reach the same level of implementation. In this study, the cost of goods of Pall Life Science's integrated, continuous bioprocessing (ICB) platform is modeled, along with that of purification processes in stainless-steel and SU batch formats. All three models include costs associated with downstream processing only. Evaluation of the models across a broad range of clinical and commercial scenarios reveal that the cost savings gained by switching from stainless-steel to SU batch processing are often amplified by continuous operation. The continuous platform exhibits the lowest cost of goods across 78% of all scenarios modeled here, with the SU batch process having the lowest costs in the rest of the cases. The relative savings demonstrated by the continuous process are greatest at the highest feed titers and volumes. These findings indicate that existing and imminent continuous technologies and equipment can become key enablers for more cost effective manufacturing of biopharmaceuticals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A review of the solar array manufacturing industry costing standards
NASA Technical Reports Server (NTRS)
1977-01-01
The solar array manufacturing industry costing standards model is designed to compare the cost of producing solar arrays using alternative manufacturing processes. Constructive criticism of the methodology used is intended to enhance its implementation as a practical design tool. Three main elements of the procedure include workbook format and presentation, theoretical model validity and standard financial parameters.
NASA Astrophysics Data System (ADS)
Balla, Vamsi Krishna; Coox, Laurens; Deckers, Elke; Plyumers, Bert; Desmet, Wim; Marudachalam, Kannan
2018-01-01
The vibration response of a component or system can be predicted using the finite element method after ensuring numerical models represent realistic behaviour of the actual system under study. One of the methods to build high-fidelity finite element models is through a model updating procedure. In this work, a novel model updating method of deep-drawn components is demonstrated. Since the component is manufactured with a high draw ratio, significant deviations in both profile and thickness distributions occurred in the manufacturing process. A conventional model updating, involving Young's modulus, density and damping ratios, does not lead to a satisfactory match between simulated and experimental results. Hence a new model updating process is proposed, where geometry shape variables are incorporated, by carrying out morphing of the finite element model. This morphing process imitates the changes that occurred during the deep drawing process. An optimization procedure that uses the Global Response Surface Method (GRSM) algorithm to maximize diagonal terms of the Modal Assurance Criterion (MAC) matrix is presented. This optimization results in a more accurate finite element model. The advantage of the proposed methodology is that the CAD surface of the updated finite element model can be readily obtained after optimization. This CAD model can be used for carrying out analysis, as it represents the manufactured part more accurately. Hence, simulations performed using this updated model with an accurate geometry, will therefore yield more reliable results.
NASA Astrophysics Data System (ADS)
Harkrider, Curtis Jason
2000-08-01
The incorporation of gradient-index (GRIN) material into optical systems offers novel and practical solutions to lens design problems. However, widespread use of gradient-index optics has been limited by poor correlation between gradient-index designs and the refractive index profiles produced by ion exchange between glass and molten salt. Previously, a design-for- manufacture model was introduced that connected the design and fabrication processes through use of diffusion modeling linked with lens design software. This project extends the design-for-manufacture model into a time- varying boundary condition (TVBC) diffusion model. TVBC incorporates the time-dependent phenomenon of melt poisoning and introduces a new index profile control method, multiple-step diffusion. The ions displaced from the glass during the ion exchange fabrication process can reduce the total change in refractive index (Δn). Chemical equilibrium is used to model this melt poisoning process. Equilibrium experiments are performed in a titania silicate glass and chemically analyzed. The equilibrium model is fit to ion concentration data that is used to calculate ion exchange boundary conditions. The boundary conditions are changed purposely to control the refractive index profile in multiple-step TVBC diffusion. The glass sample is alternated between ion exchange with a molten salt bath and annealing. The time of each diffusion step can be used to exert control on the index profile. The TVBC computer model is experimentally verified and incorporated into the design- for-manufacture subroutine that runs in lens design software. The TVBC design-for-manufacture model is useful for fabrication-based tolerance analysis of gradient-index lenses and for the design of manufactureable GRIN lenses. Several optical elements are designed and fabricated using multiple-step diffusion, verifying the accuracy of the model. The strength of multiple-step diffusion process lies in its versatility. An axicon, imaging lens, and curved radial lens, all with different index profile requirements, are designed out of a single glass composition.
NASA Astrophysics Data System (ADS)
Lu, Mark; Liang, Curtis; King, Dion; Melvin, Lawrence S., III
2005-11-01
Model-based Optical Proximity correction has become an indispensable tool for achieving wafer pattern to design fidelity at current manufacturing process nodes. Most model-based OPC is performed considering the nominal process condition, with limited consideration of through process manufacturing robustness. This study examines the use of off-target process models - models that represent non-nominal process states such as would occur with a dose or focus variation - to understands and manipulate the final pattern correction to a more process robust configuration. The study will first examine and validate the process of generating an off-target model, then examine the quality of the off-target model. Once the off-target model is proven, it will be used to demonstrate methods of generating process robust corrections. The concepts are demonstrated using a 0.13 μm logic gate process. Preliminary indications show success in both off-target model production and process robust corrections. With these off-target models as tools, mask production cycle times can be reduced.
Production process stability - core assumption of INDUSTRY 4.0 concept
NASA Astrophysics Data System (ADS)
Chromjakova, F.; Bobak, R.; Hrusecka, D.
2017-06-01
Today’s industrial enterprises are confronted by implementation of INDUSTRY 4.0 concept with basic problem - stabilised manufacturing and supporting processes. Through this phenomenon of stabilisation, they will achieve positive digital management of both processes and continuously throughput. There is required structural stability of horizontal (business) and vertical (digitized) manufacturing processes, supported through digitalised technologies of INDUSTRY 4.0 concept. Results presented in this paper based on the research results and survey realised in more industrial companies. Following will described basic model for structural process stabilisation in manufacturing environment.
Research of Manufacture Time Management System Based on PLM
NASA Astrophysics Data System (ADS)
Jing, Ni; Juan, Zhu; Liangwei, Zhong
This system is targeted by enterprises manufacturing machine shop, analyzes their business needs and builds the plant management information system of Manufacture time and Manufacture time information management. for manufacturing process Combined with WEB technology, based on EXCEL VBA development of methods, constructs a hybrid model based on PLM workshop Manufacture time management information system framework, discusses the functionality of the system architecture, database structure.
A risk-based auditing process for pharmaceutical manufacturers.
Vargo, Susan; Dana, Bob; Rangavajhula, Vijaya; Rönninger, Stephan
2014-01-01
The purpose of this article is to share ideas on developing a risk-based model for the scheduling of audits (both internal and external). Audits are a key element of a manufacturer's quality system and provide an independent means of evaluating the manufacturer's or the supplier/vendor's compliance status. Suggestions for risk-based scheduling approaches are discussed in the article. Pharmaceutical manufacturers are required to establish and implement a quality system. The quality system is an organizational structure defining responsibilities, procedures, processes, and resources that the manufacturer has established to ensure quality throughout the manufacturing process. Audits are a component of the manufacturer's quality system and provide a systematic and an independent means of evaluating the manufacturer's overall quality system and compliance status. Audits are performed at defined intervals for a specified duration. The intention of the audit process is to focus on key areas within the quality system and may not cover all relevant areas during each audit. In this article, the authors provide suggestions for risk-based scheduling approaches to aid pharmaceutical manufacturers in identifying the key focus areas for an audit.
A simulation study on garment manufacturing process
NASA Astrophysics Data System (ADS)
Liong, Choong-Yeun; Rahim, Nur Azreen Abdul
2015-02-01
Garment industry is an important industry and continues to evolve in order to meet the consumers' high demands. Therefore, elements of innovation and improvement are important. In this work, research studies were conducted at a local company in order to model the sewing process of clothes manufacturing by using simulation modeling. Clothes manufacturing at the company involves 14 main processes, which are connecting the pattern, center sewing and side neating, pockets sewing, backside-sewing, attaching the front and back, sleeves preparation, attaching the sleeves and over lock, collar preparation, collar sewing, bottomedge sewing, buttonholing sewing, removing excess thread, marking button, and button cross sewing. Those fourteen processes are operated by six tailors only. The last four sets of processes are done by a single tailor. Data collection was conducted by on site observation and the probability distribution of processing time for each of the processes is determined by using @Risk's Bestfit. Then a simulation model is developed using Arena Software based on the data collected. Animated simulation model is developed in order to facilitate understanding and verifying that the model represents the actual system. With such model, what if analysis and different scenarios of operations can be experimented with virtually. The animation and improvement models will be presented in further work.
Multiphysics modeling of selective laser sintering/melting
NASA Astrophysics Data System (ADS)
Ganeriwala, Rishi Kumar
A significant percentage of total global employment is due to the manufacturing industry. However, manufacturing also accounts for nearly 20% of total energy usage in the United States according to the EIA. In fact, manufacturing accounted for 90% of industrial energy consumption and 84% of industry carbon dioxide emissions in 2002. Clearly, advances in manufacturing technology and efficiency are necessary to curb emissions and help society as a whole. Additive manufacturing (AM) refers to a relatively recent group of manufacturing technologies whereby one can 3D print parts, which has the potential to significantly reduce waste, reconfigure the supply chain, and generally disrupt the whole manufacturing industry. Selective laser sintering/melting (SLS/SLM) is one type of AM technology with the distinct advantage of being able to 3D print metals and rapidly produce net shape parts with complicated geometries. In SLS/SLM parts are built up layer-by-layer out of powder particles, which are selectively sintered/melted via a laser. However, in order to produce defect-free parts of sufficient strength, the process parameters (laser power, scan speed, layer thickness, powder size, etc.) must be carefully optimized. Obviously, these process parameters will vary depending on material, part geometry, and desired final part characteristics. Running experiments to optimize these parameters is costly, energy intensive, and extremely material specific. Thus a computational model of this process would be highly valuable. In this work a three dimensional, reduced order, coupled discrete element - finite difference model is presented for simulating the deposition and subsequent laser heating of a layer of powder particles sitting on top of a substrate. Validation is provided and parameter studies are conducted showing the ability of this model to help determine appropriate process parameters and an optimal powder size distribution for a given material. Next, thermal stresses upon cooling are calculated using the finite difference method. Different case studies are performed and general trends can be seen. This work concludes by discussing future extensions of this model and the need for a multi-scale approach to achieve comprehensive part-level models of the SLS/SLM process.
NASA Technical Reports Server (NTRS)
Seufzer, William J.
2014-01-01
Additive manufacturing is coming into industrial use and has several desirable attributes. Control of the deposition remains a complex challenge, and so this literature review was initiated to capture current modeling efforts in the field of additive manufacturing. This paper summarizes about 10 years of modeling and simulation related to both welding and additive manufacturing. The goals were to learn who is doing what in modeling and simulation, to summarize various approaches taken to create models, and to identify research gaps. Later sections in the report summarize implications for closed-loop-control of the process, implications for local research efforts, and implications for local modeling efforts.
Oh, Ji-Hyeon
2018-12-01
With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.
Consolidation modelling for thermoplastic composites forming simulation
NASA Astrophysics Data System (ADS)
Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.
2016-10-01
Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.
Ono, Daiki; Bamba, Takeshi; Oku, Yuichi; Yonetani, Tsutomu; Fukusaki, Eiichiro
2011-09-01
In this study, we constructed prediction models by metabolic fingerprinting of fresh green tea leaves using Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares (PLS) regression analysis to objectively optimize of the steaming process conditions in green tea manufacture. The steaming process is the most important step for manufacturing high quality green tea products. However, the parameter setting of the steamer is currently determined subjectively by the manufacturer. Therefore, a simple and robust system that can be used to objectively set the steaming process parameters is necessary. We focused on FT-NIR spectroscopy because of its simple operation, quick measurement, and low running costs. After removal of noise in the spectral data by principal component analysis (PCA), PLS regression analysis was performed using spectral information as independent variables, and the steaming parameters set by experienced manufacturers as dependent variables. The prediction models were successfully constructed with satisfactory accuracy. Moreover, the results of the demonstrated experiment suggested that the green tea steaming process parameters could be predicted on a larger manufacturing scale. This technique will contribute to improvement of the quality and productivity of green tea because it can objectively optimize the complicated green tea steaming process and will be suitable for practical use in green tea manufacture. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Imbrogno, Stano; Rinaldi, Sergio; Raso, Antonio; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico
2018-05-01
The Additive Manufacturing techniques are gaining more and more interest in various industrial fields due to the possibility of drastically reduce the material waste during the production processes, revolutionizing the standard scheme and strategies of the manufacturing processes. However, the metal parts shape produced, frequently do not satisfy the tolerances as well as the surface quality requirements. During the design phase, the finite element simulation results a fundamental tool to help the engineers in the correct decision of the most suitable process parameters, especially in manufacturing processes, in order to produce products of high quality. The aim of this work is to develop a 3D finite element model of semi-finishing turning operation of Ti6Al4V, produced via Direct Metal Laser Sintering (DMLS). A customized user sub-routine was built-up in order to model the mechanical behavior of the material under machining operations to predict the main fundamental variables as cutting forces and temperature. Moreover, the machining induced alterations are also studied by the finite element model developed.
INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pack, Seongchan; Wilson, Daniel; Aitharaju, Venkat
Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide variousmore » scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper« less
Engineering of mechanical manufacturing from the cradle to cradle
NASA Astrophysics Data System (ADS)
Peralta, M. E.; Aguayo, F.; Lama, J. R.
2012-04-01
The sustainability of manufacturing processes lies in industrial planning and productive activity. Industrial plants are characterized by the management of resource (inputs and outputs), processing and conversion processes, which usually are organized in a linear system. Good planning will optimize the manufacturing and promoting the quality of the industrial system. Cradle to Cradle is a new paradigm for engineering and sustainable manufacturing that integrates projects (industrial parks, manufacturing plants, systems and products) in a framework consistent with the environment, adapted to the society and technology and economically viable. To carry it out, we implement this paradigm in the MGE2 (Genomic Model of Eco-innovation and Eco-design), as a methodology for designing and developing products and manufacturing systems with an approach from the cradle to cradle.
Determination of the robot location in a workcell of a flexible production line
NASA Astrophysics Data System (ADS)
Banas, W.; Sekala, A.; Gwiazda, A.; Foit, K.; Hryniewicz, P.; Kost, G.
2015-11-01
Location of components of a manufacturing cell is apparently an easy task but even during the constructing of a manufacturing cell, in which is planned a production of one, simple component it is necessary, among others, to check access to all required points. The robot in a manufacturing cell must handle both machine tools located in a manufacturing cell and parts store (input and output one). It handles also transport equipment and auxiliary stands. Sometimes, during the design phase, the changes of robot location are necessary due to the limitation of access to its required working positions. Often succeeding changes of a manufacturing cell configuration are realized. They occur at the stages of visualization and simulation of robot program functioning. In special cases, it is even necessary to replace the planned robot with a robot of greater range or of a different configuration type. This article presents and describes the parameters and components which should be taken into consideration during designing robotised manufacturing cells. The main idea bases on application of advanced engineering programs to adding the designing process. Using this approach it could be possible to present the designing process of an exemplar flexible manufacturing cell intended to manufacture two similar components. The proposed model of such designed manufacturing cell could be easily extended to the manufacturing cell model in which it is possible to produce components belonging the one technological group of chosen similarity level. In particular, during the design process, one should take into consideration components which limit the ability of robot foundation. It is also important to show the method of determining the best location of robot foundation. The presented design method could also support the designing process of other robotised manufacturing cells.
NASA Astrophysics Data System (ADS)
Hilburn, Monty D.
Successful lean manufacturing and cellular manufacturing execution relies upon a foundation of leadership commitment and strategic planning built upon solid data and robust analysis. The problem for this study was to create and employ a simple lean transformation planning model and review process that could be used to identify functional support staff resources required to plan and execute lean manufacturing cells within aerospace assembly and manufacturing sites. The lean planning model was developed using available literature for lean manufacturing kaizen best practices and validated through a Delphi panel of lean experts. The resulting model and a standardized review process were used to assess the state of lean transformation planning at five sites of an international aerospace manufacturing and assembly company. The results of the three day, on-site review were compared with baseline plans collected from each of the five sites to determine if there analyzed, with focus on three critical areas of lean planning: the number and type of manufacturing cells identified, the number, type, and duration of planned lean and continuous kaizen events, and the quantity and type of functional staffing resources planned to support the kaizen schedule. Summarized data of the baseline and on-site reviews was analyzed with descriptive statistics. ANOVAs and paired-t tests at 95% significance level were conducted on the means of data sets to determine if null hypotheses related to cell, kaizen event, and support resources could be rejected. The results of the research found significant differences between lean transformation plans developed by site leadership and plans developed utilizing the structured, on-site review process and lean transformation planning model. The null hypothesis that there was no difference between the means of pre-review and on-site cell counts was rejected, as was the null hypothesis that there was no significant difference in kaizen event plans. These factors are critical inputs into the support staffing resources calculation used by the lean planning model. Null hypothesis related to functional support staff resources was rejected for most functional groups, indicating that the baseline site plan inadequately provided for cross-functional staff involvement to support the lean transformation plan. Null hypotheses related to total lean transformation staffing could not be rejected, indicating that while total staffing plans were not significantly different than plans developed during the on-site review and through the use of the lean planning model, the allocation of staffing among various functional groups such as engineering, production, and materials planning was an issue. The on-site review process and simple lean transformation plan developed was determined to be useful in identifying short-comings in lean transformation planning within aerospace manufacturing and assembly sites. It was concluded that the differences uncovered were likely contributing factors affecting the effectiveness of aerospace manufacturing sites' implementation of lean cellular manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapps, Justin M.; Clarke, Kester D.; Katz, Joel D.
2012-06-06
We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bondingmore » interface.« less
Looby, Mairead; Ibarra, Neysi; Pierce, James J; Buckley, Kevin; O'Donovan, Eimear; Heenan, Mary; Moran, Enda; Farid, Suzanne S; Baganz, Frank
2011-01-01
This study describes the application of quality by design (QbD) principles to the development and implementation of a major manufacturing process improvement for a commercially distributed therapeutic protein produced in Chinese hamster ovary cell culture. The intent of this article is to focus on QbD concepts, and provide guidance and understanding on how the various components combine together to deliver a robust process in keeping with the principles of QbD. A fed-batch production culture and a virus inactivation step are described as representative examples of upstream and downstream unit operations that were characterized. A systematic approach incorporating QbD principles was applied to both unit operations, involving risk assessment of potential process failure points, small-scale model qualification, design and execution of experiments, definition of operating parameter ranges and process validation acceptance criteria followed by manufacturing-scale implementation and process validation. Statistical experimental designs were applied to the execution of process characterization studies evaluating the impact of operating parameters on product quality attributes and process performance parameters. Data from process characterization experiments were used to define the proven acceptable range and classification of operating parameters for each unit operation. Analysis of variance and Monte Carlo simulation methods were used to assess the appropriateness of process design spaces. Successful implementation and validation of the process in the manufacturing facility and the subsequent manufacture of hundreds of batches of this therapeutic protein verifies the approaches taken as a suitable model for the development, scale-up and operation of any biopharmaceutical manufacturing process. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
NASA Technical Reports Server (NTRS)
Santare, Michael H.; Pipes, R. Byron; Beaussart, A. J.; Coffin, D. W.; Otoole, B. J.; Shuler, S. F.
1993-01-01
Flexible manufacturing methods are needed to reduce the cost of using advanced composites in structural applications. One method that allows for this is the stretch forming of long discontinuous fiber materials with thermoplastic matrices. In order to exploit this flexibility in an economical way, a thorough understanding of the relationship between manufacturing and component performance must be developed. This paper reviews some of the recent work geared toward establishing this understanding. Micromechanics models have been developed to predict the formability of the material during processing. The latest improvement of these models includes the viscoelastic nature of the matrix and comparison with experimental data. A finite element scheme is described which can be used to model the forming process. This model uses equivalent anisotropic viscosities from the micromechanics models and predicts the microstructure in the formed part. In addition, structural models have been built to account for the material property gradients that can result from the manufacturing procedures. Recent developments in this area include the analysis of stress concentrations and a failure model each accounting for the heterogeneous material fields.
Analysis of 3D printing parameters of gears for hybrid manufacturing
NASA Astrophysics Data System (ADS)
Budzik, Grzegorz; Przeszlowski, Łukasz; Wieczorowski, Michal; Rzucidlo, Arkadiusz; Gapinski, Bartosz; Krolczyk, Grzegorz
2018-05-01
The paper deals with analysis and selection of parameters of rapid prototyping of gears by selective sintering of metal powders. Presented results show wide spectrum of application of RP systems in manufacturing processes of machine elements, basing on analysis of market in term of application of additive manufacturing technology in different sectors of industry. Considerable growth of these methods over the past years can be observed. The characteristic errors of printed model with respect to ideal one for each technique were pointed out. Special attention was paid to the method of preparation of numerical data CAD/STL/RP. Moreover the analysis of manufacturing processes of gear type elements was presented. The tested gears were modeled with different allowances for final machining and made by DMLS. Metallographic analysis and strength tests on prepared specimens were performed. The above mentioned analysis and tests were used to compare the real properties of material with the nominal ones. To improve the quality of surface after sintering the gears were subjected to final machining. The analysis of geometry of gears after hybrid manufacturing method was performed (fig.1). The manufacturing process was defined in a traditional way as well as with the aid of modern manufacturing techniques. Methodology and obtained results can be used for other machine elements than gears and constitutes the general theory of production processes in rapid prototyping methods as well as in designing and implementation of production.
NASA Astrophysics Data System (ADS)
Criales Escobar, Luis Ernesto
One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National Institute for Standards & Technology via response surface methodology techniques. The main goal of this research is to develop a comprehensive predictive model with which the effect of powder material properties and laser process parameters on the built quality and integrity of SLM-produced parts can be better understood. By optimizing process parameters, SLM as an additive manufacturing technique is not only possible, but also practical and reproducible.
Zhong, Yi; Zhu, Jieqiang; Yang, Zhenzhong; Shao, Qing; Fan, Xiaohui; Cheng, Yiyu
2018-01-31
To ensure pharmaceutical quality, chemistry, manufacturing and control (CMC) research is essential. However, due to the inherent complexity of Chinese medicine (CM), CMC study of CM remains a great challenge for academia, industry, and regulatory agencies. Recently, quality-marker (Q-marker) was proposed to establish quality standards or quality analysis approaches of Chinese medicine, which sheds a light on Chinese medicine's CMC study. Here manufacture processes of Panax Notoginseng Saponins (PNS) is taken as a case study and the present work is to establish a Q-marker based research strategy for CMC of Chinese medicine. The Q-markers of Panax Notoginseng Saponins (PNS) is selected and established by integrating chemical profile with pharmacological activities. Then, the key processes of PNS manufacturing are identified by material flow analysis. Furthermore, modeling algorithms are employed to explore the relationship between Q-markers and critical process parameters (CPPs) of the key processes. At last, CPPs of the key processes are optimized in order to improving the process efficiency. Among the 97 identified compounds, Notoginsenoside R 1 , ginsenoside Rg 1 , Re, Rb 1 and Rd are selected as the Q-markers of PNS. Our analysis on PNS manufacturing show the extraction process and column chromatography process are the key processes. With the CPPs of each process as the inputs and Q-markers' contents as the outputs, two process prediction models are built separately for the extraction process and column chromatography process of Panax notoginseng, which both possess good prediction ability. Based on the efficiency models of extraction process and column chromatography process we constructed, the optimal CPPs of both processes are calculated. Our results show that the Q-markers derived from CMC research strategy can be applied to analyze the manufacturing processes of Chinese medicine to assure product's quality and promote key processes' efficiency simultaneously. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Groth, Sebastian; Engel, Bernd; Frohn, Peter
2018-05-01
Kinematic bending processes such as three-roll-push-bending are used to manufacture freeform bent part systems. Due to the kinematic shaping, the bent parts have a characteristic infeed and outfeed area in the transition zone from the straight section into the curved area. These transition zones are currently not considered in the design process, which results in a geometric shape deviation between the CAD model and the bent part. Within this publication, a sensitivity analysis examines the influence of different parameters on the transition zone and the shape deviation. In addition, an approach is presented, which allows a manufacture-oriented modeling of the bending geometry.
A PetriNet-Based Approach for Supporting Traceability in Cyber-Physical Manufacturing Systems
Huang, Jiwei; Zhu, Yeping; Cheng, Bo; Lin, Chuang; Chen, Junliang
2016-01-01
With the growing popularity of complex dynamic activities in manufacturing processes, traceability of the entire life of every product has drawn significant attention especially for food, clinical materials, and similar items. This paper studies the traceability issue in cyber-physical manufacturing systems from a theoretical viewpoint. Petri net models are generalized for formulating dynamic manufacturing processes, based on which a detailed approach for enabling traceability analysis is presented. Models as well as algorithms are carefully designed, which can trace back the lifecycle of a possibly contaminated item. A practical prototype system for supporting traceability is designed, and a real-life case study of a quality control system for bee products is presented to validate the effectiveness of the approach. PMID:26999141
A PetriNet-Based Approach for Supporting Traceability in Cyber-Physical Manufacturing Systems.
Huang, Jiwei; Zhu, Yeping; Cheng, Bo; Lin, Chuang; Chen, Junliang
2016-03-17
With the growing popularity of complex dynamic activities in manufacturing processes, traceability of the entire life of every product has drawn significant attention especially for food, clinical materials, and similar items. This paper studies the traceability issue in cyber-physical manufacturing systems from a theoretical viewpoint. Petri net models are generalized for formulating dynamic manufacturing processes, based on which a detailed approach for enabling traceability analysis is presented. Models as well as algorithms are carefully designed, which can trace back the lifecycle of a possibly contaminated item. A practical prototype system for supporting traceability is designed, and a real-life case study of a quality control system for bee products is presented to validate the effectiveness of the approach.
Lot sizing and unequal-sized shipment policy for an integrated production-inventory system
NASA Astrophysics Data System (ADS)
Giri, B. C.; Sharma, S.
2014-05-01
This article develops a single-manufacturer single-retailer production-inventory model in which the manufacturer delivers the retailer's ordered quantity in unequal shipments. The manufacturer's production process is imperfect and it may produce some defective items during a production run. The retailer performs a screening process immediately after receiving the order from the manufacturer. The expected average total cost of the integrated production-inventory system is derived using renewal theory and a solution procedure is suggested to determine the optimal production and shipment policy. An extensive numerical study based on different sets of parameter values is conducted and the optimal results so obtained are analysed to examine the relative performance of the models under equal and unequal shipment policies.
Microeconomics of advanced process window control for 50-nm gates
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.
2002-07-01
Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.
Schrank, Elisa S; Hitch, Lester; Wallace, Kevin; Moore, Richard; Stanhope, Steven J
2013-10-01
Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to predictably tune and precisely manufacture orthoses with objectively customized fit and functional characteristics.
A hybrid life cycle inventory of nano-scale semiconductor manufacturing.
Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Raoux, Sebastien; Clark, Daniel; Dornfeld, David
2008-04-15
The manufacturing of modern semiconductor devices involves a complex set of nanoscale fabrication processes that are energy and resource intensive, and generate significant waste. It is important to understand and reduce the environmental impacts of semiconductor manufacturing because these devices are ubiquitous components in electronics. Furthermore, the fabrication processes used in the semiconductor industry are finding increasing application in other products, such as microelectromechanical systems (MEMS), flat panel displays, and photovoltaics. In this work we develop a library of typical gate-to-gate materials and energy requirements, as well as emissions associated with a complete set of fabrication process models used in manufacturing a modern microprocessor. In addition, we evaluate upstream energy requirements associated with chemicals and materials using both existing process life cycle assessment (LCA) databases and an economic input-output (EIO) model. The result is a comprehensive data set and methodology that may be used to estimate and improve the environmental performance of a broad range of electronics and other emerging applications that involve nano and micro fabrication.
Cost analysis of advanced turbine blade manufacturing processes
NASA Technical Reports Server (NTRS)
Barth, C. F.; Blake, D. E.; Stelson, T. S.
1977-01-01
A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.
Farrell, Patrick; Sun, Jacob; Gao, Meg; Sun, Hong; Pattara, Ben; Zeiser, Arno; D'Amore, Tony
2012-08-17
A simple approach to the development of an aerobic scaled-down fermentation model is presented to obtain more consistent process performance during the scale-up of recombinant protein manufacture. Using a constant volumetric oxygen mass transfer coefficient (k(L)a) for the criterion of a scale-down process, the scaled-down model can be "tuned" to match the k(L)a of any larger-scale target by varying the impeller rotational speed. This approach is demonstrated for a protein vaccine candidate expressed in recombinant Escherichia coli, where process performance is shown to be consistent among 2-L, 20-L, and 200-L scales. An empirical correlation for k(L)a has also been employed to extrapolate to larger manufacturing scales. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Tianxing; Zhou, Junxiang; Deng, Xiaozhong; Li, Jubo; Xing, Chunrong; Su, Jianxin; Wang, Huiliang
2018-07-01
A manufacturing error of a cycloidal gear is the key factor affecting the transmission accuracy of a robot rotary vector (RV) reducer. A methodology is proposed to realize the digitized measurement and data processing of the cycloidal gear manufacturing error based on the gear measuring center, which can quickly and accurately measure and evaluate the manufacturing error of the cycloidal gear by using both the whole tooth profile measurement and a single tooth profile measurement. By analyzing the particularity of the cycloidal profile and its effect on the actual meshing characteristics of the RV transmission, the cycloid profile measurement strategy is planned, and the theoretical profile model and error measurement model of cycloid-pin gear transmission are established. Through the digital processing technology, the theoretical trajectory of the probe and the normal vector of the measured point are calculated. By means of precision measurement principle and error compensation theory, a mathematical model for the accurate calculation and data processing of manufacturing error is constructed, and the actual manufacturing error of the cycloidal gear is obtained by the optimization iterative solution. Finally, the measurement experiment of the cycloidal gear tooth profile is carried out on the gear measuring center and the HEXAGON coordinate measuring machine, respectively. The measurement results verify the correctness and validity of the measurement theory and method. This methodology will provide the basis for the accurate evaluation and the effective control of manufacturing precision of the cycloidal gear in a robot RV reducer.
An In-Depth Review on Direct Additive Manufacturing of Metals
NASA Astrophysics Data System (ADS)
Azam, Farooq I.; Rani, Ahmad Majdi Abdul; Altaf, Khurram; Rao, T. V. V. L. N.; Aimi Zaharin, Haizum
2018-03-01
Additive manufacturing (AM), also known as 3D Printing, is a revolutionary manufacturing technique which has been developing rapidly in the last 30 years. The evolution of this precision manufacturing process from rapid prototyping to ready-to-use parts has significantly alleviated manufacturing constraints and design freedom has been outstandingly widened. AM is a non-conventional manufacturing technique which utilizes a 3D CAD model data to build parts by adding one material layer at a time, rather than removing it and fulfills the demand for manufacturing parts with complex geometric shapes, great dimensional accuracy, and easy to assemble parts. Additive manufacturing of metals has become the area of extensive research, progressing towards the production of final products and replacing conventional manufacturing methods. This paper provides an insight to the available metal additive manufacturing technologies that can be used to produce end user products without using conventional manufacturing methods. The paper also includes the comparison of mechanical and physical properties of parts produced by AM with the parts manufactured using conventional processes.
Modelling of human-machine interaction in equipment design of manufacturing cells
NASA Astrophysics Data System (ADS)
Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming
2017-08-01
This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.
NASA Astrophysics Data System (ADS)
Yuniar, S.; Wangsaputra, R.; Sinaga, A. T.
2018-03-01
This study aims to develop a combined economical lot size model between supplier and manufacturer for imperfect production processes with probabilistic demand patterns and constant lead times. The supplier side produces the product within a certain time interval then sent to the manufacturer with a certain amount of lot size. Imperfect supplier production systems are characterized by the probability of defective product (γ). The model decision variables are the lot size of the manufacturer's ordering, supplier lot size, and the reorder point of the manufacturer. The optimal decision variables are obtained by minimizing the total expected cost of the combined costs between the suppliers and the manufacturers borne by both parties. The model is built compared to the transactional partnership model, in which the supplier does not participate in the efficiency of its inventory system. A numerical example is given as an illustration of the JELS model and the transactional partnership model. Sensitivity analysis of the model is done by changing the parameters aimed at analyzing the behavior of the developed model.
A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.
Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian
2017-06-01
Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6 cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide profiles for process development, scale up, and characterization. Biotechnol. Bioeng. 2017;114: 1184-1194. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2016-11-04
Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2016-01-01
Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019
NASA Astrophysics Data System (ADS)
Williams, Christopher Bryant
Low-density cellular materials, metallic bodies with gaseous voids, are a unique class of materials that are characterized by their high strength, low mass, good energy absorption characteristics, and good thermal and acoustic insulation properties. In an effort to take advantage of this entire suite of positive mechanical traits, designers are tailoring the cellular mesostructure for multiple design objectives. Unfortunately, existing cellular material manufacturing technologies limit the design space as they are limited to certain part mesostructure, material type, and macrostructure. The opportunity that exists to improve the design of existing products, and the ability to reap the benefits of cellular materials in new applications is the driving force behind this research. As such, the primary research goal of this work is to design, embody, and analyze a manufacturing process that provides a designer the ability to specify the material type, material composition, void morphology, and mesostructure topology for any conceivable part geometry. The accomplishment of this goal is achieved in three phases of research: (1) Design---Following a systematic design process and a rigorous selection exercise, a layer-based additive manufacturing process is designed that is capable of meeting the unique requirements of fabricating cellular material geometry. Specifically, metal parts of designed mesostructure are fabricated via three-dimensional printing of metal oxide ceramic powder followed by post-processing in a reducing atmosphere. (2) Embodiment ---The primary research hypothesis is verified through the use of the designed manufacturing process chain to successfully realize metal parts of designed mesostructure. (3) Modeling & Evaluation ---The designed manufacturing process is modeled in this final research phase so as to increase understanding of experimental results and to establish a foundation for future analytical modeling research. In addition to an analysis of the physics of primitive creation and an investigation of failure modes during the layered fabrication of thin trusses, build time and cost models are presented in order to verify claims of the process's economic benefits. The main contribution of this research is the embodiment of a novel manner for realizing metal parts of designed mesostructure.
Method for distributed agent-based non-expert simulation of manufacturing process behavior
Ivezic, Nenad; Potok, Thomas E.
2004-11-30
A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.
Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; ...
2015-03-28
Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect themore » final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.« less
Implementation of a Web-Based Collaborative Process Planning System
NASA Astrophysics Data System (ADS)
Wang, Huifen; Liu, Tingting; Qiao, Li; Huang, Shuangxi
Under the networked manufacturing environment, all phases of product manufacturing involving design, process planning, machining and assembling may be accomplished collaboratively by different enterprises, even different manufacturing stages of the same part may be finished collaboratively by different enterprises. Based on the self-developed networked manufacturing platform eCWS(e-Cooperative Work System), a multi-agent-based system framework for collaborative process planning is proposed. In accordance with requirements of collaborative process planning, share resources provided by cooperative enterprises in the course of collaboration are classified into seven classes. Then a reconfigurable and extendable resource object model is built. Decision-making strategy is also studied in this paper. Finally a collaborative process planning system e-CAPP is developed and applied. It provides strong support for distributed designers to collaboratively plan and optimize product process though network.
Modeling of additive manufacturing processes for metals: Challenges and opportunities
Francois, Marianne M.; Sun, Amy; King, Wayne E.; ...
2017-01-09
Here, with the technology being developed to manufacture metallic parts using increasingly advanced additive manufacturing processes, a new era has opened up for designing novel structural materials, from designing shapes and complex geometries to controlling the microstructure (alloy composition and morphology). The material properties used within specific structural components are also designable in order to meet specific performance requirements that are not imaginable with traditional metal forming and machining (subtractive) techniques.
Computational Process Modeling for Additive Manufacturing (OSU)
NASA Technical Reports Server (NTRS)
Bagg, Stacey; Zhang, Wei
2015-01-01
Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.
A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage.
Kino-Oka, Masahiro; Maeda, Yoshikatsu; Yamamoto, Takeyuki; Sugawara, Katsura; Taya, Masahito
2005-03-01
For repairing articular cartilage defects, innovative techniques based on tissue engineering have been developed and are now entering into the practical stage of clinical application by means of grafting in vitro cultured products. A variety of natural and artificial materials available for scaffolds, which permit chondrocyte cells to aggregate, have been designed for their ability to promote cell growth and differentiation. From the viewpoint of the manufacturing process for tissue-engineered cartilage, the diverse nature of raw materials (seeding cells) and end products (cultured cartilage) oblige us to design a tailor-made process with less reproducibility, which is an obstacle to establishing a production doctrine based on bioengineering knowledge concerning growth kinetics and modeling as well as designs of bioreactors and culture operations for certification of high product quality. In this article, we review the recent advances in the manufacturing of tissue-engineered cartilage. After outlining the manufacturing processes for tissue-engineered cartilage in the first section, the second and third sections, respectively, describe the three-dimensional culture of chondrocytes with Aterocollagen gel and kinetic model consideration as a tool for evaluating this culture process. In the final section, culture strategy is discussed in terms of the combined processes of monolayer growth (ex vivo chondrocyte cell expansion) and three-dimensional growth (construction of cultured cartilage in the gel).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewsuk, K.G.; Cochran, R.J.; Blackwell, B.F.
The properties and performance of a ceramic component is determined by a combination of the materials from which it was fabricated and how it was processed. Most ceramic components are manufactured by dry pressing a powder/binder system in which the organic binder provides formability and green compact strength. A key step in this manufacturing process is the removal of the binder from the powder compact after pressing. The organic binder is typically removed by a thermal decomposition process in which heating rate, temperature, and time are the key process parameters. Empirical approaches are generally used to design the burnout time-temperaturemore » cycle, often resulting in excessive processing times and energy usage, and higher overall manufacturing costs. Ideally, binder burnout should be completed as quickly as possible without damaging the compact, while using a minimum of energy. Process and computational modeling offer one means to achieve this end. The objective of this study is to develop an experimentally validated computer model that can be used to better understand, control, and optimize binder burnout from green ceramic compacts.« less
The Economics of Big Area Addtiive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian; Lloyd, Peter D; Lindahl, John
Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupledmore » with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.« less
Modeling process-structure-property relationships for additive manufacturing
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-02-01
This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.
Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R
2017-01-01
Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.
Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Nagpal, Vinod K.
2007-01-01
An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.
An interval programming model for continuous improvement in micro-manufacturing
NASA Astrophysics Data System (ADS)
Ouyang, Linhan; Ma, Yizhong; Wang, Jianjun; Tu, Yiliu; Byun, Jai-Hyun
2018-03-01
Continuous quality improvement in micro-manufacturing processes relies on optimization strategies that relate an output performance to a set of machining parameters. However, when determining the optimal machining parameters in a micro-manufacturing process, the economics of continuous quality improvement and decision makers' preference information are typically neglected. This article proposes an economic continuous improvement strategy based on an interval programming model. The proposed strategy differs from previous studies in two ways. First, an interval programming model is proposed to measure the quality level, where decision makers' preference information is considered in order to determine the weight of location and dispersion effects. Second, the proposed strategy is a more flexible approach since it considers the trade-off between the quality level and the associated costs, and leaves engineers a larger decision space through adjusting the quality level. The proposed strategy is compared with its conventional counterparts using an Nd:YLF laser beam micro-drilling process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi
A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures thatmore » can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.« less
Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi; ...
2017-03-13
A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures thatmore » can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.« less
A Framework for Preliminary Design of Aircraft Structures Based on Process Information. Part 1
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
1998-01-01
This report discusses the general framework and development of a computational tool for preliminary design of aircraft structures based on process information. The described methodology is suitable for multidisciplinary design optimization (MDO) activities associated with integrated product and process development (IPPD). The framework consists of three parts: (1) product and process definitions; (2) engineering synthesis, and (3) optimization. The product and process definitions are part of input information provided by the design team. The backbone of the system is its ability to analyze a given structural design for performance as well as manufacturability and cost assessment. The system uses a database on material systems and manufacturing processes. Based on the identified set of design variables and an objective function, the system is capable of performing optimization subject to manufacturability, cost, and performance constraints. The accuracy of the manufacturability measures and cost models discussed here depend largely on the available data on specific methods of manufacture and assembly and associated labor requirements. As such, our focus in this research has been on the methodology itself and not so much on its accurate implementation in an industrial setting. A three-tier approach is presented for an IPPD-MDO based design of aircraft structures. The variable-complexity cost estimation methodology and an approach for integrating manufacturing cost assessment into design process are also discussed. This report is presented in two parts. In the first part, the design methodology is presented, and the computational design tool is described. In the second part, a prototype model of the preliminary design Tool for Aircraft Structures based on Process Information (TASPI) is described. Part two also contains an example problem that applies the methodology described here for evaluation of six different design concepts for a wing spar.
An, Ke; Yuan, Lang; Dial, Laura; ...
2017-09-11
Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Ke; Yuan, Lang; Dial, Laura
Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less
Manufacturing Cost Levelization Model – A User’s Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine
The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modulesmore » that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks that offer the greatest opportunities for cost reduction early in the research and development stages of technology invention.« less
NASA Astrophysics Data System (ADS)
Putri, Anissa Rianda; Jauhari, Wakhid Ahmad; Rosyidi, Cucuk Nur
2017-11-01
This paper studies a closed-loop supply chain inventory model, where the primary market demand is fulfilled by newly produced products and remanufactured products. We intend to integrate a manufacturer and a collector as a supply chain system. Used items are collected and will be inspected and sorted by the collector, and the return rate of used items is depended upon price and quality factor. Used items that aren't pass this process, will be considered as waste and undergone waste disposal process. Recoverable used items will be sent to the manufacturer for recovery process. This paper applies two types of the recovery process for used products, i.e. remanufacture and refurbish. The refurbished items are sold to a secondary market with lower price than primary market price. Further, the amount of recoverable items depend upon the acceptance level of the returned items. This proposed model gives an optimal solution by maximizing the joint total profit. Moreover, a numerical example is presented to describe the application of the model.
CIM's bridge from CADD to CAM: Data management requirements for manufacturing engineering
NASA Technical Reports Server (NTRS)
Ford, S. J.
1984-01-01
Manufacturing engineering represents the crossroads of technical data management in a Computer Integrated Manufacturing (CIM) environment. Process planning, numerical control programming and tool design are the key functions which translate information from as engineered to as assembled. In order to transition data from engineering to manufacturing, it is necessary to introduce a series of product interpretations which contain an interim introduction of technical parameters. The current automation of the product definition and the production process places manufacturing engineering in the center of CAD/CAM with the responsibility of communicating design data to the factory floor via a manufacturing model of the data. A close look at data management requirements for manufacturing engineering is necessary in order to establish the overall specifications for CADD output, CAM input, and CIM integration. The functions and issues associated with the orderly evolution of computer aided engineering and manufacturing are examined.
Aerospace System Unified Life Cycle Engineering Producibility Measurement Issues
1989-05-01
Control .................................................................. 11-9 5 . C o st...in the development process; these computer -aided models offer clarity approaching that of a prototype model. Once a part geometry is represented...of part geometry , allowing manufacturability evaluation and possibly other computer -integrated manufacturing (CIM) tasks. (Other papers that discuss
Case Studies in Modelling, Control in Food Processes.
Glassey, J; Barone, A; Montague, G A; Sabou, V
This chapter discusses the importance of modelling and control in increasing food process efficiency and ensuring product quality. Various approaches to both modelling and control in food processing are set in the context of the specific challenges in this industrial sector and latest developments in each area are discussed. Three industrial case studies are used to demonstrate the benefits of advanced measurement, modelling and control in food processes. The first case study illustrates the use of knowledge elicitation from expert operators in the process for the manufacture of potato chips (French fries) and the consequent improvements in process control to increase the consistency of the resulting product. The second case study highlights the economic benefits of tighter control of an important process parameter, moisture content, in potato crisp (chips) manufacture. The final case study describes the use of NIR spectroscopy in ensuring effective mixing of dry multicomponent mixtures and pastes. Practical implementation tips and infrastructure requirements are also discussed.
A sustainable manufacturing system design: A fuzzy multi-objective optimization model.
Nujoom, Reda; Mohammed, Ahmed; Wang, Qian
2017-08-10
In the past decade, there has been a growing concern about the environmental protection in public society as governments almost all over the world have initiated certain rules and regulations to promote energy saving and minimize the production of carbon dioxide (CO 2 ) emissions in many manufacturing industries. The development of sustainable manufacturing systems is considered as one of the effective solutions to minimize the environmental impact. Lean approach is also considered as a proper method for achieving sustainability as it can reduce manufacturing wastes and increase the system efficiency and productivity. However, the lean approach does not include environmental waste of such as energy consumption and CO 2 emissions when designing a lean manufacturing system. This paper addresses these issues by evaluating a sustainable manufacturing system design considering a measurement of energy consumption and CO 2 emissions using different sources of energy (oil as direct energy source to generate thermal energy and oil or solar as indirect energy source to generate electricity). To this aim, a multi-objective mathematical model is developed incorporating the economic and ecological constraints aimed for minimization of the total cost, energy consumption, and CO 2 emissions for a manufacturing system design. For the real world scenario, the uncertainty in a number of input parameters was handled through the development of a fuzzy multi-objective model. The study also addresses decision-making in the number of machines, the number of air-conditioning units, and the number of bulbs involved in each process of a manufacturing system in conjunction with a quantity of material flow for processed products. A real case study was used for examining the validation and applicability of the developed sustainable manufacturing system model using the fuzzy multi-objective approach.
Wang, Hai-Xia; Suo, Tong-Chuan; Yu, He-Shui; Li, Zheng
2016-10-01
The manufacture of traditional Chinese medicine (TCM) products is always accompanied by processing complex raw materials and real-time monitoring of the manufacturing process. In this study, we investigated different modeling strategies for the extraction process of licorice. Near-infrared spectra associate with the extraction time was used to detemine the states of the extraction processes. Three modeling approaches, i.e., principal component analysis (PCA), partial least squares regression (PLSR) and parallel factor analysis-PLSR (PARAFAC-PLSR), were adopted for the prediction of the real-time status of the process. The overall results indicated that PCA, PLSR and PARAFAC-PLSR can effectively detect the errors in the extraction procedure and predict the process trajectories, which has important significance for the monitoring and controlling of the extraction processes. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Gentry, Jeffery D.
2000-05-01
A relational database is a powerful tool for collecting and analyzing the vast amounts of inner-related data associated with the manufacture of composite materials. A relational database contains many individual database tables that store data that are related in some fashion. Manufacturing process variables as well as quality assurance measurements can be collected and stored in database tables indexed according to lot numbers, part type or individual serial numbers. Relationships between manufacturing process and product quality can then be correlated over a wide range of product types and process variations. This paper presents details on how relational databases are used to collect, store, and analyze process variables and quality assurance data associated with the manufacture of advanced composite materials. Important considerations are covered including how the various types of data are organized and how relationships between the data are defined. Employing relational database techniques to establish correlative relationships between process variables and quality assurance measurements is then explored. Finally, the benefits of database techniques such as data warehousing, data mining and web based client/server architectures are discussed in the context of composite material manufacturing.
NASA Astrophysics Data System (ADS)
Xiong, H.; Hamila, N.; Boisse, P.
2017-10-01
Pre-impregnated thermoplastic composites have recently attached increasing interest in the automotive industry for their excellent mechanical properties and their rapid cycle manufacturing process, modelling and numerical simulations of forming processes for composites parts with complex geometry is necessary to predict and optimize manufacturing practices, especially for the consolidation effects. A viscoelastic relaxation model is proposed to characterize the consolidation behavior of thermoplastic prepregs based on compaction tests with a range of temperatures. The intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Within a hyperelastic framework, several simulation tests are launched by combining a new developed solid shell finite element and the consolidation models.
Energy requirement for the production of silicon solar arrays
NASA Technical Reports Server (NTRS)
Lindmayer, J.; Wihl, M.; Scheinine, A.; Morrison, A.
1977-01-01
An assessment of potential changes and alternative technologies which could impact the photovoltaic manufacturing process is presented. Topics discussed include: a multiple wire saw, ribbon growth techniques, silicon casting, and a computer model for a large-scale solar power plant. Emphasis is placed on reducing the energy demands of the manufacturing process.
1992-09-01
to accept; Manufacturing the desk could be only a very small facility for manufacturing Instant In every manufacturing process Manufacturing will be...produced " instant " parts Layer Characterized most, but not all Manufacturing of the new principles Material Deposit Includes the geometrical...using the NOODLES CAD environment [4]. Next, the CAD model is sliced, and the slices are used to generate files that control the laser mask cutting
Modeling the economics of landfilling organic processing waste streams
NASA Astrophysics Data System (ADS)
Rosentrater, Kurt A.
2005-11-01
As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector are many examples of various liquid, sludge, and solid biological and organic waste streams that require remediation. Alternative disposal methods for food and other bio-organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. Landfilling, the traditional approach to waste remediation, however, should not be dismissed entirely. It does provide a baseline to which all other recycling and reprocessing options should be compared. This paper discusses the implementation of a computer model designed to examine the economics of landfilling bio-organic processing waste streams. Not only are these results applicable to food processing operations, but any industrial or manufacturing firm would benefit from examining the trends discussed here.
NASA Astrophysics Data System (ADS)
Li, Leihong
A modular structural design methodology for composite blades is developed. This design method can be used to design composite rotor blades with sophisticate geometric cross-sections. This design method hierarchically decomposed the highly-coupled interdisciplinary rotor analysis into global and local levels. In the global level, aeroelastic response analysis and rotor trim are conduced based on multi-body dynamic models. In the local level, variational asymptotic beam sectional analysis methods are used for the equivalent one-dimensional beam properties. Compared with traditional design methodology, the proposed method is more efficient and accurate. Then, the proposed method is used to study three different design problems that have not been investigated before. The first is to add manufacturing constraints into design optimization. The introduction of manufacturing constraints complicates the optimization process. However, the design with manufacturing constraints benefits the manufacturing process and reduces the risk of violating major performance constraints. Next, a new design procedure for structural design against fatigue failure is proposed. This procedure combines the fatigue analysis with the optimization process. The durability or fatigue analysis employs a strength-based model. The design is subject to stiffness, frequency, and durability constraints. Finally, the manufacturing uncertainty impacts on rotor blade aeroelastic behavior are investigated, and a probabilistic design method is proposed to control the impacts of uncertainty on blade structural performance. The uncertainty factors include dimensions, shapes, material properties, and service loads.
Metal Big Area Additive Manufacturing: Process Modeling and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan; Nycz, Andrzej; Noakes, Mark W
Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology for printing large-scale 3D objects. mBAAM is based on the gas metal arc welding process and uses a continuous feed of welding wire to manufacture an object. An electric arc forms between the wire and the substrate, which melts the wire and deposits a bead of molten metal along the predetermined path. In general, the welding process parameters and local conditions determine the shape of the deposited bead. The sequence of the bead deposition and the corresponding thermal history of the manufactured object determine the long rangemore » effects, such as thermal-induced distortions and residual stresses. Therefore, the resulting performance or final properties of the manufactured object are dependent on its geometry and the deposition path, in addition to depending on the basic welding process parameters. Physical testing is critical for gaining the necessary knowledge for quality prints, but traversing the process parameter space in order to develop an optimized build strategy for each new design is impractical by pure experimental means. Computational modeling and optimization may accelerate development of a build process strategy and saves time and resources. Because computational modeling provides these opportunities, we have developed a physics-based Finite Element Method (FEM) simulation framework and numerical models to support the mBAAM process s development and design. In this paper, we performed a sequentially coupled heat transfer and stress analysis for predicting the final deformation of a small rectangular structure printed using the mild steel welding wire. Using the new simulation technologies, material was progressively added into the FEM simulation as the arc weld traversed the build path. In the sequentially coupled heat transfer and stress analysis, the heat transfer was performed to calculate the temperature evolution, which was used in a stress analysis to evaluate the residual stresses and distortions. In this formulation, we assume that physics is directionally coupled, i.e. the effect of stress of the component on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.
22 CFR 124.2 - Exemptions for training and military service.
Code of Federal Regulations, 2010 CFR
2010-04-01
... methods and tools include the development and/or use of mockups, computer models and simulations, and test facilities. (iii) Manufacturing know-how, such as: Information that provides detailed manufacturing processes...
Process Modeling and Validation for Metal Big Area Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan; Nycz, Andrzej; Noakes, Mark W.
Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to acceleratemore » the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.« less
NASA Astrophysics Data System (ADS)
Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard
2016-09-01
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.
Knowledge-Based Manufacturing and Structural Design for a High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Marx, William J.; Mavris, Dimitri N.; Schrage, Daniel P.
1994-01-01
The aerospace industry is currently addressing the problem of integrating manufacturing and design. To address the difficulties associated with using many conventional procedural techniques and algorithms, one feasible way to integrate the two concepts is with the development of an appropriate Knowledge-Based System (KBS). The authors present their reasons for selecting a KBS to integrate design and manufacturing. A methodology for an aircraft producibility assessment is proposed, utilizing a KBS for manufacturing process selection, that addresses both procedural and heuristic aspects of designing and manufacturing of a High Speed Civil Transport (HSCT) wing. A cost model is discussed that would allow system level trades utilizing information describing the material characteristics as well as the manufacturing process selections. Statements of future work conclude the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Steve
Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing andmore » material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.« less
SiGe BiCMOS manufacturing platform for mmWave applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker
2010-10-01
TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.
NASA Astrophysics Data System (ADS)
Xiao, Jie
Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and curing, is specifically discussed in this dissertation. Nevertheless, the multiscale considerations for sustainable manufacturing, the novel concept of IPP control, and the new PPDE-based optimization method are applicable to other types of manufacturing, e.g., metal coating development through electroplating. It is demonstrated that the methodological development in this dissertation can greatly facilitate experimentalists in novel material invention and new knowledge discovery. At the same time, they can provide scientific guidance and reveal various new opportunities and effective strategies for sustainable manufacturing.
Dynamic Models and Coordination Analysis of Reverse Supply Chain with Remanufacturing
NASA Astrophysics Data System (ADS)
Yan, Nina
In this paper, we establish a reverse chain system with one manufacturer and one retailer under demand uncertainties. Distinguishing between the recycling process of the retailer and the remanufacturing process of the manufacturer, we formulate a two-stage dynamic model for reverse supply chain based on remanufacturing. Using buyback contract as coordination mechanism and applying dynamic programming the optimal decision problems for each stage are analyzed. It concluded that the reverse supply chain system could be coordinated under the given condition. Finally, we carry out numerical calculations to analyze the expected profits for the manufacturer and the retailer under different recovery rates and recovery prices and the outcomes validate the theoretical analyses.
Additively Manufactured IN718 Components with Wirelessly Powered and Interrogated Embedded Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attridge, Paul; Bajekal, Sanjay; Klecka, Michael
A methodology is described for embedding commercial-off-the-shelf sensors together with wireless communication and power circuit elements using direct laser metal sintered additively manufactured components. Physics based models of the additive manufacturing processes and sensor/wireless level performance models guided the design and embedment processes. A combination of cold spray deposition and laser engineered net shaping was used to fashion the transmitter/receiving elements and embed the sensors, thereby providing environmental protection and component robustness/survivability for harsh conditions. By design, this complement of analog and digital sensors were wirelessly powered and interrogated using a health and utilization monitoring system; enabling real-time, in situmore » prognostics and diagnostics.« less
Streefland, M; Van Herpen, P F G; Van de Waterbeemd, B; Van der Pol, L A; Beuvery, E C; Tramper, J; Martens, D E; Toft, M
2009-10-15
A licensed pharmaceutical process is required to be executed within the validated ranges throughout the lifetime of product manufacturing. Changes to the process, especially for processes involving biological products, usually require the manufacturer to demonstrate that the safety and efficacy of the product remains unchanged by new or additional clinical testing. Recent changes in the regulations for pharmaceutical processing allow broader ranges of process settings to be submitted for regulatory approval, the so-called process design space, which means that a manufacturer can optimize his process within the submitted ranges after the product has entered the market, which allows flexible processes. In this article, the applicability of this concept of the process design space is investigated for the cultivation process step for a vaccine against whooping cough disease. An experimental design (DoE) is applied to investigate the ranges of critical process parameters that still result in a product that meets specifications. The on-line process data, including near infrared spectroscopy, are used to build a descriptive model of the processes used in the experimental design. Finally, the data of all processes are integrated in a multivariate batch monitoring model that represents the investigated process design space. This article demonstrates how the general principles of PAT and process design space can be applied for an undefined biological product such as a whole cell vaccine. The approach chosen for model development described here, allows on line monitoring and control of cultivation batches in order to assure in real time that a process is running within the process design space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guest, Daniel A.; Cairns, Douglas S.
2014-02-01
The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flowmore » rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.« less
Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells
methods to meet volume and cost targets for transportation and other applications. Fortunately, much can set Develop predictive models to help industry design better manufacturing processes and methods
Verification of the Skorohod-Olevsky Viscous Sintering (SOVS) Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, Brian T.
2017-11-16
Sintering refers to a manufacturing process through which mechanically pressed bodies of ceramic (and sometimes metal) powders are heated to drive densification thereby removing the inherit porosity of green bodies. As the body densifies through the sintering process, the ensuing material flow leads to macroscopic deformations of the specimen and as such the final configuration differs form the initial. Therefore, as with any manufacturing step, there is substantial interest in understanding and being able to model the sintering process to predict deformation and residual stress. Efforts in this regard have been pursued for face seals, gear wheels, and consumer productsmore » like wash-basins. To understand the sintering process, a variety of modeling approaches have been pursued at different scales.« less
Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering
David, Stan A.; Chen, Jian; Feng, Zhili; ...
2017-12-02
A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less
Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Stan A.; Chen, Jian; Feng, Zhili
A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less
Electrical features of new DNC, CNC system viewed
NASA Astrophysics Data System (ADS)
Fritzsch, W.; Kochan, D.; Schaller, J.; Zander, H. J.
1985-03-01
Control structures capable of solving the problems of a flexible minial-labor manufacturing process are analyzed. The present state of development of equipment technology is described, and possible ways of modeling control processes are surveyed. Concepts which are frequently differently interpreted in various specialized disciplines are systematized, with a view toward creating the prerequisites for interdisciplinary cooperation. Problems and information flow during the preparatory and performance phases of manufacturing are examined with respect to coupling CAD/CAM functions. Mathematical modeling for direct numerical control is explored.
Application of a mathematical model for ergonomics in lean manufacturing.
Botti, Lucia; Mora, Cristina; Regattieri, Alberto
2017-10-01
The data presented in this article are related to the research article "Integrating ergonomics and lean manufacturing principles in a hybrid assembly line" (Botti et al., 2017) [1]. The results refer to the application of the mathematical model for the design of lean processes in hybrid assembly lines, meeting both the lean principles and the ergonomic requirements for safe assembly work. Data show that the success of a lean strategy is possible when ergonomics of workers is a parameter of the assembly process design.
Design, Development and Validation of the Eurostar 3000 Large Propellant Tank
NASA Astrophysics Data System (ADS)
Autric, J.-M.; Catherall, D.; Figues, C.; Brockhoff, T.; Lafranconi, R.
2004-10-01
EADS Astrium has undertaken the design and development of an enlarged propellant tank for its high modular Eurostar 3000 telecom satellites platform. The design and development activities included fracture, stress and functional analysis, the manufacturing of development models for the propellant management device, the qualification of new manufacturing processes and the optimization of the design with respect to the main requirements. The successful design and development-testing phase has allowed starting the manufacturing of the qualification model.
2014-10-01
Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for
The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing.
van Eijnatten, Maureen; Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan
2016-01-01
Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a "gold standard". All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings.
Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels.
Zupke, Craig; Brady, Lowell J; Slade, Peter G; Clark, Philip; Caspary, R Guy; Livingston, Brittney; Taylor, Lisa; Bigham, Kyle; Morris, Arvia E; Bailey, Robert W
2015-01-01
Pressures for cost-effective new therapies and an increased emphasis on emerging markets require technological advancements and a flexible future manufacturing network for the production of biologic medicines. The safety and efficacy of a product is crucial, and consistent product quality is an essential feature of any therapeutic manufacturing process. The active control of product quality in a typical biologic process is challenging because of measurement lags and nonlinearities present in the system. The current study uses nonlinear model predictive control to maintain a critical product quality attribute at a predetermined value during pilot scale manufacturing operations. This approach to product quality control ensures a more consistent product for patients, enables greater manufacturing efficiency, and eliminates the need for extensive process characterization by providing direct measures of critical product quality attributes for real time release of drug product. © 2015 American Institute of Chemical Engineers.
Lambertus, Gordon; Shi, Zhenqi; Forbes, Robert; Kramer, Timothy T; Doherty, Steven; Hermiller, James; Scully, Norma; Wong, Sze Wing; LaPack, Mark
2014-01-01
An on-line analytical method based on transmission near-infrared spectroscopy (NIRS) for the quantitative determination of water concentrations (in parts per million) was developed and applied to the manufacture of a pharmaceutical intermediate. Calibration models for water analysis, built at the development site and applied at the manufacturing site, were successfully demonstrated during six manufacturing runs at a 250-gallon scale. The water measurements will be used as a forward-processing control point following distillation of a toluene product solution prior to use in a Grignard reaction. The most significant impact of using this NIRS-based process analytical technology (PAT) to replace off-line measurements is the significant reduction in the risk of operator exposure through the elimination of sampling of a severely lachrymatory and mutagenic compound. The work described in this report illustrates the development effort from proof-of-concept phase to manufacturing implementation.
2015 Army Science Planning and Strategy Meeting Series: Outcomes and Conclusions
2017-12-21
modeling and nanoscale characterization tools to enable efficient design of hybridized manufacturing ; realtime, multiscale computational capability...to enable predictive analytics for expeditionary on-demand manufacturing • Discovery of design principles to enable programming advanced genetic...goals, significant research is needed to mature the fundamental materials science, processing and manufacturing sciences, design methodologies, data
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
The application of virtual reality systems as a support of digital manufacturing and logistics
NASA Astrophysics Data System (ADS)
Golda, G.; Kampa, A.; Paprocka, I.
2016-08-01
Modern trends in development of computer aided techniques are heading toward the integration of design competitive products and so-called "digital manufacturing and logistics", supported by computer simulation software. All phases of product lifecycle: starting from design of a new product, through planning and control of manufacturing, assembly, internal logistics and repairs, quality control, distribution to customers and after-sale service, up to its recycling or utilization should be aided and managed by advanced packages of product lifecycle management software. Important problems for providing the efficient flow of materials in supply chain management of whole product lifecycle, using computer simulation will be described on that paper. Authors will pay attention to the processes of acquiring relevant information and correct data, necessary for virtual modeling and computer simulation of integrated manufacturing and logistics systems. The article describes possibilities of use an applications of virtual reality software for modeling and simulation the production and logistics processes in enterprise in different aspects of product lifecycle management. The authors demonstrate effective method of creating computer simulations for digital manufacturing and logistics and show modeled and programmed examples and solutions. They pay attention to development trends and show options of the applications that go beyond enterprise.
Intelligent system of coordination and control for manufacturing
NASA Astrophysics Data System (ADS)
Ciortea, E. M.
2016-08-01
This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, John S.; Beese, Allison M.; Bourell, David L.
Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less
Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...
2015-06-26
Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less
NASA Astrophysics Data System (ADS)
Rechtenwald, Thomas; Frick, Thomas; Schmidt, Michael
The embedding stereolithography is an additive, hybrid process, which allows the construction of highly integrated 3D assemblies for the use in automotive applications. The flexible process of stereolithography is combined with the embedding of functional components and supplemented by the additive manufacturing of electrical or optical conductive structures. This combination of sub-processes implies a high potential regarding the obtainable integration density of mechatronical modules. This work considers basic restrictions, which limit the mechanical stability of the manufactured modules by calculating the superposition of residual and external stress using a thermo-mechanical finite element model and develops a procedure to qualify stereolithography matrix materials for the process of the embedding stereolithography.
Prepreg effects on honeycomb composite manufacturing
NASA Astrophysics Data System (ADS)
Martin, Cary Joseph
Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-05-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-01-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
Adaptive Façade: Variant-Finding using Shape Grammar
NASA Astrophysics Data System (ADS)
Tomasowa, Riva; Utama Sjarifudin, Firza
2017-12-01
Modular façade construction has never been better since the birth of computer-aided manufacturing which bridges the modeling phase into the manufacturing phase for escalating the mass production. This comes to a result that the identity of a product or a building façade will commonly generate in the same way that the initial design was intended to. Rectifying the early model will then greatly impact the process later. The aim of this paper is to propose a way to solve these two challenges, without risking the manufacturing process, but more to explore the potential designs. Shape grammar is used to conceive more designs in the early stage, derived from the initial product - the modular adaptive façade system. The derivations are then tested through simulation to state the efficacy of the models. We find that the workflow somehow contributes to the better design and engineering process as well as the solution allows diversification in the façade expressions.
RFI and SCRIMP Model Development and Verification
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Sayre, Jay
2000-01-01
Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process constraints in the modeling of several different composite panels. The configuration was proposed by considering such factors as: infiltration time, the number of vacuum ports, and possible areas of void entrapment.
FDA 2011 process validation guidance: lifecycle compliance model.
Campbell, Cliff
2014-01-01
This article has been written as a contribution to the industry's efforts in migrating from a document-driven to a data-driven compliance mindset. A combination of target product profile, control engineering, and general sum principle techniques is presented as the basis of a simple but scalable lifecycle compliance model in support of modernized process validation. Unit operations and significant variables occupy pole position within the model, documentation requirements being treated as a derivative or consequence of the modeling process. The quality system is repositioned as a subordinate of system quality, this being defined as the integral of related "system qualities". The article represents a structured interpretation of the U.S. Food and Drug Administration's 2011 Guidance for Industry on Process Validation and is based on the author's educational background and his manufacturing/consulting experience in the validation field. The U.S. Food and Drug Administration's Guidance for Industry on Process Validation (2011) provides a wide-ranging and rigorous outline of compliant drug manufacturing requirements relative to its 20(th) century predecessor (1987). Its declared focus is patient safety, and it identifies three inter-related (and obvious) stages of the compliance lifecycle. Firstly, processes must be designed, both from a technical and quality perspective. Secondly, processes must be qualified, providing evidence that the manufacturing facility is fully "roadworthy" and fit for its intended purpose. Thirdly, processes must be verified, meaning that commercial batches must be monitored to ensure that processes remain in a state of control throughout their lifetime.
NASA Astrophysics Data System (ADS)
Delistoian, Dmitri; Chirchor, Mihael
2017-12-01
Fluid transportation from production areas to final customer is effectuated by pipelines. For oil and gas industry, pipeline safety and reliability represents a priority. From this reason, pipe quality guarantee directly influence pipeline designed life, but first of all protects environment. A significant number of longitudinally welded pipes, for onshore/offshore pipelines, are manufactured by UOE method. This method is based on cold forming. In present study, using finite element method is modeled UOE pipe manufacturing process and is obtained von Mises stresses for each step. Numerical simulation is performed for L415 MB (X60) steel plate with 7,9 mm thickness, length 30 mm and width 1250mm, as result it is obtained a DN 400 pipe.
Simulation modeling of domestic and international intermodal supply paths.
DOT National Transportation Integrated Search
2014-07-01
supply of material to a manufacturing facility obviously has a major impact on enterprise : performance, whether measured in terms of cost, timeliness, quality, etc. Most material that is : input to a manufacturing process is transported to the manuf...
NASA Astrophysics Data System (ADS)
Vdovin, R. A.; Smelov, V. G.
2017-02-01
This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.
Microgravity Manufacturing Via Fused Deposition
NASA Technical Reports Server (NTRS)
Cooper, K. G.; Griffin, M. R.
2003-01-01
Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.
A quality risk management model approach for cell therapy manufacturing.
Lopez, Fabio; Di Bartolo, Chiara; Piazza, Tommaso; Passannanti, Antonino; Gerlach, Jörg C; Gridelli, Bruno; Triolo, Fabio
2010-12-01
International regulatory authorities view risk management as an essential production need for the development of innovative, somatic cell-based therapies in regenerative medicine. The available risk management guidelines, however, provide little guidance on specific risk analysis approaches and procedures applicable in clinical cell therapy manufacturing. This raises a number of problems. Cell manufacturing is a poorly automated process, prone to operator-introduced variations, and affected by heterogeneity of the processed organs/tissues and lot-dependent variability of reagent (e.g., collagenase) efficiency. In this study, the principal challenges faced in a cell-based product manufacturing context (i.e., high dependence on human intervention and absence of reference standards for acceptable risk levels) are identified and addressed, and a risk management model approach applicable to manufacturing of cells for clinical use is described for the first time. The use of the heuristic and pseudo-quantitative failure mode and effect analysis/failure mode and critical effect analysis risk analysis technique associated with direct estimation of severity, occurrence, and detection is, in this specific context, as effective as, but more efficient than, the analytic hierarchy process. Moreover, a severity/occurrence matrix and Pareto analysis can be successfully adopted to identify priority failure modes on which to act to mitigate risks. The application of this approach to clinical cell therapy manufacturing in regenerative medicine is also discussed. © 2010 Society for Risk Analysis.
DORIS Starec ground antenna characterization and impact on positioning
NASA Astrophysics Data System (ADS)
Tourain, C.; Moreaux, G.; Auriol, A.; Saunier, J.
2016-12-01
In a geodetic radio frequency observing system the phase center offsets and phase center variations of ground antennae are a fundamental component of mathematical models of the system observables. In this paper we describe work aimed at improving the DORIS Starec ground antenna phase center definition model. Seven antennas were analyzed in the Compact Antenna Test Range (CATR), a dedicated CNES facility. With respect to the manufacturer specified phase center offset, the measured antennae varied between -6 mm and +4 mm due to manufacturing variations. To solve this problem, discussions were held with the manufacturer, leading to an improvement of the manufacturing process. This work results in a reduction in the scatter to ±1 mm. The phase center position has been kept unchanged and associated phase law has been updated and provided to users of the International DORIS Service (IDS). This phase law is applicable to all Starec antennas (before and after manufacturing process consolidation) and is azimuth independent. An error budget taking into account these updated characteristics has been established for the antenna alone: ±2 mm on the horizontal plane and ±3 mm on the up component, maximum error values for antennas named type C (Saunier et al., 2016) produced with consolidated manufacturing process. Finally the impact of this updated characterization on positioning results has been analyzed and shows a scale offset only of the order of +12 mm for the Terrestrial Reference Frame.
Process-based Cost Estimation for Ramjet/Scramjet Engines
NASA Technical Reports Server (NTRS)
Singh, Brijendra; Torres, Felix; Nesman, Miles; Reynolds, John
2003-01-01
Process-based cost estimation plays a key role in effecting cultural change that integrates distributed science, technology and engineering teams to rapidly create innovative and affordable products. Working together, NASA Glenn Research Center and Boeing Canoga Park have developed a methodology of process-based cost estimation bridging the methodologies of high-level parametric models and detailed bottoms-up estimation. The NASA GRC/Boeing CP process-based cost model provides a probabilistic structure of layered cost drivers. High-level inputs characterize mission requirements, system performance, and relevant economic factors. Design alternatives are extracted from a standard, product-specific work breakdown structure to pre-load lower-level cost driver inputs and generate the cost-risk analysis. As product design progresses and matures the lower level more detailed cost drivers can be re-accessed and the projected variation of input values narrowed, thereby generating a progressively more accurate estimate of cost-risk. Incorporated into the process-based cost model are techniques for decision analysis, specifically, the analytic hierarchy process (AHP) and functional utility analysis. Design alternatives may then be evaluated not just on cost-risk, but also user defined performance and schedule criteria. This implementation of full-trade study support contributes significantly to the realization of the integrated development environment. The process-based cost estimation model generates development and manufacturing cost estimates. The development team plans to expand the manufacturing process base from approximately 80 manufacturing processes to over 250 processes. Operation and support cost modeling is also envisioned. Process-based estimation considers the materials, resources, and processes in establishing cost-risk and rather depending on weight as an input, actually estimates weight along with cost and schedule.
System level analysis and control of manufacturing process variation
Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.
2005-05-31
A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.; Britt, J.; Birkmire, R.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less
A unified dislocation density-dependent physical-based constitutive model for cold metal forming
NASA Astrophysics Data System (ADS)
Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.
2017-10-01
Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.
Practical LCA for short shelf life products
NASA Astrophysics Data System (ADS)
Laurin, Lise; Goedkoop, Mark; Norris, Greg
2005-11-01
Manufacturers in many of today's industries are faced with product shelf life counted in months. Traditionally, this has made it very difficult to make a life cycle assessment (LCA) of a product, since the product would be obsolete by the time the LCA was completed. A new concept in LCA that allows specialists in things other than LCA to rapidly create both a model and generate "what-if" scenarios will allow even manufacturers of short shelf life products take advantage of the benefits of LCA. These industry-specific "wizards" are built around a manufacturing process and can be rapidly updated or customized to a particular manufacturer or process type. Results can be used internally for decision-making and can also enable manufacturers submit information for environmentally preferable purchasing, eco-labels, etc.
Process analytical technology in continuous manufacturing of a commercial pharmaceutical product.
Vargas, Jenny M; Nielsen, Sarah; Cárdenas, Vanessa; Gonzalez, Anthony; Aymat, Efrain Y; Almodovar, Elvin; Classe, Gustavo; Colón, Yleana; Sanchez, Eric; Romañach, Rodolfo J
2018-03-01
The implementation of process analytical technology and continuous manufacturing at an FDA approved commercial manufacturing site is described. In this direct compaction process the blends produced were monitored with a Near Infrared (NIR) spectroscopic calibration model developed with partial least squares (PLS) regression. The authors understand that this is the first study where the continuous manufacturing (CM) equipment was used as a gravimetric reference method for the calibration model. A principal component analysis (PCA) model was also developed to identify the powder blend, and determine whether it was similar to the calibration blends. An air diagnostic test was developed to assure that powder was present within the interface when the NIR spectra were obtained. The air diagnostic test as well the PCA and PLS calibration model were integrated into an industrial software platform that collects the real time NIR spectra and applies the calibration models. The PCA test successfully detected an equipment malfunction. Variographic analysis was also performed to estimate the sampling analytical errors that affect the results from the NIR spectroscopic method during commercial production. The system was used to monitor and control a 28 h continuous manufacturing run, where the average drug concentration determined by the NIR method was 101.17% of label claim with a standard deviation of 2.17%, based on 12,633 spectra collected. The average drug concentration for the tablets produced from these blends was 100.86% of label claim with a standard deviation of 0.4%, for 500 tablets analyzed by Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The excellent agreement between the mean drug concentration values in the blends and tablets produced provides further evidence of the suitability of the validation strategy that was followed. Copyright © 2018 Elsevier B.V. All rights reserved.
Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J
2013-01-01
Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.
Trainer, Asa; Hedberg, Thomas; Feeney, Allison Barnard; Fischer, Kevin; Rosche, Phil
2016-01-01
Advances in information technology triggered a digital revolution that holds promise of reduced costs, improved productivity, and higher quality. To ride this wave of innovation, manufacturing enterprises are changing how product definitions are communicated - from paper to models. To achieve industry's vision of the Model-Based Enterprise (MBE), the MBE strategy must include model-based data interoperability from design to manufacturing and quality in the supply chain. The Model-Based Definition (MBD) is created by the original equipment manufacturer (OEM) using Computer-Aided Design (CAD) tools. This information is then shared with the supplier so that they can manufacture and inspect the physical parts. Today, suppliers predominantly use Computer-Aided Manufacturing (CAM) and Coordinate Measuring Machine (CMM) models for these tasks. Traditionally, the OEM has provided design data to the supplier in the form of two-dimensional (2D) drawings, but may also include a three-dimensional (3D)-shape-geometry model, often in a standards-based format such as ISO 10303-203:2011 (STEP AP203). The supplier then creates the respective CAM and CMM models and machine programs to produce and inspect the parts. In the MBE vision for model-based data exchange, the CAD model must include product-and-manufacturing information (PMI) in addition to the shape geometry. Today's CAD tools can generate models with embedded PMI. And, with the emergence of STEP AP242, a standards-based model with embedded PMI can now be shared downstream. The on-going research detailed in this paper seeks to investigate three concepts. First, that the ability to utilize a STEP AP242 model with embedded PMI for CAD-to-CAM and CAD-to-CMM data exchange is possible and valuable to the overall goal of a more efficient process. Second, the research identifies gaps in tools, standards, and processes that inhibit industry's ability to cost-effectively achieve model-based-data interoperability in the pursuit of the MBE vision. Finally, it also seeks to explore the interaction between CAD and CMM processes and determine if the concept of feedback from CAM and CMM back to CAD is feasible. The main goal of our study is to test the hypothesis that model-based-data interoperability from CAD-to-CAM and CAD-to-CMM is feasible through standards-based integration. This paper presents several barriers to model-based-data interoperability. Overall, the project team demonstrated the exchange of product definition data between CAD, CAM, and CMM systems using standards-based methods. While gaps in standards coverage were identified, the gaps should not stop industry's progress toward MBE. The results of our study provide evidence in support of an open-standards method to model-based-data interoperability, which would provide maximum value and impact to industry.
RTD-based Material Tracking in a Fully-Continuous Dry Granulation Tableting Line.
Martinetz, M C; Karttunen, A-P; Sacher, S; Wahl, P; Ketolainen, J; Khinast, J G; Korhonen, O
2018-06-06
Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data. RTD models for continuous operated unit operations and the entire line were developed based on transfer functions. For semi-continuously operated bucket conveyor and pneumatic transport an assumption based the operation frequency was used. For validation of the parametrized process model, a pre-defined API step change and its propagation through the manufacturing line was computed and compared to multi-scale experimental runs conducted with the fully assembled continuous operated manufacturing line. This novel approach showed a very good prediction power at the selected mass flow rates for a complete continuous dry granulation line. Furthermore, it shows and proves the capabilities of process simulation as a tool to support development and control of pharmaceutical manufacturing processes. Copyright © 2018. Published by Elsevier B.V.
Integrated Process Modeling-A Process Validation Life Cycle Companion.
Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph
2017-10-17
During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.
NASA Astrophysics Data System (ADS)
Chen, Shaohua; Xu, Yaopengxiao; Jiao, Yang
2018-06-01
Additive manufacturing such as selective laser sintering and electron beam melting has become a popular technique which enables one to build near-net-shape product from packed powders. The performance and properties of the manufactured product strongly depends on its material microstructure, which is in turn determined by the processing conditions including beam power density, spot size, scanning speed and path etc. In this paper, we develop a computational framework that integrates the finite element method (FEM) and cellular automaton (CA) simulation to model the 3D microstructure of additively manufactured Ti–6Al–4V alloy, focusing on the β → α + β transition pathway in a consolidated alloy region as the power source moves away from this region. Specifically, the transient temperature field resulted from a scanning laser/electron beam following a zig-zag path is first obtained by solving nonlinear heat transfer equations using the FEM. Next, a CA model for the β → α + β phase transformation in the consolidated alloy is developed which explicitly takes into account the temperature dependent heterogeneous nucleation and anisotropic growth of α grains from the parent β phase field. We verify our model by reproducing the overall transition kinetics predicted by the Johnson–Mehl–Avrami–Kolmogorov theory under a typical processing condition and by quantitatively comparing our simulation results with available experimental data. The utility of the model is further demonstrated by generating large-field realistic 3D alloy microstructures for subsequent structure-sensitive micro-mechanical analysis. In addition, we employ our model to generate a wide spectrum of alloy microstructures corresponding to different processing conditions for establishing quantitative process-structure relations for the system.
Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming
NASA Astrophysics Data System (ADS)
Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd
2017-10-01
The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.
American Society of Composites, 32nd Technical Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitharaju, Venkat; Yu, Hang; Zhao, Selina
Resin transfer molding (RTM) has become increasingly popular for the manufacturing of composite parts. To enable high volume manufacturing and obtain good quality parts at an acceptable cost to automotive industry, accurate process simulation tools are necessary to optimize the process conditions. Towards that goal, General Motors and the ESI-group are involved in developing a state of the art process simulation tool for composite manufacturing in a project supported by the Department of Energy. This paper describes the modeling of various stages in resin transfer molding such as resin injection, resin curing, and part distortion. An instrumented RTM system locatedmore » at the General Motors Research and Development center was used to perform flat plaque molding experiments. The experimental measurements of fill time, in-mold pressure versus time, cure variation with time, and part deformation were compared with the model predictions and very good correlations were observed.« less
NASA Astrophysics Data System (ADS)
Zbiciak, R.; Grabowik, C.; Janik, W.
2015-11-01
The design-constructional process is a creation activity which strives to fulfil, as well as it possible at the certain moment of time, all demands and needs formulated by a user taking into account social, technical and technological advances. Engineer knowledge and skills and their inborn abilities have the greatest influence on the final product quality and cost. They have also deciding influence on product technical and economic value. Taking into account above it seems to be advisable to make software tools that support an engineer in the process of manufacturing cost estimation. The Cost module is built with analytical procedures which are used for relative manufacturing cost estimation. As in the case of the Generator module the Cost module was written in object programming language C# in Visual Studio environment. During the research the following eight factors, that have the greatest influence on overall manufacturing cost, were distinguished and defined: (i) a gear wheel teeth type it is straight or helicoidal, (ii) a gear wheel design shape A, B with or without wheel hub, (iii) a gear tooth module, (iv) teeth number, (v) gear rim width, (vi) gear wheel material, (vii) heat treatment or thermochemical treatment, (viii) accuracy class. Knowledge of parameters (i) to (v) is indispensable for proper modelling of 3D gear wheels models in CAD system environment. These parameters are also processed in the Cost module. The last three parameters it is (vi) to (viii) are exclusively used in the Cost module. The estimation of manufacturing relative cost is based on indexes calculated for each particular parameter. Estimated in this way the manufacturing relative cost gives an overview of design parameters influence on the final gear wheel manufacturing cost. This relative manufacturing cost takes values from 0.00 to 1,00 range. The bigger index value the higher relative manufacturing cost is. Verification whether the proposed algorithm of relative manufacturing costs estimation has been designed properly was made by comparison of the achieved from the algorithm results with those obtained from industry. This verification has indicated that in most cases both group of results are similar. Taking into account above it is possible to draw a conclusion that the Cost module might play significant role in design constructional process by adding an engineer at the selection stage of alternative gear wheels design. It should be remembered that real manufacturing cost can differ significantly according to available in a factory manufacturing techniques and stock of machine tools.
U-10Mo Baseline Fuel Fabrication Process Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Lance R.; Arendt, Christina L.; Dye, Daniel F.
This document provides a description of the U.S. High Power Research Reactor (USHPRR) low-enriched uranium (LEU) fuel fabrication process. This document is intended to be used in conjunction with the baseline process flow diagram (PFD) presented in Appendix A. The baseline PFD is used to document the fabrication process, communicate gaps in technology or manufacturing capabilities, convey alternatives under consideration, and as the basis for a dynamic simulation model of the fabrication process. The simulation model allows for the assessment of production rates, costs, and manufacturing requirements (manpower, fabrication space, numbers and types of equipment, etc.) throughout the lifecycle ofmore » the USHPRR program. This document, along with the accompanying PFD, is updated regularly« less
Development and qualification of additively manufactured parts for space
NASA Astrophysics Data System (ADS)
O'Brien, Michael J.
2018-02-01
Additive manufacturing (commonly called "3D printing") fabricates the desired final part directly from the input CAD (Computer Aided Design) file by depositing and fusing layer upon layer of the source material. New engineering designs are possible in which a single optimized part with novel topology can replace several traditional parts. The complex physics of metal deposition leads to variations in quality and to new flaws and residual stresses not seen in traditional manufacturing. Additive manufacturing currently has gaps in knowledge. Mission assurance will require: qualification and certification standards; sharing of data in handbooks; predictive models relating processing, microstructure and properties; and development of closed loop process control and non-destructive evaluation to reduce variability.
Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions
NASA Astrophysics Data System (ADS)
Rolchigo, Matthew R.; Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian; Collins, Peter C.; LeSar, Richard
2017-07-01
Additive manufacturing (AM) processes have many benefits for the fabrication of alloy parts, including the potential for greater microstructural control and targeted properties than traditional metallurgy processes. To accelerate utilization of this process to produce such parts, an effective computational modeling approach to identify the relationships between material and process parameters, microstructure, and part properties is essential. Development of such a model requires accounting for the many factors in play during this process, including laser absorption, material addition and melting, fluid flow, various modes of heat transport, and solidification. In this paper, we start with a more modest goal, to create a multiscale model for a specific AM process, Laser Engineered Net Shaping (LENS™), which couples a continuum-level description of a simplified beam melting problem (coupling heat absorption, heat transport, and fluid flow) with a Lattice Boltzmann-cellular automata (LB-CA) microscale model of combined fluid flow, solute transport, and solidification. We apply this model to a binary Ti-5.5 wt pct W alloy and compare calculated quantities, such as dendrite arm spacing, with experimental results reported in a companion paper.
Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; ...
2016-04-26
The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less
Janssen, Eva Maria; Schliephacke, Ralf; Breitenbach, Armin; Breitkreutz, Jörg
2013-01-30
Orodispersible films (ODFs) are intended to disintegrate within seconds when placed onto the tongue. The common way of manufacturing is the solvent casting method. Flexographic printing on drug-free ODFs is introduced as a highly flexible and cost-effective alternative manufacturing method in this study. Rasagiline mesylate and tadalafil were used as model drugs. Printing of rasagiline solutions and tadalafil suspensions was feasible. Up to four printing cycles were performed. The possibility to employ several printing cycles enables a continuous, highly flexible manufacturing process, for example for individualised medicine. The obtained ODFs were characterised regarding their mechanical properties, their disintegration time, API crystallinity and homogeneity. Rasagiline mesylate did not recrystallise after the printing process. Relevant film properties were not affected by printing. Results were comparable to the results of ODFs manufactured with the common solvent casting technique, but the APIs are less stressed through mixing, solvent evaporation and heat. Further, loss of material due to cutting jumbo and daughter rolls can be reduced. Therefore, a versatile new manufacturing technology particularly for processing high-potent low-dose or heat sensitive drugs is introduced in this study. Copyright © 2012 Elsevier B.V. All rights reserved.
Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.
Garcia, Fernando A; Vandiver, Michael W
2017-01-01
In order to operate profitably under different product demand scenarios, biopharmaceutical companies must design their facilities with mass output flexibility in mind. Traditional biologics manufacturing technologies pose operational challenges in this regard due to their high costs and slow equipment turnaround times, restricting the types of products and mass quantities that can be processed. Modern plant design, however, has facilitated the development of lean and efficient bioprocessing facilities through footprint reduction and adoption of disposable and continuous manufacturing technologies. These development efforts have proven to be crucial in seeking to drastically reduce the high costs typically associated with the manufacturing of recombinant proteins. In this work, mathematical modeling is used to optimize annual production schedules for a single-product commercial facility operating with a continuous upstream and discrete batch downstream platform. Utilizing cell culture duration and volumetric productivity as process variables in the model, and annual plant throughput as the optimization objective, 3-D surface plots are created to understand the effect of process and facility design on expected mass output. The model shows that once a plant has been fully debottlenecked it is capable of processing well over a metric ton of product per year. Moreover, the analysis helped to uncover a major limiting constraint on plant performance, the stability of the neutralized viral inactivated pool, which may indicate that this should be a focus of attention during future process development efforts. LAY ABSTRACT: Biopharmaceutical process modeling can be used to design and optimize manufacturing facilities and help companies achieve a predetermined set of goals. One way to perform optimization is by making the most efficient use of process equipment in order to minimize the expenditure of capital, labor and plant resources. To that end, this paper introduces a novel mathematical algorithm used to determine the most optimal equipment scheduling configuration that maximizes the mass output for a facility producing a single product. The paper also illustrates how different scheduling arrangements can have a profound impact on the availability of plant resources, and identifies limiting constraints on the plant design. In addition, simulation data is presented using visualization techniques that aid in the interpretation of the scientific concepts discussed. © PDA, Inc. 2017.
Dynamics of assembly production flow
NASA Astrophysics Data System (ADS)
Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro
2015-06-01
Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.
The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing
Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan
2016-01-01
Objectives: Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Methods: Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a “gold standard”. All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Results: Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. Conclusions: This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings. PMID:26943179
Selective laser melting of Inconel super alloy-a review
NASA Astrophysics Data System (ADS)
Karia, M. C.; Popat, M. A.; Sangani, K. B.
2017-07-01
Additive manufacturing is a relatively young technology that uses the principle of layer by layer addition of material in solid, liquid or powder form to develop a component or product. The quality of additive manufactured part is one of the challenges to be addressed. Researchers are continuously working at various levels of additive manufacturing technologies. One of the significant powder bed processes for met als is Selective Laser Melting (SLM). Laser based processes are finding more attention of researchers and industrial world. The potential of this technique is yet to be fully explored. Due to very high strength and creep resistance Inconel is extensively used nickel based super alloy for manufacturing components for aerospace, automobile and nuclear industries. Due to law content of Aluminum and Titanium, it exhibits good fabricability too. Therefore the alloy is ideally suitable for selective laser melting to manufacture intricate components with high strength requirements. The selection of suitable process for manufacturing for a specific component depends on geometrical complexity, production quantity, and cost and required strength. There are numerous researchers working on various aspects like metallurgical and micro structural investigations and mechanical properties, geometrical accuracy, effects of process parameters and its optimization and mathematical modeling etc. The present paper represents a comprehensive overview of selective laser melting process for Inconel group of alloys.
Planning for the semiconductor manufacturer of the future
NASA Technical Reports Server (NTRS)
Fargher, Hugh E.; Smith, Richard A.
1992-01-01
Texas Instruments (TI) is currently contracted by the Air Force Wright Laboratory and the Defense Advanced Research Projects Agency (DARPA) to develop the next generation flexible semiconductor wafer fabrication system called Microelectronics Manufacturing Science & Technology (MMST). Several revolutionary concepts are being pioneered on MMST, including the following: new single-wafer rapid thermal processes, in-situ sensors, cluster equipment, and advanced Computer Integrated Manufacturing (CIM) software. The objective of the project is to develop a manufacturing system capable of achieving an order of magnitude improvement in almost all aspects of wafer fabrication. TI was awarded the contract in Oct., 1988, and will complete development with a fabrication facility demonstration in April, 1993. An important part of MMST is development of the CIM environment responsible for coordinating all parts of the system. The CIM architecture being developed is based on a distributed object oriented framework made of several cooperating subsystems. The software subsystems include the following: process control for dynamic control of factory processes; modular processing system for controlling the processing equipment; generic equipment model which provides an interface between processing equipment and the rest of the factory; specification system which maintains factory documents and product specifications; simulator for modelling the factory for analysis purposes; scheduler for scheduling work on the factory floor; and the planner for planning and monitoring of orders within the factory. This paper first outlines the division of responsibility between the planner, scheduler, and simulator subsystems. It then describes the approach to incremental planning and the way in which uncertainty is modelled within the plan representation. Finally, current status and initial results are described.
NASA Astrophysics Data System (ADS)
Yoo, C. J.; Shin, B. S.; Kang, B. S.; Yun, D. H.; You, D. B.; Hong, S. M.
2017-09-01
In this paper, we propose a new porous polymer printing technology based on CBA(chemical blowing agent), and describe the optimization process according to the process parameters. By mixing polypropylene (PP) and CBA, a hybrid CBA filament was manufactured; the diameter of the filament ranged between 1.60 mm and 1.75 mm. A porous polymer structure was manufactured based on the traditional fused deposition modelling (FDM) method. The process parameters of the three-dimensional (3D) porous polymer printing (PPP) process included nozzle temperature, printing speed, and CBA density. Porosity increase with an increase in nozzle temperature and CBA density. On the contrary, porosity increase with a decrease in the printing speed. For porous structures, it has excellent mechanical properties. We manufactured a simple shape in 3D using 3D PPP technology. In the future, we will study the excellent mechanical properties of 3D PPP technology and apply them to various safety fields.
NASA Astrophysics Data System (ADS)
Biermann, D.; Gausemeier, J.; Heim, H.-P.; Hess, S.; Petersen, M.; Ries, A.; Wagner, T.
2014-05-01
In this contribution a framework for the computer-aided planning and optimisation of functional graded components is presented. The framework is divided into three modules - the "Component Description", the "Expert System" for the synthetisation of several process chains and the "Modelling and Process Chain Optimisation". The Component Description module enhances a standard computer-aided design (CAD) model by a voxel-based representation of the graded properties. The Expert System synthesises process steps stored in the knowledge base to generate several alternative process chains. Each process chain is capable of producing components according to the enhanced CAD model and usually consists of a sequence of heating-, cooling-, and forming processes. The dependencies between the component and the applied manufacturing processes as well as between the processes themselves need to be considered. The Expert System utilises an ontology for that purpose. The ontology represents all dependencies in a structured way and connects the information of the knowledge base via relations. The third module performs the evaluation of the generated process chains. To accomplish this, the parameters of each process are optimised with respect to the component specification, whereby the result of the best parameterisation is used as representative value. Finally, the process chain which is capable of manufacturing a functionally graded component in an optimal way regarding to the property distributions of the component description is presented by means of a dedicated specification technique.
NASA Astrophysics Data System (ADS)
McEwan, W.; Butterfield, J.
2011-05-01
The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.
Planning Study to Establish DoD Manufacturing Technology Information Analysis Center.
1981-01-01
model for an MTIAC. 5-3 I Type of information inputs from potential MTIAC sources. 5-5 5-3 Processing functions required to produce MTIAC outputs. 5-8...short supply * Energy conservation and concerns of energy inten- siveness of various manufacturing processes and systems required for production of DOD...not play a major role in the process of MT invention, innovation, or diffusion. MT productivity efforts for private industry are carried out by
Microstructures and Grain Refinement of Additive-Manufactured Ti- xW Alloys
NASA Astrophysics Data System (ADS)
Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian W.; Rolchigo, Matt R.; LeSar, Richard; Collins, Peter C.
2017-07-01
It is necessary to better understand the composition-processing-microstructure relationships that exist for materials produced by additive manufacturing. To this end, Laser Engineered Net Shaping (LENS™), a type of additive manufacturing, was used to produce a compositionally graded titanium binary model alloy system (Ti- xW specimen (0 ≤ x ≤ 30 wt pct), so that relationships could be made between composition, processing, and the prior beta grain size. Importantly, the thermophysical properties of the Ti- xW, specifically its supercooling parameter ( P) and growth restriction factor ( Q), are such that grain refinement is expected and was observed. The systematic, combinatorial study of this binary system provides an opportunity to assess the mechanisms by which grain refinement occurs in Ti-based alloys in general, and for additive manufacturing in particular. The operating mechanisms that govern the relationship between composition and grain size are interpreted using a model originally developed for aluminum and magnesium alloys and subsequently applied for titanium alloys. The prior beta grain factor observed and the interpretations of their correlations indicate that tungsten is a good grain refiner and such models are valid to explain the grain-refinement process. By extension, other binary elements or higher order alloy systems with similar thermophysical properties should exhibit similar grain refinement.
In situ manufacture of magnetic tunnel junctions by a direct-write process
NASA Astrophysics Data System (ADS)
Costanzi, Barry N.; Riazanova, Anastasia V.; Dan Dahlberg, E.; Belova, Lyubov M.
2014-06-01
In situ construction of Co/SiO2/Co magnetic tunnel junctions using direct-write electron-beam-induced deposition is described. Proof-of-concept devices were built layer by layer depositing the specific components one at a time, allowing device manufacture using a strictly additive process. The devices exhibit a magnetic tunneling signature which agrees qualitatively with the Slonczewski model of magnetic tunneling.
Advances in High Temperature Materials for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin
2017-08-01
In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.
Controlling high-throughput manufacturing at the nano-scale
NASA Astrophysics Data System (ADS)
Cooper, Khershed P.
2013-09-01
Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.
Additive Manufacturing Design Considerations for Liquid Engine Components
NASA Technical Reports Server (NTRS)
Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron
2014-01-01
The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.
NASA Astrophysics Data System (ADS)
Rusu-Anghel, S.
2017-01-01
Analytical modeling of the flow of manufacturing process of the cement is difficult because of their complexity and has not resulted in sufficiently precise mathematical models. In this paper, based on a statistical model of the process and using the knowledge of human experts, was designed a fuzzy system for automatic control of clinkering process.
A Review of PAT Strategies in Secondary Solid Oral Dosage Manufacturing of Small Molecules.
Laske, Stephan; Paudel, Amrit; Scheibelhofer, Otto
2017-03-01
Pharmaceutical solid oral dosage product manufacturing is a well-established, yet revolutionizing area. To this end, process analytical technology (PAT) involves interdisciplinary and multivariate (chemical, physical, microbiological, and mathematical) methods for material (e.g., materials, intermediates, products) and process (e.g., temperature, pressure, throughput, etc.) analysis. This supports rational process modeling and enhanced control strategies for improved product quality and process efficiency. Therefore, it is often difficult to orient and find the relevant, integrated aspects of the current state-of-the-art. Especially, the link between fundamental research, in terms of sensor and control system development, to the application both in laboratory and manufacturing scale, is difficult to comprehend. This review compiles a nonexhaustive overview on current approaches from the recognized academia and industrial practices of PAT, including screening, selection, and final implementations in solid oral dosage manufacturing, through a wide diversity of use cases. Finally, the authors attempt to extract a common consensus toward developing PAT application guidance for different unit operations of drug product manufacturing. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Modeling topology formation during laser ablation
NASA Astrophysics Data System (ADS)
Hodapp, T. W.; Fleming, P. R.
1998-07-01
Micromachining high aspect-ratio structures can be accomplished through ablation of surfaces with high-powered lasers. Industrial manufacturers now use these methods to form complex and regular surfaces at the 10-1000 μm feature size range. Despite its increasingly wide acceptance on the manufacturing floor, the underlying photochemistry of the ablation mechanism, and hence the dynamics of the machining process, is still a question of considerable debate. We have constructed a computer model to investigate and predict the topological formation of ablated structures. Qualitative as well as quantitative agreement with excimer-laser machined polyimide substrates has been demonstrated. This model provides insights into the drilling process for high-aspect-ratio holes.
NASA Astrophysics Data System (ADS)
Hogan, James; Progler, Christopher; Chatila, Ahmad; Bruggeman, Bert; Heins, Mitchell; Pack, Robert; Boksha, Victor
2005-05-01
We consider modern design for manufacturing (DFM) as a manifestation of IC industry re-integration and intensive cost management dynamics. In that regard DFM is somewhat different from so-called design for yield (DFY) which essentially focuses on productivity (yield) management (that is not to say that DFM and DFY do not have significant overlaps and interactions). We clearly see the shaping of a new "full-chip DFM" infrastructure on the background of the "back to basics" design-manufacturing re-integration dynamics. In the presented work we are focusing on required DFM-efficiencies in a "foundry-fabless" link. Concepts of "virtual prototyping of manufacturing", "design process optimization", and "foundry-portable DFM" models are explored. Both senior management of the industry and leading design groups finally realize the need for a radical change of design styles. Some of the DFM super-goals are to isolate designers from process details and to make designs foundry portable. It requires qualification of designs at different foundries. In their turn, foundries specified and are implementing a set of DFM rules: "action-required", "recommended", and "guidelines" while asking designers to provide netlist and testing information. Also, we observe strong signs of innovation coming back to the mask industry. Powerful solutions are emerging and shaping up toward mask-centered IP as a business. While it seems that pure-play foundries have found their place for now in the "IDM+" model (supporting manufacturing capacity of IDMs) it is not obvious how sustainable the model is. Wafer as a production unit is not sufficient anymore; foundries are being asked by large customers to price products in terms of good die. It brings back the notion of the old ASIC business model where the foundry is responsible for dealing with both random and systematic yield issues for a given design. One scenario of future development would be that some of the leading foundries might eventually transform themselves into IDMs. Another visible trend: some of the manufacturing capacities started to diversify business by providing services for new emerging markets (for example, new energy and medicine applications). Finally it is very unclear what"s going to happen to fabless players. We continue building on the "Think SPICE again!" methodology introduced last year and expanding on previous platforms' discussion. Model expression of DFM, most probably, will be supplied by the equipment suppliers and yield management community. Actual content for a design intent model will be provided by manufacturing. Much like SPICE it describes the behavior and not what the actual measurement in manufacturing is. When the model is available and populated, a design automation solution can be created that will allow a designer to extract, analyze, simulate, and optimize the circuit prior to handoff to manufacturing.
Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping
Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing
2016-01-01
An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing. PMID:26981110
Hospitals' strategies for orchestrating selection of physician preference items.
Montgomery, Kathleen; Schneller, Eugene S
2007-06-01
This article analyzes hospitals' strategies to shape physicians' behavior and counter suppliers' power in purchasing physician preference items. Two models of standardization are limitations on the range of manufacturers or products (the "formulary" model) and price ceilings for particular item categories (the "payment-cap" model), both requiring processes to define product equivalencies often with inadequate product comparison data. The formulary model is more difficult to implement because of physicians' resistance to top-down dictates. The payment-cap model is more feasible because it preserves physicians' choice while also restraining manufacturers' power. Hospitals may influence physicians' involvement through a process of orchestration that includes committing to improve clinical facilities, scheduling, and training and fostering a culture of mutual trust and respect.
Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping.
Li, Na; Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing
2016-01-01
An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing.
Hospitals' Strategies for Orchestrating Selection of Physician Preference Items
Montgomery, Kathleen; Schneller, Eugene S
2007-01-01
This article analyzes hospitals' strategies to shape physicians' behavior and counter suppliers' power in purchasing physician preference items. Two models of standardization are limitations on the range of manufacturers or products (the “formulary” model) and price ceilings for particular item categories (the “payment-cap” model), both requiring processes to define product equivalencies often with inadequate product comparison data. The formulary model is more difficult to implement because of physicians' resistance to top-down dictates. The payment-cap model is more feasible because it preserves physicians' choice while also restraining manufacturers' power. Hospitals may influence physicians' involvement through a process of orchestration that includes committing to improve clinical facilities, scheduling, and training and fostering a culture of mutual trust and respect. PMID:17517118
Manufacturing process and material selection in concurrent collaborative design of MEMS devices
NASA Astrophysics Data System (ADS)
Zha, Xuan F.; Du, H.
2003-09-01
In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.
Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy
Kabir, Mohammad Rizviul; Richter, Henning
2017-01-01
A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework. PMID:28772504
Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.
Kabir, Mohammad Rizviul; Richter, Henning
2017-02-08
A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.
Polishing, coating and integration of SiC mirrors for space telescopes
NASA Astrophysics Data System (ADS)
Rodolfo, Jacques
2017-11-01
In the last years, the technology of SiC mirrors took an increasingly significant part in the field of space telescopes. Sagem is involved in the JWST program to manufacture and test the optical components of the NIRSpec instrument. The instrument is made of 3 TMAs and 4 plane mirrors made of SiC. Sagem is in charge of the CVD cladding, the polishing, the coating of the mirrors and the integration and testing of the TMAs. The qualification of the process has been performed through the manufacturing and testing of the qualification model of the FOR TMA. This TMA has shown very good performances both at ambient and during the cryo test. The polishing process has been improved for the manufacturing of the flight model. This improvement has been driven by the BRDF performance of the mirror. This parameter has been deeply analysed and a model has been built to predict the performance of the mirrors. The existing Dittman model have been analysed and found to be optimistic.
A basis for solid modeling of gear teeth with application in design and manufacture
NASA Technical Reports Server (NTRS)
Huston, Ronald L.; Mavriplis, Dimitrios; Oswald, Fred B.; Liu, Yung Sheng
1992-01-01
A new approach to modeling gear tooth surfaces is discussed. A computer graphics solid modeling procedure is used to simulate the tooth fabrication process. This procedure is based on the principles of differential geometry that pertain to envelopes of curves and surfaces. The procedure is illustrated with the modeling of spur, helical, bevel, spiral bevel, and hypoid gear teeth. Applications in design and manufacturing are discussed. Extensions to nonstandard tooth forms, to cams, and to rolling element bearings are proposed.
A Basis for Solid Modeling of Gear Teeth with Application in Design and Manufacture
NASA Technical Reports Server (NTRS)
Huston, Ronald L.; Mavriplis, Dimitrios; Oswald, Fred B.; Liu, Yung Sheng
1994-01-01
This paper discusses a new approach to modeling gear tooth surfaces. A computer graphics solid modeling procedure is used to simulate the tooth fabrication processes. This procedure is based on the principles of differential geometry that pertain to envelopes of curves and surfaces. The procedure is illustrated with the modeling of spur, helical, bevel, spiral bevel and hypoid gear teeth. Applications in design and manufacturing arc discussed. Extensions to nonstandard tooth forms, to cams, and to rolling element hearings are proposed.
NASA Astrophysics Data System (ADS)
Teodor, F.; Marinescu, V.; Epureanu, A.
2016-11-01
Modeling of reconfigurable manufacturing systems would have done using existing Petri net types, but the complexity and dynamics of the new manufacturing system, mainly data reconfiguration feature, required looking for a more compact representation with many variables that to model as accurately not only the normal operation of the production system but can capture and model and reconfiguration process. Thus, it was necessary to create a new class of Petri nets, called RPD3D (Developed Petri nets with three dimensional) showing the name of both lineage (new class derived from Petri nets developed, created in 2000 by Prof. Dr. Ing Vasile Marinescu in his doctoral thesis) [1], but the most important of the new features defining (transformation from one 2D model into a 3D model).The idea was to introduce the classical model of a Petri third dimension to be able to overlay multiple levels (layers) formed in 2D or 3D Petri nets that interact with each other (receiving or giving commands to enable or disable the various modules together simulating the operation of reconfigurable manufacturing systems). The aim is to present a new type of Petri nets called RPD3D - Developed Petri three-dimensional model used for optimal control and simulation of reconfigurable manufacturing systems manufacture of products such systems.
Billoir, Elise; Denis, Jean-Baptiste; Cammeau, Natalie; Cornu, Marie; Zuliani, Veronique
2011-02-01
To assess the impact of the manufacturing process on the fate of Listeria monocytogenes, we built a generic probabilistic model intended to simulate the successive steps in the process. Contamination evolution was modeled in the appropriate units (breasts, dice, and then packaging units through the successive steps in the process). To calibrate the model, parameter values were estimated from industrial data, from the literature, and based on expert opinion. By means of simulations, the model was explored using a baseline calibration and alternative scenarios, in order to assess the impact of changes in the process and of accidental events. The results are reported as contamination distributions and as the probability that the product will be acceptable with regards to the European regulatory safety criterion. Our results are consistent with data provided by industrial partners and highlight that tumbling is a key step for the distribution of the contamination at the end of the process. Process chain models could provide an important added value for risk assessment models that basically consider only the outputs of the process in their risk mitigation strategies. Moreover, a model calibrated to correspond to a specific plant could be used to optimize surveillance. © 2010 Society for Risk Analysis.
Method of transition from 3D model to its ontological representation in aircraft design process
NASA Astrophysics Data System (ADS)
Govorkov, A. S.; Zhilyaev, A. S.; Fokin, I. V.
2018-05-01
This paper proposes the method of transition from a 3D model to its ontological representation and describes its usage in the aircraft design process. The problems of design for manufacturability and design automation are also discussed. The introduced method is to aim to ease the process of data exchange between important aircraft design phases, namely engineering and design control. The method is also intended to increase design speed and 3D model customizability. This requires careful selection of the complex systems (CAD / CAM / CAE / PDM), providing the basis for the integration of design and technological preparation of production and more fully take into account the characteristics of products and processes for their manufacture. It is important to solve this problem, as investment in the automation define the company's competitiveness in the years ahead.
ERIC Educational Resources Information Center
Blau, Gary
2007-01-01
This study partially tested a recent process model for understanding victim responses to worksite/function closure (W/FC) proposed by Blau [Blau, G. (2006). A process model for understanding victim responses to worksite/function closure. "Human Resource Management Review," 16, 12-28], in a pharmaceutical manufacturing site. Central to the model…
NASA Astrophysics Data System (ADS)
Nesladek, Pavel; Wiswesser, Andreas; Sass, Björn; Mauermann, Sebastian
2008-04-01
The Critical dimension off-target (CDO) is a key parameter for mask house customer, affecting directly the performance of the mask. The CDO is the difference between the feature size target and the measured feature size. The change of CD during the process is either compensated within the process or by data correction. These compensation methods are commonly called process bias and data bias, respectively. The difference between data bias and process bias in manufacturing results in systematic CDO error, however, this systematic error does not take into account the instability of the process bias. This instability is a result of minor variations - instabilities of manufacturing processes and changes in materials and/or logistics. Using several masks the CDO of the manufacturing line can be estimated. For systematic investigation of the unit process contribution to CDO and analysis of the factors influencing the CDO contributors, a solid understanding of each unit process and huge number of masks is necessary. Rough identification of contributing processes and splitting of the final CDO variation between processes can be done with approx. 50 masks with identical design, material and process. Such amount of data allows us to identify the main contributors and estimate the effect of them by means of Analysis of variance (ANOVA) combined with multivariate analysis. The analysis does not provide information about the root cause of the variation within the particular unit process, however, it provides a good estimate of the impact of the process on the stability of the manufacturing line. Additionally this analysis can be used to identify possible interaction between processes, which cannot be investigated if only single processes are considered. Goal of this work is to evaluate limits for CDO budgeting models given by the precision and the number of measurements as well as partitioning the variation within the manufacturing process. The CDO variation splits according to the suggested model into contributions from particular processes or process groups. Last but not least the power of this method to determine the absolute strength of each parameter will be demonstrated. Identification of the root cause of this variation within the unit process itself is not scope of this work.
Peng, Jun; Liu, Qiuyue; Rao, Mahendra S; Zeng, Xianmin
2014-09-01
We have previously reported a Good Manufacturing Practice (GMP)-compatible process for generating authentic dopaminergic neurons in defined media from human pluripotent stem cells and determined the time point at which dopaminergic precursors/neurons (day 14 after neuronal stem cell [NSC] stage) can be frozen, shipped and thawed without compromising their viability and ability to mature in vitro. One important issue we wished to address is whether dopaminergic precursors/neurons manufactured by our GMP-compatible process can be cryopreserved and engrafted in animal Parkinson disease (PD) models. In this study, we evaluated the efficacy of freshly prepared and cryopreserved dopaminergic neurons in the 6-hydroxydopamine-lesioned rat PD model. We showed functional recovery up to 6 months post-transplantation in rats transplanted with our cells, whether freshly prepared or cryopreserved. In contrast, no motor improvement was observed in two control groups receiving either medium or cells at a slightly earlier stage (day 10 after NSC stage). Histologic analysis at the end point of the study (6 months post-transplantation) showed robust long-term survival of donor-derived tyrosine hydroxylase (TH)(+) dopaminergic neurons in rats transplanted with day 14 dopaminergic neurons. Moreover, TH(+) fibers emanated from the graft core into the surrounding host striatum. Consistent with the behavioral analysis, no or few TH(+) neurons were detected in animals receiving day 10 cells, although human cells were present in the graft. Importantly, no tumors were detected in any grafted rats, but long-term tumorigenic studies will need to determine the safety of our products. Dopaminergic neurons manufactured by a GMP-compatible process from human ESC survived and engrafted efficiently in the 6-OHDA PD rat model. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
The Future of Pharmaceutical Manufacturing Sciences
2015-01-01
The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015 PMID:26280993
The Future of Pharmaceutical Manufacturing Sciences.
Rantanen, Jukka; Khinast, Johannes
2015-11-01
The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state-of-art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular-based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Fuchs, Erica R. H.; Bruce, E. J.; Ram, R. J.; Kirchain, Randolph E.
2006-08-01
The monolithic integration of components holds promise to increase network functionality and reduce packaging expense. Integration also drives down yield due to manufacturing complexity and the compounding of failures across devices. Consensus is lacking on the economically preferred extent of integration. Previous studies on the cost feasibility of integration have used high-level estimation methods. This study instead focuses on accurate-to-industry detail, basing a process-based cost model of device manufacture on data collected from 20 firms across the optoelectronics supply chain. The model presented allows for the definition of process organization, including testing, as well as processing conditions, operational characteristics, and level of automation at each step. This study focuses on the cost implications of integration of a 1550-nm DFB laser with an electroabsorptive modulator on an InP platform. Results show the monolithically integrated design to be more cost competitive over discrete component options regardless of production scale. Dominant cost drivers are packaging, testing, and assembly. Leveraging the technical detail underlying model projections, component alignment, bonding, and metal-organic chemical vapor deposition (MOCVD) are identified as processes where technical improvements are most critical to lowering costs. Such results should encourage exploration of the cost advantages of further integration and focus cost-driven technology development.
This software estimates styrene emissions from the manufacture of fiber-reinforced plastics/composite (FRP/C) products. In using the model, the user first chooses the appropriate process: gel coating, resin sprayup, hand layup, etc. Choosing a process will cause the 'baseline' in...
Zeng, Fei-huang; Xu, Yuan-zhi; Fang, Li; Tang, Xiao-shan
2012-02-01
To describe a new technique for fabricating an 3D resin model by 3D reconstruction and rapid prototyping, and to analyze the precision of this method. An optical grating scanner was used to acquire the data of silastic cavity block , digital dental cast was reconstructed with the data through Geomagic Studio image processing software. The final 3D reconstruction was saved in the pattern of Stl. The 3D resin model was fabricated by fuse deposition modeling, and was compared with the digital model and gypsum model. The data of three groups were statistically analyzed using SPSS 16.0 software package. No significant difference was found in gypsum model,digital dental cast and 3D resin model (P>0.05). Rapid prototyping manufacturing and digital modeling would be helpful for dental information acquisition, treatment design, appliance manufacturing, and can improve the communications between patients and doctors.
The Specific Features of design and process engineering in branch of industrial enterprise
NASA Astrophysics Data System (ADS)
Sosedko, V. V.; Yanishevskaya, A. G.
2017-06-01
Production output of industrial enterprise is organized in debugged working mechanisms at each stage of product’s life cycle from initial design documentation to product and finishing it with utilization. The topic of article is mathematical model of the system design and process engineering in branch of the industrial enterprise, statistical processing of estimated implementation results of developed mathematical model in branch, and demonstration of advantages at application at this enterprise. During the creation of model a data flow about driving of information, orders, details and modules in branch of enterprise groups of divisions were classified. Proceeding from the analysis of divisions activity, a data flow, details and documents the state graph of design and process engineering was constructed, transitions were described and coefficients are appropriated. To each condition of system of the constructed state graph the corresponding limiting state probabilities were defined, and also Kolmogorov’s equations are worked out. When integration of sets of equations of Kolmogorov the state probability of system activity the specified divisions and production as function of time in each instant is defined. On the basis of developed mathematical model of uniform system of designing and process engineering and manufacture, and a state graph by authors statistical processing the application of mathematical model results was carried out, and also advantage at application at this enterprise is shown. Researches on studying of loading services probability of branch and third-party contractors (the orders received from branch within a month) were conducted. The developed mathematical model of system design and process engineering and manufacture can be applied to definition of activity state probability of divisions and manufacture as function of time in each instant that will allow to keep account of loading of performance of work in branches of the enterprise.
NASA Astrophysics Data System (ADS)
Mohamed, Omar Ahmed; Hasan Masood, Syed; Lal Bhowmik, Jahar
2018-02-01
In the additive manufacturing (AM) market, the question is raised by industry and AM users on how reproducible and repeatable the fused deposition modeling (FDM) process is in providing good dimensional accuracy. This paper aims to investigate and evaluate the repeatability and reproducibility of the FDM process through a systematic approach to answer this frequently asked question. A case study based on the statistical gage repeatability and reproducibility (gage R&R) technique is proposed to investigate the dimensional variations in the printed parts of the FDM process. After running the simulation and analysis of the data, the FDM process capability is evaluated, which would help the industry for better understanding the performance of FDM technology.
NASA Astrophysics Data System (ADS)
Ferrino, Marinella; Secondo, Ottaviano; Sabbagh, Amir; Della Sala, Emilio
2014-06-01
In the frame of the International Space Station (ISS) Exploitation Program a new toolbox has been realized by TAS-I to accommodate the tools currently in use on the ISS Columbus Module utilizing full-scale prototypes obtained with 3D rapid prototyping. The manufacturing of the flight hardware by means of advanced thermoplastic polymer UL TEM 9085 and additive manufacturing Fused Deposition Modelling (FDM) technology represent innovative elements. In this paper, the results achieved and the lessons learned are analyzed to promote future technology know-how. The acquired experience confirmed that the additive manufacturing process allows to save time/cost and to realize new shapes/features to introduce innovation in products and future design processes for space applications.
Demand Activated Manufacturing Architecture (DAMA) model for supply chain collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHAPMAN,LEON D.; PETERSEN,MARJORIE B.
The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise architecture and collaborative model for supply chains. This model will enable improved collaborative business across any supply chain. The DAMA Model for Supply Chain Collaboration is a high-level model for collaboration to achieve Demand Activated Manufacturing. The five major elements of the architecture to support collaboration are (1) activity or process, (2) information, (3) application, (4) data, and (5) infrastructure. These five elements are tied to the application of themore » DAMA architecture to three phases of collaboration - prepare, pilot, and scale. There are six collaborative activities that may be employed in this model: (1) Develop Business Planning Agreements, (2) Define Products, (3) Forecast and Plan Capacity Commitments, (4) Schedule Product and Product Delivery, (5) Expedite Production and Delivery Exceptions, and (6) Populate Supply Chain Utility. The Supply Chain Utility is a set of applications implemented to support collaborative product definition, forecast visibility, planning, scheduling, and execution. The DAMA architecture and model will be presented along with the process for implementing this DAMA model.« less
NASA Astrophysics Data System (ADS)
Wang, Xiaowo; Xu, Zhijie; Soulami, Ayoub; Hu, Xiaohua; Lavender, Curt; Joshi, Vineet
2017-12-01
Low-enriched uranium alloyed with 10 wt.% molybdenum (U-10Mo) has been identified as a promising alternative to high-enriched uranium. Manufacturing U-10Mo alloy involves multiple complex thermomechanical processes that pose challenges for computational modeling. This paper describes the application of integrated computational materials engineering (ICME) concepts to integrate three individual modeling components, viz. homogenization, microstructure-based finite element method for hot rolling, and carbide particle distribution, to simulate the early-stage processes of U-10Mo alloy manufacture. The resulting integrated model enables information to be passed between different model components and leads to improved understanding of the evolution of the microstructure. This ICME approach is then used to predict the variation in the thickness of the Zircaloy-2 barrier as a function of the degree of homogenization and to analyze the carbide distribution, which can affect the recrystallization, hardness, and fracture properties of U-10Mo in subsequent processes.
A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China
NASA Astrophysics Data System (ADS)
Yao, Yuan; Chang, Yuan; Masanet, Eric
2014-11-01
China is the world’s largest manufacturer of multi-crystalline silicon photovoltaic (mc-Si PV) modules, which is a key enabling technology in the global transition to renewable electric power systems. This study presents a hybrid life-cycle inventory (LCI) of Chinese mc-Si PV modules, which fills a critical knowledge gap on the environmental implications of mc-Si PV module manufacturing in China. The hybrid LCI approach combines process-based LCI data for module and poly-silicon manufacturing plants with a 2007 China IO-LCI model for production of raw material and fuel inputs to estimate ‘cradle to gate’ primary energy use, water consumption, and major air pollutant emissions (carbon dioxide, methane, sulfur dioxide, nitrous oxide, and nitrogen oxides). Results suggest that mc-Si PV modules from China may come with higher environmental burdens that one might estimate if one were using LCI results for mc-Si PV modules manufactured elsewhere. These higher burdens can be reasonably explained by the efficiency differences in China’s poly-silicon manufacturing processes, the country’s dependence on highly polluting coal-fired electricity, and the expanded system boundaries associated with the hybrid LCI modeling framework. The results should be useful for establishing more conservative ranges on the potential ‘cradle to gate’ impacts of mc-Si PV module manufacturing for more robust LCAs of PV deployment scenarios.
Numerical simulation of residual stress in laser based additive manufacturing process
NASA Astrophysics Data System (ADS)
Kalyan Panda, Bibhu; Sahoo, Seshadev
2018-03-01
Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.
Patel, Sanjay; Mehta-Damani, Anita; Shu, Helen; Le Pecq, Jean-Bernard
2005-10-20
Dexosomes are nanometer-size vesicles released by dendritic-cells, possessing much of the cellular machinery required to stimulate an immune response (i.e. MHC Class I and II). The ability of patient-derived dexosomes loaded with tumor antigens to elicit anti-tumor activity is currently being evaluated in clinical trials. Unlike conventional biologics, where variability between lots of product arises mostly from the manufacturing process, an autologous product has inherent variability in the starting material due to heterogeneity in the human population. In an effort to assess the variability arising from the dexosome manufacturing process versus the human starting material, 144 dexosome preparations from normal donors (111) and cancer patients (33) from two Phase I clinical trials were analyzed. A large variability in the quantity of dexosomes (measured as the number of MHC Class II molecules) produced between individual lots was observed ( > 50-fold). An analysis of intra-lot variability shows that the manufacturing process introduces relatively little of this variability. To identify the source(s) of variability arising from the human starting material, distributions of the key parameters involved in dexosome production were established, and a model created. Computer simulations using this model were performed, and compared to the actual data observed. The main conclusion from these simulations is that the number of cells collected per individual and the productivity of these cells of are the principal sources of variability in the production of Class II. The approach described here can be extended to other autologous therapies in general to evaluate control of manufacturing processes. Moreover, this analysis of process variability is directly applicable to production at a commercial scale, since the large scale manufacture of autologous products entails an exact process replication rather than scale-up in volume, as is the case with traditional drugs or biologics. Copyright 2005 Wiley Periodicals, Inc.
Material Stream Strategy for Lithium and Inorganics (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safarik, Douglas Joseph; Dunn, Paul Stanton; Korzekwa, Deniece Rochelle
Design Agency Responsibilities: Manufacturing Support to meet Stockpile Stewardship goals for maintaining the nuclear stockpile through experimental and predictive modeling capability. Development and maintenance of Manufacturing Science expertise to assess material specifications and performance boundaries, and their relationship to processing parameters. Production Engineering Evaluations with competence in design requirements, material specifications, and manufacturing controls. Maintenance and enhancement of Aging Science expertise to support Stockpile Stewardship predictive science capability.
Using of material-technological modelling for designing production of closed die forgings
NASA Astrophysics Data System (ADS)
Ibrahim, K.; Vorel, I.; Jeníček, Š.; Káňa, J.; Aišman, D.; Kotěšovec, V.
2017-02-01
Production of forgings is a complex and demanding process which consists of a number of forging operations and, in many cases, includes post-forge heat treatment. An optimized manufacturing line is a prerequisite for obtaining prime-quality products which in turn are essential to profitable operation of a forging company. Problems may, however, arise from modifications to the manufacturing route due to changing customer needs. As a result, the production may have to be suspended temporarily to enable changeover and optimization. Using material-technological modelling, the required modifications can be tested and optimized under laboratory conditions outside the plant without disrupting the production. Thanks to material-technological modelling, the process parameters can be varied rapidly in response to changes in market requirements. Outcomes of the modelling runs include optimum parameters for the forging part’s manufacturing route, values of mechanical properties, and results of microstructure analysis. This article describes the use of material-technological modelling for exploring the impact of the amount of deformation and the rate of cooling of a particular forged part from the finish-forging temperature on its microstructure and related mechanical properties.
Design of an Orthopedic Product by Using Additive Manufacturing Technology: The Arm Splint.
Blaya, Fernando; Pedro, Pilar San; Silva, Julia López; D'Amato, Roberto; Heras, Enrique Soriano; Juanes, Juan Antonio
2018-02-05
The traditional fabrication process of custom-made splints has hardly undergone any progress since the beginning of its use at the end of the eighteenth century. New manufacturing techniques and the new materials can help to modernize this treatment method of fractures. The use of Additive Manufacturing has been proposed in recent years as an alternative process for the manufacture of splints and there has been an increase in public awareness and exploration. For this reason, in this study a splint model printed in 3D, that replaces the deficiencies of the cast maintaining its virtues, has been proposed. The proposed methodology is based on three-dimensional digitalization techniques and 3D modeling with reverse engineering software. The work integrates different scientific disciplines to achieve its main goal: to improve life quality of the patient. In addition, the splint has been designed based on the principles of sustainable development. The design of splint is made of Polycarbonate by technique of Additive Manufacturing with fused deposition manufacturing, and conceived with organic shapes, customizing openings and closing buttons with rubber. In this preliminary study the final result is a prototype of the 3D printed arm splint in a reduced scale by using PLA as material.
Nepveux, Kevin; Sherlock, Jon-Paul; Futran, Mauricio; Thien, Michael; Krumme, Markus
2015-03-01
Continuous manufacturing (CM) is a process technology that has been used in the chemical industry for large-scale mass production of chemicals in single-purpose plants with benefit for many years. Recent interest has been raised to expand CM into the low-volume, high-value pharmaceutical business with its unique requirements regarding readiness for human use and the required quality, supply chain, and liability constraints in this business context. Using a fairly abstract set of definitions, this paper derives technical consequences of CM in different scenarios along the development-launch-supply axis in different business models and how they compare to batch processes. Impact of CM on functions in development is discussed and several operational models suitable for originators and other business models are discussed and specific aspects of CM are deduced from CM's technical characteristics. Organizational structures of current operations typically can support CM implementations with just minor refinements if the CM technology is limited to single steps or small sequences (bin-to-bin approach) and if the appropriate technical skill set is available. In such cases, a small, dedicated group focused on CM is recommended. The manufacturing strategy, as centralized versus decentralized in light of CM processes, is discussed and the potential impact of significantly shortened supply lead times on the organization that runs these processes. The ultimate CM implementation may be seen by some as a totally integrated monolithic plant, one that unifies chemistry and pharmaceutical operations into one plant. The organization supporting this approach will have to reflect this change in scope and responsibility. The other extreme, admittedly futuristic at this point, would be a highly decentralized approach with multiple smaller hubs; this would require a new and different organizational structure. This processing approach would open up new opportunities for products that, because of stability constraints or individualization to patients, do not allow centralized manufacturing approaches at all. Again, the entire enterprise needs to be restructured accordingly. The situation of CM in an outsourced operation business model is discussed. Next steps for the industry are recommended. In summary, opportunistic implementation of isolated steps in existing portfolios can be implemented with minimal organizational changes; the availability of the appropriate skills is the determining factor. The implementation of more substantial sequences requires business processes that consider the portfolio, not just single products. Exploration and implementation of complete process chains with consequences for quality decisions do require appropriate organizational support. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Trainer, Asa; Hedberg, Thomas; Feeney, Allison Barnard; Fischer, Kevin; Rosche, Phil
2017-01-01
Advances in information technology triggered a digital revolution that holds promise of reduced costs, improved productivity, and higher quality. To ride this wave of innovation, manufacturing enterprises are changing how product definitions are communicated – from paper to models. To achieve industry's vision of the Model-Based Enterprise (MBE), the MBE strategy must include model-based data interoperability from design to manufacturing and quality in the supply chain. The Model-Based Definition (MBD) is created by the original equipment manufacturer (OEM) using Computer-Aided Design (CAD) tools. This information is then shared with the supplier so that they can manufacture and inspect the physical parts. Today, suppliers predominantly use Computer-Aided Manufacturing (CAM) and Coordinate Measuring Machine (CMM) models for these tasks. Traditionally, the OEM has provided design data to the supplier in the form of two-dimensional (2D) drawings, but may also include a three-dimensional (3D)-shape-geometry model, often in a standards-based format such as ISO 10303-203:2011 (STEP AP203). The supplier then creates the respective CAM and CMM models and machine programs to produce and inspect the parts. In the MBE vision for model-based data exchange, the CAD model must include product-and-manufacturing information (PMI) in addition to the shape geometry. Today's CAD tools can generate models with embedded PMI. And, with the emergence of STEP AP242, a standards-based model with embedded PMI can now be shared downstream. The on-going research detailed in this paper seeks to investigate three concepts. First, that the ability to utilize a STEP AP242 model with embedded PMI for CAD-to-CAM and CAD-to-CMM data exchange is possible and valuable to the overall goal of a more efficient process. Second, the research identifies gaps in tools, standards, and processes that inhibit industry's ability to cost-effectively achieve model-based-data interoperability in the pursuit of the MBE vision. Finally, it also seeks to explore the interaction between CAD and CMM processes and determine if the concept of feedback from CAM and CMM back to CAD is feasible. The main goal of our study is to test the hypothesis that model-based-data interoperability from CAD-to-CAM and CAD-to-CMM is feasible through standards-based integration. This paper presents several barriers to model-based-data interoperability. Overall, the project team demonstrated the exchange of product definition data between CAD, CAM, and CMM systems using standards-based methods. While gaps in standards coverage were identified, the gaps should not stop industry's progress toward MBE. The results of our study provide evidence in support of an open-standards method to model-based-data interoperability, which would provide maximum value and impact to industry. PMID:28691120
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... facilities and controls used for, the manufacture, preproduction design validation (including a process to... requirements governing the design, manufacture, packing, labeling, storage, installation, and servicing of all... Model for Quality Assurance in Design/Development, Production, Installation, and Servicing.'' The CGMP...
Marshall Space Flight Center Materials and Processes Laboratory
NASA Technical Reports Server (NTRS)
Tramel, Terri L.
2012-01-01
Marshall?s Materials and Processes Laboratory has been a core capability for NASA for over fifty years. MSFC has a proven heritage and recognized expertise in materials and manufacturing that are essential to enable and sustain space exploration. Marshall provides a "systems-wise" capability for applied research, flight hardware development, and sustaining engineering. Our history of leadership and achievements in materials, manufacturing, and flight experiments includes Apollo, Skylab, Mir, Spacelab, Shuttle (Space Shuttle Main Engine, External Tank, Reusable Solid Rocket Motor, and Solid Rocket Booster), Hubble, Chandra, and the International Space Station. MSFC?s National Center for Advanced Manufacturing, NCAM, facilitates major M&P advanced manufacturing partnership activities with academia, industry and other local, state and federal government agencies. The Materials and Processes Laborato ry has principal competencies in metals, composites, ceramics, additive manufacturing, materials and process modeling and simulation, space environmental effects, non-destructive evaluation, and fracture and failure analysis provide products ranging from materials research in space to fully integrated solutions for large complex systems challenges. Marshall?s materials research, development and manufacturing capabilities assure that NASA and National missions have access to cutting-edge, cost-effective engineering design and production options that are frugal in using design margins and are verified as safe and reliable. These are all critical factors in both future mission success and affordability.
A digital process for additive manufacturing of occlusal splints: a clinical pilot study
Salmi, Mika; Paloheimo, Kaija-Stiina; Tuomi, Jukka; Ingman, Tuula; Mäkitie, Antti
2013-01-01
The aim of this study was to develop and evaluate a digital process for manufacturing of occlusal splints. An alginate impression was taken from the upper and lower jaws of a patient with temporomandibular disorder owing to cross bite and wear of the teeth, and then digitized using a table laser scanner. The scanned model was repaired using the 3Data Expert software, and a splint was designed with the Viscam RP software. A splint was manufactured from a biocompatible liquid photopolymer by stereolithography. The system employed in the process was SLA 350. The splint was worn nightly for six months. The patient adapted to the splint well and found it comfortable to use. The splint relieved tension in the patient's bite muscles. No sign of tooth wear or significant splint wear was detected after six months of testing. Modern digital technology enables us to manufacture clinically functional occlusal splints, which might reduce costs, dental technician working time and chair-side time. Maximum-dimensional errors of approximately 1 mm were found at thin walls and sharp corners of the splint when compared with the digital model. PMID:23614943
Information model construction of MES oriented to mechanical blanking workshop
NASA Astrophysics Data System (ADS)
Wang, Jin-bo; Wang, Jin-ye; Yue, Yan-fang; Yao, Xue-min
2016-11-01
Manufacturing Execution System (MES) is one of the crucial technologies to implement informatization management in manufacturing enterprises, and the construction of its information model is the base of MES database development. Basis on the analysis of the manufacturing process information in mechanical blanking workshop and the information requirement of MES every function module, the IDEF1X method was adopted to construct the information model of MES oriented to mechanical blanking workshop, and a detailed description of the data structure feature included in MES every function module and their logical relationship was given from the point of view of information relationship, which laid the foundation for the design of MES database.
Design Through Manufacturing: The Solid Model-Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2002-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts reflecting every detail of the finished product. Ideally, in the aerospace industry, these models should fulfill two very important functions: (1) provide numerical. control information for automated manufacturing of precision parts, and (2) enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in aircraft and space vehicles. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. Presently, the process of preparing CAD models for FEA consumes a great deal of the analyst's time.
Comparative study of manufacturing condyle implant using rapid prototyping and CNC machining
NASA Astrophysics Data System (ADS)
Bojanampati, S.; Karthikeyan, R.; Islam, MD; Venugopal, S.
2018-04-01
Injuries to the cranio-maxillofacial area caused by road traffic accidents (RTAs), fall from heights, birth defects, metabolic disorders and tumors affect a rising number of patients in the United Arab Emirates (UAE), and require maxillofacial surgery. Mandibular reconstruction poses a specific challenge in both functionality and aesthetics, and involves replacement of the damaged bone by a custom made implant. Due to material, design cycle time and manufacturing process time, such implants are in many instances not affordable to patients. In this paper, the feasibility of designing and manufacturing low-cost, custom made condyle implant is assessed using two different approaches, consisting of rapid prototyping and three-axis computer numerically controlled (CNC) machining. Two candidate rapid prototyping techniques are considered, namely fused deposition modeling (FDM) and three-dimensional printing followed by sand casting The feasibility of the proposed manufacturing processes is evaluated based on manufacturing time, cost, quality, and reliability.
Modeling the VARTM Composite Manufacturing Process
NASA Technical Reports Server (NTRS)
Song, Xiao-Lan; Loos, Alfred C.; Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal
2004-01-01
A comprehensive simulation model of the Vacuum Assisted Resin Transfer Modeling (VARTM) composite manufacturing process has been developed. For isothermal resin infiltration, the model incorporates submodels which describe cure of the resin and changes in resin viscosity due to cure, resin flow through the reinforcement preform and distribution medium and compaction of the preform during the infiltration. The accuracy of the model was validated by measuring the flow patterns during resin infiltration of flat preforms. The modeling software was used to evaluate the effects of the distribution medium on resin infiltration of a flat preform. Different distribution medium configurations were examined using the model and the results were compared with data collected during resin infiltration of a carbon fabric preform. The results of the simulations show that the approach used to model the distribution medium can significantly effect the predicted resin infiltration times. Resin infiltration into the preform can be accurately predicted only when the distribution medium is modeled correctly.
Assembly-line Simulation Program
NASA Technical Reports Server (NTRS)
Chamberlain, Robert G.; Zendejas, Silvino; Malhotra, Shan
1987-01-01
Costs and profits estimated for models based on user inputs. Standard Assembly-line Manufacturing Industry Simulation (SAMIS) program generalized so useful for production-line manufacturing companies. Provides accurate and reliable means of comparing alternative manufacturing processes. Used to assess impact of changes in financial parameters as cost of resources and services, inflation rates, interest rates, tax policies, and required rate of return of equity. Most important capability is ability to estimate prices manufacturer would have to receive for its products to recover all of costs of production and make specified profit. Written in TURBO PASCAL.
Additive direct-write microfabrication for MEMS: A review
NASA Astrophysics Data System (ADS)
Teh, Kwok Siong
2017-12-01
Direct-write additive manufacturing refers to a rich and growing repertoire of well-established fabrication techniques that builds solid objects directly from computer- generated solid models without elaborate intermediate fabrication steps. At the macroscale, direct-write techniques such as stereolithography, selective laser sintering, fused deposition modeling ink-jet printing, and laminated object manufacturing have significantly reduced concept-to-product lead time, enabled complex geometries, and importantly, has led to the renaissance in fabrication known as the maker movement. The technological premises of all direct-write additive manufacturing are identical—converting computer generated three-dimensional models into layers of two-dimensional planes or slices, which are then reconstructed sequentially into threedimensional solid objects in a layer-by-layer format. The key differences between the various additive manufacturing techniques are the means of creating the finished layers and the ancillary processes that accompany them. While still at its infancy, direct-write additive manufacturing techniques at the microscale have the potential to significantly lower the barrier-of-entry—in terms of cost, time and training—for the prototyping and fabrication of MEMS parts that have larger dimensions, high aspect ratios, and complex shapes. In recent years, significant advancements in materials chemistry, laser technology, heat and fluid modeling, and control systems have enabled additive manufacturing to achieve higher resolutions at the micrometer and nanometer length scales to be a viable technology for MEMS fabrication. Compared to traditional MEMS processes that rely heavily on expensive equipment and time-consuming steps, direct-write additive manufacturing techniques allow for rapid design-to-prototype realization by limiting or circumventing the need for cleanrooms, photolithography and extensive training. With current direct-write additive manufacturing technologies, it is possible to fabricate unsophisticated micrometer scale structures at adequate resolutions and precisions using materials that range from polymers, metals, ceramics, to composites. In both academia and industry, direct-write additive manufacturing offers extraordinary promises to revolutionize research and development in microfabrication and MEMS technologies. Importantly, direct-write additive manufacturing could appreciably augment current MEMS fabrication technologies, enable faster design-to-product cycle, empower new paradigms in MEMS designs, and critically, encourage wider participation in MEMS research at institutions or for individuals with limited or no access to cleanroom facilities. This article aims to provide a limited review of the current landscape of direct-write additive manufacturing techniques that are potentially applicable for MEMS microfabrication.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui
2018-04-01
Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.
NASA Astrophysics Data System (ADS)
Leino, Maija; Pekkarinen, Joonas; Soukka, Risto
Circular economy is an economy model where products, components, and materials are aimed to be kept at their highest utility and value at all times. Repair, refurbishment and remanufacturing processes are procedures aiming at returning the value of the product during its life cycle. Additive manufacturing (AM) is expected to be an enabling technology in circular economy based business models. One of AM process that enables repair, refurbishment and remanufacturing is Directed Energy Deposition. Respectively Powder Bed Fusion enables manufacturing of replacement components on demand. The aim of this study is to identify the current research findings and state of art of utilizing AM in repair, refurbishment and remanufacturing processes of metallic products. The focus is in identifying possibilities of AM in promotion of circular economy and expected environmental benefits based on the found literature. Results of the study indicate significant potential in utilizing AM in repair, refurbishment and remanufacturing activities.
Study of a dry room in a battery manufacturing plant using a process model
NASA Astrophysics Data System (ADS)
Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.
2016-09-01
The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studied the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study was conducted with the help of a process model for a dry room with a volume of 16,000 cubic meters. For a defined base case scenario it was found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.
Additive Manufacturing: From Rapid Prototyping to Flight
NASA Technical Reports Server (NTRS)
Prater, Tracie
2015-01-01
Additive manufacturing (AM) offers tremendous promise for the rocket propulsion community. Foundational work must be performed to ensure the safe performance of AM parts. Government, industry, and academia must collaborate in the characterization, design, modeling, and process control to accelerate the certification of AM parts for human-rated flight.
ERIC Educational Resources Information Center
Kunneman, Dale E.; Sleezer, Catherine M.
2000-01-01
This case study examines the application of the Performance Analysis for Training (PAT) Model in an organization that was implementing ISO-9000 (International Standards Organization) processes for manufacturing practices. Discusses the interaction of organization characteristics, decision maker characteristics, and analyst characteristics to…
Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas
2015-09-01
Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.
On-line photolithography modeling using spectrophotometry and Prolith/2
NASA Astrophysics Data System (ADS)
Engstrom, Herbert L.; Beacham, Jeanne E.
1994-05-01
Spectrophotometry has been applied to optimizing photolithography processes in semiconductor manufacturing. For many years thin film measurement systems have been used in manufacturing for controlling film deposition processes. The combination of film thickness mapping with photolithography modeling has expanded the applications of this technology. Experimental measurements of dose-to-clear, the minimum light exposure dose required to fully develop a photoresist, are described. It is shown how dose-to-clear and photoresist contrast may be determined rapidly and conveniently from measurements of a dose exposure matrix on a monitor wafer. Such experimental measurements may underestimate the dose-to- clear because of thickness variations of the photoresist and underlying layers on the product wafer. Online modeling of the photolithographic process together with film thickness maps of the entire wafer can overcome this problem. Such modeling also provides maps of dose-to- clear and resist linewidth that can be used to estimate and optimize yield.
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA's In-Space Manufacturing Project: Materials and Manufacturing Process Development Update
NASA Technical Reports Server (NTRS)
Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ledbetter, Frank
2017-01-01
The mission of NASA's In-Space Manufacturing (ISM) project is to identify, design, and implement on-demand, sustainable manufacturing solutions for fabrication, maintenance and repair during exploration missions. ISM has undertaken a phased strategy of incrementally increasing manufacturing capabilities to achieve this goal. The ISM project began with the development of the first 3D printer for the International Space Station. To date, the printer has completed two phases of flight operations. Results from phase I specimens indicated some differences in material properties between ground-processed and ISS-processed specimens, but results of follow-on analyses of these parts and a ground-based study with an equivalent printer strongly indicate that this variability is likely attributable to differences in manufacturing process settings between the ground and flight prints rather than microgravity effects on the fused deposition modeling (FDM) process. Analysis of phase II specimens from the 3D Printing in Zero G tech demo, which shed further light on the sources of material variability, will be presented. The ISM project has also developed a materials characterization plan for the Additive Manufacturing Facility, the follow-on commercial multimaterial 3D printing facility developed for ISS by Made in Space. This work will yield a suite of characteristic property values that can inform use of AMF by space system designers. Other project activities include development of an integrated 3D printer and recycler, known as the Refabricator, by Tethers Unlimited, which will be operational on ISS in 2018. The project also recently issued a broad area announcement for a multimaterial fabrication laboratory, which may include in-space manufacturing capabilities for metals, electronics, and polymeric materials, to be deployed on ISS in the 2022 timeframe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandwisch, D. W.
1999-09-02
This report describes work performed by Solar Cells, Inc. (SCI), during this Photovoltaic Manufacturing Technology (PVMaT) subcontract. Cadmium telluride (CdTe) is recognized as one of the leading materials for low-cost photovoltaic modules. SCI has developed this technology and is preparing to scale its pilot production capabilities to a multi-megawatt level. This four-phase PVMaT subcontract supports these efforts. The work was related to product definition, process definition, equipment engineering, and support programs development. In the area of product definition and demonstration, two products were specified and demonstrated-a grid-connected, frameless, high-voltage product that incorporates a pigtail potting design and a remote low-voltagemore » product that may be framed and may incorporate a junction box. SCI produced a 60.3-W thin-film CdTe module with total-area efficiency of 8.4%; SCI also improved module pass rate on the interim qualification test protocol from less than 20% to 100% as a result of work related to the subcontract. In the manufacturing process definition area, the multi-megawatt manufacturing process was defined, several of the key processes were demonstrated, and the process was refined and proven on a 100-kW pilot line that now operates as a 250-kW line. In the area of multi-megawatt manufacturing-line conceptual design review, SCI completed a conceptual layout of the multi-megawatt lines. The layout models the manufacturing line and predicts manufacturing costs. SCI projected an optimized capacity, two-shift/day operation of greater than 25 MW at a manufacturing cost of below $1.00/W.« less
Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique
NASA Astrophysics Data System (ADS)
Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka
2018-06-01
Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.
Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique
NASA Astrophysics Data System (ADS)
Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka
2016-06-01
Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.
NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows
NASA Astrophysics Data System (ADS)
Bouillard, J. X.; Sinton, S. W.
The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogeneous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today's manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.
NASA Astrophysics Data System (ADS)
Aitomäki, Yvonne; Westin, Mikael; Korpimäki, Jani; Oksman, Kristiina
2016-07-01
In this study a model based on simple scattering is developed and used to predict the distribution of nanofibrillated cellulose in composites manufactured by resin transfer moulding (RTM) where the resin contains nanofibres. The model is a Monte Carlo based simulation where nanofibres are randomly chosen from probability density functions for length, diameter and orientation. Their movements are then tracked as they advance through a random arrangement of fibres in defined fibre bundles. The results of the model show that the fabric filters the nanofibres within the first 20 µm unless clear inter-bundle channels are available. The volume fraction of the fabric fibres, flow velocity and size of nanofibre influence this to some extent. To verify the model, an epoxy with 0.5 wt.% Kraft Birch nanofibres was made through a solvent exchange route and stained with a colouring agent. This was infused into a glass fibre fabric using an RTM process. The experimental results confirmed the filtering of the nanofibres by the fibre bundles and their penetration in the fabric via the inter-bundle channels. Hence, the model is a useful tool for visualising the distribution of the nanofibres in composites in this manufacturing process.
Product design for energy reduction in concurrent engineering: An Inverted Pyramid Approach
NASA Astrophysics Data System (ADS)
Alkadi, Nasr M.
Energy factors in product design in concurrent engineering (CE) are becoming an emerging dimension for several reasons; (a) the rising interest in "green design and manufacturing", (b) the national energy security concerns and the dramatic increase in energy prices, (c) the global competition in the marketplace and global climate change commitments including carbon tax and emission trading systems, and (d) the widespread recognition of the need for sustainable development. This research presents a methodology for the intervention of energy factors in concurrent engineering product development process to significantly reduce the manufacturing energy requirement. The work presented here is the first attempt at integrating the design for energy in concurrent engineering framework. It adds an important tool to the DFX toolbox for evaluation of the impact of design decisions on the product manufacturing energy requirement early during the design phase. The research hypothesis states that "Product Manufacturing Energy Requirement is a Function of Design Parameters". The hypothesis was tested by conducting experimental work in machining and heat treating that took place at the manufacturing lab of the Industrial and Management Systems Engineering Department (IMSE) at West Virginia University (WVU) and at a major U.S steel manufacturing plant, respectively. The objective of the machining experiment was to study the effect of changing specific product design parameters (Material type and diameter) and process design parameters (metal removal rate) on a gear head lathe input power requirement through performing defined sets of machining experiments. The objective of the heat treating experiment was to study the effect of varying product charging temperature on the fuel consumption of a walking beams reheat furnace. The experimental work in both directions have revealed important insights into energy utilization in machining and heat-treating processes and its variance based on product, process, and system design parameters. In depth evaluation to how the design and manufacturing normally happen in concurrent engineering provided a framework to develop energy system levels in machining within the concurrent engineering environment using the method of "Inverted Pyramid Approach", (IPA). The IPA features varying levels of output energy based information depending on the input design parameters that is available during each stage (level) of the product design. The experimental work, the in-depth evaluation of design and manufacturing in CE, and the developed energy system levels in machining provided a solid base for the development of the model for the design for energy reduction in CE. The model was used to analyze an example part where 12 evolving designs were thoroughly reviewed to investigate the sensitivity of energy to design parameters in machining. The model allowed product design teams to address manufacturing energy concerns early during the design stage. As a result, ranges for energy sensitive design parameters impacting product manufacturing energy consumption were found in earlier levels. As designer proceeds to deeper levels in the model, this range tightens and results in significant energy reductions.
Examining Food Risk in the Large using a Complex, Networked System-of-sytems Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosiano, John; Newkirk, Ryan; Mc Donald, Mark P
2010-12-03
The food production infrastructure is a highly complex system of systems. Characterizing the risks of intentional contamination in multi-ingredient manufactured foods is extremely challenging because the risks depend on the vulnerabilities of food processing facilities and on the intricacies of the supply-distribution networks that link them. A pure engineering approach to modeling the system is impractical because of the overall system complexity and paucity of data. A methodology is needed to assess food contamination risk 'in the large', based on current, high-level information about manufacturing facilities, corrunodities and markets, that will indicate which food categories are most at risk ofmore » intentional contamination and warrant deeper analysis. The approach begins by decomposing the system for producing a multi-ingredient food into instances of two subsystem archetypes: (1) the relevant manufacturing and processing facilities, and (2) the networked corrunodity flows that link them to each other and consumers. Ingredient manufacturing subsystems are modeled as generic systems dynamics models with distributions of key parameters that span the configurations of real facilities. Networks representing the distribution systems are synthesized from general information about food corrunodities. This is done in a series of steps. First, probability networks representing the aggregated flows of food from manufacturers to wholesalers, retailers, other manufacturers, and direct consumers are inferred from high-level approximate information. This is followed by disaggregation of the general flows into flows connecting 'large' and 'small' categories of manufacturers, wholesalers, retailers, and consumers. Optimization methods are then used to determine the most likely network flows consistent with given data. Vulnerability can be assessed for a potential contamination point using a modified CARVER + Shock model. Once the facility and corrunodity flow models are instantiated, a risk consequence analysis can be performed by injecting contaminant at chosen points in the system and propagating the event through the overarching system to arrive at morbidity and mortality figures. A generic chocolate snack cake model, consisting of fluid milk, liquid eggs, and cocoa, is described as an intended proof of concept for multi-ingredient food systems. We aim for an eventual tool that can be used directly by policy makers and planners.« less
Demonstration of the feasibility of automated silicon solar cell fabrication
NASA Technical Reports Server (NTRS)
Taylor, W. E.; Schwartz, F. M.
1975-01-01
A study effort was undertaken to determine the process, steps and design requirements of an automated silicon solar cell production facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of 21,973 kilograms of silicon a year on a three shift 49-week basis, producing 4,747,000 hexagonal cells (38mm/side), a total of 3,373 kilowatts at an estimated manufacturing cost of $0.866 per cell or $1.22 per watt.
Splendidly blended: a machine learning set up for CDU control
NASA Astrophysics Data System (ADS)
Utzny, Clemens
2017-06-01
As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.
Additive Manufacturing of Tooling for Refrigeration Cabinet Foaming Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian K; Nuttall, David; Cukier, Michael
The primary objective of this project was to leverage the Big Area Additive Manufacturing (BAAM) process and materials into a long term, quick change tooling concept to drastically reduce product lead and development timelines and costs. Current refrigeration foam molds are complicated to manufacture involving casting several aluminum parts in an approximate shape, machining components of the molds and post fitting and shimming of the parts in an articulated fixture. The total process timeline can take over 6 months. The foaming process is slower than required for production, therefore multiple fixtures, 10 to 27, are required per refrigerator model. Moldsmore » are particular to a specific product configuration making mixed model assembly challenging for sequencing, mold changes or auto changeover features. The initial goal was to create a tool leveraging the ORNL materials and additive process to build a tool in 4 to 6 weeks or less. A secondary goal was to create common fixture cores and provide lightweight fixture sections that could be revised in a very short time to increase equipment flexibility reduce lead times, lower the barriers to first production trials, and reduce tooling costs.« less
Impact of the Skim Milk Powder Manufacturing Process on the Flavor of Model White Chocolate.
Stewart, Ashleigh; Grandison, Alistair S; Ryan, Angela; Festring, Daniel; Methven, Lisa; Parker, Jane K
2017-02-15
Milk powder is an important ingredient in the confectionery industry, but its variable nature has consequences for the quality of the final confectionary product. This paper demonstrates that skim milk powders (SMP) produced using different (but typical) manufacturing processes, when used as ingredients in the manufacture of model white chocolates, had a significant impact on the sensory and volatile profiles of the chocolate. SMP was produced from raw bovine milk using either low or high heat treatment, and a model white chocolate was prepared from each SMP. A directional discrimination test with naïve panelists showed that the chocolate prepared from the high heat SMP had more caramel/fudge character (p < 0.0001), and sensory profiling with an expert panel showed an increase in both fudge (p < 0.05) and condensed milk (p < 0.05) flavor. Gas chromatography (GC)-mass spectrometry and GC-olfactometry of both the SMPs and the model chocolates showed a concomitant increase in Maillard-derived volatiles which are likely to account for this change in flavor.
Make or buy decision model with multi-stage manufacturing process and supplier imperfect quality
NASA Astrophysics Data System (ADS)
Pratama, Mega Aria; Rosyidi, Cucuk Nur
2017-11-01
This research develops an make or buy decision model considering supplier imperfect quality. This model can be used to help companies make the right decision in case of make or buy component with the best quality and the least cost in multistage manufacturing process. The imperfect quality is one of the cost component that must be minimizing in this model. Component with imperfect quality, not necessarily defective. It still can be rework and used for assembly. This research also provide a numerical example and sensitivity analysis to show how the model work. We use simulation and help by crystal ball to solve the numerical problem. The sensitivity analysis result show that percentage of imperfect generally not affect to the model significantly, and the model is not sensitive to changes in these parameters. This is because the imperfect cost are smaller than overall total cost components.
Design of forging process variables under uncertainties
NASA Astrophysics Data System (ADS)
Repalle, Jalaja; Grandhi, Ramana V.
2005-02-01
Forging is a complex nonlinear process that is vulnerable to various manufacturing anomalies, such as variations in billet geometry, billet/die temperatures, material properties, and workpiece and forging equipment positional errors. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion, and reduced productivity. Identifying, quantifying, and controlling the uncertainties will reduce variability risk in a manufacturing environment, which will minimize the overall production cost. In this article, various uncertainties that affect the forging process are identified, and their cumulative effect on the forging tool life is evaluated. Because the forging process simulation is time-consuming, a response surface model is used to reduce computation time by establishing a relationship between the process performance and the critical process variables. A robust design methodology is developed by incorporating reliability-based optimization techniques to obtain sound forging components. A case study of an automotive-component forging-process design is presented to demonstrate the applicability of the method.
Manufacturing of tailored tubes with a process integrated heat treatment
NASA Astrophysics Data System (ADS)
Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian
2017-10-01
The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.
A Black-Scholes Approach to Satisfying the Demand in a Failure-Prone Manufacturing System
NASA Technical Reports Server (NTRS)
Chavez-Fuentes, Jorge R.; Gonzalex, Oscar R.; Gray, W. Steven
2007-01-01
The goal of this paper is to use a financial model and a hedging strategy in a systems application. In particular, the classical Black-Scholes model, which was developed in 1973 to find the fair price of a financial contract, is adapted to satisfy an uncertain demand in a manufacturing system when one of two production machines is unreliable. This financial model together with a hedging strategy are used to develop a closed formula for the production strategies of each machine. The strategy guarantees that the uncertain demand will be met in probability at the final time of the production process. It is assumed that the production efficiency of the unreliable machine can be modeled as a continuous-time stochastic process. Two simple examples illustrate the result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., with the assistance of NREL's PV Manufacturing R&D program, have continued the advancement of CIGS production technology through the development of trajectory-oriented predictive/control models, fault-tolerance control, control-platform development, in-situ sensors, and process improvements. Modeling activities to date include the development of physics-based and empirical models for CIGS and sputter-deposition processing, implementation of model-based control, and application of predictive models to the construction of new evaporation sources and for control. Model-based control is enabled through implementation of reduced or empirical models into a control platform. Reliability improvement activities include implementation of preventivemore » maintenance schedules; detection of failed sensors/equipment and reconfiguration to continue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which, in turn, have been enabled by control and reliability improvements due to this PV Manufacturing R&D program. This has resulted in substantial improvements of flexible CIGS PV module performance and efficiency.« less
Recent progress in continuous and semi-continuous processing of solid oral dosage forms: a review.
Teżyk, Michał; Milanowski, Bartłomiej; Ernst, Andrzej; Lulek, Janina
2016-08-01
Continuous processing is an innovative production concept well known and successfully used in other industries for many years. The modern pharmaceutical industry is facing the challenge of transition from a traditional manufacturing approach based on batch-wise production to a continuous manufacturing model. The aim of this article is to present technological progress in manufacturing based on continuous and semi-continuous processing of the solid oral dosage forms. Single unit processes possessing an alternative processing pathway to batch-wise technology or, with some modification, an altered approach that may run continuously, and are thus able to seamlessly switch to continuous manufacturing are briefly presented. Furthermore, the concept of semi-continuous processing is discussed. Subsequently, more sophisticated production systems created by coupling single unit processes and comprising all the steps of production, from powder to final dosage form, were reviewed. Finally, attempts of end-to-end production approach, meaning the linking of continuous synthesis of API from intermediates with the production of final dosage form, are described. There are a growing number of scientific articles showing an increasing interest in changing the approach to the production of pharmaceuticals in recent years. Numerous scientific publications are a source of information on the progress of knowledge and achievements of continuous processing. These works often deal with issues of how to modify or replace the unit processes in order to enable seamlessly switching them into continuous processing. A growing number of research papers concentrate on integrated continuous manufacturing lines in which the production concept of "from powder to tablet" is realized. Four main domains are under investigation: influence of process parameters on intermediates or final dosage forms properties, implementation of process analytical tools, control-managing system responsible for keeping continuous materials flow through the whole manufacturing process and the development of new computational methods to assess or simulate these new manufacturing techniques. The attempt to connect the primary and secondary production steps proves that development of continuously operating lines is possible. A mind-set change is needed to be able to face, and fully assess, the advantages and disadvantages of switching from batch to continuous mode production.
Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.
Mobil Solar Energy Corporation thin EFG octagons
NASA Astrophysics Data System (ADS)
Kalejs, J. P.
1994-06-01
Mobil Solar Energy Corporation manufactures photovoltaic modules based on its unique Edge-defined Film-fed Growth (EFG) process for producing octagon-shaped hollow polycrystalline silicon tubes. The octagons are cut by lasers into 100 mm x 100 mm wafers which are suitable for solar cell processing. This process avoids slicing, grinding and polishing operations which are wasteful of material and are typical of most other wafer production methods. EFG wafers are fabricated into solar cells and modules using processes that have been specially developed to allow scaling up to high throughput rates. The goals of the Photovoltaic Manufacturing Technology Initiative (PVMaT) program at Mobil Solar were to improve the EFG manufacturing line through technology advances that accelerate cost reduction in production and stimulate market growth for its product. The program was structured into three main tasks: to decrease silicon utilization by lowering wafer thickness from 400 to 200 (mu)m; to enhance laser cutting yields and throughput while improving the wafer strength; and to raise crystal growth productivity and yield. The technical problems faced and the advances made in the Mobil Solar PVMaT program are described. The author concludes with a presentation of the results of a detailed cost model for EFT module production. This model describes the accelerated reductions in manufacturing costs which are already in place and the future benefits anticipated to result from the technical achievements of the PVMaT program.
Residual stress prediction in a powder bed fusion manufactured Ti6Al4V hip stem
NASA Astrophysics Data System (ADS)
Barrett, Richard A.; Etienne, Titouan; Duddy, Cormac; Harrison, Noel M.
2017-10-01
Powder bed fusion (PBF) is a category of additive manufacturing (AM) that is particularly suitable for the production of 3D metallic components. In PBF, only material in the current build layer is at the required melt temperature, with the previously melted and solidified layers reducing in temperature, thus generating a significant thermal gradient within the metallic component, particularly for laser based PBF components. The internal thermal stresses are subsequently relieved in a post-processing heat-treatment step. Failure to adequately remove these stresses can result in cracking and component failure. A prototype hip stem was manufactured from Ti6Al4V via laser PBF but was found to have fractured during over-seas shipping. This study examines the evolution of thermal stresses during the laser PBF manufacturing and heat treatment processes of the hip stem in a 2D finite element analysis (FEA) and compares it to an electron beam PBF process. A custom written script for the automatic conversion of a gross geometry finite element model into a thin layer- by-layer finite element model was developed. The build process, heat treatment (for laser PBF) and the subsequent cooling were simulated at the component level. The results demonstrate the effectiveness of the heat treatment in reducing PBF induced thermal stresses, and the concentration of stresses in the region that fractured.
Research on networked manufacturing system for reciprocating pump industry
NASA Astrophysics Data System (ADS)
Wu, Yangdong; Qi, Guoning; Xie, Qingsheng; Lu, Yujun
2005-12-01
Networked manufacturing is a trend of reciprocating pump industry. According to the enterprises' requirement, the architecture of networked manufacturing system for reciprocating pump industry was proposed, which composed of infrastructure layer, system management layer, application service layer and user layer. Its main functions included product data management, ASP service, business management, and customer relationship management, its physics framework was a multi-tier internet-based model; the concept of ASP service integration was put forward and its process model was also established. As a result, a networked manufacturing system aimed at the characteristics of reciprocating pump industry was built. By implementing this system, reciprocating pump industry can obtain a new way to fully utilize their own resources and enhance the capabilities to respond to the global market quickly.
Additive Manufacturing of Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Van Humbeeck, Jan
2018-04-01
Selective Laser Melting (SLM) is an additive manufacturing production process, also called 3D printing, in which functional, complex parts are produced by selectively melting patterns in consecutive layers of powder with a laser beam. The pattern the laser beam is following is controlled by software that calculates the pattern by slicing a 3D CAD model of the part to be constructed. Apart from SLM, also other additive manufacturing techniques such as EBM (Electron Beam Melting), FDM (Fused Deposition Modelling), WAAM (Wire Arc Additive Manufacturing), LENS (Laser Engineered Net Shaping such as Laser Cladding) and binder jetting allow to construct complete parts layer upon layer. But since more experience of AM of shape memory alloys is collected by SLM, this paper will overview the potentials, limits and problems of producing NiTi parts by SLM.
Fit of single tooth zirconia copings: comparison between various manufacturing processes.
Grenade, Charlotte; Mainjot, Amélie; Vanheusden, Alain
2011-04-01
Various CAD/CAM processes are commercially available to manufacture zirconia copings. Comparative data on their performance in terms of fit are needed. The purpose of this in vitro study was to compare the internal and marginal fit of single tooth zirconia copings manufactured with a CAD/CAM process (Procera; Nobel Biocare) and a mechanized manufacturing process (Ceramill; Amann Girrbach). Abutments (n=20) prepared in vivo for ceramic crowns served as a template for manufacturing both Procera and Ceramill zirconia copings. Copings were manufactured and cemented (Clearfil Esthetic Cement; Kuraray) on epoxy replicas of stone cast abutments. Specimens were sectioned. Nine measurements were performed for each coping. Over- and under-extended margins were evaluated. Comparisons between the 2 processes were performed with a generalized linear mixed model (α=.05). Internal gap values between Procera and Ceramill groups were not significantly different (P=.13). The mean marginal gap (SD) for Procera copings (51(50) μm) was significantly smaller than for Ceramill (81(66) μm) (P<.005). The percentages of over- and under-extended margins were 43% and 57% for Procera respectively, and 71% and 29% for Ceramill. Within the limitations of this in vitro study, the marginal fit of Procera copings was significantly better than that of Ceramill copings. Furthermore, Procera copings showed a smaller percentage of over-extended margins than did Ceramill copings. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Ayala, Guillermo; Díez, Fernando; Gassó, María T; Jones, Brian E; Martín-Portugués, Rafael; Ramiro-Aparicio, Juan
2016-04-30
The internal lubricant content (ILC) of inhalation grade HPMC capsules is a key factor to ensure good powder release when the patient inhales a medicine from a dry powder inhaler (DPI). Powder release from capsules has been shown to be influenced by the ILC. The characteristics used to measure this are the emitted dose, fine particle fraction and mass median aerodynamic diameter. In addition the ILC level is critical for capsule shell manufacture because it is an essential part of the process that cannot work without it. An experiment has been applied to the manufacture of inhalation capsules with the required ILC. A full factorial model was used to identify the controlling factors and from this a linear model has been proposed to improve control of the process. Copyright © 2016 Elsevier B.V. All rights reserved.
Understanding error generation in fused deposition modeling
NASA Astrophysics Data System (ADS)
Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David
2015-03-01
Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.
Investigation into the influence of build parameters on failure of 3D printed parts
NASA Astrophysics Data System (ADS)
Fornasini, Giacomo
Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.
Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers
Hu, Xin-Sheng; Simila, Janika; Platz, Sindey Schueler; Moore, Stephen S.; Plastow, Graham; Meghen, Ciaran N.
2012-01-01
Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source. PMID:22479559
A risk-based approach to management of leachables utilizing statistical analysis of extractables.
Stults, Cheryl L M; Mikl, Jaromir; Whelehan, Oliver; Morrical, Bradley; Duffield, William; Nagao, Lee M
2015-04-01
To incorporate quality by design concepts into the management of leachables, an emphasis is often put on understanding the extractable profile for the materials of construction for manufacturing disposables, container-closure, or delivery systems. Component manufacturing processes may also impact the extractable profile. An approach was developed to (1) identify critical components that may be sources of leachables, (2) enable an understanding of manufacturing process factors that affect extractable profiles, (3) determine if quantitative models can be developed that predict the effect of those key factors, and (4) evaluate the practical impact of the key factors on the product. A risk evaluation for an inhalation product identified injection molding as a key process. Designed experiments were performed to evaluate the impact of molding process parameters on the extractable profile from an ABS inhaler component. Statistical analysis of the resulting GC chromatographic profiles identified processing factors that were correlated with peak levels in the extractable profiles. The combination of statistically significant molding process parameters was different for different types of extractable compounds. ANOVA models were used to obtain optimal process settings and predict extractable levels for a selected number of compounds. The proposed paradigm may be applied to evaluate the impact of material composition and processing parameters on extractable profiles and utilized to manage product leachables early in the development process and throughout the product lifecycle.
Modelling aspects regarding the control in 13C isotope separation column
NASA Astrophysics Data System (ADS)
Boca, M. L.
2016-08-01
Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.
Thermo-optical Modelling of Laser Matter Interactions in Selective Laser Melting Processes.
NASA Astrophysics Data System (ADS)
Vinnakota, Raj; Genov, Dentcho
Selective laser melting (SLM) is one of the promising advanced manufacturing techniques, which is providing an ideal platform to manufacture components with zero geometric constraints. Coupling the electromagnetic and thermodynamic processes involved in the SLM, and developing the comprehensive theoretical model of the same is of great importance since it can provide significant improvements in the printing processes by revealing the optimal parametric space related to applied laser power, scan velocity, powder material, layer thickness and porosity. Here, we present a self-consistent Thermo-optical model which simultaneously solves the Maxwell's and the heat transfer equations and provides an insight into the electromagnetic energy released in the powder-beds and the concurrent thermodynamics of the particles temperature rise and onset of melting. The numerical calculations are compared with developed analytical model of the SLM process providing insight into the dynamics between laser facilitated Joule heating and radiation mitigated rise in temperature. These results provide guidelines toward improved energy efficiency and optimization of the SLM process scan rates. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.
76 FR 30295 - Airworthiness Directives; SOCATA Model TBM 700 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... case of elevator trim tab actuator jamming once the trim tab arrived to stop. The investigations conducted by the trim tab actuator manufacturer have shown that there was a discrepancy with PRECILEC manufacturing process of elevator trim tab actuator which caused this event. It has been determined as well that...
NASA Astrophysics Data System (ADS)
Adnan, F. A.; Romlay, F. R. M.; Shafiq, M.
2018-04-01
Owing to the advent of the industrial revolution 4.0, the need for further evaluating processes applied in the additive manufacturing application particularly the computational process for slicing is non-trivial. This paper evaluates a real-time slicing algorithm for slicing an STL formatted computer-aided design (CAD). A line-plane intersection equation was applied to perform the slicing procedure at any given height. The application of this algorithm has found to provide a better computational time regardless the number of facet in the STL model. The performance of this algorithm is evaluated by comparing the results of the computational time for different geometry.
Viscous and thermal modelling of thermoplastic composites forming process
NASA Astrophysics Data System (ADS)
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
NASA Astrophysics Data System (ADS)
Jamaluddin, Z.; Razali, A. M.; Mustafa, Z.
2015-02-01
The purpose of this paper is to examine the relationship between the quality management practices (QMPs) and organisational performance for the manufacturing industry in Malaysia. In this study, a QMPs and organisational performance framework is developed according to a comprehensive literature review which cover aspects of hard and soft quality factors in manufacturing process environment. A total of 11 hypotheses have been put forward to test the relationship amongst the six constructs, which are management commitment, training, process management, quality tools, continuous improvement and organisational performance. The model is analysed using Structural Equation Modeling (SEM) with AMOS software version 18.0 using Maximum Likelihood (ML) estimation. A total of 480 questionnaires were distributed, and 210 questionnaires were valid for analysis. The results of the modeling analysis using ML estimation indicate that the fits statistics of QMPs and organisational performance model for manufacturing industry is admissible. From the results, it found that the management commitment have significant impact on the training and process management. Similarly, the training had significant effect to the quality tools, process management and continuous improvement. Furthermore, the quality tools have significant influence on the process management and continuous improvement. Likewise, the process management also has a significant impact to the continuous improvement. In addition the continuous improvement has significant influence the organisational performance. However, the results of the study also found that there is no significant relationship between management commitment and quality tools, and between the management commitment and continuous improvement. The results of the study can be used by managers to prioritize the implementation of QMPs. For instances, those practices that are found to have positive impact on organisational performance can be recommended to managers so that they can allocate resources to improve these practices to get better performance.
Process simulation for advanced composites production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, M.D.; Ferko, S.M.; Griffiths, S.
1997-04-01
The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less
Integrating MRP (materiel requirements planning) II and JIT to achieve world-class status.
Titone, R C
1994-05-01
The concepts and principles of using manufacturing resource planning (MRP II) for planning are not new. Their success has been proven in numerous manufacturing companies in America. The concepts and principles of using just-in-time (JIT) inventory for execution, while more recent, have also been available for some time, and their success in Japan well documented. However, it is the effective integration of these two powerful tools that open the way to achieving world-class manufacturing status. This article will utilize a newly developed world-class manufacturing model, which will review the aspects of planning, beginning with a business plan through the production planning process and culminating with a master schedule that drives a materiel/capacity plan. The importance and interrelationship of these functions are reviewed. The model then illustrates the important aspects of executing these plans beginning with people issues, through total quality control (TQC) and pull systems. We will then utilize this new functional model to demonstrate the relationship between these various functions and the importance of integrating them with a total comprehensive manufacturing strategy that will lead to world-class manufacturing and profits.
Zhu, Tong; Moussa, Ehab M; Witting, Madeleine; Zhou, Deliang; Sinha, Kushal; Hirth, Mario; Gastens, Martin; Shang, Sherwin; Nere, Nandkishor; Somashekar, Shubha Chetan; Alexeenko, Alina; Jameel, Feroz
2018-07-01
Scale-up and technology transfer of lyophilization processes remains a challenge that requires thorough characterization of the laboratory and larger scale lyophilizers. In this study, computational fluid dynamics (CFD) was employed to develop computer-based models of both laboratory and manufacturing scale lyophilizers in order to understand the differences in equipment performance arising from distinct designs. CFD coupled with steady state heat and mass transfer modeling of the vial were then utilized to study and predict independent variables such as shelf temperature and chamber pressure, and response variables such as product resistance, product temperature and primary drying time for a given formulation. The models were then verified experimentally for the different lyophilizers. Additionally, the models were applied to create and evaluate a design space for a lyophilized product in order to provide justification for the flexibility to operate within a certain range of process parameters without the need for validation. Published by Elsevier B.V.
Neurovascular Modeling: Small-Batch Manufacturing of Silicone Vascular Replicas
Chueh, J.Y.; Wakhloo, A.K.; Gounis, M.J.
2009-01-01
BACKGROUND AND PURPOSE Realistic, population based cerebrovascular replicas are required for the development of neuroendovascular devices. The objective of this work was to develop an efficient methodology for manufacturing realistic cerebrovascular replicas. MATERIALS AND METHODS Brain MR angiography data from 20 patients were acquired. The centerline of the vasculature was calculated, and geometric parameters were measured to describe quantitatively the internal carotid artery (ICA) siphon. A representative model was created on the basis of the quantitative measurements. Using this virtual model, we designed a mold with core-shell structure and converted it into a physical object by fused-deposit manufacturing. Vascular replicas were created by injection molding of different silicones. Mechanical properties, including the stiffness and luminal coefficient of friction, were measured. RESULTS The average diameter, length, and curvature of the ICA siphon were 4.15 ± 0.09 mm, 22.60 ± 0.79 mm, and 0.34 ± 0.02 mm-1 (average ± standard error of the mean), respectively. From these image datasets, we created a median virtual model, which was transformed into a physical replica by an efficient batch-manufacturing process. The coefficient of friction of the luminal surface of the replica was reduced by up to 55% by using liquid silicone rubber coatings. The modulus ranged from 0.67 to 1.15 MPa compared with 0.42 MPa from human postmortem studies, depending on the material used to make the replica. CONCLUSIONS Population-representative, smooth, and true-to-scale silicone arterial replicas with uniform wall thickness were successfully built for in vitro neurointerventional device-testing by using a batch-manufacturing process. PMID:19321626
Srai, Jagjit Singh; Badman, Clive; Krumme, Markus; Futran, Mauricio; Johnston, Craig
2015-03-01
This paper examines the opportunities and challenges facing the pharmaceutical industry in moving to a primarily "continuous processing"-based supply chain. The current predominantly "large batch" and centralized manufacturing system designed for the "blockbuster" drug has driven a slow-paced, inventory heavy operating model that is increasingly regarded as inflexible and unsustainable. Indeed, new markets and the rapidly evolving technology landscape will drive more product variety, shorter product life-cycles, and smaller drug volumes, which will exacerbate an already unsustainable economic model. Future supply chains will be required to enhance affordability and availability for patients and healthcare providers alike despite the increased product complexity. In this more challenging supply scenario, we examine the potential for a more pull driven, near real-time demand-based supply chain, utilizing continuous processing where appropriate as a key element of a more "flow-through" operating model. In this discussion paper on future supply chain models underpinned by developments in the continuous manufacture of pharmaceuticals, we have set out; The significant opportunities to moving to a supply chain flow-through operating model, with substantial opportunities in inventory reduction, lead-time to patient, and radically different product assurance/stability regimes. Scenarios for decentralized production models producing a greater variety of products with enhanced volume flexibility. Production, supply, and value chain footprints that are radically different from today's monolithic and centralized batch manufacturing operations. Clinical trial and drug product development cost savings that support more rapid scale-up and market entry models with early involvement of SC designers within New Product Development. The major supply chain and industrial transformational challenges that need to be addressed. The paper recognizes that although current batch operational performance in pharma is far from optimal and not necessarily an appropriate end-state benchmark for batch technology, the adoption of continuous supply chain operating models underpinned by continuous production processing, as full or hybrid solutions in selected product supply chains, can support industry transformations to deliver right-first-time quality at substantially lower inventory profiles. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Potential for on-orbit manufacture of large space structures using the pultrusion process
NASA Technical Reports Server (NTRS)
Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.
1987-01-01
On-orbit manufacture of lightweight, high-strength, advanced-composite structures using the pultrusion process is proposed. This process is adaptable to a zero-gravity environment by using preimpregnated graphite-fiber reinforcement systems. The reinforcement material is preimpregnated with a high-performance thermoplastic resin at a ground station, is coiled on spools for compact storage, and is transported into Earth orbit. A pultrusion machine is installed in the Shuttle cargo bay from which very long lengths of the desired structure is fabricated on-orbit. Potential structural profiles include rods, angles, channels, hat sections, tubes, honeycomb-cored panels, and T, H, and I beams. A potential pultrudable thermoplastic/graphite composite material is presented as a model for determining the effect on Earth-to-orbit package density of an on-orbit manufacture, the package density is increased by 132 percent, and payload volume requirement is decreased by 56.3 percent. The fabrication method has the potential for on-orbit manufacture of structural members for space platforms, large space antennas, and long tethers.
Nepveux, Kevin; Sherlock, Jon-Paul; Futran, Mauricio; Thien, Michael; Krumme, Markus
2015-03-01
Continuous manufacturing (CM) is a process technology that has been used in the chemical industry for large-scale mass production of chemicals in single-purpose plants with benefit for many years. Recent interest has been raised to expand CM into the low-volume, high-value pharmaceutical business with its unique requirements regarding readiness for human use and the required quality, supply chain, and liability constraints in this business context. Using a fairly abstract set of definitions, this paper derives technical consequences of CM in different scenarios along the development-launch-supply axis in different business models and how they compare to batch processes. Impact of CM on functions in development is discussed and several operational models suitable for originators and other business models are discussed and specific aspects of CM are deduced from CM's technical characteristics. Organizational structures of current operations typically can support CM implementations with just minor refinements if the CM technology is limited to single steps or small sequences (bin-to-bin approach) and if the appropriate technical skill set is available. In such cases, a small, dedicated group focused on CM is recommended. The manufacturing strategy, as centralized versus decentralized in light of CM processes, is discussed and the potential impact of significantly shortened supply lead times on the organization that runs these processes. The ultimate CM implementation may be seen by some as a totally integrated monolithic plant, one that unifies chemistry and pharmaceutical operations into one plant. The organization supporting this approach will have to reflect this change in scope and responsibility. The other extreme, admittedly futuristic at this point, would be a highly decentralized approach with multiple smaller hubs; this would require a new and different organizational structure. This processing approach would open up new opportunities for products that, because of stability constraints or individualization to patients, do not allow centralized manufacturing approaches at all. Again, the entire enterprise needs to be restructured accordingly. The situation of CM in an outsourced operation business model is discussed. Next steps for the industry are recommended. In summary, opportunistic implementation of isolated steps in existing portfolios can be implemented with minimal organizational changes; the availability of the appropriate skills is the determining factor. The implementation of more substantial sequences requires business processes that consider the portfolio, not just single products. Exploration and implementation of complete process chains with consequences for quality decisions do require appropriate organizational support. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Sirirojvisuth, Apinut
In complex aerospace system design, making an effective design decision requires multidisciplinary knowledge from both product and process perspectives. Integrating manufacturing considerations into the design process is most valuable during the early design stages since designers have more freedom to integrate new ideas when changes are relatively inexpensive in terms of time and effort. Several metrics related to manufacturability are cost, time, and manufacturing readiness level (MRL). Yet, there is a lack of structured methodology that quantifies how changes in the design decisions impact these metrics. As a result, a new set of integrated cost analysis tools are proposed in this study to quantify the impacts. Equally important is the capability to integrate this new cost tool into the existing design methodologies without sacrificing agility and flexibility required during the early design phases. To demonstrate the applicability of this concept, a ModelCenter environment is used to develop software architecture that represents Integrated Product and Process Development (IPPD) methodology used in several aerospace systems designs. The environment seamlessly integrates product and process analysis tools and makes effective transition from one design phase to the other while retaining knowledge gained a priori. Then, an advanced cost estimating tool called Hybrid Lifecycle Cost Estimating Tool (HLCET), a hybrid combination of weight-, process-, and activity-based estimating techniques, is integrated with the design framework. A new weight-based lifecycle cost model is created based on Tailored Cost Model (TCM) equations [3]. This lifecycle cost tool estimates the program cost based on vehicle component weights and programmatic assumptions. Additional high fidelity cost tools like process-based and activity-based cost analysis methods can be used to modify the baseline TCM result as more knowledge is accumulated over design iterations. Therefore, with this concept, the additional manufacturing knowledge can be used to identify a more accurate lifecycle cost and facilitate higher fidelity tradeoffs during conceptual and preliminary design. Advanced Composite Cost Estimating Model (ACCEM) is employed as a process-based cost component to replace the original TCM result of the composite part production cost. The reason for the replacement is that TCM estimates production costs from part weights as a result of subtractive manufacturing of metallic origin such as casting, forging, and machining processes. A complexity factor can sometimes be adjusted to reflect different types of metal and machine settings. The TCM assumption, however, gives erroneous results when applied to additive processes like those of composite manufacturing. Another innovative aspect of this research is the introduction of a work measurement technique called Maynard Operation Sequence Technique (MOST) to be used, similarly to Activity-Based Costing (ABC) approach, to estimate manufacturing time of a part by virtue of breaking down the operations occurred during its production. ABC allows a realistic determination of cost incurred in each activity, as opposed to using a traditional method of time estimation by analogy or using response surface equations from historical process data. The MOST concept provides a tailored study of an individual process typically required for a new, innovative design. Nevertheless, the MOST idea has some challenges, one of which is its requirement to build a new process from ground up. The process development requires a Subject Matter Expertise (SME) in manufacturing method of the particular design. The SME must have also a comprehensive understanding of the MOST system so that the correct parameters are chosen. In practice, these knowledge requirements may demand people from outside of the design discipline and a priori training of MOST. To relieve the constraint, this study includes an entirely new sub-system architecture that comprises 1) a knowledge-based system to provide the required knowledge during the process selection; and 2) a new user-interface to guide the parameter selection when building the process using MOST. Also included in this study is the demonstration of how the HLCET and its constituents can be integrated with a Georgia Tech' Integrated Product and Process Development (IPPD) methodology. The applicability of this work will be shown through a complex aerospace design example to gain insights into how manufacturing knowledge helps make better design decisions during the early stages. The setup process is explained with an example of its utility demonstrated in a hypothetical fighter aircraft wing redesign. The evaluation of the system effectiveness against existing methodologies is illustrated to conclude the thesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barasinski, Anaies; Leygue, Adrien; Poitou, Arnaud
The thermoplastic tape placement process offers the possibility of manufacturing large laminated composite parts with all kinds of geometries (double curved i.e.). This process is based on the fusion bonding of a thermoplastic tape on a substrate. It has received a growing interest during last years because of its non autoclave abilities.In order to control and optimize the quality of the manufactured part, we need to predict the temperature field throughout the processing of the laminate. In this work, we focus on a thermal modeling of this process which takes in account the imperfect bonding existing between the different layersmore » of the substrate by introducing thermal contact resistance in the model. This study is leaning on experimental results which inform us that the value of the thermal resistance evolves with temperature and pressure applied on the material.« less
Land transportation model for supply chain manufacturing industries
NASA Astrophysics Data System (ADS)
Kurniawan, Fajar
2017-12-01
Supply chain is a system that integrates production, inventory, distribution and information processes for increasing productivity and minimize costs. Transportation is an important part of the supply chain system, especially for supporting the material distribution process, work in process products and final products. In fact, Jakarta as the distribution center of manufacturing industries for the industrial area. Transportation system has a large influences on the implementation of supply chain process efficiency. The main problem faced in Jakarta is traffic jam that will affect on the time of distribution. Based on the system dynamic model, there are several scenarios that can provide solutions to minimize timing of distribution that will effect on the cost such as the construction of ports approaching industrial areas other than Tanjung Priok, widening road facilities, development of railways system, and the development of distribution center.
Eon-duval, Alex; Valax, Pascal; Solacroup, Thomas; Broly, Hervé; Gleixner, Ralf; Strat, Claire L E; Sutter, James
2012-10-01
The article describes how Quality by Design principles can be applied to the drug substance manufacturing process of an Fc fusion protein. First, the quality attributes of the product were evaluated for their potential impact on safety and efficacy using risk management tools. Similarly, process parameters that have a potential impact on critical quality attributes (CQAs) were also identified through a risk assessment. Critical process parameters were then evaluated for their impact on CQAs, individually and in interaction with each other, using multivariate design of experiment techniques during the process characterisation phase. The global multi-step Design Space, defining operational limits for the entire drug substance manufacturing process so as to ensure that the drug substance quality targets are met, was devised using predictive statistical models developed during the characterisation study. The validity of the global multi-step Design Space was then confirmed by performing the entire process, from cell bank thawing to final drug substance, at its limits during the robustness study: the quality of the final drug substance produced under different conditions was verified against predefined targets. An adaptive strategy was devised whereby the Design Space can be adjusted to the quality of the input material to ensure reliable drug substance quality. Finally, all the data obtained during the process described above, together with data generated during additional validation studies as well as manufacturing data, were used to define the control strategy for the drug substance manufacturing process using a risk assessment methodology. Copyright © 2012 Wiley-Liss, Inc.
Wan, Boyong; Zordan, Christopher A; Lu, Xujin; McGeorge, Gary
2016-10-01
Complete dissolution of the active pharmaceutical ingredient (API) is critical in the manufacturing of liquid-filled soft-gelatin capsules (SGC). Attenuated total reflectance UV spectroscopy (ATR-UV) and Raman spectroscopy have been investigated for in-line monitoring of API dissolution during manufacturing of an SGC product. Calibration models have been developed with both techniques for in-line determination of API potency. Performance of both techniques was evaluated and compared. The ATR-UV methodology was found to be able to monitor the dissolution process and determine the endpoint, but was sensitive to temperature variations. The Raman technique was also capable of effectively monitoring the process and was more robust to the temperature variation and process perturbations by using an excipient peak for internal correction. Different data preprocessing methodologies were explored in an attempt to improve method performance.
VARTM Process Modeling of Aerospace Composite Structures
NASA Technical Reports Server (NTRS)
Song, Xiao-Lan; Grimsley, Brian W.; Hubert, Pascal; Cano, Roberto J.; Loos, Alfred C.
2003-01-01
A three-dimensional model was developed to simulate the VARTM composite manufacturing process. The model considers the two important mechanisms that occur during the process: resin flow, and compaction and relaxation of the preform. The model was used to simulate infiltration of a carbon preform with an epoxy resin by the VARTM process. The model predicted flow patterns and preform thickness changes agreed qualitatively with the measured values. However, the predicted total infiltration times were much longer than measured most likely due to the inaccurate preform permeability values used in the simulation.
Carroll, Christopher; Kaltenthaler, Eva; FitzGerald, Patrick; Boland, Angela; Dickson, Rumona
2011-10-01
The NICE Single Technology Appraisal (STA) process in the UK has been underway for five years. Evidence Review Groups (ERGs) critically appraise submissions from manufacturers on the clinical and cost effectiveness of new technologies. This study analysed the ERGs' assessment of the strengths and weaknesses of 30 manufacturers' submissions to the STA process. Thematic analysis was performed on the textual descriptions of the strengths and weakness of manufacturer submissions, as outlined by the ERGs in their reports. Various themes emerged from the data. These themes related to the processes applied in the submissions; the content of the submission (e.g. the amount and quality of evidence); the reporting of the submissions' review and analysis processes; the reliability and validity of the submissions' findings; and how far the submission had satisfied the STA process objectives. STA submissions could be improved if attention were paid to transparency in the reporting, conduct and justification of review and modelling processes and analyses, as well as greater robustness in the choice of data and closer adherence to the scope or decision problem. Where this adherence is not possible, more detailed justification of the choice of evidence or data is required. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cost of ownership for inspection equipment
NASA Astrophysics Data System (ADS)
Dance, Daren L.; Bryson, Phil
1993-08-01
Cost of Ownership (CoO) models are increasingly a part of the semiconductor equipment evaluation and selection process. These models enable semiconductor manufacturers and equipment suppliers to quantify a system in terms of dollars per wafer. Because of the complex nature of the semiconductor manufacturing process, there are several key attributes that must be considered in order to accurately reflect the true 'cost of ownership'. While most CoO work to date has been applied to production equipment, the need to understand cost of ownership for inspection and metrology equipment presents unique challenges. Critical parameters such as detection sensitivity as a function of size and type of defect are not included in current CoO models yet are, without question, major factors in the technical evaluation process and life-cycle cost. This paper illustrates the relationship between these parameters, as components of the alpha and beta risk, and cost of ownership.
Department of Energy. Jobs and Innovation Accelerator Challenge (JIAC) Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Jon
1.1 NCMS Digital Manufacturing Initiative The people and businesses of Southeast Michigan have long been known for their prowess in the automotive industry, a sector built on the innovation of the assembly line and the rise of mass production as a manufacturing model. Just as the assembly line was the key to a strong manufacturing base a century ago, a digital manufacturing infrastructure is critical to the future of industry. Economic uncertainty has slowed innovation, but access to cutting-edge tools such as high performance modeling, simulation and analysis (MSA) provides a bold path forward, ensuring global competitiveness and transforming ourmore » manufacturing processes. Digital manufacturing is, essentially, the virtualization of processes that had been physical. Many larger manufacturers have embraced it, but the majority of small and medium-sized manufacturers (SMMs) have not. The Digital Manufacturing Initiative is a bold, national effort by the National Center for Manufacturing Sciences (NCMS) to put manufacturing innovation on fast forward, and bring the future of industry into the present. SMMs need a broader array of access options, training, support, and guidance. Providing access will supercharge any organization with tomorrow’s tools, as positively disruptive and potential-laden as the assembly line once was. Sustainable success in the State of Michigan requires the development of foundational infrastructure, the exploration of initial inroads with various manufacturers of all sizes, and the initiation of a prototype engagement mechanism applicable for other future regional efforts. To accomplish this NCMS leveraged complimen-tary State and Federal funding opportunities (shown in Figure 1) along with a coupled voice of industry market research study. A brief summary of each opportunity is found in Appendix A. At the heart of the Michigan effort was the development of an access portal (www.doitindigital.com) and the development of partnerships with local large manufacturers (OEMs) who could provide pull to encourage SMMs (current and future suppliers) to participate. Central to this entire effort was the opportunity that this Final Report documents corresponding to the specific tasks associated with the U.S. Department of Energy (DOE) funded component of the InnoState Jobs Innovation Accelerator Challenge (JIAC) Program.« less
Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Parker, Bradford H.; Hodges, Kenneth L.; Burke, Eric R.; Walker, James L.
2014-01-01
This report summarizes the National Aeronautics and Space Administrations (NASA) state of the art of nondestructive evaluation (NDE) for additive manufacturing (AM), or "3-D printed", hardware. NASA's unique need for highly customized spacecraft and instrumentation is suited for AM, which offers a compelling alternative to traditional subtractive manufacturing approaches. The Agency has an opportunity to push the envelope on how this technology is used in zero gravity, an enable in-space manufacturing of flight spares and replacement hardware crucial for long-duration, manned missions to Mars. The Agency is leveraging AM technology developed internally and by industry, academia, and other government agencies for its unique needs. Recent technical interchange meetings and workshops attended by NASA have identified NDE as a universal need for all aspects of additive manufacturing. The impact of NDE on AM is cross cutting and spans materials, processing quality assurance, testing and modeling disciplines. Appropriate NDE methods are needed before, during, and after the AM production process.
3D Printing Multi-Functionality: Embedded RF Antennas and Components
NASA Technical Reports Server (NTRS)
Shemelya, C. M.; Zemba, M.; Liang, M.; Espalin, D.; Kief, C.; Xin, H.; Wicker, R. B.; MacDonald, E. W.
2015-01-01
Significant research and press has recently focused on the fabrication freedom of Additive Manufacturing (AM) to create both conceptual models and final end-use products. This flexibility allows design modifications to be immediately reflected in 3D printed structures, creating new paradigms within the manufacturing process. 3D printed products will inevitably be fabricated locally, with unit-level customization, optimized to unique mission requirements. However, for the technology to be universally adopted, the processes must be enhanced to incorporate additional technologies; such as electronics, actuation, and electromagnetics. Recently, a novel 3D printing platform, Multi3D manufacturing, was funded by the presidential initiative for revitalizing manufacturing in the USA using 3D printing (America Makes - also known as the National Additive Manufacturing Innovation Institute). The Multi3D system specifically targets 3D printed electronics in arbitrary form; and building upon the potential of this system, this paper describes RF antennas and components fabricated through the integration of material extrusion 3D printing with embedded wire, mesh, and RF elements.
[Quality by design approaches for pharmaceutical development and manufacturing of Chinese medicine].
Xu, Bing; Shi, Xin-Yuan; Wu, Zhi-Sheng; Zhang, Yan-Ling; Wang, Yun; Qiao, Yan-Jiang
2017-03-01
The pharmaceutical quality was built by design, formed in the manufacturing process and improved during the product's lifecycle. Based on the comprehensive literature review of pharmaceutical quality by design (QbD), the essential ideas and implementation strategies of pharmaceutical QbD were interpreted. Considering the complex nature of Chinese medicine, the "4H" model was innovated and proposed for implementing QbD in pharmaceutical development and industrial manufacture of Chinese medicine product. "4H" corresponds to the acronym of holistic design, holistic information analysis, holistic quality control, and holistic process optimization, which is consistent with the holistic concept of Chinese medicine theory. The holistic design aims at constructing both the quality problem space from the patient requirement and the quality solution space from multidisciplinary knowledge. Holistic information analysis emphasizes understanding the quality pattern of Chinese medicine by integrating and mining multisource data and information at a relatively high level. The batch-to-batch quality consistence and manufacturing system reliability can be realized by comprehensive application of inspective quality control, statistical quality control, predictive quality control and intelligent quality control strategies. Holistic process optimization is to improve the product quality and process capability during the product lifecycle management. The implementation of QbD is useful to eliminate the ecosystem contradictions lying in the pharmaceutical development and manufacturing process of Chinese medicine product, and helps guarantee the cost effectiveness. Copyright© by the Chinese Pharmaceutical Association.
Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D
2015-03-01
This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for drug manufacturing that are easily transportable to industry. Industry can facilitate the move to continuous manufacturing by working with universities on the conception of new continuous pharmaceutical manufacturing process unit operations that have the potential to make major improvements in product quality, controllability, or reduced capital and/or operating costs. Regulatory bodies should ensure that: (1) regulations and regulatory practices promote, and do not derail, the development and implementation of continuous manufacturing and control systems engineering approaches; (2) the individuals who approve specific regulatory filings are sufficiently trained to make good decisions regarding control systems approaches; (3) provide regulatory clarity and eliminate/reduce regulatory risks; (4) financially support the development of high-quality training materials for use of undergraduate students, graduate students, industrial employees, and regulatory staff; (5) enhance the training of their own technical staff by financially supporting joint research projects with universities in the development of continuous pharmaceutical manufacturing processes and the associated control systems engineering theory, numerical algorithms, and software; and (6) strongly encourage the federal agencies that support research to fund these research areas. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D
2015-03-01
This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for drug manufacturing that are easily transportable to industry. Industry can facilitate the move to continuous manufacturing by working with universities on the conception of new continuous pharmaceutical manufacturing process unit operations that have the potential to make major improvements in product quality, controllability, or reduced capital and/or operating costs. Regulatory bodies should ensure that: (1) regulations and regulatory practices promote, and do not derail, the development and implementation of continuous manufacturing and control systems engineering approaches; (2) the individuals who approve specific regulatory filings are sufficiently trained to make good decisions regarding control systems approaches; (3) provide regulatory clarity and eliminate/reduce regulatory risks; (4) financially support the development of high-quality training materials for use of undergraduate students, graduate students, industrial employees, and regulatory staff; (5) enhance the training of their own technical staff by financially supporting joint research projects with universities in the development of continuous pharmaceutical manufacturing processes and the associated control systems engineering theory, numerical algorithms, and software; and (6) strongly encourage the federal agencies that support research to fund these research areas. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Carbon Capture and Utilization in the Industrial Sector.
Psarras, Peter C; Comello, Stephen; Bains, Praveen; Charoensawadpong, Panunya; Reichelstein, Stefan; Wilcox, Jennifer
2017-10-03
The fabrication and manufacturing processes of industrial commodities such as iron, glass, and cement are carbon-intensive, accounting for 23% of global CO 2 emissions. As a climate mitigation strategy, CO 2 capture from flue gases of industrial processes-much like that of the power sector-has not experienced wide adoption given its high associated costs. However, some industrial processes with relatively high CO 2 flue concentration may be viable candidates to cost-competitively supply CO 2 for utilization purposes (e.g., polymer manufacturing, etc.). This work develops a methodology that determines the levelized cost ($/tCO 2 ) of separating, compressing, and transporting carbon dioxide. A top-down model determines the cost of separating and compressing CO 2 across 18 industrial processes. Further, the study calculates the cost of transporting CO 2 via pipeline and tanker truck to appropriately paired sinks using a bottom-up cost model and geo-referencing approach. The results show that truck transportation is generally the low-cost alternative given the relatively small volumes (ca. 100 kt CO 2 /a). We apply our methodology to a regional case study in Pennsylvania, which shows steel and cement manufacturing paired to suitable sinks as having the lowest levelized cost of capture, compression, and transportation.
Nekkanti, Vijaykumar; Marwah, Ashwani; Pillai, Raviraj
2015-01-01
Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to <5 h to obtain the desired particle size (d90 < 400 nm). The desirability function used to optimize the response variables and observed responses were in agreement with experimental values. These results demonstrated the reliability of selected model for manufacture of drug nanoparticles with predictable quality attributes. The optimization of bead milling process variables by applying DOE resulted in considerable decrease in milling time to achieve the desired particle size. The study indicates the applicability of DOE approach to optimize critical process parameters in the manufacture of drug nanoparticles.
A methodology for Manufacturing Execution Systems (MES) implementation
NASA Astrophysics Data System (ADS)
Govindaraju, Rajesri; Putra, Krisna
2016-02-01
Manufacturing execution system is information systems (IS) application that bridges the gap between IS at the top level, namely enterprise resource planning (ERP), and IS at the lower levels, namely the automation systems. MES provides a media for optimizing the manufacturing process as a whole in a real time basis. By the use of MES in combination with the implementation of ERP and other automation systems, a manufacturing company is expected to have high competitiveness. In implementing MES, functional integration -making all the components of the manufacturing system able to work well together, is the most difficult challenge. For this, there has been an industry standard that specifies the sub-systems of a manufacturing execution systems and defines the boundaries between ERP systems, MES, and other automation systems. The standard is known as ISA-95. Although the advantages from the use of MES have been stated in some studies, not much research being done on how to implement MES effectively. The purpose of this study is to develop a methodology describing how MES implementation project should be managed, utilising the support of ISA- 95 reference model in the system development process. A proposed methodology was developed based on a general IS development methodology. The developed methodology were then revisited based on the understanding about the specific charateristics of MES implementation project found in an Indonesian steel manufacturing company implementation case. The case study highlighted the importance of applying an effective requirement elicitation method during innitial system assessment process, managing system interfaces and labor division in the design process, and performing a pilot deployment before putting the whole system into operation.
Advances in Neutron Radiography: Application to Additive Manufacturing Inconel 718
Bilheux, Hassina Z; Song, Gian; An, Ke; ...
2016-01-01
Reactor-based neutron radiography is a non-destructive, non-invasive characterization technique that has been extensively used for engineering materials such as inspection of components, evaluation of porosity, and in-operando observations of engineering parts. Neutron radiography has flourished at reactor facilities for more than four decades and is relatively new to accelerator-based neutron sources. Recent advances in neutron source and detector technologies, such as the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN, and the microchannel plate (MCP) detector, respectively, enable new contrast mechanisms using the neutron scattering Bragg features for crystalline information such as averagemore » lattice strain, crystalline plane orientation, and identification of phases in a neutron radiograph. Additive manufacturing (AM) processes or 3D printing have recently become very popular and have a significant potential to revolutionize the manufacturing of materials by enabling new designs with complex geometries that are not feasible using conventional manufacturing processes. However, the technique lacks standards for process optimization and control compared to conventional processes. Residual stresses are a common occurrence in materials that are machined, rolled, heat treated, welded, etc., and have a significant impact on a component s mechanical behavior and durability. They may also arise during the 3D printing process, and defects such as internal cracks can propagate over time as the component relaxes after being removed from its build plate (the base plate utilized to print materials on). Moreover, since access to the AM material is possible only after the component has been fully manufactured, it is difficult to characterize the material for defects a priori to minimize expensive re-runs. Currently, validation of the AM process and materials is mainly through expensive trial-and-error experiments at the component level, whereas in conventional processes the level of confidence in predictive computational modeling is high enough to allow process and materials optimization through computational approaches. Thus, there is a clear need for non-destructive characterization techniques and for the establishment of processing- microstructure databases that can be used for developing and validating predictive modeling tools for AM.« less
Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo
Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena
2017-04-19
Additive manufacturing (AM) is of tremendous interest given its ability to realize complex, non-traditional geometries in engineered structural materials. But, microstructures generated from AM processes can be equally, if not more, complex than their conventionally processed counterparts. While some microstructural features observed in AM may also occur in more traditional solidification processes, the introduction of spatially and temporally mobile heat sources can result in significant microstructural heterogeneity. While grain size and shape in metal AM structures are understood to be highly dependent on both local and global temperature profiles, the exact form of this relation is not well understood. Wemore » implement an idealized molten zone and temperature-dependent grain boundary mobility in a kinetic Monte Carlo model to predict three-dimensional grain structure in additively manufactured metals. In order to demonstrate the flexibility of the model, synthetic microstructures are generated under conditions mimicking relatively diverse experimental results present in the literature. Simulated microstructures are then qualitatively and quantitatively compared to their experimental complements and are shown to be in good agreement.« less
Study of a dry room in a battery manufacturing plant using a process model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.
The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studies the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study is conducted with the help of a process model for a dry room with a volumemore » of 16000 cubic meters. For a defined base case scenario it is found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.« less
Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes
NASA Astrophysics Data System (ADS)
Hehr, Adam; Dapino, Marcelo J.
2016-04-01
Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.
NASA Astrophysics Data System (ADS)
Li, Yang; Yao, Zhao; Zhang, Chun-Wei; Fu, Xiao-Qian; Li, Zhi-Ming; Li, Nian-Qiang; Wang, Cong
2017-05-01
In order to provide excellent performance and show the development of a complicated structure in a module and system, this paper presents a double air-bridge-structured symmetrical differential inductor based on integrated passive device technology. Corresponding to the proposed complicated structure, a new manufacturing process fabricated on a high-resistivity GaAs substrate is described in detail. Frequency-independent physical models are presented with lump elements and the results of skin effect-based measurements. Finally, some key features of the inductor are compared; good agreement between the measurements and modeled circuit fully verifies the validity of the proposed modeling approach. Meanwhile, we also present a comparison of different coil turns for inductor performance. The proposed work can provide a good solution for the design, fabrication, modeling, and practical application of radio-frequency modules and systems.
Neural manufacturing: a novel concept for processing modeling, monitoring, and control
NASA Astrophysics Data System (ADS)
Fu, Chi Y.; Petrich, Loren; Law, Benjamin
1995-09-01
Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.
Finite Element Modelling and Analysis of Conventional Pultrusion Processes
NASA Astrophysics Data System (ADS)
Akishin, P.; Barkanov, E.; Bondarchuk, A.
2015-11-01
Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.
NASA Astrophysics Data System (ADS)
Basak, Amrita; Acharya, Ranadip; Das, Suman
2016-08-01
This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.
Wang, Lu; Zeng, Shanshan; Chen, Teng; Qu, Haibin
2014-03-01
A promising process analytical technology (PAT) tool has been introduced for batch processes monitoring. Direct analysis in real time mass spectrometry (DART-MS), a means of rapid fingerprint analysis, was applied to a percolation process with multi-constituent substances for an anti-cancer botanical preparation. Fifteen batches were carried out, including ten normal operations and five abnormal batches with artificial variations. The obtained multivariate data were analyzed by a multi-way partial least squares (MPLS) model. Control trajectories were derived from eight normal batches, and the qualification was tested by R(2) and Q(2). Accuracy and diagnosis capability of the batch model were then validated by the remaining batches. Assisted with high performance liquid chromatography (HPLC) determination, process faults were explained by corresponding variable contributions. Furthermore, a batch level model was developed to compare and assess the model performance. The present study has demonstrated that DART-MS is very promising in process monitoring in botanical manufacturing. Compared with general PAT tools, DART-MS offers a particular account on effective compositions and can be potentially used to improve batch quality and process consistency of samples in complex matrices. Copyright © 2014 Elsevier B.V. All rights reserved.
An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3
NASA Technical Reports Server (NTRS)
Kneafsey, J. T.; Hill, R. M.
1978-01-01
A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.
Flexible Biomanufacturing Processes that Address the Needs of the Future.
Diel, Bernhard; Manzke, Christian; Peuker, Thorsten
2014-01-01
: As the age of the blockbuster drug recedes, the business model for the biopharmaceutical industry is evolving at an ever-increasing pace. The personalization of medicine, the emergence of biosimilars and biobetters, and the need to provide vaccines globally are just some of the factors forcing biomanufacturers to rethink how future manufacturing capability is implemented. One thing is clear: the traditional manufacturing strategy of constructing large-scale, purpose-built, capital-intensive facilities will no longer meet the industry's emerging production and economic requirements. Therefore, the authors of this chapter describe the new approach for designing and implementing flexible production processes for monoclonal antibodies and focus on the points to consider as well as the lessons learned from past experience in engineering such systems. A conceptual integrated design is presented that can be used as a blueprint for next-generation biomanufacturing facilities. In addition, this chapter discusses the benefits of the new approach with respect to flexibility, cost, and schedule. The concept presented here can be applied to other biopharmaceutical manufacturing processes and facilities, including-but not limited to-vaccine manufacturing, multiproduct and/or multiprocess capability, clinical manufacturing, and so on.
Paths of Improving the Technological Process of Manufacture of GTE Turbine Blades
NASA Astrophysics Data System (ADS)
Vdovin, R. A.; Smelov, V. G.; Bolotov, M. A.; Pronichev, N. D.
2016-08-01
The article provides an analysis of the problems at manufacture of blades of the turbine of gas-turbine engines and power stations is provided in article, and also paths of perfecting of technological process of manufacture of blades are offered. The analysis of the main systems of basing of blades in the course of machining and the control methods of the processed blades existing at the enterprises with the indication of merits and demerits is carried out. In work criteria in the form of the mathematical models of a spatial distribution of an allowance considering the uniform distribution of an allowance on a feather profile are developed. The considered methods allow to reduce percent of release of marriage and to reduce labor input when polishing path part of a feather of blades of the turbine.
Numerical modelling of the flow in the resin infusion process on the REV scale: A feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabbari, M.; Spangenberg, J.; Hattel, J. H.
2016-06-08
The resin infusion process (RIP) has developed as a low cost method for manufacturing large fibre reinforced plastic parts. However, the process still presents some challenges to industry with regards to reliability and repeatability, resulting in expensive and inefficient trial and error development. In this paper, we show the implementation of 2D numerical models for the RIP using the open source simulator DuMu{sup X}. The idea of this study is to present a model which accounts for the interfacial forces coming from the capillary pressure on the so-called representative elementary volume (REV) scale. The model is described in detail andmore » three different test cases — a constant and a tensorial permeability as well as a preform/Balsa domain — are investigated. The results show that the developed model is very applicable for the RIP for manufacturing of composite parts. The idea behind this study is to test the developed model for later use in a real application, in which the preform medium has numerous layers with different material properties.« less
Malinowski, M L; Beling, P A; Haimes, Y Y; LaViers, A; Marvel, J A; Weiss, B A
2015-01-01
The fields of risk analysis and prognostics and health management (PHM) have developed in a largely independent fashion. However, both fields share a common core goal. They aspire to manage future adverse consequences associated with prospective dysfunctions of the systems under consideration due to internal or external forces. This paper describes how two prominent risk analysis theories and methodologies - Hierarchical Holographic Modeling (HHM) and Risk Filtering, Ranking, and Management (RFRM) - can be adapted to support the design of PHM systems in the context of smart manufacturing processes. Specifically, the proposed methodologies will be used to identify targets - components, subsystems, or systems - that would most benefit from a PHM system in regards to achieving the following objectives: minimizing cost, minimizing production/maintenance time, maximizing system remaining usable life (RUL), maximizing product quality, and maximizing product output. HHM is a comprehensive modeling theory and methodology that is grounded on the premise that no system can be modeled effectively from a single perspective. It can also be used as an inductive method for scenario structuring to identify emergent forced changes (EFCs) in a system. EFCs connote trends in external or internal sources of risk to a system that may adversely affect specific states of the system. An important aspect of proactive risk management includes bolstering the resilience of the system for specific EFCs by appropriately controlling the states. Risk scenarios for specific EFCs can be the basis for the design of prognostic and diagnostic systems that provide real-time predictions and recognition of scenario changes. The HHM methodology includes visual modeling techniques that can enhance stakeholders' understanding of shared states, resources, objectives and constraints among the interdependent and interconnected subsystems of smart manufacturing systems. In risk analysis, HHM is often paired with Risk Filtering, Ranking, and Management (RFRM). The RFRM process provides the users, (e.g., technology developers, original equipment manufacturers (OEMs), technology integrators, manufacturers), with the most critical risks to the objectives, which can be used to identify the most critical components and subsystems that would most benefit from a PHM system. A case study is presented in which HHM and RFRM are adapted for PHM in the context of an active manufacturing facility located in the United States. The methodologies help to identify the critical risks to the manufacturing process, and the major components and subsystems that would most benefit from a developed PHM system.
Malinowski, M.L.; Beling, P.A.; Haimes, Y.Y.; LaViers, A.; Marvel, J.A.; Weiss, B.A.
2017-01-01
The fields of risk analysis and prognostics and health management (PHM) have developed in a largely independent fashion. However, both fields share a common core goal. They aspire to manage future adverse consequences associated with prospective dysfunctions of the systems under consideration due to internal or external forces. This paper describes how two prominent risk analysis theories and methodologies – Hierarchical Holographic Modeling (HHM) and Risk Filtering, Ranking, and Management (RFRM) – can be adapted to support the design of PHM systems in the context of smart manufacturing processes. Specifically, the proposed methodologies will be used to identify targets – components, subsystems, or systems – that would most benefit from a PHM system in regards to achieving the following objectives: minimizing cost, minimizing production/maintenance time, maximizing system remaining usable life (RUL), maximizing product quality, and maximizing product output. HHM is a comprehensive modeling theory and methodology that is grounded on the premise that no system can be modeled effectively from a single perspective. It can also be used as an inductive method for scenario structuring to identify emergent forced changes (EFCs) in a system. EFCs connote trends in external or internal sources of risk to a system that may adversely affect specific states of the system. An important aspect of proactive risk management includes bolstering the resilience of the system for specific EFCs by appropriately controlling the states. Risk scenarios for specific EFCs can be the basis for the design of prognostic and diagnostic systems that provide real-time predictions and recognition of scenario changes. The HHM methodology includes visual modeling techniques that can enhance stakeholders’ understanding of shared states, resources, objectives and constraints among the interdependent and interconnected subsystems of smart manufacturing systems. In risk analysis, HHM is often paired with Risk Filtering, Ranking, and Management (RFRM). The RFRM process provides the users, (e.g., technology developers, original equipment manufacturers (OEMs), technology integrators, manufacturers), with the most critical risks to the objectives, which can be used to identify the most critical components and subsystems that would most benefit from a PHM system. A case study is presented in which HHM and RFRM are adapted for PHM in the context of an active manufacturing facility located in the United States. The methodologies help to identify the critical risks to the manufacturing process, and the major components and subsystems that would most benefit from a developed PHM system. PMID:28664162
Srai, Jagjit Singh; Badman, Clive; Krumme, Markus; Futran, Mauricio; Johnston, Craig
2015-03-01
This paper examines the opportunities and challenges facing the pharmaceutical industry in moving to a primarily "continuous processing"-based supply chain. The current predominantly "large batch" and centralized manufacturing system designed for the "blockbuster" drug has driven a slow-paced, inventory heavy operating model that is increasingly regarded as inflexible and unsustainable. Indeed, new markets and the rapidly evolving technology landscape will drive more product variety, shorter product life-cycles, and smaller drug volumes, which will exacerbate an already unsustainable economic model. Future supply chains will be required to enhance affordability and availability for patients and healthcare providers alike despite the increased product complexity. In this more challenging supply scenario, we examine the potential for a more pull driven, near real-time demand-based supply chain, utilizing continuous processing where appropriate as a key element of a more "flow-through" operating model. In this discussion paper on future supply chain models underpinned by developments in the continuous manufacture of pharmaceuticals, we have set out; The paper recognizes that although current batch operational performance in pharma is far from optimal and not necessarily an appropriate end-state benchmark for batch technology, the adoption of continuous supply chain operating models underpinned by continuous production processing, as full or hybrid solutions in selected product supply chains, can support industry transformations to deliver right-first-time quality at substantially lower inventory profiles. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Innovation leading the way: application of lean manufacturing to sample management.
Allen, M; Wigglesworth, M J
2009-06-01
Historically, sample management successfully focused on providing compound quality and tracking distribution within a diverse geographic. However, if a competitive advantage is to be delivered in a changing environment of outsourcing, efficiency and customer service must now improve or face reconstruction. The authors have used discrete event simulation to model the compound process from chemistry to assay and applied lean manufacturing techniques to analyze and improve these processes. In doing so, they identified a value-adding process time of just 11 min within a procedure that took days. Modeling also allowed the analysis of equipment and human resources necessary to complete the expected demand in an acceptable cycle time. Layout and location of sample management and screening departments are key in allowing process integration, creating rapid flow of work, and delivering these efficiencies. Following this analysis and minor process changes, the authors have demonstrated for 2 programs that solid compounds can be converted to assay-ready plates in less than 4 h. In addition, it is now possible to deliver assay data from these compounds within the same working day, allowing chemistry teams more flexibility and more time to execute the next chemistry round. Additional application of lean manufacturing principles has the potential to further decrease cycle times while using fewer resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George
2015-03-11
Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less
Methodology for balancing design and process tradeoffs for deep-subwavelength technologies
NASA Astrophysics Data System (ADS)
Graur, Ioana; Wagner, Tina; Ryan, Deborah; Chidambarrao, Dureseti; Kumaraswamy, Anand; Bickford, Jeanne; Styduhar, Mark; Wang, Lee
2011-04-01
For process development of deep-subwavelength technologies, it has become accepted practice to use model-based simulation to predict systematic and parametric failures. Increasingly, these techniques are being used by designers to ensure layout manufacturability, as an alternative to, or complement to, restrictive design rules. The benefit of model-based simulation tools in the design environment is that manufacturability problems are addressed in a design-aware way by making appropriate trade-offs, e.g., between overall chip density and manufacturing cost and yield. The paper shows how library elements and the full ASIC design flow benefit from eliminating hot spots and improving design robustness early in the design cycle. It demonstrates a path to yield optimization and first time right designs implemented in leading edge technologies. The approach described herein identifies those areas in the design that could benefit from being fixed early, leading to design updates and avoiding later design churn by careful selection of design sensitivities. This paper shows how to achieve this goal by using simulation tools incorporating various models from sparse to rigorously physical, pattern detection and pattern matching, checking and validating failure thresholds.
Updraft Fixed Bed Gasification Aspen Plus Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
2007-09-27
The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.
Additive Manufacturing Techniques for the Reconstruction of 3D Fetal Faces.
Speranza, Domenico; Citro, Daniela; Padula, Francesco; Motyl, Barbara; Marcolin, Federica; Calì, Michele; Martorelli, Massimo
2017-01-01
This paper deals with additive manufacturing techniques for the creation of 3D fetal face models starting from routine 3D ultrasound data. In particular, two distinct themes are addressed. First, a method for processing and building 3D models based on the use of medical image processing techniques is proposed. Second, the preliminary results of a questionnaire distributed to future parents consider the use of these reconstructions both from an emotional and an affective point of view. In particular, the study focuses on the enhancement of the perception of maternity or paternity and the improvement in the relationship between parents and physicians in case of fetal malformations, in particular facial or cleft lip diseases.
NASA Astrophysics Data System (ADS)
Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt
2017-02-01
To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.
NASA Astrophysics Data System (ADS)
Diaz-Elsayed, Nancy
Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the machining parameters --- these decisions affect how much energy is utilized during production. Therefore, at the facility level a methodology is presented for implementing priority queuing while accounting for a high product mix in a discrete event simulation environment. A baseline case is presented and alternative factory designs are suggested, which lead to energy savings of approximately 9%. At the industry level, the majority of energy consumption for manufacturing facilities is utilized for machine drive, process heating, and HVAC. Numerous studies have characterized the energy of manufacturing processes and HVAC equipment, but energy data is often limited for a facility in its entirety since manufacturing companies often lack the appropriate sensors to track it and are hesitant to release this information for confidentiality purposes. Without detailed information about the use of energy in manufacturing sites, the scope of factory studies cannot be adequately defined. Therefore, the breakdown of energy consumption of sectors with discrete production is presented, as well as a case study assessing the electrical energy consumption, greenhouse gas emissions, their associated costs, and labor costs for selected sites in the United States, Japan, Germany, China, and India. By presenting energy models and assessments of production equipment, factory operations, and industry, this dissertation provides a comprehensive assessment of energy trends in manufacturing and recommends methods that can be used beyond these case studies and industries to reduce consumption and contribute to an energy-efficient future.
Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.
Zhang, Cunji; Yao, Xifan; Zhang, Jianming
2015-12-03
Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi(®) Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.
Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops
Zhang, Cunji; Yao, Xifan; Zhang, Jianming
2015-01-01
Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418
Ghosh, Arup; Qin, Shiming; Lee, Jooyeoun; Wang, Gi-Nam
2016-01-01
Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system. Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT) that can detect them by using log-data records of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the data logging system to identify operational faults and behavioural anomalies effectively.
Ghosh, Arup; Qin, Shiming; Lee, Jooyeoun
2016-01-01
Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system. Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT) that can detect them by using log-data records of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the data logging system to identify operational faults and behavioural anomalies effectively. PMID:27974882
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalejs, J.P.
1994-06-01
Mobil Solar Energy Corporation manufactures photovoltaic modules based on its unique Edge-defined Film-fed Growth (EFG) process for producing octagon-shaped hollow polycrystalline silicon tubes. The octagons are cut by lasers into 100 mm x 100 mm wafers which are suitable for solar cell processing. This process avoids slicing, grinding and polishing operations which are wasteful of material and are typical of most other wafer production methods. EFG wafers are fabricated into solar cells and modules using processes that have been specially developed to allow scaling up to high throughput rates. The goals of the Photovoltaic Manufacturing Technology Initiative (PVMaT) program atmore » Mobil Solar were to improve the EFG manufacturing line through technology advances that accelerate cost reduction in production and stimulate market growth for its product. The program was structured into three main tasks: to decrease silicon utilization by lowering wafer thickness from 400 to 200 {mu}m; to enhance laser cutting yields and throughput while improving the wafer strength; and to raise crystal growth productivity and yield. The technical problems faced and the advances made in the Mobil Solar PVMaT program are described. The author concludes with a presentation of the results of a detailed cost model for EFT module production. This model describes the accelerated reductions in manufacturing costs which are already in place and the future benefits anticipated to result from the technical achievements of the PVMaT program.« less
Understanding and modeling the economics of ECM
NASA Astrophysics Data System (ADS)
Wells, Wayne E.; Edinbarough, Immanuel A.
2004-12-01
Traditional economic analysis methods for manufacturing decisions include only the clearly identified immediate cost and revenue streams. Environmental issues have generally been seen as costs, in the form of waste material losses, conformance tests and pre-discharge treatments. The components of the waste stream often purchased as raw materials, become liabilities at the "end of the pipe" and their intrinsic material value is seldom recognized. A new mathematical treatment of manufacturing economics is proposed in which the costs of separation are compared with the intrinsic value of the waste materials to show how their recovery can provide an economic advantage to the manufacturer. The model is based on a unique combination of thermodynamic analysis, economic modeling and linear optimization. This paper describes the proposed model, and examines case studies in which the changed decision rules have yielded significant savings while protecting the environment. The premise proposed is that by including the value of the waste materials in the profit objective of the firm and applying the appropriate technological solution, manufacturing processes can become closed systems in which losses approach zero and environmental problems are converted into economic savings.
Additive Manufacturing in Offsite Repair of Consumer Electronics
NASA Astrophysics Data System (ADS)
Chekurov, Sergei; Salmi, Mika
Spare parts for products that are at the end of their life cycles, but still under warranty, are logistically difficult because they are commonly not stored in the central warehouse. These uncommon spare parts occupy valuable space in smaller inventories and take a long time to be transported to the point of need, thus delaying the repair process. This paper proposes that storing the spare parts on a server and producing them with additive manufacturing (AM) on demand can shorten the repair cycle by simplifying the logistics. Introducing AM in the repair supply chain lowers the number of products that need to be reimbursed to the customer due to lengthy repairs, improves the repair statistics of the repair shops, and reduces the number of items that are held in stock. For this paper, the functionality of the concept was verified by reverse engineering a memory cover of a portable computer and laser sintering it from polyamide 12. The additively manufactured component fit well and the computer operated normally after the replacement. The current spare part supply chain model and models with AM machinery located at the repair shop, the centralized spare part provider, and the original equipment manufacturer were provided. The durations of the repair process in the models were compared by simulating two scenarios with the Monte Carlo method. As the biggest improvement, the model with the AM machine in the repair shop reduced the duration of the repair process from 14 days to three days. The result points to the conclusion that placing the machine as close to the need as possible is the best option, if there is enough demand. The spare parts currently compatible with AM are plastic components without strict surface roughness requirements, but more spare parts will become compatible with the development of AM.
NASA Astrophysics Data System (ADS)
Malago`, M.; Mucchi, E.; Dalpiaz, G.
2016-03-01
Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.
NASA Astrophysics Data System (ADS)
Tesfay, Hayelom D.
Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava, and Alumina) were conducted. Based on the experimental results, analytical models for UVAG and CG (conventional grinding without ultrasonic vibration) processes were developed. As for the numerical study, an extended finite element method (XFEM) based on Virtual Crack Closure Technique (VCCT) in ABAQUS was used to model the formation of edge chippings both for UVAG and CG processes. The experimental results are compared against the numerical FEA and the analytical models. The experimental, theoretical, and computational simulation results revealed that the edge chipping size of bioceramics can be significantly reduced with the assistance of ultrasonic vibration. The investigation procedures and the results obtained in this dissertation would be used as a reference and practical guidance for choosing reasonable process variables as well as designing mathematical (analytical and numerical) models in manufacturing industries and academic institutions when the edge chippings of brittle materials are expected to be controlled.
SAMIS- STANDARD ASSEMBLY-LINE MANUFACTURING INDUSTRY SIMULATION
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.
1994-01-01
The Standard Assembly-Line Manufacturing Industry Simulation (SAMIS) program was originally developed to model a hypothetical U. S. industry which manufactures silicon solar modules for use in electricity generation. The SAMIS program has now been generalized to the extent that it should be useful for simulating many different production-line manufacturing industries and companies. The most important capability of SAMIS is its ability to "simulate" an industry based on a model developed by the user with the aid of the SAMIS program. The results of the simulation are a set of financial reports which detail the requirements, including quantities and cost, of the companies and processes which comprise the industry. SAMIS provides a fair, consistent, and reliable means of comparing manufacturing processes being developed by numerous independent efforts. It can also be used to assess the industry-wide impact of changes in financial parameters, such as cost of resources and services, inflation rates, interest rates, tax policies, and required return on equity. Because of the large amount of data needed to describe an industry, a major portion of SAMIS is dedicated to data entry and maintenance. This activity in SAMIS is referred to as model management. Model management requires a significant amount of interaction through a system of "prompts" which make it possible for persons not familiar with computers, or the SAMIS program, to provide all of the data necessary to perform a simulation. SAMIS is written in TURBO PASCAL (version 2.0 required for compilation) and requires 10 meg of hard disk space, an 8087 coprocessor, and an IBM color graphics monitor. Executables and source code are provided. SAMIS was originally developed in 1978; the IBM PC version was developed in 1985. Release 6.1 was made available in 1986, and includes the PC-IPEG program.
Technology transfer into the solid propulsion industry
NASA Technical Reports Server (NTRS)
Campbell, Ralph L.; Thomson, Lawrence J.
1995-01-01
This paper is a survey of the waste minimization efforts of industries outside of aerospace for possible applications in the manufacture of solid rocket motors (SRM) for NASA. The Redesigned Solid Rocket Motor (RSRM) manufacturing plan was used as the model for processes involved in the production of an SRM. A literature search was conducted to determine the recycling, waste minimization, and waste treatment methods used in the commercial sector that might find application in SRM production. Manufacturers, trade organizations, and professional associations were also contacted. Waste minimization efforts for current processes and replacement technologies, which might reduce the amount or severity of the wastes generated in SRM production, were investigated. An overview of the results of this effort are presented in this paper.
NASA Astrophysics Data System (ADS)
Starikov, A. I.; Nekrasov, R. Yu; Teploukhov, O. J.; Soloviev, I. V.; Narikov, K. A.
2016-10-01
Manufactures, machinery and equipment improve of constructively as science advances and technology, and requirements are improving of quality and longevity. That is, the requirements for surface quality and precision manufacturing, oil and gas equipment parts are constantly increasing. Production of oil and gas engineering products on modern machine tools with computer numerical control - is a complex synthesis of technical and electrical equipment parts, as well as the processing procedure. Technical machine part wears during operation and in the electrical part are accumulated mathematical errors. Thus, the above-mentioned disadvantages of any of the following parts of metalworking equipment affect the manufacturing process of products in general, and as a result lead to the flaw.
Tapia, Gustavo; Khairallah, Saad A.; Matthews, Manyalibo J.; ...
2017-09-22
Here, Laser Powder-Bed Fusion (L-PBF) metal-based additive manufacturing (AM) is complex and not fully understood. Successful processing for one material, might not necessarily apply to a different material. This paper describes a workflow process that aims at creating a material data sheet standard that describes regimes where the process can be expected to be robust. The procedure consists of building a Gaussian process-based surrogate model of the L-PBF process that predicts melt pool depth in single-track experiments given a laser power, scan speed, and laser beam size combination. The predictions are then mapped onto a power versus scan speed diagrammore » delimiting the conduction from the keyhole melting controlled regimes. This statistical framework is shown to be robust even for cases where experimental training data might be suboptimal in quality, if appropriate physics-based filters are applied. Additionally, it is demonstrated that a high-fidelity simulation model of L-PBF can equally be successfully used for building a surrogate model, which is beneficial since simulations are getting more efficient and are more practical to study the response of different materials, than to re-tool an AM machine for new material powder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tapia, Gustavo; Khairallah, Saad A.; Matthews, Manyalibo J.
Here, Laser Powder-Bed Fusion (L-PBF) metal-based additive manufacturing (AM) is complex and not fully understood. Successful processing for one material, might not necessarily apply to a different material. This paper describes a workflow process that aims at creating a material data sheet standard that describes regimes where the process can be expected to be robust. The procedure consists of building a Gaussian process-based surrogate model of the L-PBF process that predicts melt pool depth in single-track experiments given a laser power, scan speed, and laser beam size combination. The predictions are then mapped onto a power versus scan speed diagrammore » delimiting the conduction from the keyhole melting controlled regimes. This statistical framework is shown to be robust even for cases where experimental training data might be suboptimal in quality, if appropriate physics-based filters are applied. Additionally, it is demonstrated that a high-fidelity simulation model of L-PBF can equally be successfully used for building a surrogate model, which is beneficial since simulations are getting more efficient and are more practical to study the response of different materials, than to re-tool an AM machine for new material powder.« less
NASA Astrophysics Data System (ADS)
Ozkat, Erkan Caner; Franciosa, Pasquale; Ceglarek, Dariusz
2017-08-01
Remote laser welding technology offers opportunities for high production throughput at a competitive cost. However, the remote laser welding process of zinc-coated sheet metal parts in lap joint configuration poses a challenge due to the difference between the melting temperature of the steel (∼1500 °C) and the vapourizing temperature of the zinc (∼907 °C). In fact, the zinc layer at the faying surface is vapourized and the vapour might be trapped within the melting pool leading to weld defects. Various solutions have been proposed to overcome this problem over the years. Among them, laser dimpling has been adopted by manufacturers because of its flexibility and effectiveness along with its cost advantages. In essence, the dimple works as a spacer between the two sheets in lap joint and allows the zinc vapour escape during welding process, thereby preventing weld defects. However, there is a lack of comprehensive characterization of dimpling process for effective implementation in real manufacturing system taking into consideration inherent changes in variability of process parameters. This paper introduces a methodology to develop (i) surrogate model for dimpling process characterization considering multiple-inputs (i.e. key control characteristics) and multiple-outputs (i.e. key performance indicators) system by conducting physical experimentation and using multivariate adaptive regression splines; (ii) process capability space (Cp-Space) based on the developed surrogate model that allows the estimation of a desired process fallout rate in the case of violation of process requirements in the presence of stochastic variation; and, (iii) selection and optimization of the process parameters based on the process capability space. The proposed methodology provides a unique capability to: (i) simulate the effect of process variation as generated by manufacturing process; (ii) model quality requirements with multiple and coupled quality requirements; and (iii) optimize process parameters under competing quality requirements such as maximizing the dimple height while minimizing the dimple lower surface area.
Rouiller, Yolande; Solacroup, Thomas; Deparis, Véronique; Barbafieri, Marco; Gleixner, Ralf; Broly, Hervé; Eon-Duval, Alex
2012-06-01
The production bioreactor step of an Fc-Fusion protein manufacturing cell culture process was characterized following Quality by Design principles. Using scientific knowledge derived from the literature and process knowledge gathered during development studies and manufacturing to support clinical trials, potential critical and key process parameters with a possible impact on product quality and process performance, respectively, were determined during a risk assessment exercise. The identified process parameters were evaluated using a design of experiment approach. The regression models generated from the data allowed characterizing the impact of the identified process parameters on quality attributes. The main parameters having an impact on product titer were pH and dissolved oxygen, while those having the highest impact on process- and product-related impurities and variants were pH and culture duration. The models derived from characterization studies were used to define the cell culture process design space. The design space limits were set in such a way as to ensure that the drug substance material would consistently have the desired quality. Copyright © 2012 Elsevier B.V. All rights reserved.
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML)
Lechevalier, D.; Ak, R.; Ferguson, M.; Law, K. H.; Lee, Y.-T. T.; Rachuri, S.
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain. PMID:29202125
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).
Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.
Janice K. Wiedenbeck; Philip A. Araman
1995-01-01
We've been telling the wood industry about our process simulation modeling research and development work for several years. We've demonstrated our crosscut-first and rip-first rough mill simulation and animation models. Weâve advised companies on how they could use simulation modeling to help make critically important, pending decisions related to mill layout...
15 CFR 400.33 - Restrictions on manufacturing and processing activity.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a zone... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...
21 CFR 1005.25 - Service of process on manufacturers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25....25 Service of process on manufacturers. (a) Every manufacturer of electronic products, prior to... United States as the manufacturer's agent upon whom service of all processes, notices, orders, decisions...
Selecting the process variables for filament winding
NASA Technical Reports Server (NTRS)
Calius, E.; Springer, G. S.
1986-01-01
A model is described which can be used to determine the appropriate values of the process variables for filament winding cylinders. The process variables which can be selected by the model include the winding speed, fiber tension, initial resin degree of cure, and the temperatures applied during winding, curing, and post-curing. The effects of these process variables on the properties of the cylinder during and after manufacture are illustrated by a numerical example.
Gaipa, Giuseppe; Introna, Martino; Golay, Josee; Nolli, Maria Luisa; Vallanti, Giuliana; Parati, Eugenio; Giordano, Rosaria; Romagnoli, Luca; Melazzini, Mario; Biondi, Andrea; Biagi, Ettore
2016-04-01
On November 10, 2014, the representatives of all six certified Good Manufacturing Practices (GMP) cell factories operating in the Lombardy Region of Italy convened a 1-day workshop in Milan titled "Management Models for the Development And Sustainability of Cell Factories: Public-Private Partnership?" The speakers and panelists addressed not only the many scientific, technological and cultural challenges faced by Lombardy Cell Factories, but also the potential impact of advanced therapy medicinal products (ATMPs) on public health and the role played by translational research in this process. Future perspectives for research and development (R&D) and manufacturing processes in the field of regenerative medicine were discussed as well. This report summarizes the most important issues raised by the workshop participants with particular emphasis on strengths and limitations of the R&D and manufacturing processes for innovative therapeutics in Lombardy and what can be improved in this context while maintaining GMP standards. The participants highlighted several strategies to translate patient-specific advanced therapeutics into scaled manufacturing products for clinical application. These included (i) the development of a synergistic interaction between public and private institutions, (ii) better integration with Italian regulatory agencies and (iii) the creation of a network among Lombardy cell factories and other Italian and European institutions. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.
McCue, Justin; Kshirsagar, Rashmi; Selvitelli, Keith; Lu, Qi; Zhang, Mingxuan; Mei, Baisong; Peters, Robert; Pierce, Glenn F; Dumont, Jennifer; Raso, Stephen; Reichert, Heidi
2015-07-01
Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc. Copyright © 2015 Biogen. Published by Elsevier Ltd.. All rights reserved.
DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W
2010-03-01
KinetiSol Dispersing (KSD) is a novel high energy manufacturing process investigated here for the production of pharmaceutical solid dispersions. Solid dispersions of itraconazole (ITZ) and hypromellose were produced by KSD and compared to identical formulations produced by hot melt extrusion (HME). Materials were characterized for solid state properties by modulated differential scanning calorimetry and X-ray diffraction. Dissolution behavior was studied under supersaturated conditions. Oral bioavailability was determined using a Sprague-Dawley rat model. Results showed that KSD was able to produce amorphous solid dispersions in under 15 s while production by HME required over 300 s. Dispersions produced by KSD exhibited single phase solid state behavior indicated by a single glass transition temperature (T(g)) whereas compositions produced by HME exhibited two T(g)s. Increased dissolution rates for compositions manufactured by KSD were also observed compared to HME processed material. Near complete supersaturation was observed for solid dispersions produced by either manufacturing processes. Oral bioavailability from both processes showed enhanced AUC compared to crystalline ITZ. Based on the results presented from this study, KSD was shown to be a viable manufacturing process for the production of pharmaceutical solid dispersions, providing benefits over conventional techniques including: enhanced mixing for improved homogeneity and reduced processing times. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Petit, H. A.; Irassar, E. F.; Barbosa, M. R.
2018-01-01
Manufactured sands are particulate materials obtained as by product of rock crushing. Particle sizes in the sand can be as high as 6 mm and as low as a few microns. The concrete industry has been increasingly using these sands as fine aggregates to replace natural sands. The main shortcoming is the excess of particles smaller than <0.075 mm (Dust). This problem has been traditionally solved by a washing process. Air classification is being studied to replace the washing process and avoid the use of water. The complex classification process can only been understood with the aid of CFD-DEM simulations. This paper evaluates the applicability of a cross-flow air classifier to reduce the amount of dust in manufactured sands. Computational fluid dynamics (CFD) and discrete element modelling (DEM) were used for the assessment. Results show that the correct classification set up improves the size distribution of the raw materials. The cross-flow air classification is found to be influenced by the particle size distribution and the turbulence inside the chamber. The classifier can be re-designed to work at low inlet velocities to produce manufactured sand for the concrete industry.
Modelling of Robotized Manufacturing Systems Using MultiAgent Formalism
NASA Astrophysics Data System (ADS)
Foit, K.; Gwiazda, A.; Banaś, W.
2016-08-01
The evolution of manufacturing systems has greatly accelerated due to development of sophisticated control systems. On top of determined, one way production flow the need of decision making has arisen as a result of growing product range that are manufactured simultaneously, using the same resources. On the other hand, the intelligent flow control could address the “bottleneck” problem caused by the machine failure. This sort of manufacturing systems uses advanced control algorithms that are introduced by the use of logic controllers. The complex algorithms used in the control systems requires to employ appropriate methods during the modelling process, like the agent-based one, which is the subject of this paper. The concept of an agent is derived from the object-based methodology of modelling, so it meets the requirements of representing the physical properties of the machines as well as the logical form of control systems. Each agent has a high level of autonomy and could be considered separately. The multi-agent system consists of minimum two agents that can interact and modify the environment, where they act. This may lead to the creation of self-organizing structure, what could be interesting feature during design and test of manufacturing system.
Quality management of manufacturing process based on manufacturing execution system
NASA Astrophysics Data System (ADS)
Zhang, Jian; Jiang, Yang; Jiang, Weizhuo
2017-04-01
Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.
Kona, Ravikanth; Fahmy, Raafat M; Claycamp, Gregg; Polli, James E; Martinez, Marilyn; Hoag, Stephen W
2015-02-01
The objective of this study is to use near-infrared spectroscopy (NIRS) coupled with multivariate chemometric models to monitor granule and tablet quality attributes in the formulation development and manufacturing of ciprofloxacin hydrochloride (CIP) immediate release tablets. Critical roller compaction process parameters, compression force (CFt), and formulation variables identified from our earlier studies were evaluated in more detail. Multivariate principal component analysis (PCA) and partial least square (PLS) models were developed during the development stage and used as a control tool to predict the quality of granules and tablets. Validated models were used to monitor and control batches manufactured at different sites to assess their robustness to change. The results showed that roll pressure (RP) and CFt played a critical role in the quality of the granules and the finished product within the range tested. Replacing binder source did not statistically influence the quality attributes of the granules and tablets. However, lubricant type has significantly impacted the granule size. Blend uniformity, crushing force, disintegration time during the manufacturing was predicted using validated PLS regression models with acceptable standard error of prediction (SEP) values, whereas the models resulted in higher SEP for batches obtained from different manufacturing site. From this study, we were able to identify critical factors which could impact the quality attributes of the CIP IR tablets. In summary, we demonstrated the ability of near-infrared spectroscopy coupled with chemometrics as a powerful tool to monitor critical quality attributes (CQA) identified during formulation development.
NASA Astrophysics Data System (ADS)
Jaya Christiyan, K. G.; Chandrasekhar, U.; Mathivanan, N. Rajesh; Venkateswarlu, K.
2018-02-01
A 3D printing was successfully used to fabricate samples of Polylactic Acid (PLA). Processing parameters such as Lay-up speed, Lay-up thickness, and printing nozzle were varied. All samples were tested for flexural strength using three point load test. A statistical mathematical model was developed to correlate the processing parameters with flexural strength. The result clearly demonstrated that the lay-up thickness and nozzle diameter influenced flexural strength significantly, whereas lay-up speed hardly influenced the flexural strength.
NASA Astrophysics Data System (ADS)
Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves
2016-12-01
Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.
Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan
2016-01-01
This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.
Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan
2016-01-01
This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems. PMID:27907163
Barone, Sandro; Neri, Paolo; Paoli, Alessandro; Razionale, Armando Viviano
2018-01-01
Orthodontic treatments are usually performed using fixed brackets or removable oral appliances, which are traditionally made from alginate impressions and wax registrations. Among removable devices, eruption guidance appliances are used for early orthodontic treatments in order to intercept and prevent malocclusion problems. Commercially available eruption guidance appliances, however, are symmetric devices produced using a few standard sizes. For this reason, they are not able to meet all the specific patient's needs since the actual dental anatomies present various geometries and asymmetric conditions. In this article, a computer-aided design-based methodology for the design and manufacturing of a patient-specific eruption guidance appliances is presented. The proposed approach is based on the digitalization of several steps of the overall process: from the digital reconstruction of patients' anatomies to the manufacturing of customized appliances. A finite element model has been developed to evaluate the temporomandibular joint disks stress level caused by using symmetric eruption guidance appliances with different teeth misalignment conditions. The developed model can then be used to guide the design of a patient-specific appliance with the aim at reducing the patient discomfort. At this purpose, two different customization levels are proposed in order to face both arches and single tooth misalignment issues. A low-cost manufacturing process, based on an additive manufacturing technique, is finally presented and discussed.
Knowledge Reasoning with Semantic Data for Real-Time Data Processing in Smart Factory
Wang, Shiyong; Li, Di; Liu, Chengliang
2018-01-01
The application of high-bandwidth networks and cloud computing in manufacturing systems will be followed by mass data. Industrial data analysis plays important roles in condition monitoring, performance optimization, flexibility, and transparency of the manufacturing system. However, the currently existing architectures are mainly for offline data analysis, not suitable for real-time data processing. In this paper, we first define the smart factory as a cloud-assisted and self-organized manufacturing system in which physical entities such as machines, conveyors, and products organize production through intelligent negotiation and the cloud supervises this self-organized process for fault detection and troubleshooting based on data analysis. Then, we propose a scheme to integrate knowledge reasoning and semantic data where the reasoning engine processes the ontology model with real time semantic data coming from the production process. Based on these ideas, we build a benchmarking system for smart candy packing application that supports direct consumer customization and flexible hybrid production, and the data are collected and processed in real time for fault diagnosis and statistical analysis. PMID:29415444
Application of Twin Screw Extrusion in the Manufacture of Cocrystals, Part I: Four Case Studies
Daurio, Dominick; Medina, Cesar; Saw, Robert; Nagapudi, Karthik; Alvarez-Núñez, Fernando
2011-01-01
The application of twin screw extrusion (TSE) as a scalable and green process for the manufacture of cocrystals was investigated. Four model cocrystal forming systems, Caffeine-Oxalic acid, Nicotinamide-trans cinnamic acid, Carbamazepine-Saccharin, and Theophylline-Citric acid, were selected for the study. The parameters of the extrusion process that influenced cocrystal formation were examined. TSE was found to be an effective method to make cocrystals for all four systems studied. It was demonstrated that temperature and extent of mixing in the extruder were the primary process parameters that influenced extent of conversion to the cocrystal in neat TSE experiments. In addition to neat extrusion, liquid-assisted TSE was also demonstrated for the first time as a viable process for making cocrystals. Notably, the use of catalytic amount of benign solvents led to a lowering of processing temperatures required to form the cocrystal in the extruder. TSE should be considered as an efficient, scalable, and environmentally friendly process for the manufacture of cocrystals with little to no solvent requirements. PMID:24310598
Development and manufacture of visor for helmet-mounted display
NASA Astrophysics Data System (ADS)
Krevor, David H.; McNelly, Gregg; Skubon, John; Speirs, Robert
2004-01-01
The manufacturing design and process development for the Visor for the JHMCS (Joint Helmet Mounted Cueing System) are discussed. The JHMCS system is a Helmet Mounted Display (HMD) system currently flying on the F-15, F-16 and F/A-18 aircraft. The Visor manufacturing processes are essential to both system performance and economy. The Visor functions both as the system optical combiner and personal protective equipment for the pilot. The Visor material is optical polycarbonate. For a military HMD system, the mechanical and environmental properties of the Visor are as necessary as the optical properties. The visor must meet stringent dimensional requirements to assure adequate system optical performance. Injection molding can provide dimensional fidelity to the requirements, if done properly. Concurrent design of the visor and the tool (i.e., the injection mold) is essential. The concurrent design necessarily considers manufacturing operations and the use environment of the Visor. Computer modeling of the molding process is a necessary input to the mold design. With proper attention to product design and tool development, it is possible to improve upon published standard dimensional tolerances for molded polycarbonate articles.
Hierarchical modeling of professional skills in the field of castings manufacture engineering
NASA Astrophysics Data System (ADS)
Samuilă, V.; Soporan, V. F.; Conțiu, G.; Pădurețu, S.; Lehene, T. R.; Vescan, M. M.
2017-06-01
The paper presents a method of hierarchizing professional skills in the manufacturing of molded parts (castings) by using and adapting the FAHP algorithm (Fuzzy Analitical Hierarchy Process). Assessments are made regarding the peculiarities of the professional training process, specifying the activities to be carried out and the competences necessary for their development. The contribution of the design of the method extends to the design of the hierarchy system architecture, the linguistic determination of the importance of each characteristic, the construction of the fuzzy ordering matrices for each stage of the process, the determination of the share of the characteristics for each hierarchy step and establishing the hierarchy of the characteristics taking into account the influences of the others, grouped at the level of the steps and within the global matrix. The research carried out represents the support for generating an instrument of hierarchy of professional competencies that can be used in various professional and institutional contexts. Case study on the hierarchy of professional skills in the manufacturing of molded parts engineering. Keywords: Materials engineering, castings manufacture professional skills, hierarchy, AHP method, standard occupational curriculum.
3D printed fluidics with embedded analytic functionality for automated reaction optimisation
Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D
2017-01-01
Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis. PMID:28228852
Validation of Reverse-Engineered and Additive-Manufactured Microsurgical Instrument Prototype.
Singh, Ramandeep; Suri, Ashish; Anand, Sneh; Baby, Britty
2016-12-01
With advancements in imaging techniques, neurosurgical procedures are becoming highly precise and minimally invasive, thus demanding development of new ergonomically aesthetic instruments. Conventionally, neurosurgical instruments are manufactured using subtractive manufacturing methods. Such a process is complex, time-consuming, and impractical for prototype development and validation of new designs. Therefore, an alternative design process has been used utilizing blue light scanning, computer-aided designing, and additive manufacturing direct metal laser sintering (DMLS) for microsurgical instrument prototype development. Deviations of DMLS-fabricated instrument were studied by superimposing scan data of fabricated instrument with the computer-aided designing model. Content and concurrent validity of the fabricated prototypes was done by a group of 15 neurosurgeons by performing sciatic nerve anastomosis in small laboratory animals. Comparative scoring was obtained for the control and study instrument. T test was applied to the individual parameters and P values for force (P < .0001) and surface roughness (P < .01) were found to be statistically significant. These 2 parameters were further analyzed using objective measures. Results depicts that additive manufacturing by DMLS provides an effective method for prototype development. However, direct application of these additive-manufactured instruments in the operating room requires further validation. © The Author(s) 2016.
Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, P. A.
2011-10-20
This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At themore » time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.« less
Stock modeling for railroad locomotives and marine vessels
DOT National Transportation Integrated Search
2004-09-01
Stock modeling is the process of estimating the number of pieces of equipment in service in a given year manufactured in each of all relevant prior years. This type of modeling is important for, among other things, estimating the rate at which new te...
An Overview of Cloud Implementation in the Manufacturing Process Life Cycle
NASA Astrophysics Data System (ADS)
Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed
2017-08-01
The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.
Intelligent Processing Equipment Research Supported by the National Science Foundation
NASA Technical Reports Server (NTRS)
Rao, Suren B.
1992-01-01
The research in progress on processes, workstations, and systems has the goal of developing a high level of understanding of the issues involved. This will enable the incorporation of a level of intelligence that will allow the creation of autonomous manufacturing systems that operate in an optimum manner, under a wide range of conditions. The emphasis of the research has been on the development of highly productive and flexible techniques to address current and future problems in manufacturing and processing. Several of these projects have resulted in well-defined and established models that can now be implemented in the application arena in the next few years.
Context-based virtual metrology
NASA Astrophysics Data System (ADS)
Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten; Shifrin, Michael
2018-03-01
Hybrid and data feed forward methodologies are well established for advanced optical process control solutions in highvolume semiconductor manufacturing. Appropriate information from previous measurements, transferred into advanced optical model(s) at following step(s), provides enhanced accuracy and exactness of the measured topographic (thicknesses, critical dimensions, etc.) and material parameters. In some cases, hybrid or feed-forward data are missed or invalid for dies or for a whole wafer. We focus on approaches of virtual metrology to re-create hybrid or feed-forward data inputs in high-volume manufacturing. We discuss missing data inputs reconstruction which is based on various interpolation and extrapolation schemes and uses information about wafer's process history. Moreover, we demonstrate data reconstruction approach based on machine learning techniques utilizing optical model and measured spectra. And finally, we investigate metrics that allow one to assess error margin of virtual data input.
Cheng, Yi-Yu; Qian, Zhong-Zhi; Zhang, Bo-Li
2017-01-01
The current situation, bottleneck problems and severe challenges in quality control technology of Chinese Medicine (CM) are briefly described. It is presented to change the phenomenon related to the post-test as the main means and contempt for process control in drug regulation, reverse the situation of neglecting the development of process control and management technology for pharmaceutical manufacture and reconstruct the technological system for quality control of CM products. The regulation and technology system based on process control and management for controlling CM quality should be established to solve weighty realistic problems of CM industry from the root causes, including backwardness of quality control technology, weakness of quality risk control measures, poor reputation of product quality and so on. By this way, the obstacles from poor controllability of CM product quality could be broken. Concentrating on those difficult problems and weak links in the technical field of CM quality control, it is proposed to build CMC (Chemistry, Manufacturing and Controls) regulation for CM products with Chinese characteristics and promote the regulation international recognition as soon as possible. The CMC technical framework, which is clinical efficacy-oriented, manufacturing manner-centered and process control-focused, was designed. To address the clinical characteristics of traditional Chinese medicine (TCM) and the production feature of CM manufacture, it is suggested to establish quality control engineering for CM manufacturing by integrating pharmaceutical analysis, TCM chemistry, TCM pharmacology, pharmaceutical engineering, control engineering, management engineering and other disciplines. Further, a theoretical model of quality control engineering for CM manufacturing and the methodology of digital pharmaceutical engineering are proposed. A technology pathway for promoting CM standard and realizing the strategic goal of CM internationalization is elaborated. Copyright© by the Chinese Pharmaceutical Association.
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacture and processing in the special production area. All manufacturing, processing, and use operations... shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part... production area, the ambient air concentration of the new chemical substance during manufacture, processing...
Additive Manufacturing Techniques for the Reconstruction of 3D Fetal Faces
Citro, Daniela; Padula, Francesco; Motyl, Barbara; Marcolin, Federica; Calì, Michele
2017-01-01
This paper deals with additive manufacturing techniques for the creation of 3D fetal face models starting from routine 3D ultrasound data. In particular, two distinct themes are addressed. First, a method for processing and building 3D models based on the use of medical image processing techniques is proposed. Second, the preliminary results of a questionnaire distributed to future parents consider the use of these reconstructions both from an emotional and an affective point of view. In particular, the study focuses on the enhancement of the perception of maternity or paternity and the improvement in the relationship between parents and physicians in case of fetal malformations, in particular facial or cleft lip diseases. PMID:29410600
NASA Astrophysics Data System (ADS)
Nejad, Hossein Tehrani Nik; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Process planning and scheduling are important manufacturing planning activities which deal with resource utilization and time span of manufacturing operations. The process plans and the schedules generated in the planning phase shall be modified in the execution phase due to the disturbances in the manufacturing systems. This paper deals with a multi-agent architecture of an integrated and dynamic system for process planning and scheduling for multi jobs. A negotiation protocol is discussed, in this paper, to generate the process plans and the schedules of the manufacturing resources and the individual jobs, dynamically and incrementally, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans and schedules are searched and generated to cope with both the dynamic status and the disturbances of the manufacturing systems. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans and schedules in the dynamic manufacturing environment. A simulation software has been developed to carry out case studies, aimed at verifying the performance of the proposed multi-agent architecture.
NASA Astrophysics Data System (ADS)
Zimmerling, Clemens; Dörr, Dominik; Henning, Frank; Kärger, Luise
2018-05-01
Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is considered to facilitate a lean and economic part and process design under consideration of manufacturing effects.
Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering
Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.
2015-01-01
A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972
EUV mask manufacturing readiness in the merchant mask industry
NASA Astrophysics Data System (ADS)
Green, Michael; Choi, Yohan; Ham, Young; Kamberian, Henry; Progler, Chris; Tseng, Shih-En; Chiou, Tsann-Bim; Miyazaki, Junji; Lammers, Ad; Chen, Alek
2017-10-01
As nodes progress into the 7nm and below regime, extreme ultraviolet lithography (EUVL) becomes critical for all industry participants interested in remaining at the leading edge. One key cost driver for EUV in the supply chain is the reflective EUV mask. As of today, the relatively few end users of EUV consist primarily of integrated device manufactures (IDMs) and foundries that have internal (captive) mask manufacturing capability. At the same time, strong and early participation in EUV by the merchant mask industry should bring value to these chip makers, aiding the wide-scale adoption of EUV in the future. For this, merchants need access to high quality, representative test vehicles to develop and validate their own processes. This business circumstance provides the motivation for merchants to form Joint Development Partnerships (JDPs) with IDMs, foundries, Original Equipment Manufacturers (OEMs) and other members of the EUV supplier ecosystem that leverage complementary strengths. In this paper, we will show how, through a collaborative supplier JDP model between a merchant and OEM, a novel, test chip driven strategy is applied to guide and validate mask level process development. We demonstrate how an EUV test vehicle (TV) is generated for mask process characterization in advance of receiving chip maker-specific designs. We utilize the TV to carry out mask process "stress testing" to define process boundary conditions which can be used to create Mask Rule Check (MRC) rules as well as serve as baseline conditions for future process improvement. We utilize Advanced Mask Characterization (AMC) techniques to understand process capability on designs of varying complexity that include EUV OPC models with and without sub-resolution assist features (SRAFs). Through these collaborations, we demonstrate ways to develop EUV processes and reduce implementation risks for eventual mass production. By reducing these risks, we hope to expand access to EUV mask capability for the broadest community possible as the technology is implemented first within and then beyond the initial early adopters.
NASA Astrophysics Data System (ADS)
Bellini, Anna
Customer-driven product customization and continued demand for cost and time savings have generated a renewed interest in agile manufacturing based on improvements on Rapid Prototyping (RP) technologies. The advantages of RP technologies are: (1) ability to shorten the product design and development time, (2) suitability for automation and decrease in the level of human intervention, (3) ability to build many geometrically complex shapes. A shift from "prototyping" to "manufacturing" necessitates the following improvements: (1) Flexibility in choice of materials; (2) Part integrity and built-in characteristics to meet performance requirements; (3) Dimensional stability and tolerances; (4) Improved surface finish. A project funded by ONR has been undertaken to develop an agile manufacturing technology for fabrication of ceramic and multi-component parts to meet various needs of the Navy, such as transducers, etc. The project is based on adaptation of a layered manufacturing concept since the program required that the new technology be developed based on a commercially available RP technology. Among various RP technologies available today, Fused Deposition Modeling (FDM) has been identified as the focus of this research because of its potential versatility in the choice of materials and deposition configuration. This innovative approach allows for designing and implementing highly complex internal architectures into parts through deposition of different materials in a variety of configurations in such a way that the finished product exhibit characteristics to meet the performance requirements. This implies that, in principle, one can tailor-make the assemble of materials and structures as per specifications of an optimum design. The program objectives can be achieved only through accurate process modeling and modeling of material behavior. Oftentimes, process modeling is based on some type of computational approach where as modeling of material behavior is based on extensive experimental investigations. Studies are conducted in the following categories: (1) Flow modeling during extrusion and deposition; (2) Thermal modeling; (3) Flow control during deposition; (4) Product characterization and property determination for dimensional analysis; (5) Development of a novel technology based on a mini-extrusion system. Studies in each of these stages have involved experimental as well as analytical approaches to develop a comprehensive modeling.
The practice of quality-associated costing: application to transfusion manufacturing processes.
Trenchard, P M; Dixon, R
1997-01-01
This article applies the new method of quality-associated costing (QAC) to the mixture of processes that create red cell and plasma products from whole blood donations. The article compares QAC with two commonly encountered but arbitrary models and illustrates the invalidity of clinical cost-benefit analysis based on these models. The first, an "isolated" cost model, seeks to allocate each whole process cost to only one product class. The other is a "shared" cost model, and it seeks to allocate an approximately equal share of all process costs to all associated products.
NASA Astrophysics Data System (ADS)
Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.; Pashaev, B. Y.
2016-06-01
The aim of the work was to determine the possible application of additive manufacturing technology during the manufacturing process as close as possible to reality of medical simulator-trainers. In work were used some additive manufacturing technologies: selective laser sintering (SLS), fused deposition modeling (FDM), binder Jetting. As a result, a prototype of simulator-trainer of the human head operating field, which based on the CT real patient, was manufactured and conducted its tests. It was found that structure, which is obtained with the use of 3D-printers ProJet 160, most appropriate and closest to the real properties of the bone.
Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems
NASA Astrophysics Data System (ADS)
Ciufudean, Calin; Filote, Constantin
In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.
NASA Astrophysics Data System (ADS)
Schomer, Laura; Liewald, Mathias; Riedmüller, Kim Rouven
2018-05-01
Metal-ceramic Interpenetrating Phase Composites (IPC) belong to a special subcategory of composite materials and reveal enhanced properties compared to conventional composite materials. Currently, IPC are produced by infiltration of a ceramic open-pore body with liquid metal applying high pressure and I or high temperature to avoid residual porosity. However, these IPC are not able to gain their complete potential, because of structural damages and interface reactions occurring during the manufacturing process. Compared to this, the manufacturing of IPC using the semi-solid forming technology offers great perspectives due to relative low processing temperatures and reduced mechanical pressure. In this context, this paper is focusing on numerical investigations conducted by using the FLOW-3D software for gaining a deeper understanding of the infiltration of open-pore bodies with semi-solid materials. For flow simulation analysis, a geometric model and different porous media drag models have been used. They have been adjusted and compared to get a precise description of the infiltration process. Based on these fundamental numerical investigations, this paper also shows numerical investigations that were used for basically designing a semi-solid forming tool. Thereby, the development of the flow front and the pressure during the infiltration represent the basis of the evaluation. The use of an open and closed tool cavity combined with various geometries of the upper die shows different results relating to these evaluation arguments. Furthermore, different overflows were designed and its effects on the pressure at the end of the infiltration process were investigated. Thus, this paper provides a general guideline for a tool design for manufacturing of metal-ceramic IPC using semi-solid forming.
NASA Astrophysics Data System (ADS)
Rosyidi, C. N.; Jauhari, WA; Suhardi, B.; Hamada, K.
2016-02-01
Quality improvement must be performed in a company to maintain its product competitiveness in the market. The goal of such improvement is to increase the customer satisfaction and the profitability of the company. In current practice, a company needs several suppliers to provide the components in assembly process of a final product. Hence quality improvement of the final product must involve the suppliers. In this paper, an optimization model to allocate the variance reduction is developed. Variation reduction is an important term in quality improvement for both manufacturer and suppliers. To improve suppliers’ components quality, the manufacturer must invest an amount of their financial resources in learning process of the suppliers. The objective function of the model is to minimize the total cost consists of investment cost, and quality costs for both internal and external quality costs. The Learning curve will determine how the employee of the suppliers will respond to the learning processes in reducing the variance of the component.
NASA Astrophysics Data System (ADS)
Amza, Catalin Gheorghe; Niţoi, Dan Florin
2018-02-01
3D printers are of recent history, but with an extremely rapid evolution both in technology and hardware involved. At present excellent performances are reached in applications such as 3D printing of various Acrylonitrile butadiene styrene (ABS) plastic parts for house building using Fused Deposition Modelling technology. Nevertheless, the thermic and mechanic processes that appear when manufacturing such plastic components are quite complex. This aspect is very important, especially when one wants to optimize the manufacturing of parts with certain geometrical complexity. The Finite Element Analysis/Modelling (FEA/FEM) is among the few methods that can study the thermic transfer processes and shape modifications that can appear due to non-seamar behavior that takes place when the ABS plastic material is cooling down. The current papers present such an analysis when simulating the deposition of several strings of materials. A thermic analysis is made followed by a study of deformations that appear when the structure cools down.
Adapting viral safety assurance strategies to continuous processing of biological products.
Johnson, Sarah A; Brown, Matthew R; Lute, Scott C; Brorson, Kurt A
2017-01-01
There has been a recent drive in commercial large-scale production of biotechnology products to convert current batch mode processing to continuous processing manufacturing. There have been reports of model systems capable of adapting and linking upstream and downstream technologies into a continuous manufacturing pipeline. However, in many of these proposed continuous processing model systems, viral safety has not been comprehensively addressed. Viral safety and detection is a highly important and often expensive regulatory requirement for any new biological product. To ensure success in the adaption of continuous processing to large-scale production, there is a need to consider the development of approaches that allow for seamless incorporation of viral testing and clearance/inactivation methods. In this review, we outline potential strategies to apply current viral testing and clearance/inactivation technologies to continuous processing, as well as modifications of existing unit operations to ensure the successful integration of viral clearance into the continuous processing of biological products. Biotechnol. Bioeng. 2017;114: 21-32. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule.
Smith, Derrick M; Kapoor, Yash; Klinzing, Gerard R; Procopio, Adam T
2018-06-10
Fused deposition modeling (FDM) 3D printing (3DP) has a potential to change how we envision manufacturing in the pharmaceutical industry. A more common utilization for FDM 3DP is to build upon existing hot melt extrusion (HME) technology where the drug is dispersed in the polymer matrix. However, reliable manufacturing of drug-containing filaments remains a challenge along with the limitation of active ingredients which can sustain the processing risks involved in the HME process. To circumvent this obstacle, a single step FDM 3DP process was developed to manufacture thin-walled drug-free capsules which can be filled with dry or liquid drug product formulations. Drug release from these systems is governed by the combined dissolution of the FDM capsule 'shell' and the dosage form encapsulated in these shells. To prepare the shells, the 3D printer files (extension '.gcode') were modified by creating discrete zones, so-called 'zoning process', with individual print parameters. Capsules printed without the zoning process resulted in macroscopic print defects and holes. X-ray computed tomography, finite element analysis and mechanical testing were used to guide the zoning process and printing parameters in order to manufacture consistent and robust capsule shell geometries. Additionally, dose consistencies of drug containing liquid formulations were investigated in this work. Copyright © 2018 Elsevier B.V. All rights reserved.
Schiek, Richard [Albuquerque, NM
2006-06-20
A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.
NASA Astrophysics Data System (ADS)
Zhu, Feng; Macdonald, Niall; Skommer, Joanna; Wlodkowic, Donald
2015-06-01
Current microfabrication methods are often restricted to two-dimensional (2D) or two and a half dimensional (2.5D) structures. Those fabrication issues can be potentially addressed by emerging additive manufacturing technologies. Despite rapid growth of additive manufacturing technologies in tissue engineering, microfluidics has seen relatively little developments with regards to adopting 3D printing for rapid fabrication of complex chip-based devices. This has been due to two major factors: lack of sufficient resolution of current rapid-prototyping methods (usually >100 μm ) and optical transparency of polymers to allow in vitro imaging of specimens. We postulate that adopting innovative fabrication processes can provide effective solutions for prototyping and manufacturing of chip-based devices with high-aspect ratios (i.e. above ration of 20:1). This work provides a comprehensive investigation of commercially available additive manufacturing technologies as an alternative for rapid prototyping of complex monolithic Lab-on-a-Chip devices for biological applications. We explored both multi-jet modelling (MJM) and several stereolithography (SLA) processes with five different 3D printing resins. Compared with other rapid prototyping technologies such as PDMS soft lithography and infrared laser micromachining, we demonstrated that selected SLA technologies had superior resolution and feature quality. We also for the first time optimised the post-processing protocols and demonstrated polymer features under scanning electronic microscope (SEM). Finally we demonstrate that selected SLA polymers have optical properties enabling high-resolution biological imaging. A caution should be, however, exercised as more work is needed to develop fully bio-compatible and non-toxic polymer chemistries.
Infrared thermography of welding zones produced by polymer extrusion additive manufacturing.
Seppala, Jonathan E; Migler, Kalman D
2016-10-01
In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non-equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize infrared (IR) imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sublayers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 °C/s and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters.
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
Topology reconstruction for B-Rep modeling from 3D mesh in reverse engineering applications
NASA Astrophysics Data System (ADS)
Bénière, Roseline; Subsol, Gérard; Gesquière, Gilles; Le Breton, François; Puech, William
2012-03-01
Nowadays, most of the manufactured objects are designed using CAD (Computer-Aided Design) software. Nevertheless, for visualization, data exchange or manufacturing applications, the geometric model has to be discretized into a 3D mesh composed of a finite number of vertices and edges. But, in some cases, the initial model may be lost or unavailable. In other cases, the 3D discrete representation may be modified, for example after a numerical simulation, and does not correspond anymore to the initial model. A reverse engineering method is then required to reconstruct a 3D continuous representation from the discrete one. In previous work, we have presented a new approach for 3D geometric primitive extraction. In this paper, to complete our automatic and comprehensive reverse engineering process, we propose a method to construct the topology of the retrieved object. To reconstruct a B-Rep model, a new formalism is now introduced to define the adjacency relations. Then a new process is used to construct the boundaries of the object. The whole process is tested on 3D industrial meshes and bring a solution to recover B-Rep models.
Study and modeling of the ironing process on a multi-layered polymer coated low-carbon steel
NASA Astrophysics Data System (ADS)
Selles Canto, Miguel Angel
The ironing process is the most crucial step in the manufacture of cans. Sheet steel covered by three polymer layers can be used as the starting material, but this coating must neither break nor fail in any manner in order to be considered as a viable and effective alternative to traditional practice. During ironing, the deformations are severe and high pressures exist at the tool-workpiece interface. Thickness reductions inherent in ironing require a large amount of surface generation. Deterioration of the coating in this delicate operation might enable direct contact of the stored food or drink with the metal. As can be appreciated, the key to the use of polymer-coated steel sheets in the manufacture of cans lies in the survival of these layers during the ironing process. Another important issue is the roughness of the newly-generated surface, because it should be possible to decorate the can without any difficulty. Changing the traditional manufacture of metallic containers such as cans and using this new coated material permits great reduction in environmental contaminants produced as a result of avoiding the formation of Volatile Organic Compounds (VOCs) during the manufacture of the polymer layers. This reduction is even greater because of not using additional lubricants due to the self-lubricanting property of the solid polymer coating layers during the drawing process. These objectives, together with the improvement of the mechanical characteristics and the adhesion of the painting or decorative priming, are realized by the use of the proposed material. In the existing bibliography about ironing processes on coated materials, some authors propose the use of the Upper Bound Theorem for modeling the material behavior. The present research shows for the first time the modeling of the ironing process on a three-layer polymer coated material. In addition, it takes into account the cases in which successful ironing is produced and those in which ones the ironing is defective either by shaving or detachment of the upper layer of polymer. Arcelor-Mittal provided two similar materials, both consisting of a steel substrate coated by three polymer layers. They have been tested according to the theory of design of experiments, in order to determine the feasibility of their use in the manufacture of cans. An ironing process simulator has been designed and constructed that works under conditions similar to those in industry. Validation of the theoretically-generated models has been possible thanks to the use of the ironing simulator, providing results that show good agreement between the theoretical and real behaviors. Finally, after obtaining the different results from the theoretical and experimental work, they have been analyzed to determine the feasibility of using these materials for the manufacture of metal containers that need the ironing process. The information obtained from this analysis shows that, under certain conditions, it is perfectly possible to use one of these two materials for the proposed purpose, making the proposed goals possible. The die angle is the most critical variable among all the ones studied, and when it takes values greater than 7°, some of the coating polymer layers are damaged.
NASA Astrophysics Data System (ADS)
Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.
2018-03-01
Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.
Breakthrough Performance: Creating the Innovative Enterprise.
ERIC Educational Resources Information Center
Hanson, Diane; Bapst, Jerry
1998-01-01
Illustrates a new model for innovative enterprises by reviewing the process an instruments and control systems manufacturer used to implement changes in its corporate operating philosophy. Outlines the "Quantum Model": spheres of control, influence, interest, and UNs (unknown, unpredictable, uncontrollable, uncomfortable). Discusses…
NASA Astrophysics Data System (ADS)
Hall, Roger W.; Foster, Alistair; Herrmann Praturlon, Anja
2017-09-01
The Hot Forming and in-tool Quenching (HFQ®) process is a proven technique to enable complex shaped stampings to be manufactured from high strength aluminium. Its widespread uptake for high volume production will be maximised if it is able to wholly amortise the additional investment cost of this process compared to conventional deep drawing techniques. This paper discusses the use of three techniques to guide some of the development decisions taken during upscaling of the HFQ® process. Modelling of Process timing, Cost and Life-cycle impact were found to be effective tools to identify where development budget could be focused in order to be able to manufacture low cost panels of different sizes from many different alloys in a sustainable way. The results confirm that raw material cost, panel trimming, and artificial ageing were some of the highest contributing factors to final component cost. Additionally, heat treatment and lubricant removal stages played a significant role in the overall life-cycle assessment of the final products. These findings confirmed development priorities as novel furnace design, fast artificial ageing and low-cost alloy development.
NASA Astrophysics Data System (ADS)
Stavinoha, Joe N.
The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al-4V alloy substrates. Cylindrical weld metal deposits were built by employing an automatic wire feeder, turntable positioner, and vertical torch positioner. A total of four cylindrical weld metal specimens were built with various combinations of essential plasma arc welding process parameters. The temperature of the weld metal deposit was taken with a thermocouple after allowing a specified amount of time to pass before depositing the next weld track. An analytical heat flow model was created that estimated the temperature of the weld metal deposit in relation to the number of tracks deposited. The analytical heat flow model was adjusted to match the experimental data that was obtained and revealed that the rate of production could be increased if the rate of thermal energy losses from the deposit were increased. Cross-sections of the weld metal deposits were examined to observe the effects of thermal energy input on the weld metal macrostructure, microstructure, and grain size. Results from the metallographic inspections revealed an increase in grain size and coarsening of the structure as the number of weld tracks in the deposit increased.
Li, Hongyan; Wei, Benxi; Wu, Chunsen; Zhang, Bao; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi
2014-05-01
The manufacture of Chinese rice wine involves an uneconomical, time-consuming, and environmentally unfriendly pretreatment process. In this study, the enzymatic extrusion of broken rice was applied to the brewing of rice wine. The response surface methodology was used to study the effects of the barrel temperature (BT), moisture content (MC), and amylase concentration (AC) on the alcohol yield. A second-order polynomial model had a good fit to the experimental data and the coefficient of determination (R(2)) was 0.9879. According to the model, the optimal parameters required to obtain the highest alcoholic degree of 17.94% were: BT=100.14°C, MC=43%, and AC=1.45‰. Under these optimal conditions, the alcoholic degree actually reached 18.3%, which was close to the value predicted by the model. Enzymatic extrusion improved the yeast growth and alcohol yield during the fermentation process. The fermentation recovery and efficiency of processed rice wine were 38.07% and 94.66%, respectively. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2001-01-01
Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.
Statistical analysis and yield management in LED design through TCAD device simulation
NASA Astrophysics Data System (ADS)
Létay, Gergö; Ng, Wei-Choon; Schneider, Lutz; Bregy, Adrian; Pfeiffer, Michael
2007-02-01
This paper illustrates how technology computer-aided design (TCAD), which nowadays is an essential part of CMOS technology, can be applied to LED development and manufacturing. In the first part, the essential electrical and optical models inherent to LED modeling are reviewed. The second part of the work describes a methodology to improve the efficiency of the simulation procedure by using the concept of process compact models (PCMs). The last part demonstrates the capabilities of PCMs using an example of a blue InGaN LED. In particular, a parameter screening is performed to find the most important parameters, an optimization task incorporating the robustness of the design is carried out, and finally the impact of manufacturing tolerances on yield is investigated. It is indicated how the concept of PCMs can contribute to an efficient design for manufacturing DFM-aware development.
NASA Astrophysics Data System (ADS)
Faizan-Ur-Rab, M.; Zahiri, S. H.; King, P. C.; Busch, C.; Masood, S. H.; Jahedi, M.; Nagarajah, R.; Gulizia, S.
2017-12-01
Cold spray is a solid-state rapid deposition technology in which metal powder is accelerated to supersonic speeds within a de Laval nozzle and then impacts onto the surface of a substrate. It is possible for cold spray to build thick structures, thus providing an opportunity for melt-less additive manufacturing. Image analysis of particle impact location and focused ion beam dissection of individual particles were utilized to validate a 3D multicomponent model of cold spray. Impact locations obtained using the 3D model were found to be in close agreement with the empirical data. Moreover, the 3D model revealed the particles' velocity and temperature just before impact—parameters which are paramount for developing a full understanding of the deposition process. Further, it was found that the temperature and velocity variations in large-size particles before impact were far less than for the small-size particles. Therefore, an optimal particle temperature and velocity were identified, which gave the highest deformation after impact. The trajectory of the particles from the injection point to the moment of deposition in relation to propellant gas is visualized. This detailed information is expected to assist with the optimization of the deposition process, contributing to improved mechanical properties for additively manufactured cold spray titanium parts.
NASA Astrophysics Data System (ADS)
Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.
2018-01-01
This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.
Simulation Assessment Validation Environment (SAVE). Software User’s Manual
2000-09-01
requirements and decisions are made. The integration is leveraging work from other DoD organizations so that high -end results are attainable much faster than...planning through the modeling and simulation data capture and visualization process. The planners can complete the manufacturing process plan with a high ...technologies. This tool is also used to perform “ high level” factory process simulation prior to full CAD model development and help define feasible
Modelization of three-layered polymer coated steel-strip ironing process using a neural network
NASA Astrophysics Data System (ADS)
Sellés, M. A.; Schmid, S. R.; Sánchez-Caballero, S.; Seguí, V. J.; Reig, M. J.; Pla, R.
2012-04-01
An alternative to the traditional can manufacturing process is to use plastic laminated rolled steels as base stocks. This material consist of pre-heated steel coils that are sandwiched between one or two sheets of polymer. The heated sheets are then immediately quenched, which yields a strong bond between the layers. Such polymer-coated steels were investigated by Jaworski [1,2] and Sellés [3], and found to be suitable for ironing with carefully controlled conditions. A novel multi-layer polymer coated steel has been developed for container applications. This material presents an interesting extension to previous research on polymer laminated steel in ironing, and offers several advantages over the previous material (Sellés [3]). This document shows a modelization for the ironing process (the most crucial step in can manufacturing) done by using a neural network
Modeling induction heater temperature distribution in polymeric material
NASA Astrophysics Data System (ADS)
Sorokin, A. G.; Filimonova, O. V.
2017-10-01
An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. The main interesting area of the induction heating process is the efficiency of the usage of energy, choice of the plate material and different coil configurations based on application. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The paper describes how the induction heating system in plastic injection molding is designed. The use of numerical simulation in order to get the optimum design of the induction coil is shown. The purpose of this work is to consider various coil configurations used in the induction heating process, which is widely used in plastic molding. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The results of calculation are in the numerical model.
NASA Astrophysics Data System (ADS)
García-Díaz, J. Carlos
2009-11-01
Fault detection and diagnosis is an important problem in process engineering. Process equipments are subject to malfunctions during operation. Galvanized steel is a value added product, furnishing effective performance by combining the corrosion resistance of zinc with the strength and formability of steel. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing and the increasingly stringent quality requirements in automotive industry has also demanded ongoing efforts in process control to make the process more robust. When faults occur, they change the relationship among these observed variables. This work compares different statistical regression models proposed in the literature for estimating the quality of galvanized steel coils on the basis of short time histories. Data for 26 batches were available. Five variables were selected for monitoring the process: the steel strip velocity, four bath temperatures and bath level. The entire data consisting of 48 galvanized steel coils was divided into sets. The first training data set was 25 conforming coils and the second data set was 23 nonconforming coils. Logistic regression is a modeling tool in which the dependent variable is categorical. In most applications, the dependent variable is binary. The results show that the logistic generalized linear models do provide good estimates of quality coils and can be useful for quality control in manufacturing process.
Thermal analysis of laser additive manufacturing of aluminium alloys: Experiment and simulation
NASA Astrophysics Data System (ADS)
Bock, Frederic E.; Froend, Martin; Herrnring, Jan; Enz, Josephin; Kashaev, Nikolai; Klusemann, Benjamin
2018-05-01
Laser additive manufacturing (LAM) has become increasingly popular in industry in recent decades because it enables exceptional degrees of freedom regarding the structural design of lightweight components compared to subtractive manufacturing techniques. Laser metal deposition (LMD) of wire-fed material shows in particular the advantages such as high process velocity and efficient use of material compared to other LAM processes. During wire-based LMD, the material is deposited onto a substrate and supplemented by successive layers allowing a layer-wise production of complex three-dimensional structures. Despite the increased productivity of LMD, regarding the ability to process aluminium alloys, there is still a lack in quality and reproducibility due to the inhomogeneous temperature distribution during the process, leading to undesired residual stresses, distortions and inconsistent layer geometries and poor microstructures. In this study, the aluminium alloy AA5087 as wire and AA5754 as substrate material were utilized for LMD. In order to obtain information about the temperature field during LMD, thermocouple and thermography measurements were performed during the process. The temperature measurements were used to validate a finite element model regarding the heat distribution, which will be further used to investigate the temperature field evolution over time. To consider the continuous addition of material within the FE-model, an inactive/active element approach was chosen, where initially deactivated elements are activated corresponding to the deposition of material. The first results of the simulation and the experiments show good agreement. Therefore, the model can be used in the future for LMD process optimization, e.g., in terms of minimizing local variations of the thermal load for each layer.
A system-of-systems modeling methodology for strategic general aviation design decision-making
NASA Astrophysics Data System (ADS)
Won, Henry Thome
General aviation has long been studied as a means of providing an on-demand "personal air vehicle" that bypasses the traffic at major commercial hubs. This thesis continues this research through development of a system of systems modeling methodology applicable to the selection of synergistic product concepts, market segments, and business models. From the perspective of the conceptual design engineer, the design and selection of future general aviation aircraft is complicated by the definition of constraints and requirements, and the tradeoffs among performance and cost aspects. Qualitative problem definition methods have been utilized, although their accuracy in determining specific requirement and metric values is uncertain. In industry, customers are surveyed, and business plans are created through a lengthy, iterative process. In recent years, techniques have developed for predicting the characteristics of US travel demand based on travel mode attributes, such as door-to-door time and ticket price. As of yet, these models treat the contributing systems---aircraft manufacturers and service providers---as independently variable assumptions. In this research, a methodology is developed which seeks to build a strategic design decision making environment through the construction of a system of systems model. The demonstrated implementation brings together models of the aircraft and manufacturer, the service provider, and most importantly the travel demand. Thus represented is the behavior of the consumers and the reactive behavior of the suppliers---the manufacturers and transportation service providers---in a common modeling framework. The results indicate an ability to guide the design process---specifically the selection of design requirements---through the optimization of "capability" metrics. Additionally, results indicate the ability to find synergetic solutions, that is solutions in which two systems might collaborate to achieve a better result than acting independently. Implementation of this methodology can afford engineers a more autonomous perspective in the concept exploration process, providing dynamic feedback about a design's potential success in specific market segments. The method also has potential to strengthen the connection between design and business departments, as well as between manufacturers, service providers, and infrastructure planners---bringing information about how the respective systems interact, and what might be done to improve synergism of systems.
Economics of technological change - A joint model for the aircraft and airline industries
NASA Technical Reports Server (NTRS)
Kneafsey, J. T.; Taneja, N. K.
1981-01-01
The principal focus of this econometric model is on the process of technological change in the U.S. aircraft manufacturing and airline industries. The problem of predicting the rate of introduction of current technology aircraft into an airline's fleet during the period of research, development, and construction for new technology aircraft arises in planning aeronautical research investments. The approach in this model is a statistical one. It attempts to identify major factors that influence transport aircraft manufacturers and airlines, and to correlate them with the patterns of delivery of new aircraft to the domestic trunk carriers. The functional form of the model has been derived from several earlier econometric models on the economics of innovation, acquisition, and technological change.
A Bayesian Approach to Determination of F, D, and Z Values Used in Steam Sterilization Validation.
Faya, Paul; Stamey, James D; Seaman, John W
2017-01-01
For manufacturers of sterile drug products, steam sterilization is a common method used to provide assurance of the sterility of manufacturing equipment and products. The validation of sterilization processes is a regulatory requirement and relies upon the estimation of key resistance parameters of microorganisms. Traditional methods have relied upon point estimates for the resistance parameters. In this paper, we propose a Bayesian method for estimation of the well-known D T , z , and F o values that are used in the development and validation of sterilization processes. A Bayesian approach allows the uncertainty about these values to be modeled using probability distributions, thereby providing a fully risk-based approach to measures of sterility assurance. An example is given using the survivor curve and fraction negative methods for estimation of resistance parameters, and we present a means by which a probabilistic conclusion can be made regarding the ability of a process to achieve a specified sterility criterion. LAY ABSTRACT: For manufacturers of sterile drug products, steam sterilization is a common method used to provide assurance of the sterility of manufacturing equipment and products. The validation of sterilization processes is a regulatory requirement and relies upon the estimation of key resistance parameters of microorganisms. Traditional methods have relied upon point estimates for the resistance parameters. In this paper, we propose a Bayesian method for estimation of the critical process parameters that are evaluated in the development and validation of sterilization processes. A Bayesian approach allows the uncertainty about these parameters to be modeled using probability distributions, thereby providing a fully risk-based approach to measures of sterility assurance. An example is given using the survivor curve and fraction negative methods for estimation of resistance parameters, and we present a means by which a probabilistic conclusion can be made regarding the ability of a process to achieve a specified sterility criterion. © PDA, Inc. 2017.
Virtual aluminum castings: An industrial application of ICME
NASA Astrophysics Data System (ADS)
Allison, John; Li, Mei; Wolverton, C.; Su, Xuming
2006-11-01
The automotive product design and manufacturing community is continually besieged by Hercule an engineering, timing, and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing engine performance requirements coupled with stringent weight and packaging constraints are pushing aluminum alloys to the limits of their capabilities. To provide high-quality blocks and heads at the lowest possible cost, manufacturing process engineers are required to find increasingly innovative ways to cast and heat treat components. Additionally, to remain competitive, products and manufacturing methods must be developed and implemented in record time. To bridge the gaps between program needs and engineering reality, the use of robust computational models in up-front analysis will take on an increasingly important role. This article describes just such a computational approach, the Virtual Aluminum Castings methodology, which was developed and implemented at Ford Motor Company and demonstrates the feasibility and benefits of integrated computational materials engineering.
Bioengineering Solutions for Manufacturing Challenges in CAR T Cells
Piscopo, Nicole J.; Mueller, Katherine P.; Das, Amritava; Hematti, Peiman; Murphy, William L.; Palecek, Sean P.; Capitini, Christian M.
2017-01-01
The next generation of therapeutic products to be approved for the clinic is anticipated to be cell therapies, termed “living drugs” for their capacity to dynamically and temporally respond to changes during their production ex vivo and after their administration in vivo. Genetically engineered chimeric antigen receptor (CAR) T cells have rapidly developed into powerful tools to harness the power of immune system manipulation against cancer. Regulatory agencies are beginning to approve CAR T cell therapies due to their striking efficacy in treating some hematological malignancies. However, the engineering and manufacturing of such cells remains a challenge for widespread adoption of this technology. Bioengineering approaches including biomaterials, synthetic biology, metabolic engineering, process control and automation, and in vitro disease modeling could offer promising methods to overcome some of these challenges. Here, we describe the manufacturing process of CAR T cells, highlighting potential roles for bioengineers to partner with biologists and clinicians to advance the manufacture of these complex cellular products under rigorous regulatory and quality control. PMID:28840981
Rheology as a tool for evaluation of melt processability of innovative dosage forms.
Aho, Johanna; Boetker, Johan P; Baldursdottir, Stefania; Rantanen, Jukka
2015-10-30
Future manufacturing of pharmaceuticals will involve innovative use of polymeric excipients. Hot melt extrusion (HME) is an already established manufacturing technique and several products based on HME are on the market. Additionally, processing based on, e.g., HME or three dimensional (3D) printing, will have an increasingly important role when designing products for flexible dosing, since dosage forms based on compacting of a given powder mixture do not enable manufacturing of optimal pharmaceutical products for personalized treatments. The melt processability of polymers and API-polymer mixtures is highly dependent on the rheological properties of these systems, and rheological measurements should be considered as a more central part of the material characterization tool box when selecting suitable candidates for melt processing by, e.g., HME or 3D printing. The polymer processing industry offers established platforms, methods, and models for rheological characterization, and they can often be readily applied in the field of pharmaceutical manufacturing. Thoroughly measured and calculated rheological parameters together with thermal and mechanical material data are needed for the process simulations which are also becoming increasingly important. The authors aim to give an overview to the basics of rheology and summarize examples of the studies where rheology has been utilized in setting up or evaluating extrusion processes. Furthermore, examples of different experimental set-ups available for rheological measurements are presented, discussing each of their typical application area, advantages and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrostatic Levitation for Studies of Additive Manufactured Materials
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri
2014-01-01
The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL in supporting the development and modeling of the selective laser melting process for metals, and provide an overview of the results to date.
NASA Technical Reports Server (NTRS)
Crowell, H. A.
1979-01-01
The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.
NASA Astrophysics Data System (ADS)
Kustra, Piotr; Milenin, Andrij; Płonka, Bartłomiej; Furushima, Tsuyoshi
2016-06-01
Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.
Replicative manufacturing of complex lighting optics by non-isothermal glass molding
NASA Astrophysics Data System (ADS)
Kreilkamp, Holger; Vu, Anh Tuan; Dambon, Olaf; Klocke, Fritz
2016-09-01
The advantages of LED lighting, especially its energy efficiency and the long service life have led to a wide distribution of LED technology in the world. However, in order to make fully use of the great potential that LED lighting offers, complex optics are required to distribute the emitted light from the LED efficiently. Nowadays, many applications use polymer optics which can be manufactured at low costs. However, due to ever increasing luminous power, polymer optics reach their technological limits. Due to its outstanding properties, especially its temperature resistance, resistance against UV radiation and its long term stability, glass is the alternative material of choice for the use in LED optics. This research is introducing a new replicative glass manufacturing approach, namely non-isothermal glass molding (NGM) which is able to manufacture complex lighting optics in high volumes at competitive prices. The integration of FEM simulation at the early stage of the process development is presented and helps to guarantee a fast development cycle. A coupled thermo-mechanical model is used to define the geometry of the glass preform as well as to define the mold surface geometry. Furthermore, simulation is used to predict main process outcomes, especially in terms of resulting form accuracy of the molded optics. Experiments conducted on a commercially available molding machine are presented to validate the developed simulation model. Finally, the influence of distinct parameters on important process outcomes like form accuracy, surface roughness, birefringence, etc. is discussed.
Computer simulation of gear tooth manufacturing processes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri; Huston, Ronald L.
1990-01-01
The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.
2007-01-01
positioning and assembling? • Do nanoscale properties remain once the nanostructures are integrated up to the microscale? • How do we measure...viii Manufacturing at the Nanoscale 1 1. VISION Employing the novel properties and processes that are associated with the nanoscale—in the...Theory, modeling, and simulation software are being developed to investigate nanoscale material properties and synthesis of macromolecular systems with
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouellette, Brittany Joy
Additive Manufacturing (AM) technology has been around for decades, but until recently, machines have been expensive, relatively large, and not available to most institutions. Increased technological advances in 3D printing and awareness throughout industry, universities, and even hobbyists has increased demand to substitute AM parts in place of traditionally manufactured (subtractive) designs; however, there is a large variability of part quality and mechanical behavior due to the inherent printing process, which must be understood before AM parts are used for load bearing and structural design.
Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities.
Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S
2014-01-01
Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
Capacity Planning for Batch and Perfusion Bioprocesses Across Multiple Biopharmaceutical Facilities
Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S
2014-01-01
Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2013 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:594–606, 2014 PMID:24376262
Code of Federal Regulations, 2013 CFR
2013-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
Code of Federal Regulations, 2014 CFR
2014-07-01
... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...
In-vitro evaluation of Polylactic acid (PLA) manufactured by fused deposition modeling.
Wurm, Matthias C; Möst, Tobias; Bergauer, Bastian; Rietzel, Dominik; Neukam, Friedrich Wilhelm; Cifuentes, Sandra C; Wilmowsky, Cornelius von
2017-01-01
With additive manufacturing (AM) individual and biocompatible implants can be generated by using suitable materials. The aim of this study was to investigate the biological effects of polylactic acid (PLA) manufactured by Fused Deposition Modeling (FDM) on osteoblasts in vitro according to European Norm / International Organization for Standardization 10,993-5. Human osteoblasts (hFOB 1.19) were seeded onto PLA samples produced by FDM and investigated for cell viability by fluorescence staining after 24 h. Cell proliferation was measured after 1, 3, 7 and 10 days by cell-counting and cell morphology was evaluated by scanning electron microscopy. For control, we used titanium samples and polystyrene (PS). Cell viability showed higher viability on PLA (95,3% ± 2.1%) than in control (91,7% ±2,7%). Cell proliferation was highest in the control group (polystyrene) and higher on PLA samples compared to the titanium samples. Scanning electron microscopy revealed homogenous covering of sample surface with regularly spread cells on PLA as well as on titanium. The manufacturing of PLA discs from polylactic acid using FDM was successful. The in vitro investigation with human fetal osteoblasts showed no cytotoxic effects. Furthermore, FDM does not seem to alter biocompatibility of PLA. Nonetheless osteoblasts showed reduced growth on PLA compared to the polystyrene control within the cell experiments. This could be attributed to surface roughness and possible release of residual monomers. Those influences could be investigated in further studies and thus lead to improvement in the additive manufacturing process. In addition, further research focused on the effect of PLA on bone growth should follow. In summary, PLA processed in Fused Deposition Modelling seems to be an attractive material and method for reconstructive surgery because of their biocompatibility and the possibility to produce individually shaped scaffolds.
NASA Technical Reports Server (NTRS)
1992-01-01
Silver ionization water purification technology was originally developed for Apollo spacecraft. It was later used to cleanse swimming pools and has now been applied to industrial cooling towers and process coolers. Sensible Technologies, Inc. has added two other technologies to the system, which occupies only six square feet. It is manufactured in three capacities, and larger models are custom built on request. The system eliminates scale, corrosion, algae, bacteria and debris, and because of the NASA technology, viruses and waterborne bacteria are also destroyed. Applications include a General Motors cooling tower, amusement parks, ice manufacture and a closed-loop process cooling system.
Powder bed charging during electron-beam additive manufacturing
Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; ...
2016-11-18
Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.
NASA Astrophysics Data System (ADS)
Patou, J.; De Luycker, E.; Bonnaire, R.; Cutard, T.; Bernhart, G.
2018-05-01
In this research work, the influence of the forming process on commingled thermoplastic composite parts mechanical behavior was investigated. The aim of this work is to evaluate the influence of fabric shearing on the mechanical response of composite laminate. Different sheets with a given shear angle are manufactured. Tensile experimental results are compared with the properties obtained from a simple model based on the laminate plate theory for various off angles. Later, the link with a tetrahedron shape 3D part manufactured by punch deep drawing will be made.
A neural network controller for automated composite manufacturing
NASA Technical Reports Server (NTRS)
Lichtenwalner, Peter F.
1994-01-01
At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.
NASA Astrophysics Data System (ADS)
Lian, Yanping; Lin, Stephen; Yan, Wentao; Liu, Wing Kam; Wagner, Gregory J.
2018-05-01
In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidification of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing simulation with resulting grain structures showing reasonable agreement with those observed in experiments.
NASA Astrophysics Data System (ADS)
Lian, Yanping; Lin, Stephen; Yan, Wentao; Liu, Wing Kam; Wagner, Gregory J.
2018-01-01
In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidification of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing simulation with resulting grain structures showing reasonable agreement with those observed in experiments.
Forming of complex-shaped composite tubes using optimized bladder-assisted resin transfer molding
NASA Astrophysics Data System (ADS)
Schillfahrt, Christian; Fauster, Ewald; Schledjewski, Ralf
2018-05-01
This work addresses the manufacturing of tubular composite structures by means of bladder-assisted resin transfer molding using elastomeric bladders. In order to achieve successful processing of such parts, knowledge of the compaction and impregnation behavior of the textile preform is vital. Hence, efficient analytical models that describe the influencing parameters of the preform compaction and filling stage were developed and verified through practical experiments. A process window describing optimal and critical operating conditions during the injection stage was created by evaluating the impact of the relevant process pressures on filling time. Finally, a cascaded injection procedure was investigated that particularly facilitates the manufacturing of long composite tubes.
Status of the secondary mirrors (M2) for the Gemini 8-m telescopes
NASA Astrophysics Data System (ADS)
Knohl, Ernst-Dieter; Schoeppach, Armin; Pickering, Michael A.
1998-08-01
The 1-m diameter lightweight secondary mirrors (M2) for the Gemini 8-m telescopes will be the largest CVD-SiC mirrors ever produced. The design and manufacture of these mirrors is a very challenging task. In this paper we will discuss the mirror design, structural and mechanical analysis, and the CVD manufacturing process used to produce the mirror blanks. The lightweight design consist of a thin faceplate (4-mm) and triangular backstructure cells with ribs of varying heights. The main drivers in the design were weight (40 kg) and manufacturing limitations imposed on the backstructure cells and mirror mounts. Finite element modeling predicts that the mirror design will meet all of the Gemini M2 requirements for weight, mechanical integrity, resonances, and optical performance. Special design considerations were necessary to avoid stress concentration in the mounting areas and to meet the requirement that the mirror survive an 8-g earthquake. The highest risk step in the mirror blank manufacturing process is the near-net-shape CVD deposition of the thin, curved faceplate. Special tooling and procedures had to be developed to produce faceplates free of fractures, cracks, and stress during the cool-down from deposition temperature (1350 C) to room temperature. Due to time delay with the CVD manufacturing process in the meantime a backup solution from Zerodur has been started. This mirror is now in the advanced polishing process. Because the design of both mirrors is very similar an excellent comparison of both solutions is possible.
In-Space Manufacturing Baseline Property Development
NASA Technical Reports Server (NTRS)
Stockman, Tom; Schneider, Judith; Prater, Tracie; Bean, Quincy; Werkheiser, Nicki
2016-01-01
The In-Space Manufacturing (ISM) project at NASA Marshall Space Flight Center currently operates a 3D FDM (fused deposition modeling) printer onboard the International Space Station. In order to enable utilization of this capability by designer, the project needs to establish characteristic material properties for materials produced using the process. This is difficult for additive manufacturing since standards and specifications do not yet exist for these technologies. Due to availability of crew time, there are limitations to the sample size which in turn limits the application of the traditional design allowables approaches to develop a materials property database for designers. In this study, various approaches to development of material databases were evaluated for use by designers of space systems who wish to leverage in-space manufacturing capabilities. This study focuses on alternative statistical techniques for baseline property development to support in-space manufacturing.
NASA Astrophysics Data System (ADS)
Kosztowny, Cyrus Joseph Robert
Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and failure model effectively captures local post-peak material response via incorporating a mesoscale model using a multiscaling framework with a smeared crack element-based failure model in the macroscale stiffened panel. Material damage behavior is characterized by simple experimental tests and incorporated into the post-peak stiffness degradation law in the smeared crack implementation. Computational modeling results are in overall excellent agreement compared to the experimental responses.
ERIC Educational Resources Information Center
Obi, Samuel C.
2004-01-01
Manufacturing professionals within universities tend to view manufacturing systems from a global perspective. This perspective tends to assume that manufacturing processes are employed equally in every manufacturing enterprise, irrespective of the geography and the needs of the people in those diverse regions. But in reality local and societal…
Development of novel IVD assays: a manufacturer's perspective.
Metcalfe, Thomas A
2010-01-01
IVD manufacturers are heavily reliant on novel IVD assays to fuel their growth and drive innovation within the industry. They represent a key part of the IVD industry's value proposition to customers and the healthcare industry in general, driving product differentiation, helping to create demand for new systems and generating incremental revenue. However, the discovery of novel biomarkers and their qualification for a specific clinical purpose is a high risk undertaking and the large, risky investments associated with doing this on a large scale are incompatible with IVD manufacturer's business models. This article describes the sources of novel IVD assays, the processes for discovering and qualifying novel assays and the reliance of IVD manufacturers on collaborations and in-licensing to source new IVD assays for their platforms.
Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing
NASA Astrophysics Data System (ADS)
Karme, Aleksis; Kallonen, Aki; Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti
Laser additive manufacturing is an established and constantly developing technique. Structural assessment should be a key component to ensure directed evolution towards higher level of manufacturing. The macroscopic properties of metallic structures are determined by their internal microscopic features, which are difficult to assess using conventional surface measuring methodologies. X-ray microtomography (CT) is a promising technique for three-dimensional non-destructive probing of internal composition and build of various materials. Aim of this study is to define the possibilities of using CT scanning as quality control method in LAM fabricated parts. Since the parts fabricated with LAM are very often used in high quality and accuracy demanding applications in various industries such as medical and aerospace, it is important to be able to define the accuracy of the build parts. The tubular stainless steel test specimens were 3D modelled, manufactured with a modified research AM equipment and imaged after manufacturing with a high-power, high-resolution CT scanner. 3D properties, such as surface texture and the amount and distribution of internal pores, were also evaluated in this study. Surface roughness was higher on the interior wall of the tube, and deviation from the model was systematically directed towards the central axis. Pore distribution showed clear organization and divided into two populations; one following the polygon model seams along both rims, and the other being associated with the concentric and equidistant movement path of the laser. Assessment of samples can enhance the fabrication by guiding the improvement of both modelling and manufacturing process.
21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be dispensed...
The presence of Enterococcus, coliforms and E. coli in a commercial yeast manufacturing process.
O'Brien, S S; Lindsay, D; von Holy, A
2004-07-01
This study evaluated a typical commercial yeast manufacturing process for bacterial contamination. Product line samples of a commercial yeast manufacturing process and the corresponding seed yeast manufacturing process were obtained upstream from the final compressed and dry yeast products. All samples were analysed before (non-PI) and after preliminary incubation (PI) at 37 degrees C for 24 h. The PI procedure was incorporated for amplification of bacterial counts below the lower detection limit. Enterococcus, coliform and Escherichia coli counts were quantified by standard pour-plate techniques using selective media. Presence at all stages and progressive increases in counts of Enterococcus, coliforms and E. coli during processing in the commercial manufacturing operation suggested that the primary source of contamination of both compressed and dry yeast with these bacteria was the seed yeast manufacturing process and that contamination was amplified throughout the commercial yeast manufacturing process. This was confirmed by surveys of the seed yeast manufacturing process which indicated that contamination of the seed yeast with Enterococcus, coliforms and E. coli occurred during scale up of seed yeast biomass destined as inoculum for the commercial fermentation.
Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob
2018-01-02
Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.
NASA Astrophysics Data System (ADS)
Shen, Chien-wen
2009-01-01
During the processes of TFT-LCD manufacturing, steps like visual inspection of panel surface defects still heavily rely on manual operations. As the manual inspection time of TFT-LCD manufacturing could range from 4 hours to 1 day, the reliability of time forecasting is thus important for production planning, scheduling and customer response. This study would like to propose a practical and easy-to-implement prediction model through the approach of Bayesian networks for time estimation of manual operated procedures in TFT-LCD manufacturing. Given the lack of prior knowledge about manual operation time, algorithms of necessary path condition and expectation-maximization are used for structural learning and estimation of conditional probability distributions respectively. This study also applied Bayesian inference to evaluate the relationships between explanatory variables and manual operation time. With the empirical applications of this proposed forecasting model, approach of Bayesian networks demonstrates its practicability and prediction accountability.
NASA Astrophysics Data System (ADS)
Hudson, C. A.
1982-02-01
CAD/CAM advances and applications for enhancing productivity in industry are explored. Wide-spread use of CAD/CAM devices are projected to occur by the time period 1992-1997, resulting in a higher percentage of technicians in the manufacturing process, while the cost of computers and software will continue to fall and become more widely available. Computer aided design is becoming a commercially viable system for design and geometric modeling, engineering analysis, kinematics, and drafting, and efforts to bridge the gap between CAD and CAM are indicated, with particular attention given to layering, wherein individual monitoring of different parts of the manufacturing process can be effected without crossover of unnecessary information. The potentials and barriers to the use of robotics are described, with the added optimism that displaced workers to date have moved up to jobs of higher skill and interest.
Industrial biomanufacturing: The future of chemical production.
Clomburg, James M; Crumbley, Anna M; Gonzalez, Ramon
2017-01-06
The current model for industrial chemical manufacturing employs large-scale megafacilities that benefit from economies of unit scale. However, this strategy faces environmental, geographical, political, and economic challenges associated with energy and manufacturing demands. We review how exploiting biological processes for manufacturing (i.e., industrial biomanufacturing) addresses these concerns while also supporting and benefiting from economies of unit number. Key to this approach is the inherent small scale and capital efficiency of bioprocesses and the ability of engineered biocatalysts to produce designer products at high carbon and energy efficiency with adjustable output, at high selectivity, and under mild process conditions. The biological conversion of single-carbon compounds represents a test bed to establish this paradigm, enabling rapid, mobile, and widespread deployment, access to remote and distributed resources, and adaptation to new and changing markets. Copyright © 2017, American Association for the Advancement of Science.
Methods utilized in evaluating the profitability of commercial space processing
NASA Technical Reports Server (NTRS)
Bloom, H. L.; Schmitt, P. T.
1976-01-01
Profitability analysis is applied to commercial space processing on the basis of business concept definition and assessment and the relationship between ground and space functions. Throughput analysis is demonstrated by analysis of the space manufacturing of surface acoustic wave devices. The paper describes a financial analysis model for space processing and provides key profitability measures for space processed isoenzymes.
NASA Astrophysics Data System (ADS)
Jadhav, J. R.; Mantha, S. S.; Rane, S. B.
2015-06-01
The demands for automobiles increased drastically in last two and half decades in India. Many global automobile manufacturers and Tier-1 suppliers have already set up research, development and manufacturing facilities in India. The Indian automotive component industry started implementing Lean practices to fulfill the demand of these customers. United Nations Industrial Development Organization (UNIDO) has taken proactive approach in association with Automotive Component Manufacturers Association of India (ACMA) and the Government of India to assist Indian SMEs in various clusters since 1999 to make them globally competitive. The primary objectives of this research are to study the UNIDO-ACMA Model as well as ISM Model of Lean implementation and validate the ISM Model by comparing with UNIDO-ACMA Model. It also aims at presenting a roadmap for Lean implementation in Indian automotive component industry. This paper is based on secondary data which include the research articles, web articles, doctoral thesis, survey reports and books on automotive industry in the field of Lean, JIT and ISM. ISM Model for Lean practice bundles was developed by authors in consultation with Lean practitioners. The UNIDO-ACMA Model has six stages whereas ISM Model has eight phases for Lean implementation. The ISM-based Lean implementation model is validated through high degree of similarity with UNIDO-ACMA Model. The major contribution of this paper is the proposed ISM Model for sustainable Lean implementation. The ISM-based Lean implementation framework presents greater insight of implementation process at more microlevel as compared to UNIDO-ACMA Model.
Cárdenas, V; Cordobés, M; Blanco, M; Alcalà, M
2015-10-10
The pharmaceutical industry is under stringent regulations on quality control of their products because is critical for both, productive process and consumer safety. According to the framework of "process analytical technology" (PAT), a complete understanding of the process and a stepwise monitoring of manufacturing are required. Near infrared spectroscopy (NIRS) combined with chemometrics have lately performed efficient, useful and robust for pharmaceutical analysis. One crucial step in developing effective NIRS-based methodologies is selecting an appropriate calibration set to construct models affording accurate predictions. In this work, we developed calibration models for a pharmaceutical formulation during its three manufacturing stages: blending, compaction and coating. A novel methodology is proposed for selecting the calibration set -"process spectrum"-, into which physical changes in the samples at each stage are algebraically incorporated. Also, we established a "model space" defined by Hotelling's T(2) and Q-residuals statistics for outlier identification - inside/outside the defined space - in order to select objectively the factors to be used in calibration set construction. The results obtained confirm the efficacy of the proposed methodology for stepwise pharmaceutical quality control, and the relevance of the study as a guideline for the implementation of this easy and fast methodology in the pharma industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Baxendale, Ian R; Braatz, Richard D; Hodnett, Benjamin K; Jensen, Klavs F; Johnson, Martin D; Sharratt, Paul; Sherlock, Jon-Paul; Florence, Alastair J
2015-03-01
This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are: Develop flow chemistry toolboxes, exploiting the advantages of flow processing and including highly selective chemistries that allow use of simple and effective continuous workup technologies. Availability of modular or plug and play type equipment especially for workup to assist in straightforward deployment in the laboratory. As with learning from other industries, standardization is highly desirable and will require cooperation across industry and academia to develop and implement. Implement and exploit process analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling and simulation techniques to support continuous process development and control. Progress is required in multiphase systems such as crystallization. Involve all parts of the organization from discovery, research and development, and manufacturing in the implementation of CM. Engage with academia to develop the training provision to support the skills base for CM, particularly in flow chemistry, physical chemistry, and chemical engineering skills at the chemistry-process interface. Promote and encourage publication and dissemination of examples of CM across the sector to demonstrate capability, engage with regulatory comment, and establish benchmarks for performance and highlight challenges. Develop the economic case for CM of drug substance. This will involve various stakeholders at project and business level, however establishing the critical economic drivers is critical to driving the transformation in manufacturing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
..., Glass Manufacturing and Secondary Nonferrous Metals Processing Area Sources (Renewal) AGENCY... for Clay Ceramics Manufacturing, Glass Manufacturing and Secondary Nonferrous Metals Processing Area..., glass manufacturing, and secondary nonferrous metals processing area sources. Estimated Number of...
The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...
The Chemical Modeling of Electronic Materials and Interconnections
NASA Astrophysics Data System (ADS)
Kivilahti, J. K.
2002-12-01
Thermodynamic and kinetic modeling, together with careful experimental work, is of great help for developing new electronic materials such as lead-free solders, their compatible metallizations and diffusion-barrier layers, as well as joining and bonding processes for advanced electronics manufacturing. When combined, these modeling techniques lead to a rationalization of the trial-and-error methods employed in the electronics industry, limiting experimentation and, thus, reducing significantly time-to-market of new products. This modeling provides useful information on the stabilities of phases (microstructures), driving forces for chemical reactions, and growth rates of reaction products occurring in interconnections or thin-film structures during processing, testing, and in longterm use of electronic devices. This is especially important when manufacturing advanced lead-free electronics where solder joint volumes are decreasing while the number of dissimilar reactive materials is increasing markedly. Therefore, a new concept of local nominal composition was introduced and applied together with the relevant ternary and multicomponent phase diagrams to some solder/conductor systems.
Production of Energy Efficient Preform Structures (PEEPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. John A. Baumann
2012-06-08
Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has beenmore » to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible manufacturing pathways, to identify the best balance of energy consumption and environmental impact. This model has been created and populated with energy consumption data for individual SSJ processes and process platforms. Technology feasibility cases studies were executed, to validate the model, and confirm the ability to create lower buy-to-fly ratio performs and machine these to final configuration aircraft components. This model can now be used as a tool to select manufacturing pathways that offer significant energy savings and, when coupled with a cost model, drive implementation of the SSJ processes.« less
Development and kinetic analysis of cobalt gradient formation in WC-Co composites
NASA Astrophysics Data System (ADS)
Guo, Jun
2011-12-01
Functionally graded cemented tungsten carbide (FG WC-Co) is one of the main research directions in the field of WC-Co over decades. Although it has long been recognized that FG WC-Co could outperform conventional homogeneous WC-Co owing to its potentially superior combinations of mechanical properties, until recently there has been a lack of effective and economical methods to make such materials. The lack of the technology has prevented the manufacturing and industrial applications of FG WC-Co from becoming a reality. This dissertation is a comprehensive study of an innovative atmosphere heat treatment process for producing FG WC-Co with a surface cobalt compositional gradient. The process exploited a triple phase field in W-C-Co phase diagram among three phases (solid WC, solid Co, and liquid Co) and the dependence of the migration of liquid Co on temperature and carbon content. WC-Co with a graded surface cobalt composition can be achieved by controlling the diffusion of carbon transported from atmosphere during sintering or during postsintering heat treatment. The feasibility of the process was validated by the successful preparations of FG WC-Co via both carburization and decarburization process following conventional liquid phase sintering. A study of the carburization process was undertaken to further understand and quantitatively modeled this process. The effects of key processing parameters (including heat treating temperature, atmosphere, and time) and key materials variables (involving Co content, WC grain size, and addition of grain growth inhibitors) on the formation of Co gradients were examined. Moreover, a carbon-diffusion controlled kinetic model was developed for simulating the formation of the gradient during the process. The parameters involved in this model were determined by thermodynamic calculations and regression-fit of simulation results with experimental data. In summary, this research first demonstrated the principle of the approach. Second, a model was developed to predict the gradients produced by the carbon-controlled atmosphere heat treatment process, which is useful for manufacturing WC-Co with designed gradients. FG WC-Co materials produced using this method are expected to exhibit superior performance in many applications and to have a profound impact on the manufacturing industries that use tungsten carbide tools.
NASA Astrophysics Data System (ADS)
Acharya, Ranadip; Das, Suman
2015-09-01
This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.
Cost Models for MMC Manufacturing Processes
NASA Technical Reports Server (NTRS)
Elzey, Dana M.; Wadley, Haydn N. G.
1996-01-01
The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations.
Melt-Pool Temperature and Size Measurement During Direct Laser Sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
List, III, Frederick Alyious; Dinwiddie, Ralph Barton; Carver, Keith
2017-08-01
Additive manufacturing has demonstrated the ability to fabricate complex geometries and components not possible with conventional casting and machining. In many cases, industry has demonstrated the ability to fabricate complex geometries with improved efficiency and performance. However, qualification and certification of processes is challenging, leaving companies to focus on certification of material though design allowable based approaches. This significantly reduces the business case for additive manufacturing. Therefore, real time monitoring of the melt pool can be used to detect the development of flaws, such as porosity or un-sintered powder and aid in the certification process. Characteristics of the melt poolmore » in the Direct Laser Sintering (DLS) process is also of great interest to modelers who are developing simulation models needed to improve and perfect the DLS process. Such models could provide a means to rapidly develop the optimum processing parameters for new alloy powders and optimize processing parameters for specific part geometries. Stratonics’ ThermaViz system will be integrated with the Renishaw DLS system in order to demonstrate its ability to measure melt pool size, shape and temperature. These results will be compared with data from an existing IR camera to determine the best approach for the determination of these critical parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creasy, John T
2015-05-12
This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under themore » following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.« less
Caredda, Marco; Addis, Margherita; Pes, Massimo; Fois, Nicola; Sanna, Gabriele; Piredda, Giovanni; Sanna, Gavino
2018-06-01
The aim of this work was to measure the physico-chemical and the colorimetric parameters of ovaries from Mugil cephalus caught in the Tortolì lagoon (South-East coast of Sardinia) along the steps of the manufacturing process of Bottarga, together with the rheological parameters of the final product. A lowering of all CIELab coordinates (lightness, redness and yellowness) was observed during the manufacture process. All CIELab parameters were used to build a Linear Discriminant Analysis (LDA) predictive model able to determine in real time if the roes had been subdued to a freezing process, with a success in prediction of 100%. This model could be used to identify the origin of the roes, since only the imported ones are frozen. The major changes of all the studied parameters (p < 0.05) were noted in the drying step rather than in the salting step. After processing, Bottarga was characterized by a pH value of 5.46 (CV = 2.8) and a moisture content of 25% (CV = 8), whereas the typical per cent amounts of proteins, fat and NaCl, calculated as a percentage on the dried weight, were 56 (CV = 2), 34 (CV = 3) and 3.6 (CV = 17), respectively. The physical chemical changes of the roes during the manufacturing process were consistent for moisture, which decreased by 28%, whereas the protein and the fat contents on the dried weight got respectively lower of 3% and 2%. NaCl content increased by 3.1%. Principal Component Analyses (PCA) were also performed on all data to establish trends and relationships among all parameters. Hardness and consistency of Bottarga were negatively correlated with the moisture content (r = -0.87 and r = -0.88, respectively), while its adhesiveness was negatively correlated with the fat content (r = -0.68). Copyright © 2018. Published by Elsevier Ltd.
Virtual manufacturing in reality
NASA Astrophysics Data System (ADS)
Papstel, Jyri; Saks, Alo
2000-10-01
SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.
Tolerance assignment in optical design
NASA Astrophysics Data System (ADS)
Youngworth, Richard Neil
2002-09-01
Tolerance assignment is necessary in any engineering endeavor because fabricated systems---due to the stochastic nature of manufacturing and assembly processes---necessarily deviate from the nominal design. This thesis addresses the problem of optical tolerancing. The work can logically be split into three different components that all play an essential role. The first part addresses the modeling of manufacturing errors in contemporary fabrication and assembly methods. The second component is derived from the design aspect---the development of a cost-based tolerancing procedure. The third part addresses the modeling of image quality in an efficient manner that is conducive to the tolerance assignment process. The purpose of the first component, modeling manufacturing errors, is twofold---to determine the most critical tolerancing parameters and to understand better the effects of fabrication errors. Specifically, mid-spatial-frequency errors, typically introduced in sub-aperture grinding and polishing fabrication processes, are modeled. The implication is that improving process control and understanding better the effects of the errors makes the task of tolerance assignment more manageable. Conventional tolerancing methods do not directly incorporate cost. Consequently, tolerancing approaches tend to focus more on image quality. The goal of the second part of the thesis is to develop cost-based tolerancing procedures that facilitate optimum system fabrication by generating the loosest acceptable tolerances. This work has the potential to impact a wide range of optical designs. The third element, efficient modeling of image quality, is directly related to the cost-based optical tolerancing method. Cost-based tolerancing requires efficient and accurate modeling of the effects of errors on the performance of optical systems. Thus it is important to be able to compute the gradient and the Hessian, with respect to the parameters that need to be toleranced, of the figure of merit that measures the image quality of a system. An algebraic method for computing the gradient and the Hessian is developed using perturbation theory.
Zhang, Jing; Zhang, Rimei; Ren, Guanghui; Zhang, Xiaojie
2017-02-01
This article describes a method that incorporates the solid modeling CAD software Solidworks with a dental milling machine to fabricate individual abutments in house. This process involves creating an implant library with 3-dimensional (3D) models and manufacturing a base, scan element, abutment, and crown anatomy. The 3D models can be imported into any dental computer-aided design and computer-aided (CAD-CAM) manufacturing system. This platform increases abutment design flexibility, as the base and scan elements can be designed to fit several shapes as needed to meet clinical requirements. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.
2014-01-01
As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved down selecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt. In FY13, more advanced testing and modeling of the down selected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to develop a mid-fidelity thermal response model. Additional arc jet testing in the same conditions on various seam designs were very successful in showing that the material could be joined with a minimum of adhesive and required no complicated gap and gap filler design for installation. In addition, the partnership with industry to manufacture thicker rayon felt was very successful. The vendor made a 2-m wide by 30-m long sample of 10-cm thick rayon felt. When carbonized, the resulting thickness was over 7.5-cm thick, nearly 4 times the thickest off-the-shelf carbon felt. In FY14, the project has initiated a partnership with another vendor to begin the scale-up manufacturing effort. This year, the vendor will duplicate the process and manufacture at the current scale for comparison with NASA-processed materials. Properties testing and arc jet testing will be performed on the vendor-processed materials. Planning for manufacturing large, 1-m x 1-m, panels will begin as well. In FY15, the vendor will then manufacture large panels and the project will build a 2-m x 2-m Manufacturing Demonstration Unit (MDU).
NASA Technical Reports Server (NTRS)
Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.
2014-01-01
This presentation will update the community on the development of conformal ablative TPS. As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved downselecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt.In FY13, more advanced testing and modeling of the downselected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to develop a mid-fidelity thermal response model. Additional arc jet testing in the same conditions on various seam designs were very successful in showing that the material could be joined with a minimum of adhesive and required no complicated gap and gap filler design for installation. In addition, the partnership with industry to manufacture thicker rayon felt was very successful. The vendor made a 2-m wide by 30-m long sample of 10-cm thick rayon felt. When carbonized, the resulting thickness was over 7.5-cm thick, nearly 4 times the thickest off-the-shelf carbon felt. In FY14, the project has initiated a partnership with another vendor to begin the scale-up manufacturing effort. This year, the vendor will duplicate the process and manufacture at the current scale for comparison with NASA-processed materials. Properties testing and arc jet testing will be performed on the vendor-processed materials. Planning for manufacturing large, 1-m x 1-m, panels will begin as well. In FY15, the vendor will then manufacture large panels and the project will build a 2-m x 2-m Manufacturing Demonstration Unit (MDU).
Micro-optical fabrication by ultraprecision diamond machining and precision molding
NASA Astrophysics Data System (ADS)
Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.
2017-06-01
Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.
Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Jhong, Kai Jyun; Huang, Wei-Chin; Lee, Wen Hsi
Selective Laser Melting (SLM) is a powder-based additive manufacturing which is capable of producing parts layer-by-layer from a 3D CAD model. The aim of this study is to adopt the selective laser melting technique to magnetic material fabrication. [1]For the SLM process to be practical in industrial use, highly specific mechanical properties of the final product must be achieved. The integrity of the manufactured components depend strongly on each single laser-melted track and every single layer, as well as the strength of the connections between them. In this study, effects of the processing parameters, such as the space distance of surface morphology is analyzed. Our hypothesis is that when a magnetic product is made by the selective laser melting techniques instead of traditional techniques, the finished component will have more precise and effective properties. This study analyzed the magnitudes of magnetic properties in comparison with different parameters in the SLM process and compiled a completed product to investigate the efficiency in contrast with products made with existing manufacturing processes.
Guo, Xiangyang; Song, Chuankui; Ho, Chi-Tang; Wan, Xiaochun
2018-10-15
l-Theanine, the most abundant amino acid in tea, is widely believed to be associated with the tea taste, however, its contribution to the formation of tea aroma is still unknown. Volatiles were determined and nitrogen-containing compounds formed during manufacturing processes were quantified. Lower levels of total sugar and l-theanine were detected in the Oolong tea product undergoing full fire processing (FFOT) suggesting that l-theanine probably involved in the volatile formation during manufacturing processes. Methylpyrazine and 2,5-dimethylpyrazine, two newly formed compounds in FFOT, together with other volatiles were successfully detected in a model thermal reaction of d-glucose and l-theanine (GT-MTR) but not detectable in thermal reactions with single d-glucose (G-MTR) or l-theanine (T-MTR). The concentration of 2,5-dimethylpyrazine increased significantly by adding additional l-theanine to 2nd roasted tea. Our study demonstrated that l-theanine, at least partly, contributed to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Abass, K. I.
2016-11-01
Single Point Incremental Forming process (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The edges of sheet material are clamped while the forming tool is moved along the tool path. The CNC milling machine is used to manufacturing the product. SPIF involves extensive plastic deformation and the description of the process is more complicated by highly nonlinear boundary conditions, namely contact and frictional effects have been accomplished. However, due to the complex nature of these models, numerical approaches dominated by Finite Element Analysis (FEA) are now in widespread use. The paper presents the data and main results of a study on effect of using preforming blank in SPIF through FEA. The considered SPIF has been studied under certain process conditions referring to the test work piece, tool, etc., applying ANSYS 11. The results show that the simulation model can predict an ideal profile of processing track, the behaviour of contact tool-workpiece, the product accuracy by evaluation its thickness, surface strain and the stress distribution along the deformed blank section during the deformation stages.
Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L
2015-03-01
We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including development of small-scale equipment and processes. Develop ways to invest internally in continuous manufacturing. How best to do this will depend on the specifics of a given organization, in particular the current development projects. Upper managers will need to energize their process developers to incorporate continuous manufacturing in at least part of their processes to gain experience and demonstrate directly the benefits. Training of continuous manufacturing technologies, organizational approaches, and regulatory approaches is a key area that industrial leaders should pursue together. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Advanced Infusion Techniques with 3-D Printed Tooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuttall, David; Elliott, Amy; Post, Brian K.
The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanningmore » and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products (MVP) is a small business. Phase II as discussed herein is under consideration by MVP as of this writing. Overall, it is anticipated that developing this process for manufacturing tooling for complex contoured surfaces has applicability to naval and other watercraft as well as bathrooms and large trucks.« less
NASA Technical Reports Server (NTRS)
Ankenman, Bruce; Ermer, Donald; Clum, James A.
1994-01-01
Modules dealing with statistical experimental design (SED), process modeling and improvement, and response surface methods have been developed and tested in two laboratory courses. One course was a manufacturing processes course in Mechanical Engineering and the other course was a materials processing course in Materials Science and Engineering. Each module is used as an 'experiment' in the course with the intent that subsequent course experiments will use SED methods for analysis and interpretation of data. Evaluation of the modules' effectiveness has been done by both survey questionnaires and inclusion of the module methodology in course examination questions. Results of the evaluation have been very positive. Those evaluation results and details of the modules' content and implementation are presented. The modules represent an important component for updating laboratory instruction and to provide training in quality for improved engineering practice.
Marković, Snežana; Kerč, Janez; Horvat, Matej
2017-03-01
We are presenting a new approach of identifying sources of variability within a manufacturing process by NIR measurements of samples of intermediate material after each consecutive unit operation (interprocess NIR sampling technique). In addition, we summarize the development of a multivariate statistical process control (MSPC) model for the production of enteric-coated pellet product of the proton-pump inhibitor class. By developing provisional NIR calibration models, the identification of critical process points yields comparable results to the established MSPC modeling procedure. Both approaches are shown to lead to the same conclusion, identifying parameters of extrusion/spheronization and characteristics of lactose that have the greatest influence on the end-product's enteric coating performance. The proposed approach enables quicker and easier identification of variability sources during manufacturing process, especially in cases when historical process data is not straightforwardly available. In the presented case the changes of lactose characteristics are influencing the performance of the extrusion/spheronization process step. The pellet cores produced by using one (considered as less suitable) lactose source were on average larger and more fragile, leading to consequent breakage of the cores during subsequent fluid bed operations. These results were confirmed by additional experimental analyses illuminating the underlying mechanism of fracture of oblong pellets during the pellet coating process leading to compromised film coating.
Harnessing the Potential of Additive Manufacturing
2016-12-01
manufacturing age, which is dominated by standards for materials, processes and process control. Conventional manufacturing is based upon a design that is...documented either in a drawing or a computer-aided design (CAD) file. The manufacturing team then develops a docu- mented public or private process for...31 Defense AT&L: November-December 2016 Harnessing the Potential of Additive Manufacturing Bill Decker Decker is director of Technology
Improving the process of process modelling by the use of domain process patterns
NASA Astrophysics Data System (ADS)
Koschmider, Agnes; Reijers, Hajo A.
2015-01-01
The use of business process models has become prevalent in a wide area of enterprise applications. But while their popularity is expanding, concerns are growing with respect to their proper creation and maintenance. An obvious way to boost the efficiency of creating high-quality business process models would be to reuse relevant parts of existing models. At this point, however, limited support exists to guide process modellers towards the usage of appropriate model content. In this paper, a set of content-oriented patterns is presented, which is extracted from a large set of process models from the order management and manufacturing production domains. The patterns are derived using a newly proposed set of algorithms, which are being discussed in this paper. The authors demonstrate how such Domain Process Patterns, in combination with information on their historic usage, can support process modellers in generating new models. To support the wider dissemination and development of Domain Process Patterns within and beyond the studied domains, an accompanying website has been set up.
Analysis of residual stress state in sheet metal parts processed by single point incremental forming
NASA Astrophysics Data System (ADS)
Maaß, F.; Gies, S.; Dobecki, M.; Brömmelhoff, K.; Tekkaya, A. E.; Reimers, W.
2018-05-01
The mechanical properties of formed metal components are highly affected by the prevailing residual stress state. A selective induction of residual compressive stresses in the component, can improve the product properties such as the fatigue strength. By means of single point incremental forming (SPIF), the residual stress state can be influenced by adjusting the process parameters during the manufacturing process. To achieve a fundamental understanding of the residual stress formation caused by the SPIF process, a valid numerical process model is essential. Within the scope of this paper the significance of kinematic hardening effects on the determined residual stress state is presented based on numerical simulations. The effect of the unclamping step after the manufacturing process is also analyzed. An average deviation of the residual stress amplitudes in the clamped and unclamped condition of 18 % reveals, that the unclamping step needs to be considered to reach a high numerical prediction quality.
Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions.
Cole, Kevin P; Groh, Jennifer McClary; Johnson, Martin D; Burcham, Christopher L; Campbell, Bradley M; Diseroad, William D; Heller, Michael R; Howell, John R; Kallman, Neil J; Koenig, Thomas M; May, Scott A; Miller, Richard D; Mitchell, David; Myers, David P; Myers, Steven S; Phillips, Joseph L; Polster, Christopher S; White, Timothy D; Cashman, Jim; Hurley, Declan; Moylan, Robert; Sheehan, Paul; Spencer, Richard D; Desmond, Kenneth; Desmond, Paul; Gowran, Olivia
2017-06-16
Advances in drug potency and tailored therapeutics are promoting pharmaceutical manufacturing to transition from a traditional batch paradigm to more flexible continuous processing. Here we report the development of a multistep continuous-flow CGMP (current good manufacturing practices) process that produced 24 kilograms of prexasertib monolactate monohydrate suitable for use in human clinical trials. Eight continuous unit operations were conducted to produce the target at roughly 3 kilograms per day using small continuous reactors, extractors, evaporators, crystallizers, and filters in laboratory fume hoods. Success was enabled by advances in chemistry, engineering, analytical science, process modeling, and equipment design. Substantial technical and business drivers were identified, which merited the continuous process. The continuous process afforded improved performance and safety relative to batch processes and also improved containment of a highly potent compound. Copyright © 2017, American Association for the Advancement of Science.
76 FR 40052 - Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Current Good Manufacturing 0910-AG10 Practice in Manufacturing, Processing, Packing or Holding Animal Food... in Manufacturing, Processing, Packing or Holding Animal Food Legal Authority: 21 U.S.C. 342; 21 U.S.C... constitute on farm manufacturing or processing of food that is not grown, raised, or consumed on a farm or...
Use of digital technologies for nasal prosthesis manufacturing.
Palousek, David; Rosicky, Jiri; Koutny, Daniel
2014-04-01
Digital technology is becoming more accessible for common use in medical applications; however, their expansion in prosthetic and orthotic laboratories is not large because of the persistent image of difficult applicability to real patients. This article aims to offer real example in the area of human facial prostheses. This article describes the utilization of optical digitization, computational modelling, rapid prototyping, mould fabrication and manufacturing of a nasal silicone prosthesis. This technical note defines the key points of the methodology and aspires to contribute to the introduction of a certified manufacturing procedure. The results show that the used technologies reduce the manufacturing time, reflect patient's requirements and allow the manufacture of high-quality prostheses for missing facial asymmetric parts. The methodology provides a good position for further development issues and is usable for clinical practice. Clinical relevance Utilization of digital technologies in facial prosthesis manufacturing process can be a good contribution for higher patient comfort and higher production efficiency but with higher initial investment and demands for experience with software tools.
Liu, Cuimei; Hua, Zhendong; Bai, Yanping
2015-12-01
The illicit manufacture of heroin results in the formation of trace levels of acidic and neutral manufacturing impurities that provide valuable information about the manufacturing process used. In this work, a new ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF) method; that features high resolution, mass accuracy and sensitivity for profiling neutral and acidic heroin manufacturing impurities was developed. After the UPLC-Q-TOF analysis, the retention times and m/z data pairs of acidic and neutral manufacturing impurities were detected, and 19 peaks were found to be evidently different between heroin samples from "Golden Triangle" and "Golden Crescent". Based on the data set of these 19 impurities in 150 authentic heroin samples, classification of heroin geographic origins was successfully achieved utilizing partial least squares discriminant analysis (PLS-DA). By analyzing another data set of 267 authentic heroin samples, the developed discrimiant model was validated and proved to be accurate and reliable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Monoclonal antibody disulfide reduction during manufacturing
Hutterer, Katariina M.; Hong, Robert W.; Lull, Jonathon; Zhao, Xiaoyang; Wang, Tian; Pei, Rex; Le, M. Eleanor; Borisov, Oleg; Piper, Rob; Liu, Yaoqing Diana; Petty, Krista; Apostol, Izydor; Flynn, Gregory C.
2013-01-01
Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production. PMID:23751615
Manufacturing Process Simulation of Large-Scale Cryotanks
NASA Technical Reports Server (NTRS)
Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)
2002-01-01
NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.
NASA Astrophysics Data System (ADS)
Gaillac, Alexis; Ly, Céline
2018-05-01
Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.
Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S
2013-04-05
This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost savings obtained by 8 proof-of-concept batches would be sufficient to pay back the investment cost of the pilot-scale semi-continuous chromatography system. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Klusemann, Benjamin; Bambach, Markus
2018-05-01
Processing conditions play a crucial role for the resulting microstructure and properties of the material. In particular, processing materials under non-equilibrium conditions can lead to a remarkable improvement of the final properties [1]. Additive manufacturing represents a specific process example considered in this study. Models for the prediction of residual stresses and microstructure in additive manufacturing processes, such as laser metal deposition, are being developed with huge efforts to support the development of materials and processes as well as to support process design [2-4]. Since the microstructure predicted after each heating and cooling cycle induced by the moving laser source enters the phase transformation kinetics and microstucture evolution of the subsequent heating and cooling cycle, a feed-back loop for the microstructure calculation is created. This calculation loop may become unstable so that the computed microstructure and related properties become very sensitive to small variations in the input parameters, e.g. thermal conductivity. In this paper, a model for phase transformation in Ti-6Al-4V, originally proposed by Charles Murgau et al. [5], is adopted and minimal adjusted concerning the decomposition of the martensite phase are made. This model is subsequently used to study the changes in the predictions of the different phase volume fractions during heating and cooling under the conditions of laser metal deposition with respect to slight variations in the thermal process history.