Sample records for manufacturing process planning

  1. Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka

    Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.

  2. Integrated Dynamic Process Planning and Scheduling in Flexible Manufacturing Systems via Autonomous Agents

    NASA Astrophysics Data System (ADS)

    Nejad, Hossein Tehrani Nik; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka

    Process planning and scheduling are important manufacturing planning activities which deal with resource utilization and time span of manufacturing operations. The process plans and the schedules generated in the planning phase shall be modified in the execution phase due to the disturbances in the manufacturing systems. This paper deals with a multi-agent architecture of an integrated and dynamic system for process planning and scheduling for multi jobs. A negotiation protocol is discussed, in this paper, to generate the process plans and the schedules of the manufacturing resources and the individual jobs, dynamically and incrementally, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans and schedules are searched and generated to cope with both the dynamic status and the disturbances of the manufacturing systems. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans and schedules in the dynamic manufacturing environment. A simulation software has been developed to carry out case studies, aimed at verifying the performance of the proposed multi-agent architecture.

  3. Towards automatic planning for manufacturing generative processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CALTON,TERRI L.

    2000-05-24

    Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from themore » original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.« less

  4. Implementation of a Web-Based Collaborative Process Planning System

    NASA Astrophysics Data System (ADS)

    Wang, Huifen; Liu, Tingting; Qiao, Li; Huang, Shuangxi

    Under the networked manufacturing environment, all phases of product manufacturing involving design, process planning, machining and assembling may be accomplished collaboratively by different enterprises, even different manufacturing stages of the same part may be finished collaboratively by different enterprises. Based on the self-developed networked manufacturing platform eCWS(e-Cooperative Work System), a multi-agent-based system framework for collaborative process planning is proposed. In accordance with requirements of collaborative process planning, share resources provided by cooperative enterprises in the course of collaboration are classified into seven classes. Then a reconfigurable and extendable resource object model is built. Decision-making strategy is also studied in this paper. Finally a collaborative process planning system e-CAPP is developed and applied. It provides strong support for distributed designers to collaboratively plan and optimize product process though network.

  5. A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji

    Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.

  6. Integration Framework of Process Planning based on Resource Independent Operation Summary to Support Collaborative Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulvatunyou, Boonserm; Wysk, Richard A.; Cho, Hyunbo

    2004-06-01

    In today's global manufacturing environment, manufacturing functions are distributed as never before. Design, engineering, fabrication, and assembly of new products are done routinely in many different enterprises scattered around the world. Successful business transactions require the sharing of design and engineering data on an unprecedented scale. This paper describes a framework that facilitates the collaboration of engineering tasks, particularly process planning and analysis, to support such globalized manufacturing activities. The information models of data and the software components that integrate those information models are described. The integration framework uses an Integrated Product and Process Data (IPPD) representation called a Resourcemore » Independent Operation Summary (RIOS) to facilitate the communication of business and manufacturing requirements. Hierarchical process modeling, process planning decomposition and an augmented AND/OR directed graph are used in this representation. The Resource Specific Process Planning (RSPP) module assigns required equipment and tools, selects process parameters, and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a prototype system is developed and demonstrated with an exemplary part. Java and XML (Extensible Markup Language) are used to ensure software and information portability.« less

  7. Manufacturing Planning Guide

    NASA Technical Reports Server (NTRS)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  8. Model Development and Process Analysis for Lean Cellular Design Planning in Aerospace Assembly and Manufacturing

    NASA Astrophysics Data System (ADS)

    Hilburn, Monty D.

    Successful lean manufacturing and cellular manufacturing execution relies upon a foundation of leadership commitment and strategic planning built upon solid data and robust analysis. The problem for this study was to create and employ a simple lean transformation planning model and review process that could be used to identify functional support staff resources required to plan and execute lean manufacturing cells within aerospace assembly and manufacturing sites. The lean planning model was developed using available literature for lean manufacturing kaizen best practices and validated through a Delphi panel of lean experts. The resulting model and a standardized review process were used to assess the state of lean transformation planning at five sites of an international aerospace manufacturing and assembly company. The results of the three day, on-site review were compared with baseline plans collected from each of the five sites to determine if there analyzed, with focus on three critical areas of lean planning: the number and type of manufacturing cells identified, the number, type, and duration of planned lean and continuous kaizen events, and the quantity and type of functional staffing resources planned to support the kaizen schedule. Summarized data of the baseline and on-site reviews was analyzed with descriptive statistics. ANOVAs and paired-t tests at 95% significance level were conducted on the means of data sets to determine if null hypotheses related to cell, kaizen event, and support resources could be rejected. The results of the research found significant differences between lean transformation plans developed by site leadership and plans developed utilizing the structured, on-site review process and lean transformation planning model. The null hypothesis that there was no difference between the means of pre-review and on-site cell counts was rejected, as was the null hypothesis that there was no significant difference in kaizen event plans. These factors are critical inputs into the support staffing resources calculation used by the lean planning model. Null hypothesis related to functional support staff resources was rejected for most functional groups, indicating that the baseline site plan inadequately provided for cross-functional staff involvement to support the lean transformation plan. Null hypotheses related to total lean transformation staffing could not be rejected, indicating that while total staffing plans were not significantly different than plans developed during the on-site review and through the use of the lean planning model, the allocation of staffing among various functional groups such as engineering, production, and materials planning was an issue. The on-site review process and simple lean transformation plan developed was determined to be useful in identifying short-comings in lean transformation planning within aerospace manufacturing and assembly sites. It was concluded that the differences uncovered were likely contributing factors affecting the effectiveness of aerospace manufacturing sites' implementation of lean cellular manufacturing.

  9. Automated process planning system

    NASA Technical Reports Server (NTRS)

    Mann, W.

    1978-01-01

    Program helps process engineers set up manufacturing plans for machined parts. System allows one to develop and store library of similar parts characteristics, as related to particular facility. Information is then used in interactive system to help develop manufacturing plans that meet required standards.

  10. Integrated flexible manufacturing program for manufacturing automation and rapid prototyping

    NASA Technical Reports Server (NTRS)

    Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.

    1993-01-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  11. Survey Available Computer Software for Automated Production Planning and Inventory Control, and Software and Hardware for Data Logging and Monitoring Shop Floor Activities

    DTIC Science & Technology

    1993-08-01

    pricing and sales, order processing , and purchasing. The class of manufacturing planning functions include aggregate production planning, materials...level. I Depending on the application, each control level will have a number of functions associated with it. For instance, order processing , purchasing...include accounting, sales forecasting, product costing, pricing and sales, order processing , and purchasing. The class of manufacturing planning functions

  12. Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy.

    PubMed

    Jones, Emma-Louise; Tonino Baldion, Anna; Thomas, Christopher; Burrows, Tom; Byrne, Nick; Newton, Victoria; Aldridge, Sarah

    Custom-made surface mold applicators often allow more flexibility when carrying out skin brachytherapy, particularly for small treatment areas with high surface obliquity. They can, however, be difficult to manufacture, particularly if there is a lack of experience in superficial high-dose-rate brachytherapy techniques or with limited resources. We present a novel method of manufacturing superficial brachytherapy applicators utilizing three-dimensional (3D)-printing techniques. We describe the treatment planning process and the process of applicator manufacture. The treatment planning process, with the introduction of a pre-plan, allows for an "ideal" catheter arrangement within an applicator to be determined, exploiting varying catheter orientations, heights, and curvatures if required. The pre-plan arrangement is then 3D printed to the exact specifications of the pre-plan applicator design. This results in improved target volume coverage and improved sparing of organs at risk. Using a pre-plan technique for ideal catheter placement followed by automated 3D-printed applicator manufacture has greatly improved the entire process of superficial high-dose-rate brachytherapy treatment. We are able to design and manufacture flexible, well-fitting, superior quality applicators resulting in a more efficient and improved patient pathway and patient experience. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. Towards Knowledge Management for Smart Manufacturing.

    PubMed

    Feng, Shaw C; Bernstein, William Z; Hedberg, Thomas; Feeney, Allison Barnard

    2017-09-01

    The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle-impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing. Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of smart manufacturing. The case study in this paper provides some example knowledge objects to enable smart manufacturing.

  14. Toward a space materials systems program

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1981-01-01

    A program implementation model is presented which covers the early stages of space material processing and manufacturing. The model includes descriptions of major program elements, development and experiment requirements in space materials processing and manufacturing, and an integration of the model into NASA's long range plans as well as its evolution from present Materials Processing in Space plans.

  15. Engineering of mechanical manufacturing from the cradle to cradle

    NASA Astrophysics Data System (ADS)

    Peralta, M. E.; Aguayo, F.; Lama, J. R.

    2012-04-01

    The sustainability of manufacturing processes lies in industrial planning and productive activity. Industrial plants are characterized by the management of resource (inputs and outputs), processing and conversion processes, which usually are organized in a linear system. Good planning will optimize the manufacturing and promoting the quality of the industrial system. Cradle to Cradle is a new paradigm for engineering and sustainable manufacturing that integrates projects (industrial parks, manufacturing plants, systems and products) in a framework consistent with the environment, adapted to the society and technology and economically viable. To carry it out, we implement this paradigm in the MGE2 (Genomic Model of Eco-innovation and Eco-design), as a methodology for designing and developing products and manufacturing systems with an approach from the cradle to cradle.

  16. Manufacturing engineering: Principles for optimization

    NASA Astrophysics Data System (ADS)

    Koenig, Daniel T.

    Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.

  17. Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes

    NASA Astrophysics Data System (ADS)

    Cropper, A. E.; Wang, Z.

    1995-08-01

    Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.

  18. Method and Tool for Design Process Navigation and Automatic Generation of Simulation Models for Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji

    Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.

  19. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  20. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1978-01-01

    An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.

  1. Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review

    NASA Astrophysics Data System (ADS)

    Singh, K.; Sultan, I.

    2017-07-01

    Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.

  2. Reducing shingle waste at a manufacturing facility: 1990 MNTAP summer intern report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menke, D.

    1990-12-31

    CertainTeed manufactures roofing shingles at it`s Shakopee, MN facility. Two process coating lines, and one assembly line, produce fifteen shingle types in fifteen different colors. The wastes generated by this process were the result of planned and unplanned variations in the continuous production process. Planned variations included changes in color, while felt breaks were common unplanned variations. Five options were identified that could reduce the amount of waste generated: Using a standard procedure for recovering from felt breaks, Creating a process cushion to maintain continuous production in the event of temporary shutdowns, An automated color change process, Manufacture of amore » new product from waste material, Minor process changes to reduce the frequency of breaks.« less

  3. Integrating MRP (materiel requirements planning) II and JIT to achieve world-class status.

    PubMed

    Titone, R C

    1994-05-01

    The concepts and principles of using manufacturing resource planning (MRP II) for planning are not new. Their success has been proven in numerous manufacturing companies in America. The concepts and principles of using just-in-time (JIT) inventory for execution, while more recent, have also been available for some time, and their success in Japan well documented. However, it is the effective integration of these two powerful tools that open the way to achieving world-class manufacturing status. This article will utilize a newly developed world-class manufacturing model, which will review the aspects of planning, beginning with a business plan through the production planning process and culminating with a master schedule that drives a materiel/capacity plan. The importance and interrelationship of these functions are reviewed. The model then illustrates the important aspects of executing these plans beginning with people issues, through total quality control (TQC) and pull systems. We will then utilize this new functional model to demonstrate the relationship between these various functions and the importance of integrating them with a total comprehensive manufacturing strategy that will lead to world-class manufacturing and profits.

  4. Discrete State Change Model of Manufacturing Quality to Aid Assembly Process Design

    NASA Astrophysics Data System (ADS)

    Koga, Tsuyoshi; Aoyama, Kazuhiro

    This paper proposes a representation model of the quality state change in an assembly process that can be used in a computer-aided process design system. In order to formalize the state change of the manufacturing quality in the assembly process, the functions, operations, and quality changes in the assembly process are represented as a network model that can simulate discrete events. This paper also develops a design method for the assembly process. The design method calculates the space of quality state change and outputs a better assembly process (better operations and better sequences) that can be used to obtain the intended quality state of the final product. A computational redesigning algorithm of the assembly process that considers the manufacturing quality is developed. The proposed method can be used to design an improved manufacturing process by simulating the quality state change. A prototype system for planning an assembly process is implemented and applied to the design of an auto-breaker assembly process. The result of the design example indicates that the proposed assembly process planning method outputs a better manufacturing scenario based on the simulation of the quality state change.

  5. Pyrotechnic hazards classification and evaluation program. Phase 2, segment 3: Test plan for determining hazards associated with pyrotechnic manufacturing processes

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A comprehensive test plan for determining the hazards associated with pyrotechnic manufacturing processes is presented. The rationale for each test is based on a systematic analysis of historical accounts of accidents and a detailed study of the characteristics of each manufacturing process. The most hazardous manufacturing operations have been determined to be pressing, mixing, reaming, and filling. The hazard potential of a given situation is evaluated in terms of the probabilities of initiation, communication, and transition to detonation (ICT). The characteristics which affect the ICT probabilities include the ignition mechanisms which are present either in normal or abnormal operation, the condition and properties of the pyrotechnic material, and the configuration of the processing equipment. Analytic expressions are derived which describe the physical conditions of the system, thus permitting a variety of processes to be evaluated in terms of a small number of experiments.

  6. Efficiency improvement of technological preparation of power equipment manufacturing

    NASA Astrophysics Data System (ADS)

    Milukov, I. A.; Rogalev, A. N.; Sokolov, V. P.; Shevchenko, I. V.

    2017-11-01

    Competitiveness of power equipment primarily depends on speeding-up the development and mastering of new equipment samples and technologies, enhancement of organisation and management of design, manufacturing and operation. Actual political, technological and economic conditions cause the acute need in changing the strategy and tactics of process planning. At that the issues of maintenance of equipment with simultaneous improvement of its efficiency and compatibility to domestically produced components are considering. In order to solve these problems, using the systems of computer-aided process planning for process design at all stages of power equipment life cycle is economically viable. Computer-aided process planning is developed for the purpose of improvement of process planning by using mathematical methods and optimisation of design and management processes on the basis of CALS technologies, which allows for simultaneous process design, process planning organisation and management based on mathematical and physical modelling of interrelated design objects and production system. An integration of computer-aided systems providing the interaction of informative and material processes at all stages of product life cycle is proposed as effective solution to the challenges in new equipment design and process planning.

  7. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  8. Low Cost Manufacturing of Composite Cryotanks

    NASA Technical Reports Server (NTRS)

    Meredith, Brent; Palm, Tod; Deo, Ravi; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This viewgraph presentation reviews research and development of cryotank manufacturing conducted by Northrup Grumman. The objectives of the research and development included the development and validation of manufacturing processes and technology for fabrication of large scale cryogenic tanks, the establishment of a scale-up and facilitization plan for full scale cryotanks, the development of non-autoclave composite manufacturing processes, the fabrication of subscale tank joints for element tests, the performance of manufacturing risk reduction trials for the subscale tank, and the development of full-scale tank manufacturing concepts.

  9. NIST: Information Management in the AMRF

    NASA Technical Reports Server (NTRS)

    Callaghan, George (Editor)

    1991-01-01

    The information management strategies developed for the NIST Automated Manufacturing Research Facility (AMRF) - a prototype small batch manufacturing facility used for integration and measurement related standards research are outlined in this video. The five major manufacturing functions - design, process planning, off-line programming, shop floor control, and materials processing are explained and their applications demonstrated.

  10. Environmentally sound manufacturing

    NASA Technical Reports Server (NTRS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1994-01-01

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  11. Application of genetic algorithm in integrated setup planning and operation sequencing

    NASA Astrophysics Data System (ADS)

    Kafashi, Sajad; Shakeri, Mohsen

    2011-01-01

    Process planning is an essential component for linking design and manufacturing process. Setup planning and operation sequencing is two main tasks in process planning. Many researches solved these two problems separately. Considering the fact that the two functions are complementary, it is necessary to integrate them more tightly so that performance of a manufacturing system can be improved economically and competitively. This paper present a generative system and genetic algorithm (GA) approach to process plan the given part. The proposed approach and optimization methodology analyses the TAD (tool approach direction), tolerance relation between features and feature precedence relations to generate all possible setups and operations using workshop resource database. Based on these technological constraints the GA algorithm approach, which adopts the feature-based representation, optimizes the setup plan and sequence of operations using cost indices. Case study show that the developed system can generate satisfactory results in optimizing the setup planning and operation sequencing simultaneously in feasible condition.

  12. Virtual manufacturing in reality

    NASA Astrophysics Data System (ADS)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  13. Work Measurements: Interdisciplinary Overlap in Manufacturing and Algebra I

    ERIC Educational Resources Information Center

    Rose, Mary Annette

    2007-01-01

    Manufacturing engineering provides a relevant context from which to envision interdisciplinary learning experiences because engineers integrate their knowledge and skills of manufacturing and algebra processes in order to plan the efficient manufacture of products. In this article, the author describes an interdisciplinary learning activity that…

  14. 78 FR 44455 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... Sonoma County, California. The Site's main property contains a manufacturing building and adjoining... corner of the manufacturing facility. The Site building is currently occupied by three companies, which.... Sola manufactured ophthalmic lenses at the facility from 1978 through 2001. The manufacturing process...

  15. Manufacturing Squares: An Integrative Statistical Process Control Exercise

    ERIC Educational Resources Information Center

    Coy, Steven P.

    2016-01-01

    In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…

  16. Jute: A Different Story about the Development of Manufacturing Industry and Trade between Britain and India.

    ERIC Educational Resources Information Center

    Geyer, Patricia

    1997-01-01

    Examines the process used to develop a lesson plan from an academic research article. Includes a lesson plan developed from an article in the Spring 1997 issue of "The Journal of World History" tracing the history of jute (a substitute for flax) manufacturing in colonial India. (MJP)

  17. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  18. Planning for the semiconductor manufacturer of the future

    NASA Technical Reports Server (NTRS)

    Fargher, Hugh E.; Smith, Richard A.

    1992-01-01

    Texas Instruments (TI) is currently contracted by the Air Force Wright Laboratory and the Defense Advanced Research Projects Agency (DARPA) to develop the next generation flexible semiconductor wafer fabrication system called Microelectronics Manufacturing Science & Technology (MMST). Several revolutionary concepts are being pioneered on MMST, including the following: new single-wafer rapid thermal processes, in-situ sensors, cluster equipment, and advanced Computer Integrated Manufacturing (CIM) software. The objective of the project is to develop a manufacturing system capable of achieving an order of magnitude improvement in almost all aspects of wafer fabrication. TI was awarded the contract in Oct., 1988, and will complete development with a fabrication facility demonstration in April, 1993. An important part of MMST is development of the CIM environment responsible for coordinating all parts of the system. The CIM architecture being developed is based on a distributed object oriented framework made of several cooperating subsystems. The software subsystems include the following: process control for dynamic control of factory processes; modular processing system for controlling the processing equipment; generic equipment model which provides an interface between processing equipment and the rest of the factory; specification system which maintains factory documents and product specifications; simulator for modelling the factory for analysis purposes; scheduler for scheduling work on the factory floor; and the planner for planning and monitoring of orders within the factory. This paper first outlines the division of responsibility between the planner, scheduler, and simulator subsystems. It then describes the approach to incremental planning and the way in which uncertainty is modelled within the plan representation. Finally, current status and initial results are described.

  19. Proposal of Modification Strategy of NC Program in the Virtual Manufacturing Environment

    NASA Astrophysics Data System (ADS)

    Narita, Hirohisa; Chen, Lian-Yi; Fujimoto, Hideo; Shirase, Keiichi; Arai, Eiji

    Virtual manufacturing will be a key technology in process planning, because there are no evaluation tools for cutting conditions. Therefore, virtual machining simulator (VMSim), which can predict end milling processes, has been developed. The modification strategy of NC program using VMSim is proposed in this paper.

  20. Simulation based optimization on automated fibre placement process

    NASA Astrophysics Data System (ADS)

    Lei, Shi

    2018-02-01

    In this paper, a software simulation (Autodesk TruPlan & TruFiber) based method is proposed to optimize the automate fibre placement (AFP) process. Different types of manufacturability analysis are introduced to predict potential defects. Advanced fibre path generation algorithms are compared with respect to geometrically different parts. Major manufacturing data have been taken into consideration prior to the tool paths generation to achieve high success rate of manufacturing.

  1. Ramp Technology and Intelligent Processing in Small Manufacturing

    NASA Technical Reports Server (NTRS)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  2. Ramp technology and intelligent processing in small manufacturing

    NASA Astrophysics Data System (ADS)

    Rentz, Richard E.

    1992-04-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  3. Determination of the robot location in a workcell of a flexible production line

    NASA Astrophysics Data System (ADS)

    Banas, W.; Sekala, A.; Gwiazda, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Location of components of a manufacturing cell is apparently an easy task but even during the constructing of a manufacturing cell, in which is planned a production of one, simple component it is necessary, among others, to check access to all required points. The robot in a manufacturing cell must handle both machine tools located in a manufacturing cell and parts store (input and output one). It handles also transport equipment and auxiliary stands. Sometimes, during the design phase, the changes of robot location are necessary due to the limitation of access to its required working positions. Often succeeding changes of a manufacturing cell configuration are realized. They occur at the stages of visualization and simulation of robot program functioning. In special cases, it is even necessary to replace the planned robot with a robot of greater range or of a different configuration type. This article presents and describes the parameters and components which should be taken into consideration during designing robotised manufacturing cells. The main idea bases on application of advanced engineering programs to adding the designing process. Using this approach it could be possible to present the designing process of an exemplar flexible manufacturing cell intended to manufacture two similar components. The proposed model of such designed manufacturing cell could be easily extended to the manufacturing cell model in which it is possible to produce components belonging the one technological group of chosen similarity level. In particular, during the design process, one should take into consideration components which limit the ability of robot foundation. It is also important to show the method of determining the best location of robot foundation. The presented design method could also support the designing process of other robotised manufacturing cells.

  4. Key technologies for manufacturing and processing sheet materials: A global perspective

    NASA Astrophysics Data System (ADS)

    Demeri, Mahmoud Y.

    2001-02-01

    Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.

  5. Inspection planning development: An evolutionary approach using reliability engineering as a tool

    NASA Technical Reports Server (NTRS)

    Graf, David A.; Huang, Zhaofeng

    1994-01-01

    This paper proposes an evolutionary approach for inspection planning which introduces various reliability engineering tools into the process and assess system trade-offs among reliability, engineering requirement, manufacturing capability and inspection cost to establish an optimal inspection plan. The examples presented in the paper illustrate some advantages and benefits of the new approach. Through the analysis, reliability and engineering impacts due to manufacturing process capability and inspection uncertainty are clearly understood; the most cost effective and efficient inspection plan can be established and associated risks are well controlled; some inspection reductions and relaxations are well justified; and design feedbacks and changes may be initiated from the analysis conclusion to further enhance reliability and reduce cost. The approach is particularly promising as global competitions and customer quality improvement expectations are rapidly increasing.

  6. Application of Particle Swarm Optimization in Computer Aided Setup Planning

    NASA Astrophysics Data System (ADS)

    Kafashi, Sajad; Shakeri, Mohsen; Abedini, Vahid

    2011-01-01

    New researches are trying to integrate computer aided design (CAD) and computer aided manufacturing (CAM) environments. The role of process planning is to convert the design specification into manufacturing instructions. Setup planning has a basic role in computer aided process planning (CAPP) and significantly affects the overall cost and quality of machined part. This research focuses on the development for automatic generation of setups and finding the best setup plan in feasible condition. In order to computerize the setup planning process, three major steps are performed in the proposed system: a) Extraction of machining data of the part. b) Analyzing and generation of all possible setups c) Optimization to reach the best setup plan based on cost functions. Considering workshop resources such as machine tool, cutter and fixture, all feasible setups could be generated. Then the problem is adopted with technological constraints such as TAD (tool approach direction), tolerance relationship and feature precedence relationship to have a completely real and practical approach. The optimal setup plan is the result of applying the PSO (particle swarm optimization) algorithm into the system using cost functions. A real sample part is illustrated to demonstrate the performance and productivity of the system.

  7. 2015 Army Science Planning and Strategy Meeting Series: Outcomes and Conclusions

    DTIC Science & Technology

    2017-12-21

    modeling and nanoscale characterization tools to enable efficient design of hybridized manufacturing ; realtime, multiscale computational capability...to enable predictive analytics for expeditionary on-demand manufacturing • Discovery of design principles to enable programming advanced genetic...goals, significant research is needed to mature the fundamental materials science, processing and manufacturing sciences, design methodologies, data

  8. Continuous Flow in Labour-Intensive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Pacheco Eng., Jhonny; Carbajal MSc., Eduardo; Stoll-Ing., Cesar, Dr.

    2017-06-01

    A continuous-flow manufacturing represents the peak of standard production, and usually it means high production in a strict line production. Furthermore, low-tech industry demands high labour-intensive, in this context the efficient of the line production is tied at the job shop organization. Labour-intensive manufacturing processes are a common characteristic for developing countries. This research aims to propose a methodology for production planning in order to fulfilment a variable monthly production quota. The main idea is to use a clock as orchestra director in order to synchronize the rate time (takt time) of customer demand with the manufacturing time. In this way, the study is able to propose a stark reduction of stock in process, over-processing, and unnecessary variability.

  9. Production of rotational parts in small-series and computer-aided planning of its production engineering

    NASA Astrophysics Data System (ADS)

    Dudas, Illes; Berta, Miklos; Cser, Istvan

    1998-12-01

    Up-to-date manufacturing equipments of production of rotational parts in small series are lathe-centers and CNC grinding machines with high concentration of manufacturing operations. By the use of these machine tools it can be produced parts with requirements of increased accuracy and surface quality. In the lathe centers, which contain the manufacturing procedures of lathes using stationary tools and of drilling-milling machine tools using rotational tools, non-rotational surfaces of rotational parts can also be produced. The high concentration of manufacturing operations makes necessary the planning and programing of the measuring, monitoring and quality control into the technological process during manufacturing operation. In this way, taking into consideration the technological possibilities of lathe canters, the scope of computer aided technological planning duties significantly increases. It is trivial requirement to give only once the descriptions of the prefabricated parts and ready made parts. Starting taking into account these careful considerations we have been developing the planning system of technology of body of revolution on the base of GTIPROG/EC system which useful for programming of lathe centers. Out paper deals with the results of development and the occurring problems.

  10. Sure, They Can Build It But...Manufacturing Students Need Process Planning Skills

    ERIC Educational Resources Information Center

    Obi, Samuel C.

    2007-01-01

    Manufacturing systems students usually complete lab projects for class requirements. However, they often do not have an idea how many resources such as time, tools, and materials they will need to complete a project until they get into constructing it. Yet one of the first tasks of real-world manufacturing personnel when they receive new product…

  11. Finite Progressive Planning for the Assembly Process in Footwear

    NASA Astrophysics Data System (ADS)

    Reyes, John; Aldás, Darwin; Salazar, Edisson; Armendáriz, Evelyn; Álvarez, Kevin; Núñez, José; García, Mario

    2017-06-01

    The scheduling of the operations of a manufacturing system is recognized for its efficiency in establishing a characteristic rate of production based on the forecasting of the ending date of an order. However, progressive planning focused on the footwear industries has not been studied in detail, since it is limited by the use of machines and supply according to the demand of the production line, whose development is based on just in time. The study proposes a finite progressive planning model in the area of footwear assembly that begins with analysis of the demand and identification of manufacturing constraints in order to establish an optimal ordering sequence. The results show manufacturing requirements through production orders that automatically determine production shifts per order, through experimentation of scenarios, the 25% increase in productivity indicators and a 31% improvement in efficiency are established. This improvement represents higher benefits for the industrial sector when establishing planning in the workplace.

  12. Computer integrated manufacturing/processing in the HPI. [Hydrocarbon Processing Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, J.S.

    1993-05-01

    Hydrocarbon Processing and Systemhouse Inc., developed a comprehensive survey on the status of computer integrated manufacturing/processing (CIM/CIP) targeted specifically to the unique requirements of the hydrocarbon processing industry. These types of surveys and other benchmarking techniques can be invaluable in assisting companies to maximize business benefits from technology investments. The survey was organized into 5 major areas: CIM/CIP planning, management perspective, functional applications, integration and technology infrastructure and trends. The CIM/CIP planning area dealt with the use and type of planning methods to plan, justify implement information technology projects. The management perspective section addressed management priorities, expenditure levels and implementationmore » barriers. The functional application area covered virtually all functional areas of organization and focused on the specific solutions and benefits in each of the functional areas. The integration section addressed the needs and integration status of the organization's functional areas. Finally, the technology infrastructure and trends section dealt with specific technologies in use as well as trends over the next three years. In February 1993, summary areas from preliminary results were presented at the 2nd International Conference on Productivity and Quality in the Hydrocarbon Processing Industry.« less

  13. Reconfigurable manufacturing execution system for pipe cutting

    NASA Astrophysics Data System (ADS)

    Yin, Y. H.; Xie, J. Y.

    2011-08-01

    This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.

  14. Manufacturing Process Applications Team (MATeam)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.

  15. Integrated Glass Coating Manufacturing Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, Brenor

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs andmore » a detailed deployment plan for the equipment.« less

  16. A strategic planning methodology for aircraft redesign

    NASA Astrophysics Data System (ADS)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and tools that are identified within these research areas have been abstracted and adapted into the proposed SPEC method to meet the research goals. The proposed SPEC method is shown to be promising in improving the overall efficiency of the derivative aircraft planning process through two notional aircraft system redesign case studies that are presented in this study.

  17. CIM's bridge from CADD to CAM: Data management requirements for manufacturing engineering

    NASA Technical Reports Server (NTRS)

    Ford, S. J.

    1984-01-01

    Manufacturing engineering represents the crossroads of technical data management in a Computer Integrated Manufacturing (CIM) environment. Process planning, numerical control programming and tool design are the key functions which translate information from as engineered to as assembled. In order to transition data from engineering to manufacturing, it is necessary to introduce a series of product interpretations which contain an interim introduction of technical parameters. The current automation of the product definition and the production process places manufacturing engineering in the center of CAD/CAM with the responsibility of communicating design data to the factory floor via a manufacturing model of the data. A close look at data management requirements for manufacturing engineering is necessary in order to establish the overall specifications for CADD output, CAM input, and CIM integration. The functions and issues associated with the orderly evolution of computer aided engineering and manufacturing are examined.

  18. How to unlock the benefits of MRP (materiel requirements planning) II and Just-in-Time.

    PubMed

    Jacobi, M A

    1994-05-01

    Manufacturing companies need to use the best and most applicable parts of MRP II and JIT to run their businesses effectively. MRP II provides the methodology to plan and control the total resources of the company and focuses on the processes that add value to their customers' products. It is the cornerstone of total quality management, as it reduces the variability and costly activities in the communication and subsequent execution of the required steps from customer order to shipment. JIT focuses on simplifying the total business operation and execution of business processes. MRP II and JIT are the foundations for successful manufacturing businesses.

  19. Bidding-based autonomous process planning and scheduling

    NASA Astrophysics Data System (ADS)

    Gu, Peihua; Balasubramanian, Sivaram; Norrie, Douglas H.

    1995-08-01

    Improving productivity through computer integrated manufacturing systems (CIMS) and concurrent engineering requires that the islands of automation in an enterprise be completely integrated. The first step in this direction is to integrate design, process planning, and scheduling. This can be achieved through a bidding-based process planning approach. The product is represented in a STEP model with detailed design and administrative information including design specifications, batch size, and due dates. Upon arrival at the manufacturing facility, the product registered in the shop floor manager which is essentially a coordinating agent. The shop floor manager broadcasts the product's requirements to the machines. The shop contains autonomous machines that have knowledge about their functionality, capabilities, tooling, and schedule. Each machine has its own process planner and responds to the product's request in a different way that is consistent with its capabilities and capacities. When more than one machine offers certain process(es) for the same requirements, they enter into negotiation. Based on processing time, due date, and cost, one of the machines wins the contract. The successful machine updates its schedule and advises the product to request raw material for processing. The concept was implemented using a multi-agent system with the task decomposition and planning achieved through contract nets. The examples are included to illustrate the approach.

  20. The Role of the Manufacturer in Air Transportation Planning

    NASA Technical Reports Server (NTRS)

    Mackenzie, J.

    1972-01-01

    The role of the aircraft manufacturer in the airline industry is considered. The process is illustrated by using a fictitious airline as an example--that is, a case study approach with Mid-Coast Airways serving as the example. Both in slide form and with supporting papers, a brief history of the airline, a description of its route structure and a forecast based on econometric analysis are presented. Once the forecast rationale is explained, information outlines the requirements for additional aircraft and the application of new aircraft across the system using alternative fleet plan options. The fleet plan is translated into financial summaries which indicate the relative merit of alternative aircraft types or operating plans.

  1. Planning Study to Establish DoD Manufacturing Technology Information Analysis Center.

    DTIC Science & Technology

    1981-01-01

    model for an MTIAC. 5-3 I Type of information inputs from potential MTIAC sources. 5-5 5-3 Processing functions required to produce MTIAC outputs. 5-8...short supply * Energy conservation and concerns of energy inten- siveness of various manufacturing processes and systems required for production of DOD...not play a major role in the process of MT invention, innovation, or diffusion. MT productivity efforts for private industry are carried out by

  2. MANTECH project book

    NASA Astrophysics Data System (ADS)

    The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.

  3. Materials Genome Initiative

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes

  4. ANSI/AIAA S-081A, Pressure Vessel Standards Implementation Guidelines

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael J.

    2009-01-01

    The stress rupture specification for Composite Overwrapped Pressure Vessels (COPV) is discussed. The composite shell of the COPV shall be designed to meet the design life considering the time it is under sustained load. A Mechcanical Damage Control Plan (MDCP) shall be created and implemented that assures the COPV will not fail due to mechanical damage due to manufacturing, testing, shipping, installation, or flight. Proven processes and procedures for fabrication and repair shall be used to preclude damage or material degradation during material processing, manufacturing operations, and refurbushment.Selected NDI techniques for the liner and/or boss(es) shall be performed before overwrapping with composite. When visual inspection reveals mechanical damage or defects exceeding manufacturing specification levels (and standard repair procedures), the damaged COPV shall be submitted to a material review board (MRB) for disposition. Every COPV shall be subjected to visual and other non-destructive inspection (NDI), per the inspection plan.

  5. Chemistry, manufacturing and control (CMC) and clinical trial technical support for influenza vaccine manufacturers.

    PubMed

    Wahid, Rahnuma; Holt, Renee; Hjorth, Richard; Berlanda Scorza, Francesco

    2016-10-26

    With the support of the Biomedical Advanced Research and Development Authority (BARDA) of the US Department of Health and Human Services, PATH has contributed to the World Health Organization's (WHO's) Global Action Plan for Influenza Vaccines (GAP) by providing technical and clinical assistance to several developing country vaccine manufacturers (DCVMs). GAP builds regionally based independent and sustainable influenza vaccine production capacity to mitigate the overall global shortage of influenza vaccines. The program also ensures adequate influenza vaccine manufacturing capacity in the event of an influenza pandemic. Since 2009, PATH has worked closely with two DCVMs in Vietnam: the Institute of Vaccines and Medical Biologicals (IVAC) and VABIOTECH. Beginning in 2013, PATH also began working with Torlak Institute in Serbia; Instituto Butantan in Brazil; Serum Institute of India Private Ltd. in India; and Changchun BCHT Biotechnology Co. (BCHT) in China. The DCVMs supported under the GAP program all had existing influenza vaccine manufacturing capability and required technical support from PATH to improve vaccine yield, process efficiency, and product formulation. PATH has provided customized technical support for the manufacturing process to each DCVM based on their respective requirements. Additionally, PATH, working with BARDA and WHO, supported several DCVMs in the clinical development of influenza vaccine candidates progressing toward national licensure or WHO prequalification. As a result of the activities outlined in this review, several companies were able to make excellent progress in developing state-of-the-art manufacturing processes and completing early phase clinical trials. Licensure trials are currently ongoing or planned for several DCVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Planning and Scheduling of Software Manufacturing Projects

    DTIC Science & Technology

    1991-03-01

    based on the previous results in social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing...planning and scheduling, and the traditional approaches to planning in artificial intelligence, and extends the techniques that have been developed by them...social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing planning and scheduling, and the

  7. Simulation Assessment Validation Environment (SAVE). Software User’s Manual

    DTIC Science & Technology

    2000-09-01

    requirements and decisions are made. The integration is leveraging work from other DoD organizations so that high -end results are attainable much faster than...planning through the modeling and simulation data capture and visualization process. The planners can complete the manufacturing process plan with a high ...technologies. This tool is also used to perform “ high level” factory process simulation prior to full CAD model development and help define feasible

  8. Accidental Release of Chlorine from a Storage Facility and an On-Site Emergency Mock Drill: A Case Study

    PubMed Central

    Soman, Ambalathumpara Raman; Sundararaj, Gopalswamy

    2015-01-01

    In the current industrial scenario there is a serious need for formulating strategies to handle hazardous substances in the safest way. Manufacture, storage, and use of hazardous substances pose a serious risk to industry, people, and the environment. Accidental release of toxic chemicals can lead to emergencies. An emergency response plan (ERP) is inevitable to minimize the adverse effects of such releases. The on-site emergency plan is an integral component of any process safety and risk management system. This paper deals with an on-site emergency response plan for a chlorine manufacturing industry. It was developed on the basis of a previous study on chlorine release and a full scale mock drill has been conducted for testing the plan. Results indicated that properly trained personnel can effectively handle each level of incidents occurring in the process plant. As an extensive guideline to the district level government authorities for off-site emergency planning, risk zone has also been estimated with reference to a chlorine exposure threshold of 3 ppm. PMID:26171416

  9. Proposal of Heuristic Algorithm for Scheduling of Print Process in Auto Parts Supplier

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shimpei; Okuhara, Koji; Ueno, Nobuyuki; Ishii, Hiroaki

    We are interested in the print process on the manufacturing processes of auto parts supplier as an actual problem. The purpose of this research is to apply our scheduling technique developed in university to the actual print process in mass customization environment. Rationalization of the print process is depending on the lot sizing. The manufacturing lead time of the print process is long, and in the present method, production is done depending on worker’s experience and intuition. The construction of an efficient production system is urgent problem. Therefore, in this paper, in order to shorten the entire manufacturing lead time and to reduce the stock, we reexamine the usual method of the lot sizing rule based on heuristic technique, and we propose the improvement method which can plan a more efficient schedule.

  10. Foreign Outsourcing of the U.S. Electronics Industry

    DTIC Science & Technology

    1993-04-01

    There is also great concern over the success of Japan and the "Asian Tigers" (Hong Kong, Korea, Malaysia , Singapore, and Taiwan) in capturing market share...Quality Management), JIT (Just In Time) inventory, MRP (Manufacturing Resources Planning), BPR (Business Process Reengineering), and EI ( Employee ...planning, business process re-engineering, employee empowering, just to name a few. All these techniques look to address the requirement to remain

  11. Computer-aided design and manufacturing of surgical templates and their clinical applications: a review.

    PubMed

    Chen, Xiaojun; Xu, Lu; Wang, Wei; Li, Xing; Sun, Yi; Politis, Constantinus

    2016-09-01

    The surgical template is a guide aimed at directing the implant placement, tumor resection, osteotomy and bone repositioning. Using it, preoperative planning can be transferred to the actual surgical site, and the precision, safety and reliability of the surgery can be improved. However, the actual workflow of the surgical template design and manufacturing is quite complicated before the final clinical application. The major goal of the paper is to provide a comprehensive reference source of the current and future development of the template design and manufacturing for relevant researchers. Expert commentary: This paper aims to present a review of the necessary procedures in the template-guided surgery including the image processing, 3D visualization, preoperative planning, surgical guide design and manufacturing. In addition, the template-guided clinical applications for various kinds of surgeries are reviewed, and it demonstrated that the precision of the surgery has been improved compared with the non-guided operations.

  12. US/UK Loan Account Project Status PMOD477

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Patrice A.

    2012-07-12

    The viewgraphs describe the status of PMOD477 for LANL. The meeting will occur at DOE-HQ with NA-11 and Military Applications personnel in attendance. Serves to repatriate material with a balance to zero by December 2012. Phase 1 -- Establish formality of operations for War Reserve (WR): Complete surrogate taskings to A90 through a Materials Channel and perform US/UK lessons learned; Complete the US/UK agreed Quality Acceptance Plan, Materials Plan, Shipping procedure, and establish the formal UK/US point of contacts. Phase 2 -- Metal Manufacture (WR): Process material and store material as electrorefined metal (ER) rings, with initial assay and isotopicmore » analysis, prior to manufacturing. Material is cast into accepted configuration and appropriate acceptance document for each aliquot will be generated. Phase 3 -- Intermediate Material Manufacture, Packaging and Shipping (WR): Continue processing of the material in accepted configuration with appropriate acceptance documentation for each aliquot. Provide an initial tasking of the material owed to UK including appropriate quality acceptance documentation. Phase 4 -- Complete Tasking (WR). Phase 5 -- Residue Processing (Non-WR): Complete processing of residue material and waste into accepted configuration with appropriate acceptance document for disposal.« less

  13. Demand Activated Manufacturing Architecture (DAMA) model for supply chain collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHAPMAN,LEON D.; PETERSEN,MARJORIE B.

    The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise architecture and collaborative model for supply chains. This model will enable improved collaborative business across any supply chain. The DAMA Model for Supply Chain Collaboration is a high-level model for collaboration to achieve Demand Activated Manufacturing. The five major elements of the architecture to support collaboration are (1) activity or process, (2) information, (3) application, (4) data, and (5) infrastructure. These five elements are tied to the application of themore » DAMA architecture to three phases of collaboration - prepare, pilot, and scale. There are six collaborative activities that may be employed in this model: (1) Develop Business Planning Agreements, (2) Define Products, (3) Forecast and Plan Capacity Commitments, (4) Schedule Product and Product Delivery, (5) Expedite Production and Delivery Exceptions, and (6) Populate Supply Chain Utility. The Supply Chain Utility is a set of applications implemented to support collaborative product definition, forecast visibility, planning, scheduling, and execution. The DAMA architecture and model will be presented along with the process for implementing this DAMA model.« less

  14. Best Manufacturing Practices Survey Conducted at Litton Data Systems Division, Van Nuys, California

    DTIC Science & Technology

    1988-10-01

    Hardware and Software ................................ 10 DESIGN RELEASE Engineering Change Order Processing and Analysis...structured using bridges to isolate local traffic. Long term plans call for a wide-band network. ENGINEERING CHANGE ORDER PROCESSING AND ANALYSIS

  15. Automation--planning to implementation; the problems en route.

    PubMed Central

    Pizer, I H

    1976-01-01

    Once the major decision to automate library processes is made, there are a variety of problems which may be encountered before the planned system becomes operational. These include problems of personnel, budget, procurement of adjunct services, institutional priorities, and manufacturing uncertainties. Actual and potential difficulties are discussed. PMID:1247703

  16. Manufactured Product Design and Planning. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Joyner, Jerry E.

    This curriculum for a 1-semester or 1-year course in product design and planning contains information about the following topics: creativity, idea production techniques, problem solving, design fundamentals, design requirements, graphic communication, materials and processes, and safety. Course content is organized around the laboratory activities…

  17. Process and assembly plans for low cost commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, Stephen; Starkey, Val

    1991-01-01

    Cost and weight reduction for a composite structure is a result of selecting design concepts that can be built using efficient low cost manufacturing and assembly processes. Since design and manufacturing are inherently cost dependent, concurrent engineering in the form of a Design-Build Team (DBT) is essential for low cost designs. Detailed cost analysis from DBT designs and hardware verification must be performed to identify the cost drivers and relationships between design and manufacturing processes. Results from the global evaluation are used to quantitatively rank design, identify cost centers for higher ranking design concepts, define and prioritize a list of technical/economic issues and barriers, and identify parameters that control concept response. These results are then used for final design optimization.

  18. A framework for the computer-aided planning and optimisation of manufacturing processes for components with functional graded properties

    NASA Astrophysics Data System (ADS)

    Biermann, D.; Gausemeier, J.; Heim, H.-P.; Hess, S.; Petersen, M.; Ries, A.; Wagner, T.

    2014-05-01

    In this contribution a framework for the computer-aided planning and optimisation of functional graded components is presented. The framework is divided into three modules - the "Component Description", the "Expert System" for the synthetisation of several process chains and the "Modelling and Process Chain Optimisation". The Component Description module enhances a standard computer-aided design (CAD) model by a voxel-based representation of the graded properties. The Expert System synthesises process steps stored in the knowledge base to generate several alternative process chains. Each process chain is capable of producing components according to the enhanced CAD model and usually consists of a sequence of heating-, cooling-, and forming processes. The dependencies between the component and the applied manufacturing processes as well as between the processes themselves need to be considered. The Expert System utilises an ontology for that purpose. The ontology represents all dependencies in a structured way and connects the information of the knowledge base via relations. The third module performs the evaluation of the generated process chains. To accomplish this, the parameters of each process are optimised with respect to the component specification, whereby the result of the best parameterisation is used as representative value. Finally, the process chain which is capable of manufacturing a functionally graded component in an optimal way regarding to the property distributions of the component description is presented by means of a dedicated specification technique.

  19. A Study on Human Oriented Autonomous Distributed Manufacturing System —Real-time Scheduling Method Based on Preference of Human Operators

    NASA Astrophysics Data System (ADS)

    Iwamura, Koji; Kuwahara, Shinya; Tanimizu, Yoshitaka; Sugimura, Nobuhiro

    Recently, new distributed architectures of manufacturing systems are proposed, aiming at realizing more flexible control structures of the manufacturing systems. Many researches have been carried out to deal with the distributed architectures for planning and control of the manufacturing systems. However, the human operators have not yet been discussed for the autonomous components of the distributed manufacturing systems. A real-time scheduling method is proposed, in this research, to select suitable combinations of the human operators, the resources and the jobs for the manufacturing processes. The proposed scheduling method consists of following three steps. In the first step, the human operators select their favorite manufacturing processes which they will carry out in the next time period, based on their preferences. In the second step, the machine tools and the jobs select suitable combinations for the next machining processes. In the third step, the automated guided vehicles and the jobs select suitable combinations for the next transportation processes. The second and third steps are carried out by using the utility value based method and the dispatching rule-based method proposed in the previous researches. Some case studies have been carried out to verify the effectiveness of the proposed method.

  20. Updates in Head and Neck Reconstruction.

    PubMed

    Largo, Rene D; Garvey, Patrick B

    2018-02-01

    After reading this article, the participant should be able to: 1. Have a basic understanding of virtual planning, rapid prototype modeling, three-dimensional printing, and computer-assisted design and manufacture. 2. Understand the principles of combining virtual planning and vascular mapping. 3. Understand principles of flap choice and design in preoperative planning of free osteocutaneous flaps in mandible and midface reconstruction. 4. Discuss advantages and disadvantages of computer-assisted design and manufacture in reconstruction of advanced oncologic mandible and midface defects. Virtual planning and rapid prototype modeling are increasingly used in head and neck reconstruction with the aim of achieving superior surgical outcomes in functionally and aesthetically critical areas of the head and neck compared with conventional reconstruction. The reconstructive surgeon must be able to understand this rapidly-advancing technology, along with its advantages and disadvantages. There is no limit to the degree to which patient-specific data may be integrated into the virtual planning process. For example, vascular mapping can be incorporated into virtual planning of mandible or midface reconstruction. Representative mandible and midface cases are presented to illustrate the process of virtual planning. Although virtual planning has become helpful in head and neck reconstruction, its routine use may be limited by logistic challenges, increased acquisition costs, and limited flexibility for intraoperative modifications. Nevertheless, the authors believe that the superior functional and aesthetic results realized with virtual planning outweigh the limitations.

  1. Efficiency improvements of offline metrology job creation

    NASA Astrophysics Data System (ADS)

    Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.

    1999-06-01

    Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.

  2. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing.

    PubMed

    Oh, Ji-Hyeon

    2018-12-01

    With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

  3. EVALUATION OF THE POLYAD FB AIR PURIFICATION AND SOLVENT RECOVERY PROCESS FOR STYRENE REMOVAL

    EPA Science Inventory

    The report gives results of a study evaluating the Polyad fluidized-bed (FB) process for controlling styrene emissions at a representative fiberglass shower stall and bath tub manufacturing plan*t. he process was evaluated using a transport able unit supplied by Weatherly, Inc., ...

  4. Tracking the course of the manufacturing process in selective laser melting

    NASA Astrophysics Data System (ADS)

    Thombansen, U.; Gatej, A.; Pereira, M.

    2014-02-01

    An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.

  5. Intelligent monitoring and control of semiconductor manufacturing equipment

    NASA Technical Reports Server (NTRS)

    Murdock, Janet L.; Hayes-Roth, Barbara

    1991-01-01

    The use of AI methods to monitor and control semiconductor fabrication in a state-of-the-art manufacturing environment called the Rapid Thermal Multiprocessor is described. Semiconductor fabrication involves many complex processing steps with limited opportunities to measure process and product properties. By applying additional process and product knowledge to that limited data, AI methods augment classical control methods by detecting abnormalities and trends, predicting failures, diagnosing, planning corrective action sequences, explaining diagnoses or predictions, and reacting to anomalous conditions that classical control systems typically would not correct. Research methodology and issues are discussed, and two diagnosis scenarios are examined.

  6. Additive manufacturing in production: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  7. Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities.

    PubMed

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  8. Capacity Planning for Batch and Perfusion Bioprocesses Across Multiple Biopharmaceutical Facilities

    PubMed Central

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2013 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:594–606, 2014 PMID:24376262

  9. jsc2018m000297_Investigation_Seeks_to_Create_Self-Assembling_Materials-MP4

    NASA Image and Video Library

    2018-05-14

    Investigation Seeks to Create Self-Assembling Materials------ As we travel farther into space, clever solutions to problems like engine part malfunctions and other possible mishaps will be a vital part of the planning process. 3D printing, or additive manufacturing, is an emerging technology that may be used to custom-create mission-critical parts. An integral piece of this process is understanding how particle shape, size distribution and packing behavior affect the manufacturing process. The Advanced Colloids Experiment-Temperature-7 investigation (ACE-T-7) aboard the International Space Station explores the feasibility of creating self-assembling microscopic particles for use in the manufacturing of materials during spaceflight. Read more about ACE-T-& here: https://www.nasa.gov/feature/investigation-seeks-to-create-self-assembling-materials

  10. Development of a plan for automating integrated circuit processing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The operations analysis and equipment evaluations pertinent to the design of an automated production facility capable of manufacturing beam-lead CMOS integrated circuits are reported. The overall plan shows approximate cost of major equipment, production rate and performance capability, flexibility, and special maintenance requirements. Direct computer control is compared with supervisory-mode operations. The plan is limited to wafer processing operations from the starting wafer to the finished beam-lead die after separation etching. The work already accomplished in implementing various automation schemes, and the type of equipment which can be found for instant automation are described. The plan is general, so that small shops or large production units can perhaps benefit. Examples of major types of automated processing machines are shown to illustrate the general concepts of automated wafer processing.

  11. Manufacturing Challenges Implementing Material Changes for the Super Light Weight External Tank: A Welding Process Perspective

    NASA Technical Reports Server (NTRS)

    Lawless, K.; Jones, C.

    2001-01-01

    A viewgraph presentation gives an overview of the manufacturing challenges in implementing welding material changes for the super lightweight external tank. Details are given on the external tank configuration, the weld purging equipment used, planning the selection of weld filler wire alloy, the initial weld microstructure, the wide panel tensile testing, and the dome cap welding.

  12. Laser speckle velocimetry for robot manufacturing

    NASA Astrophysics Data System (ADS)

    Charrett, Thomas O. H.; Bandari, Yashwanth K.; Michel, Florent; Ding, Jialuo; Williams, Stewart W.; Tatam, Ralph P.

    2017-06-01

    A non-contact speckle correlation sensor for the measurement of robotic tool speed is presented for use in robotic manufacturing and is capable of measuring the in-plane relative velocities between a robot end-effector and the workpiece or other surface. The sensor performance was assessed in the laboratory with the sensor accuracies found to be better than 0:01 mm/s over a 70 mm/s velocity range. Finally an example of the sensors application to robotic manufacturing is presented where the sensor was applied to tool speed measurement for path planning in the wire and arc additive manufacturing process using a KUKA KR150 L110/2 industrial robot.

  13. The need for artificial intelligence as an aid in controlling a manufacturing operation

    NASA Astrophysics Data System (ADS)

    Weyand, J.

    AI applications to industrial production and planning are discussed and illustrated with diagrams and drawings. Applications examined include flexible automation of manufacturing processes (robots with open manual control, robots programmable to meet product specifications, self-regulated robots, and robots capable of learning), flexible fault detection and diagnostics, production control, and overall planning and management (product strategies, marketing, determination of development capacity, site selection, project organization, and technology investment strategies). For the case of robots, problems in the design and operation of a state-of-the-art machine-tool cell (for hole boring, milling, and joining) are analyzed in detail.

  14. Reduced hazard chemicals for solid rocket motor production

    NASA Technical Reports Server (NTRS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1995-01-01

    During the last three years. the NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. NASA Marshall Space Flight Center (MSFC) and Thiokol Corporation have worked with other industry representatives and the U.S. Environmental Protection Agency (EPA) to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem-solving combined with a creative synthesis of new approaches to attack this challenge.

  15. Five-Year Plan (FY04-FY-08) for the Manufacturing Technology (ManTech) Program. Supplement to the FY03 - FY07 Plan

    DTIC Science & Technology

    2003-07-01

    magnetorheological (MRF) finishing to reduce surface roughness in half the time of previous processes . Improved image quality directly supports improved...affordably polish the inside surface of small tight free form optics to a finish on the order of 3 angstroms. • Demonstrate cycle time reduction...processes and controls for steel, titanium, and superalloys. FY2007: • Demonstrate an improved superfine finishing for optical components to

  16. Innovative applications of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  17. [INVITED] Computational intelligence for smart laser materials processing

    NASA Astrophysics Data System (ADS)

    Casalino, Giuseppe

    2018-03-01

    Computational intelligence (CI) involves using a computer algorithm to capture hidden knowledge from data and to use them for training ;intelligent machine; to make complex decisions without human intervention. As simulation is becoming more prevalent from design and planning to manufacturing and operations, laser material processing can also benefit from computer generating knowledge through soft computing. This work is a review of the state-of-the-art on the methodology and applications of CI in laser materials processing (LMP), which is nowadays receiving increasing interest from world class manufacturers and 4.0 industry. The focus is on the methods that have been proven effective and robust in solving several problems in welding, cutting, drilling, surface treating and additive manufacturing using the laser beam. After a basic description of the most common computational intelligences employed in manufacturing, four sections, namely, laser joining, machining, surface, and additive covered the most recent applications in the already extensive literature regarding the CI in LMP. Eventually, emerging trends and future challenges were identified and discussed.

  18. Technology transfer into the solid propulsion industry

    NASA Technical Reports Server (NTRS)

    Campbell, Ralph L.; Thomson, Lawrence J.

    1995-01-01

    This paper is a survey of the waste minimization efforts of industries outside of aerospace for possible applications in the manufacture of solid rocket motors (SRM) for NASA. The Redesigned Solid Rocket Motor (RSRM) manufacturing plan was used as the model for processes involved in the production of an SRM. A literature search was conducted to determine the recycling, waste minimization, and waste treatment methods used in the commercial sector that might find application in SRM production. Manufacturers, trade organizations, and professional associations were also contacted. Waste minimization efforts for current processes and replacement technologies, which might reduce the amount or severity of the wastes generated in SRM production, were investigated. An overview of the results of this effort are presented in this paper.

  19. A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms.

    PubMed

    Leane, Michael; Pitt, Kendal; Reynolds, Gavin

    2015-01-01

    This paper proposes the development of a drug product Manufacturing Classification System (MCS) based on processing route. It summarizes conclusions from a dedicated APS conference and subsequent discussion within APS focus groups and the MCS working party. The MCS is intended as a tool for pharmaceutical scientists to rank the feasibility of different processing routes for the manufacture of oral solid dosage forms, based on selected properties of the API and the needs of the formulation. It has many applications in pharmaceutical development, in particular, it will provide a common understanding of risk by defining what the "right particles" are, enable the selection of the best process, and aid subsequent transfer to manufacturing. The ultimate aim is one of prediction of product developability and processability based upon previous experience. This paper is intended to stimulate contribution from a broad range of stakeholders to develop the MCS concept further and apply it to practice. In particular, opinions are sought on what API properties are important when selecting or modifying materials to enable an efficient and robust pharmaceutical manufacturing process. Feedback can be given by replying to our dedicated e-mail address (mcs@apsgb.org); completing the survey on our LinkedIn site; or by attending one of our planned conference roundtable sessions.

  20. Cooperative optimization of reconfigurable machine tool configurations and production process plan

    NASA Astrophysics Data System (ADS)

    Xie, Nan; Li, Aiping; Xue, Wei

    2012-09-01

    The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and reduce production cost. Therefore, a cooperative strategy is needed to concurrently solve the above issue. In this paper, the cooperative optimization model for RMT configurations and production process plan is presented. Its objectives take into account both impacts of process and configuration. Moreover, a novel genetic algorithm is also developed to provide optimal or near-optimal solutions: firstly, its chromosome is redesigned which is composed of three parts, operations, process plan and configurations of RMTs, respectively; secondly, its new selection, crossover and mutation operators are also developed to deal with the process constraints from operation processes (OP) graph, otherwise these operators could generate illegal solutions violating the limits; eventually the optimal configurations for RMT under optimal process plan design can be obtained. At last, a manufacturing line case is applied which is composed of three RMTs. It is shown from the case that the optimal process plan and configurations of RMT are concurrently obtained, and the production cost decreases 6.28% and nonmonetary performance increases 22%. The proposed method can figure out both RMT configurations and production process, improve production capacity, functions and equipment utilization for RMT.

  1. 78 FR 78821 - Manufacturing Extension Partnership Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... focus on (1) MEP administrative updates, and (2) Board input into the NIST MEP strategic planning process. The agenda may change to accommodate other Board business. The final agenda will be posted on the...

  2. CLEAN PRODUCTION WITH MEMBRANE TECHNOLOGY

    EPA Science Inventory

    Membrane processes, because of unique, specialized, and cost-effective applications, have the potential of playing a significant role in preventing pollution from occurring in manufacturing plans. Opportunities are seen in resource recovery, species purification, and energy sav...

  3. The sales learning curve.

    PubMed

    Leslie, Mark; Holloway, Charles A

    2006-01-01

    When a company launches a new product into a new market, the temptation is to immediately ramp up sales force capacity to gain customers as quickly as possible. But hiring a full sales force too early just causes the firm to burn through cash and fail to meet revenue expectations. Before it can sell an innovative product efficiently, the entire organization needs to learn how customers will acquire and use it, a process the authors call the sales learning curve. The concept of a learning curve is well understood in manufacturing. Employees transfer knowledge and experience back and forth between the production line and purchasing, manufacturing, engineering, planning, and operations. The sales learning curve unfolds similarly through the give-and-take between the company--marketing, sales, product support, and product development--and its customers. As customers adopt the product, the firm modifies both the offering and the processes associated with making and selling it. Progress along the manufacturing curve is measured by tracking cost per unit: The more a firm learns about the manufacturing process, the more efficient it becomes, and the lower the unit cost goes. Progress along the sales learning curve is measured in an analogous way: The more a company learns about the sales process, the more efficient it becomes at selling, and the higher the sales yield. As the sales yield increases, the sales learning process unfolds in three distinct phases--initiation, transition, and execution. Each phase requires a different size--and kind--of sales force and represents a different stage in a company's production, marketing, and sales strategies. Adjusting those strategies as the firm progresses along the sales learning curve allows managers to plan resource allocation more accurately, set appropriate expectations, avoid disastrous cash shortfalls, and reduce both the time and money required to turn a profit.

  4. A Roadmap for the Implementation of Continued Process Verification.

    PubMed

    Boyer, Marcus; Gampfer, Joerg; Zamamiri, Abdel; Payne, Robin

    2016-01-01

    In 2014, the members of the BioPhorum Operations Group (BPOG) produced a 100-page continued process verification case study, entitled "Continued Process Verification: An Industry Position Paper with Example Protocol". This case study captures the thought processes involved in creating a continued process verification plan for a new product in response to the U.S. Food and Drug Administration's guidance on the subject introduced in 2011. In so doing, it provided the specific example of a plan developed for a new molecular antibody product based on the "A MAb Case Study" that preceded it in 2009.This document provides a roadmap that draws on the content of the continued process verification case study to provide a step-by-step guide in a more accessible form, with reference to a process map of the product life cycle. It could be used as a basis for continued process verification implementation in a number of different scenarios: For a single product and process;For a single site;To assist in the sharing of data monitoring responsibilities among sites;To assist in establishing data monitoring agreements between a customer company and a contract manufacturing organization. The U.S. Food and Drug Administration issued guidance on the management of manufacturing processes designed to improve quality and control of drug products. This involved increased focus on regular monitoring of manufacturing processes, reporting of the results, and the taking of opportunities to improve. The guidance and practice associated with it is known as continued process verification This paper summarizes good practice in responding to continued process verification guidance, gathered from subject matter experts in the biopharmaceutical industry. © PDA, Inc. 2016.

  5. Bending Distortion Analysis of a Steel Shaft Manufacturing Chain from Cold Drawing to Grinding

    NASA Astrophysics Data System (ADS)

    Dias, Vinicius Waechter; da Silva Rocha, Alexandre; Zottis, Juliana; Dong, Juan; Epp, Jérémy; Zoch, Hans Werner

    2017-04-01

    Shafts are usually manufactured from bars that are cold drawn, cut machined, induction hardened, straightened, and finally ground. The main distortion is characterized by bending that appears after induction hardening and is corrected by straightening and/or grinding. In this work, the consequence of the variation of manufacturing parameters on the distortion was analyzed for a complete manufacturing route for production of induction hardened shafts made of Grade 1045 steel. A DoE plan was implemented varying the drawing angle, cutting method, induction hardening layer depth, and grinding penetration depth. The distortion was determined by calculating curvature vectors from dimensional analysis by 3D coordinate measurements. Optical microscopy, microhardness testing, residual stress analysis, and FEM process simulation were used to evaluate and understand effects of the main carriers of distortion potential. The drawing process was identified as the most significant influence on the final distortion of the shafts.

  6. Transportation Planning with Immune System Derived Approach

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kenji; Yaji, Yasuhito; Ootsuki, John Takuya; Fujimoto, Yasutaka; Sekiguchi, Takashi

    This paper presents an immune system derived approach for planning transportation of materials between manufacturing processes in the factory. Transportation operations are modeled by Petri Net, and divided into submodels. Transportation orders are derived from the firing sequences of those submodels through convergence calculation by the immune system derived excitation and suppression operations. Basic evaluation of this approach is conducted by simulation-based investigation.

  7. Trends in capacity utilization for therapeutic monoclonal antibody production.

    PubMed

    Langer, Eric S

    2009-01-01

    The administration of high doses of therapeutic antibodies requires large-scale, efficient, cost effective manufacturing processes. An understanding of how the industry is using its available production capacity is important for production planning, and facility expansion analysis. Inaccurate production planning for therapeutic antibodies can have serious financial ramifications. In the recent 5(th) Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production, 434 qualified respondents from 39 countries were asked to indicate, among other manufacturing issues, their current trends and future predictions with respect to the production capacity utilization of monoclonal antibodies in mammalian cell culture systems. While overall production of monoclonals has expanded dramatically since 2003, the average capacity utilization for mammalian cell culture systems, has decreased each year since 2003. Biomanufacturers aggressively attempt to avoid unanticipated high production demands that can create a capacity crunch. We summarize trends associated with capacity utilization and capacity constraints which indicate that biopharmaceutical manufacturers are doing a better job planning for capacity. The results have been a smoothing of capacity use shifts and an improved ability to forecast capacity and outsourcing needs. Despite these data, today, the instability and financial constraints caused by the current global economic crisis are likely to create unforeseen shifts in our capacity utilization and capacity expansion trends. These shifts will need to be measured in subsequent studies.

  8. A framework for development of an intelligent system for design and manufacturing of stamping dies

    NASA Astrophysics Data System (ADS)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  9. Indigenous Manufacturing realization of TWIN Source

    NASA Astrophysics Data System (ADS)

    Pandey, R.; Bandyopadhyay, M.; Parmar, D.; Yadav, R.; Tyagi, H.; Soni, J.; Shishangiya, H.; Sudhir Kumar, D.; Shah, S.; Bansal, G.; Pandya, K.; Parmar, K.; Vuppugalla, M.; Gahlaut, A.; Chakraborty, A.

    2017-04-01

    TWIN source is two RF driver based negative ion source that has been planned to bridge the gap between single driver based ROBIN source (currently operational) and eight river based DNB source (to be operated under IN-TF test facility). TWIN source experiments have been planned at IPR keeping the objective of long term domestic fusion programme to gain operational experiences on vacuum immersed multi driver RF based negative ion source. High vacuum compatible components of twin source are designed at IPR keeping an aim on indigenous built in attempt. These components of TWIN source are mainly stainless steel and OFC-Cu. Being high heat flux receiving components, one of the major functional requirements is continuous heat removal via water as cooling medium. Hence for the purpose stainless steel parts are provided with externally milled cooling lines and that shall be covered with a layer of OFC-cu which would be on the receiving side of high heat flux. Manufacturability of twin source components requires joining of these dissimilar materials via process like electrode position, electron beam welding and vacuum brazing. Any of these manufacturing processes shall give a vacuum tight joint having proper joint strength at operating temperature and pressure. Taking the indigenous development effort vacuum brazing (in non-nuclear environment) has been opted for joining of dissimilar materials of twin source being one of the most reliable joining techniques and commercially feasible across the suppliers of country. Manufacturing design improvisation for the components has been done to suit the vacuum brazing process requirement and to ease some of the machining without comprising over the functional and operational requirements. This paper illustrates the details on the indigenous development effort, design improvisation to suits manufacturability, vacuum brazing basics and its procedures for twin source components.

  10. Large Spun Formed Friction-Stir Welded Tank Domes for Liquid Propellant Tanks Made from AA2195: A Technology Demonstration for the Next Generation of Heavy Lift Launchers

    NASA Technical Reports Server (NTRS)

    Stachulla, M.; Pernpeinter, R.; Brewster J.; Curreri, P.; Hoffman, E.

    2010-01-01

    Improving structural efficiency while reducing manufacturing costs are key objectives when making future heavy-lift launchers more performing and cost efficient. The main enabling technologies are the application of advanced high performance materials as well as cost effective manufacture processes. This paper presents the status and main results of a joint industrial research & development effort to demonstrate TRL 6 of a novel manufacturing process for large liquid propellant tanks for launcher applications. Using high strength aluminium-lithium alloy combined with the spin forming manufacturing technique, this development aims at thinner wall thickness and weight savings up to 25% as well as a significant reduction in manufacturing effort. In this program, the concave spin forming process is used to manufacture tank domes from a single flat plate. Applied to aluminium alloy, this process allows reaching the highest possible material strength status T8, eliminating numerous welding steps which are typically necessary to assemble tank domes from 3D-curved panels. To minimize raw material costs for large diameter tank domes for launchers, the dome blank has been composed from standard plates welded together prior to spin forming by friction stir welding. After welding, the dome blank is contoured in order to meet the required wall thickness distribution. For achieving a material state of T8, also in the welding seams, the applied spin forming process allows the required cold stretching of the 3D-curved dome, with a subsequent ageing in a furnace. This combined manufacturing process has been demonstrated up to TRL 6 for tank domes with a 5.4 m diameter. In this paper, the manufacturing process as well as test results are presented. Plans are shown how this process could be applied to future heavy-lift launch vehicles developments, also for larger dome diameters.

  11. NASA's In-Space Manufacturing Project: Materials and Manufacturing Process Development Update

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    The mission of NASA's In-Space Manufacturing (ISM) project is to identify, design, and implement on-demand, sustainable manufacturing solutions for fabrication, maintenance and repair during exploration missions. ISM has undertaken a phased strategy of incrementally increasing manufacturing capabilities to achieve this goal. The ISM project began with the development of the first 3D printer for the International Space Station. To date, the printer has completed two phases of flight operations. Results from phase I specimens indicated some differences in material properties between ground-processed and ISS-processed specimens, but results of follow-on analyses of these parts and a ground-based study with an equivalent printer strongly indicate that this variability is likely attributable to differences in manufacturing process settings between the ground and flight prints rather than microgravity effects on the fused deposition modeling (FDM) process. Analysis of phase II specimens from the 3D Printing in Zero G tech demo, which shed further light on the sources of material variability, will be presented. The ISM project has also developed a materials characterization plan for the Additive Manufacturing Facility, the follow-on commercial multimaterial 3D printing facility developed for ISS by Made in Space. This work will yield a suite of characteristic property values that can inform use of AMF by space system designers. Other project activities include development of an integrated 3D printer and recycler, known as the Refabricator, by Tethers Unlimited, which will be operational on ISS in 2018. The project also recently issued a broad area announcement for a multimaterial fabrication laboratory, which may include in-space manufacturing capabilities for metals, electronics, and polymeric materials, to be deployed on ISS in the 2022 timeframe.

  12. Collaborative Manufacturing for Small-Medium Enterprises

    NASA Astrophysics Data System (ADS)

    Irianto, D.

    2016-02-01

    Manufacturing systems involve decisions concerning production processes, capacity, planning, and control. In a MTO manufacturing systems, strategic decisions concerning fulfilment of customer requirement, manufacturing cost, and due date of delivery are the most important. In order to accelerate the decision making process, research on decision making structure when receiving order and sequencing activities under limited capacity is required. An effective decision making process is typically required by small-medium components and tools maker as supporting industries to large industries. On one side, metal small-medium enterprises are expected to produce parts, components or tools (i.e. jigs, fixture, mold, and dies) with high precision, low cost, and exact delivery time. On the other side, a metal small- medium enterprise may have weak bargaining position due to aspects such as low production capacity, limited budget for material procurement, and limited high precision machine and equipment. Instead of receiving order exclusively, a small-medium enterprise can collaborate with other small-medium enterprise in order to fulfill requirements high quality, low manufacturing cost, and just in time delivery. Small-medium enterprises can share their best capabilities to form effective supporting industries. Independent body such as community service at university can take a role as a collaboration manager. The Laboratory of Production Systems at Bandung Institute of Technology has implemented shared manufacturing systems for small-medium enterprise collaboration.

  13. 40 CFR 52.1770 - Identification of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 61213 Sect .0515 Particulates from Miscellaneous Industrial Processes 04/01/03 09/17/03, 68 FR 54362... Utility Boilers 08/01/91 02/14/96, 61 FR 5689 Sect .0540 Particulates from Fugitive Non-process Dust... Sect .0955 Thread Bonding Manufacturing 04/01/95 02/01/96, 62 FR 3589 Sect .0956 Glass Christmas...

  14. The road to business process improvement--can you get there from here?

    PubMed

    Gilberto, P A

    1995-11-01

    Historically, "improvements" within the organization have been frequently attained through automation by building and installing computer systems. Material requirements planning (MRP), manufacturing resource planning II (MRP II), just-in-time (JIT), computer aided design (CAD), computer aided manufacturing (CAM), electronic data interchange (EDI), and various other TLAs (three-letter acronyms) have been used as the methods to attain business objectives. But most companies have found that installing computer software, cleaning up their data, and providing every employee with training on how to best use the systems have not resulted in the level of business improvements needed. The software systems have simply made management around the problems easier but did little to solve the basic problems. The missing element in the efforts to improve the performance of the organization has been a shift in focus from individual department improvements to cross-organizational business process improvements. This article describes how the Electric Boat Division of General Dynamics Corporation, in conjunction with the Data Systems Division, moved its focus from one of vertical organizational processes to horizontal business processes. In other words, how we got rid of the dinosaurs.

  15. 76 FR 21917 - Manufacturer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... manufacturer of the following basic classes of controlled substances: Drug Schedule Marihuana (7360) I Tetrahydrocannabinols (7370) I The company plans to manufacture small quantities of marihuana derivatives for research purposes. In reference to drug code 7360 (Marihuana), the company plans to bulk manufacture cannabidiol. In...

  16. Control of Technology Transfer at JPL

    NASA Technical Reports Server (NTRS)

    Oliver, Ronald

    2006-01-01

    Controlled Technology: 1) Design: preliminary or critical design data, schematics, technical flow charts, SNV code/diagnostics, logic flow diagrams, wirelist, ICDs, detailed specifications or requirements. 2) Development: constraints, computations, configurations, technical analyses, acceptance criteria, anomaly resolution, detailed test plans, detailed technical proposals. 3) Production: process or how-to: assemble, operated, repair, maintain, modify. 4) Manufacturing: technical instructions, specific parts, specific materials, specific qualities, specific processes, specific flow. 5) Operations: how-to operate, contingency or standard operating plans, Ops handbooks. 6) Repair: repair instructions, troubleshooting schemes, detailed schematics. 7) Test: specific procedures, data, analysis, detailed test plan and retest plans, detailed anomaly resolutions, detailed failure causes and corrective actions, troubleshooting, trended test data, flight readiness data. 8) Maintenance: maintenance schedules and plans, methods for regular upkeep, overhaul instructions. 9) Modification: modification instructions, upgrades kit parts, including software

  17. Virtual manufacturing work cell for engineering

    NASA Astrophysics Data System (ADS)

    Watanabe, Hideo; Ohashi, Kazushi; Takahashi, Nobuyuki; Kato, Kiyotaka; Fujita, Satoru

    1997-12-01

    The life cycles of products have been getting shorter. To meet this rapid turnover, manufacturing systems must be frequently changed as well. In engineering to develop manufacturing systems, there are several tasks such as process planning, layout design, programming, and final testing using actual machines. This development of manufacturing systems takes a long time and is expensive. To aid the above engineering process, we have developed the virtual manufacturing workcell (VMW). This paper describes a concept of VMW and design method through computer aided manufacturing engineering using VMW (CAME-VMW) related to the above engineering tasks. The VMW has all design data, and realizes a behavior of equipment and devices using a simulator. The simulator has logical and physical functionality. The one simulates a sequence control and the other simulates motion control, shape movement in 3D space. The simulator can execute the same control software made for actual machines. Therefore we can verify the behavior precisely before the manufacturing workcell will be constructed. The VMW creates engineering work space for several engineers and offers debugging tools such as virtual equipment and virtual controllers. We applied this VMW to development of a transfer workcell for vaporization machine in actual manufacturing system to produce plasma display panel (PDP) workcell and confirmed its effectiveness.

  18. 78 FR 63148 - Approval and Promulgation of Implementation Plans; Tennessee; Bristol; 2010 Lead Base Year...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... per year within the Bristol Area is Exide Technologies Facility, a lead acid battery manufacturing and recycling facility which processes lead and reclaimed lead into batteries for the auto industry. Pursuant to...

  19. RMP Guidance for Chemical Distributors - Introduction

    EPA Pesticide Factsheets

    If you handle, manufacture, use, or store any of the toxic and flammable substances (e.g., chlorine, ammonia) listed in Appendix A above the specified threshold quantities in a process, you are required to develop and implement a risk management plan.

  20. United States Air Force Computer-Aided Acquisition and Logistics Support (CALS) Evolution of Computer Integrated Manufacturing (CIM) Technologies

    DTIC Science & Technology

    1988-11-01

    Manufacturing System 22 4. Similar Parts Based Shape or Manufactuting Process 24 5. Projected Annual Unit Robot Sales and Installed Base Through 1992 30 6. U.S...effort needed to perform personnel, product design, marketing , and advertising, and finance tasks of the firm. Level III controls the resource...planning and accounting functions of the firm. Systems at this level support purchasing, accounts payable, accounts receivable, master scheduling and sales

  1. IPAD: Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The conference was organized to promote wider awareness of the IPAD program and its coming impact on American industry. The program focuses on technology issues that are critical to computer aided design manufacturing. Included is a description of a representative aerospace design process and its interface with manufacturing, the design of a future IPAD integrated computer aided design system, results to date in developing IPAD products and associated technology, and industry experiences and plans to exploit these products.

  2. Clothing creator trademark : Business plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, B.

    SYMAGERY has developed a patented process to manufacture clothing without direct human labor. This CLOTHING CREATOR{trademark}, will have the ability to produce two (2) perfect garments every 45 seconds or one (1) every 30 seconds. The process will combine Computer Integrated Manufacturing (CIM) technology with heat molding and ultrasonic bonding/cutting techniques. This system for garment production, will have the capacity to produce garments of higher quality and at lower productions costs than convention cut and sew methods. ADVANTAGES of the process include: greatly reduced production costs; increased quality of garments; reduction in lead time; and capacity to make new classmore » of garments. This technology will accommodate a variety of knit, woven and nonwoven materials containing a majority of synthetic fibers. Among the many style of garments that could be manufactured by this process are: work clothing, career apparel, athletic garments, medical disposables, health care products, activewear, haz/mat garments, military clothing, cleanroom clothing, outdoor wear, upholstery, and highly contoured stuffed toy shells. 3 refs.« less

  3. Direct Bio-printing with Heterogeneous Topology Design.

    PubMed

    Ahsan, Amm Nazmul; Xie, Ruinan; Khoda, Bashir

    2017-01-01

    Bio-additive manufacturing is a promising tool to fabricate porous scaffold structures for expediting the tissue regeneration processes. Unlike the most traditional bulk material objects, the microstructures of tissue and organs are mostly highly anisotropic, heterogeneous, and porous in nature. However, modelling the internal heterogeneity of tissues/organs structures in the traditional CAD environment is difficult and oftentimes inaccurate. Besides, the de facto STL conversion of bio-models introduces loss of information and piles up more errors in each subsequent step (build orientation, slicing, tool-path planning) of the bio-printing process plan. We are proposing a topology based scaffold design methodology to accurately represent the heterogeneous internal architecture of tissues/organs. An image analysis technique is used that digitizes the topology information contained in medical images of tissues/organs. A weighted topology reconstruction algorithm is implemented to represent the heterogeneity with parametric functions. The parametric functions are then used to map the spatial material distribution. The generated information is directly transferred to the 3D bio-printer and heterogeneous porous tissue scaffold structure is manufactured without STL file. The proposed methodology is implemented to verify the effectiveness of the approach and the designed example structure is bio-fabricated with a deposition based bio-additive manufacturing system.

  4. A new technology for manufacturing scheduling derived from space system operations

    NASA Technical Reports Server (NTRS)

    Hornstein, R. S.; Willoughby, J. K.

    1993-01-01

    A new technology for producing finite capacity schedules has been developed in response to complex requirements for operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications. This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques associated with Materials Resources Planning (MRPII) and with factory simulation are not adequate for shop-floor work planning and control. The technology has three components. The first is a set of data structures that accommodate an extremely general description of a factory's resources, its manufacturing activities, and the constraints imposed by the environment. The second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of each factory. Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows work-in-process (WIP) to be generated and used; it permits constraints to be imposed or intermediate as well as finished goods inventories. It is also possible to match as closely as possible both the current factory state and future conditions such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule. Applications have been successful in both discrete and process manufacturing environments. The availability of a high-quality finite capacity production planning capability enhances the data management capabilities of MRP II systems. These schedules can be integrated with shop-floor data collection systems and accounting systems. Using the new technology, semi-custom systems can be developed at costs that are comparable to products that do not have equivalent functional capabilities and/or extensibility.

  5. Space system production cost benefits from contemporary philosophies in management and manufacturing

    NASA Technical Reports Server (NTRS)

    Rosmait, Russell L.

    1991-01-01

    The cost of manufacturing space system hardware has always been expensive. The Engineering Cost Group of the Program Planning office at Marshall is attempting to account for cost savings that result from new technologies in manufacturing and management. The objective is to identify and define contemporary philosophies in manufacturing and management. The seven broad categories that make up the areas where technological advances can assist in reducing space system costs are illustrated. Included within these broad categories is a list of the processes or techniques that specifically provide the cost savings within todays design, test, production and operations environments. The processes and techniques listed achieve savings in the following manner: increased productivity; reduced down time; reduced scrap; reduced rework; reduced man hours; and reduced material costs. In addition, it should be noted that cost savings from production and processing improvements effect 20 to 40 pct. of production costs whereas savings from management improvements effects 60 to 80 of production cost. This is important because most efforts in reducing costs are spent trying to reduce cost in the production.

  6. Design and optimization of photovoltaics recycling infrastructure.

    PubMed

    Choi, Jun-Ki; Fthenakis, Vasilis

    2010-11-15

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  7. Monitoring of manufacturing processes in the automotive industry using indoor location system

    NASA Astrophysics Data System (ADS)

    Ionescu, LM; Belu, N.; Rachieru, N.; Mazăre, AG; Anghel, D.-C.

    2016-08-01

    This paper presents a method for locating the operators, equipment and parts using radio communications systems. Specifically there will be radio transceiver arranged in a network of active and passive radio receivers placed on personnel, equipment or parts. Based on a radio triangulation method, it is determined the location of the all resources and parts involved in manufacturing process. The transceivers communicate with each other via “routers” - also components of the network. Such a structure may extend over large distances even in indoor spaces where there are obstacles (walls between rooms). The location is done by determining the power of transmission signal for at least three end points. The receiver position is then transmitted over the network through routers, to a central server where all positions of the resources are centralized. Our solution is a non-invasive and low cost method for determining resource position in the factory. The system can be used for both resource planning production for current process more efficient and for further analysis of the movement of resources during previous processes with possible adjustments to the workspace and re-planning of resources for future processes.

  8. Forming Mandrels for X-Ray Mirror Substrates

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Saha. To,p; Zhang, Will; O'Dell, Stephen; Kester, Thomas; Jones, William

    2011-01-01

    Precision forming mandrels are one element in X-ray mirror development at NASA. Current mandrel fabrication process is capable of meeting the allocated precision requirements for a 5 arcsec telescope. A manufacturing plan is outlined for a large IXO-scale program.

  9. 40 CFR Table 1 to Subpart Hhhh of... - Minimum Requirements for Monitoring and Recordkeeping

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hour block averages. 2. Other process or control device parameters specified in your OMM b plan. As... value for each product manufactured during the operating day. 6. UF-to-latex ratio in the binder c For... Required if a thermal oxidizer is used to control formaldehyde emissions. b Required if process...

  10. ERP (enterprise resource planning) systems can streamline healthcare business functions.

    PubMed

    Jenkins, E K; Christenson, E

    2001-05-01

    Enterprise resource planning (ERP) software applications are designed to facilitate the systemwide integration of complex processes and functions across a large enterprise consisting of many internal and external constituents. Although most currently available ERP applications generally are tailored to the needs of the manufacturing industry, many large healthcare systems are investigating these applications. Due to the significant differences between manufacturing and patient care, ERP-based systems do not easily translate to the healthcare setting. In particular, the lack of clinical standardization impedes the use of ERP systems for clinical integration. Nonetheless, an ERP-based system can help a healthcare organization integrate many functions, including patient scheduling, human resources management, workload forecasting, and management of workflow, that are not directly dependent on clinical decision making.

  11. A methodology for Manufacturing Execution Systems (MES) implementation

    NASA Astrophysics Data System (ADS)

    Govindaraju, Rajesri; Putra, Krisna

    2016-02-01

    Manufacturing execution system is information systems (IS) application that bridges the gap between IS at the top level, namely enterprise resource planning (ERP), and IS at the lower levels, namely the automation systems. MES provides a media for optimizing the manufacturing process as a whole in a real time basis. By the use of MES in combination with the implementation of ERP and other automation systems, a manufacturing company is expected to have high competitiveness. In implementing MES, functional integration -making all the components of the manufacturing system able to work well together, is the most difficult challenge. For this, there has been an industry standard that specifies the sub-systems of a manufacturing execution systems and defines the boundaries between ERP systems, MES, and other automation systems. The standard is known as ISA-95. Although the advantages from the use of MES have been stated in some studies, not much research being done on how to implement MES effectively. The purpose of this study is to develop a methodology describing how MES implementation project should be managed, utilising the support of ISA- 95 reference model in the system development process. A proposed methodology was developed based on a general IS development methodology. The developed methodology were then revisited based on the understanding about the specific charateristics of MES implementation project found in an Indonesian steel manufacturing company implementation case. The case study highlighted the importance of applying an effective requirement elicitation method during innitial system assessment process, managing system interfaces and labor division in the design process, and performing a pilot deployment before putting the whole system into operation.

  12. Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structure

    NASA Technical Reports Server (NTRS)

    Harris, C. E.

    2001-01-01

    This viewgraph presentation gives an assessment of the state-of-the-art in the design and manufacturing of large component structures, including details on the use of continuous fiber reinforced polymer matrix composites (CFRP) in commercial and military aircraft and in space launch vehicles. Project risk mitigation plans must include a building-block test approach to structural design development, manufacturing process scale-up development tests, and pre-flight ground tests to verify structural integrity. The potential benefits of composite structures justifies NASA's investment in developing the technology. Advanced composite structures technology is enabling to virtually every Aero-Space Technology Enterprise Goal.

  13. Develop Improved Materials to Support the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael C. Martin

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less

  14. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  15. Esthetic considerations for the treatment of the edentulous maxilla based on current informatic alternatives: a case report.

    PubMed

    Rodríguez-Tizcareño, Mario H; Barajas, Lizbeth; Pérez-Gásque, Marisol; Gómez, Salvador

    2012-06-01

    This report presents a protocol used to transfer the virtual treatment plan data to the surgical and prosthetic reality and its clinical application, bone site augmentation with computer-custom milled bovine bone graft blocks to their ideal architecture form, implant insertion based on image-guided stent fabrication, and the restorative manufacturing process through computed tomography-based software programs and navigation systems and the computer-aided design and manufacturing techniques for the treatment of the edentulous maxilla.

  16. Demonstration of Combined Food and Landscape Waste Composting at Fort Leonard Wood, MO: Fort Leonard Wood Installation Strategic Sustainable Plan

    DTIC Science & Technology

    2016-01-01

    Availability of on-site food waste-processing technologies suitable for small- to medium- sized generators is often desirable; several manufactur - ers...waste digestors varies according to manufacturer , but typically range from 0.5 to 2 cu yd/day. Food pulpers operate somewhat similarly to food ...and food courts. Based on an analysis of the volumes, potential for cross- contamination , and ease of collection, it was agreed that the primary

  17. Automated Array Assembly, Phase 2

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1978-01-01

    The purpose of the overall program is to establish technological readiness and provide verification for the elements of a manufacturing sequence which would ultimately be suitable for the large-scale production of silicon solar-array modules at a selling price of less than $500/kW. A program and process plan for accomplishing this objective was developed and put into operation. Three junction-formation processes are shown; since cost analysis shows that they do not differ greatly in cost, each should be considered for technical merits and possible future cost reduction. The progress made in the various process steps of the plan is described, and conclusions are presented.

  18. A manufacturing error measurement methodology for a rotary vector reducer cycloidal gear based on a gear measuring center

    NASA Astrophysics Data System (ADS)

    Li, Tianxing; Zhou, Junxiang; Deng, Xiaozhong; Li, Jubo; Xing, Chunrong; Su, Jianxin; Wang, Huiliang

    2018-07-01

    A manufacturing error of a cycloidal gear is the key factor affecting the transmission accuracy of a robot rotary vector (RV) reducer. A methodology is proposed to realize the digitized measurement and data processing of the cycloidal gear manufacturing error based on the gear measuring center, which can quickly and accurately measure and evaluate the manufacturing error of the cycloidal gear by using both the whole tooth profile measurement and a single tooth profile measurement. By analyzing the particularity of the cycloidal profile and its effect on the actual meshing characteristics of the RV transmission, the cycloid profile measurement strategy is planned, and the theoretical profile model and error measurement model of cycloid-pin gear transmission are established. Through the digital processing technology, the theoretical trajectory of the probe and the normal vector of the measured point are calculated. By means of precision measurement principle and error compensation theory, a mathematical model for the accurate calculation and data processing of manufacturing error is constructed, and the actual manufacturing error of the cycloidal gear is obtained by the optimization iterative solution. Finally, the measurement experiment of the cycloidal gear tooth profile is carried out on the gear measuring center and the HEXAGON coordinate measuring machine, respectively. The measurement results verify the correctness and validity of the measurement theory and method. This methodology will provide the basis for the accurate evaluation and the effective control of manufacturing precision of the cycloidal gear in a robot RV reducer.

  19. Fuzzy methods in decision making process - A particular approach in manufacturing systems

    NASA Astrophysics Data System (ADS)

    Coroiu, A. M.

    2015-11-01

    We are living in a competitive environment, so we can see and understand that the most of manufacturing firms do the best in order to accomplish meeting demand, increasing quality, decreasing costs, and delivery rate. In present a stake point of interest is represented by the development of fuzzy technology. A particular approach for this is represented through the development of methodologies to enhance the ability to managed complicated optimization and decision making aspects involving non-probabilistic uncertainty with the reason to understand, development, and practice the fuzzy technologies to be used in fields such as economic, engineering, management, and societal problems. Fuzzy analysis represents a method for solving problems which are related to uncertainty and vagueness; it is used in multiple areas, such as engineering and has applications in decision making problems, planning and production. As a definition for decision making process we can use the next one: result of mental processes based upon cognitive process with a main role in the selection of a course of action among several alternatives. Every process of decision making can be represented as a result of a final choice and the output can be represented as an action or as an opinion of choice. Different types of uncertainty can be discovered in a wide variety of optimization and decision making problems related to planning and operation of power systems and subsystems. The mixture of the uncertainty factor in the construction of different models serves for increasing their adequacy and, as a result, the reliability and factual efficiency of decisions based on their analysis. Another definition of decision making process which came to illustrate and sustain the necessity of using fuzzy method: the decision making is an approach of choosing a strategy among many different projects in order to achieve some purposes and is formulated as three different models: high risk decision, usual risk decision and low risk decision - some specific formulas of fuzzy logic. The fuzzy set concepts has some certain parameterization features which are certain extensions of crisp and fuzzy relations respectively and have a rich potential for application to the decision making problems. The proposed approach from this paper presents advantages of fuzzy approach, in comparison with other paradigm and presents a particular way in which fuzzy logic can emerge in decision making process and planning process with implication, as a simulation, in manufacturing - involved in measuring performance of advanced manufacturing systems. Finally, an example is presented to illustrate our simulation.

  20. It Systems Supporting the Management of Production Capacity

    NASA Astrophysics Data System (ADS)

    Milewska, Elżbieta

    2017-03-01

    The paper presents the problem of manufacturing process flexibility in view of a company's material and information flow stream management. The author of the article has described the functions of a production process control system and presented the characteristics of production capacity intensive and extensive reserves. The MRP II/ERP, MES and APS class IT tools supporting the process of production planning, organization and control have also been discussed.

  1. Just-in-time: maximizing its success potential.

    PubMed

    Johnston, S K

    1990-08-01

    The effective implementation and use of JIT manufacturing practices depends largely on the education, training, and commitment of all levels of management to a fundamental quality-first policy. Management must transfer and demonstrate that commitment to every level and extension of the manufacturing endeavor. As a company establishes and reaches toward that goal, the move to JIT manufacturing practices becomes rational and justifiable. Failing to establish and commit to a quality directive greatly diminishes the potential benefits of JIT. If all levels of manufacturing participate in the JIT planning, implementing, and maintenance procedure, the realization of positive change and improvement drives the process. Total participation makes the task of JIT implementation not only possible, but practical. Enhanced mutual respect for all concerned is a likely consequence, advancing the productive environment.

  2. 55th Annual Fuze Conference

    DTIC Science & Technology

    2011-05-26

    concrete plate and compact soil Confirmation: Complete Success both tests The TDD functioned as programmed; traces show entry and exit from each...concrete target and difference in deceleration levels between concrete and soil configuration The final exit & fire signals were generated as planned...Technical Data Package • Determine Process Capability • FMEA Manufacturing • Determine process capability • Cp = ( USL -LSL)/(6*Sigma) • Cpl

  3. ProSens: integrated production control by automated inspection planning and efficient multisensor metrology

    NASA Astrophysics Data System (ADS)

    Glaser, Ulf; Li, Zhichao; Bichmann, Stephan, II; Pfeifer, Tilo

    2003-05-01

    By China's entry into the WTO, Chinese as well as German companies are facing the question, how to minimize the risk of unfamiliar cooperation partners when developing products. The rise of customer demands concerning quality, product diversity and the reduction of expenses require flexibility and efficiency with reliable component suppliers. In order to build and strengthen sino-german cooperations, a manufacturing control using homogenized and efficient measures to assure high quality is of vital importance. Lack of unifications may cause identical measurements conducted at subcontractors or customers to be carried out with different measurement processes which leads to incomparable results. Rapidly growing company cooperations and simultaneously decreasing of manufacturing scope cause substantial difficulties when coordinating joint quality control activities. "ProSens," a sino-german project consortium consisting of industrial users, technology producers and research institutes, aims at improving selected production processes by: Creation of a homogeneous quality awareness in sino-german cooperations. Sensitization for process accompanying metrology at an early stage of product development. Increase of the process performance by the use of integrated metrology. Reduction of production time and cost. Unification of quality control of complex products by means of efficient measurement strategies and CAD-based inspection planning.

  4. Manufacturing Methods and Technology Program Plan, CY 1980.

    DTIC Science & Technology

    1980-09-01

    AD-A092 2Ii3 &RMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND IL FIG 1346 ..ANIJPACTRItd METH4OS AND TECNOLOGY PROGRAM PLAN. CY 1960. (U) %EP 60... innovative solutions. For example, material handling, process tools and inspection systems must be computerized to achieve the desired operating economics and...to decrease expensive direct labor; however, the new systems must also be capable of economic layaway for periods of ten years or more, a situation

  5. A System for Planning Ahead

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A software system that uses artificial intelligence techniques to help with complex Space Shuttle scheduling at Kennedy Space Center is commercially available. Stottler Henke Associates, Inc.(SHAI), is marketing its automatic scheduling system, the Automated Manifest Planner (AMP), to industries that must plan and project changes many different times before the tasks are executed. The system creates optimal schedules while reducing manpower costs. Using information entered into the system by expert planners, the system automatically makes scheduling decisions based upon resource limitations and other constraints. It provides a constraint authoring system for adding other constraints to the scheduling process as needed. AMP is adaptable to assist with a variety of complex scheduling problems in manufacturing, transportation, business, architecture, and construction. AMP can benefit vehicle assembly plants, batch processing plants, semiconductor manufacturing, printing and textiles, surface and underground mining operations, and maintenance shops. For most of SHAI's commercial sales, the company obtains a service contract to customize AMP to a specific domain and then issues the customer a user license.

  6. 75 FR 9614 - Manufacturer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... manufacturer of the basic classes of controlled substances listed in schedule I: Drug Schedule Marihuana (7360) I Tetrahydrocannabinols (7370) I The company plans to manufacture small quantities of marihuana derivatives for research purposes. In reference to drug code 7360 (Marihuana), the company plans to bulk...

  7. 75 FR 64744 - Manufacturer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... manufacturer of the basic classes of controlled substances listed in schedule I: Drug Schedule Marihuana (7360) I Tetrahydrocannabinols (7370) I The company plans to manufacture small quantities of marihuana derivatives for research purposes. In reference to drug code 7360 (Marihuana), the company plans to bulk...

  8. 40 CFR 372.25 - Thresholds for reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW... threshold amounts for purposes of reporting under § 372.30 for toxic chemicals are as follows: (a) With respect to a toxic chemical manufactured (including imported) or processed at a facility during the...

  9. 40 CFR 372.25 - Thresholds for reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW... threshold amounts for purposes of reporting under § 372.30 for toxic chemicals are as follows: (a) With respect to a toxic chemical manufactured (including imported) or processed at a facility during the...

  10. 32 CFR 286h.3 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). PPBS papers and associated data set forth the details of proposed programs and plans. Access to this... which release is restricted. The information identified below may be released only as set forth herein... cost or pricing data, profit data, overhead and direct labor rates, and manufacturing processes and...

  11. 32 CFR 286h.3 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...). PPBS papers and associated data set forth the details of proposed programs and plans. Access to this... which release is restricted. The information identified below may be released only as set forth herein... cost or pricing data, profit data, overhead and direct labor rates, and manufacturing processes and...

  12. 32 CFR 286h.3 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...). PPBS papers and associated data set forth the details of proposed programs and plans. Access to this... which release is restricted. The information identified below may be released only as set forth herein... cost or pricing data, profit data, overhead and direct labor rates, and manufacturing processes and...

  13. A testpart for interdisciplinary analyses in micro production engineering

    DOE PAGES

    Möhring, H. -C.; Kersting, P.; Carmignato, S.; ...

    2015-04-26

    In 2011, a round robin test was initiated within the group of CIRP Research Affiliates. The aim was to establish a platform for linking interdisciplinary research in order to share the expertise and experiences of participants all over the world. This paper introduces a testpart which has been designed to allow an analysis of different manufacturing technologies, simulation methods, machinery and metrology as well as process and production planning aspects. Current investigations are presented focusing on the machining and additive processes to produce the geometry, simulation approaches, machine analysis, and a comparison of measuring technologies. Challenges and limitations regarding themore » manufacturing and evaluation of the testpart features by the applied methods are discussed.« less

  14. Weighing the evidence: trends in managed care formulary decision making.

    PubMed

    de Lissovoy, Gregory

    2003-01-01

    Health plans, pharmacy benefit managers, and other organizations use drug formularies to promote quality care while controlling costs. However, restrictive formularies are often viewed as constraints on physician practice and potential barriers to optimal patient care. Reluctance to add new drugs to an established formulary is rational economic behavior. Innovative compounds may have unknown properties with uncertain outcomes and therefore may impose costs in the form of risk. Products that seemingly duplicate drugs already on formulary may increase transaction costs without additional benefit. In evaluating new products, formulary managers face the task of identifying, assembling, and synthesizing a wide range of complex information. Manufacturers, who may be in the best position to supply that information, have been severely restricted by U.S. Food and Drug Administration (FDA) regulations that limited marketing communications to findings from well-controlled clinical trials. The FDA Modernization Act of 1997 eased these restrictions somewhat by acknowledging that sophisticated purchasers such as organized health plans were capable of weighing the quality and impartiality of manufacturer-supplied evidence. The Academy of Managed Care Pharmacy (AMCP) created a standardized template that formularies can use to request comprehensive information about specific drugs from manufacturers. Widespread adoption of the AMCP format by health plans and manufacturers will greatly increase access to information about new drugs, speeding the process of formulary committee deliberation, and instilling greater confidence in the outcome of those decisions. Wider access to new drugs may result.

  15. Considerations for Using Agile in DoD Acquisition

    DTIC Science & Technology

    2010-04-01

    successfully used in manufacturing throughout the world for decades, such as ―just-in- time,‖ Lean, Kanban , and work-flow-based planning. Another new...of this analysis is provided in Table 2. 29 Kanban / lean style of Agile might be the most relevant for this phase. 31 | CMU/SEI-2010-TN-002...family of approaches, including Kanban [14], Rational Unified Process (RUP), Personal Software Process (PSP), Team Software Process (TSP), and Cleanroom

  16. The application of virtual reality systems as a support of digital manufacturing and logistics

    NASA Astrophysics Data System (ADS)

    Golda, G.; Kampa, A.; Paprocka, I.

    2016-08-01

    Modern trends in development of computer aided techniques are heading toward the integration of design competitive products and so-called "digital manufacturing and logistics", supported by computer simulation software. All phases of product lifecycle: starting from design of a new product, through planning and control of manufacturing, assembly, internal logistics and repairs, quality control, distribution to customers and after-sale service, up to its recycling or utilization should be aided and managed by advanced packages of product lifecycle management software. Important problems for providing the efficient flow of materials in supply chain management of whole product lifecycle, using computer simulation will be described on that paper. Authors will pay attention to the processes of acquiring relevant information and correct data, necessary for virtual modeling and computer simulation of integrated manufacturing and logistics systems. The article describes possibilities of use an applications of virtual reality software for modeling and simulation the production and logistics processes in enterprise in different aspects of product lifecycle management. The authors demonstrate effective method of creating computer simulations for digital manufacturing and logistics and show modeled and programmed examples and solutions. They pay attention to development trends and show options of the applications that go beyond enterprise.

  17. Apollo-Soyuz test project

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Experiments proposed for the Apollo-Soyuz space mission are discussed. Data focus of space processing and manufacturing, earth surveys, and life sciences. Special efforts were made to test the compatibility of the rendezvous and docking systems for manned spacecraft. Mission planning programs, personnel training, and spacecraft modifications for both spacecraft are included.

  18. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  19. Global drivers, sustainable manufacturing and systems ergonomics.

    PubMed

    Siemieniuch, C E; Sinclair, M A; Henshaw, M J deC

    2015-11-01

    This paper briefly explores the expected impact of the 'Global Drivers' (such as population demographics, food security; energy security; community security and safety), and the role of sustainability engineering in mitigating the potential effects of these Global Drivers. The message of the paper is that sustainability requires a significant input from Ergonomics/Human Factors, but the profession needs some expansion in its thinking in order to make this contribution. Creating a future sustainable world in which people experience an acceptable way of life will not happen without a large input from manufacturing industry into all the Global Drivers, both in delivering products that meet sustainability criteria (such as durability, reliability, minimised material requirement and low energy consumption), and in developing sustainable processes to deliver products for sustainability (such as minimum waste, minimum emissions and low energy consumption). Appropriate changes are already being implemented in manufacturing industry, including new business models, new jobs and new skills. Considerable high-level planning around the world is in progress and is bringing about these changes; for example, there is the US 'Advanced Manufacturing National Program' (AMNP)', the German 'Industrie 4.0' plan, the French plan 'la nouvelle France industrielle' and the UK Foresight publications on the 'Future of Manufacturing'. All of these activities recognise the central part that humans will continue to play in the new manufacturing paradigms; however, they do not discuss many of the issues that systems ergonomics professionals acknowledge. This paper discusses a number of these issues, highlighting the need for some new thinking and knowledge capture by systems ergonomics professionals. Among these are ethical issues, job content and skills issues. Towards the end, there is a summary of knowledge extensions considered necessary in order that systems ergonomists can be fully effective in this new environment, together with suggestions for the means to acquire and disseminate the knowledge extensions. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. 40 CFR 92.704 - Notice to manufacturer or remanufacturer of nonconformity; submission of remedial plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... remanufacturer of nonconformity; submission of remedial plan. 92.704 Section 92.704 Protection of Environment... nonconformity; submission of remedial plan. (a) The manufacturer or remanufacturer will be notified whenever the... category of locomotives or locomotive engines encompassed by the determination of nonconformity, will give...

  1. Activities of the Bureau of Alcohol, Tobacco and Firearms: Testimony

    DTIC Science & Technology

    1993-03-20

    distillerics, wineries , and breweries; to produce or export tobacco products; to import, manufacture, or sell firearms; and to manufacture, sell. or use...work plans for two winery tax compliance inspections. Both plans called for verifying that the correct tax was paid for wine leaving a winery . One plan

  2. Design of an automatic production monitoring system on job shop manufacturing

    NASA Astrophysics Data System (ADS)

    Prasetyo, Hoedi; Sugiarto, Yohanes; Rosyidi, Cucuk Nur

    2018-02-01

    Every production process requires monitoring system, so the desired efficiency and productivity can be monitored at any time. This system is also needed in the job shop type of manufacturing which is mainly influenced by the manufacturing lead time. Processing time is one of the factors that affect the manufacturing lead time. In a conventional company, the recording of processing time is done manually by the operator on a sheet of paper. This method is prone to errors. This paper aims to overcome this problem by creating a system which is able to record and monitor the processing time automatically. The solution is realized by utilizing electric current sensor, barcode, RFID, wireless network and windows-based application. An automatic monitoring device is attached to the production machine. It is equipped with a touch screen-LCD so that the operator can use it easily. Operator identity is recorded through RFID which is embedded in his ID card. The workpiece data are collected from the database by scanning the barcode listed on its monitoring sheet. A sensor is mounted on the machine to measure the actual machining time. The system's outputs are actual processing time and machine's capacity information. This system is connected wirelessly to a workshop planning application belongs to the firm. Test results indicated that all functions of the system can run properly. This system successfully enables supervisors, PPIC or higher level management staffs to monitor the processing time quickly with a better accuracy.

  3. Photovoltaic energy program overview, fiscal year 1991

    NASA Astrophysics Data System (ADS)

    1992-02-01

    The Photovoltaics Program Plan, FY 1991 to FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers' immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

  4. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-01-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  5. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-02-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  6. Multi-assortment rhythmic production planning and control

    NASA Astrophysics Data System (ADS)

    Skolud, B.; Krenczyk, D.; Zemczak, M.

    2015-11-01

    A method for production planning in a repetitive manufacturing system which allows for estimating the possibility of processing work orders in due time is presented. The difference between two approaches are presented; the first one one-piece flow elaborated in Toyota and the second one elaborated by authors that consists in defining sufficient conditions to filter all solutions and providing a set of admissible solutions for both the client and the producer. In the paper attention is focused on the buffer allocation. Illustrative examples are presented.

  7. Fabrication of Flex Joint Utilizing Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    The Selective Laser Melting (SLM) manufacturing technique has been utilized in the manufacture of a flex joint typical of those found in rocket engine and main propulsion system ducting. The SLM process allowed for the combination of parts that are typically machined separately and welded together. This resulted in roughly a 65% reduction of the total number of parts, roughly 70% reduction in the total number of welds, and an estimated 60% reduction in the number of machining operations. The majority of the new design was in three SLM pieces. These pieces, as well as a few traditionally fabricated parts, were assembled into a complete unit, which has been pressure tested. The design and planned cryogenic testing of the unit will be presented.

  8. [Microbiological assessment of the Gouda-type cheese-making process in a Venezuelan industry].

    PubMed

    Dáivila, Jacqueline; Reyes, Genara; Corzo, Otoniel

    2006-03-01

    The adoption of the Hazard Analysis and Critical Control Point (HACCP) system is necessary to assure the safety of the product in the cheese-making industry. The compliment of pre-requisite programs as Good Manufacture Practices (GMPs) and Sanitation Standard Operating Procedures (SSOPs) are required before the implementation of the HACCP plan. GMPs are the standards related to equipments, tools, personnel, etc. SSOPs are the procedures related to hygiene and sanitation of the plant and workers. The aim of this study was to assess the compliment of the pre-requisite programs and the microbiological conditions of the Gouda type cheese-making process in a Venezuelan processing plant before designing a HACCP plan. Samples were: (a) raw milk, pasteurized milk, curd and ripened cheese, (b) water, (c) environment of the production areas and ripening premises, (d) equipments before and after sanitation, (e) food handlers. Microbiological analyses were done according to COVENIN standards. This study showed that even though pasteurization process was effective to kill pathogen bacteria of the raw milk and the water was safe, however there are deficient manufacture practices in the hygiene as well as in sanitation of the plant and food handlers. Prerequisite programs (GMP-SSOP) of this industry need to be well established, controlled and evaluated.

  9. Comprehensive hands-on training for influenza vaccine manufacturing: a WHO-BARDA-BTEC partnership for global workforce development.

    PubMed

    Ruiz, Jennifer; Gilleskie, Gary L; Brown, Patty; Burnett, Bruce; Carbonell, Ruben G

    2014-01-01

    The critical need for enhancing influenza pandemic preparedness in many developing nations has led the World Health Organization (WHO) and the Biomedical Advanced Research and Development Authority (BARDA), part of the U.S. Department of Health and Human Services (HHS), to develop an international influenza vaccine capacity-building program. Among the critical limitations faced by many of these nations is lack of access to training programs for staff supporting operations within vaccine production facilities. With support from BARDA, the Biomanufacturing Training and Education Center (BTEC) at North Carolina State University has addressed this need for training by developing and delivering a comprehensive training program, consisting of three courses: Fundamentals of cGMP Influenza Vaccine Manufacturing, Advanced Upstream Processes for Influenza Vaccine Manufacturing, and Advanced Downstream Processes for Influenza Vaccine Manufacturing. The courses cover process design, transfer, and execution at manufacturing scale, quality systems, and regulations covering both manufacturing and approval of pandemic vaccines. The Fundamentals course focuses on the concepts, equipment, applicable regulations, and procedures commonly used to produce influenza vaccine. The two Advanced courses focus on process design, scale up, validation, and new technologies likely to improve efficiency of vaccine production. All three courses rely on a combination of classroom instruction and hands-on training in BTEC's various laboratories. Each course stands alone, and participants may take one or more of the three courses. Overall participant satisfaction with the courses has been high, and follow-up surveys show that participants actively transferred the knowledge they gained to the workplace. Future plans call for BTEC to continue offering the three courses and to create an online version of several modules of the Fundamentals course. Copyright © 2014 Wiley Periodicals, Inc.

  10. Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery.

    PubMed

    Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2012-07-01

    Computer aided design and manufacturing (CAD/CAM) technology today is the standard in manufacturing industry. The application of the CAD/CAM technology, together with the emerging 3D medical images based virtual surgical planning (VSP) technology, to craniomaxillofacial reconstruction has been gaining increasing attention to reconstructive surgeons. This article illustrates the components, system and clinical management of the VSP and CAD/CAM technology including: data acquisition, virtual surgical and treatment planning, individual implant design and fabrication, and outcome assessment. It focuses primarily on the technical aspects of the VSP and CAD/CAM system to improve the predictability of the planning and outcome.

  11. Impact of a financial risk-sharing scheme on budget-impact estimations: a game-theoretic approach.

    PubMed

    Gavious, Arieh; Greenberg, Dan; Hammerman, Ariel; Segev, Ella

    2014-06-01

    As part of the process of updating the National List of Health Services in Israel, health plans (the 'payers') and manufacturers each provide estimates on the expected number of patients that will utilize a new drug. Currently, payers face major financial consequences when actual utilization is higher than the allocated budget. We suggest a risk-sharing model between the two stakeholders; if the actual number of patients exceeds the manufacturer's prediction, the manufacturer will reimburse the payers by a rebate rate of α from the deficit. In case of under-utilization, payers will refund the government at a rate of γ from the surplus budget. Our study objective was to identify the optimal early estimations of both 'players' prior to and after implementation of the risk-sharing scheme. Using a game-theoretic approach, in which both players' statements are considered simultaneously, we examined the impact of risk-sharing within a given range of rebate proportions, on players' early budget estimations. When increasing manufacturer's rebate α to be over 50 %, then manufacturers will announce a larger number, and health plans will announce a lower number of patients than they would without risk sharing, thus substantially decreasing the gap between their estimates. Increasing γ changes players' estimates only slightly. In reaction to applying a substantial risk-sharing rebate α on the manufacturer, both players are expected to adjust their budget estimates toward an optimal equilibrium. Increasing α is a better vehicle for reaching the desired equilibrium rather than increasing γ, as the manufacturer's rebate α substantially influences both players, whereas γ has little effect on the players behavior.

  12. The implementation of a Hazard Analysis and Critical Control Point management system in a peanut butter ice cream plant.

    PubMed

    Hung, Yu-Ting; Liu, Chi-Te; Peng, I-Chen; Hsu, Chin; Yu, Roch-Chui; Cheng, Kuan-Chen

    2015-09-01

    To ensure the safety of the peanut butter ice cream manufacture, a Hazard Analysis and Critical Control Point (HACCP) plan has been designed and applied to the production process. Potential biological, chemical, and physical hazards in each manufacturing procedure were identified. Critical control points for the peanut butter ice cream were then determined as the pasteurization and freezing process. The establishment of a monitoring system, corrective actions, verification procedures, and documentation and record keeping were followed to complete the HACCP program. The results of this study indicate that implementing the HACCP system in food industries can effectively enhance food safety and quality while improving the production management. Copyright © 2015. Published by Elsevier B.V.

  13. Hospital capacity planning: from measuring stocks to modelling flows

    PubMed Central

    Wright, Stephen; Barlow, James; McKee, Martin

    2010-01-01

    Abstract The metric of “bed numbers” is commonly used in hospital planning, but it fails to capture key aspects of how hospital services are delivered. Drawing on a study of innovative hospital projects in Europe, we argue that hospital capacity planning should not be based on beds, but rather on the ability to deliver processes. We propose using approaches that are based on manufacturing theory such as “lean thinking” that focuses on the value that different processes add for the primary customer, i.e. the patient. We argue that it is beneficial to look at the hospital, not from the perspective of beds or specialties, but rather from the path taken by the patients who are treated in them, the respective processes delivered by health professionals and the facilities appropriate to those processes. Systematized care pathways seem to offer one avenue for achieving these goals. However, they need to be underpinned by a better understanding of the flows of patients, work and goods within a hospital, the bottlenecks that occur, and translation of this understanding into new capacity planning tools. PMID:20680129

  14. Monodisperse Latex Reactor (MLR): A materials processing space shuttle mid-deck payload

    NASA Technical Reports Server (NTRS)

    Kornfeld, D. M.

    1985-01-01

    The monodisperse latex reactor experiment has flown five times on the space shuttle, with three more flights currently planned. The objectives of this project is to manufacture, in the microgravity environment of space, large particle-size monodisperse polystyrene latexes in particle sizes larger and more uniform than can be manufactured on Earth. Historically it has been extremely difficult, if not impossible to manufacture in quantity very high quality monodisperse latexes on Earth in particle sizes much above several micrometers in diameter due to buoyancy and sedimentation problems during the polymerization reaction. However the MLR project has succeeded in manufacturing in microgravity monodisperse latex particles as large as 30 micrometers in diameter with a standard deviation of 1.4 percent. It is expected that 100 micrometer particles will have been produced by the completion of the the three remaining flights. These tiny, highly uniform latex microspheres have become the first material to be commercially marketed that was manufactured in space.

  15. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production

    NASA Astrophysics Data System (ADS)

    Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther

    2018-04-01

    Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.

  16. Manufacturing Methods and Technology Program Plan, CY 1984.

    DTIC Science & Technology

    1984-09-01

    77nD-Al48 828 MANUFACTURING METHODS AIND TECHNOLOGY PROGRAM PLAN CY 1/3 1984(U) ARMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND IL G FISCHER...1984 MANUFACTURING TECHNOLOGY DIVISION U S ARMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND, ILLINOIS 61299-7260 8 4 30 033 .. . . . . ...4i.l...NUMBE2N. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER i2- ffl7’ NONE 14TTITLE (Mid Skdde) S. TYPE OF REPORT & PERIOD COVERED MANUFACTURING METHODS

  17. Using Eucalypts in manufacturing

    Treesearch

    William A. Dost

    1983-01-01

    Eucalypts have a number of characteristics affecting processing and utilization that distinguish them from other woods. The major current interest in the eucalypts is as a fuel. Possible demand as a chemical feedstock, for pulp-wood, panel products, lumber or round timbers should be considered in initial planning and management as a hedge against changes resulting from...

  18. Virtual tryout planning in automotive industry based on simulation metamodels

    NASA Astrophysics Data System (ADS)

    Harsch, D.; Heingärtner, J.; Hortig, D.; Hora, P.

    2016-11-01

    Deep drawn sheet metal parts are increasingly designed to the feasibility limit, thus achieving a robust manufacturing is often challenging. The fluctuation of process and material properties often lead to robustness problems. Therefore, numerical simulations are used to detect the critical regions. To enhance the agreement with the real process conditions, the material data are acquired through a variety of experiments. Furthermore, the force distribution is taken into account. The simulation metamodel contains the virtual knowledge of a particular forming process, which is determined based on a series of finite element simulations with variable input parameters. Based on the metamodels, virtual process windows can be displayed for different configurations. This helps to improve the operating point as well as to adjust process settings in case the process becomes unstable. Furthermore, the time of tool tryout can be shortened due to transfer of the virtual knowledge contained in the metamodels on the optimisation of the drawbeads. This allows the tool manufacturer to focus on the essential, to save time and to recognize complex relationships.

  19. Use of Process Improvement Tools in Radiology.

    PubMed

    Rawson, James V; Kannan, Amogha; Furman, Melissa

    2016-01-01

    Process improvement techniques are common in manufacturing and industry. Over the past few decades these principles have been slowly introduced in select health care settings. This article reviews the Plan, Do, Study, and Act cycle, Six Sigma, the System of Profound Knowledge, Lean, and the theory of constraints. Specific process improvement tools in health care and radiology are presented in the order the radiologist is likely to encounter them in an improvement project. Copyright © 2015 Mosby, Inc. All rights reserved.

  20. Impact of Company Size on Manufacturing Improvement Practices: An empirical study

    NASA Astrophysics Data System (ADS)

    Syan, C. S.; Ramoutar, K.

    2014-07-01

    There is a constant search for ways to achieve a competitive advantage through new manufacturing techniques. Best performing manufacturing companies tend to use world-class manufacturing (WCM) practices. Although the last few years have witnessed phenomenal growth in the use of WCM techniques, their effectiveness is not well understood specifically in the context of less developed countries. This paper presents an empirical study to investigate the impact of company size on improving manufacturing performance in manufacturing organizations based in Trinidad and Tobago (T&T). Empirical data were collected via a questionnaire survey which was send to 218 manufacturing firms in T&T. Five different company sizes and seven different industry sectors were studied. The analysis of survey data was performed with the aid of Statistical Package for Social Sciences (SPSS) software. The study signified facilitating and impeding factors towards improving manufacturing performance. Their relative impact/importance is dependent on varying company size and industry sectors. Findings indicate that T&T manufacturers are still practicing traditional approaches, when compared with world class manufacturers. In the majority of organizations, these practices were not 100% implemented even though they started the implementation process more than 5 years ago. The findings provided some insights in formulating more optimal operational strategies, and later develop action plans towards more effective implementation of WCM in T&T manufacturers.

  1. The comparison of two methods to manufacture fused biconical tapered optical fiber coupler

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Liu, Hairong

    2009-08-01

    Optical fiber coupler is a directional coupler which is crucial component for optical fiber communication systems. The fused biconical taper is the most important method in facture of optical fiber coupler, with many advantages of low excess loss, precise coupling ratio, good consistency and stability. In this paper we have introduced a new method to manufacture optical fiber coupler. And more over the new manufacture process has been compared with the traditional manufacture method. In the traditional crafts, two optical fibers are parallel placed, and then use the method of tie a knot of the two optical fibers. In the new process, a new program of fiber placement is introduced. Two optical fibers are parallel placed in the middle of the fixture, and then in order to make the bare part of the optical fiber close as much as possible, the new plan using high temperature resistant material bind the both end of the fiber which are not removing the cladding. After many contrast tests, we can see that adopt the improved method of fiber placement, during the process of fiber pulling, the variation of optical power in the directional arm and the coupler arm are more smooth and steady. But the excess loss (EL) generated in the process of pulling is a bit higher than the traditional method of tie a knot. The tests show that the new method of optical fiber placement is feasible in the actual projects for the manufacture of coupler with low coupling ratio, but for the control of the EL still need further studying.

  2. Solid models for CT/MR image display: accuracy and utility in surgical planning

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; Yue, Alvin; Ammirati, Mario; Kioumehr, Farhad; Turner, Scott

    1991-05-01

    Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. Although this life-size anatomic model is more easily understandable by the surgeon, its accuracy and true surgical utility remain untested. We have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the model with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of 99.6 percent. Because of the ease of exact voxel localization on the model, its precision was high with the standard deviation of measurement of 0.71 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents our accuracy study and discussed ways of assessing the quality of neurosurgical plans when 3-D models a made available as planning tools.

  3. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery.

    PubMed

    Flügge, Tabea Viktoria; Nelson, Katja; Schmelzeisen, Rainer; Metzger, Marc Christian

    2013-08-01

    To present an efficient workflow for the production of implant drilling guides using virtual planning tools. For this purpose, laser surface scanning, cone beam computed tomography, computer-aided design and manufacturing, and 3-dimensional (3D) printing were combined. Intraoral optical impressions (iTero, Align Technologies, Santa Clara, CA) and digital 3D radiographs (cone beam computed tomography) were performed at the first consultation of 1 exemplary patient. With image processing techniques, the intraoral surface data, acquired using an intraoral scanner, and radiologic 3D data were fused. The virtual implant planning process (using virtual library teeth) and the in-office production of the implant drilling guide was performed after only 1 clinical consultation of the patient. Implant surgery with a computer-aided design and manufacturing produced implant drilling guide was performed during the second consultation. The production of a scan prosthesis and multiple preoperative consultations of the patient were unnecessary. The presented procedure offers another step in facilitating the production of drilling guides in dental implantology. Four main advantages are realized with this procedure. First, no additional scan prosthesis is needed. Second, data acquisition can be performed during the first consultation. Third, the virtual planning is directly transferred to the drilling guide without a loss of accuracy. Finally, the treatment cost and time required are reduced with this facilitated production process. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    PubMed

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  5. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control

    PubMed Central

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part’s porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Performance Prototype Trough (PPT) Concentrating Collector consists of four 80-foot modules in a 320-foot row. The collector was analyzed, including cost estimates and manufacturing processes to produce collectors in volumes from 100 to 100,000 modules per year. The four different reflector concepts considered were the sandwich reflector structure, sheet metal reflector structure, molded reflector structure, and glass laminate structure. The sheet metal and glass laminate structures are emphasized with their related structure concepts. A preliminary manufacturing plan is offered that includes: documentation of the manufacturing process with production flow diagrams; labor and material costs at various production levels; machinerymore » and equipment requirements including preliminary design specifications; and capital investment costs for a new plant. Of five reflector designs considered, the two judged best and considered at length are thin annealed glass and steel laminate on steel frame panel and thermally sagged glass. Also discussed are market considerations, costing and selling price estimates, design cost analysis and make/buy analysis. (LEW)« less

  7. 21 CFR 822.35 - Can you inspect my manufacturing site or other sites involved in my postmarket surveillance plan?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Can you inspect my manufacturing site or other sites involved in my postmarket surveillance plan? 822.35 Section 822.35 Food and Drugs FOOD AND DRUG... Records and Reports § 822.35 Can you inspect my manufacturing site or other sites involved in my...

  8. Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products

    NASA Astrophysics Data System (ADS)

    Park, Dong Hwan; Yarlagadda, Prasad K. D. V.

    2004-06-01

    In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.

  9. Risks and reliability of manufacturing processes as related to composite materials for spacecraft structures

    NASA Technical Reports Server (NTRS)

    Bao, Han P.

    1995-01-01

    Fabricating primary aircraft and spacecraft structures using advanced composite materials entail both benefits and risks. The benefits come from much improved strength-to-weight ratios and stiffness-to-weight ratios, potential for less part count, ability to tailor properties, chemical and solvent resistance, and superior thermal properties. On the other hand, the risks involved include high material costs, lack of processing experience, expensive labor, poor reproducibility, high toxicity for some composites, and a variety of space induced risks. The purpose of this project is to generate a manufacturing database for a selected number of materials with potential for space applications, and to rely on this database to develop quantitative approaches to screen candidate materials and processes for space applications on the basis of their manufacturing risks including costs. So far, the following materials have been included in the database: epoxies, polycyanates, bismalemides, PMR-15, polyphenylene sulfides, polyetherimides, polyetheretherketone, and aluminum lithium. The first four materials are thermoset composites; the next three are thermoplastic composites, and the last one is is a metal. The emphasis of this database is on factors affecting manufacturing such as cost of raw material, handling aspects which include working life and shelf life of resins, process temperature, chemical/solvent resistance, moisture resistance, damage tolerance, toxicity, outgassing, thermal cycling, and void content, nature or type of process, associate tooling, and in-process quality assurance. Based on industry experience and published literature, a relative ranking was established for each of the factors affecting manufacturing as listed above. Potential applications of this database include the determination of a delta cost factor for specific structures with a given process plan and a general methodology to screen materials and processes for incorporation into the current conceptual design optimization of future spacecrafts as being coordinated by the Vehicle Analysis Branch where this research is being conducted.

  10. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  11. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  12. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  13. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  14. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  15. 40 CFR Appendix II to Part 92 - Interpretive Ruling for § 92.705-Remedial Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nonconformity of any such vehicles or engines. The plan shall provide that the manufacturer will remedy, at the manufacturer's expense, all properly maintained and used vehicles which experienced the nonconformity during...

  16. Additive Manufacturing of Fuel Injectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadek Tadros, Dr. Alber Alphonse; Ritter, Dr. George W.; Drews, Charles Donald

    Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventionalmore » manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the project were: • Powder metal input stock: Powder characterization, dimensional accuracy, metallurgical characterization, and mechanical properties evaluation. • Process parameters: Laser parameter effects, post-printing heat-treatment development, mechanical properties evaluation, and post-finishing technique. • Material design curves: Room and elevated temperature tensiles, low cycle fatigue, and creep rupture properties curves generated. • AM specifications: Key metal powder characteristics, laser parameters, and heat-treatment controls identified.« less

  17. Creative Practice : Design and Manufacturing of ‘CD Crusher’

    NASA Astrophysics Data System (ADS)

    Yamamoto, Koji; Senda, Shinkoh; Fukumori, Tsutom; Sato, Kazuo

    A practice program for graduate students in mechanical engineering has been developed. The task of this training is to design and manufacture an original ‘CD crusher’ , a machine to mechanically destroy compact disks after use. This is a competition among groups of students creating their original CD crusher which fulfills the regulation. The regulation is that the crusher has to use rotational blades cutting the CDs. Same sized blades are supplied to the students groups. They are fabricated from a steel bar through cutting, annealing and quenching processes by the presence of students. Technical staffs are ready to help students on the whole way of the practice. However, they encourage initiative by the students from planning to manufacturing. Students satisfied at the practice according to the comments after competition.

  18. An international technology platform for influenza vaccines.

    PubMed

    Hendriks, Jan; Holleman, Marit; de Boer, Otto; de Jong, Patrick; Luytjes, Willem

    2011-07-01

    Since 2008, the World Health Organization has provided seed grants to 11 manufacturers in low- and middle-income countries to establish or improve their pandemic influenza vaccine production capacity. To facilitate this ambitious project, an influenza vaccine technology platform (or "hub") was established at the Netherlands Vaccine Institute for training and technology transfer to developing countries. During its first two years of operation, a robust and transferable monovalent pilot process for egg-based inactivated whole virus influenza A vaccine production was established under international Good Manufacturing Practice standards, as well as in-process and release assays. A course curriculum was designed, including a two-volume practical handbook on production and quality control. Four generic hands-on training courses were successfully realized for over 40 employees from 15 developing country manufacturers. Planned extensions to the curriculum include cell-culture based technology for viral vaccine production, split virion influenza production, and generic adjuvant formulation. We conclude that technology transfer through the hub model works well, significantly builds vaccine manufacturing capacity in developing countries, and thereby increases global and equitable access to vaccines of high public health relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Integration of design and inspection

    NASA Astrophysics Data System (ADS)

    Simmonds, William H.

    1990-08-01

    Developments in advanced computer integrated manufacturing technology, coupled with the emphasis on Total Quality Management, are exposing needs for new techniques to integrate all functions from design through to support of the delivered product. One critical functional area that must be integrated into design is that embracing the measurement, inspection and test activities necessary for validation of the delivered product. This area is being tackled by a collaborative project supported by the UK Government Department of Trade and Industry. The project is aimed at developing techniques for analysing validation needs and for planning validation methods. Within the project an experimental Computer Aided Validation Expert system (CAVE) is being constructed. This operates with a generalised model of the validation process and helps with all design stages: specification of product requirements; analysis of the assurance provided by a proposed design and method of manufacture; development of the inspection and test strategy; and analysis of feedback data. The kernel of the system is a knowledge base containing knowledge of the manufacturing process capabilities and of the available inspection and test facilities. The CAVE system is being integrated into a real life advanced computer integrated manufacturing facility for demonstration and evaluation.

  20. Investigation of ERP Teaching and Practitioner Experiences Related to ISO 9000 Core Standards

    ERIC Educational Resources Information Center

    Wiggins, Charles

    2010-01-01

    Enterprise Resource Planning (ERP) systems have greatly enhanced the efficiency and continuity of the business process and the flow of information technology in order to support organizations. ERP was intended to be used as a tool for manufacturing in an effort to build a more cohesive customer relationship. Lately many "Fortune" 500 companies…

  1. Overview of the Integrated Programs for Aerospace Vehicle Design (IPAD) project

    NASA Technical Reports Server (NTRS)

    Venneri, S. L.

    1983-01-01

    To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of data base management technology and associated software for integrated company wide management of engineering and manufacturing information. Results to date on the IPAD project include an in depth documentation of a representative design process for a large engineering project, the definition and design of computer aided design software needed to support that process, and the release of prototype software to manage engineering information. This paper provides an overview of the IPAD project and summarizes progress to date and future plans.

  2. Supply chain planning classification

    NASA Astrophysics Data System (ADS)

    Hvolby, Hans-Henrik; Trienekens, Jacques; Bonde, Hans

    2001-10-01

    Industry experience a need to shift in focus from internal production planning towards planning in the supply network. In this respect customer oriented thinking becomes almost a common good amongst companies in the supply network. An increase in the use of information technology is needed to enable companies to better tune their production planning with customers and suppliers. Information technology opportunities and supply chain planning systems facilitate companies to monitor and control their supplier network. In spite if these developments, most links in today's supply chains make individual plans, because the real demand information is not available throughout the chain. The current systems and processes of the supply chains are not designed to meet the requirements now placed upon them. For long term relationships with suppliers and customers, an integrated decision-making process is needed in order to obtain a satisfactory result for all parties. Especially when customized production and short lead-time is in focus. An effective value chain makes inventory available and visible among the value chain members, minimizes response time and optimizes total inventory value held throughout the chain. In this paper a supply chain planning classification grid is presented based current manufacturing classifications and supply chain planning initiatives.

  3. America's Next Great Ship: Space Launch System Core Stage Transitioning from Design to Manufacturing

    NASA Technical Reports Server (NTRS)

    Birkenstock, Benjamin; Kauer, Roy

    2014-01-01

    The Space Launch System (SLS) Program is essential to achieving the Nation's and NASA's goal of human exploration and scientific investigation of the solar system. As a multi-element program with emphasis on safety, affordability, and sustainability, SLS is becoming America's next great ship of exploration. The SLS Core Stage includes avionics, main propulsion system, pressure vessels, thrust vector control, and structures. Boeing manufactures and assembles the SLS core stage at the Michoud Assembly Facility (MAF) in New Orleans, LA, a historical production center for Saturn V and Space Shuttle programs. As the transition from design to manufacturing progresses, the importance of a well-executed manufacturing, assembly, and operation (MA&O) plan is crucial to meeting performance objectives. Boeing employs classic techniques such as critical path analysis and facility requirements definition as well as innovative approaches such as Constraint Based Scheduling (CBS) and Cirtical Chain Project Management (CCPM) theory to provide a comprehensive suite of project management tools to manage the health of the baseline plan on both a macro (overall project) and micro level (factory areas). These tools coordinate data from multiple business systems and provide a robust network to support Material & Capacity Requirements Planning (MRP/CRP) and priorities. Coupled with these tools and a highly skilled workforce, Boeing is orchestrating the parallel buildup of five major sub assemblies throughout the factory. Boeing and NASA are transforming MAF to host state of the art processes, equipment and tooling, the most prominent of which is the Vertical Assembly Center (VAC), the largest weld tool in the world. In concert, a global supply chain is delivering a range of structural elements and component parts necessary to enable an on-time delivery of the integrated Core Stage. SLS is on plan to launch humanity into the next phase of space exploration.

  4. 76 FR 39127 - Manufacturer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Administration (DEA) to be registered as a bulk manufacturer of Remifentanil (9739) the basic class of controlled substance in schedule II. The company plans to utilize this facility to manufacture small quantities of the... primary manufacturing facility in West Deptford, New Jersey. The controlled substances manufactured in...

  5. 77 FR 5849 - Manufacturer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... (DEA) to be registered as a bulk manufacturer of Remifentanil (9739), the basic class of controlled substance in schedule II. The company plans to utilize this facility to manufacture small quantities of the... manufacturing facility in West Deptford, New Jersey. The controlled substances manufactured in bulk at this...

  6. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    PubMed

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Assembly of 5.5-Meter Diameter Developmental Barrel Segments for the Ares I Upper Stage

    NASA Technical Reports Server (NTRS)

    Carter, Robert W.

    2011-01-01

    Full scale assembly welding of Ares I Upper Stage 5.5-Meter diameter cryogenic tank barrel segments has been performed at the Marshall Space Flight Center (MSFC). One full-scale developmental article produced under the Ares 1 Upper Stage project is the Manufacturing Demonstration Article (MDA) Barrel. This presentation will focus on the welded assembly of this barrel section, and associated lessons learned. Among the MDA articles planned on the Ares 1 Program, the Barrel was the first to be completed, primarily because the process of manufacture from piece parts (barrel panels) utilized the most mature friction stir process planned for use on the Ares US program: Conventional fixed pin Friction Stir Welding (FSW). This process is in use on other space launch systems, including the Shuttle s External Tank, the Delta IV common booster core, the Delta II, and the Atlas V rockets. The goals for the MDA Barrel development were several fold: 1) to prove out Marshall Space Flight Center s new Vertical Weld Tool for use in manufacture of cylindrical barrel sections, 2) to serve as a first run for weld qualification to a new weld specification, and 3) to provide a full size cylindrical section for downstream use in precision cleaning and Spray-on Foam Insulation development. The progression leading into the welding of the full size barrel included sub scale panel welding, subscale cylinder welding, a full length confidence weld, and finally, the 3 seamed MDA barrel processing. Lessons learned on this MDA program have been carried forward into the production tooling for the Ares 1 US Program, and in the use of the MSFC VWT in processing other large scale hardware, including two 8.4 meter diameter Shuttle External Tank barrel sections that are currently being used in structural analysis to validate shell buckling models.

  8. Automation of block assignment planning using a diagram-based scenario modeling method

    NASA Astrophysics Data System (ADS)

    Hwang, In Hyuck; Kim, Youngmin; Lee, Dong Kun; Shin, Jong Gye

    2014-03-01

    Most shipbuilding scheduling research so far has focused on the load level on the dock plan. This is be¬cause the dock is the least extendable resource in shipyards, and its overloading is difficult to resolve. However, once dock scheduling is completed, making a plan that makes the best use of the rest of the resources in the shipyard to minimize any additional cost is also important. Block assignment planning is one of the midterm planning tasks; it assigns a block to the facility (factory/shop or surface plate) that will actually manufacture the block according to the block characteristics and current situation of the facility. It is one of the most heavily loaded midterm planning tasks and is carried out manu¬ally by experienced workers. In this study, a method of representing the block assignment rules using a diagram was su¬ggested through analysis of the existing manual process. A block allocation program was developed which automated the block assignment process according to the rules represented by the diagram. The planning scenario was validated through a case study that compared the manual assignment and two automated block assignment results.

  9. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  10. Ubiquitous Robotic Technology for Smart Manufacturing System.

    PubMed

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  11. Ubiquitous Robotic Technology for Smart Manufacturing System

    PubMed Central

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  12. Automated generation of weld path trajectories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sizemore, John M.; Hinman-Sweeney, Elaine Marie; Ames, Arlo Leroy

    2003-06-01

    AUTOmated GENeration of Control Programs for Robotic Welding of Ship Structure (AUTOGEN) is software that automates the planning and compiling of control programs for robotic welding of ship structure. The software works by evaluating computer representations of the ship design and the manufacturing plan. Based on this evaluation, AUTOGEN internally identifies and appropriately characterizes each weld. Then it constructs the robot motions necessary to accomplish the welds and determines for each the correct assignment of process control values. AUTOGEN generates these robot control programs completely without manual intervention or edits except to correct wrong or missing input data. Most shipmore » structure assemblies are unique or at best manufactured only a few times. Accordingly, the high cost inherent in all previous methods of preparing complex control programs has made robot welding of ship structures economically unattractive to the U.S. shipbuilding industry. AUTOGEN eliminates the cost of creating robot control programs. With programming costs eliminated, capitalization of robots to weld ship structures becomes economically viable. Robot welding of ship structures will result in reduced ship costs, uniform product quality, and enhanced worker safety. Sandia National Laboratories and Northrop Grumman Ship Systems worked with the National Shipbuilding Research Program to develop a means of automated path and process generation for robotic welding. This effort resulted in the AUTOGEN program, which has successfully demonstrated automated path generation and robot control. Although the current implementation of AUTOGEN is optimized for welding applications, the path and process planning capability has applicability to a number of industrial applications, including painting, riveting, and adhesive delivery.« less

  13. A new planetary structure fabrication process using phosphoric acid

    NASA Astrophysics Data System (ADS)

    Buchner, Christoph; Pawelke, Roland H.; Schlauf, Thomas; Reissner, Alexander; Makaya, Advenit

    2018-02-01

    Minimising the launch mass is an important aspect of exploration mission planning. In-situ resource utilisation (ISRU) can improve this by reducing the amount of terrestrial materials needed for planetary exploration activities. We report on a recently concluded investigation into the requirements and available technologies for creating hardware on extra-terrestrial bodies, using the limited resources available on site. A trade-off of ISRU technologies for hardware manufacturing was conducted. A new additive manufacturing process suitable for fabricating structures on the Moon or Mars was developed. The process uses planetary regolith as the base material and concentrated phosphoric acid as the liquid binder. Mixing the reagents creates a sticky construction paste that slowly solidifies into a hard, rock-like material. Prior to solidification, the paste is extruded in layers, creating the desired structures in a 3D printing process. We used Martian regolith simulant JSC-Mars-1A, but the process is not selective towards regolith composition. Samples were exposed to thermal cycles and were mechanically characterised. Reduced-scale demonstrator structures were printed to demonstrate structure fabrication using the developed process.

  14. Dimensions of Army Commissioned and Noncommissioned Officer Leadership

    DTIC Science & Technology

    1990-02-01

    Financial Strategy Planning" and "Public and Customer Relations" ( Tornow & Pinto, 1976); "Manufacturing Process Supervision" and "Union Management...organization and (b) training. Examples of the former are: Coordination of Other Organizational Units and Personnel ( Tornow & Pinto, 1976); Liaison...c) Autonomy of Action and Complexity and Stress ( Tornow & Pinto, 1976). (d) Spokesperson and Negotiator (Mintzberg, 1973). (e) Arbitrator and

  15. Assessment of Manual Operation Time for the Manufacturing of Thin Film Transistor Liquid Crystal Display: A Bayesian Approach

    NASA Astrophysics Data System (ADS)

    Shen, Chien-wen

    2009-01-01

    During the processes of TFT-LCD manufacturing, steps like visual inspection of panel surface defects still heavily rely on manual operations. As the manual inspection time of TFT-LCD manufacturing could range from 4 hours to 1 day, the reliability of time forecasting is thus important for production planning, scheduling and customer response. This study would like to propose a practical and easy-to-implement prediction model through the approach of Bayesian networks for time estimation of manual operated procedures in TFT-LCD manufacturing. Given the lack of prior knowledge about manual operation time, algorithms of necessary path condition and expectation-maximization are used for structural learning and estimation of conditional probability distributions respectively. This study also applied Bayesian inference to evaluate the relationships between explanatory variables and manual operation time. With the empirical applications of this proposed forecasting model, approach of Bayesian networks demonstrates its practicability and prediction accountability.

  16. 76 FR 5829 - Manufacturer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... bulk manufacturer of the following basic classes of controlled substances: Drug Schedule Marihuana.... In reference to drug code 7360 (Marihuana), the company plans to bulk manufacture cannabidiol as a...

  17. TQM in a test environment

    NASA Technical Reports Server (NTRS)

    Chambers, Gary D.; King, Elizabeth A.; Oleson, Keith

    1992-01-01

    In response to the changing aerospace economic climate, Martin Marietta Astronautics Group (MMAG) has adopted a Total Quality Management (TQM) philosophy to maintain a competitive edge. TQM emphasizes continuous improvement of processes, motivation to improve from within, cross-functional involvement, people empowerment, customer satisfaction, and modern process control techniques. The four major initiatives of TQM are Product Excellence, Manufacturing Resource Planning (MRP II), People Empowerment, and Subcontract Management. The Defense Space and Communications (DS&C) Test Lab's definition and implementation of the MRP II and people empowerment initiatives within TQM are discussed. The application of MRP II to environmental test planning and operations processes required a new and innovative approach. In an 18 month span, the test labs implemented MRP II and people empowerment and achieved a Class 'A' operational status. This resulted in numerous benefits, both tangible and intangible, including significant cost savings and improved quality of life. A detailed description of the implementation process and results are addressed.

  18. TQM in a test environment

    NASA Astrophysics Data System (ADS)

    Chambers, Gary D.; King, Elizabeth A.; Oleson, Keith

    1992-11-01

    In response to the changing aerospace economic climate, Martin Marietta Astronautics Group (MMAG) has adopted a Total Quality Management (TQM) philosophy to maintain a competitive edge. TQM emphasizes continuous improvement of processes, motivation to improve from within, cross-functional involvement, people empowerment, customer satisfaction, and modern process control techniques. The four major initiatives of TQM are Product Excellence, Manufacturing Resource Planning (MRP II), People Empowerment, and Subcontract Management. The Defense Space and Communications (DS&C) Test Lab's definition and implementation of the MRP II and people empowerment initiatives within TQM are discussed. The application of MRP II to environmental test planning and operations processes required a new and innovative approach. In an 18 month span, the test labs implemented MRP II and people empowerment and achieved a Class 'A' operational status. This resulted in numerous benefits, both tangible and intangible, including significant cost savings and improved quality of life. A detailed description of the implementation process and results are addressed.

  19. 75 FR 67623 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... amendments to its pharmaceutical manufacturing rules for approval into its SIP. These amendments consist of a... of this action? EPA is approving revisions to Illinois' pharmaceutical manufacturing rule for three... plan. * * * * * (c) * * * (186) On July 17, 2009, Illinois submitted amendments to its pharmaceutical...

  20. 40 CFR 85.1802 - Notice to manufacturer of nonconformity; submission of Remedial Plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Notice to manufacturer of nonconformity; submission of Remedial Plan. 85.1802 Section 85.1802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Recall...

  1. 78 FR 39340 - Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Methadone Intermediate (9254) II Tapentadol (9780) II The company plans to manufacture the listed controlled substances in bulk for sale to its customers for formulation into finished pharmaceuticals. In reference to Methadone Intermediate (9254) the company plans to produce Methadone HCL active pharmaceutical ingredients...

  2. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  3. 3D Printing Variable Stiffness Foams Using Viscous Thread Instability

    NASA Astrophysics Data System (ADS)

    Lipton, Jeffrey I.; Lipson, Hod

    2016-08-01

    Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing.

  4. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Peter, William H.

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact ofmore » the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii) systems development, (iv) material feedstock, (v) process planning, (vi) residual stress & distortion, (vii) post-processing, (viii) qualification of parts, (ix) supply chain and (x) business case. Furthermore, an open innovation network methodology was proposed to accelerate the development and deployment of new large-scale metal additive manufacturing technology with the goal of creating a new generation of high deposition rate equipment, affordable feed stocks, and large metallic components to enhance America’s economic competitiveness.« less

  5. 24 CFR 3282.409 - Manufacturer's plan for notification and correction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... homes; (4) Inspection of the design of the manufactured home in question to determine whether the... COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME PROCEDURAL AND ENFORCEMENT... identifying criteria, all manufactured homes with respect to which notification is to be provided. The class...

  6. Manufacturing Curriculum Grant. Final Report.

    ERIC Educational Resources Information Center

    Scarborough, Jule Dee

    A manufacturing curriculum for secondary vocational programs was designed to bridge the gap between grades 9-10 level courses and the community college-level curriculum of the Illinois Plan for Industrial Education. During the project, a literature review of manufacturing curriculum materials was conducted, a manufacturing conceptual framework was…

  7. 78 FR 12103 - Manufacturer of Controlled Substances; Notice of Application; GE Healthcare

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... in schedule II. The company plans to manufacture a radioactive product to diagnose Parkinson's disease; and to manufacture a bulk investigational new drug (IND) for clinical trials. Any other such...

  8. NASA philosophy concerning space stations as operations centers for construction and maintenance of large orbiting energy systems

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1976-01-01

    Future United States plans for manned space-flight activities are summarized, emphasizing the long-term goals of achieving permanent occupancy and limited self-sufficiency in space. NASA-sponsored studies of earth-orbiting Space Station concepts are reviewed along with lessons learned from the Skylab missions. Descriptions are presented of the Space Transportation System, the Space Construction Base, and the concept of space industrialization (the processing and manufacturing of goods in space). Future plans for communications satellites, solar-power satellites, terrestrial observations from space stations, and manned orbital-transfer vehicles are discussed.

  9. Implementing Lean Manufacturing in Malaysian Small and Medium Startup Pharmaceutical Company

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wan Mohd Khairi bin Wan; Rahman, Mohamed Abdul; Abu Bakar, Mohd Rushdi bin

    2017-03-01

    Domestic pharmaceutical industry has been identified by the Malaysian government as an industry to be developed under its 11th economic development plan. Most homegrown pharmaceutical companies fall under the category of small and medium enterprises (SME) and therefore need to be highly efficient in their operations to compete with the multinationals. Though lean manufacturing is a well-known methodology to achieve an efficient operation, only a small percentage of the local SMEs implement it. The study aims to determine the real success factors in lean implementation through systematic review of relevant literature on lean manufacturing implementation in local companies, onsite observation of a selected SME company, Global Factor Sdn. Bhd. (GFSB), that successfully implemented lean manufacturing followed by actual implementation of lean project at IKOP Sdn. Bhd., a small startup pharmaceutical company. Lean tools like Gemba, value stream map (VSM) and spaghetti diagram were used to analyze and improve a process at IKOP Sdn. Bhd. The literature review showed that the implementation of lean manufacturing at Malaysian SMEs involved in pharmaceutical industry is at its infancy. Study at GFSB indicated that successful implementation of lean manufacturing stems from management support, employee’s commitment, government support and knowledge on lean among employees. Application of lean tools in IKOP Sdn. Bhd. to improve the process cycle efficiency of hand sanitizer, i-Hand 4.0, has shown that the GMP guidelines are not jeopardized. The Kaizen improvement project resulted in 46.3% reduction in lead time. It may be concluded that implementing lean manufacturing in any small local startup pharmaceutical company is beneficial in reducing operational costs and increasing the efficiency and effectiveness and does not conflict with the existing GMP guidelines.

  10. A PLM-based automated inspection planning system for coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Zhao, Haibin; Wang, Junying; Wang, Boxiong; Wang, Jianmei; Chen, Huacheng

    2006-11-01

    With rapid progress of Product Lifecycle Management (PLM) in manufacturing industry, automatic generation of inspection planning of product and the integration with other activities in product lifecycle play important roles in quality control. But the techniques for these purposes are laggard comparing with techniques of CAD/CAM. Therefore, an automatic inspection planning system for Coordinate Measuring Machine (CMM) was developed to improve the automatization of measuring based on the integration of inspection system in PLM. Feature information representation is achieved based on a PLM canter database; measuring strategy is optimized through the integration of multi-sensors; reasonable number and distribution of inspection points are calculated and designed with the guidance of statistic theory and a synthesis distribution algorithm; a collision avoidance method is proposed to generate non-collision inspection path with high efficiency. Information mapping is performed between Neutral Interchange Files (NIFs), such as STEP, DML, DMIS, XML, etc., to realize information integration with other activities in the product lifecycle like design, manufacturing and inspection execution, etc. Simulation was carried out to demonstrate the feasibility of the proposed system. As a result, the inspection process is becoming simpler and good result can be got based on the integration in PLM.

  11. 24 CFR 3282.361 - Design Approval Primary Inspection Agency (DAPIA).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufactured home designs submitted to it by the manufacturer and for assuring that they conform to the....362 who deal with the design, quality assurance manual, or manufactured homes built to them, and by... submit floor plans and specific information for each manufactured home design or variation which the...

  12. Design and development of progressive tool for manufacturing washer

    NASA Astrophysics Data System (ADS)

    Annigeri, Ulhas K.; Raghavendra Ravi Kiran, K.; Deepthi, Y. P.

    2017-07-01

    In a progressive tool the raw material is worked at different station to finally fabricate the component. A progressive tool is a lucrative tool for mass production of components. A lot of automobile and other transport industries develop progressive tool for the production of components. The design of tool involves lot of planning and the same amount of skill of process planning is required in the fabrication of the tool. The design also involves use of thumb rules and standard elements as per experience gained in practice. Manufacturing the press tool is a laborious task as special jigs and fixtures have to be designed for the purpose. Assembly of all the press tool elements is another task where use of accurate measuring instruments for alignment of various tool elements is important. In the present study, design and fabrication of progressive press tool for production of washer has been developed and the press tool has been tried out on a mechanical type of press. The components produced are to dimensions.

  13. Short communication: planning considerations for on-farm dairy processing enterprises.

    PubMed

    Smith, S M; Chaney, E A; Bewley, J M

    2013-07-01

    Across the world, more dairy producers are considering on-farm dairy processing to add value to the milk produced on their farms. Dairy producers may bottle milk or process their milk into cheese, ice cream, butter, yogurt, or cream. The primary objective of this research was to establish a series of sound factors or indicators of success for those considering on-farm processing. A survey was employed to collect opinions and advice from managers of on-farm processing enterprises. Surveys were distributed online (n=120), with 31 surveys returned, accounting for a 25.8% response rate. Most (64%) respondents had been involved in on-farm dairy processing for less than 10 yr. Sixty-one percent of respondents attained a positive cash flow in 1 to 3 yr. The primary products manufactured were cheese (69%), milk (59%), ice cream (31%), yogurt (25%), and butter (21%). Factors influencing the decision to start an on-farm dairy processing enterprise included commodity milk prices (61%), desire to work with the public (41%), an opportunity to promote the dairy industry (39%), a desire to maintain or expand a small family operation (29%), and product differentiation (16%). Respondents cited dealing with regulations (26%), product marketing (19%), manufacturing technicalities (19%), and securing funding (17%) as the most difficult parts of starting the business. Open-ended responses provided by the respondents of this survey were also documented to give future dairy producers advice. The most common advice to future on-farm processors was to work on realistic business plans, develop and follow realistic budgets, and observe and use market surveys within the industry. These results provide a useful array of information for future on-farm dairy processing enterprises. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    NASA Technical Reports Server (NTRS)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  15. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    NASA Technical Reports Server (NTRS)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163, (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a singlepiece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment are the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  16. Computer Aided Process Planning of Machined Metal Parts

    DTIC Science & Technology

    1984-09-01

    the manufac- turer to accentuate the positive to assist marketing . Machine usage costs and facility loadings are frequently critical. For example...Variant systems currently on the market include Multiplan (TM of OIR, Inc.), CY-Miplan (TM of Computervision), PICAPP (TM of PICAPP, Inc.) and CSD...Multiproduct, Multistage Manufacturing Systems, Journal of Engineering for Industry, ASME, August 1977. Hitomi, K. and I. Ham, Product Mix and Machine Loading

  17. Capacity, production, and manufacture of woodbased panels in the United States and Canada

    Treesearch

    Henry Spelter

    1996-01-01

    Structural and nonstructural panel products have constituted the fastest growing segment of the wood products industries over the past two decades. Based on announced plans, growth will accelerate in the next 2 years. The cost of wood fiber used in these processes has been rising. To keep wood costs as low as possible, a growing share of the new production is being...

  18. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application

    PubMed Central

    Okolo, Brando; Popp, Uwe

    2018-01-01

    Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a “biomimetic” design. PMID:29713642

  19. Management of CAD/CAM information: Key to improved manufacturing productivity

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Brainin, J.

    1984-01-01

    A key element to improved industry productivity is effective management of CAD/CAM information. To stimulate advancements in this area, a joint NASA/Navy/Industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) is underway with the goal of raising aerospace industry productivity through advancement of technology to integrate and manage information involved in the design and manufacturing process. The project complements traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer-Aided Manufacturing (ICAM) program to advance CAM technology. IPAD research is guided by an Industry Technical Advisory Board (ITAB) composed of over 100 repesentatives from aerospace and computer companies. The IPAD accomplishments to date in development of requirements and prototype software for various levels of company-wide CAD/CAM data management are summarized and plans for development of technology for management of distributed CAD/CAM data and information required to control future knowledge-based CAD/CAM systems are discussed.

  20. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application.

    PubMed

    Honigmann, Philipp; Sharma, Neha; Okolo, Brando; Popp, Uwe; Msallem, Bilal; Thieringer, Florian M

    2018-01-01

    Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a "biomimetic" design.

  1. The journey

    NASA Astrophysics Data System (ADS)

    Cohen, Lori A.

    1995-12-01

    Kodak Optical Products has embarked on a journey that will ultimately lead to manufacturing excellence and total customer satisfaction. With quality as our compass we have already obtained ISO 9001 and Manufacturing Resource Planning (MRP) II certifications. Seeking and attaining these certifications enabled us to understand and enhance fundamentals relative to the operation of our business. This has provided a solid foundation from which we can launch continuous improvement activities. Now we continue our journey to such destinations as 10X reduction in both defects and cycle time, measuring and reducing our cost of poor quality, and upgrading our quality information system. Our presentation will emphasize our 10X improvement process and how it applies to high-volume production of precision plastic optics.

  2. Sustainable aggregate production planning in the chemical process industry - A benchmark problem and dataset.

    PubMed

    Brandenburg, Marcus; Hahn, Gerd J

    2018-06-01

    Process industries typically involve complex manufacturing operations and thus require adequate decision support for aggregate production planning (APP). The need for powerful and efficient approaches to solve complex APP problems persists. Problem-specific solution approaches are advantageous compared to standardized approaches that are designed to provide basic decision support for a broad range of planning problems but inadequate to optimize under consideration of specific settings. This in turn calls for methods to compare different approaches regarding their computational performance and solution quality. In this paper, we present a benchmarking problem for APP in the chemical process industry. The presented problem focuses on (i) sustainable operations planning involving multiple alternative production modes/routings with specific production-related carbon emission and the social dimension of varying operating rates and (ii) integrated campaign planning with production mix/volume on the operational level. The mutual trade-offs between economic, environmental and social factors can be considered as externalized factors (production-related carbon emission and overtime working hours) as well as internalized ones (resulting costs). We provide data for all problem parameters in addition to a detailed verbal problem statement. We refer to Hahn and Brandenburg [1] for a first numerical analysis based on and for future research perspectives arising from this benchmarking problem.

  3. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    DOE R&D Accomplishments Database

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  4. The people side of MRP (materiel requirements planning).

    PubMed

    Lunn, T

    1994-05-01

    A montage of ideas and concepts have been successfully used to train and motivate people to use MRP II systems more effectively. This is important today because many companies are striving to achieve World Class Manufacturing status. Closed loop Materiel Requirements Planning (MRP) systems are an integral part of the process of continuous improvement. Successfully using a formal management planning system, such as MRP II, is a fundamental stepping stone on the path toward World Class Excellence. Included in this article are techniques that companies use to reduce lead time, simplify bills of materiel, and improve schedule adherence. These and other steps all depend on the people who use the system. The focus will be on how companies use the MRP tool more effectively.

  5. An Application of Six Sigma to Reduce Supplier Quality Cost

    NASA Astrophysics Data System (ADS)

    Gaikwad, Lokpriya Mohanrao; Teli, Shivagond Nagappa; Majali, Vijay Shashikant; Bhushi, Umesh Mahadevappa

    2016-01-01

    This article presents an application of Six Sigma to reduce supplier quality cost in manufacturing industry. Although there is a wider acceptance of Six Sigma in many organizations today, there is still a lack of in-depth case study of Six Sigma. For the present research the case study methodology was used. The company decided to reduce quality cost and improve selected processes using Six Sigma methodologies. Regarding the fact that there is a lack of case studies dealing with Six Sigma especially in individual manufacturing organization this article could be of great importance also for the practitioners. This paper discusses the quality and productivity improvement in a supplier enterprise through a case study. The paper deals with an application of Six Sigma define-measure-analyze-improve-control methodology in an industry which provides a framework to identify, quantify and eliminate sources of variation in an operational process in question, to optimize the operation variables, improve and sustain performance viz. process yield with well-executed control plans. Six Sigma improves the process performance (process yield) of the critical operational process, leading to better utilization of resources, decreases variations and maintains consistent quality of the process output.

  6. Applying graphics user interface ot group technology classification and coding at the Boeing aerospace company

    NASA Astrophysics Data System (ADS)

    Ness, P. H.; Jacobson, H.

    1984-10-01

    The thrust of 'group technology' is toward the exploitation of similarities in component design and manufacturing process plans to achieve assembly line flow cost efficiencies for small batch production. The systematic method devised for the identification of similarities in component geometry and processing steps is a coding and classification scheme implemented by interactive CAD/CAM systems. This coding and classification scheme has led to significant increases in computer processing power, allowing rapid searches and retrievals on the basis of a 30-digit code together with user-friendly computer graphics.

  7. 76 FR 22817 - Approval and Promulgation of Air Quality Implementation Plans; South Carolina; Update to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Manufacturing'' 5. ``Section VI--Hot Mix Asphalt Manufacturing'' 6. ``Section VII--Metal Refining;'' [[Page... Industries 1. ``Section III--Kraft Pulp and Paper Manufacturing Plants'' 2. ``Section VI--Hot Mix Asphalt... Manufacturing'' 3. ``Section XI--Total Reduced Sulfur Emissions of Kraft Pulp Mills;'' viii. Regulation 62.5...

  8. Process-based Cost Estimation for Ramjet/Scramjet Engines

    NASA Technical Reports Server (NTRS)

    Singh, Brijendra; Torres, Felix; Nesman, Miles; Reynolds, John

    2003-01-01

    Process-based cost estimation plays a key role in effecting cultural change that integrates distributed science, technology and engineering teams to rapidly create innovative and affordable products. Working together, NASA Glenn Research Center and Boeing Canoga Park have developed a methodology of process-based cost estimation bridging the methodologies of high-level parametric models and detailed bottoms-up estimation. The NASA GRC/Boeing CP process-based cost model provides a probabilistic structure of layered cost drivers. High-level inputs characterize mission requirements, system performance, and relevant economic factors. Design alternatives are extracted from a standard, product-specific work breakdown structure to pre-load lower-level cost driver inputs and generate the cost-risk analysis. As product design progresses and matures the lower level more detailed cost drivers can be re-accessed and the projected variation of input values narrowed, thereby generating a progressively more accurate estimate of cost-risk. Incorporated into the process-based cost model are techniques for decision analysis, specifically, the analytic hierarchy process (AHP) and functional utility analysis. Design alternatives may then be evaluated not just on cost-risk, but also user defined performance and schedule criteria. This implementation of full-trade study support contributes significantly to the realization of the integrated development environment. The process-based cost estimation model generates development and manufacturing cost estimates. The development team plans to expand the manufacturing process base from approximately 80 manufacturing processes to over 250 processes. Operation and support cost modeling is also envisioned. Process-based estimation considers the materials, resources, and processes in establishing cost-risk and rather depending on weight as an input, actually estimates weight along with cost and schedule.

  9. The Current State of Sensing, Health Management, and Control for Small-To-Medium-Sized Manufacturers

    PubMed Central

    Helu, Moneer; Weiss, Brian

    2017-01-01

    The development of digital technologies for manufacturing has been challenged by the difficulty of navigating the breadth of new technologies available to industry. This difficulty is compounded by technologies developed without a good understanding of the capabilities and limitations of the manufacturing environment, especially within small-to-medium enterprises (SMEs). This paper describes industrial case studies conducted to identify the needs, priorities, and constraints of manufacturing SMEs in the areas of performance measurement, condition monitoring, diagnosis, and prognosis. These case studies focused on contract and original equipment manufacturers with less than 500 employees from several industrial sectors. Solution and equipment providers and National Institute of Standards and Technology (NIST) Hollings Manufacturing Extension Partnership (MEP) centers were also included. Each case study involved discussions with key shop-floor personnel as well as site visits with some participants. The case studies highlight SME's strong need for access to appropriate data to better understand and plan manufacturing operations. They also help define industrially-relevant use cases in several areas of manufacturing operations, including scheduling support, maintenance planning, resource budgeting, and workforce augmentation. PMID:28736773

  10. The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing.

    PubMed

    van Eijnatten, Maureen; Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan

    2016-01-01

    Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a "gold standard". All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings.

  11. Fit of pressed crowns fabricated from two CAD-CAM wax pattern process plans: A comparative in vitro study.

    PubMed

    Shamseddine, Loubna; Mortada, Rola; Rifai, Khaldoun; Chidiac, Jose Johann

    2017-07-01

    Subtractive and additive computer-aided design and computer-aided manufacturing (CAD-CAM) wax pattern processing are 2 methods of fabricating a pressed ceramic crown. Whether a subtractive milled wax pattern or a pattern from the micro-stereolithography additive process produces lithium disilicate crowns with better marginal and internal fit is unclear. Ten silicone impressions were made for a prepared canine tooth. Each die received 2 lithium disilicate (IPS e.max) copings, 1 from milled wax blocks and 1 from additive wax. The replica technique was used to measure the fit by scanning electron microscopy at ×80 magnification. Collected data were analyzed using the paired Student t test for the marginal and internal fit. For the occlusal fit, the difference in scores did not follow a normal distribution, and the Wilcoxon signed rank test was used (α=.05). The mean marginal, axial, and occlusal fit showed no significant differences when the 2 CAD-CAM manufacturing processes were compared (P>.05). For the marginal fit, the mean (±SD) values were 105.1 μm ±39.6 with the milled process and 126.2 μm ±25.2 for the additive process. The mean values were 98.1 μm ±26.1 for the axial fit in the milled process and 106.8 μm ±21.2 in the additive process. For the occlusal fit, median values (interquartile interval) were 199.0 μm (141.5 to 269.9) for subtractive manufacturing and 257.2 μm (171.6 to 266.0) for micro-SLA manufacturing. No significant difference was found between the fit of the 2 techniques. The mean values of axial and occlusal median values were 10 and 5 to 6 times greater than machine's nominal values. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. 15. Site plan, 1915, bottom half With CT214, photocopied from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Site plan, 1915, bottom half With CT-2-14, photocopied from an ozalid print, 'Map of Plant of Sentinel Manufacturing Co.,' Folio 2, EWC. The Sentinel Manufacturing Co. produced gas stoves. They leased the Whitney Armory buildings about 1915. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  13. 3D Printing Variable Stiffness Foams Using Viscous Thread Instability

    PubMed Central

    Lipton, Jeffrey I.; Lipson, Hod

    2016-01-01

    Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing. PMID:27503148

  14. Sterilization processes. Meeting the demands of today's health care technology.

    PubMed

    Crow, S

    1993-09-01

    Universal Precautions dictate sterilization for all invasive equipment that break the blood barrier; however, current methods of sterilization, such as steam and ethylene oxide gas (ETO), are not compatible with many of the delicate, heat-sensitive surgical instruments used in modern health care. In addition, traditional sterilization methods are often too time consuming for practical use in the operating room. Clearly, new sterilization processes need to be developed. In this article, the criteria modern sterilization processes must meet and how some manufacturers plan to meet this challenge are discussed. In addition, the pros and cons of using peracetic acid (the newest sterilization process currently available) are examined.

  15. Standardized Emission Quantification and Control of Costs for Environmental Measures

    NASA Astrophysics Data System (ADS)

    Walter, J.; Hustedt, M.; Wesling, V.; Barcikowski, S.

    Laser welding and soldering are important industrial joining processes. As is known, LGACs (Laser Generated Air Contaminants) cause costs for environmental measures during production of complex metallic components (steel, aluminium, magnesium, alloys). The hazardous potential of such processes has been assessed by analyzing the specific emissions with respect to relevant threshold limit values (TLVs). Avoiding and controlling emissions caused by laser processing of metals or metal composites is an important task. Using the experimental results, the planning of appropriate exhaust systems for laser processing is facilitated significantly. The costs quantified for environmental measures account for significant percentages of the total manufacturing costs.

  16. Lithographic manufacturing of adaptive optics components

    NASA Astrophysics Data System (ADS)

    Scott, R. Phillip; Jean, Madison; Johnson, Lee; Gatlin, Ridley; Bronson, Ryan; Milster, Tom; Hart, Michael

    2017-09-01

    Adaptive optics systems and their laboratory test environments call for a number of unusual optical components. Examples include lenslet arrays, pyramids, and Kolmogorov phase screens. Because of their specialized application, the availability of these parts is generally limited, with high cost and long lead time, which can also significantly drive optical system design. These concerns can be alleviated by a fast and inexpensive method of optical fabrication. To that end, we are exploring direct-write lithographic techniques to manufacture three different custom elements. We report results from a number of prototype devices including 1, 2, and 3 wave Multiple Order Diffractive (MOD) lenslet arrays with 0.75 mm pitch and phase screens with near Kolmogorov structure functions with a Fried length r0 around 1 mm. We also discuss plans to expand our research to include a diffractive pyramid that is smaller, lighter, and more easily manufactured than glass versions presently used in pyramid wavefront sensors. We describe how these components can be produced within the limited dynamic range of the lithographic process, and with a rapid prototyping and manufacturing cycle. We discuss exploratory manufacturing methods, including replication, and potential observing techniques enabled by the ready availability of custom components.

  17. Cadre de planification integree de la chaine logistique pour la gestion et l'evaluation de strategies de bioraffinage forestier

    NASA Astrophysics Data System (ADS)

    Dansereau, Louis Patrick

    Biorefining is now recognized as a promising solution to transform the struggling forestry industry and to generate value-added pathways. The implementation of new products and processes will help companies to diversify revenues, but implies several strategic changes in the business model. Companies will face the dilemma of exiting or not traditional pulp and paper operations, while selecting their biorefinery product and process portfolio. As well, they will have to enter new markets and manage production to minimize the risk of market volatility. Over the past decades, both industry and academia paid a lot of attention to supply-chain management in order to increase the cost effectiveness of overall operations. The application of supply-chain management concepts could therefore greatly help the transforming North American forestry industry to compete globally. The objective of this Ph.D. project was to propose and illustrate an integrated supply-chain planning framework for the management and the evaluation of forest biorefinery strategies. This framework, named margins-based , integrates principles from revenue management, activity-based cost accounting, and manufacturing flexibility in a tactical planning model that maximizes profit of a company. The structure of the mathematical model and its associated cost model aims to represent as closely as possible the activities of a company, from procurement to sales. It enables the modeling of different process configurations leading to manufacturing flexibility. The model can thus be used as a platform for evaluating various operating strategies of a company, at both production and supply-chain levels. A case study of a newsprint mill implementing a parallel biomass fractionation line producing several bioproducts was used to illustrate this margins-based approach. Various strategic and tactical analyses were conducted to show the relevance of the approach as a decision-making tool for management problems related to the forest biorefinery. The model was used to evaluate the profitability of a company during its transformation to the biorefinery, by considering the gradual divestment in pulp and paper activities, while implementing a new biorefinery process. Results show that the tool can enhance decision-making activities by providing a better visualization and better comprehension of supply-chain and cost-related dynamics under different scenarios. Coupled with a scenario analysis, it offers the opportunity to develop a phased implementation strategy that would stabilize profitability during the transformation to the biorefinery. The planning tool was also used to study the management of a product portfolio to mitigate the risk of market volatility. One analysis focused on the exploitation of thermomechanical and deinked pulping flexibility in order to minimize the cost of raw material procurement in different to market conditions. Another analysis examined the impact of feedstock and production flexibility of a fractionation process on sales and profitability. Results show that the procurement and production needed to manufacture the product mix that provides the optimum margins vary significantly. Biorefinery processes can have complex interrelations that make dynamics and trade-offs between manufacturing options not easy to identify and understand. Results thus highlight the relevance of using such planning tools to identify the best opportunities. In a context where sales can be varied to a certain level, results also show that it may be beneficial to pay more for certain types of biomass if they offer a product portfolio mix with higher revenues.

  18. Applications of additive manufacturing in dentistry: A review.

    PubMed

    Bhargav, Aishwarya; Sanjairaj, Vijayavenkatraman; Rosa, Vinicius; Feng, Lu Wen; Fuh Yh, Jerry

    2017-07-24

    Additive manufacturing (AM) or 3D printing has been hailed as the third industrial revolution as it has caused a paradigm shift in the way objects have been manufactured. Conventionally, converting a raw material to a fully finished and assembled, usable product comprises several steps which can be eliminated by using this process as functional products can be created directly from the raw material at a fraction of the time originally consumed. Thus, AM has found applications in several sectors including automotive, aerospace, printed electronics, and healthcare. AM is increasingly being used in the healthcare sector, given its potential to fabricate patient-specific customized implants with required accuracy and precision. Implantable heart valves, rib cages, and bones are some of the examples where AM technologies are used. A vast variety of materials including ceramics, metals, polymers, and composites have been processed to fabricate intricate implants using 3D printing. The applications of AM in dentistry include maxillofacial implants, dentures, and other prosthetic aids. It may also be used in surgical training and planning, as anatomical models can be created at ease using AM. This article gives an overview of the AM process and reviews in detail the applications of 3D printing in dentistry. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  19. A roadmap for cost-of-goods planning to guide economic production of cell therapy products.

    PubMed

    Lipsitz, Yonatan Y; Milligan, William D; Fitzpatrick, Ian; Stalmeijer, Evelien; Farid, Suzanne S; Tan, Kah Yong; Smith, David; Perry, Robert; Carmen, Jessica; Chen, Allen; Mooney, Charles; Fink, John

    2017-12-01

    Cell therapy products are frequently developed and produced without incorporating cost considerations into process development, contributing to prohibitively costly products. Herein we contextualize individual process development decisions within a broad framework for cost-efficient therapeutic manufacturing. This roadmap guides the analysis of cost of goods (COG) arising from tissue procurement, material acquisition, facility operation, production, and storage. We present the specific COG considerations related to each of these elements as identified through a 2013 International Society for Cellular Therapy COG survey, highlighting the differences between autologous and allogeneic products. Planning and accounting for COG at each step in the production process could reduce costs, allowing for more affordable market pricing to improve the long-term viability of the cell therapy product and facilitate broader patient access to novel and transformative cell therapies. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iman, R.L.; Anderson, D.J.; Burress, R.V.

    1995-06-01

    The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The testmore » data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.« less

  1. The Mechanization of Design and Manufacturing.

    ERIC Educational Resources Information Center

    Gunn, Thomas G.

    1982-01-01

    Describes changes in the design of products and in planning, managing, and coordinating their manufacture. Focuses on discrete-products manufacturing industries, encompassing the fabrication and assembly of automobiles, aircraft, computers and microelectric components of computers, furniture, appliances, foods, clothing, building materials, and…

  2. [Design of an HACCP program for a cocoa processing facility].

    PubMed

    López D'Sola, Patrizia; Sandia, María Gabriela; Bou Rached, Lizet; Hernández Serrano, Pilar

    2012-12-01

    The HACCP plan is a food safety management tool used to control physical, chemical and biological hazards associated to food processing through all the processing chain. The aim of this work is to design a HACCP Plan for a Venezuelan cocoa processing facility.The production of safe food products requires that the HACCP system be built upon a solid foundation of prerequisite programs such as Good Manufacturing Practices (GMP) and Sanitation Standard Operating Procedures (SSOP). The existence and effectiveness of these prerequisite programs were previously assessed.Good Agriculture Practices (GAP) audit to cocoa nibs suppliers were performed. To develop the HACCP plan, the five preliminary tasks and the seven HACCP principles were accomplished according to Codex Alimentarius procedures. Three Critical Control Points (CCP) were identified using a decision tree: winnowing (control of ochratoxin A), roasting (Salmonella control) and metallic particles detection. For each CCP, Critical limits were established, the Monitoring procedures, Corrective actions, Procedures for Verification and Documentation concerning all procedures and records appropriate to these principles and their application was established. To implement and maintain a HACCP plan for this processing plant is suggested. Recently OchratoxinA (OTA) has been related to cocoa beans. Although the shell separation from the nib has been reported as an effective measure to control this chemical hazard, ochratoxin prevalence study in cocoa beans produced in the country is recommended, and validate the winnowing step as well

  3. A cost-effective intelligent robotic system with dual-arm dexterous coordination and real-time vision

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Chen, Alexander Y. K.

    1991-01-01

    Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two articulated arms, one movable robot head, and two charged coupled device (CCD) cameras for producing the stereoscopic views, and articulated cylindrical-type lower body, and an optional mobile base. A functional prototype is demonstrated.

  4. Cost studies for commercial fuselage crown designs

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Smith, P. J.; Truslove, G.; Willden, K. S.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Studies were conducted to evaluate the cost and weight potential of advanced composite design concepts in the crown region of a commercial transport. Two designs from each of three design families were developed using an integrated design-build team. A range of design concepts and manufacturing processes were included to allow isolation and comparison of cost centers. Detailed manufacturing/assembly plans were developed as the basis for cost estimates. Each of the six designs was found to have advantages over the 1995 aluminum benchmark in cost and weight trade studies. Large quadrant panels and cobonded frames were found to save significant assembly labor costs. Comparisons of high- and intermediate-performance fiber systems were made for skin and stringer applications. Advanced tow placement was found to be an efficient process for skin lay up. Further analysis revealed attractive processes for stringers and frames. Optimized designs were informally developed for each design family, combining the most attractive concepts and processes within that family. A single optimized design was selected as the most promising, and the potential for further optimization was estimated. Technical issues and barriers were identified.

  5. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    NASA Technical Reports Server (NTRS)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  6. The Oak Ridge Refrigerant Management Program

    NASA Technical Reports Server (NTRS)

    Kevil, Thomas H.

    1995-01-01

    For many years, chlorofluorocarbons (CFC's) have been used by the Department of Energy's (DOE) Oak Ridge Y-12 Plant in air conditioning and process refrigeration systems. However, Title 6 of the Clean Air Act Amendments (CAAA) and Executive Order 12843 (Procurement Requirements and Policies for Federal Agencies for Ozone Depleting Substances) signed by President Clinton require, as policy, that all federal agencies maximize their use of safe, alternate refrigerants and minimize, where economically practical, the use of Class 1 refrigerants. Unfortunately, many government facilities and industrial plants have no plan or strategy in place to make this changeover, even though their air conditioning and process refrigeration equipment may not be sustainable after CFC production ends December 31, 1995. The Y-12 Plant in Oak Ridge, Tennessee, has taken an aggressive approach to complying with the CAAA and is working with private industry and other government agencies to solve tough manufacturing and application problems associated with CFC and hydrochlorofluorocarbon (HCFC) alternatives. Y-12 was the first DOE Defense Program (DP) facility to develop a long-range Stratospheric Ozone Protection Plan for refrigerant management for compliance with the CAAA. It was also the first DOE DP facility to complete detailed engineering studies on retrofitting and replacing all air conditioning and process refrigeration equipment to enable operation with alternate refrigerants. The management plan and engineering studies are models for use by other government agencies, manufacturing plants, and private industry. This presentation identifies some of the hidden pitfalls to be encountered in the accelerated phaseout schedule of CFC's and explains how to overcome and prevent these problems. In addition, it outlines the general issues that must be considered when addressing the phase-out of ozone depleting substances and gives some 'lessons learned' by Y-12 from its Refrigerant Management Program. Discussion topics include requirements for developing a refrigerant management plan and establishing priorities for cost-effective compliance with the CAAA, as well as ways in which employees can be empowered to develop a comprehensive refrigerant management plan. The result of this employee empowerment was a cooperative labor-management effort that is beneficial for Y-12, DOE, and the environment.

  7. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY13 Fourth Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-12-02

    This quarterly report summarizes the status of the project planning to obtain all the approvals required for a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). The final CRADA documents processed by PNNL’s Legal Services were submitted to all the parties for signatures.

  8. Marketers Understanding Engineers and Engineers Understanding Marketers: The Opportunities and Constraints of a Cross-Discipline Course Using 3D Printing to Develop Marketable Innovations

    ERIC Educational Resources Information Center

    Reifschneider, Louis; Kaufman, Peter; Langrehr, Frederick W.; Kaufman, Kristina

    2015-01-01

    Marketers are criticized for not understanding the steps in the engineering research and development process and the challenges of manufacturing a new product at a profit. Engineers are criticized for not considering the marketability of and customer interest in such a product during the planning stages. With the development of 3D printing, rapid…

  9. A Study of Nondestructive Testing and Inspection Processes Used In Industry with Implications for Program Planning in the Junior Colleges of Texas.

    ERIC Educational Resources Information Center

    Stokes, Vernon L.

    This study, the first of two parts, had two main purposes. The first was to obtain desirable subject matter for an instructional program in nondestructive testing through a survey of selected manufacturing and service companies in Texas, and the second was to determine the degree of emphasis that should be placed on each subject. Fifty-nine…

  10. Development of Manufacturable Process to Deposit Metal Matrix Composites on Inverted Metamorphic Multijunction Solar Cells

    DTIC Science & Technology

    2015-01-14

    substrates using a titanium adhesion layer, and (3) characterized hardness and electrical conductivity of plated silver before and after rapid thermal...layer composite films. We observed that the silver erosion during carboxylated carbon nanotube deposition leads to significant porosity within the...composite films. We plan to explore amine-terminated carbon nanotubes in the near future to eliminate the porosity and study how different

  11. KC-46 Tanker Aircraft: Program Generally Stable but Improvements in Managing Schedule Are Needed

    DTIC Science & Technology

    2013-02-27

    testing, and supplier management. An important contractual requirement (and best practice ) is for Boeing to release 90 percent of the total engineering...design is stable, and manufacturing processes are mature. As we reported last year, while the program has implemented many acquisition best practices ...assessed the program’s acquisition plan to determine compliance with acquisition legislation and acquisition best practices . What GAO Recommends GAO

  12. Cold Test and Performance Evaluation of Prototype Cryoline-X

    NASA Astrophysics Data System (ADS)

    Shah, N.; Choukekar, K.; Kapoor, H.; Muralidhara, S.; Garg, A.; Kumar, U.; Jadon, M.; Dash, B.; Bhattachrya, R.; Badgujar, S.; Billot, V.; Bravais, P.; Cadeau, P.

    2017-12-01

    The multi-process pipe vacuum jacketed cryolines for the ITER project are probably world’s most complex cryolines in terms of layout, load cases, quality, safety and regulatory requirements. As a risk mitigation plan, design, manufacturing and testing of prototype cryoline (PTCL) was planned before the approval of final design of ITER cryolines. The 29 meter long PTCL consist of 6 process pipes encased by thermal shield inside Outer Vacuum Jacket of DN 600 size and carries cold helium at 4.5 K and 80 K. The global heat load limit was defined as 1.2 W/m at 4.5 K and 4.5 W/m at 80 K. The PTCL-X (PTCL for Group-X cryolines) was specified in detail by ITER-India and designed as well as manufactured by Air Liquide. PTCL-X was installed and tested at cryogenic temperature at ITER-India Cryogenic Laboratory in 2016. The heat load at 4.5 K and 80 K, estimated using enthalpy difference method, was found to be approximately 0.8 W/m at 4.5 K, 4.2 W/m at 80 K, which is well within the defined limits. Thermal shield temperature profile was also found to be satisfactory. Paper summarizes the cold test results of PTCL-X

  13. JPRS Report, Environmental Issues

    DTIC Science & Technology

    1990-07-12

    Minister Announces 35-Year Water Use Plan [AL-AKHBAR 23 May] 46 PAKISTAN Investors Said Hesitant in Pesticide Manufacture [THE MUSLIM 26 May...resources. It is a plan which bears the name: intelligent water resource management. PAKISTAN Investors Said Hesitant in Pesticide Manufacture...of pesticides and the multi-national companies were hesitant to make investment in this field. This was stated by Tahreem Malik, former chairman

  14. Everyone wins - a program to upgrade energy efficiency in manufactured housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.D.; Onisko, S.A.; Sandahl, L.J.

    1994-03-01

    Other regions might well benefit from this case history, illustrating how a region marshalled its resources to bring manufactured housing--a significant share of its new residential sector--into the modern era of energy efficiency. Everyone was a winner. In the Pacific Northwest, as in many parts of the country, a significant proportion of new homes are HUD-code manufactured, or so-called mobile, homes. About 25% of new single-family houses in the Pacific Northwest are manufactured homes. They represent an even larger share - nearly 40% - of new electrically heated housing in the region, and this share has been growing. When Congressmore » enacted the Pacific Northwest Power Planning Act of 1980, it also permitted the four Northwest states to establish an interstate compact body - the Northwest Power Planning Council - and required the Council to produce an integrated resource plan for the region served by the Bonneville Power Administration, the federal power marketing and transmission agency that operates the region's major transmission grid and sells most of its bulk power. Both the law and the plan charge Bonneville with developing cost-effective programs to save electricity in all end-use sectors through improved energy efficiency.« less

  15. Determination of optimal lot size and production rate for multi-production channels with limited capacity

    NASA Astrophysics Data System (ADS)

    Huang, Yeu-Shiang; Wang, Ruei-Pei; Ho, Jyh-Wen

    2015-07-01

    Due to the constantly changing business environment, producers often have to deal with customers by adopting different procurement policies. That is, manufacturers confront not only predictable and regular orders, but also unpredictable and irregular orders. In this study, from the perspective of upstream manufacturers, both regular and irregular orders are considered in coping with the situation in which an uncertain demand is faced by the manufacturer, and a capacity confirming mechanism is used to examine such demand. If the demand is less than or equal to the capacity of the ordinary production channel, the general supply channel is utilised to fully account for the manufacturing process, but if the demand is greater than the capacity of the ordinary production channel, the contingency production channel would be activated along with the ordinary channel to satisfy the upcoming high demand. Besides, the reproductive property of the probability distribution is employed to represent the order quantity of the two types of demand. Accordingly, the optimal production rates and lot sizes for both channels are derived to provide managers with insights for further production planning.

  16. New orthopaedic implant management tool for computer-assisted planning, navigation, and simulation: from implant CAD files to a standardized XML-based implant database.

    PubMed

    Sagbo, S; Blochaou, F; Langlotz, F; Vangenot, C; Nolte, L-P; Zheng, G

    2005-01-01

    Computer-Assisted Orthopaedic Surgery (CAOS) has made much progress over the last 10 years. Navigation systems have been recognized as important tools that help surgeons, and various such systems have been developed. A disadvantage of these systems is that they use non-standard formalisms and techniques. As a result, there are no standard concepts for implant and tool management or data formats to store information for use in 3D planning and navigation. We addressed these limitations and developed a practical and generic solution that offers benefits for surgeons, implant manufacturers, and CAS application developers. We developed a virtual implant database containing geometrical as well as calibration information for orthopedic implants and instruments, with a focus on trauma. This database has been successfully tested for various applications in the client/server mode. The implant information is not static, however, because manufacturers periodically revise their implants, resulting in the deletion of some implants and the introduction of new ones. Tracking these continuous changes and keeping CAS systems up to date is a tedious task if done manually. This leads to additional costs for system development, and some errors are inevitably generated due to the huge amount of information that has to be processed. To ease management with respect to implant life cycle, we developed a tool to assist end-users (surgeons, hospitals, CAS system providers, and implant manufacturers) in managing their implants. Our system can be used for pre-operative planning and intra-operative navigation, and also for any surgical simulation involving orthopedic implants. Currently, this tool allows addition of new implants, modification of existing ones, deletion of obsolete implants, export of a given implant, and also creation of backups. Our implant management system has been successfully tested in the laboratory with very promising results. It makes it possible to fill the current gap that exists between the CAS system and implant manufacturers, hospitals, and surgeons.

  17. A novel classification and online platform for planning and documentation of medical applications of additive manufacturing.

    PubMed

    Tuomi, Jukka; Paloheimo, Kaija-Stiina; Vehviläinen, Juho; Björkstrand, Roy; Salmi, Mika; Huotilainen, Eero; Kontio, Risto; Rouse, Stephen; Gibson, Ian; Mäkitie, Antti A

    2014-12-01

    Additive manufacturing technologies are widely used in industrial settings and now increasingly also in several areas of medicine. Various techniques and numerous types of materials are used for these applications. There is a clear need to unify and harmonize the patterns of their use worldwide. We present a 5-class system to aid planning of these applications and related scientific work as well as communication between various actors involved in this field. An online, matrix-based platform and a database were developed for planning and documentation of various solutions. This platform will help the medical community to structurally develop both research innovations and clinical applications of additive manufacturing. The online platform can be accessed through http://www.medicalam.info. © The Author(s) 2014.

  18. Optimizing clinical operations as part of a global emergency medicine initiative in Kumasi, Ghana: application of Lean manufacturing principals to low-resource health systems.

    PubMed

    Carter, Patrick M; Desmond, Jeffery S; Akanbobnaab, Christopher; Oteng, Rockefeller A; Rominski, Sarah D; Barsan, William G; Cunningham, Rebecca M

    2012-03-01

    Although many global health programs focus on providing clinical care or medical education, improving clinical operations can have a significant effect on patient care delivery, especially in developing health systems without high-level operations management. Lean manufacturing techniques have been effective in decreasing emergency department (ED) length of stay, patient waiting times, numbers of patients leaving without being seen, and door-to-balloon times for ST-elevation myocardial infarction in developed health systems, but use of Lean in low to middle income countries with developing emergency medicine (EM) systems has not been well characterized. To describe the application of Lean manufacturing techniques to improve clinical operations at Komfo Anokye Teaching Hospital (KATH) in Ghana and to identify key lessons learned to aid future global EM initiatives. A 3-week Lean improvement program focused on the hospital admissions process at KATH was completed by a 14-person team in six stages: problem definition, scope of project planning, value stream mapping, root cause analysis, future state planning, and implementation planning. The authors identified eight lessons learned during our use of Lean to optimize the operations of an ED in a global health setting: 1) the Lean process aided in building a partnership with Ghanaian colleagues; 2) obtaining and maintaining senior institutional support is necessary and challenging; 3) addressing power differences among the team to obtain feedback from all team members is critical to successful Lean analysis; 4) choosing a manageable initial project is critical to influence long-term Lean use in a new environment; 5) data intensive Lean tools can be adapted and are effective in a less resourced health system; 6) several Lean tools focused on team problem-solving techniques worked well in a low-resource system without modification; 7) using Lean highlighted that important changes do not require an influx of resources; and 8) despite different levels of resources, root causes of system inefficiencies are often similar across health care systems, but require unique solutions appropriate to the clinical setting. Lean manufacturing techniques can be successfully adapted for use in developing health systems. Lessons learned from this Lean project will aid future introduction of advanced operations management techniques in low- to middle-income countries. © 2012 by the Society for Academic Emergency Medicine.

  19. Optimizing Clinical Operations as part of a Global Emergency Medicine Initiative in Kumasi, Ghana: Application of Lean Manufacturing Principals to Low Resource Health Systems

    PubMed Central

    Carter, Patrick M.; Desmond, Jeffery S.; Akanbobnaab, Christopher; Oteng, Rockefeller A.; Rominski, Sarah; Barsan, William G.; Cunningham, Rebecca

    2012-01-01

    Background Although many global health programs focus on providing clinical care or medical education, improving clinical operations can have a significant effect on patient care delivery, especially in developing health systems without high-level operations management. Lean manufacturing techniques have been effective in decreasing emergency department (ED) length of stay, patient waiting times, numbers of patients leaving without being seen, and door-to-balloon times for ST-elevation myocardial infarction in developed health systems; but use of Lean in low to middle income countries with developing emergency medicine systems has not been well characterized. Objectives To describe the application of Lean manufacturing techniques to improve clinical operations at Komfo Anokye Teaching Hospital in Ghana and to identify key lessons learned to aid future global EM initiatives. Methods A three-week Lean improvement program focused on the hospital admissions process at Komfo Anokye Teaching Hospital was completed by a 14-person team in six stages: problem definition, scope of project planning, value stream mapping, root cause analysis, future state planning, and implementation planning. Results The authors identified eight lessons learned during our use of Lean to optimize the operations of an ED in a global health setting: 1) the Lean process aided in building a partnership with Ghanaian colleagues; 2) obtaining and maintaining senior institutional support is necessary and challenging; 3) addressing power differences among the team to obtain feedback from all team members is critical to successful Lean analysis; 4) choosing a manageable initial project is critical to influence long-term Lean use in a new environment; 5) data intensive Lean tools can be adapted and are effective in a less resourced health system; 6) several Lean tools focused on team problem solving techniques worked well in a low resource system without modification; 7) using Lean highlighted that important changes do not require an influx of resources; 8) despite different levels of resources, root causes of system inefficiencies are often similar across health care systems, but require unique solutions appropriate to the clinical setting. Conclusions Lean manufacturing techniques can be successfully adapted for use in developing health systems. Lessons learned from this Lean project will aid future introduction of advanced operations management techniques in low to middle income countries. PMID:22435868

  20. The effectiveness of national strategic guidelines at a local level: a case study of the UK general aviation industry

    NASA Astrophysics Data System (ADS)

    Lober, Terence

    The thesis is concerned with the prospects for reducing strategic-local tensions in the British planning process. It examines the conflicts surrounding small general aviation aerodromes as a means of understanding these tensions, why they have evolved, and if they might be reconciled through planning reform. The only prior academic research to have touched upon this issue through general aviation has been an ESRC funded project undertaken by Gallent and colleagues (1999), who found aerodromes provided a microcosm of planning's issues. Building on this work, the thesis develops what is meant by strategic-local tensions, which in broad terms are described as differences between national and regional guidance/plans and what actually takes place locally. Moving from a basic research question it develops a wide planning perspective based on the literature by discussing the meaning of planning, its history and issues for example, how conflicts in planning might be influenced by the broader socio-political environment. The thesis then arrives at three hypotheses which question the effectiveness of the existing strategic guideline implementation process, develops a local planning authority framework and addresses issues of reflectivity and bias. Results from three national surveys of pilots, aerodromes and manufacturers, plus longitudinal analysis of government and other datasets, are then used to detail a comprehensive and unique description of general aviation, which includes a costing based account of the direct expenditure of flying activity. This provides a substantive foundation for a local planning authority survey which both extends previous boundaries and enables the process of implementing strategic objectives to be disaggregated and evaluated. Field visits to twenty six aerodromes and five local authorities are subsequently used to explore gaps within the strategic implementation process and to develop conclusions, within the wider landscape of planning, about the nature of strategic local tensions and implications for planning reform.

  1. A combined approach of simulation and analytic hierarchy process in assessing production facility layouts

    NASA Astrophysics Data System (ADS)

    Ramli, Razamin; Cheng, Kok-Min

    2014-07-01

    One of the important areas of concern in order to obtain a competitive level of productivity in a manufacturing system is the layout design and material transportation system (conveyor system). However, changes in customers' requirements have triggered the need to design other alternatives of the manufacturing layout for existing production floor. Hence, this paper discusses effective alternatives of the process layout specifically, the conveyor system layout. Subsequently, two alternative designs for the conveyor system were proposed with the aims to increase the production output and minimize space allocation. The first proposed layout design includes the installation of conveyor oven in the particular manufacturing room based on priority, and the second one is the one without the conveyor oven in the layout. Simulation technique was employed to design the new facility layout. Eventually, simulation experiments were conducted to understand the performance of each conveyor layout design based on operational characteristics, which include predicting the output of layouts. Utilizing the Analytic Hierarchy Process (AHP), the newly and improved layout designs were assessed before the final selection was done. As a comparison, the existing conveyor system layout was included in the assessment process. Relevant criteria involved in this layout design problem were identified as (i) usage of space of each design, (ii) operator's utilization rates, (iii) return of investment (ROI) of the layout, and (iv) output of the layout. In the final stage of AHP analysis, the overall priority of each alternative layout was obtained and thus, a selection for final use by the management was made based on the highest priority value. This efficient planning and designing of facility layout in a particular manufacturing setting is able to minimize material handling cost, minimize overall production time, minimize investment in equipment, and optimize utilization of space.

  2. Performance analysis of Supply Chain Management with Supply Chain Operation reference model

    NASA Astrophysics Data System (ADS)

    Hasibuan, Abdurrozzaq; Arfah, Mahrani; Parinduri, Luthfi; Hernawati, Tri; Suliawati; Harahap, Bonar; Rahmah Sibuea, Siti; Krianto Sulaiman, Oris; purwadi, Adi

    2018-04-01

    This research was conducted at PT. Shamrock Manufacturing Corpora, the company is required to think creatively to implement competition strategy by producing goods/services that are more qualified, cheaper. Therefore, it is necessary to measure the performance of Supply Chain Management in order to improve the competitiveness. Therefore, the company is required to optimize its production output to meet the export quality standard. This research begins with the creation of initial dimensions based on Supply Chain Management process, ie Plan, Source, Make, Delivery, and Return with hierarchy based on Supply Chain Reference Operation that is Reliability, Responsiveness, Agility, Cost, and Asset. Key Performance Indicator identification becomes a benchmark in performance measurement whereas Snorm De Boer normalization serves to equalize Key Performance Indicator value. Analiytical Hierarchy Process is done to assist in determining priority criteria. Measurement of Supply Chain Management performance at PT. Shamrock Manufacturing Corpora produces SC. Responsiveness (0.649) has higher weight (priority) than other alternatives. The result of performance analysis using Supply Chain Reference Operation model of Supply Chain Management performance at PT. Shamrock Manufacturing Corpora looks good because its monitoring system between 50-100 is good.

  3. Department of the Navy (DON) Additive Manufacturing (AM) Implementation Plan V2.0 (2017)

    DTIC Science & Technology

    2017-05-04

    technology with significant implications for the U.S. manufacturing base and naval warfare. It can shorten the design to production cycle, enable new...11 Objective 5: Enable manufacturing agility through low volume production in maintenance and operational environments...A-5 Table 5. Objective 5: Enable manufacturing agility through low volume production in maintenance and operational environments

  4. Preparing the Next American Manufacturing Workforce

    ERIC Educational Resources Information Center

    Taraman, Khalil S.

    2010-01-01

    Manufacturing has a new face--and the future it offers is exciting. But in order to take advantage of what it offers, one needs a plan and he/she has to know how to execute it. In this article, the author discusses how the Society of Manufacturing Engineers (SME) is working to get the message out that the future of advanced manufacturing will…

  5. How much domestic quick response manufacturing can a business afford?

    NASA Astrophysics Data System (ADS)

    Warburton, Roger D. H.; Warner, Steven B.

    2000-10-01

    Employment in the U.S. apparel industry has declined dramatically since the 1960s. Will it fall inexorably to zero, or is there some base level that can endure? If so, what strategic characteristics are required to survive? There is considerable interest in Quick Response Manufacturing (QRM), not only as a reason to support domestic manufacturing, but also as part of the larger goal of reducing supply chain costs. However, since Domestic Manufacturing is more expensive, why should anyone bother considering it? This paper presents an analytical model of a team approach that includes both domestic and offshore manufacturing. Despite the additional costs associated with U.S. manufacturing, our model predicts that including a domestic contractor is legitimate and cost effective. However, the alliance must be genuinely cooperative. A partnership has to be established early in the retailer's planning cycle, and the manufacturer should participate in the planning. Also, sharing data and making timely decisions imposes a strategic business approach, and the model allows us to describe the characteristic roles and capabilities required. Using this model for guidance, we anticipate that retailers will have the stock to satisfy more customers with fewer markdowns, while manufacturers will see increased margins and lower inventories.

  6. Economics of technological change - A joint model for the aircraft and airline industries

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Taneja, N. K.

    1981-01-01

    The principal focus of this econometric model is on the process of technological change in the U.S. aircraft manufacturing and airline industries. The problem of predicting the rate of introduction of current technology aircraft into an airline's fleet during the period of research, development, and construction for new technology aircraft arises in planning aeronautical research investments. The approach in this model is a statistical one. It attempts to identify major factors that influence transport aircraft manufacturers and airlines, and to correlate them with the patterns of delivery of new aircraft to the domestic trunk carriers. The functional form of the model has been derived from several earlier econometric models on the economics of innovation, acquisition, and technological change.

  7. Surrogate Plant Data Base : Volume 3. Appendix D : Facilities Planning Data ; Operating Manpower, Manufacturing Budgets and Pre-Production Launch ...

    DOT National Transportation Integrated Search

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  8. 49 CFR 536.8 - Conditions for trading of credits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... categories. For credits earned in model year 2011 or thereafter, and used to satisfy compliance obligations for model year 2011 or thereafter: (1) Manufacturers may use credits originally earned by another... its automobile manufacturing business, it must inform NHTSA how it plans to divide the manufacturer's...

  9. Manufacturing Bms/Iso System Review

    NASA Technical Reports Server (NTRS)

    Gomez, Yazmin

    2004-01-01

    The Quality Management System (QMS) is one that recognizes the need to continuously change and improve an organization s products and services as determined by system feedback, and corresponding management decisions. The purpose of a Quality Management System is to minimize quality variability of an organization's products and services. The optimal Quality Management System balances the need for an organization to maintain flexibility in the products and services it provides with the need for providing the appropriate level of discipline and control over the processes used to provide them. The goal of a Quality Management System is to ensure the quality of the products and services while consistently (through minimizing quality variability) meeting or exceeding customer expectations. The GRC Business Management System (BMS) is the foundation of the Center's ISO 9001:2000 registered quality system. ISO 9001 is a quality system model developed by the International Organization for Standardization. BMS supports and promote the Glenn Research Center Quality Policy and wants to ensure the customer satisfaction while also meeting quality standards. My assignment during this summer is to examine the manufacturing processes used to develop research hardware, which in most cases are one of a kind hardware, made with non conventional equipment and materials. During this process of observation I will make a determination, based on my observations of the hardware development processes the best way to meet customer requirements and at the same time achieve the GRC quality standards. The purpose of my task is to review the manufacturing processes identifying opportunities in which to optimize the efficiency of the processes and establish a plan for implementation and continuous improvement.

  10. Changing Manufacturing Technology and Jobs in Defense Industries.

    ERIC Educational Resources Information Center

    Oliver, Richard P.

    1983-01-01

    Provides information on the current status of computer-assisted manufacturing, current employment, and plans for new technology in three defense-related industries: aircraft, shipbuilding, and ordnance. (SK)

  11. Practical application of game theory based production flow planning method in virtual manufacturing networks

    NASA Astrophysics Data System (ADS)

    Olender, M.; Krenczyk, D.

    2016-08-01

    Modern enterprises have to react quickly to dynamic changes in the market, due to changing customer requirements and expectations. One of the key area of production management, that must continuously evolve by searching for new methods and tools for increasing the efficiency of manufacturing systems is the area of production flow planning and control. These aspects are closely connected with the ability to implement the concept of Virtual Enterprises (VE) and Virtual Manufacturing Network (VMN) in which integrated infrastructure of flexible resources are created. In the proposed approach, the players role perform the objects associated with the objective functions, allowing to solve the multiobjective production flow planning problems based on the game theory, which is based on the theory of the strategic situation. For defined production system and production order models ways of solving the problem of production route planning in VMN on computational examples for different variants of production flow is presented. Possible decision strategy to use together with an analysis of calculation results is shown.

  12. Methodology for identifying and representing knowledge in the scope of CMM inspection resource selection

    NASA Astrophysics Data System (ADS)

    Martínez, S.; Barreiro, J.; Cuesta, E.; Álvarez, B. J.; González, D.

    2012-04-01

    This paper is focused on the task of elicitation and structuring of knowledge related to selection of inspection resources. The final goal is to obtain an informal model of knowledge oriented to the inspection planning in coordinate measuring machines. In the first tasks, where knowledge is captured, it is necessary to use tools that make easier the analysis and structuring of knowledge, so that rules of selection can be easily stated to configure the inspection resources. In order to store the knowledge a so-called Onto-Process ontology has been developed. This ontology may be of application to diverse processes in manufacturing engineering. This paper describes the decomposition of the ontology in terms of general units of knowledge and others more specific for selection of sensor assemblies in inspection planning with touch sensors.

  13. Product development cycle time reduction

    NASA Astrophysics Data System (ADS)

    Farran, Robin

    1992-05-01

    We are facing here today the key issues that face us in the competitive environment. North American companies are struggling to compete in the global marketplace. Gone are the days when presence ensured success. Then, sales and earnings were guaranteed. Today the competition is intense. Many manufacturing and service companies are no longer competitive. Traditionally, manufacturing companies have created the most wealth for the community and economy. Losing this ability to create wealth is tragic and unnecessary. A company can only be successful by focusing on customer satisfaction at competitive costs. Revenue growth and earnings growth require a continuous stream of products that anticipate the customers' needs, result from shorter and shorter innovation cycles, continually improve in quality, and are produced at improved costs on each cycle. The best opportunities for increased quality and decreased costs are with new products. Sure, work on quality and costs everyday. The biggest changes, however, will come through the new product development cycle. We must improve our development processes to provide leadership products which result in high levels of customer satisfaction. This is a prerequisite for business success. When presence in the marketplace was a virtual guarantee of success for a North American company, technology tended to drive the products, and the customers bought virtually everything that was produced. Functional excellence was stressed within companies ... and that was enough. Effective planning processes were not a prerequisite for success. Today success demands highly developed business research and planning processes, and functional excellence combined with organizational capabilities that ensure commercialization excellence.

  14. The accuracy of ultrashort echo time MRI sequences for medical additive manufacturing

    PubMed Central

    Rijkhorst, Erik-Jan; Hofman, Mark; Forouzanfar, Tymour; Wolff, Jan

    2016-01-01

    Objectives: Additively manufactured bone models, implants and drill guides are becoming increasingly popular amongst maxillofacial surgeons and dentists. To date, such constructs are commonly manufactured using CT technology that induces ionizing radiation. Recently, ultrashort echo time (UTE) MRI sequences have been developed that allow radiation-free imaging of facial bones. The aim of the present study was to assess the feasibility of UTE MRI sequences for medical additive manufacturing (AM). Methods: Three morphologically different dry human mandibles were scanned using a CT and MRI scanner. Additionally, optical scans of all three mandibles were made to acquire a “gold standard”. All CT and MRI scans were converted into Standard Tessellation Language (STL) models and geometrically compared with the gold standard. To quantify the accuracy of the AM process, the CT, MRI and gold-standard STL models of one of the mandibles were additively manufactured, optically scanned and compared with the original gold-standard STL model. Results: Geometric differences between all three CT-derived STL models and the gold standard were <1.0 mm. All three MRI-derived STL models generally presented deviations <1.5 mm in the symphyseal and mandibular area. The AM process introduced minor deviations of <0.5 mm. Conclusions: This study demonstrates that MRI using UTE sequences is a feasible alternative to CT in generating STL models of the mandible and would therefore be suitable for surgical planning and AM. Further in vivo studies are necessary to assess the usability of UTE MRI sequences in clinical settings. PMID:26943179

  15. A Research Planning Assessment for Applications of Artificial Intelligence in Manufacturing.

    DTIC Science & Technology

    1986-01-01

    to apply,based on their needs.___ *PROJECT OESCRIPTION/ APPROACH : -The project will apply A_ in r’ejpesent ni ri O siri ct...of this project are essential for the practical implementation of Al-based approaches to improving unit processes. This work will enable advances in ...July 1985 to 1 August 1985. The authors wish to thank all workshop participants for their contributions to this effort. In particular, we wish to

  16. Direct Digital Manufacturing of Integrated Naval Systems Using Ultrasonic Consolidation, Support Material Deposition and Direct Write Technologies

    DTIC Science & Technology

    2012-02-17

    tool should be combined with a user-friendly Windows-based software interface that utilizes the best practices for process planning developed by us and...best practices developed through this project, resulting in the commercial availability of machines for the Navy and others. These machines will...research 2011 Outstanding Paper Award, VRAP 2011, for paper "Some Studies on Dislocation Density based Finite Element Modeling of Ultrasonic

  17. AI in manufacturing

    NASA Astrophysics Data System (ADS)

    Gross, John E.; Minato, Rick; Smith, David M.; Loftin, R. B.; Savely, Robert T.

    1991-10-01

    AI techniques are shown to have been useful in such aerospace industry tasks as vehicle configuration layouts, process planning, tool design, numerically-controlled programming of tools, production scheduling, and equipment testing and diagnosis. Accounts are given of illustrative experiences at the production facilities of three major aerospace defense contractors. Also discussed is NASA's autonomous Intelligent Computer-Aided Training System, for such ambitious manned programs as Space Station Freedom, which employs five different modules to constitute its job-independent training architecture.

  18. Chicago Manufacturing Tech Prep. Fiscal Year 1991 Final Report.

    ERIC Educational Resources Information Center

    Chicago City Colleges, IL.

    During its first year of development in 1991, the Chicago Manufacturing Technical Preparation (Tech Prep) Program established a plan for implementing an industry-driven, articulated 4-year manufacturing technology course of study that integrates applied academic courses with technical courses and meets industry hiring standards. The project…

  19. 78 FR 37548 - Agency Information Collection Activities: Proposed Collection; Comment Request; Guidance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... in Sec. 211.100(b); and standard operating procedures should be reviewed and revised or supplementary... manufacturers to include a procedure in their Plan for notifying the Center for Drug Evaluation and Research... drug products will be manufactured under altered procedures, which products will have manufacturing...

  20. 77 FR 70189 - Manufacturer of Controlled Substances; Notice of Registration; Cayman Chemical Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... propylthiophenethylamine (7348). Marihuana (7360) I Tetrahydrocannabinols (7370) I Mescaline (7381) I 3,4,5... manufacture small quantities of marihuana derivatives for research purposes. In reference to drug code 7360 (Marihuana), the company plans to bulk manufacture cannabidiol. In reference to drug code 7370...

  1. Raw material procurement for termite fishing tools by wild chimpanzees in the Issa valley, Western Tanzania.

    PubMed

    Almeida-Warren, Katarina; Sommer, Volker; Piel, Alex K; Pascual-Garrido, Alejandra

    2017-10-01

    Chimpanzee termite fishing has been studied for decades, yet the selective processes preceding the manufacture of fishing tools remain largely unexplored. We investigate raw material selection and potential evidence of forward planning in the chimpanzees of Issa valley, western Tanzania. Using traditional archaeological methods, we surveyed the location of plants from where chimpanzees sourced raw material to manufacture termite fishing tools, relative to targeted mounds. We measured raw material abundance to test for availability and selection. Statistics included Chi-Squared, two-tailed Wilcoxon, and Kruskall-Wallace tests. Issa chimpanzees manufactured extraction tools only from bark, despite availability of other suitable materials (e.g., twigs), and selected particular plant species as raw material sources, which they often also exploit for food. Most plants were sourced 1-16 m away from the mound, with a maximum of 33 m. The line of sight from the targeted mound was obscured for a quarter of these plants. The exclusive use of bark tools despite availability of other suitable materials indicates a possible cultural preference. The fact that Issa chimpanzees select specific plant species and travel some distance to source them suggests some degree of selectivity and, potentially, forward planning. Our results have implications for the reconstruction of early hominin behaviors, particularly with regard to the use of perishable tools, which remain archaeologically invisible. © 2017 Wiley Periodicals, Inc.

  2. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel

    DOE PAGES

    Tapia, Gustavo; Khairallah, Saad A.; Matthews, Manyalibo J.; ...

    2017-09-22

    Here, Laser Powder-Bed Fusion (L-PBF) metal-based additive manufacturing (AM) is complex and not fully understood. Successful processing for one material, might not necessarily apply to a different material. This paper describes a workflow process that aims at creating a material data sheet standard that describes regimes where the process can be expected to be robust. The procedure consists of building a Gaussian process-based surrogate model of the L-PBF process that predicts melt pool depth in single-track experiments given a laser power, scan speed, and laser beam size combination. The predictions are then mapped onto a power versus scan speed diagrammore » delimiting the conduction from the keyhole melting controlled regimes. This statistical framework is shown to be robust even for cases where experimental training data might be suboptimal in quality, if appropriate physics-based filters are applied. Additionally, it is demonstrated that a high-fidelity simulation model of L-PBF can equally be successfully used for building a surrogate model, which is beneficial since simulations are getting more efficient and are more practical to study the response of different materials, than to re-tool an AM machine for new material powder.« less

  3. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tapia, Gustavo; Khairallah, Saad A.; Matthews, Manyalibo J.

    Here, Laser Powder-Bed Fusion (L-PBF) metal-based additive manufacturing (AM) is complex and not fully understood. Successful processing for one material, might not necessarily apply to a different material. This paper describes a workflow process that aims at creating a material data sheet standard that describes regimes where the process can be expected to be robust. The procedure consists of building a Gaussian process-based surrogate model of the L-PBF process that predicts melt pool depth in single-track experiments given a laser power, scan speed, and laser beam size combination. The predictions are then mapped onto a power versus scan speed diagrammore » delimiting the conduction from the keyhole melting controlled regimes. This statistical framework is shown to be robust even for cases where experimental training data might be suboptimal in quality, if appropriate physics-based filters are applied. Additionally, it is demonstrated that a high-fidelity simulation model of L-PBF can equally be successfully used for building a surrogate model, which is beneficial since simulations are getting more efficient and are more practical to study the response of different materials, than to re-tool an AM machine for new material powder.« less

  4. ICAM (Integrated Computer Aided Manufacturing) Conceptual Design for Computer-Integrated Manufacturing. Volume 1. Project Overview and Technical Summary

    DTIC Science & Technology

    1984-06-29

    sheet metal, machined and composite parts and assembling the components into final pruJucts o Planning, evaluating, testing, inspecting and...Research showed that current programs were pursuing the design and demonstration of integrated centers for sheet metal, machining and composite ...determine any metal parts required and to schedule these requirements from the machining center. Figure 3-33, Planned Composite Production, shows

  5. A Quality Assurance Initiative for Commercial-Scale Production in High-Throughput Cryopreservation of Blue Catfish Sperm

    PubMed Central

    Hu, E; Liao, T. W.; Tiersch, T. R.

    2013-01-01

    Cryopreservation of fish sperm has been studied for decades at a laboratory (research) scale. However, high-throughput cryopreservation of fish sperm has recently been developed to enable industrial-scale production. This study treated blue catfish (Ictalurus furcatus) sperm high-throughput cryopreservation as a manufacturing production line and initiated quality assurance plan development. The main objectives were to identify: 1) the main production quality characteristics; 2) the process features for quality assurance; 3) the internal quality characteristics and their specification designs; 4) the quality control and process capability evaluation methods, and 5) the directions for further improvements and applications. The essential product quality characteristics were identified as fertility-related characteristics. Specification design which established the tolerance levels according to demand and process constraints was performed based on these quality characteristics. Meanwhile, to ensure integrity throughout the process, internal quality characteristics (characteristics at each quality control point within process) that could affect fertility-related quality characteristics were defined with specifications. Due to the process feature of 100% inspection (quality inspection of every fish), a specific calculation method, use of cumulative sum (CUSUM) control charts, was applied to monitor each quality characteristic. An index of overall process evaluation, process capacity, was analyzed based on in-control process and the designed specifications, which further integrates the quality assurance plan. With the established quality assurance plan, the process could operate stably and quality of products would be reliable. PMID:23872356

  6. [Three types of brand name loyalty strategies set up by drug manufacturers].

    PubMed

    PréMont, Marie-Claude; Gagnon, Marc-André

    2014-11-01

    The recent restructuring of the pharmaceutical industry has led to three new types of promotional strategies to build patient loyalty to brand name drugs: loyalty through rebates, patient support, and compassion programs. Loyalty through rebates seeks to keep patients on a brand name drug and prevent their switch to the generic equivalent. Loyalty through patient support provides aftersales services to help and support patients (by phone or home visits) in order to improve adherence to their treatments. Finally, compassion programs offer patients access to drugs still awaiting regulatory approval or reimbursement by insurers. When and if the approval process is successful, the manufacturer puts an end to the compassion program and benefits from a significant cohort of patients already taking a very expensive drug for which reimbursement is assured. The impact of these programs on public policies and patients' rights raises numerous concerns, among which the direct access to patients and their health information by drug manufacturers and upward pressure on costs for drug insurance plans.

  7. Applications of Evolutionary Technology to Manufacturing and Logistics Systems : State-of-the Art Survey

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin

    Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.

  8. The evolving role of supply chain management technology in healthcare.

    PubMed

    Langabeer, Jim

    2005-01-01

    The healthcare supply chain is a vast, disintegrated network of products and players, loosely held together by manual and people-intensive processes. Managing the flow of information, supplies, equipment, and services from manufacturers to distributors to providers of care is especially difficult in clinical supply chains, compared with more technology-intense industries like consumer goods or industrial manufacturing. As supplies move downstream towards hospitals and clinics, the quality and robustness of accompanying management and information systems used to manage these products deteriorates significantly. Technology that provides advanced planning, synchronization, and collaboration upstream at the large supply manufacturers and distributors rarely is used at even the world's larger and more sophisticated hospitals. This article outlines the current state of healthcare supply chain management technologies, addresses potential reasons for the lack of adoption of technologies and provides a roadmap for the evolution of technology for the future. This piece is based on both quantitative and qualitative research assessments of the healthcare supply chain conducted during the last two years.

  9. Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebak, Raul B.; Lou, Xiaoyuan

    Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1) Evaluate nuclear related properties of AM 316L SS, including microstructure, tensile properties, impact toughness, stress corrosion cracking (SCC), corrosion fatigue (CF), irradiation effects, and irradiation assisted stress corrosion cracking (IASCC). (2) Understand the correlations among laser processing, heat treatment, microstructure and SCC/irradiation properties; (3) Optimize and improve the manufacturing process to achieve enhanced nuclear application properties; (4) Fabricate, evaluate, qualify and test a prototype reactor component to demonstrate the commercial viability and cost benefit; (5) Create regulatory approval path and commercialization plans for the production of a commercial reactor component.« less

  10. 46 CFR 52.01-5 - Plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Plans. 52.01-5 Section 52.01-5 Shipping COAST GUARD... Plans. (a) Manufacturers intending to fabricate boilers to be installed on vessels shall submit detailed plans as required by subpart 50.20 of this subchapter. The plans, including design calculations, must be...

  11. Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)

    NASA Astrophysics Data System (ADS)

    Ashcraft, Todd W.; Atac, Robert

    2012-06-01

    Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.

  12. 77 FR 5849 - Manufacturer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... company plans to manufacture a radioactive product to diagnose Parkinson's disease, and to manufacture a.... DEA has considered the factors in 21 U.S.C. 823(a) and determined that the registration of GE... interest at this time. DEA has investigated GE Healthcare to ensure that the company's registration is...

  13. 78 FR 72091 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... in Sec. 211.100(b); and standard operating procedures should be reviewed and revised or supplementary... manufacturers to include a procedure in their Plan for notifying the Center for Drug Evaluation and Research... drug products will be manufactured under altered procedures, which products will have manufacturing...

  14. 78 FR 39337 - Importer of Controlled Substances; Notice of Application; Akorn, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ...), a basic class of controlled substance listed in schedule II. The company plans to import Remifentanil in bulk for use in dosage- form manufacturing. Any bulk manufacturer who is presently, or is applying to be, registered with DEA to manufacture such basic class of controlled substance listed in...

  15. Manufacturing in Space: (It's Getting off the Ground!) Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1988

    1988-01-01

    Discusses current issues and work on the planned manufacturing Space Station. Such topics as human resources, energy sources, and types of products to be manufactured in space are covered. The possibility of mining other planets for raw materials is considered. Student activities and a quiz covering the article are included. (CH)

  16. 76 FR 42558 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... from Cement Manufacturing), for Portland cement kilns during the ozone season, from May 1 through... C (Emissions of NO X from Cement Manufacturing), for the control of NO X emissions from Portland... 145--Interstate Pollution Transport Reduction Subchapter C--Emissions of NOX From Cement Manufacturing...

  17. Computer-Assisted Virtual Planning for Surgical Guide Manufacturing and Internal Distractor Adaptation in the Management of Midface Hypoplasia in Cleft Patients.

    PubMed

    Scolozzi, Paolo; Herzog, Georges

    2017-07-01

    We are reporting the treatment of severe maxillary hypoplasia in two patients with unilateral cleft lip and palate by using a specific approach combining the Le Fort I distraction osteogenesis technique coupled with computer-aided design/computer-aided manufacturing customized surgical guides and internal distractors based on virtual computational planning. This technology allows for the transfer of the virtual planned reconstruction to the operating room by using custom patient-specific implants, surgical splints, surgical cutting guides, and surgical guides to plate or distractor adaptation.

  18. Using CORBA to integrate manufacturing cells to a virtual enterprise

    NASA Astrophysics Data System (ADS)

    Pancerella, Carmen M.; Whiteside, Robert A.

    1997-01-01

    It is critical in today's enterprises that manufacturing facilities are not isolated from design, planning, and other business activities and that information flows easily and bidirectionally between these activities. It is also important and cost-effective that COTS software, databases, and corporate legacy codes are well integrated in the information architecture. Further, much of the information generated during manufacturing must be dynamically accessible to engineering and business operations both in a restricted corporate intranet and on the internet. The software integration strategy in the Sandia Agile Manufacturing Testbed supports these enterprise requirements. We are developing a CORBA-based distributed object software system for manufacturing. Each physical machining device is a CORBA object and exports a common IDL interface to allow for rapid and dynamic insertion, deletion, and upgrading within the manufacturing cell. Cell management CORBA components access manufacturing devices without knowledge of any device-specific implementation. To support information flow from design to planning data is accessible to machinists on the shop floor. CORBA allows manufacturing components to be easily accessible to the enterprise. Dynamic clients can be created using web browsers and portable Java GUI's. A CORBA-OLE adapter allows integration to PC desktop applications. Other commercial software can access CORBA network objects in the information architecture through vendor API's.

  19. 76 FR 61069 - Revisions to the California State Implementation Plan, Sacramento Metropolitan Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... from organic chemical manufacturing, soil decontamination, and polyester resin operations. We are... Rule 464 (Organic Chemical Manufacturing Operations), VCAPCD Rule 74.29 (Soil Decontamination), and...

  20. 44. Photograph of a line drawing. 'PLAN LAYOUT OF PART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Photograph of a line drawing. 'PLAN LAYOUT OF PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDINGS H-1 TO H-10 INCL., GRINDING, MANUFACTURING AREA, PLANT 'B'.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant 8, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  1. 31. Photograph of a line drawing. 'PLAN LAYOUT OF PART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Photograph of a line drawing. 'PLAN LAYOUT OF PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDINGS D-1 TO U-10 INCL., NITRATION, MANUFACTURING AREA, PLANT 'B'.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  2. MRP (materiel requirements planning) II implementation: a case study.

    PubMed

    Sheldon, D

    1994-05-01

    Manufacturing resource planning (MRP II) is a powerful and effective business planning template on which to build a continuous improvement culture. MRP II, when successfully implemented, encourages a disciplined yet nonthreatening environment centered on measurement and accountability. From the education that accompanies an MRP II implementation, the employees can better understand the vision and mission of the organization. This common goal keeps everyone's energy directed toward the same final objective. The Raymond Corporation is a major materiels handling equipment manufacturer headquartered in Greene, New York, with class "A" MRP II manufacturing facilities in Greene and Brantford, Ontario and an aftermark distribution facility in East Syracuse, New York. Prior to the implementation of MRP II in its Greene plant (from 1988 through 1990) good intentions and hard work were proving to be less than necessary to compete in the global market. Certified class "A" in February 1990. The Raymond Corporation has built a world-class organization from these foundations.

  3. 77 FR 2324 - Manufacturer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... manufacturer of the following basic classes of controlled substances: Drug Schedule Marihuana (7360) I... distribution to its customers. In reference to drug code 7360 (Marihuana), the company plans to bulk...

  4. 76 FR 17968 - Manufacturer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... manufacturer of the following basic classes of controlled substances: Drug Schedule Marihuana (7360) I... distribution to its customers. In reference to drug code 7360 (Marihuana), the company plans to bulk...

  5. 77 FR 47114 - Manufacturer of Controlled Substances; Notice of Application; AMRI Rensselaer, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Marihuana (7360) I Tetrahydrocannabinols (7370) I Amphetamine (1100) II Lisdexamfetamine (1205) II... (Marihuana), the company plans to bulk manufacture cannabidiol as a synthetic intermediate, which will be...

  6. Manufacture of industrial products from oak

    Treesearch

    Hugh W. Reynolds

    1971-01-01

    The three largest and fastest growing markets for oak are railroad crossties, reusable pallets, and truck and container flooring. Manufacturers of oak lumber are advised to keep these products in mind when planning their production.

  7. Integrated production and distribution scheduling problems related to fixed delivery departure dates and weights of late orders.

    PubMed

    Li, Shanlin; Li, Maoqin

    2015-01-01

    We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time.

  8. Integrated Production and Distribution Scheduling Problems Related to Fixed Delivery Departure Dates and Weights of Late Orders

    PubMed Central

    Li, Shanlin; Li, Maoqin

    2015-01-01

    We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time. PMID:25785285

  9. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY13 Third Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-08-06

    This quarterly report summarizes the status for the project planning to obtain all the approvals required for a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). The CRADA documents have been processed by PNNL Legal Services that is also coordinating the revision effort with the industrial parties to address DOE’s comments.

  10. The DoD Manufacturing Technology Program Strategic Plan: Delivering Defense Affordability

    DTIC Science & Technology

    2009-03-01

    58%) engineering time savings required for critical spares for the M2 Machine Gun , widely used by U.S. and NATO forces. 12 Report to Congress on...Machine Gun used by U.S. and NATO ground and sea forces. This 1930s-era legacy weapon system continues to experience critical spare parts shortages due...Missiles and the Mid-Range-Munition. Durable Gun Barrel Materials–Composite Overwrap Process. Future Combat Systems (FCS) could not meet weight and

  11. Proceedings of the Space Shuttle Sortie Workshop. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are presented on the mission planning progress in each of the working paper reports. The general topics covered are the following: space technology; materials processing and space manufacturing; communications and navigation; earth and ocean physics; oceanography; earth resources and surface environmental quality; meteorology and atmospheric environmental quality; life sciences; atmospheric and space physics; solar physics; high energy cosmic rays; X-ray and gamma ray astronomy; ultraviolet-optical astronomy; planetary astronomy; and infrared astronomy.

  12. 3D modeling, custom implants and its future perspectives in craniofacial surgery

    PubMed Central

    Parthasarathy, Jayanthi

    2014-01-01

    Custom implants for the reconstruction of craniofacial defects have gained importance due to better performance over their generic counterparts. This is due to the precise adaptation to the region of implantation, reduced surgical times and better cosmesis. Application of 3D modeling in craniofacial surgery is changing the way surgeons are planning surgeries and graphic designers are designing custom implants. Advances in manufacturing processes and ushering of additive manufacturing for direct production of implants has eliminated the constraints of shape, size and internal structure and mechanical properties making it possible for the fabrication of implants that conform to the physical and mechanical requirements of the region of implantation. This article will review recent trends in 3D modeling and custom implants in craniofacial reconstruction. PMID:24987592

  13. Logistic Principles Application for Managing the Extraction and Transportation of Solid Minerals

    NASA Astrophysics Data System (ADS)

    Tyurin, Alexey

    2017-11-01

    Reducing the cost of resources in solid mineral extraction is an urgent task. For its solution the article proposes logistic approach use to management of mining company all resources, including extraction processes, transport, mineral handling and storage. The account of the uneven operation of mining, transport units and complexes for processing and loading coal into railroad cars allows you to identify the shortcomings in the work of the entire enterprise and reduce resources use at the planned production level. In the article the mining planning model taking into account the dynamics of the production, transport stations and export coal to consumers rail transport on example of Krasnoyarsk region Nazarovo JSC «Razrez Sereul'skiy». Rolling planning methods use and data aggregation allows you to split the planning horizon (month) on equal periods and to use of dynamic programming method for building mining optimal production programme for the month. Coal mining production program definition technique will help align the work of all enterprise units, to optimize resources of all areas, to establish a flexible relationship between manufacturer and consumer, to take into account the irregularity of rail transport.

  14. EUV mask defect inspection and defect review strategies for EUV pilot line and high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Chan, Y. David; Rastegar, Abbas; Yun, Henry; Putna, E. Steve; Wurm, Stefan

    2010-04-01

    Reducing mask blank and patterned mask defects is the number one challenge for extreme ultraviolet lithography. If the industry succeeds in reducing mask blank defects at the required rate of 10X every year for the next 2-3 years to meet high volume manufacturing defect requirements, new inspection and review tool capabilities will soon be needed to support this goal. This paper outlines the defect inspection and review tool technical requirements and suggests development plans to achieve pilot line readiness in 2011/12 and high volume manufacturing readiness in 2013. The technical specifications, tooling scenarios, and development plans were produced by a SEMATECH-led technical working group with broad industry participation from material suppliers, tool suppliers, mask houses, integrated device manufacturers, and consortia. The paper summarizes this technical working group's assessment of existing blank and mask inspection/review infrastructure capabilities to support pilot line introduction and outlines infrastructure development requirements and tooling strategies to support high volume manufacturing.

  15. Managing design for manufacture and assembly in the development of MEMS-based products

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Yao; Narasimhan, Nachchinarkkinian; Hariz, Alex J.

    2006-12-01

    Design for manufacturability, assembly and reliability of MEMS products is being applied to a multitude of novel MEMS products to make up for the lack of "Standard Process for MEMS" concept. The latter has proved a major handicap in commercialization of MEMS devices when compared to integrated circuits products. Furthermore, an examination of recent engineering literature seems to suggest convergence towards the development of the design for manufacturability and reliability of MEMS products. This paper will highlight the advantages and disadvantages of conventional techniques that have been pursued up to this point to achieve commercialization of MEMS products, identify some of the problems slowing down development, and explore measures that could be taken to try to address those problems. Successful commercialization critically depends on packaging and assembly, manufacturability, and reliability for micro scale products. However, a methodology that appropriately shadows next generation knowledge management will undoubtedly address most of the critical problems that are hampering development of MEMS industries. Finally this paper will also identify contemporary issues that are challenging the industry in regards to product commercialization and will recommend appropriate measures based on knowledge flow to address those shortcomings and lay out plans to expedient and successful paths to market.

  16. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a zone... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...

  17. 21 CFR 1005.25 - Service of process on manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25....25 Service of process on manufacturers. (a) Every manufacturer of electronic products, prior to... United States as the manufacturer's agent upon whom service of all processes, notices, orders, decisions...

  18. Development of an atmospheric monitoring plan for space station

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.

    1989-01-01

    An environmental health monitoring plan for Space Station will ensure crew health during prolonged habitation. The Space Station, Freedom, will operate for extended periods, 90+ days, without resupply. A regenerative, closed loop life support system will be utilized in order to minimize resupply logistics and costs. Overboard disposal of wastes and venting of gases to space will be minimal. All waste material will be treated and recycled. The concentrated wastes will be stabilized and stored for ground disposal. The expected useful life of the station (decades) and the diversity of materials brought aboard for experimental or manufacturing purposes, increases the likelihood of cabin contamination. Processes by which cabin contamination can occur include: biological waste production, material off-gassing, process leakage, accidental containment breach, and accumulation due to poor removal efficiencies of the purification units. An industrial hygiene approach was taken to rationalize monitoring needs and to identify the substances likely to be present, the amount, and their hazard.

  19. Analytic hierarchy process-based approach for selecting a Pareto-optimal solution of a multi-objective, multi-site supply-chain planning problem

    NASA Astrophysics Data System (ADS)

    Ayadi, Omar; Felfel, Houssem; Masmoudi, Faouzi

    2017-07-01

    The current manufacturing environment has changed from traditional single-plant to multi-site supply chain where multiple plants are serving customer demands. In this article, a tactical multi-objective, multi-period, multi-product, multi-site supply-chain planning problem is proposed. A corresponding optimization model aiming to simultaneously minimize the total cost, maximize product quality and maximize the customer satisfaction demand level is developed. The proposed solution approach yields to a front of Pareto-optimal solutions that represents the trade-offs among the different objectives. Subsequently, the analytic hierarchy process method is applied to select the best Pareto-optimal solution according to the preferences of the decision maker. The robustness of the solutions and the proposed approach are discussed based on a sensitivity analysis and an application to a real case from the textile and apparel industry.

  20. Quality management of manufacturing process based on manufacturing execution system

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Jiang, Yang; Jiang, Weizhuo

    2017-04-01

    Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.

  1. 78 FR 23959 - Manufacturer of Controlled Substances; Notice of Registration; Cayman Chemical Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... plans to manufacture the listed controlled substances for distribution to their research and forensic customers conducting drug testing and analysis. No comments or objections have been received. DEA has...

  2. 78 FR 64018 - Manufacturer of Controlled Substances; Notice of Application; GE Healthcare

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... listed in schedule II. The company plans to manufacture a radioactive product to diagnose Parkinson's disease for distribution to its customers. Any other such applicant, and any person who is presently...

  3. 77 FR 30027 - Manufacturer of Controlled Substances; Notice of Application; Austin Pharma, LLC.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Schedule Marihuana (7360) I Tetrahydrocannabinols (7370) I The company plans to manufacture bulk active pharmaceutical ingredients (APIs) for distribution to its customers. In reference to drug code 7360 (Marihuana...

  4. 76 FR 26609 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... that manufacturers would be forced to alter the design or emission control equipment on new nonroad... in practical effect force manufacturers to alter the design or emission control equipment on new... manufacturer or user of a nonroad engine or vehicle to change the emission control design of the engine or...

  5. A manufacturer's perspective: Hewlett Packard Y2K action plan.

    PubMed

    Rapp, W N

    1999-01-01

    Medical device manufacturers must ensure that their devices are safe and effective including investigating issues involved with the century rollover. Manufacturers must begin early to evaluate their products in order to allow time to correct and distribute these product corrections and communicate to their customers so they can prepare for the Y2K event.

  6. Air Force Manufacturing Technology. Year 2000 Project Book

    DTIC Science & Technology

    2000-01-01

    Electronic Warfare Component Manufacturing 13 National Center for Manufacturing Science 14 Product Research Market Analysis System 15 Electronics Acoustic...other agile organizations that can respond to rapidly changing market demands. Approach This program demonstrated and evaluated the advanced design...production worker contact with customers and suppliers; shopfloor identification of new technologies, markets , and products; and strategic planning to assure

  7. Planning and design of a knowledge based system for green manufacturing management

    NASA Astrophysics Data System (ADS)

    Kamal Mohd Nawawi, Mohd; Mohd Zuki Nik Mohamed, Nik; Shariff Adli Aminuddin, Adam

    2013-12-01

    This paper presents a conceptual design approach to the development of a hybrid Knowledge Based (KB) system for Green Manufacturing Management (GMM) at the planning and design stages. The research concentrates on the GMM by using a hybrid KB system, which is a blend of KB system and Gauging Absences of Pre-requisites (GAP). The hybrid KB/GAP system identifies all potentials elements of green manufacturing management issues throughout the development of this system. The KB system used in the planning and design stages analyses the gap between the existing and the benchmark organizations for an effective implementation through the GAP analysis technique. The proposed KBGMM model at the design stage explores two components, namely Competitive Priority and Lean Environment modules. Through the simulated results, the KBGMM System has identified, for each modules and sub-module, the problem categories in a prioritized manner. The System finalized all the Bad Points (BP) that need to be improved to achieve benchmark implementation of GMM at the design stage. The System provides valuable decision making information for the planning and design a GMM in term of business organization.

  8. A hybrid algorithm optimization approach for machine loading problem in flexible manufacturing system

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay M.; Murthy, ANN; Chandrashekara, K.

    2012-05-01

    The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to the relevant machines are made. Such problems are not only combinatorial optimization problems, but also happen to be non-deterministic polynomial-time-hard, making it difficult to obtain satisfactory solutions using traditional optimization techniques. In this paper, an attempt has been made to address the machine loading problem with objectives of minimization of system unbalance and maximization of throughput simultaneously while satisfying the system constraints related to available machining time and tool slot designing and using a meta-hybrid heuristic technique based on genetic algorithm and particle swarm optimization. The results reported in this paper demonstrate the model efficiency and examine the performance of the system with respect to measures such as throughput and system utilization.

  9. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    NASA Astrophysics Data System (ADS)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  10. Designing of network planning system for small-scale manufacturing

    NASA Astrophysics Data System (ADS)

    Kapulin, D. V.; Russkikh, P. A.; Vinnichenko, M. V.

    2018-05-01

    The paper presents features of network planning in small-scale discrete production. The procedure of explosion of the production order, considering multilevel representation, is developed. The software architecture is offered. Approbation of the network planning system is carried out. This system allows carrying out dynamic updating of the production plan.

  11. Integrating MRP (materiel requirements planning) into modern business.

    PubMed

    Lunn, T

    1994-05-01

    Time is the commodity of the '90s. Therefore, we all must learn how to use our manufacturing systems to shorten lead time and increase customer satisfaction. The objective of this article is to discuss practical ways people integrate the techniques of materiel requirements planning (MRP) systems with just-in-time (JIT) execution systems to increase customer satisfaction. Included are examples of new ways people use MRP systems to exemplify the process of continuous improvement--multiple items on work orders, consolidated routings, flexing capacity, and other new developments. Ways that successful companies use MRP II for planning and JIT for execution are discussed. There are many examples of how to apply theory to real life situations and a discussion of techniques that work to keep companies in the mode of continuous improvement. Also included is a look at hands-on, practical methods people use to achieve lead time reduction and simplify bills of material. Total quality management concepts can be applied to the MRP process itself. This in turn helps people improve schedule adherence, which leads to customer satisfaction.

  12. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  13. 40 CFR 723.175 - Chemical substances used in or for the manufacture or processing of instant photographic and peel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacture and processing in the special production area. All manufacturing, processing, and use operations... shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part... production area, the ambient air concentration of the new chemical substance during manufacture, processing...

  14. 75 FR 29584 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... and violations of the Pennsylvania State Implementation Plan at a steel manufacturing facility in...) Cease operation of the Natrona steel manufacturing facility not later than November 30, 2010; (2) pay a...

  15. Status and plans of NASA's Materials Science and Manufacturing in Space (MS/MS) program

    NASA Technical Reports Server (NTRS)

    Armstrong, W. O.; Bredt, J. H.

    1972-01-01

    A description is given of a research and development program on the space shuttle mission designed to prepare the way for possible commercial manufacturing operations on permanently orbiting space stations.

  16. 78 FR 30332 - Manufacturer of Controlled Substances, Notice of Application, Austin Pharma, Llc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ...) to be registered as a bulk manufacturer of Marihuana (7360), a basic class of controlled substance... distribution to its customers. In reference to drug code 7360 (Marihuana), the company plans to bulk...

  17. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    NASA Astrophysics Data System (ADS)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  18. The impact of preventive maintenance practices on manufacturing performance: A proposed model for SMEs in Malaysia

    NASA Astrophysics Data System (ADS)

    Lazim, Halim Mad; Taib, Che Azlan; Lamsali, Hendrik; Saleh, Mohamed Najib; Subramaniam, Chandrakantan

    2016-08-01

    Preventive maintenance (PM) plays important role to avoid or mitigate potential stoppages and disruptions of equipment or machinery from occurring in daily operations. PM emphasized total employee involvement and it is important for companies as well as Small and Medium Sized Enterprises (SMEs). SME sectors contribution to the Malaysian economy makes up 95% of the total manufacturers, however PM remain relatively lacking. The ability, reliability and effective maintenance management is highly important in order to achieve desired manufacturing performance. Therefore, organizational capability in planning, controlling, implementing and monitoring PM activities is important. Furthermore, empirical evidence on the potential impact of PM practices towards manufacturing performance with organizational capability as a moderating effect is still limited and indecisive. Henceforth, this paper aims to explore and investigate potential relationships between PM practices and manufacturing performance moderated by organizational capability in the contact of Malaysian SMEs in the manufacturing sector. Correspondently, the study intends to propose a new research framework and hypotheses to examine the abovementioned relationships. The proposed framework includes PM team, PM strategy and planned maintenance as the determinants, while organizational capability serves as the moderating variable. Manufacturing performance will be viewed in terms of innovation and financial factors. Proposed research direction and conclusion are discussed at the end of the study.

  19. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  20. Design requirements for SRB production control system. Volume 3: Package evaluation, modification and hardware

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software package evaluation was designed to analyze commercially available, field-proven, production control or manufacturing resource planning management technology and software package. The analysis was conducted by comparing SRB production control software requirements and conceptual system design to software package capabilities. The methodology of evaluation and the findings at each stage of evaluation are described. Topics covered include: vendor listing; request for information (RFI) document; RFI response rate and quality; RFI evaluation process; and capabilities versus requirements.

  1. The Future of Additive Manufacturing in Air Force Acquisition

    DTIC Science & Technology

    2017-03-22

    manufacturing data - Designing and deploying a virtual aircraft fleet for future conflict - Space-based satellite production for defense capabilities via...changing system design via lower production costs, enhanced performance possibilities, and rapid replenishment. In the Technology Maturation and Risk... manufacturing as well as major cost savings via reduction of required materials, unique tooling, specialized production plans, and segments of the

  2. Additive Manufacturing as a Sustainment Enabler: An Industry Perspective

    DTIC Science & Technology

    2016-12-01

    30 years with early emphasis and continued usage primarily during design and manufacturing of new systems. However, AM recently received increased...of newly designed AM-produced com- ponents into planned modifications and upgrades is an additional post- production opportunity funded by... manufacturing technology applications to the post- production stage. Putting together the solution relies on technical data management, applica- tion

  3. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases.

    PubMed

    Aboul-Hosn Centenero, Samir; Hernández-Alfaro, Federico

    2012-02-01

    The aim of this article is to determine the advantages of 3D planning in predicting postoperative results and manufacturing surgical splints using CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) technology in orthognathic surgery when the software program Simplant OMS 10.1 (Materialise(®), Leuven, Belgium) was used for the purpose of this study which was carried out on 16 patients. A conventional preoperative treatment plan was devised for each patient following our Centre's standard protocol, and surgical splints were manufactured. These splints were used as study controls. The preoperative treatment plans devised were then transferred to a 3D-virtual environment on a personal computer (PC). Surgery was simulated, the prediction of results on soft and hard tissue produced, and surgical splints manufactured using CAD/CAM technology. In the operating room, both types of surgical splints were compared and the degree of similitude in results obtained in three planes was calculated. The maxillary osteotomy line was taken as the point of reference. The level of concordance was used to compare the surgical splints. Three months after surgery a second set of 3D images were obtained and used to obtain linear and angular measurements on screen. Using the Intraclass Correlation Coefficient these postoperative measurements were compared with the measurements obtained when predicting postoperative results. Results showed that a high degree of correlation in 15 of the 16 cases. A high coefficient of correlation was obtained in the majority of predictions of results in hard tissue, although less precise results were obtained in measurements in soft tissue in the labial area. The study shows that the software program used in the study is reliable for 3D planning and for the manufacture of surgical splints using CAD/CAM technology. Nevertheless, further progress in the development of technologies for the acquisition of 3D images, new versions of software programs, and further studies of objective data are necessary to increase precision in computerised 3D planning. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. The Department of Defense critical technologies plan for the Committees on Armed Services United States Congress

    NASA Astrophysics Data System (ADS)

    Young, Leo

    1990-03-01

    The second Annual Defense Critical Technologies Plan responds to the requirement that the Secretary of Defense submit to the Committees on Armed Services of the Senate and House of Representatives an annual plan for developing the technologies considered by the Secretary of Defense and the Secretary of Energy to be the technologies most critical to ensuring the long term qualitative superiority of the United States weapon systems. Twenty critical technologies are selected. The selection process is described, criteria for selection are set forth, and industrial and international assessments are summarized. The major portion of this report is contained in 20 sections in Appendix A, one section for each critical technology. Each section addresses the questions posed by Congress on funding, plans and milestones, industrial base and manufacturing issues, and the competitiveness of U.S. industry; it also provides an assessment of the positions of the Soviet Union, NATO, Japan and other industrialized countries in niche technologies within each critical technology.

  5. Computer-assisted innovations in craniofacial surgery.

    PubMed

    Rudman, Kelli; Hoekzema, Craig; Rhee, John

    2011-08-01

    Reconstructive surgery for complex craniofacial defects challenges even the most experienced surgeons. Preoperative reconstructive planning requires consideration of both functional and aesthetic properties of the mandible, orbit, and midface. Technological innovations allow for computer-assisted preoperative planning, computer-aided manufacturing of patient-specific implants (PSIs), and computer-assisted intraoperative navigation. Although many case reports discuss computer-assisted preoperative planning and creation of custom implants, a general overview of computer-assisted innovations is not readily available. This article reviews innovations in computer-assisted reconstructive surgery including anatomic considerations when using PSIs, technologies available for preoperative planning, work flow and process of obtaining a PSI, and implant materials available for PSIs. A case example follows illustrating the use of this technology in the reconstruction of an orbital-frontal-temporal defect with a PSI. Computer-assisted reconstruction of complex craniofacial defects provides the reconstructive surgeon with innovative options for challenging reconstructive cases. As technology advances, applications of computer-assisted reconstruction will continue to expand. © Thieme Medical Publishers.

  6. New Generator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Roy S.

    2015-02-17

    New generator technology project is driven by the need to be able to remotely deploy generator technology where it is needed, when it is needed. Both the military and aid programs that provide assistance after disasters could use the ability to deploy energy generation that fits the needs of the situation. Currently, pre-specified generators are deployed, sometime more than half way around the world to provide electricity. Through our Phase-I to Phase III DARPA grant, we will provide a mechanism where a 3d print station and raw materials could be shipped to a deployment site and remotely deployed personnel. Thesemore » remote personnel can collaborate with engineers at a home location where 3d print plans can be optimized for the remote purpose. The plans can then be sent electronically to the remote location for printing, much like NASA sent the plans for a socket wrench to the International Space Station for printing in . If multiple generators need to be deployed at different remote locations, within miles of each other the printer rig can be moved to print the generators where they are needed. 3d printing is growing in the field of manufacturing. 3d printing has matured to the point where many types of materials are now available for many types of manufacturing. Both magnetic and electrically conductive material materials have recently been developed which can now lead to 3d printing of engines and generators. Our project will provide a successful printer rig that can be remotely deployed, to print a generator design in the field as well as provide a process for deploying the printed generator as well. This Systems Engineering Management Plan(SEMP) will provide the planning required for a Phase I DARPA grant that may also include goals for Phase II and Phase II grants. The SEMP provides a proposed project schedule, references, system engineering processes, specialty engineering system deployment and product support sections. Each section will state how our company will provide the necessary services to make this project succeed.« less

  7. L2 Milestone 5433: Characterization of Dynamic Behavior of AM and Conventionally Processed Stainless Steel (316L and 304L)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George Thompson; Livescu, Veronica; Rigg, P. A.

    For additive manufacturing (AM) of metallic materials, the certification and qualification paradigm needs to evolve as there currently exists no broadly accepted “ASTM- or DIN-type” additive manufacturing certified process or AM-material produced specifications. Accordingly, design, manufacture, and thereafter implementation and insertion of AM materials to meet engineering applications requires detailed quantification of the constitutive (strength and damage) properties of these evolving materials, across the spectrum of metallic AM methods, in comparison/contrast to conventionally-manufactured metals and alloys. This report summarizes the 316L SS research results and presents initial results of the follow-on study of 304L SS. For the AM-316L SS investigation,more » cylindrical samples of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM) equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS was characterized in both the “as-built” Additively Manufactured state and following a heat-treatment designed to obtain full recrystallization to facilitate comparison with annealed wrought 316L SS. The dynamic shock-loading-induced damage evolution and failure response of all three 316L SS materials was quantified using flyer-plate impact driven spallation experiments at peak stresses of 4.5 and 6.35 GPa. The results of these studies are reported in detail in the first section of the report. Publication of the 316L SS results in an archival journal is planned. Following on from the 316L SS completed work, initial results on a study of AM 304L SS are in progress and presented herein. Preliminary results on the structure/dynamic spallation property behavior of AM-304L SS fabricated using both the directed-energy LENS and an EOS powder-bed AM techniques in comparison to wrought 304L SS is detailed in this Level 2 Milestone report.« less

  8. Early Market TRL/MRL Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronnebro, Ewa; Stetson, Ned

    he focus of this report is TRL/MRL analysis of hydrogen storage; it documents the methodology and results of an effort to identify hydrogen storage technologies’ technical and manufacturing readiness for early market motive and non-motive applications and to provide a path forward toward commercialization. Motive applications include materials handling equipment (MHE) and ground support equipment (GSE), such as forklifts, tow tractors, and specialty vehicles such as golf carts, lawn mowers and wheel chairs. Non-motive applications are portable, stationary or auxiliary power units (APUs) and include portable laptops, backup power, remote sensor power, and auxiliary power for recreational vehicles, hotels, hospitals,more » etc. Hydrogen storage technologies assessed include metal hydrides, chemical hydrides, sorbents, gaseous storage, and liquid storage. The assessments are based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies at varying levels of development. The manufacturing status could be established from eight risk elements: Technical Maturity, Design, Materials, Cost & Funding, Process Capability, Personnel, Facilities and Manufacturing Planning. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. This technology readiness assessment (TRA) report documents the process used to conduct the TRA/MRA (technology and manufacturing readiness assessment), reports the TRL and MRL for each assessed technology and provides recommendations based on the findings. To investigate the state of the art and needs to mature the technologies, PNNL prepared a questionnaire to assign TRL and MRL for each hydrogen storage technology. The questionnaire was sent to identified hydrogen storage technology developers and manufacturers who were asked to perform a self-assessment. We included both domestic and international organizations including U.S. national laboratories, U.S. companies, European companies and Japanese companies. PNNL collected the data and performed an analysis to deduce the level of maturity and to provide program recommendations.« less

  9. 42. Photograph of a line drawing. 'CROSS SECTION AND PLAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Photograph of a line drawing. 'CROSS SECTION AND PLAN LAYOUT OF PART I, SECTION 8, BUILDINGS NO. H-1 TO H-10 INCL., GRINDING, MANUFACTURING AREA, PLANT B AS OF 4-24-44.' From the U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (NashVille, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  10. 29. Photograph of a line drawing. 'CROSS SECTION AND PLAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photograph of a line drawing. 'CROSS SECTION AND PLAN LAYOUT OF PART I, SECTION 8, BUILDINGS NO. D-1 TO D-10 INCL., NITRATION, MANUFACTURING AREA, PLANT B AS OF 4-24-44.' From the U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  11. 26. Photograph of a line drawing. 'PLAN LAYOUT AND CROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photograph of a line drawing. 'PLAN LAYOUT AND CROSS SECTION OF PART I, SECTION 8, BUILDINGS NO. C-1, C-3, C-5, C-6, C-7, C-9, MIXING, MANUFACTURING AREA, PLANT B AS OF 4-24-44.' From the U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  12. 27. Photograph of a line drawing. 'PLAN LAYOUT AND CROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photograph of a line drawing. 'PLAN LAYOUT AND CROSS SECTION OF PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDINGS C-1, C-3, C-5, C-6, C-7, C-9 INCL., MIXING, MANUFACTURING AREA, PLANT 'B'.' From the U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  13. Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP)

    NASA Astrophysics Data System (ADS)

    Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.

    2018-03-01

    Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.

  14. Managing the Planned Cessation of a Global Supply Market: Lessons Learned From the Global Cessation of the Trivalent Oral Poliovirus Vaccine Market

    PubMed Central

    Ottosen, Ann; Ghazieh, Andisheh; Fournier-Caruana, Jacqueline; Ntow, Abraham Kofi; Gonzalez, Alejandro Ramirez

    2017-01-01

    Abstract The Polio Eradication and Endgame Strategic Plan 2013-2018 calls for the phased withdrawal of OPV, beginning with the globally synchronized cessation of tOPV by mid 2016. From a global vaccine supply management perspective, the strategy provided two key challenges; (1) the planned cessation of a high volume vaccine market; and (2) the uncertainty of demand leading and timeline as total vaccine requirements were contingent on epidemiology. The withdrawal of trivalent OPV provided a number of useful lessons that could be applied for the final OPV cessation. If carefully planned for and based on a close collaboration between programme partners and manufacturers, the cessation of a supply market can be undertaken with a successful outcome for both parties. As financial risks to manufacturers increase even further with OPV cessation, early engagement from the cessation planning phase and consideration of production lead times will be critical to ensure sufficient supply throughout to achieve programmatic objectives. As the GPEI will need to rely on residual stocks including with manufacturers through to the last campaign to achieve its objectives, the GPEI should consider to decide on and communicate a suitable mechanism for co-sharing of financial risks or other financial arrangement for the outer years. PMID:28838167

  15. Enhanced Damage-Resistant Optics for Spaceflight Laser Systems: Workshop findings and recommendations

    NASA Technical Reports Server (NTRS)

    Schulze, Norman; Cimolino, Marc; Guenther, Arthur; Mcminn, Ted; Rainer, Frank; Schmid, Ansgar; Seitel, Steven C.; Soileau, M. J.; Theon, John S.; Walz, William

    1991-01-01

    NASA has defined a program to address critical laser-induced damage issues peculiar to its remote sensing systems. The Langley Research Center (LaRC), with input from the Goddard Space Flight Center (GSFC), has developed a program plan focusing on the certification of optical materials for spaceflight applications and the development of techniques to determine the reliability of such materials under extended laser exposures. This plan involves cooperative efforts between NASA and optics manufacturers to quantify the performance of optical materials for NASA systems and to ensure NASA's continued application of the highest quality optics possible for enhanced system reliability. A review panel was organized to assess NASA's optical damage concerns and to evaluate the effectiveness of the LaRC proposed program plan. This panel consisted of experts in the areas of laser-induced damage, optical coating manufacture, and the design and development of laser systems for space. The panel was presented information on NASA's current and planned laser remote sensing programs, laser-induced damage problems already encountered in NASA systems, and the proposed program plan to address these issues. Additionally, technical presentations were made on the state of the art in damage mechanisms, optical materials testing, and issues of coating manufacture germane to laser damage.

  16. 46 CFR 54.01-18 - Plan approval.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Requirements § 54.01-18 Plan approval. (a) Manufacturers intending to fabricate pressure vessels, heat exchangers, evaporators, and similar appurtenances, covered by the regulations in this part shall submit...

  17. 46 CFR 54.01-18 - Plan approval.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Requirements § 54.01-18 Plan approval. (a) Manufacturers intending to fabricate pressure vessels, heat exchangers, evaporators, and similar appurtenances, covered by the regulations in this part shall submit...

  18. 46 CFR 54.01-18 - Plan approval.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Requirements § 54.01-18 Plan approval. (a) Manufacturers intending to fabricate pressure vessels, heat exchangers, evaporators, and similar appurtenances, covered by the regulations in this part shall submit...

  19. 46 CFR 54.01-18 - Plan approval.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Requirements § 54.01-18 Plan approval. (a) Manufacturers intending to fabricate pressure vessels, heat exchangers, evaporators, and similar appurtenances, covered by the regulations in this part shall submit...

  20. 46 CFR 54.01-18 - Plan approval.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Requirements § 54.01-18 Plan approval. (a) Manufacturers intending to fabricate pressure vessels, heat exchangers, evaporators, and similar appurtenances, covered by the regulations in this part shall submit...

  1. Scientific, statistical, practical, and regulatory considerations in design space development.

    PubMed

    Debevec, Veronika; Srčič, Stanko; Horvat, Matej

    2018-03-01

    The quality by design (QbD) paradigm guides the pharmaceutical industry towards improved understanding of products and processes, and at the same time facilitates a high degree of manufacturing and regulatory flexibility throughout the establishment of the design space. This review article presents scientific, statistical and regulatory considerations in design space development. All key development milestones, starting with planning, selection of factors, experimental execution, data analysis, model development and assessment, verification, and validation, and ending with design space submission, are presented and discussed. The focus is especially on frequently ignored topics, like management of factors and CQAs that will not be included in experimental design, evaluation of risk of failure on design space edges, or modeling scale-up strategy. Moreover, development of a design space that is independent of manufacturing scale is proposed as the preferred approach.

  2. Computational path planner for product assembly in complex environments

    NASA Astrophysics Data System (ADS)

    Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi

    2013-03-01

    Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.

  3. Applying industrial engineering practices to radiology.

    PubMed

    Rosen, Len

    2004-01-01

    Seven hospitals in Oregon and Washington have successfully adopted the Toyota Production System (TPS). Developed by Taiichi Ohno, TPS focuses on finding efficiencies and cost savings in manufacturing processes. A similar effort has occurred in Canada, where Toronto's Hospital for Sick Children has developed a database for its diagnostic imaging department built on the principles of TPS applied to patient encounters. Developed over the last 5 years, the database currently manages all interventional patient procedures for quality assurance, inventory, equipment, and labor. By applying industrial engineering methodology to manufacturing processes, it is possible to manage these constraints, eliminate the obstacles to achieving streamlined processes, and keep the cost of delivering products and services under control. Industrial engineering methodology has encouraged all stakeholders in manufacturing plants to become participants in dealing with constraints. It has empowered those on the shop floor as well as management to become partners in the change process. Using a manufacturing process model to organize patient procedures enables imaging department and imaging centers to generate reports that can help them understand utilization of labor, materials, equipment, and rooms. Administrators can determine the cost of individual procedures as well as the total and average cost of specific procedure types. When Toronto's Hospital for Sick Children first implemented industrial engineering methodology to medical imaging interventional radiology patient encounters, it focused on materials management. Early in the process, the return on investment became apparent as the department improved its management of more than 500,000 dollars of inventory. The calculated accumulated savings over 4 years for 10,000 interventional procedures alone amounted to more than 140,000 dollars. The medical imaging department in this hospital is only now beginning to apply what it has learned to other factors contributing to case cost. It has started to analyze its service contracts with equipment vendors. The department also is accumulating data to measure room, equipment, and labor utilization. The hospital now has a true picture of the real cost associated with each patient encounter in medical imaging. It can now begin to manage case costs, perform better capacity planning, create more effective relationships with its material suppliers, and optimize scheduling of patients and staff.

  4. Harbin 2020 R&D Personnel Demand Forecast Based on Manufacturing Green Innovation System

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; Duan, Yu Ting; Shen, Jun Yi; Zhang, Dong Ying

    2018-06-01

    Because of the constraints of energy conservation and the impact on the environment, the manufacturing industry has adopted sustainable development as the goal, and a green manufacturing innovation system based on environmental protection has emerged. In order to provide R&D personnel support to manufacturing enterprises in Harbin, and in order to promote the construction of a green innovation system for manufacturing and the realization of the 13th Five-Year Plan, this article used the grey forecasting model and the univariate linear regression prediction to predict the number of R&D personnel in Harbin in 2020 based on the number of R&D personnel in 2010-2016, and the predicted values were 24,952 and 31,172 respectively. The results show that if Harbin continues to use its original development model, it will not be able to achieve the established development goals by 2020 because of the shortage of R&D personnel. Therefore, it is necessary to increase investment in R&D personnel so as to achieve the 13th Five-Year Plan of Harbin City and protect the ecological green development goals.

  5. Development of Integrated Programs for Aerospace-vehicle Design (IPAD): Product manufacture interactions with the design process

    NASA Technical Reports Server (NTRS)

    Crowell, H. A.

    1979-01-01

    The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.

  6. 40 CFR 761.193 - Maintenance of monitoring records by persons who import, manufacture, process, distribute in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...

  7. 40 CFR 761.193 - Maintenance of monitoring records by persons who import, manufacture, process, distribute in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...

  8. 40 CFR 761.193 - Maintenance of monitoring records by persons who import, manufacture, process, distribute in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...

  9. 40 CFR 761.193 - Maintenance of monitoring records by persons who import, manufacture, process, distribute in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... persons who import, manufacture, process, distribute in commerce, or use chemicals containing... records by persons who import, manufacture, process, distribute in commerce, or use chemicals containing inadvertently generated PCBs. (a) Persons who import, manufacture, process, distribute in commerce, or use...

  10. Surrogate Plant Data Base : Volume 2. Appendix C : Facilities Planning Baseline Data

    DOT National Transportation Integrated Search

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  11. 24 CFR 3282.302 - State plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... consumer complaints concerning standards related problems in manufactured homes under subpart I of this... waived formal notification under subpart I. (ii) A manufacturer's handling of consumer complaints and... which: (1) Demonstrate how the designated State agency shall ensure effective handling of consumer...

  12. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    NASA Astrophysics Data System (ADS)

    Warlick, Kent M.

    While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity on top of an already deposited tow surface as evident by the fifty-six percent reduction in error tolerance profile achieved. Lastly, proof of concept articles with unique fiber paths and neat plastic elements incorporated were produced to demonstrate fiber placement along pre-planned load paths and the ability to achieve greater structural efficiency through the use of less material. The results show that high positional fidelity and high quality composites can be produced through the use of the tow shearing technique implemented in the developed mechanical system. The implementation of forced air cooling was critical in achieving fidelity and quality in transition regions. Alignment of continuous reinforcement with pre-planned load paths was demonstrated in the proof of concept article with varying fiber orientations within a layer. Combining fused deposition modeling of plastic with the placement of continuous reinforcement enabled a honeycomb composite to be produced with higher specific properties than traditional composites. Thus, the current system demonstrated a greater capability of achieving ultimate gains in structural performance than previously possible.

  13. 16 CFR 1420.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... such sales, and other safety related measures, and that is substantially similar to the plans described... intended exclusively for research and development purposes unless the vehicle is offered for sale. (b) ATV action plan means a written plan or letter of undertaking that describes actions the manufacturer or...

  14. Realization of planning design of mechanical manufacturing system by Petri net simulation model

    NASA Astrophysics Data System (ADS)

    Wu, Yanfang; Wan, Xin; Shi, Weixiang

    1991-09-01

    Planning design is to work out a more overall long-term plan. In order to guarantee a mechanical manufacturing system (MMS) designed to obtain maximum economical benefit, it is necessary to carry out a reasonable planning design for the system. First, some principles on planning design for MMS are introduced. Problems of production scheduling and their decision rules for computer simulation are presented. Realizable method of each production scheduling decision rule in Petri net model is discussed. Second, the solution of conflict rules for conflict problems during running Petri net is given. Third, based on the Petri net model of MMS which includes part flow and tool flow, according to the principle of minimum event time advance, a computer dynamic simulation of the Petri net model, that is, a computer dynamic simulation of MMS, is realized. Finally, the simulation program is applied to a simulation exmple, so the scheme of a planning design for MMS can be evaluated effectively.

  15. The Effects of a Curriculum Intervention on Arkansas Students' Interests in Manufacturing as Measured by the Kuder Career Interest Assessment

    ERIC Educational Resources Information Center

    Shemwell, Bridget Duncan

    2010-01-01

    The Kuder Career Planning System administrative database results for the past five years have shown a low interest in the manufacturing career cluster among Arkansas students. The low student interest and shortage of high-skilled labor in manufacturing prompted the Arkansas Department of Career Education to invest grant funds in a new…

  16. Manufacturing Affordability

    DTIC Science & Technology

    2011-10-01

    Effective planning early in and throughout program develop - ment is critical to enabling manufacturing affordability. There is no silver bullet and no...unexpected lessons. “Gee, this stove is hot” may be an unexpected lesson for the toddler but should not be so for the adult. All production programs...in program design efforts from day 1 of Engineer- ing and Manufacturing Development , you should be seriously worried. A program that includes the

  17. 40 CFR 62.4100 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Kansas Fluoride Emissions from Existing Phosphate Fertilizer Plants § 62.4100 Identification of plan... August 2, 1978, certifying that there are no phosphate fertilizer manufacturing facilities in the State...

  18. 40 CFR 62.4100 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Kansas Fluoride Emissions from Existing Phosphate Fertilizer Plants § 62.4100 Identification of plan... August 2, 1978, certifying that there are no phosphate fertilizer manufacturing facilities in the State...

  19. 40 CFR 62.4100 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Kansas Fluoride Emissions from Existing Phosphate Fertilizer Plants § 62.4100 Identification of plan... August 2, 1978, certifying that there are no phosphate fertilizer manufacturing facilities in the State...

  20. Decision making model for Foreign Object Debris/Damage (FOD) elimination in aeronautics using quantitative modeling approach

    NASA Astrophysics Data System (ADS)

    Lafon, Jose J.

    (FOD) Foreign Object Debris/Damage has been a costly issue for the commercial and military aircraft manufacturers at their production lines every day. FOD can put pilots, passengers and other crews' lives into high-risk. FOD refers to any type of foreign object, particle, debris or agent in the manufacturing environment, which could contaminate/damage the product or otherwise undermine quality standards. Nowadays, FOD is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access to FOD areas, restrictions of personal items entering designated areas, tool accountability, etc. All of the efforts mentioned before, have not shown a significant reduction in FOD occurrence in the manufacturing processes. This research presents a Decision Making Model approach based on a logistic regression predictive model that was previously made by other researchers. With a general idea of the FOD expected, elimination plans can be put in place and start eradicating the problem minimizing the cost and time spend on the prediction, detection and/or removal of FOD.

  1. Large resource development projects as markets for passive solar technologies. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roze-Benson, R V

    1980-12-01

    A basic premise of this study is that large resource development projects provide a major market opportunity for passive solar manufactured buildings. The primary objectives of the work are to document selected resource development projects and identify their potential housing needs and development schedules, to contact resource industry representatives and assess some of the processes and motivations behind their involvement in housing decisions, and to provide passive solar manufactured buildings producers with results of these steps as early initial market intelligence. The intent is to identify not only the industries, location of their planned projects, and their likely worker housingmore » needs, but also the individuals involved in making housing-related decisions. The 56 identified projects are located within 18 states and cover 11 types of resources. The report documents individual projects, provides protections of total worker-related housing needs, and presents overviews of resource development company involvement in the new construction market. In addition, the report profiles three organizations that expressed a strong interest in implementing the use of low-cost passive solar manufactured buildings in resource-development-related activities.« less

  2. Tapping the Value Potential of Extended Asset Services - Experiences from Finnish Companies

    NASA Astrophysics Data System (ADS)

    Kortelainen, Helena; Hanski, Jyri; Valkokari, Pasi; Ahonen, Toni

    2017-09-01

    Recent developments in information technology and business models enable a wide variety of new services for companies looking for growth in services. Currently, manufacturing companies have been actively developing and providing novel asset based services such as condition monitoring and remote control. However, there is still untapped potential in extending the service delivery to the long-term co-operative development of physical assets over the whole lifecycle. Close collaboration with the end-customer and other stakeholders is needed in order to understand the value generation options. In this paper, we assess some of the asset services manufacturing companies are currently developing. The descriptions of the asset services are based on the results of an industrial workshop in which the companies presented their service development plans. The service propositions are compared with the Total Cost of Ownership and the closed loop life cycle frameworks. Based on the comparison, gaps that indicate potential for extended asset service concepts are recognised. In conclusion, we argue that the manufacturing companies do not recognise the whole potential for asset based services and for optimizing the performance of the end customers' processes.

  3. The distributed agent-based approach in the e-manufacturing environment

    NASA Astrophysics Data System (ADS)

    Sękala, A.; Kost, G.; Dobrzańska-Danikiewicz, A.; Banaś, W.; Foit, K.

    2015-11-01

    The deficiency of a coherent flow of information from a production department causes unplanned downtime and failures of machines and their equipment, which in turn results in production planning process based on incorrect and out-of-date information. All of these factors entail, as the consequence, the additional difficulties associated with the process of decision-making. They concern, among other, the coordination of components of a distributed system and providing the access to the required information, thereby generating unnecessary costs. The use of agent technology significantly speeds up the flow of information within the virtual enterprise. This paper includes the proposal of a multi-agent approach for the integration of processes within the virtual enterprise concept. The presented concept was elaborated to investigate the possible solutions of the ways of transmission of information in the production system taking into account the self-organization of constituent components. Thus it implicated the linking of the concept of multi-agent system with the system of managing the production information, based on the idea of e-manufacturing. The paper presents resulting scheme that should be the base for elaborating an informatics model of the target virtual system. The computer system itself is intended to be developed next.

  4. Capability of Rolling Efficiency for 100M High-Speed Rails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Howard

    2014-03-22

    OG Technologies, Inc. (OGT), along with its academic and industrial partners, proposes this CORE project for the Capability of Rolling Efficiency for 100m high-speed rails. The goal is to establish the competitive advantage, and thus the sustainability of the US-based rail manufacturers by greatly enhanced efficiency through innovative in-line metrology technology, in-depth process knowledge, and advanced process control to overcome detrimental factors such as higher labor costs that are saddling the US manufacturing sector. This Phase I project was carried out by an industrial-academia team over 9 months. The R&D team successfully completed all technical tasks and accomplished the objectivesmore » for the Phase I. In addition to the technical efforts, the introductory information of this project as well as anticipated progress was disseminated to steel mills interested in the project. The Phase I project has established the technical and commercial basis for additional development. There are needs to further completing the in-line sensing capability, deepening the capability of metamodeling, and supporting the process monitoring and control. The R&D team plans to submit a Phase II proposal based on the findings.« less

  5. Simulating the Composite Propellant Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  6. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardin, A; Avery, S; Ding, X

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulatedmore » proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production of MGS Research, Inc.« less

  7. Concise Review: Mind the Gap: Challenges in Characterizing and Quantifying Cell- and Tissue-Based Therapies for Clinical Translation

    PubMed Central

    Rayment, Erin A; Williams, David J

    2010-01-01

    There are many challenges associated with characterizing and quantifying cells for use in cell- and tissue-based therapies. From a regulatory perspective, these advanced treatments must not only be safe and effective but also be made by high-quality manufacturing processes that allow for on-time delivery of viable products. Although sterility assays can be adapted from conventional bioprocessing, cell- and tissue-based therapies require more stringent safety assessments, especially in relation to use of animal products, immune reaction, and potential instability due to extended culture times. Furthermore, cell manufacturers who plan to use human embryonic stem cells in their therapies need to be particularly stringent in their final purification steps, due to the unrestricted growth potential of these cells. This review summarizes the current issues in characterization and quantification for cell- and tissue-based therapies, dividing these challenges into the regulatory themes of safety, potency, and manufacturing quality. It outlines current assays in use, as well as highlights the limits of many of these product release tests. Mode of action is discussed, with particular reference to in vitro surrogate assays that can be used to provide information to correlate with proposed in vivo patient efficacy. Importantly, this review highlights the requirement for basic research to improve current knowledge on the in vivo fate of these treatments; as well as an improved stakeholder negotiation process to identify the measurement requirements that will ensure the manufacture of the best possible cell- and tissue-based therapies within the shortest timeframe for the most patient benefit. PMID:20333747

  8. Silicon Valley's Processing Needs versus San Jose State University's Manufacturing Systems Processing Component: Implications for Industrial Technology

    ERIC Educational Resources Information Center

    Obi, Samuel C.

    2004-01-01

    Manufacturing professionals within universities tend to view manufacturing systems from a global perspective. This perspective tends to assume that manufacturing processes are employed equally in every manufacturing enterprise, irrespective of the geography and the needs of the people in those diverse regions. But in reality local and societal…

  9. Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China.

    PubMed

    Murray, Ashley; Horvath, Arpad; Nelson, Kara L

    2008-05-01

    Sewage sludge management poses environmental, economic, and political challenges for wastewater treatment plants and municipalities around the globe. To facilitate more informed and sustainable decision making, this study used life-cycle inventory (LCI) to expand upon previous process-based LCIs of sewage sludge treatmenttechnologies. Additionally, the study evaluated an array of productive end-use options for treated sewage sludge, such as fertilizer and as an input into construction materials, to determine how the sustainability of traditional manufacturing processes changes with sludge as a replacement for other raw inputs. The inclusion of the life-cycle of necessary inputs (such as lime) used in sludge treatment significantly impacts the sustainability profiles of different treatment and end-use schemes. Overall, anaerobic digestion is generally the optimal treatment technology whereas incineration, particularly if coal-fired, is the most environmentally and economically costly. With respect to sludge end use, offsets are greatest for the use of sludge as fertilizer, but all of the productive uses of sludge can improve the sustainability of conventional manufacturing practices. The results are intended to help inform and guide decisions about sludge handling for existing wastewater treatment plants and those that are still in the planning phase in cities around the world. Although additional factors must be considered when selecting a sludge treatment and end-use scheme, this study highlights how a systems approach to planning can contribute significantly to improving overall environmental sustainability.

  10. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be dispensed...

  11. The presence of Enterococcus, coliforms and E. coli in a commercial yeast manufacturing process.

    PubMed

    O'Brien, S S; Lindsay, D; von Holy, A

    2004-07-01

    This study evaluated a typical commercial yeast manufacturing process for bacterial contamination. Product line samples of a commercial yeast manufacturing process and the corresponding seed yeast manufacturing process were obtained upstream from the final compressed and dry yeast products. All samples were analysed before (non-PI) and after preliminary incubation (PI) at 37 degrees C for 24 h. The PI procedure was incorporated for amplification of bacterial counts below the lower detection limit. Enterococcus, coliform and Escherichia coli counts were quantified by standard pour-plate techniques using selective media. Presence at all stages and progressive increases in counts of Enterococcus, coliforms and E. coli during processing in the commercial manufacturing operation suggested that the primary source of contamination of both compressed and dry yeast with these bacteria was the seed yeast manufacturing process and that contamination was amplified throughout the commercial yeast manufacturing process. This was confirmed by surveys of the seed yeast manufacturing process which indicated that contamination of the seed yeast with Enterococcus, coliforms and E. coli occurred during scale up of seed yeast biomass destined as inoculum for the commercial fermentation.

  12. Extended-Release Naltrexone: A Qualitative Analysis of Barriers to Routine Use.

    PubMed

    Alanis-Hirsch, Kelly; Croff, Raina; Ford, James H; Johnson, Kim; Chalk, Mady; Schmidt, Laura; McCarty, Dennis

    2016-03-01

    The Medication Research Partnership (a national health plan and nine addiction treatment centers contracted with the health plan) sought to facilitate the adoption of pharmacotherapy for alcohol and opioid use disorders. Qualitative analysis of interviews with treatment center change leaders, individuals working for the manufacturer and its technical assistance contractor, and health plan managers extracted details on the processes used to order, store, bill for, and administer extended-release naltrexone. Qualitative themes were categorized using domains from the Consolidated Framework for Implementation Research (intervention characteristics, outer setting, inner setting, and provider characteristics). Characteristics of XR-NTX that inhibited use included the complexity of ordering and using the medication; cost was also a barrier. Outer setting barriers reflected patient needs and external health plan policies on formulary coverage, benefit management, and reimbursement. Program structures, the lack of physician linkages, a culture resistant to the use of medication, and unease with change were inner setting elements that limited use of XR-NTX. Patient stereotypes and a lack of knowledge about XR-NTX affected practitioner willingness to treat patients and prescribe XR-NTX. The Consolidated Framework for Implementation Research provided a useful lens to understand and interpret the processes affecting access to XR-NTX. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Role of strategic planning in engineering management

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1993-01-01

    Today, more than ever before, engineers are faced with uncertain and sometimes chaotic environments in which to function. The traditional roles of an engineer to design, develop, and streamline a manufacturing process for a product are still valued and relevant. However, the need for an engineer to participate in the process of identifying the product to be developed, the schedule and resources required, and the goal of satisfying the customer, has become paramount to achieving the success of the enterprise. When we include these endeavors in the functions of an engineer, management of 'engineering' takes on a new dimension. In this paper, the ramifications of the changing and increased functions of an engineer and consequent impacts on engineering management are explored. The basic principles which should be invoked in order to embrace the new environment for engineering management are outlined. The ultimate finding of this study is that the enterprise strategic plan should be developed in such a way as to allow engineering management to encompass the full spectrum of the responsibilities of engineers. A consequence of this is that the fundamental elements of the strategic process can best be implemented through a project team or group approach. The paper thus concentrates on three areas: evolving environment, strategic plan, and ways to achieve enterprise success.

  14. Manufacture and mechanical characterisation of high voltage insulation for superconducting busbars - (Part 1) Materials selection and development

    NASA Astrophysics Data System (ADS)

    Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.

    2017-04-01

    It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.

  15. 24 CFR 3282.410 - Implementation of plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... number of manufactured homes involved and the difficulty of completing the notifications. (2) The... of each notice, bulletin, and other written communication sent to retailers, distributors, or owners... manufactured homes involved, the immediacy of any risk, and the difficulty of completing the action. The...

  16. 50. HYDRAULIC SLIDE GATE HOISTS (MANUFACTURED BY JOSHUA HENDRY IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. HYDRAULIC SLIDE GATE HOISTS (MANUFACTURED BY JOSHUA HENDRY IRON WORKS, SAN FRANCISCO) FOR POWER PENSTOCKS IN MACHINERY CHAMBER ON GALLERY 4 (LOCATED AT C ON SITE PLAN). VIEW TO WEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  17. [(68)Ga-labeled peptides for clinical trials - production according to the German Drug Act: the Göttingen experience].

    PubMed

    Meller, Birgit; Angerstein, C; Liersch, T; Ghadimi, M; Sahlmann, C-O; Meller, J

    2012-01-01

    The AMG implies far-reaching implications for the synthesis of new radiopharmaceuticals for clinical trials. As a part of the DFG-funded Clinical Research Group (KFO 179) a project designated "Immuno-PET for assessment of early response to radiochemotherapy of advanced rectal cancer" was initiated. This trial is focused on a trivalent bispecific humanized monoclonal antibody, and a 68Ga-labeled peptide. Following the new regulatory framework we established a GMP-compliant cleanroom laboratory and applied for a manufacturing permission. During the project constructural, personnel and organizational conditions for a successful application were established, including a quality management system. A GMP-conform cleanroom laboratory class C was constructed, equipped with a two-chamber lock. The actual manufacturing is performed in a closed system with subsequent sterile filtration. The manufacturing processes have been automatised and validated as well as the necessary quality controls. The manufacturing permission was granted after an official inspection. The new German Drug Act is considered as a break in the production practice of nuclear medicine. The early involvement and communication with the authorities avoids time-consuming and costly planning errors. It is much to be hoped that the new legal situation in Germany will not cause serious impairments in the realization of clinical trials in German nuclear medicine.

  18. Design and Manufacturing of Tow-Steered Composite Shells Using Fiber Placement

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Tatting, Brian F.; Smith, Brett H.; Stevens, Randy S.; Occhipiniti, Gina P.; Swift, Jonathan B.; Achary, David C.; Thornburgh, Robert P.

    2009-01-01

    Advanced composite shells that may offer the potential to improve the structural performance of future aircraft fuselage structures were developed under this joint NASA-industry collaborative effort. Two cylindrical shells with tailored, tow-steered layups and continuously varying fiber angle orientations were designed and built at the National Center for Advanced Manufacturing - Louisiana Partnership. The shells were fabricated from unidirectional IM7/8552 graphite-epoxy pre-preg slit tape material fiber-placed on a constant-diameter mandrel. Each shell had the same nominal 8-ply [plus or minus 45/plus or minus Theta]s layup, where the nominal fiber angle in the tow-steered plies varied continuously from 10 degrees along the crown to 45 degrees on each side, then back to 10 degrees on the keel. One shell was fabricated with all 24 tows placed during each pass of the fiber placement machine, resulting in many tow overlaps on the shell surface. The fiber placement machine's individual tow cut/restart capability was also used to manufacture a second shell with tow drops and a more uniform laminate thickness. This paper presents an overview of the detailed design and manufacturing processes for these shells, and discusses issues encountered during their fabrication and post-cure evaluation. Future plans for structural testing and analyses of the shells are also discussed.

  19. 46 CFR 52.01-5 - Plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Plans. 52.01-5 Section 52.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-5 Plans. (a) Manufacturers intending to fabricate boilers to be installed on vessels shall submit detailed plans as required by subpart 50.20 of...

  20. 46 CFR 52.01-5 - Plans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Plans. 52.01-5 Section 52.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-5 Plans. (a) Manufacturers intending to fabricate boilers to be installed on vessels shall submit detailed plans as required by subpart 50.20 of...

  1. 46 CFR 52.01-5 - Plans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Plans. 52.01-5 Section 52.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-5 Plans. (a) Manufacturers intending to fabricate boilers to be installed on vessels shall submit detailed plans as required by subpart 50.20 of...

  2. 46 CFR 52.01-5 - Plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Plans. 52.01-5 Section 52.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-5 Plans. (a) Manufacturers intending to fabricate boilers to be installed on vessels shall submit detailed plans as required by subpart 50.20 of...

  3. 75 FR 24404 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing... approving into the Indiana State Implementation Plan (SIP) amendments to Indiana's automobile refinishing... (VOC) automobile refinishing rules to all persons in Indiana who sell or manufacture automobile...

  4. 19 CFR 115.29 - Plan review.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL CUSTOMS CONVENTIONS Procedures for Approval of Containers by Design Type § 115.29 Plan review. (a) A manufacturer or owner who wants containers to be approved by design type must submit the plans and specifications for the container to the...

  5. 19 CFR 115.29 - Plan review.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL CUSTOMS CONVENTIONS Procedures for Approval of Containers by Design Type § 115.29 Plan review. (a) A manufacturer or owner who wants containers to be approved by design type must submit the plans and specifications for the container to the...

  6. 19 CFR 115.29 - Plan review.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL CUSTOMS CONVENTIONS Procedures for Approval of Containers by Design Type § 115.29 Plan review. (a) A manufacturer or owner who wants containers to be approved by design type must submit the plans and specifications for the container to the...

  7. 19 CFR 115.29 - Plan review.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL CUSTOMS CONVENTIONS Procedures for Approval of Containers by Design Type § 115.29 Plan review. (a) A manufacturer or owner who wants containers to be approved by design type must submit the plans and specifications for the container to the...

  8. 19 CFR 115.29 - Plan review.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL CUSTOMS CONVENTIONS Procedures for Approval of Containers by Design Type § 115.29 Plan review. (a) A manufacturer or owner who wants containers to be approved by design type must submit the plans and specifications for the container to the...

  9. 76 FR 53369 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adhesives and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Adhesives and Sealants Rule AGENCY... Implementation Plan (SIP) revision submitted by the Commonwealth of Pennsylvania. The SIP revision pertains to... volatile organic compounds (VOC) from the manufacture, sale, use, or application of adhesives, sealants...

  10. 76 FR 8362 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ..., Glass Manufacturing and Secondary Nonferrous Metals Processing Area Sources (Renewal) AGENCY... for Clay Ceramics Manufacturing, Glass Manufacturing and Secondary Nonferrous Metals Processing Area..., glass manufacturing, and secondary nonferrous metals processing area sources. Estimated Number of...

  11. Space Solar Power Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  12. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--chapter 3: Pig islet product manufacturing and release testing.

    PubMed

    Korbutt, Gregory S

    2009-01-01

    This chapter provides recommendations on pig islet product manufacturing and release testing to scientific and corporate programs interested in future clinical studies using xenogeneic porcine pancreatic islet cell products for the treatment of type 1 diabetes.To facilitate control of manufacturing as well as reproducibility and consistency of product lots, the manufacturing process, and the manufacturing facility must be in compliance with current Good Manufacturing Practices regulations. Data must be provided to demonstrate that islet products can be consistently prepared that would meet basic lot release requirements. To facilitate product safety: (i) materials used in the manufacturing process, including the pig pancreas, must be free of adventitious agents; (ii) islets must be manufactured using aseptic processing; and (iii) final product must undergo tests for sterility, mycoplasma (if cultured) and endotoxin. Safety specifications for pig islet product release include a negative Gram stain and an endotoxin content of <5.0 EU/kg recipient body weight. Product post-release assessments must include sterility cultures on the final product. Because results for sterility are available only retrospectively, a plan of action must be in place for patient notification and treatment in case the sterility culture results are positive for contamination. Product characterization information must address important aspects of lot release testing such as identity/purity (cell composition), quantity [islet equivalents (IE), cell number] and potency (insulin secretory capacity, oxygen consumption rate corrected for DNA or transplant bioassay in immunoincompetent diabetic mice). This information is also critical to demonstrate manufacturing control and product consistency across multiple islet preparations (lots). Providing islet products containing an islet mass sufficient to restore euglycemia in trial participants (>or=10 000 IE/kg) requires pooling of islets from multiple donor pancreata (two to four from adult donors and seven to 10 from neonatal donors). Demonstration of product consistency across products from individual pancreata would warrant release testing to be performed on a sample of the pooled product. As product development and clinical trials advance, the increasingly more detailed specifications of potency assays on adult porcine islet products are expected to be predictive of post-transplant glycemic control. The immaturity of fetal and neonatal porcine islet tissue precludes the use of in vitro insulin secretion as a potency test as part of lot release testing; another measure of potency appropriate to fetal and neonatal cells will need to be developed for product release testing and evaluation of aliquots of these products in mouse transplant bioassays should be performed to provide meaningful post-release information.

  13. A Process Management System for Networked Manufacturing

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  14. USMC Acquisition Strategies For Cots Mobile Devices in the Tactical Environment

    DTIC Science & Technology

    2017-09-01

    forms. Planned obsolescence is a designer and/or manufacturer approach that calls for product designs with artificially reduced life cycles (Seland...rapidly adopted by almost all cell phone manufacturers in short periods of time. Quick development of new products is deemed economical, and it is...Generally, a technology or product is considered obsolete when it is no longer being manufactured (Ward & Sohns, 2011). This decision to cease

  15. Pilot production & commercialization of LAPPD ™

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minot, Michael J.; Bennis, Daniel C.; Bond, Justin L.

    We present a progress update on plans to establish pilot production and commercialization of Large Area (400 cm2) Picosecond Photodetector (LAPPD™). Steps being taken to commercialize this MCP and LAPPD™ technology and begin tile pilot production are presented including (1) the manufacture of 203 mm×203 mm borosilicate glass capillary arrays (GCAs), (2) optimization of MCP performance and creation of an ALD coating facility to manufacture MCPs and (3) design, construction and commissioning of UHV tile integration and sealing facility to produce LAPPDs. Taken together these plans provide a “pathway toward commercialization”.

  16. Achieving continuous manufacturing for final dosage formation: challenges and how to meet them. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L

    2015-03-01

    We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including development of small-scale equipment and processes. Develop ways to invest internally in continuous manufacturing. How best to do this will depend on the specifics of a given organization, in particular the current development projects. Upper managers will need to energize their process developers to incorporate continuous manufacturing in at least part of their processes to gain experience and demonstrate directly the benefits. Training of continuous manufacturing technologies, organizational approaches, and regulatory approaches is a key area that industrial leaders should pursue together. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. 78 FR 12102 - Manufacturer of Controlled Substances; Notice of Application; Mallinckrodt, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... plans to manufacture the listed controlled substances for internal use and for sale to other companies... Enforcement Administration, Office of Diversion Control, Federal Register Representative (ODL), 8701...: February 8, 2013. Joseph T. Rannazzisi, Deputy Assistant Administrator, Office of Diversion Control, Drug...

  18. 40 CFR 85.1803 - Remedial Plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is... the total parts requirement of each person who is to perform the repair under the remedial plan to be...: (i) The recall campaign number; and (ii) A code designating the campaign facility at which the repair...

  19. Strategic Planning for Education and Training: A Report from the Field.

    ERIC Educational Resources Information Center

    Lund, Teri B.; Barksdale, Susan B.

    1995-01-01

    Reports on the state of strategic planning for education and training in service industries, manufacturing, retailing, and entertainment organizations. A questionnaire surveyed 200 training managers in organizations of over 5,000 employees headquartered primarily in the Pacific Northwest and revealed that strategic planning is becoming a priority.…

  20. Managing the Planned Cessation of a Global Supply Market: Lessons Learned From the Global Cessation of the Trivalent Oral Poliovirus Vaccine Market.

    PubMed

    Rubin, Jennifer; Ottosen, Ann; Ghazieh, Andisheh; Fournier-Caruana, Jacqueline; Ntow, Abraham Kofi; Gonzalez, Alejandro Ramirez

    2017-07-01

    The Polio Eradication and Endgame Strategic Plan 2013-2018 calls for the phased withdrawal of OPV, beginning with the globally synchronized cessation of tOPV by mid 2016. From a global vaccine supply management perspective, the strategy provided two key challenges; (1) the planned cessation of a high volume vaccine market; and (2) the uncertainty of demand leading and timeline as total vaccine requirements were contingent on epidemiology. The withdrawal of trivalent OPV provided a number of useful lessons that could be applied for the final OPV cessation. If carefully planned for and based on a close collaboration between programme partners and manufacturers, the cessation of a supply market can be undertaken with a successful outcome for both parties. As financial risks to manufacturers increase even further with OPV cessation, early engagement from the cessation planning phase and consideration of production lead times will be critical to ensure sufficient supply throughout to achieve programmatic objectives. As the GPEI will need to rely on residual stocks including with manufacturers through to the last campaign to achieve its objectives, the GPEI should consider to decide on and communicate a suitable mechanism for co-sharing of financial risks or other financial arrangement for the outer years. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  1. Harnessing the Potential of Additive Manufacturing

    DTIC Science & Technology

    2016-12-01

    manufacturing age, which is dominated by standards for materials, processes and process control. Conventional manufacturing is based upon a design that is...documented either in a drawing or a computer-aided design (CAD) file. The manufacturing team then develops a docu- mented public or private process for...31 Defense AT&L: November-December 2016 Harnessing the Potential of Additive Manufacturing Bill Decker Decker is director of Technology

  2. Materials and Process Activities for NASA's Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Polis, Daniel L.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.

  3. Make or buy analysis model based on tolerance allocation to minimize manufacturing cost and fuzzy quality loss

    NASA Astrophysics Data System (ADS)

    Rosyidi, C. N.; Puspitoingrum, W.; Jauhari, W. A.; Suhardi, B.; Hamada, K.

    2016-02-01

    The specification of tolerances has a significant impact on the quality of product and final production cost. The company should carefully pay attention to the component or product tolerance so they can produce a good quality product at the lowest cost. Tolerance allocation has been widely used to solve problem in selecting particular process or supplier. But before merely getting into the selection process, the company must first make a plan to analyse whether the component must be made in house (make), to be purchased from a supplier (buy), or used the combination of both. This paper discusses an optimization model of process and supplier selection in order to minimize the manufacturing costs and the fuzzy quality loss. This model can also be used to determine the allocation of components to the selected processes or suppliers. Tolerance, process capability and production capacity are three important constraints that affect the decision. Fuzzy quality loss function is used in this paper to describe the semantic of the quality, in which the product quality level is divided into several grades. The implementation of the proposed model has been demonstrated by solving a numerical example problem that used a simple assembly product which consists of three components. The metaheuristic approach were implemented to OptQuest software from Oracle Crystal Ball in order to obtain the optimal solution of the numerical example.

  4. 76 FR 40052 - Regulatory Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Current Good Manufacturing 0910-AG10 Practice in Manufacturing, Processing, Packing or Holding Animal Food... in Manufacturing, Processing, Packing or Holding Animal Food Legal Authority: 21 U.S.C. 342; 21 U.S.C... constitute on farm manufacturing or processing of food that is not grown, raised, or consumed on a farm or...

  5. Photon Doppler Velocimeter to Measure Entrained Additive Manufactured Bulk Metal Powders in Hot Subsonic and Supersonic Oxygen Gas

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan

    2016-01-01

    Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.

  6. Leanergy(TM): how lean manufacturing can improve energy efficiency.

    PubMed

    Riche, Jean-Pierre

    2013-01-01

    Energy efficiency has become a competitive issue for industrial companies. The evolution of energy prices and regulation will make this issue even more important in the future. For several years, the energy-intensive chemical industry has been implementing corrective actions. Helped by the absorption of base load energy consumption by larger production volumes, specific energy consumption (KWh per production unit) has been significantly reduced in recent years. However, most plants have reached the end of their first action plan based on improving the utilities performance. The Leanergy(TM) method developed by the consultancy company Okavango-energy, is a structured approach based on lean manufacturing which widens the scope of saving sources to process and operations. Starting from the analysis of actual production requirements, Okavango is able to adjust consumption to minimum requirements and so remove any energy consumption that does not contribute to the added value creation.

  7. Materials for advanced turbine engines. Volume 1: Advanced blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.; Fairbanks, N. P.

    1982-01-01

    Project 3, the subject of this technical report, was structured toward the successful engine demonstration of an improved-efficiency, long-life, tip-seal system for turbine blades. The advanced tip-seal system was designed to maintain close operating clearances between turbine blade tips and turbine shrouds and, at the same time, be resistant to environmental effects including high-temperature oxidation, hot corrosion, and thermal cycling. The turbine blade tip comprised an environmentally resistant, activated-diffussion-bonded, monocrystal superalloy combined with a thin layer of aluminium oxide abrasive particles entrapped in an electroplated NiCr matrix. The project established the tip design and joint location, characterized the single-crystal tip alloy and abrasive tip treatment, and established the manufacturing and quality-control plans required to fully process the blades. A total of 171 blades were fully manufactured, and 100 were endurance and performance engine-tested.

  8. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.

  9. Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique

    NASA Astrophysics Data System (ADS)

    Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka

    2018-06-01

    Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.

  10. Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique

    NASA Astrophysics Data System (ADS)

    Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka

    2016-06-01

    Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.

  11. 77 FR 5846 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... following basic classes of controlled substances: Drug Schedule Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import narcotic raw materials for manufacturing and further distribution... substances that are manufactured from opium, raw, and poppy straw concentrate. Comments and requests for...

  12. 77 FR 16940 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ...: Fiberglass Boat Manufacturing Materials, Section 218.890, Subpart JJ: Miscellaneous Industrial Adhesives...: Fiberglass Boat Manufacturing Materials, Sections 218.891, 218.892, 218.894, Subpart JJ: Miscellaneous..., Section 219.890, Subpart JJ: Miscellaneous Industrial Adhesives, Section 219.900; effective September 14...

  13. Technology management: case study of an integrated health system.

    PubMed

    Dahl, D H; McFarlan, T K

    1994-12-01

    Technology management has assumed a role of vital importance in today's health care environment. Capital reserves and operating income have been stretched by pervasive and expensive technologies, while overall reimbursement has been reduced. It is imperative for hospitals to develop and consistently use technology management processes that begin prior to a technology's introduction in the hospital and continue throughout its life cycle. At Samaritan Health System (SHS), an integrated health care delivery system based in Phoenix, technology management provides tools to improve decision making and assist in the system's integration strategy as well as control expenses. SHS uses a systemwide technology-specific plan to guide acquisition and/or funding decisions. This plan describes how particular technologies can help achieve SHS' organizational goals such as promoting system integration and/or improving patient outcomes while providing good economic value. After technologies are targeted in this systemwide plan they are prioritized using a two-stage capital prioritization process. The first stage of the capital prioritization process considers the quantitative and qualitative factors critical for equitable capital distribution across the system. The second stage develops a sense of ownership among the parties that affect and are affected by the allocation at a facility level. This process promotes an efficient, effective, equitable, and defensible approach to resource allocation and technology decision making. Minimizing equipment maintenance expenditures is also an integral part of technology management at SHS. The keys to reducing maintenance expenditures are having a process in place that supports a routine fiscal evaluation of maintenance coverage options and ensuring that manufacturers are obligated to provide critical maintenance resources at the time of equipment purchase. Maintenance service options under consideration in this report include full-service contracts with the manufacturer, insurance coverage, time and materials, and independent service vendors/in-house support. Careful consideration of all the ramifications of each option is warranted because there are substantial cost differences among these methods. At SHS, technology management efforts resulted in equipment purchases and maintenance negotiations representing savings of more than $1.5 million in a single year. SHS undertakes an intensive review of purchases and maintenance expenditures, using the techniques described in this report, with the objective of reducing expenses by 10% per year. This report describes the technology management methods that SHS uses to achieve these results.

  14. Development of intelligent robots - Achievements and issues

    NASA Astrophysics Data System (ADS)

    Nitzan, D.

    1985-03-01

    A flexible, intelligent robot is regarded as a general purpose machine system that may include effectors, sensors, computers, and auxiliary equipment and, like a human, can perform a variety of tasks under unpredictable conditions. Development of intelligent robots is essential for increasing the growth rate of today's robot population in industry and elsewhere. Robotics research and development topics include manipulation, end effectors, mobility, sensing (noncontact and contact), adaptive control, robot programming languages, and manufacturing process planning. Past achievements and current issues related to each of these topics are described briefly.

  15. Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade design report

    NASA Technical Reports Server (NTRS)

    Ravenhall, R.; Salemme, C. T.

    1977-01-01

    A total of 38 quiet clean short haul experimental engine under the wing composite fan blades were manufactured for various component tests, process and tooling, checkout, and use in the QCSEE UTW engine. The component tests included frequency characterization, strain distribution, bench fatigue, platform static load, whirligig high cycle fatigue, whirligig low cycle fatigue, whirligig strain distribution, and whirligig over-speed. All tests were successfully completed. All blades planned for use in the engine were subjected to and passed a whirligig proof spin test.

  16. Additively Manufactured Main Fuel Valve Housing

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    Selective Laser Melting (SLM) was utilized to fabricate a liquid hydrogen valve housing typical of those found in rocket engines and main propulsion systems. The SLM process allowed for a valve geometry that would be difficult, if not impossible to fabricate by traditional means. Several valve bodies were built by different SLM suppliers and assembled with valve internals. The assemblies were then tested with liquid nitrogen and operated as desired. One unit was also burst tested and sectioned for materials analysis. The design, test results, and planned testing are presented herein.

  17. Engineering design: A powerful influence on the business success on manufacturing industry

    NASA Astrophysics Data System (ADS)

    Coplin, John F.

    1990-08-01

    Engineering design, one of the most powerful forces in producing a package which matches market need, is discussed. It is essentially a detailed planning process backed by analysis and demonstration. The need for innovation to achieve competitive edge and profitability is considered. Innovation contains risk which must be controlled before substantial investment is made. The high rate of change of technology gives rise to the need for good training and retraining. Benefits which offsets costs at the time of occurring that cost are reached.

  18. Imaging, Virtual Planning, Design, and Production of Patient-Specific Implants and Clinical Validation in Craniomaxillofacial Surgery

    PubMed Central

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-01-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes®, Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and mesh to replace resected bone that can function as a carrier for bone or bone substitutes were designed and tested during reconstructive maxillofacial surgery. A clinically fit, well within the requirements for what is needed and obtained using traditional free hand bending of commercially available devices, or even higher precision, was demonstrated in ablative surgery in four patients. PMID:23997858

  19. Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery.

    PubMed

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-09-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes(®), Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and mesh to replace resected bone that can function as a carrier for bone or bone substitutes were designed and tested during reconstructive maxillofacial surgery. A clinically fit, well within the requirements for what is needed and obtained using traditional free hand bending of commercially available devices, or even higher precision, was demonstrated in ablative surgery in four patients.

  20. 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Beaman, Joseph

    2015-03-01

    Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.

  1. Defense Additive Manufacturing: DOD Needs to Systematically Track Department-wide 3D Printing Efforts

    DTIC Science & Technology

    2015-10-01

    Clip Additively Manufactured • The Navy installed a 3D printer aboard the USS Essex to demonstrate the ability to additively develop and produce...desired result and vision to have the capability on the fleet. These officials stated that the Navy plans to install 3D printers on two additional...DEFENSE ADDITIVE MANUFACTURING DOD Needs to Systematically Track Department-wide 3D Printing Efforts Report to

  2. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 3, part 1: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    Olsen, C. D.

    1972-01-01

    Planning documentation is presented covering the specific areas of project engineering and development, management, facilities, manufacturing, logistic support maintenance, and test and product assurance.

  3. 40 CFR 63.149 - Control requirements for certain liquid streams in open systems within a chemical manufacturing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... streams in open systems within a chemical manufacturing process unit. 63.149 Section 63.149 Protection of... open systems within a chemical manufacturing process unit. (a) The owner or operator shall comply with... Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage...

  4. 19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...

  5. 19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...

  6. 19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...

  7. 19 CFR Appendix A to Part 191 - General Manufacturing Drawback Rulings

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... drawback; and 9. Description of the manufacturing or production process, unless specifically described in...) and 55207(1) (see § 191.9 of this part). D. Process Of Manufacture Or Production The imported... it is first separated in the manufacturing process. 2. Appearing-in method The appearing in basis may...

  8. Boosting Manufacturing through Modular Chemical Process Intensification

    ScienceCinema

    None

    2018-06-12

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  9. Boosting Manufacturing through Modular Chemical Process Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-12-09

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  10. Inventory model with two rates of production for deteriorating items with permissible delay in payments

    NASA Astrophysics Data System (ADS)

    Roy, Ajanta; Samanta, G. P.

    2011-08-01

    Goyal (1985) ['Economic Order Quantity Under Conditions of Permissible Delay in Payments', Journal of Operational research Society, 36, 35-38] assumed that unit selling price and unit purchasing price are equal. But in real-life the scenario is different. The purpose of this article is to reflect the real life problem by allowing unit selling price and purchasing price to be unequal. Our model is a continuous production control inventory model for deteriorating items in which two different rates of production are available. The results are illustrated with the help of a numerical example. We discuss the sensitivity of the solution together with the changes of the values of the parameters associated with the model. Our model may be applicable in many manufacturing planning situations where management practices for deterioration are stringent; e.g. the two-production rate will be more profitable than the one-production rate in the manufacture of cold, asthma and allergy medicine. Our proposed model might be applicable to develop a prototype advance planning system for those manufacturers to integrate the management science techniques into commercial planning.

  11. 46 CFR 160.013-1 - Applicable specification and plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....013-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND... the issue in effect on the date hatchets are manufactured, forms a part of this subpart: (1) Federal Specification: GGG-A-926—Axes. (b) Plan. The following plan, of the issue in effect on the date hatchets are...

  12. 21 CFR 822.25 - What are my responsibilities after my postmarket surveillance plan has been approved?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... surveillance plan has been approved? 822.25 Section 822.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES POSTMARKET SURVEILLANCE Responsibilities of Manufacturers § 822.25 What are my responsibilities after my postmarket surveillance plan has been...

  13. 21 CFR 822.25 - What are my responsibilities after my postmarket surveillance plan has been approved?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... surveillance plan has been approved? 822.25 Section 822.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES POSTMARKET SURVEILLANCE Responsibilities of Manufacturers § 822.25 What are my responsibilities after my postmarket surveillance plan has been...

  14. 21 CFR 822.25 - What are my responsibilities after my postmarket surveillance plan has been approved?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... surveillance plan has been approved? 822.25 Section 822.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES POSTMARKET SURVEILLANCE Responsibilities of Manufacturers § 822.25 What are my responsibilities after my postmarket surveillance plan has been...

  15. Adverse Events Involving Radiation Oncology Medical Devices: Comprehensive Analysis of US Food and Drug Administration Data, 1991 to 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Michael J.; Department of Radiation Oncology, University of California Irvine School of Medicine, Irvine, California; Marshall, Deborah C.

    Purpose: Radiation oncology relies on rapidly evolving technology and highly complex processes. The US Food and Drug Administration collects reports of adverse events related to medical devices. We sought to characterize all events involving radiation oncology devices (RODs) from the US Food and Drug Administration's postmarket surveillance Manufacturer and User Facility Device Experience (MAUDE) database, comparing these with non–radiation oncology devices. Methods and Materials: MAUDE data on RODs from 1991 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems) and 5 device problem categories (software, mechanical, electrical, user error, and dose delivery impact).more » Outcomes included whether the device was evaluated by the manufacturer, adverse event type, remedial action, problem code, device age, and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by the Pearson χ{sup 2} test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 4234 ROD and 4,985,698 other device adverse event reports. Adverse event reports increased over time, and events involving RODs peaked in 2011. Most ROD reports involved external beam therapy (50.8%), followed by brachytherapy (24.9%) and treatment planning systems (21.6%). The top problem types were software (30.4%), mechanical (20.9%), and user error (20.4%). RODs differed significantly from other devices in each outcome (P<.001). RODs were more likely to be evaluated by the manufacturer after an event (46.9% vs 33.0%) but less likely to be recalled (10.5% vs 37.9%) (P<.001). Device age and time since 510(k) approval were shorter among RODs (P<.001). Conclusions: Compared with other devices, RODs may experience adverse events sooner after manufacture and market approval. Close postmarket surveillance, improved software design, and manufacturer–user training may help mitigate these events.« less

  16. Technology reinvestment project manufacturing education and training: Engineering education in manufacturing across the curriculum. Annual report, June 24, 1994--June 23, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulholland, G.; Powers, T.L.

    1995-09-29

    The goal of this project is to impart to engineering and business students, and to students from industry, the broad knowledge and practical skills to immediately help a manufacturing company become more competitive in any global economy while still providing a high quality work force for the 21st century. An integration of innovative, cross-disciplinary, manufacturing engineering and business education provided hand in hand with industry, will enable students, especially minority students, to have a real impact on manufacturing in this depressed region. The program was shortened and simplified to meet a budget of $2,000,000 versus the $3,000,000 in the-Proposal. Allmore » major objectives in the revised plan for the first year have been achieved with expenditures somewhat under the revised budget. Curriculum development with the advice and assistance of industry is ahead of schedule. Graduate minor degree curricula have been defined in Engineering and in Business. A summer intern project and guest lecture series have been well supported by industry. Facilities including advanced software have been brought on line. Cash and in-kind matching funds from industry, NMSU and the State total over $6m; this is 920% of the TRP funds expended. Cost sharing of cash is ahead of plan, of in-kind is slightly behind. The first group of 21 students have started one semester sooner than planned. The group is 25% minority and 45% female. Industry requests to interview graduates are coming in anticipation of availability in the spring of 1996.« less

  17. 78 FR 32459 - Manufacturer of Controlled Substances; Notice of Registration; Mallinckrodt, LLC.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... plans to manufacture the listed controlled substances for internal use and for sale to other companies... ensure that the company's registration is consistent with the public interest. The investigation has included inspection and testing of the company's physical security systems, verification of the company's...

  18. 40 CFR 52.1783 - Original identification of plan section.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Residual Oil Burners 15 NCAC 2D.0902, Applicability (Volatile Organic Compounds) 15 NCAC 2H.0603... or Residual Oil Burners 15 NCAC 2D.0939, Determination of Volatile Organic Compound Emissions (B) The... 2D.0943, Synthetic Organic Chemical and Polymer Manufacturing 15 NCAC 2D.0944, Manufacturing of...

  19. 75 FR 65658 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The company plans to import narcotic raw... a manufacturer of several controlled substances that are manufactured from raw opium, poppy straw... narcotic raw material are not appropriate. As noted in a previous notice published in the Federal Register...

  20. 24 CFR 3280.109 - Room requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Planning Considerations § 3280.109 Room requirements. (a) Every manufactured home shall have at least one living area with not less than 150 sq. ft. of gross floor area. (b) Rooms designed for sleeping purposes shall have a minimum gross square foot floor...

  1. 76 FR 17967 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... basic classes of controlled substances: Drug Schedule Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The company plans to import narcotic raw materials for manufacturing and further distribution... substances that are manufactured from raw opium, poppy straw, and concentrate of poppy straw. No comments or...

  2. 75 FR 32506 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... of controlled substances listed in schedule II: Drug Schedule Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The company plans to import narcotic raw materials for manufacturing and further... substances that are manufactured from raw opium, poppy straw, and concentrate of poppy straw. No comments or...

  3. 27 CFR 555.109 - Identification of explosive materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (5) If licensed manufacturers or licensed importers desire to use a coding system and omit printed... this section, they must file with ATF a letterhead application displaying the coding that they plan to... proposed coding can be used. (d) Exceptions—(1) Blasting caps. Licensed manufacturers or licensed importers...

  4. 77 FR 488 - Control of Emissions From New Highway Vehicles and Engines; Approval of New Scheduled Maintenance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... and engine manufacturers began planning to meet those requirements by optimizing engine designs for low emissions and adding high-efficiency aftertreatment systems. Manufacturers examined the use of... recirculation, and selective catalytic reduction (SCR). SCR systems use a nitrogen-containing reducing agent...

  5. Computer Integrated Manufacturing. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a computer-integrated manufacturing program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  6. 78 FR 44095 - Request for Information on Pilots To Inform the Creation of Potential New Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Technology (NIST), United States Department of Commerce. ACTION: Notice; extension of comment deadline. SUMMARY: NIST is extending the deadline for submitting comments regarding NIST's planning for a Federal Funding Opportunity (FFO) for new manufacturing technology acceleration centers (M-TACs). NIST anticipates...

  7. Continuous Manufacturing in Pharmaceutical Process Development and Manufacturing.

    PubMed

    Burcham, Christopher L; Florence, Alastair J; Johnson, Martin D

    2018-06-07

    The pharmaceutical industry has found new applications for the use of continuous processing for the manufacture of new therapies currently in development. The transformation has been encouraged by regulatory bodies as well as driven by cost reduction, decreased development cycles, access to new chemistries not practical in batch, improved safety, flexible manufacturing platforms, and improved product quality assurance. The transformation from batch to continuous manufacturing processing is the focus of this review. The review is limited to small, chemically synthesized organic molecules and encompasses the manufacture of both active pharmaceutical ingredients (APIs) and the subsequent drug product. Continuous drug product is currently used in approved processes. A few examples of production of APIs under current good manufacturing practice conditions using continuous processing steps have been published in the past five years, but they are lagging behind continuous drug product with respect to regulatory filings.

  8. Potential of Continuous Manufacturing for Liposomal Drug Products.

    PubMed

    Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S

    2018-05-21

    Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.

  9. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for processing, repacking, or...

  10. Computational Fluid Dynamics and Additive Manufacturing to Diagnose and Treat Cardiovascular Disease.

    PubMed

    Randles, Amanda; Frakes, David H; Leopold, Jane A

    2017-11-01

    Noninvasive engineering models are now being used for diagnosing and planning the treatment of cardiovascular disease. Techniques in computational modeling and additive manufacturing have matured concurrently, and results from simulations can inform and enable the design and optimization of therapeutic devices and treatment strategies. The emerging synergy between large-scale simulations and 3D printing is having a two-fold benefit: first, 3D printing can be used to validate the complex simulations, and second, the flow models can be used to improve treatment planning for cardiovascular disease. In this review, we summarize and discuss recent methods and findings for leveraging advances in both additive manufacturing and patient-specific computational modeling, with an emphasis on new directions in these fields and remaining open questions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Advanced Material Strategies for Next-Generation Additive Manufacturing

    PubMed Central

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  12. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    PubMed

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  13. Manufacturing Methods and Technology Program Plan. Update.

    DTIC Science & Technology

    1981-11-01

    INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND. ILLINOIS 61299 82 INDEX PAGE I. INTRODUCTION The MMT Program Plan Update ........... 1 Industry Guide...obtained from that Plan, extra copies of which are available upon request from the Industrial Base Engineering Activity. Other sources for this data are...Major Subcommands (SUBMACOM’S). The SUBMACOM’S plan, formulate, budget, and execute individual projects. The Industrial Base Engineering Activity

  14. An Update to a Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.

    2014-01-01

    As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved down selecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt. In FY13, more advanced testing and modeling of the down selected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to develop a mid-fidelity thermal response model. Additional arc jet testing in the same conditions on various seam designs were very successful in showing that the material could be joined with a minimum of adhesive and required no complicated gap and gap filler design for installation. In addition, the partnership with industry to manufacture thicker rayon felt was very successful. The vendor made a 2-m wide by 30-m long sample of 10-cm thick rayon felt. When carbonized, the resulting thickness was over 7.5-cm thick, nearly 4 times the thickest off-the-shelf carbon felt. In FY14, the project has initiated a partnership with another vendor to begin the scale-up manufacturing effort. This year, the vendor will duplicate the process and manufacture at the current scale for comparison with NASA-processed materials. Properties testing and arc jet testing will be performed on the vendor-processed materials. Planning for manufacturing large, 1-m x 1-m, panels will begin as well. In FY15, the vendor will then manufacture large panels and the project will build a 2-m x 2-m Manufacturing Demonstration Unit (MDU).

  15. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: An Update of the Technology Maturation Effort

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.

    2014-01-01

    This presentation will update the community on the development of conformal ablative TPS. As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved downselecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt.In FY13, more advanced testing and modeling of the downselected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to develop a mid-fidelity thermal response model. Additional arc jet testing in the same conditions on various seam designs were very successful in showing that the material could be joined with a minimum of adhesive and required no complicated gap and gap filler design for installation. In addition, the partnership with industry to manufacture thicker rayon felt was very successful. The vendor made a 2-m wide by 30-m long sample of 10-cm thick rayon felt. When carbonized, the resulting thickness was over 7.5-cm thick, nearly 4 times the thickest off-the-shelf carbon felt. In FY14, the project has initiated a partnership with another vendor to begin the scale-up manufacturing effort. This year, the vendor will duplicate the process and manufacture at the current scale for comparison with NASA-processed materials. Properties testing and arc jet testing will be performed on the vendor-processed materials. Planning for manufacturing large, 1-m x 1-m, panels will begin as well. In FY15, the vendor will then manufacture large panels and the project will build a 2-m x 2-m Manufacturing Demonstration Unit (MDU).

  16. CIM at GE's factory of the future

    NASA Astrophysics Data System (ADS)

    Waldman, H.

    Functional features of a highly automated aircraft component batch processing factory are described. The system has processing, working, and methodology components. A rotating parts operation installed 20 yr ago features a high density of numerically controlled machines, and is connected to a hierarchical network of data communications and apparatus for moving the rotating parts and tools of engines. Designs produced at one location in the country are sent by telephone link to other sites for development of manufacturing plans, tooling, numerical control programs, and process instructions for the rotating parts. Direct numerical control is implemented at the work stations, which have instructions stored on tape for back-up in case the host computer goes down. Each machine is automatically monitored at 48 points and notice of failure can originate from any point in the system.

  17. Aspherical mirrors for the Gamma-ray Cherenkov Telescope, a Schwarschild-Couder prototype proposed for the future Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Gironnet, J.; Huet, J. M.; Laporte, P.; Chadwick, P.; Dumas, D.; Pech, M.; Rulten, C. B.; Sayède, F.; Schmoll, J.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project, led by an international collaboration of institutes, aims to create the world's largest next generation Very High-Energy (VHE) gamma-ray telescope array, devoted to observations in a wide band of energy, from a few tens of GeV to more than 100 TeV. The Small-Sized Telescopes (SSTs) are dedicated to the highest energy range. Seventy SSTs are planned in the baseline array design with a required lifetime of about 30 years. The GCT (Gamma-ray Cherenkov Telescope) is one of the prototypes proposed for CTA's SST sub-array. It is based on a Schwarzschild-Couder dual-mirror optical design. This configuration has the benefit of increasing the field-of-view and decreasing the masses of the telescope and of the camera. But, in spite of these many advantages, it was never implemented before in ground-based Cherenkov astronomy because of the aspherical and highly curved shape required for the mirrors. The optical design of the GCT consists of a primary 4 meter diameter mirror, segmented in six aspherical petals, a secondary monolithic 2-meter mirror and a light camera. The reduced number of segments simplifies the alignment of the telescope but complicates the shape of the petals. This, combined with the strong curvature of the secondary mirror, strongly constrains the manufacturing process. The Observatoire de Paris implemented metallic lightweight mirrors for the primary and the secondary mirrors of GCT. This choice was made possible because of the relaxed requirements of optical Cherenkov telescopes compared to optical ones. Measurements on produced mirrors show that these ones can fulfill requirements in shape, PSF and reflectivity, with a clear competition between manufacturing cost and final performance. This paper describes the design of these mirrors in the context of their characteristics and how design optimization was used to produce a lightweight design. The manufacturing process used for the prototype and planned for the large scale production is presented as well as the performance, in terms of geometric and optical properties, of the produced mirrors. The alignment procedure of the mirrors is also detailed. This technique is finally compared to other manufacturing techniques based on composite glass mirrors within the framework of GCT mirrors specificities.

  18. The use of Tecnomatix software to simulate the manufacturing flows in an industrial enterprise producing hydrostatic components

    NASA Astrophysics Data System (ADS)

    Petrila, S.; Brabie, G.; Chirita, B.

    2016-08-01

    The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.

  19. Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, J.

    1995-02-10

    The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less

  20. 19 CFR Appendix B to Part 191 - Sample Formats for Applications for Specific Manufacturing Drawback Rulings

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (see § 191.8(a)).) LOCATION OF FACTORY (Give the address of the factory(s) where the process of... article described under the PROCESS OF MANUFACTURE OR PRODUCTION section below and each article listed... manufacture or production by giving a thorough description of the manufacturing process. This description...

Top