Sample records for manufacturing technology phase

  1. Manufacturing Technology for Apparel Automation. Phase 1, 2 and 3 Activity.

    DTIC Science & Technology

    1987-10-15

    A189 129 MANUFACTURING TECHNOLOGY FOR APPAREL AUTOMATION PHASE I t/l 2 AND I ACTIVITY(U) NORTH CAROLINA STATE UNIV ATRALEIGH SCHOOL OF TEXTILES E M...34III 1.8 - iai T ON HART St 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MTC FILE coax Report: NCSU/DLA-87/2 CDRL A004 MANUFACTURING TECHNOLOGY FOR APPAREL...I Report: NCSU/DLA-87/2 CDRL A004 MANUFACTURING TECHNOLOGY FOR APPAREL AUTOMATION Phase I, II and III Activity Edwin M. McPherson North Carolina

  2. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less

  3. IMPROVED EQUIPMENT CLEANING IN COATED AND LAMINATED SUBSTRATE MANUFACTURING FACILITIES (PHASE I)

    EPA Science Inventory

    The report gives results of a Phase I study to characterize current equipment cleaning practices in the coated and laminated substrate manufacturing industry, to identify alternative cleaning technologies, and to identify demonstrable technologies and estimate their emissions imp...

  4. Overview of the Photovoltaic Manufacturing Technology (PVMaT) project

    NASA Astrophysics Data System (ADS)

    Witt, C. E.; Mitchell, R. L.; Mooney, G. D.

    1993-08-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project's ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These 'generic' problem areas are being addressed through a teamed research approach.

  5. High throughput manufacturing of thin-film CdTe photovoltaic modules. Annual subcontract report, 16 November 1993--15 November 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandwisch, D W

    1995-11-01

    This report describes work performed by Solar Cells, Inc. (SCI), under a 3-year subcontract to advance SCI`s PV manufacturing technologies, reduce module production costs, increase module performance, and provide the groundwork for SCI to expand its commercial production capacities. SCI will meet these objectives in three phases by designing, debugging, and operating a 20-MW/year, automated, continuous PV manufacturing line that produces 60-cm {times} 120-cm thin-film CdTe PV modules. This report describes tasks completed under Phase 1 of the US Department of Energy`s PV Manufacturing Technology program.

  6. The Air Force Manufacturing Technology (MANTECH): Technology transfer methodology as exemplified by the radar transmit/receive module program

    NASA Technical Reports Server (NTRS)

    Houpt, Tracy; Ridgely, Margaret

    1991-01-01

    The Air Force Manufacturing Technology program is involved with the improvement of radar transmit/receive modules for use in active phased array radars for advanced fighter aircraft. Improvements in all areas of manufacture and test of these modules resulting in order of magnitude improvements in the cost of and the rate of production are addressed, as well as the ongoing transfer of this technology to the Navy.

  7. The Photovolatic Manufacturing Technology project (PVMaT) after three years

    NASA Astrophysics Data System (ADS)

    Witt, C. Edwin; Mitchell, Richard L.; Thomas, Holly; Herwig, Lloyd O.

    1994-08-01

    The Photovoltaic Manufacturing Technology project (PVMaT) is a government/industry research and development (R&D) partnership involving joint efforts between the federal government (through the US Department of Energy (DOE)) and members of the US photovoltaic (PV) industry. The project's goal is to assist US industry in retaining and extending its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is being carried out in three separate phases, each designed to address separate R&D requirements for achieving PVMaT goals. Phase 1 was a problem identification phase of about 3 months duration. In Phase 1, the status and needs of the US PV manufacturing industry were identified, and the development of a Phase 2 procurement responsive to the industry's needs was begun. Phase 1 was completed in 1991. Problem solution began in 1992, under Phase 2A, when DOE awarded multiyear subcontracts. Technical accomplishments for PVMaT 2A are presented in this paper. Subcontracts were recently awarded for a second, overlapping, and similar process-specific solicitation (PVMaT 2B). The activities of these new subcontracts are also described. Two subcontracts presently comprise the Phase 3 effort. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. A teamed research approach is being used to improve automated module manufacturing lines and encapsulation materials used in module manufacturing. The first year's work on these subcontracts is also described in this paper.

  8. Phase plate technology for laser marking of magnetic discs

    DOEpatents

    Neuman, Bill; Honig, John; Hackel, Lloyd; Dane, C. Brent; Dixit, Shamasundar

    1998-01-01

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating.

  9. Summary Report on Phase I and Phase II Results From the 3D Printing in Zero-G Technology Demonstration Mission. Volume II

    NASA Technical Reports Server (NTRS)

    Prater, T. J.; Werkheiser, N. J.; Ledbetter, F. E., III

    2018-01-01

    In-space manufacturing seeks to develop the processes, skill sets, and certification architecture needed to provide a rapid response manufacturing capability on long-duration exploration missions. The first 3D printer on the Space Station was developed by Made in Space, Inc. and completed two rounds of operation on orbit as part of the 3D Printing in Zero-G Technology Demonstration Mission. This Technical Publication provides a comprehensive overview of the technical objections of the mission, the two phases of hardware operation conducted on orbit, and the subsequent detailed analysis of specimens produced. No engineering significant evidence of microgravity effects on material outcomes was noted. This technology demonstration mission represents the first step in developing a suite of manufacturing capabilities to meet future mission needs.

  10. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  11. Manufacturing Technology Support (MATES II) Task Order 0005: Manufacturing Integration and Technology Evaluation to Enable Technology Transition. Subtask Phase 0 Study Task: Manufacturing Technology (ManTech) and Systems Engineering For Quick Reaction Systems

    DTIC Science & Technology

    2014-10-01

    Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for

  12. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  13. Phase plate technology for laser marking of magnetic discs

    DOEpatents

    Neuman, B.; Honig, J.; Hackel, L.; Dane, C.B.; Dixit, S.

    1998-10-27

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating. 3 figs.

  14. Gender differences on the job satisfaction in the phase of implementing advanced manufacturing technology in the Chinese manufacturing firms.

    PubMed

    Yu, Na; Shen, Li Ming; Lewark, Siegfried

    2012-01-01

    This research gave an effort to study on gender differences in the job satisfaction for technological innovation at Chinese manufacturing firm. The exploratory study was conducted in four Chinese furniture manufacturing firms, which are all in the phases of introducing advanced manufacturing system. The results of statistical analysis show that general satisfaction of female employees to their jobs is significantly higher than male employees. In addition, supervisory satisfaction of female employees is significantly higher than male employees. The findings of the study reveal that activities are suggested to be carried out to increase the job satisfaction of male employees, especially improve communication and relationship between the managerial and the non-managerial levels in the innovation process. In addition, the higher job satisfaction of female employees could be considered a positive factor for the successful implementation of AMT in the technological innovation, although male employees are still dominated work force in the case study firms.

  15. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generatedmore » considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.« less

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, C. LEE COOK DIVISION, DOVER CORPORATION, STATIC PAC (TM) SYSTEM, PHASE II REPORT

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Static Pac System, Phase II, natural gas reciprocating compressor rod packing manufactured by the C. Lee Cook Division, Dover Corporation. The Static Pac System is designed to seal th...

  17. Bioprinting: an assessment based on manufacturing readiness levels.

    PubMed

    Wu, Changsheng; Wang, Ben; Zhang, Chuck; Wysk, Richard A; Chen, Yi-Wen

    2017-05-01

    Over the last decade, bioprinting has emerged as a promising technology in the fields of tissue engineering and regenerative medicine. With recent advances in additive manufacturing, bioprinting is poised to provide patient-specific therapies and new approaches for tissue and organ studies, drug discoveries and even food manufacturing. Manufacturing Readiness Level (MRL) is a method that has been applied to assess manufacturing maturity and to identify risks and gaps in technology-manufacturing transitions. Technology Readiness Level (TRL) is used to evaluate the maturity of a technology. This paper reviews recent advances in bioprinting following the MRL scheme and addresses corresponding MRL levels of engineering challenges and gaps associated with the translation of bioprinting from lab-bench experiments to ultimate full-scale manufacturing of tissues and organs. According to our step-by-step TRL and MRL assessment, after years of rigorous investigation by the biotechnology community, bioprinting is on the cusp of entering the translational phase where laboratory research practices can be scaled up into manufacturing products specifically designed for individual patients.

  18. Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase (LIGHTEnUP) – Analysis Tool User’s Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Shehabi, Arman; Smith, Sarah

    The LIGHTEnUP Analysis Tool (Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase) has been developed for The United States Department of Energy’s (U.S. DOE) Advanced Manufacturing Office (AMO) to forecast both the manufacturing sector and product life-cycle energy consumption implications of manufactured products across the U.S. economy. The tool architecture incorporates publicly available historic and projection datasets of U.S. economy-wide energy use including manufacturing, buildings operations, electricity generation and transportation. The tool requires minimal inputs to define alternate scenarios to business-as-usual projection data. The tool is not an optimization or equilibrium model and therefore does not selectmore » technologies or deployment scenarios endogenously. Instead, inputs are developed exogenous to the tool by the user to reflect detailed engineering calculations, future targets and goals, or creative insights. The tool projects the scenario’s energy, CO 2 emissions, and energy expenditure (i.e., economic spending to purchase energy) implications and provides documentation to communicate results. The tool provides a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies. The tool allows the user to create multiple scenarios that can reflect a range of possible future outcomes. However, reasonable scenarios require careful attention to assumptions and details about the future. This tool is part of an emerging set of AMO’s life cycle analysis (LCA) tool such as the Material Flows the Industry (MFI) tool, and the Additive Manufacturing LCA tool.« less

  19. Technological assessment of local manufacturers for wind turbine blade manufacturing in Pakistan

    NASA Astrophysics Data System (ADS)

    Mahmood, Khurram; Haroon, General

    2012-11-01

    Composite materials manufacturing industry is one of the world's hi-tech industry. Manufacturing of wind turbine blades is one of the specialized fields requiring high degree of precision and composite manufacturing techniques. This paper identifies the industries specializing in the composite manufacturing and is able to manufacture wind turbines blades in Pakistan. In the second phase, their technology readiness level is determined, based on some factors and then a readiness level are assigned to them. The assigned technology readiness level will depict the absorptive capacity of each manufacturing unit and its capability to take on such projects. The individual readiness level of manufacturing unit will then be used to establish combined technology readiness level of Pakistan particularly for wind turbine blades manufacturing. The composite manufacturing industry provides many spin offs and a diverse range of products can be manufactured using this facility. This research will be helpful to categorize the strong points and flaws of local industry for the gap analysis. It can also be used as a prerequisite study before the evaluation of technologies and specialties to improve the industry of the country for the most favorable results. This will form a basic data base which can be used for the decision making related to transfer of technology, training of local skilled workers and general up-gradation of the local manufacturing units.

  20. Advanced Envelope Research for Factory Built Housing, Phase 3. Design Development and Prototyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Kessler, B.; Mullens, M.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  1. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Kessler, B.; Mullens, M.

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  2. Technology Solutions Case Study: Stud Walls with Continuous Exterior Insulation for Factory Built Housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research — stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  3. Precision requirements and innovative manufacturing for ultrahigh precision laser interferometry of gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou; Han, Sen; Jin, Tao

    2016-11-01

    With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while weak-light manipulation technology still needs developments.

  4. America Makes: National Additive Manufacturing Innovation Institute (NAMII) Project 1: Nondestructive Evaluation (NDE) of Complex Metallic Additive Manufactured (AM) Structures

    DTIC Science & Technology

    2014-06-01

    layer-by-layer manufacturing of a component by using PBF processes is accompanied by the establishment of a unidirectional heat transfer along the build...direction. Because grain growth during solidification preferably occurs in the opposite direction of heat transfer , the formation of elongated...development and deployment of phased array technology.[69] Phased array ultrasonic (PAUT) sensors use multiple elements instead of a single element

  5. Summary of development of 70 MW class model superconducting generator--research and development of superconducting for electric power application

    NASA Astrophysics Data System (ADS)

    Oishi, Ikuo; Nishijima, Kenichi

    2002-03-01

    A 70 MW class superconducting model generator was designed, manufactured, and tested from 1988 to 1999 as Phase I, which was Japan's national project on applications of superconducting technologies to electric power apparatuses that was commissioned by NEDO as part of New Sunshine Program of AIST and MITI. Phase II then is now being carried out by almost same organization as Phase I. With the development of the 70 MW class superconducting model generator, technologies for a 200 MW class pilot generator were established. The world's largest output (79 MW), world's longest continuous operation (1500 h), and other sufficient characteristics were achieved on the 70 MW class superconducting model generator, and key technologies of design and manufacture required for the 200 MW class pilot generator were established. This project contributed to progress of R&D of power apparatuses. Super-GM has started the next project (Phase II), which shall develop the key technologies for larger-capacity and more-compact machine and is scheduled from 2000 to 2003. Phase II shall be the first step for commercialization of superconducting generator.

  6. Gates Precast Concrete User Project Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Post, Brian K.; Roschli, Alex C.

    The primary objective of the project was to demonstrate the viability of using carbon fiber reinforced ABS plastic and the Big Area Additive Manufacturing (BAAM) technology to rapidly manufacture molds for the precast concrete industry.

  7. Cast Aluminum Structures Technology (CAST) Phase VI. Technology Transfer.

    DTIC Science & Technology

    1980-04-01

    and other aspects of the program was provided as follows: o Phase I--Preliminary Design Richard C. Jones o Phase il--Manufacturing Methods Richard G...Christner o Phase Ill--Detailed Design Richard C. Jones o Phase IV--Fabrication of Demonstration Richard G. Christner Articles and Production... Richard C. Jones, assisted by Carlos J. Romero, Christian K. Gunther, Cecil E. Parsons, and Donald D. Goehler; and by Walter Hyler of Battelle Columbus

  8. Stud Walls With Continuous Exterior Insulation for Factory Built Housing: New York, New York (Fact Sheet), NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research - stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  9. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using... technology specifically installed to achieve compliance with emission standards of this part; (6) The engine... with itself or its vehicle manufacturer. (2) A test engine should have a maintenance history...

  10. Scanning the horizon for high value-add manufacturing science: Accelerating manufacturing readiness for the next generation of disruptive, high-value curative cell therapeutics.

    PubMed

    Hourd, Paul; Williams, David J

    2018-05-01

    Since the regenerative medicine sector entered the second phase of its development (RegenMed 2.0) more than a decade ago, there is increasing recognition that current technology innovation trajectories will drive the next translational phase toward the production of disruptive, high-value curative cell and gene-based regenerative medicines. To identify the manufacturing science problems that must be addressed to permit translation of these next generation therapeutics. In this short report, a long lens look within the pluripotent stem cell therapeutic space, both embryonic and induced, is used to gain early insights on where critical technology and manufacturing challenges may emerge. This report offers a future perspective on the development and innovation that will be needed within manufacturing science to add value in the production and commercialization of the next generation of advanced cell therapies and precision medicines. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Small Scale Turbopump Manufacturing Technology and Material Processes

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  12. New developments in optical phase-change memory

    NASA Astrophysics Data System (ADS)

    Ovshinsky, Stanford R.; Czubatyj, Wolodymyr

    2001-02-01

    Phase change technology has progressed from the original invention of Ovshinsky to become the leading choice for rewritable optical disks. ECD's early work in phase change materials and methods for operating in a direct overwrite fashion were crucial to the successes that have been achieved. Since the introduction of the first rewritable phase change products in 1991, the market has expanded from CD-RW into rewritable DVD with creative work going on worldwide. Phase change technology is ideally suited to address the continuous demand for increased storage capacity. First, laser beams can be focused to ever-smaller spot sizes using shorter wavelength lasers and higher performance optics. Blue lasers are now commercially viable and high numerical aperture and near field lenses have been demonstrated. Second, multilevel approaches can be used to increase capacity by a factor of three or more with concomitant increases in data transfer rate. In addition, ECD has decreased manufacturing costs through the use of innovative production technology. These factors combine to accelerate the widespread use of phase change technology. As in all our technologies, such as thin film photovoltaics, nickel metal hydride batteries, hydrogen storage systems, fuel cells, electrical memory, etc., we have invented the materials, the products, the production machines and the production processes for high rate, low-cost manufacture.

  13. Alternating phase-shifted mask for logic gate levels, design, and mask manufacturing

    NASA Astrophysics Data System (ADS)

    Liebmann, Lars W.; Graur, Ioana C.; Leipold, William C.; Oberschmidt, James M.; O'Grady, David S.; Regaill, Denis

    1999-07-01

    While the benefits of alternating phase shifted masks in improving lithographic process windows at increased resolution are well known throughout the lithography community, broad implementation of this potentially powerful technique has been slow due to the inherent complexity of the layout design and mask manufacturing process. This paper will review a project undertaken at IBM's Semiconductor Research and Development Center and Mask Manufacturing and Development facility to understand the technical and logistical issues associated with the application of alternating phase shifted mask technology to the gate level of a full microprocessor chip. The work presented here depicts an important milestone toward integration of alternating phase shifted masks into the manufacturing process by demonstrating an automated design solution and yielding a functional alternating phase shifted mask. The design conversion of the microprocessor gate level to a conjugate twin shifter alternating phase shift layout was accomplished with IBM's internal design system that automatically scaled the design, added required phase regions, and resolved phase conflicts. The subsequent fabrication of a nearly defect free phase shifted mask, as verified by SEM based die to die inspection, highlights the maturity of the alternating phase shifted mask manufacturing process in IBM's internal mask facility. Well defined and recognized challenges in mask inspection and repair remain and the layout of alternating phase shifted masks present a design and data preparation overhead, but the data presented here demonstrate the feasibility of designing and building manufacturing quality alternating phase shifted masks for the gate level of a microprocessor.

  14. Capability approval programme for Microwave Hybrid Integrated Circuits (MHICS)

    NASA Astrophysics Data System (ADS)

    1990-11-01

    The general requirements for capability approval of a manufacturing line for Microwave Hybrid Integrated Circuits (MHICs) are defined. ESA approval mandate will be exercized upon conclusion of the evaluation phase and at the end of the program. Before the evaluation phase can commence, the manufacturer must define the capability approval domain by specifying the processes, materials and technology for which approval is sought.

  15. FPGA chip performance improvement with gate shrink through alternating PSM 90nm process

    NASA Astrophysics Data System (ADS)

    Yu, Chun-Chi; Shieh, Ming-Feng; Liu, Erick; Lin, Benjamin; Ho, Jonathan; Wu, Xin; Panaite, Petrisor; Chacko, Manoj; Zhang, Yunqiang; Lei, Wen-Kang

    2005-11-01

    In the post-physical verification space called 'Mask Synthesis' a key component of design-for-manufacturing (DFM), double-exposure based, dark-field, alternating PSM (Alt-PSM) is being increasingly applied at the 90nm node in addition with other mature resolution enhancement techniques (RETs) such as optical proximity correction (OPC) and sub-resolution assist features (SRAF). Several high-performance IC manufacturers already use alt-PSM technology in 65nm production. At 90nm having strong control over the lithography process is a critical component in meeting targeted yield goals. However, implementing alt-PSM in production has been challenging due to several factors such as phase conflict errors, mask manufacturing, and the increased production cost due to the need for two masks in the process. Implementation of Alt-PSM generally requires phase compliance rules and proper phase topology in the layout and this has been successful for the technology node with these rules implemented. However, this may not be true for a mature, production process technology, in this case 90 nm. Especially, in the foundry-fabless business model where the foundry provides a standard set of design rules to its customers for a given process technology, and where not all the foundry customers require Alt-PSM in their tapeout flow. With minimum design changes, design houses usually are motivated by higher product performance for the existing designs. What follows is an in-depth review of the motivation to apply alt-PSM on a production FPGA, the DFM challenges to each partner faced, its effect on the tapeout flow, and how design, manufacturing, and EDA teams worked together to resolve phase conflicts, tapeout the chip, and finally verify the silicon results in production.

  16. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold.

    PubMed

    Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping

    2017-01-01

    Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Design and implementation of a Windows NT network to support CNC activities

    NASA Technical Reports Server (NTRS)

    Shearrow, C. A.

    1996-01-01

    The Manufacturing, Materials, & Processes Technology Division is undergoing dramatic changes to bring it's manufacturing practices current with today's technological revolution. The Division is developing Computer Automated Design and Computer Automated Manufacturing (CAD/CAM) abilities. The development of resource tracking is underway in the form of an accounting software package called Infisy. These two efforts will bring the division into the 1980's in relationship to manufacturing processes. Computer Integrated Manufacturing (CIM) is the final phase of change to be implemented. This document is a qualitative study and application of a CIM application capable of finishing the changes necessary to bring the manufacturing practices into the 1990's. The documentation provided in this qualitative research effort includes discovery of the current status of manufacturing in the Manufacturing, Materials, & Processes Technology Division including the software, hardware, network and mode of operation. The proposed direction of research included a network design, computers to be used, software to be used, machine to computer connections, estimate a timeline for implementation, and a cost estimate. Recommendation for the division's improvement include action to be taken, software to utilize, and computer configurations.

  18. Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I

    NASA Technical Reports Server (NTRS)

    Prater, T. J.; Bean, Q. A.; Beshears, R. D.; Rolin, T. D.; Werkheiser, N. J.; Ordonez, E. A.; Ryan, R. M.; Ledbetter, F. E., III

    2016-01-01

    Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload.

  19. Automated solar cell assembly team process research

    NASA Astrophysics Data System (ADS)

    Nowlan, M. J.; Hogan, S. J.; Darkazalli, G.; Breen, W. F.; Murach, J. M.; Sutherland, S. F.; Patterson, J. S.

    1994-06-01

    This report describes work done under the Photovoltaic Manufacturing Technology (PVMaT) project, Phase 3A, which addresses problems that are generic to the photovoltaic (PV) industry. Spire's objective during Phase 3A was to use its light soldering technology and experience to design and fabricate solar cell tabbing and interconnecting equipment to develop new, high-yield, high-throughput, fully automated processes for tabbing and interconnecting thin cells. Areas that were addressed include processing rates, process control, yield, throughput, material utilization efficiency, and increased use of automation. Spire teamed with Solec International, a PV module manufacturer, and the University of Massachusetts at Lowell's Center for Productivity Enhancement (CPE), automation specialists, who are lower-tier subcontractors. A number of other PV manufacturers, including Siemens Solar, Mobil Solar, Solar Web, and Texas instruments, agreed to evaluate the processes developed under this program.

  20. Three-phase flow measurement in the petroleum industry

    NASA Astrophysics Data System (ADS)

    Thorn, R.; Johansen, G. A.; Hjertaker, B. T.

    2013-01-01

    The problem of how to accurately measure the flowrate of oil-gas-water mixtures in a pipeline remains one of the key challenges in the petroleum industry. This paper discusses why three-phase flow measurement is still important and why it remains a difficult problem to solve. The measurement strategies and principal base technologies currently used by commercial manufacturers are described, and research developments that could influence future flowmeter design are considered. Finally, future issues, which will need to be addressed by manufacturers and users of three-phase flowmeters, are discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Mullens, M.; Rath, P.

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysismore » of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.« less

  2. Yield enhancement with DFM

    NASA Astrophysics Data System (ADS)

    Paek, Seung Weon; Kang, Jae Hyun; Ha, Naya; Kim, Byung-Moo; Jang, Dae-Hyun; Jeon, Junsu; Kim, DaeWook; Chung, Kun Young; Yu, Sung-eun; Park, Joo Hyun; Bae, SangMin; Song, DongSup; Noh, WooYoung; Kim, YoungDuck; Song, HyunSeok; Choi, HungBok; Kim, Kee Sup; Choi, Kyu-Myung; Choi, Woonhyuk; Jeon, JoongWon; Lee, JinWoo; Kim, Ki-Su; Park, SeongHo; Chung, No-Young; Lee, KangDuck; Hong, YoungKi; Kim, BongSeok

    2012-03-01

    A set of design for manufacturing (DFM) techniques have been developed and applied to 45nm, 32nm and 28nm logic process technologies. A noble technology combined a number of potential confliction of DFM techniques into a comprehensive solution. These techniques work in three phases for design optimization and one phase for silicon diagnostics. In the DFM prevention phase, foundation IP such as standard cells, IO, and memory and P&R tech file are optimized. In the DFM solution phase, which happens during ECO step, auto fixing of process weak patterns and advanced RC extraction are performed. In the DFM polishing phase, post-layout tuning is done to improve manufacturability. DFM analysis enables prioritization of random and systematic failures. The DFM technique presented in this paper has been silicon-proven with three successful tape-outs in Samsung 32nm processes; about 5% improvement in yield was achieved without any notable side effects. Visual inspection of silicon also confirmed the positive effect of the DFM techniques.

  3. NASA Project Develops Next-Generation Low-Emissions Combustor Technologies

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chang, Clarence T.; Herbon, John T.; Kramer, Stephen K.

    2013-01-01

    NASA's Environmentally Responsible Aviation (ERA) Project is working with industry to develop the fuel flexible combustor technologies for a new generation of low-emissions engine targeted for the 2020 timeframe. These new combustors will reduce nitrogen oxide (NOx) emissions to half of current state-of-the-art (SOA) combustors, while simultaneously reducing noise and fuel burn. The purpose of the low NOx fuel-flexible combustor research is to advance the Technology Readiness Level (TRL) and Integration Readiness Level (IRL) of a low NOx, fuel flexible combustor to the point where it can be integrated in the next generation of aircraft. To reduce project risk and optimize research benefit NASA chose to found two Phase 1 contracts. The first Phase 1 contracts went to engine manufactures and were awarded to: General Electric Company, and Pratt & Whitney Company. The second Phase 1 contracts went to fuel injector manufactures Goodrich Corporation, Parker Hannifin Corporation, and Woodward Fuel System Technology. In 2012, two sector combustors were tested at NASA's ASCR. The results indicated 75% NOx emission reduction below the 2004 CAEP/6 regulation level.

  4. Health economics and outcomes research within drug development: challenges and opportunities for reimbursement and market access within biopharma research.

    PubMed

    van Nooten, Floortje; Holmstrom, Stefan; Green, Julia; Wiklund, Ingela; Odeyemi, Isaac A O; Wilcox, Teresa K

    2012-06-01

    Healthcare decision makers who determine funding for new medical technologies depend on manufacturers to provide evidence of the technology's efficacy, safety and cost-effectiveness. Constrained budgets and increasing reliance on formal health technology assessment (HTA) have created an abundance of external hurdles that manufacturers must navigate to ensure successful product commercialization. These demands have pushed pharmaceutical companies to adjust their internal structures to coordinate generation of appropriate evidence. In this article we summarize internal and external opportunities for manufacturers to establish a foundation of evidence for successful market access, starting in Phase I of development and continuing throughout the post-approval product lifecycle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT-A AND A ENVIRONMENTAL SEALS, INC., SEAL ASSIST SYSTEM (SAS) PHASE II REPORT

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of Seal Assist System (SAS) for natural gas reciprocating compressor rod packing manufactured by A&A Environmental Seals, Inc. The SAS uses a secondary containment gland to collect natural g...

  6. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  7. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  8. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  9. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  10. Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System Not Ready for Production Decision (REDACTED)

    DTIC Science & Technology

    2012-09-07

    Average Procurement Unit Cost CMDS Cruise Missile Defense Systems CPD Capability Production Document EMD Engineering and Manufacturing...Defense for Acquisition, Technology and Logistics also determined that continuing test and evaluation of the two JLENS Engineering and Manufacturing...Program (Category ID) that was established in January 1996 and, during the audit, was in the Engineering and Manufacturing Development (EMD) phase of

  11. Lightweight solar array blanket tooling, laser welding and cover process technology

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  12. Losing Something In Translation: Turning Requirements Into Specifications

    DTIC Science & Technology

    2016-06-01

    specialized in Organizational Behavior. Perhaps the reader remembers the comedy routine in which a performer orates a lyrical, emotive passage in a deep...learned from the Technology Maturation and Risk Reduction phase and the Engineering and Manufacturing Development phase. These lessons learned, for

  13. Applying CLIPS to control of molecular beam epitaxy processing

    NASA Technical Reports Server (NTRS)

    Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.

    1990-01-01

    A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.

  14. Technology assessment of advanced automation for space missions

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.

  15. Amorphous silicon photovoltaic manufacturing technology, phase 2A

    NASA Astrophysics Data System (ADS)

    Duran, G.; Mackamul, K.; Metcalf, D.

    1995-01-01

    Utility Power Group (UPG), and its lower-tier subcontractor, Advanced Photovoltaic Systems, Inc. (APS) have conducted efforts in developing their manufacturing lines. UPG has focused on the automation of encapsulation and termination processes developed in Phase 1. APS has focused on completion of the encapsulation and module design tasks, while continuing the process and quality control and automation projects. The goal is to produce 55 watt (stabilized) EP50 modules in a new facility. In the APS Trenton EUREKA manufacturing facility, APS has: (1) Developed high throughput lamination procedures; (2) Optimized existing module designs; (3) Developed new module designs for architectural applications; (4) Developed enhanced deposition parameter control; (5) Designed equipment required to manufacture new EUREKA modules developed during Phase II; (6) Improved uniformity of thin-film materials deposition; and (7) Improved the stabilized power output of the APS EP50 EUREKA module to 55 watts. In the APS Fairfield EUREKA manufacturing facility, APS has: (1) Introduced the new products developed under Phase 1 into the APS Fairfield EUREKA module production line; (2) Increased the extent of automation in the production line; (3) Introduced Statistical Process Control to the module production line; and (4) Transferred-progress made in the APS Trenton facility into the APS Fairfield facility.

  16. Communications technology satellite output-tube design and development

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Forman, R.; Jones, C. L.; Kosmahl, H.; Sharp, G. R.

    1977-01-01

    The design and development of a 200-watt-output, traveling-wave tube (TWT) for the Communications Technology Satellite (CTS) is discussed, with emphasis on the design evolution during the manufacturing phase of the development program. Possible further improvements to the tube design are identified.

  17. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  18. The Boeing Company's Manufacturing Technology Student Internship. Evaluation Report.

    ERIC Educational Resources Information Center

    Owens, Thomas R.

    The Boeing Company contracted with the Northwest Regional Educational Laboratory to evaluate its student internship program, part of a "school-to-work" effort modeled after the nationally recognized Tech Prep initiative. The company's involvement in the Tech Prep Program has been implemented in three phases: (1) the initial phase helped…

  19. On the realization of the bulk modulus bounds for two-phase viscoelastic composites

    NASA Astrophysics Data System (ADS)

    Andreasen, Casper Schousboe; Andreassen, Erik; Jensen, Jakob Søndergaard; Sigmund, Ole

    2014-02-01

    Materials with good vibration damping properties and high stiffness are of great industrial interest. In this paper the bounds for viscoelastic composites are investigated and material microstructures that realize the upper bound are obtained by topology optimization. These viscoelastic composites can be realized by additive manufacturing technologies followed by an infiltration process. Viscoelastic composites consisting of a relatively stiff elastic phase, e.g. steel, and a relatively lossy viscoelastic phase, e.g. silicone rubber, have non-connected stiff regions when optimized for maximum damping. In order to ensure manufacturability of such composites the connectivity of the matrix is ensured by imposing a conductivity constraint and the influence on the bounds is discussed.

  20. Nano-Magnets and Additive Manufacturing for Electric Motors

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2014-01-01

    High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

  1. LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 2

    NASA Technical Reports Server (NTRS)

    Sullivan, M. R.

    1982-01-01

    Cable technology is discussed. Manufacturing flow and philosophy are considered. Acceptance, gratification and flight tests are discussed. Fifteen-meter and fifty-meter models are considered. An economic assessment is included.

  2. LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 2

    NASA Astrophysics Data System (ADS)

    Sullivan, M. R.

    1982-06-01

    Cable technology is discussed. Manufacturing flow and philosophy are considered. Acceptance, gratification and flight tests are discussed. Fifteen-meter and fifty-meter models are considered. An economic assessment is included.

  3. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    NASA Technical Reports Server (NTRS)

    Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.

    2016-01-01

    Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels when compared with conventional metallic manufacturing. The AHP study results revealed that decreased final cylinder mass and improved quality assurance were the most valued benefits of cylinder manufacturing methods, therefore emphasizing the relevance of the benefits achieved with the ANNST process for future projects.

  4. Towards a Lifecycle Information Framework and Technology in Manufacturing.

    PubMed

    Hedberg, Thomas; Feeney, Allison Barnard; Helu, Moneer; Camelio, Jaime A

    2017-06-01

    Industry has been chasing the dream of integrating and linking data across the product lifecycle and enterprises for decades. However, industry has been challenged by the fact that the context in which data is used varies based on the function / role in the product lifecycle that is interacting with the data. Holistically, the data across the product lifecycle must be considered an unstructured data-set because multiple data repositories and domain-specific schema exist in each phase of the lifecycle. This paper explores a concept called the Lifecycle Information Framework and Technology (LIFT). LIFT is a conceptual framework for lifecycle information management and the integration of emerging and existing technologies, which together form the basis of a research agenda for dynamic information modeling in support of digital-data curation and reuse in manufacturing. This paper provides a discussion of the existing technologies and activities that the LIFT concept leverages. Also, the paper describes the motivation for applying such work to the domain of manufacturing. Then, the LIFT concept is discussed in detail, while underlying technologies are further examined and a use case is detailed. Lastly, potential impacts are explored.

  5. Lean Manufacturing Auto Cluster at Chennai

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2012-10-01

    Due the presence of lot of automotive Industry, Chennai is known as Detroit of India, that producing over 40 % of the Indian vehicle and components. Lean manufacturing concepts have been widely recognized as an important tool in improving the competitiveness of industries. This is a continuous process involving everyone, starting from management to the shop floor. Automotive Component Industries (ACIs) in Ambattur Industrial Estate, Chennai has formed special purpose vehicle (SPV) society namely Ambattur Industrial Estate Manufacturers Association (AIEMA) Technology Centre (ATC) lean manufacturing cluster (ATC-LMC) during July 2010 under lean manufacturing competitiveness scheme, that comes under National Manufacturing Competitiveness Programme of Government of India. The Tripartite Agreement is taken place between National Productivity Council, consultants and cluster (ATC-LMC). The objective is to conduct diagnostic study, study on training and application of various lean manufacturing techniques and auditing in ten ACIs. The methodology adopted is collection of primary data/details from ten ACIs. In the first phase, diagnostic study is done and the areas for improvement in each of the cluster member companies are identified. In the second phase, training programs and implementation is done on 5S and other areas. In the third phase auditing is done and found that the lean manufacturing techniques implementation in ATC-LMC is sustainable and successful in every cluster companies, which will not only enhance competitiveness but also decrease cost, time and increase productivity. The technical efficiency of LMC companies also increases significantly.

  6. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from November through December of that year. Phase I flight operations yielded 14 unique parts (21 total specimens) that could be directly compared against ground-based prints of identical geometry manufactured using the printer prior to its launch to ISS. The 3DP unit functioned safely and produced specimens necessary to advance the understanding of the critical design and operational parameters for the FDM process as affected by the microgravity environment. From the standpoint of operations, 3DP demonstrated the ability to remove parts from the build-tray on-orbit, teleoperate the printer from the ground, perform critical maintenance functions within defined human factors limits, produce a functional tool that could be evaluated for form/fit/function, and uplink a new part file from the ground and produce it on the printer. The flight parts arrived at NASA Marshall Space Flight Center in Huntsville, Alabama in April 2015, where they underwent months of testing in the materials and processes laboratory. Ground and flight prints completed the following phases of testing: photographic/visual inspection, mass and density evaluation, structured light scanning, XRay and CT, mechanical testing, optical microscopy, scanning electron microscopy, and chemical analysis. This presentation will discuss the results of this testing as well as phase II operations for the printer, which took place in June and July of 2016. Lessons learned from the tech demo and their impacts on the design and development of the second generation 3D printer for ISS, the Additive Manufacturing Facility (AMF) by Made In Space will also be presented. In addition, progress in other elements of NASA's In Space Manufacturing (ISM) initiative such as the on-demand ISM utilization catalog, in-space Recycler ISS Technology Demonstration development, launch packaging recycling, in-space printable electronics, development of higher strength polymeric materials for 3D printing and Additive Construction by Mobile Emplacement (ACME) will also be addressed.

  7. Vision Systems Illuminate Industrial Processes

    NASA Technical Reports Server (NTRS)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  8. Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)

    2004-01-01

    A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.

  9. Infrared-thermography imaging system multiapplications for manufacturing

    NASA Astrophysics Data System (ADS)

    Stern, Sharon A.

    1990-03-01

    Imaging systems technology has been utilized traditionally for diagnosing structural envelope or insulation problems in the general thermographic comunity. Industrially, new applications for utilizing thermal imaging technology have been developed i n pred i cti ve/preventi ye mai ntenance and prod uct moni tori ng prociures at Eastman Kodak Company, the largest photographic manufacturering producer in the world. In the manufacturing processes used at Eastman Kodak Company, new applications for thermal imaging include: (1) Fluid transfer line insulation (2) Web coating drying uniformity (3) Web slitter knives (4) Heating/cooling coils (5) Overheated tail bearings, and (6) Electrical phase imbalance. The substantial cost benefits gained from these applications of infrared thermography substantiate the practicality of this approach and indicate the desirability of researching further appl i cati ons.

  10. NASA Centennial Challenge: Three Dimensional (3D) Printed Habitat, Phase 2

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Roman, Monserrate C.; Kim, Hong S.

    2017-01-01

    The NASA Centennial Challenges: 3D-Printed Habitat Challenge seeks to develop the fundamental technologies necessary to manufacture an off-world habitat using mission recycled materials andor local indigenous materials. The vision is that autonomous habitat manufacturing machines will someday be deployed to the Moon or Mars to construct shelters for human habitation.NASA and Bradley University, are holding a new US$ 2.5 million competition to design and build a 3-D printed habitat for deep space exploration, including the agencys journey to Mars.The multi-phase 3-D Printed Habitat Challenge, part of NASA's Centennial Challenges program, is designed to advance the additive construction technology needed to create sustainable housing solutions for Earth and beyond.The first phase of the competition ran through Sept. 27, 2015. This phase, a design competition, called on participants to develop state-of-the-art architectural concepts that take advantage of the unique capabilities 3-D printing offers. The top 3 prizes with a prize purse of $40,000 were awarded at the 2015 World Maker Faire in New York.The second phase of the competition is called the Structural Member Competition and it is divided into three levels happening in the spring and summer of 2017. The Compression Test Competition (Level 1) focuses on the fabrication technologies needed to manufacture structural components from a combination of indigenous materials and recyclables, or indigenous materials alone. For Level 1, teams will develop 3D printable materials, build a 3D printing machine, and print two specimens: a truncated cone and a cylinder. The Level 2 Beam Member Competition is the second of three sub-competitions within the overall Structural Member Competition. For Level 2, teams will print a beam that will be tested.The Level 3 Head to Head Competition is the third of three sub-competitions within the overall Structural Member Competition. For Level 3, teams will develop 3D printable materials, use a 3D printing machine, and print three compression specimens of the elected material, three flexural specimens of the elected material, and one dome structure. Tests conducted on the specimens and the dome structure will determine Level 3 scores and awards. On Earth these same habitat manufacturing capabilities could be used to produce housing wherever affordable housing is needed and access to conventional building materials and skills is limited. Terrestrially, it is envisioned that local indigenous materials (dirt, clay, sand, etc.) could be combined with readily available recyclable materials and used to construct semi-permanent shelters against environmental elements for human habitation. The goal of the 3D-Printed Habitat Challenge is to foster the development of new technologies necessary to additively manufacture a habitat using local indigenous materials with, or without, recyclable materials. This paper will summarize the Level 2 results of this NASA Centennial Challenge competition and it will discuss related technology advancement.

  11. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills inmore » advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.« less

  12. Phosphoric and electric utility fuel cell technology development

    NASA Astrophysics Data System (ADS)

    Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Demarche, T. E.; Gelting, R. L.; Goller, G. J.; Luoma, W. I.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.

    1984-01-01

    The advancement of electric utility cell stack technology and reduction of cell stack cost was initiated. The cell stack has a nominal 10 ft (2) active area and operates at 120 psia/405(0)F. The program comprises six parallel phases, which culminate in a full height, 10-ft(2) stack verification test: (1) provides the information and services needed to manage the effort, including definition of the prototype commercial power plant; (2) develops the technical base for long term improvements to the cell stack; (3) develops materials and processing techniques for cell stack components incorporating the best available technology; (4) provides the design of hardware and conceptual processing layouts, and updates the power plant definition of Phase 1 to reflect the results of Phases 2 and 3; Phase 5 manufactures the hardware to verify the achievements of Phases 2 and 3, and analyzes the cost of this hardware; and Phase 6 tests the cell stacks assembled from the hardware of Phase 5 to assess the state of development.

  13. Process science development at the Center for Optics Manufacturing

    NASA Astrophysics Data System (ADS)

    Pollicove, Harvey M.; Moore, Duncan T.; Golini, Donald

    1992-01-01

    The Center for Optics Manufacturing (COM) has organized a volunteer Process Science Committee that will cooperate in advancing the optical manufacturing sciences. The objective is to develop technical information and processes that improve manufacturing capability, especially in grinding and polishing technology. Chaired by Donald Golini of Litton Itek Optical Systems, the committee members are volunteers from several American Precision Optics Manufacturers Association (APOMA) companies and institutions. Many of the companies are also funding project elements. The committee will accelerate industry progress by integrating the research and development activities of cooperating APOMA companies and institutions involved in both COM and independent programs. In the short term, the effort concentrates on grinding and polishing process innovation. In later phases, the effort will aid in the design future generations of machines and processes. While the developments are directly adaptable to COM's OPTICAM program, the results will influence a wide range of innovation and application in all methods of optical fabrication. Several leaders in the field are participating in the research and development effort--Boston University, Eastman Kodak Company, Hughes Leitz Optical Technologies, Lawrence Livermore National Laboratory, Litton Itek Optical Systems, Melles Griot, Optical Components Inc., Precision Optical, Rank Pneumo, Schott Glass Technologies, Solution Technology, Texas Instruments, Tropel, and the universities of Arizona and Rochester. Other APOMA member companies will participate as resource needs grow. The collaboration is unique in the industry's history.

  14. Formed platelet combustor liner construction feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Hayes, W. A.; Janke, D. E.

    1992-01-01

    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase A - feasibility study and technology development; (2) phase B - sub-scale fabrication feasibility; and (3) phase C - large scale fabrication validation. This report covers the Phase A activities, which began in December of 1988.

  15. Subaperture metrology technologies extend capabilities in optics manufacturing

    NASA Astrophysics Data System (ADS)

    Tricard, Marc; Forbes, Greg; Murphy, Paul

    2005-10-01

    Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.

  16. An assessment of General Aviation utilization of advanced avionics technology

    NASA Technical Reports Server (NTRS)

    Quinby, G. F.

    1980-01-01

    Needs of the general aviation industry for services and facilities which might be supplied by NASA were examined. In the data collection phase, twenty-one individuals from nine manufacturing companies in general aviation were interviewed against a carefully prepared meeting format. General aviation avionics manufacturers were credited with a high degree of technology transfer from the forcing industries such as television, automotive, and computers and a demonstrated ability to apply advanced technology such as large scale integration and microprocessors to avionics functions in an innovative and cost effective manner. The industry's traditional resistance to any unnecessary regimentation or standardization was confirmed. Industry's self sufficiency in applying advanced technology to avionics product development was amply demonstrated. NASA research capability could be supportive in areas of basic mechanics of turbulence in weather and alternative means for its sensing.

  17. Capability of Rolling Efficiency for 100M High-Speed Rails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Howard

    2014-03-22

    OG Technologies, Inc. (OGT), along with its academic and industrial partners, proposes this CORE project for the Capability of Rolling Efficiency for 100m high-speed rails. The goal is to establish the competitive advantage, and thus the sustainability of the US-based rail manufacturers by greatly enhanced efficiency through innovative in-line metrology technology, in-depth process knowledge, and advanced process control to overcome detrimental factors such as higher labor costs that are saddling the US manufacturing sector. This Phase I project was carried out by an industrial-academia team over 9 months. The R&D team successfully completed all technical tasks and accomplished the objectivesmore » for the Phase I. In addition to the technical efforts, the introductory information of this project as well as anticipated progress was disseminated to steel mills interested in the project. The Phase I project has established the technical and commercial basis for additional development. There are needs to further completing the in-line sensing capability, deepening the capability of metamodeling, and supporting the process monitoring and control. The R&D team plans to submit a Phase II proposal based on the findings.« less

  18. Novel contact hole reticle design for enhanced lithography process window in IC manufacturing

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Hsing

    2005-01-01

    For 90nm node generation, 65nm, and beyond, dark field mask types such as contact-hole, via, and trench patterns that all are very challenging to print with satisfactory process windows for day-to-day lithography manufacturing. Resolution enhancement technology (RET) masks together with ArF high numerical aperture (NA) scanners have been recognized as the inevitable choice of method for 65nm node manufacturing. Among RET mask types, the alternating phase shifting mask (AltPSM) is one of the well-known strong enhancement techniques. However AltPSM can have a very strong optical proximity effect that comes with the use of small on-axis illumination sigma setting. For very dense contact features, it may be possible for AltPSM to overcome the phase conflict by limiting the mask design rules. But it is not feasible to resolve the inherent phase conflict for the semi-dense, semi-isolated and isolated contact areas. Hence the adoption of this strong enhancement technique for dark filed mask types in today"s IC manufacturing has been very limited. In this paper, we present a novel yet a very powerful design method to achieve contact and via masks printing for 90nm, 65nm, and beyond. We name our new mask design as: Novel Improved Contact-hole pattern Exposure PSM (NICE PSM) with off-axis illumination, such as QUASAR. This RET masks design can enhance the process window of isolated, semi-isolated contact hole and via hole patterns. The main concepts of NICE PSM with QUASAR off-axis illumination are analogous to the Super-FLEX pupil filter technology.

  19. Novel contact hole reticle design for enhanced lithography process window in IC manufacturing

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Hsing

    2004-10-01

    For 90nm node generation, 65nm, and beyond, dark field mask types such as contact-hole, via, and trench patterns that all are very challenging to print with satisfactory process windows for day-to-day lithography manufacturing. Resolution enhancement technology (RET) masks together with ArF high numerical aperture (NA) scanners have been recognized as the inevitable choice of method for 65nm node manufacturing. Among RET mask types, the alternating phase shifting mask (AltPSM) is one of the well-known strong enhancement techniques. However, AltPSM can have a very strong optical proximity effect that comes with the use of small on-axis illumination sigma setting. For very dense contact features, it may be possible for AltPSM to overcome the phase conflict by limiting the mask design rules. But it is not feasible to resolve the inherent phase conflict for the semi-dense, semi-isolated and isolated contact areas. Hence the adoption of this strong enhancement technique for dark filed mask types in today"s IC manufacturing has been very limited. In this paper, we report a novel yet a very powerful design method to achieve contact and via masks printing for 90nm, 65nm, and beyond. We name our new mask design as: Novel Improved Contact-hole pattern Exposure PSM (NICE PSM) with off-axis illumination, such as QUASAR. This RET masks design can enhance the process window of isolated, semi-isolated contact hole and via hole patterns. The main concepts of NICE PSM with QUASAR off-axis illumination are analogous to the Super-FLEX pupil filter technology.

  20. Massively parallel E-beam inspection: enabling next-generation patterned defect inspection for wafer and mask manufacturing

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik

    2015-03-01

    SEMATECH aims to identify and enable disruptive technologies to meet the ever-increasing demands of semiconductor high volume manufacturing (HVM). As such, a program was initiated in 2012 focused on high-speed e-beam defect inspection as a complement, and eventual successor, to bright field optical patterned defect inspection [1]. The primary goal is to enable a new technology to overcome the key gaps that are limiting modern day inspection in the fab; primarily, throughput and sensitivity to detect ultra-small critical defects. The program specifically targets revolutionary solutions based on massively parallel e-beam technologies, as opposed to incremental improvements to existing e-beam and optical inspection platforms. Wafer inspection is the primary target, but attention is also being paid to next generation mask inspection. During the first phase of the multi-year program multiple technologies were reviewed, a down-selection was made to the top candidates, and evaluations began on proof of concept systems. A champion technology has been selected and as of late 2014 the program has begun to move into the core technology maturation phase in order to enable eventual commercialization of an HVM system. Performance data from early proof of concept systems will be shown along with roadmaps to achieving HVM performance. SEMATECH's vision for moving from early-stage development to commercialization will be shown, including plans for development with industry leading technology providers.

  1. The Department of Defense Small Business Innovation Research and Small Business Technology Transfer Programs: Implementation of the Commercialization Pilot Program and Related Reforms

    DTIC Science & Technology

    2011-06-01

    testing and evaluation of SBIR and STTR technologies in SBIR and STTR Phases II and III. The implementation requirements were specified in the text of...manufacturing technologies through the SBIR and STTR programs. Fourth, Congress clarified the authority to conduct testing and evaluation of SBIR and STTR...17  A.  SURVEY GOALS ..........................................................................................17  B.  SURVEY DESIGN

  2. Freeform object design and simultaneous manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, Weihan; Lin, Heng; Leu, Ming C.

    2003-04-01

    Today's product design, especially the consuming product design, focuses more and more on individuation, originality, and the time to market. One way to meet these challenges is using the interactive and creationary product design methods and rapid prototyping/rapid tooling. This paper presents a novel Freeform Object Design and Simultaneous Manufacturing (FODSM) method that combines the natural interaction feature in the design phase and simultaneous manufacturing feature in the prototyping phase. The natural interactive three-dimensional design environment is achieved by adopting virtual reality technology. The geometry of the designed object is defined through the process of "virtual sculpting" during which the designer can touch and visualize the designed object and can hear the virtual manufacturing environment noise. During the designing process, the computer records the sculpting trajectories and automatically translates them into NC codes so as to simultaneously machine the designed part. The paper introduced the principle, implementation process, and key techniques of the new method, and compared it with other popular rapid prototyping methods.

  3. Laser Additive Manufacturing of Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  4. Towards a Lifecycle Information Framework and Technology in Manufacturing

    PubMed Central

    Hedberg, Thomas; Feeney, Allison Barnard; Helu, Moneer; Camelio, Jaime A.

    2016-01-01

    Industry has been chasing the dream of integrating and linking data across the product lifecycle and enterprises for decades. However, industry has been challenged by the fact that the context in which data is used varies based on the function / role in the product lifecycle that is interacting with the data. Holistically, the data across the product lifecycle must be considered an unstructured data-set because multiple data repositories and domain-specific schema exist in each phase of the lifecycle. This paper explores a concept called the Lifecycle Information Framework and Technology (LIFT). LIFT is a conceptual framework for lifecycle information management and the integration of emerging and existing technologies, which together form the basis of a research agenda for dynamic information modeling in support of digital-data curation and reuse in manufacturing. This paper provides a discussion of the existing technologies and activities that the LIFT concept leverages. Also, the paper describes the motivation for applying such work to the domain of manufacturing. Then, the LIFT concept is discussed in detail, while underlying technologies are further examined and a use case is detailed. Lastly, potential impacts are explored. PMID:28265224

  5. Manufacturing Technology for Apparel Automation. Phases 1 and 2.

    DTIC Science & Technology

    1987-07-15

    Modularized Work Unit Groups . . . . . . . 12 i +,. :.Aooesston For :".. NTIS GR.AA1 ’- " "D T I C T A B Unannounced [] ~Justification i Availability...The monthly interim reports are summarized in this semiannual report. Activity to date has included work performed by Ms. Carol Carrere Dr. T. G. Clapp...Management. Provide, in accordance with paragraph 3.1 of the Statement of Work (SOW), North Carolina State University’s Technical Proposal, Manufacturing

  6. Additive Manufacturing of Thermoplastic Matrix Composites Using Ultrasonics

    NASA Astrophysics Data System (ADS)

    Olson, Meghan

    Advanced composite materials have great potential for facilitating energy efficient product design and their manufacture if improvements are made to current composite manufacturing processes. This thesis focuses on the development of a novel manufacturing process for thermoplastic composite structures entitled Laser-Ultrasonic Additive Manufacturing ('LUAM'), which is intended to combine the benefits of laser processing technology, developed by Automated Dynamics Inc., with ultrasonic bonding technology that is used commercially for unreinforced polymers. These technologies used together have the potential to significantly reduce the energy consumption and void content of thermoplastic composites made using Automated Fiber Placement (AFP). To develop LUAM in a methodical manner with minimal risk, a staged approach was devised whereby coupon-level mechanical testing and prototyping utilizing existing equipment was accomplished. Four key tasks have been identified for this effort: Benchmarking, Ultrasonic Compaction, Laser Assisted Ultrasonic Compaction, and Demonstration and Characterization of LUAM. This thesis specifically addresses Tasks 1 and 2, i.e. Benchmarking and Ultrasonic Compaction, respectively. Task 1, fabricating test specimens using two traditional processes (autoclave and thermal press) and testing structural performance and dimensional accuracy, provide results of a benchmarking study by which the performance of all future phases will be gauged. Task 2, fabricating test specimens using a non-traditional process (ultrasonic conpaction) and evaluating in a similar fashion, explores the the role of ultrasonic processing parameters using three different thermoplastic composite materials. Further development of LUAM, although beyond the scope of this thesis, will combine laser and ultrasonic technology and eventually demonstrate a working system.

  7. Practical aspects of modern interferometry for optical manufacturing quality control: Part 2

    NASA Astrophysics Data System (ADS)

    Smythe, Robert

    2012-07-01

    Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.

  8. Practical aspects of modern interferometry for optical manufacturing quality control, Part 3

    NASA Astrophysics Data System (ADS)

    Smythe, Robert A.

    2012-09-01

    Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space-based satellite imaging, and DVD and Blu-Ray disks are all enabled by phase-shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful toward the practical use of interferometers. An understanding of the parameters that drive the system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.

  9. Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing

    PubMed Central

    Hofmann, Douglas C.; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R. Peter; Suh, Jong-ook; Shapiro, Andrew A.; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  10. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Ji, Jing; Li, Kang

    2016-09-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.

  11. Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions.

    PubMed

    Ryniewicz, Anna M; Bojko, Łukasz; Ryniewicz, Wojciech I

    2016-01-01

    The aim of the present paper was a question of structural identification and evaluation of strength parameters of Titanium (Ticp - grade 2) and its alloy (Ti6Al4V) which are used to serve as a base for those permanent prosthetic supplements which are later manufactured employing CAD/CAM systems. Microstructural tests of Ticp and Ti6Al4V were conducted using an optical microscope as well as a scanning microscope. Hardness was measured with the Vickers method. Micromechanical properties of samples: microhardness and Young's modulus value, were measured with the Oliver and Pharr method. Based on studies using optical microscopy it was observed that the Ticp from the milling technology had a single phase, granular microstructure. The Ti64 alloy had a two-phase, fine-grained microstructure with an acicular-lamellar character. The results of scanning tests show that titanium Ticp had a single phase structure. On its grain there was visible acicular martensite. The structure of the two phase Ti64 alloy consists of a β matrix as well as released α phase deposits in the shape of extended needles. Micromechanical tests demonstrated that the alloy of Ti64 in both methods showed twice as high the microhardness as Ticp. In studies of Young's modulus of Ti64 alloy DMLS technology have lower value than titanium milling technology. According to the results obtained, the following conclusion has been drawn: when strength aspect is discussed, the DMLS method is a preferred one in manufacturing load structures in dentistry and may be an alternate way for the CAD/CAM system used in decrement processing.

  12. Product definition data interface

    NASA Technical Reports Server (NTRS)

    Birchfield, B.; Downey, P.

    1984-01-01

    The development and application of advanced Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) technology in aerospace industry is discussed. New CAD/CAM capabilities provide the engineer and production worker with tools to produce better products and significantly improve productivity. This technology is expanding in all phases of engineering and manufacturing with large potential for improvements in productivity. The integration of CAD and CAM systematically to insure maximum utility throughout the U.S. Aerospace Industry, its large community of supporting suppliers, and the Department of Defense aircraft overhaul and repair facilities is outlined. The need for a framework for exchange of digital product definition data, which serves the function of the conventional engineering drawing is emphasized.

  13. Development activities on NIR large format MCT detectors for astrophysics and space science at CEA and SOFRADIR

    NASA Astrophysics Data System (ADS)

    Boulade, Olivier; Moreau, Vincent; Mulet, Patrick; Gravrand, Olivier; Cervera, Cyril; Zanatta, Jean-Paul; Castelein, Pierre; Guellec, Fabrice; Fièque, Bruno; Chorier, Philippe; Roumegoux, Julien

    2016-07-01

    CEA and SOFRADIR have been manufacturing and characterizing near infrared detectors in the frame of ESA's near infrared large format sensor array roadmap to develop a 2Kx2K large format low flux low noise device for space applications such as astrophysics. These detectors use HgCdTe as the absorbing material and p/n diode technology. The technological developments (photovoltaic technology, readout circuit, ...) are shared between CEA/LETI and SOFRADIR, both in Grenoble, while most of the performances are evaluated at CEA/IRFU in Saclay where a dedicated test facility has been developed, in particular to measure very low dark currents. The paper will present the current status of these developments at the end of ESA's NIRLFSA phase 2. The performances of the latest batch of devices meet or are very close to all the requirements (quantum efficiency, dark current, cross talk, readout noise, ...) even though a glow induced by the ROIC prevents the accurate measurement of the dark current. The current devices are fairly small, 640x512 15μm pixels, and the next phase of activity will target the development of a full size 2Kx2K detector. From the design and development, to the manufacturing and finally the testing, that type of detector requests a high level of mastering. An appropriate manufacturing and process chain compatible with such a size is needed at industrial level and results obtained with CEA technology coupled with Sofradir industrial experience and work on large dimension detector allow French actors to be confident to address this type of future missions.

  14. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  15. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  16. Development of low cost custom hybrid microcircuit technology

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1981-01-01

    Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.

  17. Study for identification of Beneficial Uses of Space (BUS), phase 2. Volume 2: Technical report. Book 2: Section 5, appendices A through D

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An investigation of the technology and programmatics involved in the development of four of the products selected as capable of benefitting from space manufacturing was conducted. The four activities selected are as follows: (1) levitation heating and melting of tungsten, (2) free suspension processing of oxides to form amorphous oxide materials, (3) crystals for surface wave acoustic substrates, and (4) space manufacturing of surface acoustic wave devices.

  18. Electrical features of new DNC, CNC system viewed

    NASA Astrophysics Data System (ADS)

    Fritzsch, W.; Kochan, D.; Schaller, J.; Zander, H. J.

    1985-03-01

    Control structures capable of solving the problems of a flexible minial-labor manufacturing process are analyzed. The present state of development of equipment technology is described, and possible ways of modeling control processes are surveyed. Concepts which are frequently differently interpreted in various specialized disciplines are systematized, with a view toward creating the prerequisites for interdisciplinary cooperation. Problems and information flow during the preparatory and performance phases of manufacturing are examined with respect to coupling CAD/CAM functions. Mathematical modeling for direct numerical control is explored.

  19. Low Loss Graded Index Polymer Optical Fiber for Local Networking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus, Richard Otto

    The objective of this Department of Energy SBIR program has been to develop technology for the advancement of advanced computing systems. NanoSonic worked with two subcontractors, the Polymicro Division of Molex, a U.S.-based manufacturer of specialized optical fiber and fiber components, and Virginia Tech, a research university involved through the Global Environment for Network Innovations (GENI) program in high-speed computer networking research. NanoSonic developed a patented molecular-level self-assembly process to manufacture polymer-based optical fibers in a way similar to the modified chemical vapor deposition (MCVD) approach typically used to make glass optical fibers. Although polymer fiber has a higher attenuationmore » per unit length than glass fiber, short connectorized polymer fiber jumpers offer significant cost savings over their glass counterparts, particularly due to the potential use of low-cost plastic fiber connectors. As part of the SBIR commercialization process, NanoSonic exclusively licensed this technology to a large ($100B+ market cap) U.S.-based manufacturing conglomerate near the end of the first year of the Phase II program. With this base technology developed and licensed, NanoSonic then worked with Polymicro to address secondary program goals of using related but not conflicting production methods to enhance the performance of other specialty optical fiber products and components, and Virginia Tech continued its evaluation of developed polymer fibers in its network infrastructure system on the university campus. We also report our current understanding of the observation during the Phase I program of quantum conductance and partial quantum conductance in metal-insulator-metal (MIM) devices. Such conductance behavior may be modeled as singlemode behavior in one-dimensional electrically conducting waveguides, similar in principle to singlemode optical propagation in dielectric fiber waveguides. Although NanoSonic has not licensed any of the additional technology developed during the second year of the program, several proprietary discussions with major materials companies are underway as of the conclusion of Phase II.« less

  20. Inflatable Structures Technology Handbook. Chapter 21; Inflatable Habitats

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Raboin, Jasen; Spexarth, Gary; Valle, Gerard

    2000-01-01

    The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.

  1. Science & Technology Review October 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinn, D J

    Livermore researchers won five R&D 100 awards in R&D Magazine's annual competition for the top 100 industrial innovations worldwide. This issue of Science & Technology Review highlights the award-winning technologies: noninvasive pneumothorax detector, microelectromechanical system-based adaptive optics scanning laser ophthalmoscope, large-area imager, hyper library of linear solvers, and continuous-phase-plate optics system manufactured using magnetorheological finishing. Since 1978, Laboratory researchers have received 118 R&D 100 awards. The R&D 100 logo (on the cover and p 1) is reprinted courtesy of R&D Magazine.

  2. Scientific and Technological Foundations for Scaling Production of Nanostructured Metals

    NASA Astrophysics Data System (ADS)

    Lowe, Terry C.; Davis, Casey F.; Rovira, Peter M.; Hayne, Mathew L.; Campbell, Gordon S.; Grzenia, Joel E.; Stock, Paige J.; Meagher, Rilee C.; Rack, Henry J.

    2017-05-01

    Severe Plastic Deformation (SPD) has been explored in a wide range of metals and alloys. However, there are only a few industrial scale implementations of SPD for commercial alloys. To demonstrate and evolve technology for producing ultrafine grain metals by SPD, a Nanostructured Metals Manufacturing Testbed (NMMT) has been established in Golden, Colorado. Machines for research scale and pilot scale Equal Channel Angular Pressing-Conform (ECAP-C) technology have been configured in the NMMT to systematically evaluate and evolve SPD processing and advance the foundational science and technology for manufacturing. We highlight the scientific and technological areas that are critical for scale up of continuous SPD of aluminum, copper, magnesium, titanium, and iron-based alloys. Key areas that we will address in this presentation include the need for comprehensive analysis of starting microstructures, data on operating deformation mechanisms, high pressure thermodynamics and phase transformation kinetics, tribological behaviors, temperature dependence of lubricant properties, adaptation of tolerances and shear intensity to match viscoplastic behaviors, real-time process monitoring, and mechanics of billet/tooling interactions.

  3. Technology of High-speed Direct Laser Deposition from Ni-based Superalloys

    NASA Astrophysics Data System (ADS)

    Klimova-Korsmik, Olga; Turichin, Gleb; Zemlyakov, Evgeniy; Babkin, Konstantin; Petrovsky, Pavel; Travyanov, Andrey

    Recently, additive manufacturing is the one of most perspective technologies; it can replace conventional methods of casting and subsequent time-consuming machining. One of the most interesting additive technologies - high-speed direct laser deposition (HSDLD) allows realizing heterophase process during the manufacturing, which there is process takes place with a partial melting of powder. This is particularly important for materials, which are sensitive to strong fluctuations of temperature treatment regimes, like nickel base alloys with high content of gamma prime phase. This alloys are interested for many industrial areas, mostly there are used in engine systems, aircraft and shipbuilding, aeronautics. Heating and cooling rates during the producing process determine structure and affect on its properties. Using HSDLD process it possible to make a products from Ni superalloys with ultrafine microstructure and satisfactory mechanical characteristics without special subsequent heatreatment.

  4. Phase 1 of the automated array assembly task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Grenon, L. A.; Lesk, I. A.

    1977-01-01

    The state of technology readiness for the automated production of solar cells and modules is reviewed. Individual process steps and process sequences for making solar cells and modules were evaluated both technically and economically. High efficiency with a suggested cell goal of 15% was stressed. It is concluded that the technology exists to manufacture solar cells which will meet program goals.

  5. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    2013-08-15

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less

  6. International Space Station Environmental Control and Life Support System Status: 2002-2003

    NASA Technical Reports Server (NTRS)

    Wiliams, David E.; Lewis, John F.; Gentry, Gregory

    2003-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2002 and March 2003. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements with Node 3 just completing its final design review so that it can proceed towards manufacturing and the continued manufacturing of the regenerative ECLS equipment that will be integrated into Node 3.

  7. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  8. Phased-Array Monolithic PEM for FT Spectrometry With Applications in Explosive Detection and CB Defense

    DTIC Science & Technology

    2008-12-01

    manufacturing variability and thermal effects can be easi- ly compensated for electronically during operation by adjusting PZT amplitudes and phases... thermal and optical processes in the PEM bar and PZT array. An interface between COMSOL and the Trilinos solvers running in parallel on the cluster was...contaminants of low vapor pressure and/or low intrinsic fluorescence. Thermal luminescence (TL) is a technology aimed at solving the standoff

  9. Evaluation of potential for reuse of industrial wastewater using metal-immobilized catalysts and reverse osmosis.

    PubMed

    Choi, Jeongyun; Chung, Jinwook

    2015-04-01

    This report describes a novel technology of reusing the wastewater discharged from the display manufacturing industry through an advanced oxidation process (AOP) with a metal-immobilized catalyst and reverse osmosis (RO) in the pilot scale. The reclaimed water generated from the etching and cleaning processes in display manufacturing facilities was low-strength organic wastewater and was required to be recycled to secure a water source. For the reuse of reclaimed water to ultrapure water (UPW), a combination of solid-phase AOP and RO was implemented. The removal efficiency of TOC by solid-phase AOP and RO was 92%. Specifically, the optimal acid, pH, and H2O2 concentrations in the solid-phase AOP were determined. With regard to water quality and operating costs, the combination of solid-phase AOP and RO was superior to activated carbon/RO and ultraviolet AOP/anion polisher/coal carbon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    NASA Technical Reports Server (NTRS)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  11. No-Oven, No-Autoclave Composite Processing

    NASA Technical Reports Server (NTRS)

    Rauscher, Michael D.

    2015-01-01

    Very large composite structures, such as those used in NASA's Space Launch System, push the boundaries imposed by current autoclaves. New technology is needed to maintain composite performance and free manufacturing engineers from the restraints of curing equipment size limitations. Recent efforts on a Phase II project by Cornerstone Research Group, Inc. (CRG), have advanced the technology and manufacturing readiness levels of a unique two-part epoxy resin system. Designed for room-temperature infusion of a dry carbon preform, the system includes a no-heat-added cure that delivers 350 F composite performance in a matter of hours. This no-oven, no-autoclave (NONA) composite processing eliminates part-size constraints imposed by infrastructure and lowers costs by increasing throughput and reducing capital-specific, process-flow bottlenecks. As a result of the Phase II activity, NONA materials and processes were used to make high-temperature composite tooling suitable for further production of carbon-epoxy laminates and honeycomb/ sandwich-structure composites with an aluminum core. The technology platform involves tooling design, resin infusion processing, composite part design, and resin chemistry. The various technology elements are combined to achieve a fully cured part. The individual elements are not unusual, but they are combined in such a way that enables proper management of the heat generated by the epoxy resin during cure. The result is a self-cured carbon/ epoxy composite part that is mechanically and chemically stable at temperatures up to 350 F. As a result of the successful SBIR effort, CRG has launched NONA Composites as a spinoff subsidiary. The company sells resin to end users, fabricates finished goods for customers, and sells composite tooling made with NONA materials and processes to composite manufacturers.

  12. On-line application of near-infrared spectroscopy for monitoring water levels in parts per million in a manufacturing-scale distillation process.

    PubMed

    Lambertus, Gordon; Shi, Zhenqi; Forbes, Robert; Kramer, Timothy T; Doherty, Steven; Hermiller, James; Scully, Norma; Wong, Sze Wing; LaPack, Mark

    2014-01-01

    An on-line analytical method based on transmission near-infrared spectroscopy (NIRS) for the quantitative determination of water concentrations (in parts per million) was developed and applied to the manufacture of a pharmaceutical intermediate. Calibration models for water analysis, built at the development site and applied at the manufacturing site, were successfully demonstrated during six manufacturing runs at a 250-gallon scale. The water measurements will be used as a forward-processing control point following distillation of a toluene product solution prior to use in a Grignard reaction. The most significant impact of using this NIRS-based process analytical technology (PAT) to replace off-line measurements is the significant reduction in the risk of operator exposure through the elimination of sampling of a severely lachrymatory and mutagenic compound. The work described in this report illustrates the development effort from proof-of-concept phase to manufacturing implementation.

  13. Low AC Loss YBCO Coated Conductor Geometry by Direct Inkjet Printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupich, Martin, Dr.; Duckworth, Robert, Dr.

    The second generation (2G) high temperature superconductors (HTS) wire offers potential benefits for many electric power applications, including ones requiring filamentized conductors with low ac loss, such as transformers and fault current limiters. However, the use of 2G wire in these applications requires the development of both novel multi-filamentary conductor designs with lower ac losses and the development of advanced manufacturing technologies that enable the low-cost manufacturing of these filamentized architectures. This Phase I SBIR project focused on testing inkjet printing as a potential low-cost, roll-to-roll manufacturing technique to fabricate potential low ac loss filamentized architectures directly on the 2Gmore » template strips.« less

  14. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less

  15. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  16. Manufacturability study of masks created by inverse lithography technology (ILT)

    NASA Astrophysics Data System (ADS)

    Martin, Patrick M.; Progler, C. J.; Xiao, G.; Gray, R.; Pang, L.; Liu, Y.

    2005-11-01

    As photolithography is pushed to fabricate deep-sub wavelength devices for 90nm, 65nm and smaller technology nodes using available exposure tools (i.e., 248nm, 193nm steppers), photomask capability is becoming extremely critical. For example, PSM masks require more complicated processing; aggressive OPC makes the writing time longer and sometimes unpredictable; and, high MEEF imposes much more stringent demands on mask quality. Therefore, in order for any new lithography technology to be adopted into production, mask manufacturability must be studied thoroughly and carefully. In this paper we will present the mask manufacturability study on mask patterns created using Inverse Lithography Technology (ILT). Unlike conventional OPC methodologies, ILT uses a unique outcome-based technology to mathematically determine the mask features that produce the desired on-wafer results. ILT solves the most critical litho challenges of the deep sub-wavelength era. Potential benefits include: higher yield; expanded litho process windows; superb pattern fidelity at 90, 65 & 45-nm nodes; and reduced time-to-silicon - all without changing the existing lithography infrastructure and design-to-silicon flow. In this study a number of cell structures were selected and used as test patterns. "Luminized patterns" were generated for binary mask and attenuated phase-shift mask. Both conventional OPC patterns and "luminized patterns" were put on a test reticle side by side, and they all have a number of variations in term of correction aggressivity level and mask complexity. Mask manufacturability, including data fracturing, writing time, mask inspection, and metrology were studied. The results demonstrate that, by optimizing the inspection recipe, masks created using ILT technology can be made and qualified using current processes with a reasonable turn-around time.

  17. Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal

    2006-09-30

    The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less

  18. Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal; Paul Gigl; Mark Hunt

    2007-07-31

    The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less

  19. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Astrophysics Data System (ADS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-03-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  20. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, E.; Mullens, M.; Rath, P.

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. This work is part of a multiphase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall designmore » with exterior continuous insulation (CI). This report describes Phase 3, which was completed in two stages and continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.« less

  2. Onsite 40-kilowatt fuel cell power plant manufacturing and field test program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.

  3. A Review of the Aging Process and Facilities Topic.

    PubMed

    Jornitz, Maik W

    2015-01-01

    Aging facilities have become a concern in the pharmaceutical and biopharmaceutical manufacturing industry, so much that task forces are formed by trade organizations to address the topic. Too often, examples of aging or obsolete equipment, unit operations, processes, or entire facilities have been encountered. Major contributors to this outcome are the failure to invest in new equipment, disregarding appropriate maintenance activities, and neglecting the implementation of modern technologies. In some cases, a production process is insufficiently modified to manufacture a new product in an existing process that was used to produce a phased-out product. In other instances, manufacturers expanded the facility or processes to fulfill increasing demand and the scaling occurred in a non-uniform manner, which led to non-optimal results. Regulatory hurdles of post-approval changes in the process may thwart companies' efforts to implement new technologies. As an example, some changes have required 4 years to gain global approval. This paper will address cases of aging processes and facilities aside from modernizing options. © PDA, Inc. 2015.

  4. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosny, Jan; Miller, William A; Childs, Phillip W

    2011-01-01

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heatmore » sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.« less

  5. 1990 MTT-S International Microwave Symposium and Exhibition and Microwave and Millimeter-Wave Monolithic IC Symposium, Dallas, TX, May 7-10, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    McQuiddy, David N., Jr.; Sokolov, Vladimir

    1990-12-01

    The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.

  6. Analysis of the Lifecycle of Mechanical Engineering Products

    NASA Astrophysics Data System (ADS)

    Gubaydulina, R. H.; Gruby, S. V.; Davlatov, G. D.

    2016-08-01

    Principal phases of the lifecycle of mechanical engineering products are analyzed in the paper. The authors have developed methods and procedures to improve designing, manufacturing, operating and recycling of the machine. It has been revealed that economic lifecycle of the product is a base for appropriate organization of mechanical engineering production. This lifecycle is calculated as a minimal sum total of consumer and producer costs. The machine construction and its manufacturing technology are interrelated through a maximal possible company profit. The products are to be recycled by their producer. Recycling should be considered as a feedback phase, necessary to make the whole lifecycle of the product a constantly functioning self-organizing system. The principles, outlined in this paper can be used as fundamentals to develop an automated PLM-system.

  7. Design and fabrication of a polarization-independent two-port beam splitter.

    PubMed

    Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng

    2009-10-10

    We design and manufacture a fused-silica polarization-independent two-port beam splitter grating. The physical mechanism of this deeply etched grating can be shown clearly by using the simplified modal method with consideration of corresponding accumulated phase difference of two excited propagating grating modes, which illustrates that the binary-phase fused-silica grating structure depends little on the incident wavelength, but mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These analytic results would also be very helpful for wavelength bandwidth analysis. The exact grating profile is optimized by using the rigorous coupled-wave analysis. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results agree well with the theoretical values.

  8. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menchhofer, Paul A.; Johnson, Joseph E.; Lindahl, John M.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is criticalmore » to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.« less

  9. Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coleman, Rashadd L.

    Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.

  10. DEVELOPMENT AND EVALUATION OF EDUCATIONAL PROGRAMS IN BIO-MEDICAL EQUIPMENT TECHNOLOGY, PHASE I. FINAL REPORT.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    OFFICIALS OF A REPRESENTATIVE SAMPLE OF HOSPITALS, BIOMEDICAL EQUIPMENT MANUFACTURERS, AND MEDICAL RESEARCH INSTITUTES IN NEW ENGLAND AND THREE MIDDLE ATLANTIC STATES WERE INTERVIEWED TO DETERMINE THE NEED FOR TECHNICIANS TO SERVICE AND MAINTAIN EQUIPMENT FOUND IN HOSPITALS AND BIOMEDICAL RESEARCH INSTITUTIONS. RESPONSES INDICATED A NEED FOR…

  11. ENVIRONMENTAL TECHNOLOGY REPORT, MIRATECH CORPORATION, GECO(TM) 3001 AIR/FUEL RATIO CONTROLLER (MANUFACTURED BY WOODWARD GOVERNOR COMPANY) PHASE II REPORT

    EPA Science Inventory

    In the natural gas industry, transmission pipeline operators use internal combustion (IC) gas-fired engines to provide the mechanical energy needed to drive pipeline gas compressors. As such, owners and operators of compressor stations are interested in the performance of these e...

  12. Design, Test, Redesign: Simulation in Technology, Engineering, and Design Education Classrooms

    ERIC Educational Resources Information Center

    Swinson, Ronnie; Clark, Aaron C.; Ernst, Jeremy V.; Sutton, Kevin

    2016-01-01

    Today's engineers, designers, and technologists are often thrust into the role of problem solver, from the initial design phase of a product or process all the way to final development. Many engineers in manufacturing environments are tasked with solving problems and continuously improving processes to enhance company profitability, efficiency,…

  13. Valorisation of wastewater from two-phase olive oil extraction in fired clay brick production.

    PubMed

    de la Casa, José A; Lorite, Miguel; Jiménez, Juan; Castro, Eulogio

    2009-09-30

    Wastewater issued from oil-washing stage (OWW) in the two-phase olive oil extraction method was used to replace fresh water in clay brick manufacture. The extrusion trials were performed with one of the ceramic bodies currently being used in a local brick factory for red facing bricks (RB) production. Fresh water or OWW was added to a final consistency of 2.4 kg/cm(2), the same value as used at industrial scale for this kind of clay mixture. Comparative results of technological properties of facing bricks are presented. Results show that the products obtained with olive oil wastewater are comparable to traditional ones in terms of extrusion performance and technological properties of end products. Even dry-bending strength of the body formed by wastewater improves by 33% compared to fresh water body. In addition, heating requirements can be reduced in the range 2.4-7.3% depending on the final product. This application can alleviate environmental impacts from the olive oil extraction industry and, at the same time, result in economic savings for the brick manufacturing industry.

  14. A Framework for Evaluating R&D Impacts and Supply Chain Dynamics Early in a Product Life Cycle. Looking inside the black box of innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Gretchen; Mote, Jonathan; Ruegg, Rosalie

    This report provides a framework for evaluation of R&D investments aimed at speeding up the pace of innovation and strengthening domestic manufacturing and supply chains, which make up a portion of the investments of the U.S. Department of Energy's (DOEs) Office of Energy Efficiency and Renewable Energy (EERE). These investments focus on early phases of the product life cycle, characterized as extending from pre-product, late stage R&D, to initial product introduction and through to early market growth. The investments aim to provide support for additional technology, supply-chain, manufacturing, and early market development to enhance or create markets for clean energymore » technologies and strengthen the U.S. industry base.« less

  15. The National Ignition Facility: The world's largest optical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J

    2007-10-15

    The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics atmore » desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.« less

  16. Sandia National Labs: Manufacturing Science and Technology

    Science.gov Websites

    Additional Resources R&D Projects Current Partnerships Creating Partnerships Welcome to the Manufacturing Science and Technology home page Manufacturing Science and Technology Showcase The Manufacturing Science & Technology Center develops and applies advanced manufacturing processes for realization of

  17. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  18. Surface based factory for the production of life support and technology support products

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The presence of a manned space colony on Mars may be expected to involve three phases in the utilization of planetary resources: (1) survival phase in which air, water, and food are produced, (2) self sufficiency phase in which chemicals, fuels, pharmaceuticals, polymers, and metals are produced, and (3) export to earth of materials and technology 1 phase in which the unique advantage of the extraterrestrial environment is fully exploited. The Advanced Design Project is administered as an interdisciplinary effort involving students and faculty throughout the College of Engineering. Senior students from Chemical, Civil, Electrical, and Mechanical Engineering are participating as a team. Multi discipline interfacing and coordination are stressed throughout the project. An interdisciplinary senior design course was developed and offered in the Spring of 1987. The first task of the survival phase is that of providing a supply of water and air adequate to support a ten person colony. The project has been divided into three subgroups: (1) design of a manufacturing and storage facility for air, (2) search and drill for water or water-bearing materials, and (3) retrieve, purify, and store potable water. The conceptual design phase has been completed and the project is being documented. The second task of the survival phase is that of providing a replenish able food supply. This task has two requirements: producing a supply of protein and providing an environment for growing plants for food. For the first requirement, we considered the design of a bioreactor system capable of growing beef cells for protein production. For the second, a design must be developed for a manufacturing system to produce materials needed to build a greenhouse farm.

  19. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  20. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  1. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  2. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  3. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  4. Technical and Economic Assessment of Span-Loaded Cargo Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The benefits are assessed of span distributed loading concepts as applied to future commercial air cargo operations. A two phased program is used to perform this assessment. The first phase consists of selected parametric studies to define significant configuration, performance, and economic trends. The second phase consists of more detailed engineering design, analysis, and economic evaluations to define the technical and economic feasibility of a selected spanloader design. A conventional all-cargo aircraft of comparable technology and size is used as a comparator system. The technical feasibility is demonstrated of the spanloader concept with no new major technology efforts required to implement the system. However, certain high pay-off technologies such as winglets, airfoil design, and advanced structural materials and manufacturing techniques need refinement and definition prior to application. In addition, further structural design analysis could establish the techniques and criteria necessary to fully capitalize upon the high degree of structural commonality and simplicity inherent in the spanloader concept.

  5. Three-port beam splitter of a binary fused-silica grating.

    PubMed

    Feng, Jijun; Zhou, Changhe; Wang, Bo; Zheng, Jiangjun; Jia, Wei; Cao, Hongchao; Lv, Peng

    2008-12-10

    A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values.

  6. Manufacturing and Application of Metalized Ore-Coal Pellets in Synthetic Pig Iron Smelting

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhikhina, I. D.; Khodosov, I. E.

    2016-08-01

    The article presents research data on manufacturing and application of metalized ore-coal pellets in synthetic pig iron smelting. A technology of pellets metallization by means of solid-phase reduction of iron from oxides using hematite-magnetite iron ore and low-caking coal as raw materials is described. Industrial testing of replacing 10, 15, and 20% of waste metal by the metalized ore-coal pellets in the coreless induction furnace IST-1 is described. Optimal temperature and time conditions of feeding the metalized pellets into the furnace in smelting pig iron of SCh-40-60 grade are determined.

  7. The history of the LHC

    ScienceCinema

    Evans, Lyn

    2018-05-23

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D, industrialization, construction, installation and commissioning.

  8. Measures of International Manufacturing and Trade of Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metricsmore » for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.« less

  9. Benchmarks of Global Clean Energy Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, Debra; Chung, Donald; Keyser, David

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  10. Technology CAD for integrated circuit fabrication technology development and technology transfer

    NASA Astrophysics Data System (ADS)

    Saha, Samar

    2003-07-01

    In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.

  11. MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DR. DEVIN MACKENZIE

    2011-12-13

    Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target ofmore » >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.« less

  12. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL Manufacturing Demonstration Facility (MDF) sponsored by the DOE's Advanced Manufacturing Office. The MDF is focusing on R&D of both metal and polymer AM pertaining to in-situ process monitoring and closed-loop controls; implementation of advanced materials in AM technologies; and demonstration, characterization, and optimization of next-generation technologies. ORNL is working directly with industry partners to leverage world-leading facilities in fields such as high performance computing, advanced materials characterization, and neutron sciences to solve fundamental challenges in advanced manufacturing. Specifically, MDF is leveraging two of the world's most advanced neutron facilities, the HFIR and SNS, to characterize additive manufactured components.

  13. An update on coating/manufacturing techniques of microneedles.

    PubMed

    Tarbox, Tamara N; Watts, Alan B; Cui, Zhengrong; Williams, Robert O

    2017-12-29

    Recently, results have been published for the first successful phase I human clinical trial investigating the use of dissolving polymeric microneedles… Even so, further clinical development represents an important hurdle that remains in the translation of microneedle technology to approved products. Specifically, the potential for accumulation of polymer within the skin upon repeated application of dissolving and coated microneedles, combined with a lack of safety data in humans, predicates a need for further clinical investigation. Polymers are an important consideration for microneedle technology-from both manufacturing and drug delivery perspectives. The use of polymers enables a tunable delivery strategy, but the scalability of conventional manufacturing techniques could arguably benefit from further optimization. Micromolding has been suggested in the literature as a commercially viable means to mass production of both dissolving and swellable microneedles. However, the reliance on master molds, which are commonly manufactured using resource intensive microelectronics industry-derived processes, imparts notable material and design limitations. Further, the inherently multi-step filling and handling processes associated with micromolding are typically batch processes, which can be challenging to scale up. Similarly, conventional microneedle coating processes often follow step-wise batch processing. Recent developments in microneedle coating and manufacturing techniques are highlighted, including micromilling, atomized spraying, inkjet printing, drawing lithography, droplet-born air blowing, electro-drawing, continuous liquid interface production, 3D printing, and polyelectrolyte multilayer coating. This review provides an analysis of papers reporting on potentially scalable production techniques for the coating and manufacturing of microneedles.

  14. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGES

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; ...

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  15. New EUROPRACTICE microsystem design and foundry services

    NASA Astrophysics Data System (ADS)

    Salomon, Patric R.; Beernaert, Dirk; Turner, Rob

    2000-08-01

    The microsystems market for MST is predicted to grow to 38 billion dollars by the year 2002, with systems containing these components generating even higher revenues and growth. One of the barriers to successful exploitation of this technology has been the lack of access to industrial foundries capable of producing certified microsystems devices in commercial quantities. To overcome this problem, the European Commission has started the EUROPRACTICE program in 1996 with the installation of manufacturing clusters and demonstration activities to provide access to microsystems foundry services for European small and medium sized companies (SMEs). Since 1996, there has been a shift form providing 'broad technology offers' and 'raising awareness fro microsystem capabilities' to 'direct support of design needs' and 'focused services' which allow SMEs to use even complex microsystems technologies to implement their products, The third phase of EUROPRACTICE has just been launched, and contains 5 Manufacturing Clusters, 12 Designs Houses, and 7 Competence Centers, each working in different application/technology areas. The EUROPRACTICE program will be presented together with a detail description of the capabilities of the participants and information on how to access their services.

  16. Using Teamcenter engineering software for a successive punching tool lifecycle management

    NASA Astrophysics Data System (ADS)

    Blaga, F.; Pele, A.-V.; Stǎnǎşel, I.; Buidoş, T.; Hule, V.

    2015-11-01

    The paper presents studies and researches results of the implementation of Teamcenter (TC) integrated management of a product lifecycle, in a virtual enterprise. The results are able to be implemented also in a real enterprise. The product was considered a successive punching and cutting tool, designed to materialize a metal sheet part. The paper defines the technical documentation flow (flow of information) in the process of constructive computer aided design of the tool. After the design phase is completed a list of parts is generated containing standard or manufactured components (BOM, Bill of Materials). The BOM may be exported to MS Excel (.xls) format and can be transferred to other departments of the company in order to supply the necessary materials and resources to achieve the final product. This paper describes the procedure to modify or change certain dimensions of sheet metal part obtained by punching. After 3D and 2D design, the digital prototype of punching tool moves to following lifecycle phase of the manufacturing process. For each operation of the technological process the corresponding phases are described in detail. Teamcenter enables to describe manufacturing company structure, underlying workstations that carry out various operations of manufacturing process. The paper revealed that the implementation of Teamcenter PDM in a company, improves efficiency of managing product information, eliminating time working with search, verification and correction of documentation, while ensuring the uniqueness and completeness of the product data.

  17. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    PubMed Central

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  18. Design of novel materials for additive manufacturing - Isotropic microstructure and high defect tolerance.

    PubMed

    Günther, J; Brenne, F; Droste, M; Wendler, M; Volkova, O; Biermann, H; Niendorf, T

    2018-01-22

    Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.

  19. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  20. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...

  1. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...

  2. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...

  3. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...

  4. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...

  5. High Throughput Manufacturing of Thin-Film CdTe Photovoltaic Materials; Final Subcontract Report, 16 November 1993-31 December 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandwisch, D. W.

    1999-09-02

    This report describes work performed by Solar Cells, Inc. (SCI), during this Photovoltaic Manufacturing Technology (PVMaT) subcontract. Cadmium telluride (CdTe) is recognized as one of the leading materials for low-cost photovoltaic modules. SCI has developed this technology and is preparing to scale its pilot production capabilities to a multi-megawatt level. This four-phase PVMaT subcontract supports these efforts. The work was related to product definition, process definition, equipment engineering, and support programs development. In the area of product definition and demonstration, two products were specified and demonstrated-a grid-connected, frameless, high-voltage product that incorporates a pigtail potting design and a remote low-voltagemore » product that may be framed and may incorporate a junction box. SCI produced a 60.3-W thin-film CdTe module with total-area efficiency of 8.4%; SCI also improved module pass rate on the interim qualification test protocol from less than 20% to 100% as a result of work related to the subcontract. In the manufacturing process definition area, the multi-megawatt manufacturing process was defined, several of the key processes were demonstrated, and the process was refined and proven on a 100-kW pilot line that now operates as a 250-kW line. In the area of multi-megawatt manufacturing-line conceptual design review, SCI completed a conceptual layout of the multi-megawatt lines. The layout models the manufacturing line and predicts manufacturing costs. SCI projected an optimized capacity, two-shift/day operation of greater than 25 MW at a manufacturing cost of below $1.00/W.« less

  6. Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution

    NASA Astrophysics Data System (ADS)

    Yang, Jingjing; Yang, Huihui; Yu, Hanchen; Wang, Zemin; Zeng, Xiaoyan

    2017-07-01

    The microstructures, potentiodynamic curves, and electrochemical impedance spectroscopy are characterized for Ti-6Al-4V samples produced by selective laser melting (SLM), SLM followed by heat treatment (HT), wire and arc additive manufacturing (WAAM), and traditional rolling to investigate their corrosion behaviors. Results show that the processing technology acts a significant role in controlling the microstructures, which in turn directly determine their corrosion resistance. The order of corrosion resistance of these samples is SLM < WAAM < rolling < SLM+HT. Among these microstructural factors for influencing corrosion resistance, type of constituent phase is the main one, followed by grain size, and the last is morphology. Finally, the application potentials of additive manufactured Ti-6Al-4V alloy are verified in the aspect of corrosion resistance.

  7. Mixed-Potential NO x and NH 3 Sensors Fabricated by Commercial Manufacturing Methods [Mixed-Potential Sensors NO x and NH 3 Fabricated by Commercial Manufacturing Methods

    DOE PAGES

    Kreller, Cortney R.; Spernjak, Dusan; Li, Wenxia; ...

    2014-08-12

    Meeting EPA Tier 3 emissions reduction requirements while simultaneously increasing fuel economy to meet new CAFE standards will require optimization of advanced combustion strategies and emissions control technologies. There is an immediate need for suitable exhaust gas sensor technologies to monitor internal combustion engine tailpipe emissions and to control and maintain efficient operation of the engine and exhaust after treatment systems. NH 3, NO x, and HC sensors could enable onboard diagnostics and combustion control in lean-burn engines, analogous to the role of O 2 sensors in stoichiometric burn engines. Commercial manufacturing methods have been used to fabricate self-heated mixed-potentialmore » sensors in a planar automotive configuration. By altering materials composition and operating conditions, we are able to obtain sensitivity/selectivity to each NH 3, NO x and HCs. In addition, these devices exhibit stable performance over months of testing as a result of the stable morphology of the electrode/electrolyte/gas three-phase interface.« less

  8. SiGe BiCMOS manufacturing platform for mmWave applications

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker

    2010-10-01

    TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.

  9. Solution-Based 3D Printing of Polymers of Intrinsic Microporosity.

    PubMed

    Zhang, Fengyi; Ma, Yao; Liao, Jianshan; Breedveld, Victor; Lively, Ryan P

    2018-05-28

    Current additive manufacturing methods have significant limitations in the classes of compatible polymers. Many polymers of significant technological interest cannot currently be 3D printed. Here, a generalizable method for 3D printing of viscous tenary polymer solutions (polymer/solvent/nonsolvent) is applied to both "intrinsically porous" (a polymer of intrinsic microporosity, PIM-1) and "intrinsically nonporous" (cellulose acetate) polymers. Successful ternary ink formulations require balancing of solution thermodynamics (phase separation), mass transfer (solvent evaporation), and rheology. As a demonstration, a microporous polymer (PIM-1) incompatible with current additive manufacturing technologies is 3D printed into a high-efficiency mass transfer contactor exhibiting hierarchical porosity ranging from sub-nanometer to millimeter pores. Short contactors (1.27 cm) can fully purify (<1 ppm) toluene vapor (1000 ppm) in N 2 gas for 1.7 h, which is six times longer than PIM-1 in traditional structures, and more than 4000 times the residence time of gas in the contactor. This solution-based additive manufacturing approach greatly extends the range of 3D-printable materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of heat treatment on the microstructure of Co-Cr-W alloy fabricated by laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Chen, Changjun; Zhang, Min

    2018-04-01

    Stellite 6 cobalt-based alloy powder was used to produce Co-Cr-W alloy using laser additive manufacturing technology, and then different heat treatment strategies were carried out on the deposited sample. The characteristics of microstructure under different heat treatment conditions were investigated using scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscope, and x-ray diffraction. The results show that the as-deposited sample has few cracks or pores, and the microstructure is typical dendritic structure, and lamellar eutectic carbides are rich in Cr in interdendritic. The matrix mainly consists of γ phases and a few ɛ phases. Some γ phases transform into ɛ phases after 900°C/6 h aging treatment and lamellar eutectic carbides transform into blocky carbides presenting as a network, most of the carbides are rich in Cr and a few are rich in W. When heat treated at 1200°C/1 h followed by water cooling and then treated at 900°C/6 h followed by furnace cooling, it can be found that some γ phases transform into ɛ phases. The carbides transform into elliptical M23C6 carbides that are rich in Cr with the size of 1 to 3 μm and a part of W-rich carbides.

  11. IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING.

    PubMed

    Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee

    2015-10-01

    Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly.

  12. IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING

    PubMed Central

    Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee

    2015-01-01

    Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly. PMID:26783512

  13. United States Automotive Materials Partnership LLC (USAMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunitiesmore » for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities through the aggressive application of lightweight materials, advanced computational methods, and the demonstration of production capable manufacturing processes intended for high-volume applications, all directed towards the FreedomCAR Program goals. Priority lightweighting materials include advanced high-strength steels (AHSS), aluminum, magnesium, titanium, and composites such as metal-matrix materials, and glass- and carbon-fiber-reinforced thermosets and thermoplastics. Besides developing valuable new design and material property information, several projects have extensively used computer-based product modeling and simulation technologies to optimize designs and materials usage while addressing the cost-performance issues. The purpose of this Summary Final Closeout Report is to document the successes, degree of progress, technology dissemination efforts, and lessons learned.« less

  14. Automated aray assembly, phase 2

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1979-01-01

    A manufacturing process suitable for the large-scale production of silicon solar array modules at a cost of less than $500/peak kW is described. Factors which control the efficiency of ion implanted silicon solar cells, screen-printed thick film metallization, spray-on antireflection coating process, and panel assembly are discussed. Conclusions regarding technological readiness or cost effectiveness of individual process steps are presented.

  15. Revisiting adoption of high transmission PSM: pros, cons and path forward

    NASA Astrophysics Data System (ADS)

    Ma, Z. Mark; McDonald, Steve; Progler, Chris

    2009-12-01

    High transmission attenuated phase shift masks (Hi-T PSM) have been successfully applied in volume manufacturing for certain memory devices. Moreover, numerous studies have shown the potential benefits of Hi-T PSM for specific lithography applications. In this paper, the potential for extending Hi-T PSM to logic devices, is revisited with an emphasis on understanding layout, transmission, and manufacturing of Hi-T PSM versus traditional 6% embedded attenuated phase shift mask (EAPSM). Simulations on various layouts show Hi-T PSM has advantage over EAPSM in low duty cycle line patterns and high duty cycle space patterns. The overall process window can be enhanced when Hi- T PSM is combined with optimized optical proximity correction (OPC), sub-resolution assist features (SRAF), and source illumination. Therefore, Hi-T PSM may be a viable and lower cost alternative to other complex resolution enhancement technology (RET) approaches. Aerial image measurement system (AIMS) results on test masks, based on an inverse lithography technology (ILT) generated layout, confirm the simulation results. New advancement in high transmission blanks also make low topography Hi-T PSM a reality, which can minimize scattering effects in high NA lithography.

  16. Infrared detector development for the IASI instrument

    NASA Astrophysics Data System (ADS)

    Royer, Michel; Fleury, Joel; Lorans, Dominique; Pelier, Alain

    1997-10-01

    IASI is an infrared atmospheric sounding interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the ESA/EUMETSAT Polar Platform METOP to be launched in 2002. The required operating lifetime is 5 years. SAGEM/SAT has been developing the cold acquisition unit since 1991. The B-phase study was dedicated to the manufacture of the critical components, among which the IR detectors, optics, cold links and packaging. They concern the 3 types of detectors (InSb, HgCdTe-photovoltaic, HgCdTe- photoconductive) and the assembly technologies. The quantum detectors operate in the IR spectrum, so they are cooled at 100 K. The large spectrum (3.4 to 15.5 micrometer) is divided into 3 spectral bands. After manufacturing of these components, a program of test has been conducted and is reported for the evaluation of the technologies. It shows how the detector focal planes can sustain the space environmental conditions of an operational mission. It comprises two main files of test, mechanical evaluation and electrical evaluation. The detector environment has also been considered with aging and radiation tests, performed successfully. The B- phase is now achieved and all these development and testing activities are here reported.

  17. Demonstrating Starshade Performance as Part of NASA's Technology Development for Exoplanet Missions

    NASA Astrophysics Data System (ADS)

    Kasdin, N. Jeremy; Spergel, D. N.; Vanderbei, R. J.; Lisman, D.; Shaklan, S.; Thomson, M. W.; Walkemeyer, P. E.; Bach, V. M.; Oakes, E.; Cady, E. J.; Martin, S. R.; Marchen, L. F.; Macintosh, B.; Rudd, R.; Mikula, J. A.; Lynch, D. H.

    2012-01-01

    In this poster we describe the results of our project to design, manufacture, and measure a prototype starshade petal as part of the Technology Development for Exoplanet Missions program. An external occult is a satellite employing a large screen, or starshade,that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light for the observatory, greatly relaxing the requirements on the telescope and instrument. In this first two-year phase we focused on the key requirement of manufacturing a precision petal with the precise tolerances needed to meet the overall error budget. These tolerances are established by modeling the effect that various mechanical and thermal errors have on scatter in the telescope image plane and by suballocating the allowable contrast degradation between these error sources. We show the results of this analysis and a representative error budget. We also present the final manufactured occulter petal and the metrology on its shape that demonstrates it meets requirements. We show that a space occulter built of petals with the same measured shape would achieve better than 1e-9 contrast. We also show our progress in building and testing sample edges with the sharp radius of curvature needed for limiting solar glint. Finally, we describe our plans for the second TDEM phase.

  18. Manufacturing Innovation and Technological Superiority

    DTIC Science & Technology

    2016-09-01

    Defense AT&L: September-October 2016 2 From the Under Secretary of Defense for Acquisit ion, Technology, and Logist ics Manufacturing Innovation ...program to establish Manufacturing Innovation Institutes (MIIs) that would create incubators for advanced manufacturing technology in key

  19. Generic Health Management: A System Engineering Process Handbook Overview and Process

    NASA Technical Reports Server (NTRS)

    Wilson, Moses Lee; Spruill, Jim; Hong, Yin Paw

    1995-01-01

    Health Management, a System Engineering Process, is one of those processes-techniques-and-technologies used to define, design, analyze, build, verify, and operate a system from the viewpoint of preventing, or minimizing, the effects of failure or degradation. It supports all ground and flight elements during manufacturing, refurbishment, integration, and operation through combined use of hardware, software, and personnel. This document will integrate Health Management Processes (six phases) into five phases in such a manner that it is never a stand alone task/effort which separately defines independent work functions.

  20. JTEC Panel report on electronic manufacturing and packaging in Japan

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John; Meieran, Gene; Pecht, Michael; Peeples, John; Tummala, Rao; Dehaemer, Michael J.; Holdridge, Geoff (Editor); Gamota, George

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith

    ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in themore » expansion of United States operations for ECM Technologies.« less

  2. Thin EFG octagons

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1994-03-01

    This report describes work to advance the manufacturing line capabilities in crystal growth and laser cutting of Mobil Solar's unique edge-defined film-fed growth (EFG) octagon technology and to reduce the manufacturing costs of 10 cm x 10 cm polycrystalline silicon EFG wafers. The report summarizes the significant technical improvements in EFG technology achieved in the first 6 months of the PVMaT Phase 2 and the success in meeting program milestones. Technical results are reported for each of the three main pregrain areas: Task 5 -- Thin octagon growth (crystal growth) to reduce the thickness of the octagon to 200 microns; Task 6 -- Laser cutting-to improve the laser cutting process so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and Task 7 -- Process control and product specification to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.

  3. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    NASA Astrophysics Data System (ADS)

    Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina

    2018-03-01

    There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  4. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  5. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    PubMed

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  6. Pellet to Part Manufacturing System for CNCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.

    Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.

  7. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  8. Design of a surface-based factory for the production of life support and technology support products. Phase 2: Integrated water system for a space colony

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Phase 2 of a conceptual design of an integrated water treatment system to support a space colony is presented. This includes a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use. The system is to supply quality water for biological consumption, farming, residential and industrial use and the water source is assumed to be artesian or subsurface and on Mars. Design criteria and major assumptions are itemized. A general block diagram of the expected treatment system is provided. The design capacity of the system is discussed, including a summary of potential users and the level of treatment required; and, finally, various treatment technologies are described.

  9. Advanced optical manufacturing and testing; Proceedings of the Meeting, San Diego, CA, July 9-11, 1990

    NASA Astrophysics Data System (ADS)

    Sanger, Gregory M.; Reid, Paul B.; Baker, Lionel R.

    1990-11-01

    Consideration is given to advanced optical fabrication, profilometry and thin films, and metrology. Particular attention is given to automation for optics manufacturing, 3D contouring on a numerically controlled grinder, laser-scanning lens configurations, a noncontact precision measurement system, novel noncontact profiler design for measuring synchrotron radiation mirrors, laser-diode technologies for in-process metrology, measurements of X-ray reflectivities of Au-coatings at several energies, platinum coating of an X-ray mirror for SR lithography, a Hilbert transform algorithm for fringe-pattern analysis, structural error sources during fabrication of the AXAF optical elements, an in-process mirror figure qualification procedure for large deformable mirrors, interferometric evaluation of lenslet arrays for 2D phase-locked laser diode sources, and manufacturing and metrology tooling for the solar-A soft X-ray telescope.

  10. International Assessment of Carbon Nanotube Manufacturing and Applications

    DTIC Science & Technology

    2007-06-01

    oriented and long SWNT arrays obtained by the “fast-heating” growth process (Huang et al . 2004); the Fe/Mo catalyst nanoparticles are deposited ...and Cu layers for top-layer electrical contact. More recent work has been with gas-phase- deposited Ni and Co nanoparticles as catalysts (Sato et al ...22 3.6 Microstructure of MWCNT materials produced by a continuous process at Nano Carbon technologies

  11. The Investigation on Strain Strengthening Induced Martensitic Phase Transformation of Austenitic Stainless Steel: A Fundamental Research for the Quality Evaluation of Strain Strengthened Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Li, Bo; Cai Ren, Fa; Tang, Xiao Ying

    2018-03-01

    The manufacture of pressure vessels with austenitic stainless steel strain strengthening technology has become an important technical means for the light weight of cryogenic pressure vessels. In the process of increasing the strength of austenitic stainless steel, strain can induce the martensitic phase transformation in austenite phase. There is a quantitative relationship between the transformation quantity of martensitic phase and the basic mechanical properties. Then, the martensitic phase variables can be obtained by means of detection, and the mechanical properties and safety performance are evaluated and calculated. Based on this, the quantitative relationship between strain hardening and deformation induced martensite phase content is studied in this paper, and the mechanism of deformation induced martensitic transformation of austenitic stainless steel is detailed.

  12. Manufacturing Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Manufacturing Laboratory Manufacturing Laboratory Researchers in the Energy Systems Integration Facility's Manufacturing Laboratory develop methods and technologies to scale up renewable energy technology manufacturing capabilities. Photo of researchers and equipment in the Manufacturing Laboratory. Capability Hubs

  13. Training for New Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  14. Thin EFG octagons

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1994-01-01

    Mobil Solar Energy Corporation currently practices a unique crystal growth technology for producing crystalline silicon sheet, which is then cut with lasers into wafers. The wafers are processed into solar cells and incorporated into modules for photovoltaic applications. The silicon sheet is produced using a method known as Edge-defined Film-fed growth (EFG), in the form of hollow eight-sided polygons (octagons) with 10 cm faces. These are grown to lengths of 5 meters and thickness of 300 microns, with continuous melt replenishment, in compact furnaces designed to operate at a high sheet area production area of 135 sq cm/min. The present Photovoltaic Manufacturing Technology (PVMaT) three-year program seeks to advance the manufacturing line capabilities of the Mobil Solar crystal growth and cutting technologies. If successful, these advancements will provide significant reductions in already low silicon raw material usage, improve process productivity, laser cutting throughput and yield, and so lower both individual wafer cost and the cost of module production. This report summarizes the significant technical improvements in EFG technology achieved in Phase 1 of this program. Technical results are reported for each of the three main program areas: (1) thin octagon growth (crystal growth) -- to reduce the thickness of the octagon to an interim goal of 250 microns during Phase 1, with an ultimate goal of achieving 200 micron thicknesses; (2) laser cutting -- to improve the laser cutting process, so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and (3) process control and product specification -- to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.

  15. Design for manufacturability production management activity report

    NASA Astrophysics Data System (ADS)

    Miyazaki, Norihiko; Sato, T.; Honma, M.; Yoshioka, N.; Hosono, K.; Onodera, T.; Itoh, H.; Suzuki, H.; Uga, T.; Kadota, K.; Iriki, N.

    2006-05-01

    Design For Manufacturability Production Management (DFM-PM) Subcommittee has been started in succession to Reticle Management Subcommittee (RMS) in Semiconductor Manufacturing Technology Committee for Japan (SMTCJ) from 2005. Our activity focuses on the SoC (System On Chip) Business, and it pursues the improvement of communication in manufacturing technique. The first theme of activity is the investigation and examination of the new trends about production (manufacturer) technology and related information, and proposals of business solution. The second theme is the standardization activity about manufacture technology and the cooperation with related semiconductors' organizations. And the third theme is holding workshop and support for promotion and spread of the standardization technology throughout semiconductor companies. We expand a range of scope from design technology to wafer pattern reliability and we will propose the competition domain, the collaboration area and the standardization technology on DFM. Furthermore, we will be able to make up a SoC business model as the 45nm node technology beyond manufacturing platform in cooperating with the design information and the production information by utilizing EDA technology.

  16. Accelerated Metastable Solid-liquid Interdiffusion Bonding with High Thermal Stability and Power Handling

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Chia; Smet, Vanessa; Kawamoto, Satomi; Pulugurtha, Markondeya R.; Tummala, Rao R.

    2018-01-01

    Emerging high-performance systems are driving the need for advanced packaging solutions such as 3-D integrated circuits (ICs) and 2.5-D system integration with increasing performance and reliability requirements for off-chip interconnections. Solid-liquid interdiffusion (SLID) bonding resulting in all-intermetallic joints has been proposed to extend the applicability of solders, but faces fundamental and manufacturing challenges hindering its wide adoption. This paper introduces a Cu-Sn SLID interconnection technology, aiming at stabilization of the microstructure in the Cu6Sn5 metastable phase rather than the usual stable Cu3Sn phase. This enables formation of a void-free interface yielding higher mechanical strength than standard SLID bonding, as well as significantly reducing the transition time. The metastable SLID technology retains the benefits of standard SLID with superior I/O pitch scalability, thermal stability and current handling capability, while advancing assembly manufacturability. In the proposed concept, the interfacial reaction is controlled by introducing Ni(P) diffusion barrier layers, designed to effectively isolate the metastable Cu6Sn5 phase preventing any further transformation. Theoretical diffusion and kinetic models were applied to design the Ni-Cu-Sn interconnection stack to achieve the targeted joint composition. A daisy chain test vehicle was used to demonstrate this technology as a first proof of concept. Full transition to Cu6Sn5 was successfully achieved within a minute at 260°C as confirmed by scanning electron microscope (SEM) and x-ray energy dispersive spectroscopy (XEDS) analysis. The joint composition was stable through 10× reflow, with outstanding bond strength averaging 90 MPa. The metastable SLID interconnections also showed excellent electromigration performance, surviving 500 h of current stressing at 105 A/cm2 at 150°C.

  17. Multiproject wafers: not just for million-dollar mask sets

    NASA Astrophysics Data System (ADS)

    Morse, Richard D.

    2003-06-01

    With the advent of Reticle Enhancement Technologies (RET) such as Optical Proximity Correction (OPC) and Phase Shift Masks (PSM) required to manufacture semiconductors in the sub-wavelength era, the cost of photomask tooling has skyrocketed. On the leading edge of technology, mask set prices often exceed $1 million. This shifts an enormous burden back to designers and Electronic Design Automation (EDA) software vendors to create perfect designs at a time when the number of transistors per chip is measured in the hundreds of millions, and gigachips are on the drawing boards. Moore's Law has driven technology to incredible feats. The prime beneficiaries of the technology - memory and microprocessor (MPU) manufacturers - can continue to fit the model because wafer volumes (and chip prices in the MPU case) render tooling costs relatively insignificant. However, Application-Specific IC (ASIC) manufacturers and most foundry clients average very small wafer per reticle ratios causing a dramatic and potentially insupportable rise in the cost of manufacturing. Multi-Project wafers (MPWs) are a way to share the cost of tooling and silicon by putting more than one chip on each reticle. Lacking any unexpected breakthroughs in simulation, verification, or mask technology to reduce the cost of prototyping, more efficient use of reticle space becomes a viable and increasingly attractive choice. It is worthwhile therefore, to discuss the economics of prototyping in the sub-wavelength era and the increasing advantages of the MPW, shared-silicon approach. However, putting together a collection of different-sized chips during tapeout can be challenging and time consuming. Design compatibility, reticle field optimization, and frame generation have traditionally been the biggest worries but, with the advent of dummy-fill for planarization and RET for resolution, another layer of complexity has been added. MPW automation software is quite advanced today, but the size of the task dictates careful consideration of the alternative methods.

  18. Applications and Advances in Electronic-Nose Technologies

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man. PMID:22346690

  19. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  20. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  1. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Schaut

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system conceptmore » development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough architecture. To validate the performance of the Wing Box trough, a 6 meter aperture by 14 meter long prototype trough was built. For ease of shipping to and assembly at NREL's test facility, the prototype was fabricated in two half modules and joined along the centerline to create the Wing Box trough. The trough components were designed to achieve high precision of the reflective surface while leveraging high volume manufacturing and assembly techniques.« less

  2. Chalcogen Polymers for Completely Solution-Processed Inorganic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Martin, Trevor R.

    Chalcopyrite materials such as CuInSxSe2-x (CISSe), the gallium alloy variant CuInxGa1-xSySe2-y (CIGSSe), and the earth-abundant kesterite material Cu2ZnSnS xSe4-x (CZTSSe) possess a range of properties that are ideally suited for thin-film photovoltaics (PV) applications. Although these materials are beginning to see some commercial success, they are manufactured using complicated and expensive techniques such as high temperature processing, vacuum deposition methods, and vapor-phase reactions. These production methods require an exorbitantly large capital investment to create new manufacturing facilities, which severely hampers the widespread and rapid deployment of these emerging solar energy technologies. This work has focused on developing novel chalcogen polymers to synthesize nanoparticles and produce thin-films for printed photovoltaics applications. This new method provides a pathway towards using chalcogen copolymers to produce these materials via a completely solution-processed, low-temperature fabrication procedure. This technique constitutes one of the first viable means to produce low-bandgap chalcogenides without additional vapor-phase or high-temperature reactions. Therefore, this process can potentially be implemented to rapidly and cheaply manufacture printed chalcopyrite and kesterite photovoltaics.

  3. Advances in Ultra High Temperature Ceramics for Hot Structures

    NASA Astrophysics Data System (ADS)

    Scatteia, Luigi; Monteverde, Federico; Alfano, Davide; Cantoni, Stefania

    The objective of this paper is to describe the current state of the art of the research on Ultra High Temperature Ceramic materials with particular reference to their space applications, and also to report on the activities performed on UHTC in the past decade by the Italian Aerospace Research Centre in the specific technological field of structural thermal protection systems. Within several internal research project, various UHTC composition, mainly based upon Zirconium Diboride and Hafnium Diboride with added secondary phases and sintering aid were examined characterized in their mechanical properties and oxidation resistance. Two main composition were selected as the most promising for hot structure manufacturing: these materials were extensively characterized in order to obtain a comprehensive database of properties to feed the thermomechanical design of prototype hot structures. Technological demonstrators were manufactured by hot pressing followed by further fine machining with Electrical Discharge methods, and then tested at high temperature for long times in a plasma torch facility. The main outstanding results obtained are discussed in this paper. Future outlooks related to the UHTC technology and its further development are also provided.

  4. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    NASA Astrophysics Data System (ADS)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  5. EUV mask pilot line at Intel Corporation

    NASA Astrophysics Data System (ADS)

    Stivers, Alan R.; Yan, Pei-Yang; Zhang, Guojing; Liang, Ted; Shu, Emily Y.; Tejnil, Edita; Lieberman, Barry; Nagpal, Rajesh; Hsia, Kangmin; Penn, Michael; Lo, Fu-Chang

    2004-12-01

    The introduction of extreme ultraviolet (EUV) lithography into high volume manufacturing requires the development of a new mask technology. In support of this, Intel Corporation has established a pilot line devoted to encountering and eliminating barriers to manufacturability of EUV masks. It concentrates on EUV-specific process modules and makes use of the captive standard photomask fabrication capability of Intel Corporation. The goal of the pilot line is to accelerate EUV mask development to intersect the 32nm technology node. This requires EUV mask technology to be comparable to standard photomask technology by the beginning of the silicon wafer process development phase for that technology node. The pilot line embodies Intel's strategy to lead EUV mask development in the areas of the mask patterning process, mask fabrication tools, the starting material (blanks) and the understanding of process interdependencies. The patterning process includes all steps from blank defect inspection through final pattern inspection and repair. We have specified and ordered the EUV-specific tools and most will be installed in 2004. We have worked with International Sematech and others to provide for the next generation of EUV-specific mask tools. Our process of record is run repeatedly to ensure its robustness. This primes the supply chain and collects information needed for blank improvement.

  6. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema

    Thomas, Sunil; Edmond, John; Krames, Michael; Rama

    2018-05-30

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  7. The present status and future growth of maintenance in US manufacturing: results from a pilot survey.

    PubMed

    Jin, Xiaoning; Siegel, David; Weiss, Brian A; Gamel, Ellen; Wang, Wei; Lee, Jay; Ni, Jun

    A research study was conducted (1) to examine the practices employed by US manufacturers to achieve productivity goals and (2) to understand what level of intelligent maintenance technologies and strategies are being incorporated into these practices. This study found that the effectiveness and choice of maintenance strategy were strongly correlated to the size of the manufacturing enterprise; there were large differences in adoption of advanced maintenance practices and diagnostics and prognostics technologies between small and medium-sized enterprises (SMEs). Despite their greater adoption of maintenance practices and technologies, large manufacturing organizations have had only modest success with respect to diagnostics and prognostics and preventive maintenance projects. The varying degrees of success with respect to preventative maintenance programs highlight the opportunity for larger manufacturers to improve their maintenance practices and use of advanced prognostics and health management (PHM) technology. The future outlook for manufacturing PHM technology among the manufacturing organizations considered in this study was overwhelmingly positive; many manufacturing organizations have current and planned projects in this area. Given the current modest state of implementation and positive outlook for this technology, gaps, future trends, and roadmaps for manufacturing PHM and maintenance strategy are presented.

  8. The present status and future growth of maintenance in US manufacturing: results from a pilot survey

    PubMed Central

    Jin, Xiaoning; Siegel, David; Weiss, Brian A.; Gamel, Ellen; Wang, Wei; Lee, Jay; Ni, Jun

    2016-01-01

    A research study was conducted (1) to examine the practices employed by US manufacturers to achieve productivity goals and (2) to understand what level of intelligent maintenance technologies and strategies are being incorporated into these practices. This study found that the effectiveness and choice of maintenance strategy were strongly correlated to the size of the manufacturing enterprise; there were large differences in adoption of advanced maintenance practices and diagnostics and prognostics technologies between small and medium-sized enterprises (SMEs). Despite their greater adoption of maintenance practices and technologies, large manufacturing organizations have had only modest success with respect to diagnostics and prognostics and preventive maintenance projects. The varying degrees of success with respect to preventative maintenance programs highlight the opportunity for larger manufacturers to improve their maintenance practices and use of advanced prognostics and health management (PHM) technology. The future outlook for manufacturing PHM technology among the manufacturing organizations considered in this study was overwhelmingly positive; many manufacturing organizations have current and planned projects in this area. Given the current modest state of implementation and positive outlook for this technology, gaps, future trends, and roadmaps for manufacturing PHM and maintenance strategy are presented. PMID:27525253

  9. 2001 Industry Studies: Advanced Manufacturing

    DTIC Science & Technology

    2001-05-28

    oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...ways to compete in world markets . As part of this ongoing transformation, the broad implementation of advanced manufacturing technologies , processes...competitive advantages and better performance in world markets . Importantly, advanced manufacturing involves the innovative integration of new technology

  10. Intelligent technologies in process of highly-precise products manufacturing

    NASA Astrophysics Data System (ADS)

    Vakhidova, K. L.; Khakimov, Z. L.; Isaeva, M. R.; Shukhin, V. V.; Labazanov, M. A.; Ignatiev, S. A.

    2017-10-01

    One of the main control methods of the surface layer of bearing parts is the eddy current testing method. Surface layer defects of bearing parts, like burns, cracks and some others, are reflected in the results of the rolling surfaces scan. The previously developed method for detecting defects from the image of the raceway was quite effective, but the processing algorithm is complicated and lasts for about 12 ... 16 s. The real non-stationary signals from an eddy current transducer (ECT) consist of short-time high-frequency and long-time low-frequency components, therefore a transformation is used for their analysis, which provides different windows for different frequencies. The wavelet transform meets these conditions. Based on aforesaid, a methodology for automatically detecting and recognizing local defects in bearing parts surface layer has been developed on the basis of wavelet analysis using integral estimates. Some of the defects are recognized by the amplitude component, otherwise an automatic transition to recognition by the phase component of information signals (IS) is carried out. The use of intelligent technologies in the manufacture of bearing parts will, firstly, significantly improve the quality of bearings, and secondly, significantly improve production efficiency by reducing (eliminating) rejections in the manufacture of products, increasing the period of normal operation of the technological equipment (inter-adjustment period), the implementation of the system of Flexible facilities maintenance, as well as reducing production costs.

  11. Powder-based 3D printing for bone tissue engineering.

    PubMed

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  13. Development of a Knowledge Base for Enduser Consultation of AAL-Systems.

    PubMed

    Röll, Natalie; Stork, Wilhelm; Rosales, Bruno; Stephan, René; Knaup, Petra

    2016-01-01

    Manufacturer information, user experiences and product availability of assistive living technologies are usually not known to citizens or consultation centers. The different knowledge levels concerning the availability of technology shows the need for building up a knowledge base. The aim of this contribution is the definition of requirements in the development of knowledge bases for AAL consultations. The major requirements, such as a maintainable and easy to use structure were implemented into a web based knowledge base, which went productive in ~3700 consulting interviews of municipal technology information centers. Within this field phase the implementation of the requirements for a knowledge base in the field of AAL consulting was evaluated and further developed.

  14. A nickel metal hydride battery for electric vehicles

    NASA Astrophysics Data System (ADS)

    Ovshinsky, S. R.; Fetcenko, M. A.; Ross, J.

    1993-04-01

    An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.

  15. FMC/TFM experimental comparisons

    NASA Astrophysics Data System (ADS)

    Spencer, Roger; Sunderman, Ruth; Todorov, Evgueni

    2018-04-01

    Ultrasonic full matrix capture/total focusing method (FMC/TFM) technology has progressed significantly over the past few years and has seen increased use in industry. The technology has the potential to provide better detection and measurement capabilities for weld flaws, as well as, many other applications including additive manufacturing. This project looked at the effectiveness of FMC/TFM for detection and sizing of both planar and volumetric flaw types. FMC/TFM experimental data was collected and processed using multiple combinations of probe types and wave propagation modes. The data was then compared to typical ultrasonic phased-array results, as well as FMC/TFM inspection simulations.

  16. Solar dynamic power for Earth orbital and lunar applications

    NASA Technical Reports Server (NTRS)

    Calogeras, James E.; Dustin, Miles O.; Secunde, Richard R.

    1991-01-01

    Development of solar dynamic (SD) technologies for space over the past 25 years by NASA Lewis Research Center brought SD power to the point where it was selected in the design phase of Space Station Freedom Program as the power source for evolutionary growth. More recent studies showed that large cost savings are possible in establishing manufacturing processes at a Lunar Base if SD is considered as a power source. Technology efforts over the past 5 years have made possible lighter, more durable, SD components for these applications. A review of these efforts and respective benefits is presented.

  17. Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2014-01-01

    Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.

  18. Magnetorheological Finishing for Imprinting Continuous Phase Plate Structure onto Optical Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Dixit, S N; Genin, F Y

    2004-01-05

    Magnetorheological finishing (MRF) techniques have been developed to manufacture continuous phase plates (CPP's) and custom phase corrective structures on polished fused silica surfaces. These phase structures are important for laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. The MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm. In this study, we present the results of experiments and model calculations that explore imprinting two-dimensional sinusoidal structures. Results show how the MRF removal function impacts and limits imprint fidelity and what must bemore » done to arrive at a high quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use at high fluences.« less

  19. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    PubMed Central

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    Abstract We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process–microstructure–property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts. PMID:28970868

  20. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys.

    PubMed

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

  1. Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palo, Daniel R.

    2011-04-26

    Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The highmore » level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.« less

  2. Progress on performance assessment of ITER enhanced heat flux first wall technology after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bao, L.; Barabash, V.; Chappuis, Ph; Eaton, R.; Escourbiac, F.; Giqcuel, S.; Merola, M.; Mitteau, R.; Raffray, R.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Wirtz, M.; Boomstra, D.; Magielsen, A.; Chen, J.; Wang, P.; Gervash, A.; Safronov, V.

    2016-02-01

    ITER first wall (FW) panels are irradiated by energetic neutrons during the nuclear phase. Thus, an irradiation and high heat flux testing programme is undertaken by the ITER organization in order to evaluate the effects of neutron irradiation on the performance of enhanced heat flux (EHF) FW components. The test campaign includes neutron irradiation (up to 0.6-0.8 dpa at 200 °C-250 °C) of mock-ups that are representative of the final EHF FW panel design, followed by thermal fatigue tests (up to 4.7 MW m-2). Mock-ups were manufactured by the same manufacturing process as proposed for the series production. After a pre-irradiation thermal screening, eight mock-ups will be selected for the irradiation campaigns. This paper reports the preparatory work of HHF tests and neutron irradiation, assessment results as well as a brief description of mock-up manufacturing and inspection routes.

  3. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-12-01

    We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

  4. Clean Energy Manufacturing Initiative Solid-State Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Sunil; Edmond, John; Krames, Michael

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reducemore » risk, improve quality, increase yields, and lower costs.« less

  5. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Sunil; Edmond, John; Krames, Michael

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reducemore » risk, improve quality, increase yields, and lower costs.« less

  6. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    ScienceCinema

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2018-01-16

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  7. Manufacturing of ArF chromeless hard shifter for 65-nm technology

    NASA Astrophysics Data System (ADS)

    Park, Keun-Taek; Dieu, Laurent; Hughes, Greg P.; Green, Kent G.; Croffie, Ebo H.; Taravade, Kunal N.

    2003-12-01

    For logic design, Chrome-less Phase Shift Mask is one of the possible solutions for defining small geometry with low MEF (mask enhancement factor) for the 65nm node. There have been lots of dedicated studies on the PCO (Phase Chrome Off-axis) mask technology and several design approaches have been proposed including grating background, chrome patches (or chrome shield) for applying PCO on line/space and contact pattern. In this paper, we studied the feasibility of grating design for line and contact pattern. The design of the grating pattern was provided from the EM simulation software (TEMPEST) and the aerial image simulation software. AIMS measurements with high NA annular illumination were done. Resist images were taken on designed pattern in different focus. Simulations, AIMS are compared to verify the consistency of the process with wafer printed performance.

  8. New Generator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Roy S.

    2015-02-17

    New generator technology project is driven by the need to be able to remotely deploy generator technology where it is needed, when it is needed. Both the military and aid programs that provide assistance after disasters could use the ability to deploy energy generation that fits the needs of the situation. Currently, pre-specified generators are deployed, sometime more than half way around the world to provide electricity. Through our Phase-I to Phase III DARPA grant, we will provide a mechanism where a 3d print station and raw materials could be shipped to a deployment site and remotely deployed personnel. Thesemore » remote personnel can collaborate with engineers at a home location where 3d print plans can be optimized for the remote purpose. The plans can then be sent electronically to the remote location for printing, much like NASA sent the plans for a socket wrench to the International Space Station for printing in . If multiple generators need to be deployed at different remote locations, within miles of each other the printer rig can be moved to print the generators where they are needed. 3d printing is growing in the field of manufacturing. 3d printing has matured to the point where many types of materials are now available for many types of manufacturing. Both magnetic and electrically conductive material materials have recently been developed which can now lead to 3d printing of engines and generators. Our project will provide a successful printer rig that can be remotely deployed, to print a generator design in the field as well as provide a process for deploying the printed generator as well. This Systems Engineering Management Plan(SEMP) will provide the planning required for a Phase I DARPA grant that may also include goals for Phase II and Phase II grants. The SEMP provides a proposed project schedule, references, system engineering processes, specialty engineering system deployment and product support sections. Each section will state how our company will provide the necessary services to make this project succeed.« less

  9. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    NASA Technical Reports Server (NTRS)

    Tucker, Brian; Paxton, Joseph

    2010-01-01

    This paper will present a Supply Chain Readiness Level (SCRL) model that can be used to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. It will also show that using SCRL in conjunction with Technology Readiness Levels (TRLs), Manufacturing Readiness Levels (MRLs) and National Aeronautics Space Administrations (NASA s) Project Lifecycle Process will provide a more complete means of developing and evaluating a robust sustainable supply chain that encompasses the entire product, system and mission lifecycle. In addition, it will be shown that by implementing the SCRL model, NASA can additionally define supplier requirements to enable effective supply chain management (SCM). Developing and evaluating overall supply chain readiness for any product, system and mission lifecycle is critical for mission success. Readiness levels are presently being used to evaluate the maturity of technology and manufacturing capability during development and deployment phases of products and systems. For example, TRLs are used to support the assessment of the maturity of a particular technology and compare maturity of different types of technologies. MRLs are designed to assess the maturity and risk of a given technology from a manufacturing perspective. In addition, when these measurement systems are used collectively they can offer a more comprehensive view of the maturity of the system. While some aspects of the supply chain and supply chain planning are considered in these familiar metric systems, certain characteristics of an effective supply chain, when evaluated in more detail, will provide an improved insight into the readiness and risk throughout the supply chain. Therefore, a system that concentrates particularly on supply chain attributes is required to better assess enterprise supply chain readiness.

  10. Skill-Biased Technological Change. Evidence from a Firm-Level Survey.

    ERIC Educational Resources Information Center

    Siegel, Donald S.

    A study addressed the effects of technological change using a new, rich source of firm-level data on technology usage and labor force composition. The empirical investigation is based on a survey of Long Island manufacturers' usage of computer-integrated manufacturing systems (CIMS) or advanced manufacturing technologies (AMTs). The study also…

  11. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Paul

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  12. Challenges in teaching modern manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-07-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.

  13. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry

    PubMed Central

    Devadasan, S. R.; Sivaram, N. M.

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps. PMID:26065016

  14. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry.

    PubMed

    Thilak, V M M; Devadasan, S R; Sivaram, N M

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps.

  15. 15 CFR 290.3 - Program description.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE... subject of research in NIST's Automated Manufacturing Research Facility (AMRF). The core of AMRF research... manufacturing technology. (b) Program objective. The objective of the NIST Manufacturing Technology Centers is...

  16. 15 CFR 290.3 - Program description.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE... subject of research in NIST's Automated Manufacturing Research Facility (AMRF). The core of AMRF research... manufacturing technology. (b) Program objective. The objective of the NIST Manufacturing Technology Centers is...

  17. 15 CFR 290.3 - Program description.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE... subject of research in NIST's Automated Manufacturing Research Facility (AMRF). The core of AMRF research... manufacturing technology. (b) Program objective. The objective of the NIST Manufacturing Technology Centers is...

  18. Exploring a Multiphysics Resolution Approach for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Estupinan Donoso, Alvaro Antonio; Peters, Bernhard

    2018-06-01

    Metal additive manufacturing (AM) is a fast-evolving technology aiming to efficiently produce complex parts while saving resources. Worldwide, active research is being performed to solve the existing challenges of this growing technique. Constant computational advances have enabled multiscale and multiphysics numerical tools that complement the traditional physical experimentation. In this contribution, an advanced discrete-continuous concept is proposed to address the physical phenomena involved during laser powder bed fusion. The concept treats powder as discrete by the extended discrete element method, which predicts the thermodynamic state and phase change for each particle. The fluid surrounding is solved with multiphase computational fluid dynamics techniques to determine momentum, heat, gas and liquid transfer. Thus, results track the positions and thermochemical history of individual particles in conjunction with the prevailing fluid phases' temperature and composition. It is believed that this methodology can be employed to complement experimental research by analysis of the comprehensive results, which can be extracted from it to enable AM processes optimization for parts qualification.

  19. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  20. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  1. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at the Marshall Space Flight Center (MSFC), is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a Fresnel lens. Weighing much less than conventional optics, Fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  2. 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Beaman, Joseph

    2015-03-01

    Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.

  3. Sensor fusion of phase measuring profilometry and stereo vision for three-dimensional inspection of electronic components assembled on printed circuit boards.

    PubMed

    Hong, Deokhwa; Lee, Hyunki; Kim, Min Young; Cho, Hyungsuck; Moon, Jeon Il

    2009-07-20

    Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.

  4. Recycling of lead solder dross, Generated from PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Lucheva, Biserka; Tsonev, Tsonio; Iliev, Peter

    2011-08-01

    The main purpose of this work is to analyze lead solder dross, a waste product from manufacturing of printed circuit boards by wave soldering, and to develop an effective and environmentally sound technology for its recycling. A methodology for determination of the content and chemical composition of the metal and oxide phases of the dross is developed. Two methods for recycling of lead solder dross were examined—carbothermal reduction and recycling using boron-containing substances. The influence of various factors on the metal yield was studied and the optimal parameters of the recycling process are defined. The comparison between them under the same parameters-temperature and retention time, showed that recycling of dross with a mixture of borax and boric acid in a 1:2 ratio provides higher metal yield (93%). The recycling of this hazardous waste under developed technology gets glassy slag and solder, which after correction of the chemical composition can be used again for production of PCB.

  5. Manufacturing Systems. Grades 9-10. Course #8115 (Semester). Technology Education Course Guide. Industrial Arts/Technology Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    The course materials included in this guide are intended to introduce students to the manufacturing industry and its relationships with society, individuals, and the environment. The following topics are covered in the nine learning modules: manufacturing and society and manufacturing systems; manufacturing materials and processes (types of…

  6. Crossword Puzzle Makes It Fun: Introduce Green Manufacturing in Wood Technology Courses

    ERIC Educational Resources Information Center

    Iley, John L.; Hague, Doug

    2012-01-01

    Sustainable, or "green," manufacturing and its practices are becoming more and more a part of today's industry, including wood product manufacturing. This article provides introductory information on green manufacturing in wood technology and a crossword puzzle based on green manufacturing terms. The authors use the puzzle at the college level to…

  7. Alternative Fuels Data Center

    Science.gov Websites

    Advanced Technology Vehicle (ATV) and Alternative Fuel Infrastructure Manufacturing Incentives Through the Advanced Technology Vehicles Manufacturing Loan Program, manufacturers may be eligible for direct loans for up to 30% of the cost of re-equipping, expanding, or establishing manufacturing

  8. Challenges and Recent Developments in Hearing Aids: Part II. Feedback and Occlusion Effect Reduction Strategies, Laser Shell Manufacturing Processes, and Other Signal Processing Technologies

    PubMed Central

    Chung, King

    2004-01-01

    This is the second part of a review on the challenges and recent developments in hearing aids. Feedback and the occlusion effect pose great challenges in hearing aid design and usage. Yet, conventional solutions to feedback and the occlusion effect often create a dilemma: the solution to one often leads to the other. This review discusses the advanced signal processing strategies to reduce feedback and some new approaches to reduce the occlusion effect. Specifically, the causes of three types of feedback (acoustic, mechanical, and electromagnetic) are discussed. The strategies currently used to reduce acoustic feedback (i.e., adaptive feedback reduction algorithms using adaptive gain reduction, notch filtering, and phase cancellation strategies) and the design of new receivers that are built to reduce mechanical and electromagnetic feedback are explained. In addition, various new strategies (i.e., redesigned sound delivery devices and receiver-in-the-ear-canal hearing aid configuration) to reduce the occlusion effect are reviewed. Many manufacturers have recently adopted laser shell-manufacturing technologies to overcome problems associated with manufacturing custom hearing aid shells. The mechanisms of selected laser sintering and stereo lithographic apparatus and the properties of custom shells produced by these two processes are reviewed. Further, various new developments in hearing aid transducers, telecoils, channel-free amplification, open-platform programming options, rechargeable hearing aids, ear-level frequency modulated (FM) receivers, wireless Bluetooth FM systems, and wireless programming options are briefly explained and discussed. Finally, the applications of advanced hearing aid technologies to enhance other devices such as cochlear implants, hearing protectors, and cellular phones are discussed. PMID:15735871

  9. Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers,

    Science.gov Websites

    Manufacturers | News | NREL Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers, Manufacturers Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers fuel cell and hydrogen components and systems and improve U.S. manufacturing competitiveness. The

  10. A study on Aerosol jet printing technology in LED module manufacturing

    NASA Astrophysics Data System (ADS)

    Rudorfer, Andreas; Tscherner, Martin; Palfinger, Christian; Reil, Frank; Hartmann, Paul; Seferis, Ioannis E.; Zych, Eugeniusz; Wenzl, Franz P.

    2016-09-01

    State of the art fabrication of LED modules based on chip-on-board (COB) technology comprises some shortcomings both with respect to the manufacturing process itself but also with regard to potential sources of failures and manufacturing impreciseness. One promising alternative is additive manufacturing, a technology which has gained a lot of attention during the last years due to its materials and cost saving capabilities. Especially direct-write technologies like Aerosol jet printing have demonstrated advantages compared to other technological approaches when printing high precision layers or high precision electronic circuits on substrates which, as an additional advantage, also can be flexible and 3D shaped. Based on test samples and test structures manufactured by Aerosol jet printing technology, in this context we discuss the potentials of additive manufacturing in various aspects of LED module fabrication, ranging from the deposition of the die-attach material, wire bond replacement by printed electrical connects as well as aspects of high-precision phosphor layer deposition for color conversion and white light generation.

  11. Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective

    PubMed Central

    Thomas, Douglas

    2017-01-01

    There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the supplier, manufacturer, and consumer interactions. An examination in the adoption of additive manufacturing reveals that for this technology to exceed $4.4 billion in 2020, $16.0 billion in 2025, and $196.8 billion in 2035 it would need to deviate from its current trends of adoption. PMID:28747809

  12. Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective.

    PubMed

    Thomas, Douglas

    2016-07-01

    There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the supplier, manufacturer, and consumer interactions. An examination in the adoption of additive manufacturing reveals that for this technology to exceed $4.4 billion in 2020, $16.0 billion in 2025, and $196.8 billion in 2035 it would need to deviate from its current trends of adoption.

  13. America Makes: The National Additive Manufacturing Innovation Institute (NAMII) Status Report and Future Opportunities (Postprint)

    DTIC Science & Technology

    2014-09-01

    manufacturing, direct part manufacturing, manufacturing institute, public- private partnership, rapid manufacturing, 3D printing 16. SECURITY CLASSIFICATION...Manufacturing Science and Technology Pro- gram and selected Additive Manufacturing (or more popularly known as 3D printing ) as the technical subject. Working...operations, America Makes is starting to hit its stride in developing technology for 3D printing and in leading the way in how the United States should

  14. Freeze concentration of dairy products Phase 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, D.E.; Vasavada, K.C.

    An efficient, electrically driven freeze concentration system offers potential for substantially increasing electricity demand while providing the mature dairy industry with new products for domestic and export markets together with enhanced production efficiencies. Consumer tests indicate that dairy products manufactured from freeze-concentrated ingredients are either preferred or considered equivalent in quality to fresh milk-based products. Economic analyses indicate that this technology should be competitive with thermal evaporation processes on a commercial basis.

  15. A tubular flux-switching permanent magnet machine

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, W.; Clark, R.; Atallah, K.; Howe, D.

    2008-04-01

    The paper describes a novel tubular, three-phase permanent magnet brushless machine, which combines salient features from both switched reluctance and permanent magnet machine technologies. It has no end windings and zero net radial force and offers a high power density and peak force capability, as well as the potential for low manufacturing cost. It is, therefore, eminently suitable for a variety of applications, ranging from free-piston energy converters to active vehicle suspensions.

  16. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    PubMed

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. Published by Elsevier B.V.

  17. Status review of field emission displays

    NASA Astrophysics Data System (ADS)

    Ghrayeb, Joseph; Daniels, Reginald

    2001-09-01

    Cathode ray tube (CRT) technology dominates the direct view display market. Mature CRT technology for many designs is still the preferred choice. CRT manufacturers have greatly improved the size and weight of the CRT displays. High performance CRTs continue to be in great demand, however, supply have to contend with the vanishing CRT vendor syndrome. Therefore, the vanishing CRT vendor syndrome fuels the search for an alternate display technology source. Within the past 10 years, field emission display (FED) technology had gained momentum and, at one time, was considered the most viable electronic display technology candidate [to replace the CRT]. The FED community had advocated and promised many advantages over active matrix liquid crystal displays (AMLCD), electro luminescent (EL) or Plasma displays. Some observers, including potential FED manufacturers and the Department of Defense, (especially the Defense Advanced Research Project Agency (DARPA)), consider the FED entry as having leapfrog potential. Despite major investments by US manufacturers as well as Asian manufacturers, reliability and manufacturing difficulties greatly slowed down the advancement of the technology. The FED manufacturing difficulties have caused many would-be FED manufacturing participants to abandon FED research. This paper will examine the trends, which are leading this nascent technology to its downfall. FED technology was once considered to have the potential to leapfrog over AMLCD's dominance in the display industry. At present the FED has suffered severe setbacks and there are very few [FED] manufacturers still pursuing research in the area. These companies have yet to deliver a display beyond the prototype stage.

  18. A guide to manufacturing CAR T cell therapies.

    PubMed

    Vormittag, Philipp; Gunn, Rebecca; Ghorashian, Sara; Veraitch, Farlan S

    2018-02-17

    In recent years, chimeric antigen receptor (CAR) modified T cells have been used as a treatment for haematological malignancies in several phase I and II trials and with Kymriah of Novartis and Yescarta of KITE Pharma, the first CAR T cell therapy products have been approved. Promising clinical outcomes have yet been tempered by the fact that many therapies may be prohibitively expensive to manufacture. The process is not yet defined, far from being standardised and often requires extensive manual handling steps. For academia, big pharma and contract manufacturers it is difficult to obtain an overview over the process strategies and their respective advantages and disadvantages. This review details current production processes being used for CAR T cells with a particular focus on efficacy, reproducibility, manufacturing costs and release testing. By undertaking a systematic analysis of the manufacture of CAR T cells from reported clinical trial data to date, we have been able to quantify recent trends and track the uptake of new process technology. Delivering new processing options will be key to the success of the CAR-T cells ensuring that excessive manufacturing costs do not disrupt the delivery of exciting new therapies to the wide possible patient cohort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Advanced manufacturing: Technology and international competitiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforcemore » requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.« less

  20. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    NASA Astrophysics Data System (ADS)

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-08-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.

  1. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    PubMed Central

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-01-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications. PMID:27546059

  2. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    NASA Astrophysics Data System (ADS)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  3. New customizable phased array UT instrument opens door for furthering research and better industrial implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, Gavin; Ginzel, Robert

    2014-02-18

    Phased array UT as an inspection technique in itself continues to gain wide acceptance. However, there is much room for improvement in terms of implementation of Phased Array (PA) technology for every unique NDT application across several industries (e.g. oil and petroleum, nuclear and power generation, steel manufacturing, etc.). Having full control of the phased array instrument and customizing a software solution is necessary for more seamless and efficient inspections, from setting the PA parameters, collecting data and reporting, to the final analysis. NDT researchers and academics also need a flexible and open platform to be able to control variousmore » aspects of the phased array process. A high performance instrument with advanced PA features, faster data rates, a smaller form factor, and capability to adapt to specific applications, will be discussed.« less

  4. Comparison of aged polyamide powders for selective laser sintering

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Ibáñez, A.; Sánchez, A.; León, M. A.

    2012-04-01

    Selective Laser Sintering (SLS) is an additive manufacturing technology in which a three-dimensional object is manufactured layer by layer by melting powder materials with heat generated from a CO2 laser. However, a disadvantage of sintered materials is that the unsintered powder material during the process can be reused only a limited number of cycles, as during the heating phase in the sintering chamber the material remains at a temperature near the fusion point for a certain period of time and lose properties. This work shows the study of two polyamides (PA12)-based powders used in SLS with the aim of understanding the modification of their properties mainly with the temperature and the time at which they are exposed during the processing.

  5. Smart Manufacturing Technologies and Data Analytics for Improving Energy Efficiency in Industrial Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Guo, Wei; Wenning, Thomas J.

    Smart manufacturing and advanced data analytics can help the manufacturing sector unlock energy efficiency from the equipment level to the entire manufacturing facility and the whole supply chain. These technologies can make manufacturing industries more competitive, with intelligent communication systems, real-time energy savings, and increased energy productivity. Smart manufacturing can give all employees in an organization the actionable information they need, when they need it, so that each person can contribute to the optimal operation of the corporation through informed, data-driven decision making. This paper examines smart technologies and data analytics approaches for improving energy efficiency and reducing energy costsmore » in process-supporting energy systems. It dives into energy-saving improvement opportunities through smart manufacturing technologies and sophisticated data collection and analysis. The energy systems covered in this paper include those with motors and drives, fans, pumps, air compressors, steam, and process heating.« less

  6. International Space Station Environmental Control and Life Support System Status: 2006 - 2007

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Gentry, Gregory J.

    2007-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2006 and February 2007. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  7. International Space Station Environmental Control and Life Support System Status: 2008 - 2009

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  8. International Space Station Environmental Control and Life Support System Status: 2005 - 2006

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Gentry, Gregory J.

    2006-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2005 and February 2006. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  9. International Space Station (ISS) Environmental Control and Life Support System Status: 2003-2004

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Gentry, Gregory

    2004-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2003 and March 2004. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  10. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank

    NASA Astrophysics Data System (ADS)

    Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.

    2012-12-01

    In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.

  11. Computerized Manufacturing Automation. Employment, Education, and the Workplace. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    The application of programmable automation (PA) offers new opportunities to enhance and streamline manufacturing processes. Five PA technologies are examined in this report: computer-aided design, robots, numerically controlled machine tools, flexible manufacturing systems, and computer-integrated manufacturing. Each technology is in a relatively…

  12. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.

    PubMed

    Helu, Moneer; Hedberg, Thomas

    2015-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.

  13. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed

    PubMed Central

    Helu, Moneer; Hedberg, Thomas

    2017-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167

  14. Organizational Considerations for Advanced Manufacturing Technology

    ERIC Educational Resources Information Center

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  15. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    Progress in the transfer of aerospace technology to solve key problems in the manufacturing sector of the economy is reported. Potential RTOP programs are summarized along with dissemination activities. The impact of transferred NASA manufacturing technology is discussed. Specific areas covered include aircraft production, robot technology, machining of alloys, and electrical switching systems.

  16. Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization

    DTIC Science & Technology

    2015-05-01

    management during operations 4 Potential Technology 3: Additive Manufacturing (“ 3D Printing ”) 5 • 3D design/image (e.g. from 3D LS) of final part...1 Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology

  17. Hierarchically porous materials from layer-by-layer photopolymerization of high internal phase emulsions.

    PubMed

    Sušec, Maja; Ligon, Samuel Clark; Stampfl, Jürgen; Liska, Robert; Krajnc, Peter

    2013-06-13

    A combination of high internal phase emulsion (HIPE) templating and additive manufacturing technology (AMT) is applied for creating hierarchical porosity within an acrylate and acrylate/thiol-based polymer network. The photopolymerizable formulation is optimized to produce emulsions with a volume fraction of droplet phase greater than 80 vol%. Kinetic stability of the emulsions is sufficient enough to withstand in-mold curing or computer-controlled layer-by-layer stereolithography without phase separation. By including macroscale cellular cavities within the build file, a level of controlled porosity is created simultaneous to the formation of the porous microstructure of the polyHIPE. The hybrid HIPE-AMT technique thus provides hierarchically porous materials with mechanical properties tailored by the addition of thiol chain transfer agent. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Emerging technologies in arthroplasty: additive manufacturing.

    PubMed

    Banerjee, Samik; Kulesha, Gene; Kester, Mark; Mont, Michael A

    2014-06-01

    Additive manufacturing is an industrial technology whereby three-dimensional visual computer models are fabricated into physical components by selectively curing, depositing, or consolidating various materials in consecutive layers. Although initially developed for production of simulated models, the technology has undergone vast improvements and is currently increasingly being used for the production of end-use components in various aerospace, automotive, and biomedical specialties. The ability of this technology to be used for the manufacture of solid-mesh-foam monolithic and coated components of complex geometries previously considered unmanufacturable has attracted the attention of implant manufacturers, bioengineers, and orthopedic surgeons. Currently, there is a paucity of reports describing this fabrication method in the orthopedic literature. Therefore, we aimed to briefly describe this technology, some of the applications in other orthopedic subspecialties, its present use in hip and knee arthroplasty, and concerns with the present form of the technology. As there are few reports of clinical trials presently available, the true benefits of this technology can only be realized when studies evaluating the clinical and radiographic outcomes of cementless implants manufactured with additive manufacturing report durable fixation, less stress shielding, and better implant survivorship. Nevertheless, the authors believe that this technology holds great promise and may potentially change the conventional methods of casting, machining, and tooling for implant manufacturing in the future. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Nyamekye, Patricia; Leino, Maija; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to fabricate metal parts out of metal powder. The development of the technology from building prototype parts to functional parts has increased remarkably in 2000s. LAM of metals is promising technology that offers new opportunities to manufacturing and to resource efficiency. However, there is only few published articles about its sustainability. Aim in this study was to create supply chain model of LAM and CNC machining and create a methodology to carry out a life cycle inventory (LCI) data collection for these techniques. The methodology of the study was literature review and scenario modeling. The acquisition of raw material, production phase and transportations were used as basis of comparison. The modelled scenarios were fictitious and created for industries, like aviation and healthcare that often require swift delivery as well as customized parts. The results of this study showed that the use of LAM offers a possibility to reduce downtime in supply chains of spare parts and reduce part inventory more effectively than CNC machining. Also the gap between customers and business is possible to be shortened with LAM thus offering a possibility to reduce emissions due to less transportation. The results also indicated weight reduction possibility with LAM due to optimized part geometry which allow lesser amount of metallic powder to be used in making parts.

  20. Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US Manufacturing.

    PubMed

    Jin, Xiaoning; Weiss, Brian A; Siegel, David; Lee, Jay

    2016-01-01

    The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy.

  1. Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US Manufacturing

    PubMed Central

    Jin, Xiaoning; Weiss, Brian A.; Siegel, David; Lee, Jay

    2016-01-01

    The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy. PMID:28058173

  2. Current developments in optical engineering and commercial optics; Proceedings of the Meeting, San Diego, CA, Aug. 7-11, 1989

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Pollicove, Harvey M. (Editor); Smith, Warren J. (Editor)

    1989-01-01

    Various papers on current developments in optical engineering and commercial optics are presented. Individual topics addressed include: large optics fabrication technology drivers and new manufacturing techniques, new technology for beryllium mirror production, design examples of hybrid refractive-diffractive lenses, optical sensor designs for detecting cracks in optical materials, retroreflector field-of-view properties for open and solid cube corners, correction of misalignment-dependent aberrations of the HST via phase retrieval, basic radiometry review for seeker test set, radiation effects on visible optical elements, and nonlinear simulation of efficiency for large-orbit nonwiggler FELs.

  3. Regulatory considerations in application of encapsulated cell therapies.

    PubMed

    van Zanten, J; de Vos, Paul

    2010-01-01

    The encapsulation of tissue in semi-permeable membranes is a technology with high potential and in due time several new therapies based on this technology will be tested in clinical trials. Recent, new legislation requires that these investigational medicinal products used in clinical trials Phase I must be produced according to Good Manufacturing Practice (GMP). Consequently, the activities of GMP are expanding to the field of research and researchers might need to change developed protocols in order to meet GMP legislation. This chapters gives an overview of the overall guidelines covering GMP and more specific guidelines dealing with cell based therapies and gene therapy.

  4. 77 FR 58112 - Notice of Intent To Prepare an Environmental Assessment (EA) for the Proposed Conveyance of Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ..., including warehousing and distribution; research and development; technology manufacturing; food processing... warehousing and distribution; research and development; technology manufacturing; food processing and... defense manufacturing, sensor manufacturing, or medical devices; (iv) Food/Agriculture--such as wine, food...

  5. Demonstration of array eddy current technology for real-time monitoring of laser powder bed fusion additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Todorov, Evgueni; Boulware, Paul; Gaah, Kingsley

    2018-03-01

    Nondestructive evaluation (NDE) at various fabrication stages is required to assure quality of feedstock and solid builds. Industry efforts are shifting towards solutions that can provide real-time monitoring of additive manufacturing (AM) fabrication process layer-by-layer while the component is being built to reduce or eliminate dependence on post-process inspection. Array eddy current (AEC), electromagnetic NDE technique was developed and implemented to directly scan the component without physical contact with the powder and fused layer surfaces at elevated temperatures inside a LPBF chamber. The technique can detect discontinuities, surface irregularities, and undesirable metallurgical phase transformations in magnetic and nonmagnetic conductive materials used for laser fusion. The AEC hardware and software were integrated with the L-PBF test bed. Two layer-by-layer tests of Inconel 625 coupons with AM built discontinuities and lack of fusion were conducted inside the L-PBF chamber. The AEC technology demonstrated excellent sensitivity to seeded, natural surface, and near-surface-embedded discontinuities, while also detecting surface topography. The data was acquired and imaged in a layer-by-layer sequence demonstrating the real-time monitoring capabilities of this new technology.

  6. Control of ammonia and urea emissions from urea manufacturing facilities of Petrochemical Industries Company (PIC), Kuwait.

    PubMed

    Khan, A R; Al-Awadi, L; Al-Rashidi, M S

    2016-06-01

    Petrochemical Industries Company (PIC) in Kuwait has mitigated the pollution problem of ammonia and urea dust by replacing the melting and prilling units of finished-product urea prills with an environmentally friendly granulation process. PIC has financed a research project conducted by the Coastal and Air Pollution Program's research staff at the Kuwait Institute for Scientific Research to assess the impact of pollution control strategies implemented to maintain a healthy productive environment in and around the manufacturing premises. The project was completed in three phases: the first phase included the pollution monitoring of the melting and prilling units in full operation, the second phase covered the complete shutdown period where production was halted completely and granulation units were installed, and the last phase encompassed the current modified status with granulation units in full operation. There was substantial decrease in ammonia emissions, about 72%, and a 52.7% decrease in urea emissions with the present upgrading of old melting and prilling units to a state-of-the-art technology "granulation process" for a final finished product. The other pollutants, sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOCs), have not shown any significant change, as the present modification has not affected the sources of these pollutants. Petrochemical Industries Company (PIC) in Kuwait has ammonia urea industries, and there were complaints about ammonia and urea dust pollution. PIC has resolved this problem by replacing "melting and prilling unit" of final product urea prills by more environmentally friendly "granulation unit." Environmental Pollution and Climate Program has been assigned the duty of assessing the outcome of this change and how that influenced ammonia and urea dust emissions from the urea manufacturing plant.

  7. Additive Manufacturing in Production: A Study Case Applying Technical Requirements

    NASA Astrophysics Data System (ADS)

    Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni

    Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandwana, Peeyush; Elliott, Amy M.; Siddel, Derek

    Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition,more » existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. In conclusion, the role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.« less

  9. Advances in High Temperature Materials for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  10. Work with Us | Advanced Manufacturing Research | NREL

    Science.gov Websites

    advanced manufacturing R&D project through analysis and our world-class facilities. Contact Us Headshot of a man Matthew Ringer Laboratory Program Manager, Advanced Manufacturing Email | 303-275-4469 facilities for your advanced manufacturing R&D projects. License Our Technologies See our technologies

  11. Benchmark Study of Global Clean Energy Manufacturing | Advanced

    Science.gov Websites

    Manufacturing Research | NREL Benchmark Study of Global Clean Energy Manufacturing Benchmark Study of Global Clean Energy Manufacturing Through a first-of-its-kind benchmark study, the Clean Energy Technology End Product.' The study examined four clean energy technologies: wind turbine components

  12. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    PubMed

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  13. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  14. 21 CFR 111.365 - What precautions must you take to prevent contamination?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN... necessary, the phase of manufacturing; and (k) Identifying all processing lines and major equipment used... specific batch or lot number and, when necessary, the phase of manufacturing. ...

  15. Large optics technology; Proceedings of the Meeting, San Diego, CA, August 19-21, 1985. Volume 571

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanger, G.M.

    1986-01-01

    The present conference on telescope primary mirror design and manufacturing technologies considers topics in mirror fabrication and testing, novel technology currently under development, recently instituted large optics development programs, and large mirror materials. Among the topics discussed are aspheric figure generation using feedback from an IR phase-shifting interferometer, thermal stability tests of CFRP sandwich panels for far-IR astronomy, Zerodur lightweight (large mirror) blanks, and the precision machining of grazing-incidence X-ray mirror substrates. Also treated are the rapid fabrication of large aspheric optics, steps toward 8-m honeycomb mirrors, a novel telescope design employing the refraction of prism rows, telescope technology formore » the Far-UV Spectroscopic Explorer, hot isostatic-pressed Be for large optics, and a concept for a moderate cost large deployable reflector.« less

  16. Launching the dialogue: Safety and innovation as partners for success in advanced manufacturing.

    PubMed

    Geraci, C L; Tinkle, S S; Brenner, S A; Hodson, L L; Pomeroy-Carter, C A; Neu-Baker, N

    2018-06-01

    Emerging and novel technologies, materials, and information integrated into increasingly automated and networked manufacturing processes or into traditional manufacturing settings are enhancing the efficiency and productivity of manufacturing. Globally, there is a move toward a new era in manufacturing that is characterized by: (1) the ability to create and deliver more complex designs of products; (2) the creation and use of materials with new properties that meet a design need; (3) the employment of new technologies, such as additive and digital techniques that improve on conventional manufacturing processes; and (4) a compression of the time from initial design concept to the creation of a final product. Globally, this movement has many names, but "advanced manufacturing" has become the shorthand for this complex integration of material and technology elements that enable new ways to manufacture existing products, as well as new products emerging from new technologies and new design methods. As the breadth of activities associated with advanced manufacturing suggests, there is no single advanced manufacturing industry. Instead, aspects of advanced manufacturing can be identified across a diverse set of business sectors that use manufacturing technologies, ranging from the semiconductors and electronics to the automotive and pharmaceutical industries. The breadth and diversity of advanced manufacturing may change the occupational and environmental risk profile, challenge the basic elements of comprehensive health and safety (material, process, worker, environment, product, and general public health and safety), and provide an opportunity for development and dissemination of occupational and environmental health and safety (OEHS) guidance and best practices. It is unknown how much the risk profile of different elements of OEHS will change, thus requiring an evolution of health and safety practices. These changes may be accomplished most effectively through multi-disciplinary, multi-sector, public-private dialogue that identifies issues and offers solutions.

  17. Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Farca, George; Rommel, Scott D.; Johnson, Seth; Anderson, Michael H.

    2010-02-01

    A new electro-optic waveguide platform, which provides unprecedented voltage control over optical phase delays (> 2mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), will be presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing their historic limitations. The waveguide geometry provides nematic relaxation speeds in the 10's of microseconds and LC scattering losses that are reduced by orders of magnitude from bulk transmissive LC optics. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: 2-D analog non-mechanical beamsteerers, chip-scale widely tunable lasers, chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay devices for phased array antennas, and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, FSO, laser illumination, phased array radar, etc. Performance attributes of several example devices and application data will be presented. In particular, we will present a non-mechanical beamsteerer that steers light in both the horizontal and vertical dimensions.

  18. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    NASA Technical Reports Server (NTRS)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; hide

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  19. Space Technology Mission Directorate: Game Changing Development

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  20. Determination of the robot location in a workcell of a flexible production line

    NASA Astrophysics Data System (ADS)

    Banas, W.; Sekala, A.; Gwiazda, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Location of components of a manufacturing cell is apparently an easy task but even during the constructing of a manufacturing cell, in which is planned a production of one, simple component it is necessary, among others, to check access to all required points. The robot in a manufacturing cell must handle both machine tools located in a manufacturing cell and parts store (input and output one). It handles also transport equipment and auxiliary stands. Sometimes, during the design phase, the changes of robot location are necessary due to the limitation of access to its required working positions. Often succeeding changes of a manufacturing cell configuration are realized. They occur at the stages of visualization and simulation of robot program functioning. In special cases, it is even necessary to replace the planned robot with a robot of greater range or of a different configuration type. This article presents and describes the parameters and components which should be taken into consideration during designing robotised manufacturing cells. The main idea bases on application of advanced engineering programs to adding the designing process. Using this approach it could be possible to present the designing process of an exemplar flexible manufacturing cell intended to manufacture two similar components. The proposed model of such designed manufacturing cell could be easily extended to the manufacturing cell model in which it is possible to produce components belonging the one technological group of chosen similarity level. In particular, during the design process, one should take into consideration components which limit the ability of robot foundation. It is also important to show the method of determining the best location of robot foundation. The presented design method could also support the designing process of other robotised manufacturing cells.

  1. The strategic relevance of manufacturing technology: An overall quality concept to promote innovation preventing drug shortage.

    PubMed

    Panzitta, Michele; Ponti, Mauro; Bruno, Giorgio; Cois, Giancarlo; D'Arpino, Alessandro; Minghetti, Paola; Mendicino, Francesca Romana; Perioli, Luana; Ricci, Maurizio

    2017-01-10

    Manufacturing is the bridge between research and patient: without product, there is no clinical outcome. Shortage has a variety of causes, in this paper we analyse only causes related to manufacturing technology and we use shortage as a paradigm highliting the relevance of Pharmaceutical Technology. Product and process complexity and capacity issues are the main challenge for the Pharmaceutical Industry Supply chain. Manufacturing Technology should be acknowledged as a R&D step and as a very important matter during University degree in Pharmacy and related disciplines, promoting collaboration between Academia and Industry, measured during HTA step and rewarded in terms of price and reimbursement. The above elements are not yet properly recognised, and manufacturing technology is taken in to consideration only when a shortage is in place. In a previous work, Panzitta et al. proposed to perform a full technology assessment at the Health Technological Assessment stage, evaluating three main technical aspects of a medicine: manufacturing process, physicochemical properties, and formulation characteristics. In this paper, we develop the concept of manufacturing appraisal, providing a technical overview of upcoming challenges, a risk based approach and an economic picture of shortage costs. We develop also an overall quality concept, not limited to GMP factors but broaden to all elements leading to a robust supply and promoting technical innovation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. DORIS Starec ground antenna characterization and impact on positioning

    NASA Astrophysics Data System (ADS)

    Tourain, C.; Moreaux, G.; Auriol, A.; Saunier, J.

    2016-12-01

    In a geodetic radio frequency observing system the phase center offsets and phase center variations of ground antennae are a fundamental component of mathematical models of the system observables. In this paper we describe work aimed at improving the DORIS Starec ground antenna phase center definition model. Seven antennas were analyzed in the Compact Antenna Test Range (CATR), a dedicated CNES facility. With respect to the manufacturer specified phase center offset, the measured antennae varied between -6 mm and +4 mm due to manufacturing variations. To solve this problem, discussions were held with the manufacturer, leading to an improvement of the manufacturing process. This work results in a reduction in the scatter to ±1 mm. The phase center position has been kept unchanged and associated phase law has been updated and provided to users of the International DORIS Service (IDS). This phase law is applicable to all Starec antennas (before and after manufacturing process consolidation) and is azimuth independent. An error budget taking into account these updated characteristics has been established for the antenna alone: ±2 mm on the horizontal plane and ±3 mm on the up component, maximum error values for antennas named type C (Saunier et al., 2016) produced with consolidated manufacturing process. Finally the impact of this updated characterization on positioning results has been analyzed and shows a scale offset only of the order of +12 mm for the Terrestrial Reference Frame.

  3. Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives

    NASA Astrophysics Data System (ADS)

    Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun

    2018-06-01

    Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.

  4. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, materials costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structure. Key technologies, such as large crown panel fabrication, were pursued for low cost. An intricate bond panel design and manufacturing concept were selected based on the efforts of the Design Build Team. The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and use of low cost materials forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing costs by 18 pct. and weight by 45 pct. relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  5. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  6. The Current State of Sensing, Health Management, and Control for Small-To-Medium-Sized Manufacturers

    PubMed Central

    Helu, Moneer; Weiss, Brian

    2017-01-01

    The development of digital technologies for manufacturing has been challenged by the difficulty of navigating the breadth of new technologies available to industry. This difficulty is compounded by technologies developed without a good understanding of the capabilities and limitations of the manufacturing environment, especially within small-to-medium enterprises (SMEs). This paper describes industrial case studies conducted to identify the needs, priorities, and constraints of manufacturing SMEs in the areas of performance measurement, condition monitoring, diagnosis, and prognosis. These case studies focused on contract and original equipment manufacturers with less than 500 employees from several industrial sectors. Solution and equipment providers and National Institute of Standards and Technology (NIST) Hollings Manufacturing Extension Partnership (MEP) centers were also included. Each case study involved discussions with key shop-floor personnel as well as site visits with some participants. The case studies highlight SME's strong need for access to appropriate data to better understand and plan manufacturing operations. They also help define industrially-relevant use cases in several areas of manufacturing operations, including scheduling support, maintenance planning, resource budgeting, and workforce augmentation. PMID:28736773

  7. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    ERIC Educational Resources Information Center

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…

  8. Spring 2006. Industry Study. Manufacturing Industry

    DTIC Science & Technology

    2006-01-01

    ANALYSIS OF TRENDS Today the U.S. is the global leader in manufacturing innovation and technology . Continued advancements in both computing power and...than ninety percent of all annual U.S. patents as reported by the Department of Commerce. Through innovation and the application of new technology ...mobilization, innovation and technology , the manufacturing transformation, environmental balance, and international travel impressions

  9. Manufacturing Methods and Technology Program Plan, CY 1984.

    DTIC Science & Technology

    1984-09-01

    77nD-Al48 828 MANUFACTURING METHODS AIND TECHNOLOGY PROGRAM PLAN CY 1/3 1984(U) ARMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND IL G FISCHER...1984 MANUFACTURING TECHNOLOGY DIVISION U S ARMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND, ILLINOIS 61299-7260 8 4 30 033 .. . . . . ...4i.l...NUMBE2N. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER i2- ffl7’ NONE 14TTITLE (Mid Skdde) S. TYPE OF REPORT & PERIOD COVERED MANUFACTURING METHODS

  10. Advantages of utilizing DMD based rapid manufacturing systems in mass customization applications

    NASA Astrophysics Data System (ADS)

    El-Siblani, A.

    2010-02-01

    The Use of DMD based Rapid Manufacturing Systems has proven to be very advantageous in the production of highly accurate plastic based components for use in mass customization market such as hearing aids, and dental markets. The voxelization process currently afforded with the DLP technology eliminates any layering effect associated with all existing additive Rapid Manufacturing technologies. The smooth accurate surfaces produced in an additive process utilizing DLP technology, through the voxelization approach, allow for the production of custom finished products. The implementation of DLP technology in rapid prototyping and rapid manufacturing systems allow for the usage of highly viscous photopolymer based liquid and paste composites for rapid manufacturing that could not be used in any other additive process prior to implementation of DLP technology in RP and RM systems. It also allowed for the greater throughput in production without sacrificing quality and accuracy.

  11. Manufacturing Technology Information Analysis Center: Knowledge Is Strength

    NASA Technical Reports Server (NTRS)

    Safar, Michal

    1992-01-01

    The Center's primary function is to facilitate technology transfer within DoD, other government agencies and industry. The DoD has recognized the importance of technology transfer, not only to support specific weapon system manufacture, but to strengthen the industrial base that sustains DoD. MTIAC uses an experienced technical staff of engineers and information specialists to acquire, analyze, and disseminate technical information. Besides ManTech project data, MTIAC collects manufacturing technology from other government agencies, commercial publications, proceedings, and various international sources. MTIAC has various means of disseminating this information. Much of the technical data is on user accessible data bases. The Center researches and writes a number of technical reports each year and publishes a newsletter monthly. Customized research is performed in response to specific inquiries from government and industry. MTIAC serves as a link between Government and Industry to strengthen the manufacturing technology base through the dissemination of advanced manufacturing information.

  12. System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications

    NASA Technical Reports Server (NTRS)

    Windyka, John A.; Zablocki, Ed G.

    1997-01-01

    This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.

  13. Using microwave Doppler radar in automated manufacturing applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help stimulate future growth in industrial productivity, which also promises to fuel economic growth and promote economic stability. The study also benefits the Department of Industrial Technology at Iowa State University and the field of Industrial Technology by contributing to the ongoing "smart" machine research program within the Department of Industrial Technology and by stimulating research into new sensor technologies within the University and within the field of Industrial Technology.

  14. Technological innovation capability in Malaysian-owned resource-based manufacturing companies: Early findings

    NASA Astrophysics Data System (ADS)

    Razali, Nur Fhathyhah; Mohd Suradi, Nur Riza; Ahmad Shahabuddin, Faridatul Azna; Ismail, Wan Rosmanira; Abidin, Norkisme Zainal; Ahmad, Nor Amalina; Mustafa, Zainol

    2013-04-01

    This study aims to identify the determinants of technological innovation capability of Malaysian-owned companies in the resources-based manufacturing, to identify the relationship between technological innovation capability (TIC) and technological innovation performance (TIP) for the resource-based manufacturing. Furthermore, this study also aims to identify innovation capability factors that need more emphasis and improvements from the respective authority. The scope of the study covers four industries which are petrochemical industries, pharmaceutical industries, palm oil-based industries and food processing industries which are located in the state of Selangor. Descriptive analysis, correlation analysis and performance capability analysis were used in this study. It was found that, technological innovation capabilities (TIC) for companies in the resource-based manufacturing are moderate. Factors such as policies capability, human resources capability and facilities capability have a positive relationship with the performance of technological innovation (TIP). These findings will help the government in making decisions and better implementation of policies to strengthen the competitiveness of the company, particularly in resource-based manufacturing.

  15. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; hide

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  16. A manufacturing database of advanced materials used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Bao, Han P.

    1994-01-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer aware of some of the most important aspects of manufacturing associated with his/her choice of the structural materials. The other objective of this study is to propose a quantitative method to determine a Manufacturing Complexity Factor (MCF) for each material being contemplated. This MCF is derived on the basis of the six cost drivers mentioned above plus a Technology Readiness Factor which is very closely related to the Technology Readiness Level (TRL) as defined in the Access To Space final report. Short of any manufacturing information, our MCF is equivalent to the inverse of TRL. As more manufacturing information is available, our MCF is a better representation (than TRL) of the fabrication processes involved. The most likely application for MCF is in cost modeling for trade studies. On-going work is being pursued to expand the potential applications of MCF.

  17. A manufacturing database of advanced materials used in spacecraft structures

    NASA Astrophysics Data System (ADS)

    Bao, Han P.

    1994-12-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer aware of some of the most important aspects of manufacturing associated with his/her choice of the structural materials. The other objective of this study is to propose a quantitative method to determine a Manufacturing Complexity Factor (MCF) for each material being contemplated. This MCF is derived on the basis of the six cost drivers mentioned above plus a Technology Readiness Factor which is very closely related to the Technology Readiness Level (TRL) as defined in the Access To Space final report. Short of any manufacturing information, our MCF is equivalent to the inverse of TRL. As more manufacturing information is available, our MCF is a better representation (than TRL) of the fabrication processes involved.

  18. MANUFACTURING METHODS FOR PHASE SHIFTERS.

    DTIC Science & Technology

    MANUFACTURING), (*PHASE SHIFT CIRCUITS, FERRITES, GARNET , DIGITAL SYSTEMS, X BAND, C BAND, S BAND, RADAR EQUIPMENT, MAGNETIC MATERIALS, YTTRIUM COMPOUNDS, GADOLINIUM COMPOUNDS, ALUMINUM COMPOUNDS, IRON COMPOUNDS, OXIDES.

  19. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Nicholi S

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  20. Identifying Critical Manufacturing Technologies Required for Transforming the Army Industrial Base

    DTIC Science & Technology

    2014-04-01

    mechanism, 1 = least common mechanism)? ................................................................... 29 Figure 5 – Which Technology “ Test Beds...facilities, produce new designs , and incorporate efficient manufacturing processes. The value and continued success of the Army Industrial Base depends on...in materiel supplies to troops. Specific programs, described in AR 700-09, that are designed to transition manufacturing technology into the Army

  1. Factors that influence the rejection of new manufacturing technologies and concepts

    Treesearch

    Kristen G. Hoff; Timothy J. Greene; Timothy J. Greene

    1998-01-01

    New manufacturing technologies or concepts often are adopted to improve a firm's competitive advantage over other firms in the same industry. The benefits that a firm expects to receive as a result of that adoption are presumed to outweigh the risk factors that accompany the adoption of a new manufacturing technology. Much research has been conducted to...

  2. Additive Manufacturing and Casting Technology Comparison: Mechanical Properties, Productivity and Cost Benchmark

    NASA Astrophysics Data System (ADS)

    Vevers, A.; Kromanis, A.; Gerins, E.; Ozolins, J.

    2018-04-01

    The casting technology is one of the oldest production technologies in the world but in the recent years metal additive manufacturing also known as metal 3D printing has been evolving with huge steps. Both technologies have capabilities to produce parts with internal holes and at first glance surface roughness is similar for both technologies, which means that for precise dimensions parts have to be machined in places where precise fit is necessary. Benchmark tests have been made to find out if parts which are produced with metal additive manufacturing can be used to replace parts which are produced with casting technology. Most of the comparative tests have been made with GJS-400-15 grade which is one of the most popular cast iron grades. To compare mechanical properties samples have been produced using additive manufacturing and tested for tensile strength, hardness, surface roughness and microstructure and then the results have been compared with the samples produced with casting technology. In addition, both technologies have been compared in terms of the production time and production costs to see if additive manufacturing is competitive with the casting technology. The original paper has been written in the Latvian language as part of the Master Thesis within the framework of the production technology study programme at Riga Technical University.

  3. Friction Stir Additive Manufacturing: Route to High Structural Performance

    NASA Astrophysics Data System (ADS)

    Palanivel, S.; Sidhar, H.; Mishra, R. S.

    2015-03-01

    Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.

  4. Volume 1: Survey of Available Information in Support of the Energy-Water Bandwidth Study of Desalination Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Prakash; Aghajanzadeh, Arian; Sheaffer, Paul

    The U.S. Department of Energy (DOE) has set a goal to reduce the cost of seawater desalination systems to $0.50/ cubic meter (m 3) through the development of technology pathways to reduce energy, capital, operating, soft, and system integration costs.1 In support of this goal and to evaluate the technology pathways to lower the energy and carbon intensity of desalination while also reducing the total water cost, DOE is undertaking a comprehensive study of the energy consumption and carbon dioxide (CO 2) emissions for desalination technologies and systems. This study is being undertaken in two phases. Phase 1, Survey ofmore » Available Information in Support of the Energy-Water Bandwidth Study of Desalination Systems, collected the background information that will underpin Phase 2, the Energy Water Bandwidth Study for Desalination Systems. This report (Volume 1) summarizes the results from Phase 1. The results from Phase 2 will be summarized in Volume 2: Energy Water Bandwidth Study for Desalination Systems (Volume 2). The analysis effort for Phase 2 will utilize similar methods as other industry-specific Energy Bandwidth Studies developed by DOE,2 which has provided a framework to evaluate and compare energy savings potentials within and across manufacturing sectors at the macroscale. Volume 2 will assess the current state of desalination energy intensity and reduction potential through the use of advanced and emerging technologies. For the purpose of both phases of study, energy intensity is defined as the amount of energy required per unit of product water output (for example, kilowatt-hours per cubic meter of water produced). These studies will expand the scope of previous sectorial bandwidth studies by also evaluating CO 2 intensity and reduction opportunities and informing a techno-economic analysis of desalination systems. Volume 2 is expected to be completed in 2017.« less

  5. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    NASA Technical Reports Server (NTRS)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  6. Influence of the intramedullary nail preparation method on nail's mechanical properties and degradation rate.

    PubMed

    Morawska-Chochół, Anna; Chłopek, Jan; Szaraniec, Barbara; Domalik-Pyzik, Patrycja; Balacha, Ewa; Boguń, Maciej; Kucharski, Rafael

    2015-06-01

    When it comes to the treatment of long bone fractures, scientists are still investigating new materials for intramedullary nails and different manufacturing methods. Some of the most promising materials used in the field are resorbable polymers and their composites, especially since there is a wide range of potential manufacturing and processing methods. The aim of this work was to select the best manufacturing method and technological parameters to obtain multiphase, and multifunctional, biodegradable intramedullary nails. All composites were based on a poly(l-lactide) matrix. Either magnesium alloy wires or carbon and alginate fibres were introduced in order to reinforce the nails. The polylactide matrix was also modified with tricalcium phosphate and gentamicin sulfate. The composite nails were manufactured using three different methods: forming from solution, injection moulding and hot pressing. The effect of each method of manufacturing on mechanical properties and degradation rate of the nails was evaluated. The study showed that injection moulding provides higher uniformity and homogeneity of the particle-modified polylactide matrix, whereas hot pressing favours applying higher volume fractions of fibres and their better impregnation with the polymer matrix. Thus, it was concluded that the fabrication method should be individually selected dependently on the nail's desired phase composition. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparison of predicted and measured drag for a single-engine airplane

    NASA Technical Reports Server (NTRS)

    Ward, D. T.; Taylor, F. C.; Doo, J. T. P.

    1985-01-01

    Renewed interest in natural laminar flow (NLF) has rekindled designers' concerns that manufacturing deviations, (loss of surface contours or other surface imperfections) may destroy the effectiveness of NLF for an operational airplane. This paper reports on experimental research that compares predicted and measured boundary layer transition, total drag, and two-dimensional drag coefficients for three different wing surface conditions on an airplane typical of general aviation manufacturing technology. The three flight test phases included: (1) assessment of an unpainted airframe, (2) flight tests of the same airplane after painstakingly filling and sanding the wings to design contours, and (3) similar measurements after this airplane was painted. In each flight phase, transition locations were monitored using either sublimating chemicals or pigmented oil. As expected, total drag changes were difficult to measure. Two-dimensional drag coefficients were estimated using the Eppler-Somers code and measured with a wake rake in a method very similar to Jones' pitot traverse method. The net change in two-dimensional drag was approximately 20 counts between the unpainted airplane and the 'hand-smoothed' airplane for typical cruise flight conditions.

  8. Delidding and resealing hybrid microelectronic packages

    NASA Astrophysics Data System (ADS)

    Luce, W. F.

    1982-05-01

    The objective of this single phase MM and T contract was to develop the manufacturing technology necessary for the precision removal (delidding) and replacement (resealing) of covers on hermetically sealed hybrid microelectronic packages. The equipment and processes developed provide a rework technique which does not degrade the reliability of the package of the enclosed circuitry. A qualification test was conducted on 88 functional hybrid packages, with excellent results. A petition will be filed, accompanied by this report, requesting Mil-M-38510 be amended to allow this rework method.

  9. Automated Sample Preparation (ASP): Development of a Rapid Method to Sequentially Isolate Nucleic Acids and Protein from Any Sample Type by a Cartridge-Based System

    DTIC Science & Technology

    2013-11-27

    SECURITY CLASSIFICATION OF: CUBRC has developed an in-line, multi-analyte isolation technology that utilizes solid phase extraction chemistries to purify...goals. Specifically, CUBRC will design and manufacture a prototype cartridge(s) and test the prototype cartridge for its ability to isolate each...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. CUBRC , Inc. P. O. Box 400 Buffalo, NY 14225 -1955

  10. Missile Manufacturing Technology Conference Held at Hilton Head Island, South Carolina on 22-26 September 1975. Panel Presentations. Test Equipment

    DTIC Science & Technology

    1975-01-01

    in the computer in 16 bit parallel computer DIO transfers at the max- imum computer I/O speed. it then transmits this data in a bit- serial echo...maximum DIO rate under computer interrupt control. The LCI also provides station interrupt information for transfer to the computer under computer...been in daily operation since 1973. The SAM-D Missile system is currently in the Engineering De - velopment phase which precedes the Production and

  11. Genesis of a flexible turning center

    NASA Astrophysics Data System (ADS)

    Sanclemente, Paul; French, Robert D.

    GE - Aircraft Engines has designed, built, and is operating a flexible turning center for jet engine hardware. Although the plant is in the forefront of manufacturing technology development, it was intended from the start to be a production facility. So while there was much to learn from being involved in all phases of the project, meeting production schedules was, and is, key to its success. This paper reviews the early history of the project and ends with a view of its recent production status.

  12. Optical fiber technology for space: challenges of development and qualification

    NASA Astrophysics Data System (ADS)

    Goepel, Michael

    2017-11-01

    Using fiber optical components and assemblies for space flight applications brings several challenges for the design and the qualification process. Good knowledge of the system and environmental requirements is needed to derive design decisions and select suitable components for the fiber optical subsystem. Furthermore, the manufacturing process and integration limitations are providing additional constraints, which have to be considered at the beginning of the design phase. Besides Commercial off the shelf (COTS) components, custom made parts are often necessary.

  13. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  14. Technology: Manufacturing, Transportation, Construction, Communication.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    The technology-based student activities in this curriculum resource book are intended to be incorporated into any industrial arts/technology education program. The activities are classified according to one of four technological systems--construction, communications, manufacturing, and transportation. Within the four parts of the guide, individual…

  15. Technology verification phase. Dynamic isotope power system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less

  16. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    NASA Technical Reports Server (NTRS)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  17. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  18. Fostering Innovation in the Manufacturing Sector through R&D Consortia

    NASA Astrophysics Data System (ADS)

    McKittrick, M.

    2017-12-01

    In the U.S. Department of Energy, the Advanced Manufacturing Office (AMO) has the mission to catalyze research, development and adoption of energy-related advanced manufacturing technologies and practices to drive U.S. economic competitiveness and energy productivity. Within strategic areas of manufacturing, AMO brings together manufacturers, suppliers, institutes of higher education, national laboratories, and state and local governments in public-private R&D consortia to accelerate technology innovation. One such R&D Consortia is the Critical Materials Institute (CMI), established in 2013 and led by Ames Laboratory. CMI is a sustained, multidisciplinary effort to develop solutions across the materials lifecycle of materials essential to clean energy technologies and manufacturing, as well as reduce the impact of supply chain disruptions associated with these valuable resources. By bringing together scientists and engineers from diverse disciplines, CMI is addressing challenges in critical materials, including mineral processing, manufacture, substitution, efficient use, and end-of-life recycling; integrating scientific research, engineering innovation, manufacturing and process improvements; and developing a holistic solution to the materials challenges facing the nation. It includes expertise from four national laboratories, seven universities, and ten industry partners to minimize materials criticality as an impediment to the commercialization of clean energy technologies.

  19. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  20. Challenges in Teaching Modern Manufacturing Technologies

    ERIC Educational Resources Information Center

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-01-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in…

  1. 75 FR 66739 - Technology Innovation Program (TIP) Seeks White Papers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... network analyses in the following areas--sustainable manufacturing models, resource management and... manufacturing, all endeavors require energy as input. Escalating energy demands throughout the world can lead to... such as: Technologies for improved manufacturing of critical components for alternative energy...

  2. Technology transfer from NASA to targeted industries, volume 2

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  3. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert A. Zogg

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohlermore » provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.« less

  4. An examination of silver nanoparticles in socks using screening-level life cycle assessment

    NASA Astrophysics Data System (ADS)

    Meyer, David E.; Curran, Mary Ann; Gonzalez, Michael A.

    2011-01-01

    Screening-level life cycle assessment (LCA) can provide a quick tool to identify the life cycle hot spots and focus research efforts to help to minimize the burdens of a technology while maximizing its benefits. The use of nanoscale silver in consumer products has exploded in popularity. Although its use is considered beneficial because of antimicrobial effects, some attention must be given to the potential environmental impacts it could impart on the life cycle of these nanoproducts as production demands escalate. This work examines the environmental impact of including silver nanoparticles in commercially available socks using screening-level LCA. Initial results suggest washing during the use phase contributes substantially more than the manufacturing phase to the product life cycle impacts. Comparison of nanoparticles prepared by either chemical reduction, liquid flame spray (LFS), or plasma arc demonstrate how the type of manufacturing process used for the nanoscale silver can change the resulting life cycle impact of the sock product. The magnitude of this impact will depend on the type of process used to manufacture the nanoscale silver, with LFS having the most impact because of the need for large quantities of hydrogen and oxygen. Although the increased impacts for a single nanoproduct may be relatively small, the added environmental load can actually be a significant quantity when considered at the regional or global production level.

  5. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit.

    PubMed

    Cozmuta, Ioana; Rasky, Daniel J

    2017-09-01

    Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that "killer app": technologically competitive, economically viable, and with the ability to close the business case.

  6. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit

    PubMed Central

    Rasky, Daniel J.

    2017-01-01

    Abstract Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that “killer app”: technologically competitive, economically viable, and with the ability to close the business case. PMID:29375939

  7. Global Manufacturing of CAR T Cell Therapy.

    PubMed

    Levine, Bruce L; Miskin, James; Wonnacott, Keith; Keir, Christopher

    2017-03-17

    Immunotherapy using chimeric antigen receptor-modified T cells has demonstrated high response rates in patients with B cell malignancies, and chimeric antigen receptor T cell therapy is now being investigated in several hematologic and solid tumor types. Chimeric antigen receptor T cells are generated by removing T cells from a patient's blood and engineering the cells to express the chimeric antigen receptor, which reprograms the T cells to target tumor cells. As chimeric antigen receptor T cell therapy moves into later-phase clinical trials and becomes an option for more patients, compliance of the chimeric antigen receptor T cell manufacturing process with global regulatory requirements becomes a topic for extensive discussion. Additionally, the challenges of taking a chimeric antigen receptor T cell manufacturing process from a single institution to a large-scale multi-site manufacturing center must be addressed. We have anticipated such concerns in our experience with the CD19 chimeric antigen receptor T cell therapy CTL019. In this review, we discuss steps involved in the cell processing of the technology, including the use of an optimal vector for consistent cell processing, along with addressing the challenges of expanding chimeric antigen receptor T cell therapy to a global patient population.

  8. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrick, Adam

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already hadmore » the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria is currently positioned to become the market leader with these two technologies over the coming 24 months largely due to the successful innovations of the underlying manufacturing technology. This success will leverage US-based manufacturing technology and the associated US-jobs to support. Solaria views the project as highly successful and a great example of SunShot funding enabling the creating of US jobs and the deployment of ubiquitous solar energy products.« less

  9. Computer-Integrated Manufacturing Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile for computer-integrated manufacturing technology begins with definitions for four occupations: manufacturing technician, quality technician, mechanical engineering technician, and computer-assisted design/drafting (CADD) technician. A chart lists competencies by unit and indicates whether entire or partial unit is…

  10. Use of digital technologies for nasal prosthesis manufacturing.

    PubMed

    Palousek, David; Rosicky, Jiri; Koutny, Daniel

    2014-04-01

    Digital technology is becoming more accessible for common use in medical applications; however, their expansion in prosthetic and orthotic laboratories is not large because of the persistent image of difficult applicability to real patients. This article aims to offer real example in the area of human facial prostheses. This article describes the utilization of optical digitization, computational modelling, rapid prototyping, mould fabrication and manufacturing of a nasal silicone prosthesis. This technical note defines the key points of the methodology and aspires to contribute to the introduction of a certified manufacturing procedure. The results show that the used technologies reduce the manufacturing time, reflect patient's requirements and allow the manufacture of high-quality prostheses for missing facial asymmetric parts. The methodology provides a good position for further development issues and is usable for clinical practice. Clinical relevance Utilization of digital technologies in facial prosthesis manufacturing process can be a good contribution for higher patient comfort and higher production efficiency but with higher initial investment and demands for experience with software tools.

  11. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  12. Advantage Management Strategy in Competition via Technological Race Perspective: Empirical Evidence from the Taiwanese Manufacturing Industry

    PubMed Central

    Hung, Tsu-Yi; Hsiao, Yu-Ju; Wu, Shih-Wei

    2014-01-01

    This study investigated the advantage management strategies of a firm regarding the technological race in the manufacturing sector. This is to reveal whether firms adopt a catch-up or leapfrogging strategy in the competition for innovation. The results show that competition is fierce in the Taiwanese manufacturing industry. Taiwanese manufacturing firms (mostly SMEs) tend to adopt the “catch-up” strategy to keep up with their competitors in order to remain in the technological race. The result indicates that, under financial constraints, Taiwanese manufacturing firms attempt to invest in R&D to catch up with their rivals or to avoid being eliminated from the race. PMID:25295307

  13. Advantage management strategy in competition via technological race perspective: empirical evidence from the Taiwanese manufacturing industry.

    PubMed

    Hung, Tsu-Yi; Hsiao, Yu-Ju; Wu, Shih-Wei

    2014-01-01

    This study investigated the advantage management strategies of a firm regarding the technological race in the manufacturing sector. This is to reveal whether firms adopt a catch-up or leapfrogging strategy in the competition for innovation. The results show that competition is fierce in the Taiwanese manufacturing industry. Taiwanese manufacturing firms (mostly SMEs) tend to adopt the "catch-up" strategy to keep up with their competitors in order to remain in the technological race. The result indicates that, under financial constraints, Taiwanese manufacturing firms attempt to invest in R&D to catch up with their rivals or to avoid being eliminated from the race.

  14. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, Rebecca; Carpenter Petri, Alberta C; Riddle, Matt

    Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristicmore » is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified and used to identify the technologies which offer the greatest cumulative sector-level energy savings over a period of 20 years. Preliminary analysis indicates that relatively simple technologies, such as efficient furnaces, will be adopted more quickly and result in greater cumulative energy savings compared to more complex technologies that require process retrofitting, such as advanced control systems.« less

  15. Hermite-Gaussian beams with self-forming spiral phase distribution

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2014-05-01

    Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).

  16. A new application for food customization with additive manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Serenó, L.; Vallicrosa, G.; Delgado, J.; Ciurana, J.

    2012-04-01

    Additive Manufacturing (AM) technologies have emerged as a freeform approach capable of producing almost any complete three dimensional (3D) objects from computer-aided design (CAD) data by successively adding material layer by layer. Despite the broad range of possibilities, commercial AM technologies remain complex and expensive, making them suitable only for niche applications. The developments of the Fab@Home system as an open AM technology discovered a new range of possibilities of processing different materials such as edible products. The main objective of this work is to analyze and optimize the manufacturing capacity of this system when producing 3D edible objects. A new heated syringe deposition tool was developed and several process parameters were optimized to adapt this technology to consumers' needs. The results revealed in this study show the potential of this system to produce customized edible objects without qualified personnel knowledge, therefore saving manufacturing costs compared to traditional technologies.

  17. Industrial applications study. Volume V. Bibliography of relevant literature. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Harry L.; Hamel, Bernard B.; Karamchetty, Som

    1976-12-01

    This five-volume report represents an initial Phase O evaluation of waste heat recovery and utilization potential in the manufacturing portion of the industrial sector. The scope of this initial phase was limited to the two-digit SIC level and addressed the feasibility of obtaining in-depth energy information in the industrial sector. Within this phase, a successful methodology and approaches for data gathering and assessment are established. Using these approaches, energy use and waste heat profiles were developed at the 2-digit level; with this data, waste heat utilization technologies were evaluated. The first section of the bibliography lists extensive citations for allmore » industries. The next section is composed of an extensive literature search with abstracts for industrial energy conservation. EPA publications on specific industries and general references conclude the publication. (MCW)« less

  18. Automotive Stirling engine Market and Industrial Readiness Program (MIRP), phase 1

    NASA Astrophysics Data System (ADS)

    1982-05-01

    A program, begun in 1978, has the goal of transferring Stirling engine technology from United Stirling of Sweden to the US and, then, following design, fabrication, and prototype testing, to secure US manufacturers for the engine. The ultimate objective is the large-scale commercial use of the Automotive Stirling Engine (ASE) by the year 2000. The fist phase of the Market and Industrial Readiness Program for the ASE was concerned with defining the market, product, economic and technical factors necessary to be addressed to assure a reasonable chance of ultimate commercial acceptance. Program results for this first phase are reported and discussed. These results pertain to licensing strategy development, economic analysis, market factors, product planning, market growth, cost studies, and engine performance as measured by fuel economy using conventional fuels and by vehicle speed and acceleration characteristics.

  19. Achieving continuous manufacturing for final dosage formation: challenges and how to meet them. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L

    2015-03-01

    We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including development of small-scale equipment and processes. Develop ways to invest internally in continuous manufacturing. How best to do this will depend on the specifics of a given organization, in particular the current development projects. Upper managers will need to energize their process developers to incorporate continuous manufacturing in at least part of their processes to gain experience and demonstrate directly the benefits. Training of continuous manufacturing technologies, organizational approaches, and regulatory approaches is a key area that industrial leaders should pursue together. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges

    DOE PAGES

    Nandwana, Peeyush; Elliott, Amy M.; Siddel, Derek; ...

    2017-01-03

    Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition,more » existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. In conclusion, the role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.« less

  1. Application of carbon nanoclusters in electronics

    NASA Astrophysics Data System (ADS)

    Krachkovskaya, T. M.; Sahadji, G. V.; Emelyanov, A. S.; Silaeva, M. V.

    2018-04-01

    Nanocarbon material (Ugleron and Astralens) is used for the first time for the production of metal porous cathode (MPC). It can be assumed that its implementation in the MPC matrix can change the mechanism and rate of occurrence of three-phase reactions of formation of active elements and oxygen and, thereby, improve its emission properties. The new technology of manufacturing MPC is aimed at solving the problem of increasing the durability of electro vacuum devices - more than 100,000 hours. The obtained results are intended for use in technologies for manufacturing of electron sources for electro vacuum devices used in space communication and navigation systems. In addition, they can be useful for other areas of electronics that use a metal-porous thermal cathode as sources of electron emission. There are manufactured models with the use of Ugleron and Astralens in a sponge and emission substance. A layout using Ugleron in the emission substance is tested for durability and currently has an operating time of 40,000 hours. A model with the use of Astralens and Ugleron in a sponge and emission substance respectively is tested for maximum current density. To date, it shows results comparable to the standard cathode. However, there is a suggestion that cathodes with Astralens and Ugleron have a lower evaporation rate of the active substance. There is predicted longer durability than for the standard cathode at the same emissivity.

  2. FMS: The New Wave of Manufacturing Technology.

    ERIC Educational Resources Information Center

    Industrial Education, 1986

    1986-01-01

    Flexible manufacturing systems (FMS) are described as a marriage of all of the latest technologies--robotics, numerical control, CAD/CAM (computer-assisted design/computer-assisted manufacturing), etc.--into a cost-efficient, optimized production process yielding the greatest flexibility in making various parts. A typical curriculum to teach FMS…

  3. Arizona Industrial Arts Manufacturing Technology. Teacher's Curriculum Guide.

    ERIC Educational Resources Information Center

    Miller, Milton; And Others

    This curriculum guide is intended to assist junior and senior high school vocational instructors in presenting a course in manufacturing technology. The package contains a competency/skill and task list, an instructor's guide, and a bibliography. The following competencies are covered: the historical development of manufacturing (the…

  4. Durability of Membrane Electrode Assemblies (MEAs) in PEM Fuel Cells Operated on Pure Hydrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stanic, Vesna; Braun, James; Hoberecht, Mark

    2003-01-01

    Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of MEAs out of the nine total membranes failed the test. The evaluation results showed that fuel cell operating conditions (current, pressure, stoichiometric flow rates) were the parameters that influenced the durability of MEAs. In addition, the durability test results indicated that the type of membrane was also an important parameter for MEA durability. At accelerated test conditions, the MEAs with casted membranes failed during the 400 hour test. However, the MEAs prepared from the casted membrane with support as well as extruded membranes, both passed the 400h durability test at accelerated operating test conditions. As a result of the MEA accelerated durability tests, four MEAs were selected for further endurance testing. These tests are being carried out with four-cell stacks under nominal fuel cell operating conditions.

  5. Space Manufacturing: The Next Great Challenge

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Curreri, Peter; Sharpe, Jonathan B.; Colberg, Wendell R.; Vickers, John H.

    1998-01-01

    Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials.

  6. Applied Physics Modules Selected for Manufacturing and Metal Technologies.

    ERIC Educational Resources Information Center

    Waring, Gene

    Designed for individualized use in an applied physics course in postsecondary vocational-technical education, this series of eighteen learning modules is equivalent to the content of two quarters of a five-credit hour class in manufacturing engineering technology, machine tool and design technology, welding technology, and industrial plastics…

  7. 78 FR 64019 - Manufacturer of Controlled Substances; Notice of Registration; Agilent Technologies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...; Notice of Registration; Agilent Technologies By Notice dated May 24, 2013, and published in the Federal Register on June 4, 2013, 78 FR 33441, Agilent Technologies, 25200 Commercentre Drive, Lake Forest... of Agilent Technologies to manufacture the listed basic classes of controlled substances is...

  8. 77 FR 43864 - Manufacturer of Controlled Substances; Notice of Registration; Rhodes Technologies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ...; Notice of Registration; Rhodes Technologies By Notice dated April 17, 2012, and published in the Federal Register on April 26, 2012, 77 FR 24986, Rhodes Technologies, 498 Washington Street, Coventry, Rhode Island... Technologies to manufacture the listed basic classes of controlled substances is consistent with the public...

  9. 78 FR 49547 - Manufacturer of Controlled Substances, Notice of Registration, Rhodes Technologies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ..., Notice of Registration, Rhodes Technologies By Notice dated April 10, 2013, and published in the Federal Register on April 19, 2013, 78 FR 23596, Rhodes Technologies, 498 Washington Street, Coventry, Rhode Island... registration of Rhodes Technologies to manufacture the listed basic classes of controlled substances is...

  10. 78 FR 52505 - Manufacturing Extension Partnership Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Manufacturing Extension Partnership Advisory Board AGENCY: National Institute of Standards and Technology, Commerce. ACTION: Notice of Open Meeting. SUMMARY: The National Institute of Standards and Technology (NIST) announces that the...

  11. 78 FR 32240 - Manufacturing Extension Partnership Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Manufacturing Extension Partnership Advisory Board AGENCY: National Institute of Standards and Technology, Commerce. ACTION: Notice of open meeting. SUMMARY: The National Institute of Standards and Technology (NIST) announces that the...

  12. MINOTAUR (Maryland's innovative orbital technologically advanced University rocket)

    NASA Technical Reports Server (NTRS)

    Lewis, Mark J.; Akin, Dave; Lind, Charles; Rice, T. (Editor); Vincent, W. (Editor)

    1992-01-01

    Over the past decade, there has been an increasing interest in designing small commercial launch vehicles. Some of these designs include OSC's Pegasus, and AMROC's Aquila. Even though these vehicles are very different in their overall design characteristics, they all share a common thread of being expensive to design and manufacture. Each of these vehicles has an estimated production and operations cost of over $15000/kg of payload. In response to this high cost factor, the University of Maryland is developing a cost-effective alternative launch vehicle, Maryland's Innovative Orbital Technologically Advanced University Rocket (MINOTAUR). A preliminary cost analysis projects that MINOTAUR will cost under $10000/kg of payload. MINOTAUR will also serve as an enriching project devoted to an entirely student-designed-and-developed launch vehicle. This preliminary design of MINOTAUR was developed entirely by undergraduates in the University of Maryland's Space Vehicle Design class. At the start of the project, certain requirements and priorities were established as a basis from which to begin the design phase: (1) carry a 100 kg payload into a 200 km circular orbit; (2) provide maximum student involvement in the design, manufacturing, and launch phases of the project; and (3) use hybrid propulsion throughout. The following is the list of the project's design priorities (from highest to lowest): (1) safety, (2) cost, (3) minimum development time, (4) maximum use of the off-the-shelf components, (5) performance, and (6) minimum use of pyrotechnics.

  13. Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass

    NASA Astrophysics Data System (ADS)

    Peake, James R. N.; Freestone, Ian C.

    Opaque red glass has been extensively studied over the years, but its compositional complexity and variability means that the way in which it was manufactured is still not fully understood. Previous studies have suggested the use of metallurgical by-products in its manufacture, but until now the evidence has been limited. SEM-EDS analysis of glass beads from the early Anglo-Saxon cemetery complex at Eriswell, southeast England, has provided further insights into the production and technology of opaque red glass, which could only have been possible through invasive sampling. The matrix of the red glasses contains angular particles of slag, the main phases of which typically correspond to either fayalite (Fe2SiO4) or kirschsteinite (CaFeSiO4), orthosilicate (olivine-type) minerals characteristic of some copper- and iron-smelting slags. This material appears to have been added in part as a reducing agent, to promote the precipitation of sub-micrometer particles of the colorant phase, copper metal. Its use represents a sophisticated, if empirical, understanding of materials and can only have resulted through deliberate experimentation with metallurgical by-products by early glass workers. Slag also seems to have been added as a source of iron to colour `black' glass. The compositions of the opaque red glasses appear to be strongly paralleled by Merovingian beads from northern Europe and Anglo-Saxon beads from elsewhere in England, suggesting that this technology is likely to have been quite widespread.

  14. 3D model of filler melting with micro-beam plasma arc based on additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Chen, Weilin; Yang, Tao; Yang, Ruixin

    2017-07-01

    Additive manufacturing technology is a systematic process based on discrete-accumulation principle, which is derived by the dimension of parts. Aiming at the dimension mathematical model and slicing problems in additive manufacturing process, the constitutive relations between micro-beam plasma welding parameters and the dimension of part were investigated. The slicing algorithm and slicing were also studied based on the dimension characteristics. By using the direct slicing algorithm according to the geometric characteristics of model, a hollow thin-wall spherical part was fabricated by 3D additive manufacturing technology using micro-beam plasma.

  15. Practical Education Support to Foster Engineers at Manufacturing and Engineering Design Center in Muroran Institute of Technology

    NASA Astrophysics Data System (ADS)

    Kazama, Toshiharu; Hanajima, Naohiko; Shimizu, Kazumichi; Satoh, Kohki

    To foster engineers with creative power, Muroran Institute of Technology established Manufacturing and Engineering Design Center (MEDeC) that concentrates on Monozukuri. MEDeC consists of three project groups : i) Education Support Group provides educational support for practical training classes on and off campus and PDCA (plan-do-check-action) -conscious engineering design education related to Monozukuri ; ii) Fundamental Manufacturing Research Group carries out nurture research into fundamental and innovative technology of machining and manufacturing, and iii) Regional Cooperation Group coordinates the activities in cooperation with bureau, schools and industries in and around Muroran City. MEDeC has a fully integrated collection of machine tools and hand tools for manufacturing, an atelier, a tatara workplace, implements for measurement and related equipment designed for practically teaching state-of-the-practice manufacturing methods.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, Debra; Chung, Donald; Keyser, David

    This report documents the CEMAC methodologies for developing and reporting annual global clean energy manufacturing benchmarks. The report reviews previously published manufacturing benchmark reports and foundational data, establishes a framework for benchmarking clean energy technologies, describes the CEMAC benchmark analysis methodologies, and describes the application of the methodologies to the manufacturing of four specific clean energy technologies.

  17. Clean Energy Manufacturing Analysis Center. 2015 Research Highlights -- Carbon Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sujit

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber.

  18. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2018-05-18

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  19. Advanced Manufacturing Office Clean Water Processing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)’s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.

  20. Additive Manufacturing Technology for Biomedical Components: A review

    NASA Astrophysics Data System (ADS)

    Aimi Zaharin, Haizum; Rani, Ahmad Majdi Abdul; Lenggo Ginta, Turnad; Azam, Farooq I.

    2018-03-01

    Over the last decades, additive manufacturing has shown potential application in ranging fields. No longer a prototyping technology, it is now being utilised as a manufacturing technology for giant industries such as the automotive, aircraft and recently in the medical industry. It is a very successful method that provides health-care solution in biomedical sectors by producing patient-specific prosthetics, improve tissues engineering and facilitate pre-operating session. This paper thus presents a brief overview of the most commercially important additive manufacturing technologies, which is currently available for fabricating biomedical components such as Stereolithography (SLA), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Fused Deposition Modelling (FDM) and Electron Beam Melting (EBM). It introduces the basic principles of the main process, highlights some of the beneficial applications in medical industry and the current limitation of applied technology.

  1. Japan's technology and manufacturing infrastructure

    NASA Astrophysics Data System (ADS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-02-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  2. Japan's technology and manufacturing infrastructure

    NASA Technical Reports Server (NTRS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-01-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  3. Evaluative studies in nuclear medicine research: positron computed tomography assessment. Final report, January 1, 1982-December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potchen, E.J.; Harris, G.I.; Gift, D.A. Reinhard, D.K.

    Results are reported of the final phase of the study effort generally titled Evaluative Studies in Nuclear Medicine Research. The previous work is reviewed and extended to an assessment providing perspectives on medical applications of positron emission tomographic (PET) systems, their technological context, and the related economic and marketing environment. Methodologies developed and used in earlier phases of the study were continued, but specifically extended to include solicitation of opinion from commercial organizations deemed to be potential developers, manufacturers and marketers of PET systems. Several factors which influence the demand for clinical uses of PET are evaluated and discussed. Themore » recent Federal funding of applied research with PET systems is found to be a necessary and encouraging event toward a determination that PET either is a powerful research tool limited to research, or whether it also presents major clinical utility. A comprehensive, updated bibliography of current literature related to the development, applications and economic considerations of PET technology is appended.« less

  4. InGaN High-Temperature Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Starikov, David

    2015-01-01

    This Phase II project developed Indium-Gallium-Nitride (InGaN) photovoltaic cells for high-temperature and high-radiation environments. The project included theoretical and experimental refinement of device structures produced in Phase I as well as modeling and optimization of solar cell device processing. The devices have been tested under concentrated air mass zero (AM0) sunlight, at temperatures from 100 degC to 250 degC, and after exposure to ionizing radiation. The results are expected to further verify that InGaN can be used for high-temperature and high-radiation solar cells. The large commercial solar cell market could benefit from the hybridization of InGaN materials to existing solar cell technology, which would significantly increase cell efficiency without relying on highly toxic compounds. In addition, further development of this technology to even lower bandgap materials for space applications would extend lifetimes of satellite solar cell arrays due to increased radiation hardness. This could be of importance to the Departmentof Defense (DoD) and commercial satellite manufacturers.

  5. Method of transition from 3D model to its ontological representation in aircraft design process

    NASA Astrophysics Data System (ADS)

    Govorkov, A. S.; Zhilyaev, A. S.; Fokin, I. V.

    2018-05-01

    This paper proposes the method of transition from a 3D model to its ontological representation and describes its usage in the aircraft design process. The problems of design for manufacturability and design automation are also discussed. The introduced method is to aim to ease the process of data exchange between important aircraft design phases, namely engineering and design control. The method is also intended to increase design speed and 3D model customizability. This requires careful selection of the complex systems (CAD / CAM / CAE / PDM), providing the basis for the integration of design and technological preparation of production and more fully take into account the characteristics of products and processes for their manufacture. It is important to solve this problem, as investment in the automation define the company's competitiveness in the years ahead.

  6. Status of the Node 3 Regenerative Environmental Cpntrol& Life Support System Water Recovery & Oxygen Generation Systems

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn L.

    2003-01-01

    NASA s Marshall Space Flight Center is providing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for flight on the lnternational Space Station s (ISS) Node 3 element. The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems lnternational (HSSSI), while the UPA and PSM are being designed and manufactured in-house by MSFC. The assemblies are currently in the manufacturing and test phase and are to be completed and integrated into flight racks this year. This paper gives an overview of the technologies and system designs, technical challenges encountered and solved, and the current status.

  7. Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems: Key Findings from a Roadmapping Workshop

    PubMed Central

    Weiss, Brian A.; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand

    2017-01-01

    The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop – Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure – Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed. PMID:28664163

  8. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  9. WASTE REDUCTION TECHNOLOGY EVALUATIONS AT THREE PRINTED WIRE BOARD MANUFACTURERS

    EPA Science Inventory

    Technologies at three printed wire board (PWB) manufacturers were evaluated for waste reduction, and costs were compared to existing operations. rom 1989 to 1993, these evaluations were conducted under US EPA's Waste Reduction Innovative Technology Evaluation (WRITE) Program, in ...

  10. Rapid Solidification and Phase Transformations in Additive Manufactured Materials

    DOE PAGES

    Asle Zaeem, Mohsen; Clarke, Amy Jean

    2016-01-14

    Within the past few years, additive manufacturing (AM) has emerged as a promising manufacturing technique to enable the production of complex engineering structures with high efficiency and accuracy. Among the important factors establishing AM as a sustainable manufacturing process is the ability to control the microstructures and properties of AM products. In most AM processes, such as laser sintering (LS), laser melting (LM), and laser metal deposition (LMD), rapid solidification and high-temperature phase transformations play primary roles in determining nano- and microstructures, and consequently the mechanical and other properties of AM products. This topic of JOM is dedicated to summarizingmore » the current research efforts in the area of rapid solidification and phase transformations in additively manufactured materials. Finally, a brief summary follows below of 10 journal articles in this topic.« less

  11. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal massmore » culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.« less

  12. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, D.W.; Whisman, M.L.

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in whichmore » experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.« less

  13. Assessment of Knowledge and Skills Needed in Selected Engineering Technician Fields: Mechanical/Manufacturing/Industrial.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    A study identified the essential educational topics and the level of proficiency perceived to be required in these topics for selected two-year engineering technology programs in North Carolina. The four curricula studied were mechanical engineering technology, mechanical drafting and design technology, manufacturing engineering technology, and…

  14. Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery.

    PubMed

    Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2012-07-01

    Computer aided design and manufacturing (CAD/CAM) technology today is the standard in manufacturing industry. The application of the CAD/CAM technology, together with the emerging 3D medical images based virtual surgical planning (VSP) technology, to craniomaxillofacial reconstruction has been gaining increasing attention to reconstructive surgeons. This article illustrates the components, system and clinical management of the VSP and CAD/CAM technology including: data acquisition, virtual surgical and treatment planning, individual implant design and fabrication, and outcome assessment. It focuses primarily on the technical aspects of the VSP and CAD/CAM system to improve the predictability of the planning and outcome.

  15. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

    PubMed

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  16. Quantum gyroscope based on Berry phase of spins in diamond

    NASA Astrophysics Data System (ADS)

    Song, Xuerui; Wang, Liujun; Diao, Wenting; Duan, Chongdi

    2018-02-01

    Gyroscope is the crucial sensor of the inertial navigation system, there is always high demand to improve the sensitivity and reduce the size of the gyroscopes. Using the NV center electronic spin and nuclear spin qubits in diamond, we introduce the research of new types of quantum gyroscopes based on the Berry phase shifts of the spin states during the rotation of the sensor systems. Compared with the performance of the traditional MEMS gyroscope, the sensitivity of the new types of quantum gyroscopes was highly improved and the spatial resolution was reduced to nano-scale. With the help of micro-manufacturing technology in the semiconductor industry, the quantum gyroscopes introduced here can be further integrated into chip-scale sensors.

  17. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  18. 2015 Summer Design Challenge: Team A&E (2241) Additively Manufactured Discriminator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Sarah E.; Moore, Brandon James

    Current discriminator designs are based on historical designs and traditional manufacturing methods. The goal of this project was to form non-traditional groups to create novel discriminator designs by taking advantage of additive manufacturing. These designs would expand current discriminator designs and provide insight on the applicability of additive manufacturing for future projects. Our design stretched the current abilities of additive manufacturing and noted desired improvements for the future. Through collaboration with NSC, we noted several additional technologies which work well with additive manufacturing such as topology optimization and CT scanning and determined how these technologies could be improved to bettermore » combine with additive manufacturing.« less

  19. 15 CFR 290.3 - Program description.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER OF MANUFACTURING TECHNOLOGY § 290.3 Program description. (a) The Secretary, acting through the... for the Transfer of Manufacturing Technology. Each Center shall be affiliated with a U.S.-based...

  20. 15 CFR 290.3 - Program description.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER OF MANUFACTURING TECHNOLOGY § 290.3 Program description. (a) The Secretary, acting through the... for the Transfer of Manufacturing Technology. Each Center shall be affiliated with a U.S.-based...

  1. Solidification and solid-state transformation sciences in metals additive manufacturing

    DOE PAGES

    Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...

    2017-02-11

    Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.

  2. 78 FR 22801 - Request for Comments on Developing a Program To Provide Loan Guarantees to Small- or Medium-Sized...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... manufacturing; manufacture an innovative technology product or an integral component of such a product; or, to... use or production of innovative technologies for manufacturing? Dated: April 10, 2013. Matt Erskine.... SUMMARY: The Economic Development Administration (EDA) seeks public comment on, how to design and...

  3. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-08-01

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  4. Manufacturing Materials and Processes. Grade 11-12. Course #8165 (Semester). Technology Education Course Guide. Industrial Arts/Technology Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    This guide is intended for use in teaching an introductory course in manufacturing materials and processes. The course centers around four basic materials--metallics, polymers, ceramics, and composites--and seven manufacturing processes--casting, forming, molding, separating, conditioning, assembling, and finishing. Concepts and classifications of…

  5. 2D net shape weaving for cost effective manufacture of textile reinforced composites

    NASA Astrophysics Data System (ADS)

    Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.

    2017-10-01

    Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.

  6. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    NASA Astrophysics Data System (ADS)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  7. Regulatory Perspectives on Continuous Pharmaceutical Manufacturing: Moving From Theory to Practice: September 26-27, 2016, International Symposium on the Continuous Manufacturing of Pharmaceuticals.

    PubMed

    Nasr, Moheb M; Krumme, Markus; Matsuda, Yoshihiro; Trout, Bernhardt L; Badman, Clive; Mascia, Salvatore; Cooney, Charles L; Jensen, Keith D; Florence, Alastair; Johnston, Craig; Konstantinov, Konstantin; Lee, Sau L

    2017-11-01

    Continuous manufacturing plays a key role in enabling the modernization of pharmaceutical manufacturing. The fate of this emerging technology will rely, in large part, on the regulatory implementation of this novel technology. This paper, which is based on the 2nd International Symposium on the Continuous Manufacturing of Pharmaceuticals, describes not only the advances that have taken place since the first International Symposium on Continuous Manufacturing of Pharmaceuticals in 2014, but the regulatory landscape that exists today. Key regulatory concepts including quality risk management, batch definition, control strategy, process monitoring and control, real-time release testing, data processing and management, and process validation/verification are outlined. Support from regulatory agencies, particularly in the form of the harmonization of regulatory expectations, will be crucial to the successful implementation of continuous manufacturing. Collaborative efforts, among academia, industry, and regulatory agencies, are the optimal solution for ensuring a solid future for this promising manufacturing technology. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  8. Changing Manufacturing Technology and Jobs in Defense Industries.

    ERIC Educational Resources Information Center

    Oliver, Richard P.

    1983-01-01

    Provides information on the current status of computer-assisted manufacturing, current employment, and plans for new technology in three defense-related industries: aircraft, shipbuilding, and ordnance. (SK)

  9. Roughness and compressive strength of FDM 3D printed specimens affected by acetone vapour treatment

    NASA Astrophysics Data System (ADS)

    Beniak, Juraj; Križan, Peter; Šooš, Ľubomír; Matúš, Miloš

    2018-01-01

    Rapid Prototyping technologies are the fastest growing technologies in the manufacturing of components and parts. There are many techniques which can be used with different materials and different purposes of produced part. Gradually, Rapid Prototyping systems have grown into Additive Manufacturing, because technology expansion brings faster production, improved manufactured components, and expanded palette of used materials. So now this techniques are also used for regular production of special parts, where is usual change of part design, where is necessary to produce variety of different designs and shapes. The following article deals with Fused Deposition Modelling (FDM) technology, the core of which is the manufacture models and components from thermoplastic polymers by deposition single fibres of semi-molten plastic material layer by layer. The article focuses on the results of research for testing of manufactured specimens by FDM technology. Components are modified by acetone vapour for surface smoothing. The purpose is to point out how the additional specimen treatment influence the strength properties. Presented paper shows realized experiments and measurements of compressive force on specimens and surface roughness which are influenced by acetone vapour treatment.

  10. Training mechanical engineering students to utilize biological inspiration during product development.

    PubMed

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  11. Voltage Controller

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Power Efficiency Corporation, specifically formed to manufacture and develop products from NASA technology, has a license to a three-phase power factor controller originally developed by Frank Nola, an engineer at Marshall Space Flight Center. Power Efficiency and two major distributors, Performance Control and Edison Power Technologies, use the electronic control boards to assemble three different motor controllers: Power Commander, Performance Controller, and Energy Master. The company Power Factor Controller reduces excessive energy waste in AC induction motors. It is used in industries and applications where motors operate under variable loads, including elevators and escalators, machine tools, intake and exhaust fans, oil wells, conveyors, pumps, die casting, and compressors. Customer lists include companies such as May Department Stores, Caesars Atlantic City, Ford Motors, and American Axle.

  12. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture.

    PubMed

    Pollock, James; Coffman, Jon; Ho, Sa V; Farid, Suzanne S

    2017-07-01

    This paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete-event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision-making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps. The cost of goods per gram (COG/g), E-factor, and operational risk scores of each strategy were established across a matrix of scenarios with differing combinations of clinical development phase and company portfolio size. The tool outputs predict that the optimal strategy for early phase production and small/medium-sized companies is the integrated continuous strategy (alternating tangential flow filtration (ATF) perfusion, continuous capture, continuous polishing). However, the top ranking strategy changes for commercial production and companies with large portfolios to the hybrid strategy with fed-batch culture, continuous capture and batch polishing from a COG/g perspective. The multiattribute decision-making analysis highlighted that if the operational feasibility was considered more important than the economic benefits, the hybrid strategy would be preferred for all company scales. Further considerations outside the scope of this work include the process development costs required to adopt continuous processing. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:854-866, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  13. Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites

    NASA Astrophysics Data System (ADS)

    Schomer, Laura; Liewald, Mathias; Riedmüller, Kim Rouven

    2018-05-01

    Metal-ceramic Interpenetrating Phase Composites (IPC) belong to a special subcategory of composite materials and reveal enhanced properties compared to conventional composite materials. Currently, IPC are produced by infiltration of a ceramic open-pore body with liquid metal applying high pressure and I or high temperature to avoid residual porosity. However, these IPC are not able to gain their complete potential, because of structural damages and interface reactions occurring during the manufacturing process. Compared to this, the manufacturing of IPC using the semi-solid forming technology offers great perspectives due to relative low processing temperatures and reduced mechanical pressure. In this context, this paper is focusing on numerical investigations conducted by using the FLOW-3D software for gaining a deeper understanding of the infiltration of open-pore bodies with semi-solid materials. For flow simulation analysis, a geometric model and different porous media drag models have been used. They have been adjusted and compared to get a precise description of the infiltration process. Based on these fundamental numerical investigations, this paper also shows numerical investigations that were used for basically designing a semi-solid forming tool. Thereby, the development of the flow front and the pressure during the infiltration represent the basis of the evaluation. The use of an open and closed tool cavity combined with various geometries of the upper die shows different results relating to these evaluation arguments. Furthermore, different overflows were designed and its effects on the pressure at the end of the infiltration process were investigated. Thus, this paper provides a general guideline for a tool design for manufacturing of metal-ceramic IPC using semi-solid forming.

  14. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture

    PubMed Central

    Pollock, James; Coffman, Jon; Ho, Sa V.

    2017-01-01

    This paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete‐event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision‐making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps. The cost of goods per gram (COG/g), E‐factor, and operational risk scores of each strategy were established across a matrix of scenarios with differing combinations of clinical development phase and company portfolio size. The tool outputs predict that the optimal strategy for early phase production and small/medium‐sized companies is the integrated continuous strategy (alternating tangential flow filtration (ATF) perfusion, continuous capture, continuous polishing). However, the top ranking strategy changes for commercial production and companies with large portfolios to the hybrid strategy with fed‐batch culture, continuous capture and batch polishing from a COG/g perspective. The multiattribute decision‐making analysis highlighted that if the operational feasibility was considered more important than the economic benefits, the hybrid strategy would be preferred for all company scales. Further considerations outside the scope of this work include the process development costs required to adopt continuous processing. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:854–866, 2017 PMID:28480535

  15. 49 CFR 585.45 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Fuel System Integrity Phase-In Reporting Requirements § 585.45 Reporting requirements. (a) General reporting requirements... manufactured during the current production year. (2) Production. Each manufacturer shall report for the...

  16. 49 CFR 585.45 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Fuel System Integrity Phase-In Reporting Requirements § 585.45 Reporting requirements. (a) General reporting requirements... manufactured during the current production year. (2) Production. Each manufacturer shall report for the...

  17. 76 FR 14690 - Manufacturer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... December 3, 2010, (75 FR 75498), Agilent Technologies, 25200 Commercentre Drive, Lake Forest, California... determined that the registration of Agilent Technologies to manufacture the listed basic classes of... Technologies to ensure that the company's registration is consistent with the public interest. The...

  18. Training Implications of Technological Change in Manufacturing in New Industrial Countries: The Case of Yugoslavia. Training Policies Discussion Paper No. 15.

    ERIC Educational Resources Information Center

    Matejic, Vlastimir; Kamhi, Meri

    This report is a study of the training implications of technological change in manufacturing in Yugoslavia. Part 1 analyzes the general technological and educational infrastructure in Yugoslavia. The sources of technology as well as the present state and future prospects of technological research are described. Education is discussed in terms of…

  19. PROTECTIVE CLOTHING BASED ON PERMSELECTIVE MEMBRANE AND CARBON ADSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.G. Wijmans; J.O. Stull

    2001-11-07

    The goal of this project was to develop chemical protective clothing for use by DOE decontamination and decommissioning workers that is sufficiently water vapor permeable to keep the workers cool, thereby enhancing their productivity. This report describes the results of Phase II of a two-phase project to complete development of the novel permselective material and to test protective clothing made from the fabric. In Phase I a novel material incorporating a nonporous hydrophilic polyvinylacohol (PVA) layer, which is water vapor permeable but relatively impermeable to organic vapors, was developed. The results of the Phase I tests showed that the chemicalmore » resistance of the MTR material is comparable to that of Saranex/Tyvek materials, and that the comfort properties are closer to those of Tyvek (as measured in terms of CLO and permeability). Chemical resistance was measured using permeation tests against liquid dichloromethane. Comfort properties were ascertained by measuring the water vapor transmission of the material and by sweating manikin tests on whole protective suits. In addition, a cost/benefit analysis demonstrated that use of MTR's material technology could result in significant improvements in work productivity and cost savings if protective clothing items made from the new material were used more than once. In Phase II, MTR undertook a program to optimize the performance and production engineering for the new material technology. A partnership was formed with Kimberly-Clark Corporation to assist with a detailed evaluation of the MTR technology, and MTR used the services of Mr. Jeff Stull, President of the consulting firm International Personnel Protection, Inc., who conducted a detailed economic and application analysis for the developed fabric. The protective fabric manufacturing steps were simplified significantly, resulting in a 30% reduction in manufacturing costs and eliminating the necessity for capital investment in production equipment. Protective suits were prepared in collaboration with Kimberly-Clark Corporation and heat stress testing with human test subjects was carried out by the International Union of Operating Engineers (IUOE). The tests confirmed that the MTR protective fabric is significantly more comfortable than non-breathable materials. A cost analysis was developed from the properties of the optimized protective fabric and the results of the of the IUOE field study to determine the potential for the MTR material technology within the chemical protective clothing market. A detailed assessment of the specific chemical protective clothing applications for which the material can be used and its competitiveness with existing material technology, based both on expected performance and material/end item costs, was prepared. Three specific market opportunities identified for the novel protective fabric are: (1) liquid splash protective clothing for hazardous waste site operations, (2) liquid splash protective clothing for emergency response, and (3) Class 3 NFPA 1994-compliant protective clothing for civilian use during chemical terrorism incidents.« less

  20. Rapid manufacturing of metallic Molds for parts in Automobile

    NASA Astrophysics Data System (ADS)

    Zhang, Renji; Xu, Da; Liu, Yuan; Yan, Xudong; Yan, Yongnian

    1998-03-01

    The recent research of RPM (Rapid Prototyping Manufacturing) in our lab has been focused on the rapid creation of alloyed cast iron (ACI) molds. There are a lot of machinery parts in an automobile, so a lot of mettallic molds are needed in automobile industry. A new mold manufacturing technology has been proposed. A new large scale RP machine has been set up in our lab now. Then rapid prototypes could be manufactured by means of laminated object manufacturing (LOM) technology. The molds for parts in automobile have been produced by ceramic shell precision casting. An example is a drawing mold for cover parts in automobile. Sufficient precision and surface roughness have been obtained. Itis proved that this is a vew kind of technology. Work supported by the Mational Science Foundation of China.

  1. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  2. Large active mirror in aluminium

    NASA Astrophysics Data System (ADS)

    Leblanc, Jean-M.; Rozelot, Jean-Pierre

    1991-11-01

    The Large Active Mirrors in Aluminum Project (LAMA) is intended as a metallic alternative to the conventional glass mirrors. This alternative is to bring about definite improvements in terms of lower cost, shorter manufacturing, and reduced brittleness. Combined in a system approach that integrates design, development, and manufacturing of both the aluminum meniscus and its active support, the LAMA project is a technologically consistent product for astronomical and laser telescopes. Large size mirrors can be delivered, up to 8 m diameter. Recent progress in active optics makes possible control, as well as real-time adjustment, of a metallic mirror's deformations, especially those induced by temperature variations and/or aging. It also enables correction of whatever low-frequency surface waves escaped polishing. Besides, the manufacturing process to produce the aluminum segments together with the electron welding technique ensure the material's homogeneity. Quality of the surface condition will result from optimized implementation of the specific aluminum machining and polishing techniques. This paper highlights the existing aluminum realizations compared to glass mirrors, and gives the main results obtained during a feasibility demonstration phase, based on 8 m mirror requirements.

  3. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram

    2009-03-01

    We propose a new class of photonic devices based on periodic stress fields in silicon that enable second-order nonlinearity as well as quasi-phase matching. Periodically poled silicon (PePSi) adds the periodic poling capability to silicon photonics and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi technology, we present simulations showing that midwave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50%.

  4. Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) Technology Transfer Model Report.

    ERIC Educational Resources Information Center

    Sandia National Labs., Albuquerque, NM.

    The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). The goal of the ECMT3I is to…

  5. LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 1

    NASA Technical Reports Server (NTRS)

    Sullivan, M. R.

    1982-01-01

    The first of a two-phase program was performed to develop the technology necessary to evaluate, design, manufacture, package, transport and deploy the hoop/column deployable antenna reflector by means of a ground based program. The hoop/column concept consists of a cable stiffened large diameter hoop and central column structure that supports and contours a radio frequency reflective mesh surface. Mission scenarios for communications, radiometer and radio astronomy, were studied. The data to establish technology drivers that resulted in a specification of a point design was provided. The point design is a multiple beam quadaperture offset antenna system wich provides four separate offset areas of illumination on a 100 meter diameter symmetrical parent reflector. The periphery of the reflector is a hoop having 48 segments that articulate into a small stowed volume around a center extendable column. The hoop and column are structurally connected by graphite and quartz cables. The prominence of cables in the design resulted in the development of advanced cable technology. Design verification models were built of the hoop, column, and surface stowage subassemblies. Model designs were generated for a half scale sector of the surface and a 1/6 scale of the complete deployable reflector.

  6. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics

    PubMed Central

    Qiao, Guixiu; Weiss, Brian A.

    2016-01-01

    Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172

  7. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics.

    PubMed

    Qiao, Guixiu; Weiss, Brian A

    2016-01-01

    Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.

  8. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  9. Current good manufacturing practice and investigational new drugs intended for use in clinical trials. Final rule.

    PubMed

    2008-07-15

    The Food and Drug Administration (FDA) is amending the current good manufacturing practice (CGMP) regulations for human drugs, including biological products, to exempt most phase 1 investigational drugs from complying with the regulatory CGMP requirements. FDA will continue to exercise oversight of the manufacture of these drugs under FDA's general statutory CGMP authority and through review of the investigational new drug applications (IND). In addition, elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document entitled "Guidance for Industry: CGMP for Phase 1 Investigational Drugs" dated November 2007 (the companion guidance). This guidance document sets forth recommendations on approaches to compliance with statutory CGMP for the exempted phase 1 investigational drugs. FDA is taking this action to focus a manufacturer's effort on applying CGMP that is appropriate and meaningful for the manufacture of the earliest stage investigational drug products intended for use in phase 1 clinical trials while ensuring safety and quality. This action will also streamline and promote the drug development process.

  10. Supercritical Fluid Technologies to Fabricate Proliposomes.

    PubMed

    Falconer, James R; Svirskis, Darren; Adil, Ali A; Wu, Zimei

    2015-01-01

    Proliposomes are stable drug carrier systems designed to form liposomes upon addition of an aqueous phase. In this review, current trends in the use of supercritical fluid (SCF) technologies to prepare proliposomes are discussed. SCF methods are used in pharmaceutical research and industry to address limitations associated with conventional methods of pro/liposome fabrication. The SCF solvent methods of proliposome preparation are eco-friendly (known as green technology) and, along with the SCF anti-solvent methods, could be advantageous over conventional methods; enabling better design of particle morphology (size and shape). The major hurdles of SCF methods include poor scalability to industrial manufacturing which may result in variable particle characteristics. In the case of SCF anti-solvent methods, another hurdle is the reliance on organic solvents. However, the amount of solvent required is typically less than that used by the conventional methods. Another hurdle is that most of the SCF methods used have complicated manufacturing processes, although once the setup has been completed, SCF technologies offer a single-step process in the preparation of proliposomes compared to the multiple steps required by many other methods. Furthermore, there is limited research into how proliposomes will be converted into liposomes for the end-user, and how such a product can be prepared reproducibly in terms of vesicle size and drug loading. These hurdles must be overcome and with more research, SCF methods, especially where the SCF acts as a solvent, have the potential to offer a strong alternative to the conventional methods to prepare proliposomes.

  11. Additive manufacturing in production: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  12. Overview of NASA/OAST efforts related to manufacturing technology

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1976-01-01

    Activities of the Office of Aeronautics and Space Technology (OAST) in a number of areas related to manufacturing technology are considered. In the computer-aided design area improved approaches are developed for the design of specific classes of components or structural subsystems. A generalized approach for the design of a complete aerospace vehicle is also developed. Efforts directed toward an increased use of composite materials in aerospace structures are also discussed and attention is given to projects concerned with the manufacture of turbine engine components.

  13. INNOVATIVE TECHNOLOGY EVALUATION REPORT, SEDIMENT SAMPLING TECHNOLOGY, ART'S MANUFACTURING, SPLIT CORE SAMPLER FOR SUBMERGED SEDIMENTS

    EPA Science Inventory


    The Split Core Sampler for Submerged Sediments (Split Core Sampler) designed and fabricated by Arts Manufacturing & Supply, Inc., was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at ...

  14. 75 FR 53722 - Manufacturer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ..., 2010, (75 FR 14189), Rhodes Technologies, 498 Washington Street, Coventry, Rhode Island 02816, made... Technologies to manufacture the listed basic classes of controlled substances is consistent with the public interest at this time. DEA has investigated Rhodes Technologies to ensure that the company's registration...

  15. Exploring Technology Education: Exploring Manufacturing Technology.

    ERIC Educational Resources Information Center

    Joerschke, John D.

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting a unit of study on manufacturing technology and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional strategies for teaching those objectives, and then…

  16. 49 CFR 585.116 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Roof Crush Resistance Phase-in Reporting Requirements § 585.116 Reporting requirements. (a) General reporting requirements... years, or, at the manufacturer's option, for the current production year. A new manufacturer that has...

  17. 49 CFR 585.116 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Roof Crush Resistance Phase-in Reporting Requirements § 585.116 Reporting requirements. (a) General reporting requirements... years, or, at the manufacturer's option, for the current production year. A new manufacturer that has...

  18. 49 CFR 585.86 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Electronic Stability Control System Phase-In Reporting Requirements § 585.86 Reporting requirements. (a) General reporting..., or, at the manufacturer's option, for the current production year. A new manufacturer that has not...

  19. 49 CFR 585.86 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PHASE-IN REPORTING REQUIREMENTS Electronic Stability Control System Phase-In Reporting Requirements § 585.86 Reporting requirements. (a) General reporting..., or, at the manufacturer's option, for the current production year. A new manufacturer that has not...

  20. Technology assessment of automation trends in the modular home industry

    Treesearch

    Phil Mitchell; Robert Russell Hurst

    2009-01-01

    This report provides an assessment of technology used in manufacturing modular homes in the United States, and that used in the German prefabricated wooden home industry. It is the first step toward identifying the research needs in automation and manufacturing methods that will facilitate mass customization in the home manufacturing industry. Within the United States...

  1. Air Force Manufacturing Technology. Year 2000 Project Book

    DTIC Science & Technology

    2000-01-01

    Electronic Warfare Component Manufacturing 13 National Center for Manufacturing Science 14 Product Research Market Analysis System 15 Electronics Acoustic...other agile organizations that can respond to rapidly changing market demands. Approach This program demonstrated and evaluated the advanced design...production worker contact with customers and suppliers; shopfloor identification of new technologies, markets , and products; and strategic planning to assure

  2. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.

    PubMed

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-12-03

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi(®) Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.

  3. MANTECH project book

    NASA Astrophysics Data System (ADS)

    The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.

  4. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops

    PubMed Central

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-01-01

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418

  5. Definitional-mission report: Combined-cycle power plant, Sultan Iskandar Power Station Phase 2-B, Tenaga Nasional BHD, Malaysia. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadagathur, G.

    1990-12-10

    Tenaga Nasional BHD (TEN) formerly known as National Electricity Board of Malaysia is proposing to construct a Combined Cycle Power Plant at Pasir Gudang. The project is known as Sultan Iskandar Power Station Phase 2 (SIPS-2). U.S. engineering companies and U.S. equipment manufacturers are having difficulty in procuring contracts from the Malaysian Power Industry. To date, the industry is dominated by consortia with British and Swiss participation. Several U.S. engineering companies have approached the US Trade and Development Program (TDP) to assist them in breaking into the Malaysian utility market by supporting their effort on their current proposals for SIPS-2more » project. It is recommended that TDP should approve a grant to TEN that would provide funds for engineering upto the preparation of equipment specifications and associated technology transfer. The grant along with the weak dollar should be attractive enough for TEN to strongly consider consortia with U.S. companies very favorably. The project also offers a potential for the export of U.S. manufactured equipment in the range of $170 million.« less

  6. Cyclic Fatigue Resistance of Novel Rotary Files Manufactured from Different Thermal Treated Nickel-Titanium Wires in Artificial Canals.

    PubMed

    Karataşlıoglu, E; Aydın, U; Yıldırım, C

    2018-02-01

    The aim of this in vitro study was to compare the static cyclic fatigue resistance of thermal treated rotary files with a conventional nickel-titanium (NiTi) rotary file. Four groups of 60 rotary files with similar file dimensions, geometries, and motion were selected. Groups were set as HyFlex Group [controlled memory wire (CM-Wire)], ProfileVortex Group (M-Wire), Twisted File Group (R-Phase Wire), and OneShape Group (conventional NiTi wire)] and tested using a custom-made static cyclic fatigue testing apparatus. The fracture time and fragment length of the each file was also recorded. Statistical analysis was performed using one-way analysis of variance and Tukey's test at the 95% confidence level (P = 0.05). The HyFlex group had a significantly higher mean cyclic fatigue resistance than the other three groups (P < 0.001). The OneShape groups had the least fatigue resistance. CM-Wire alloy represented the best performance in cyclic fatigue resistance, and NiTi alloy in R-Phase had the second highest fatigue resistance. CM and R-Phase manufacturing technology processed to the conventional NiTi alloy enhance the cyclic fatigue resistance of files that have similar design and size. M-wire alloy did not show any superiority in cyclic fatigue resistance when compared with conventional NiTi wire.

  7. PVMaT 1998 overview

    NASA Astrophysics Data System (ADS)

    Mittchell, Richard L.; Symko-Davies, Martha; Thomas, Holly P.; Witt, C. Edwin

    1999-03-01

    The Photovoltaic Manufacturing Technology (PVMaT) Project is a government/industry research and development (R&D) partnership between the U.S. federal government (through the U.S. Department of Energy [DOE]) and members of the U.S. PV industry. The goals of PVMaT are to assist the U.S. PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance investment opportunities for substantial scale-ups of U.S.-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share the R&D risk as industry explores new manufacturing options and ideas for improved PV modules and components, advances system and product integration, and develops new system designs. These activities will lead to overall reduced system life-cycle costs for reliable PV end-products. The 1994 PVMaT Product-Driven BOS and Systems activities, as well as Product-Driven Module Manufacturing R&D activities, are just being completed. Fourteen new subcontracts have just been awarded in the areas of PV System and Component Technology and Module Manufacturing Technology. Government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are also discussed.

  8. IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal; Paul Gigl; Mahlon Dennis

    2005-03-01

    The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes,more » the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.« less

  9. 77 FR 21087 - Renewal of Department of Defense Federal Advisory Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ..., engineering, and manufacturing, and will ensure the identification of new technologies and new applications of... for Acquisition, Technology and Logistics, the Chairman of the Joint Chiefs of Staff, and as requested..., technology, manufacturing, acquisition process, and other matters of special interest to the DoD. Tasks...

  10. 77 FR 4736 - Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... entire model year 2012 production. This manufacturer intends to use a different technology to meet the NO.... (2) Baseline Engine Technology Most manufacturers generally have never had production engines at 0.50... Risks'' H. Executive Order 13211 (Energy Effects) I. National Technology Transfer Advancement Act J...

  11. National Survey of Computer Aided Manufacturing in Industrial Technology Programs.

    ERIC Educational Resources Information Center

    Heidari, Farzin

    The current status of computer-aided manufacturing in the 4-year industrial technology programs in the United States was studied. All industrial technology department chairs were mailed a questionnaire divided into program information, equipment information, and general comments sections. The questionnaire was designed to determine the subjects…

  12. About the Institute for Advanced Composites Manufacturing Innovation | Wind

    Science.gov Websites

    goals for domestic manufacturing innovation. Image showing five technology areas in the center with a lead IACMI's wind turbine technology area. IACMI currently has five technology areas with centers in five states: Michigan: Vehicles Colorado: Wind turbines Ohio: Compressed gas storage Indiana: Design

  13. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  14. Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure

    NASA Astrophysics Data System (ADS)

    Williams, Christopher Bryant

    Low-density cellular materials, metallic bodies with gaseous voids, are a unique class of materials that are characterized by their high strength, low mass, good energy absorption characteristics, and good thermal and acoustic insulation properties. In an effort to take advantage of this entire suite of positive mechanical traits, designers are tailoring the cellular mesostructure for multiple design objectives. Unfortunately, existing cellular material manufacturing technologies limit the design space as they are limited to certain part mesostructure, material type, and macrostructure. The opportunity that exists to improve the design of existing products, and the ability to reap the benefits of cellular materials in new applications is the driving force behind this research. As such, the primary research goal of this work is to design, embody, and analyze a manufacturing process that provides a designer the ability to specify the material type, material composition, void morphology, and mesostructure topology for any conceivable part geometry. The accomplishment of this goal is achieved in three phases of research: (1) Design---Following a systematic design process and a rigorous selection exercise, a layer-based additive manufacturing process is designed that is capable of meeting the unique requirements of fabricating cellular material geometry. Specifically, metal parts of designed mesostructure are fabricated via three-dimensional printing of metal oxide ceramic powder followed by post-processing in a reducing atmosphere. (2) Embodiment ---The primary research hypothesis is verified through the use of the designed manufacturing process chain to successfully realize metal parts of designed mesostructure. (3) Modeling & Evaluation ---The designed manufacturing process is modeled in this final research phase so as to increase understanding of experimental results and to establish a foundation for future analytical modeling research. In addition to an analysis of the physics of primitive creation and an investigation of failure modes during the layered fabrication of thin trusses, build time and cost models are presented in order to verify claims of the process's economic benefits. The main contribution of this research is the embodiment of a novel manner for realizing metal parts of designed mesostructure.

  15. Microwave and continuous flow technologies in drug discovery.

    PubMed

    Sadler, Sara; Moeller, Alexander R; Jones, Graham B

    2012-12-01

    Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.

  16. The role of nanocrystalline binder metallic coating into WC after additive manufacturing

    NASA Astrophysics Data System (ADS)

    Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.

    2018-01-01

    Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.

  17. Space Science

    NASA Image and Video Library

    1997-10-01

    This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at the Marshall Space Flight Center (MSFC), is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a Fresnel lens. Weighing much less than conventional optics, Fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  18. The application of additive technologies in creation a medical simulator-trainer of the human head operating field

    NASA Astrophysics Data System (ADS)

    Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.; Pashaev, B. Y.

    2016-06-01

    The aim of the work was to determine the possible application of additive manufacturing technology during the manufacturing process as close as possible to reality of medical simulator-trainers. In work were used some additive manufacturing technologies: selective laser sintering (SLS), fused deposition modeling (FDM), binder Jetting. As a result, a prototype of simulator-trainer of the human head operating field, which based on the CT real patient, was manufactured and conducted its tests. It was found that structure, which is obtained with the use of 3D-printers ProJet 160, most appropriate and closest to the real properties of the bone.

  19. 37 CFR 1.720 - Conditions for extension of patent term.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... uses recombinant DNA technology in the manufacture of the product, the permission for the commercial... which primarily uses recombinant DNA technology in the manufacture of the product, the application for...

  20. 37 CFR 1.720 - Conditions for extension of patent term.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uses recombinant DNA technology in the manufacture of the product, the permission for the commercial... which primarily uses recombinant DNA technology in the manufacture of the product, the application for...

  1. Fact Sheet for Friction Materials Manufacturing Facilities Residual Risk and Technology Review

    EPA Pesticide Factsheets

    proposed amendments to the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Friction Materials Manufacturing Facilities to address the results of the residual risk and technology review

  2. 37 CFR 1.720 - Conditions for extension of patent term.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... uses recombinant DNA technology in the manufacture of the product, the permission for the commercial... which primarily uses recombinant DNA technology in the manufacture of the product, the application for...

  3. 37 CFR 1.720 - Conditions for extension of patent term.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... uses recombinant DNA technology in the manufacture of the product, the permission for the commercial... which primarily uses recombinant DNA technology in the manufacture of the product, the application for...

  4. 37 CFR 1.720 - Conditions for extension of patent term.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... uses recombinant DNA technology in the manufacture of the product, the permission for the commercial... which primarily uses recombinant DNA technology in the manufacture of the product, the application for...

  5. Manufacturing the Future: Federal Priorities for Manufacturing Research and Development. Report of the Interagency Working Group on Manufacturing R&D, Committee on Technology, National Science and Technology Council

    DTIC Science & Technology

    2008-03-01

    and virtual elimination of vehicular emissions of pollutants and greenhouse gases. Low- cost, high-volume manufacturing processes and development...intended to help achieve energy security and virtually eliminate vehicular emissions of pollutants and greenhouse gases. This goal is being pursued...the coolant system, for example, and the humidification system must be integrated with the air blower. Construction of the power plant is usually

  6. Utilization of CO2 in High Performance Building and Infrastructure Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeCristofaro, Nicholas

    The overall objective of DE-FE0004222 was to demonstrate that calcium silicate phases, in the form of either naturally-occuring minerals or synthetic compounds, could replace Portland cement in concrete manufacturing. The calcium silicate phases would be reacted with gaseous CO2 to create a carbonated concrete end-product. If successful, the project would offer a pathway to a significant reduction in the carbon footprint associated with the manufacture of cement and its use in concrete (approximately 816 kg of CO2 is emitted in the production of one tonne of Portland cement). In the initial phases of the Technical Evaluation, Rutgers University teamed withmore » Solidia Technologies to demonstrate that natural wollastonite (CaSiO3), milled to a particle size distribution consistent with that of Portland cement, could indeed fit this bill. The use of mineral wollastonite as a cementitious material would potentially eliminate the CO2 emitted during cement production altogether, and store an additional 250 kg of CO2 during concrete curing. However, it was recognized that mineral wollastonite was not available in volumes that could meaningfully impact the carbon footprint associated with the cement and concrete industries. At this crucial juncture, DE-FE0004222 was redirected to use a synthetic version of wollastonite, hereafter referred to as Solidia Cement™, which could be manufactured in conventional cement making facilities. This approach enables the new cementitious material to be made using existing cement industry raw material supply chains, capital equipment, and distribution channels. It would also offer faster and more complete access to the concrete marketplace. The latter phases of the Technical Evaluation, conducted with Solidia Cement made in research rotary kilns, would demonstrate that industrially viable CO2-curing practices were possible. Prototypes of full-scale precast concrete products such as pavers, concrete masonry units, railroad ties, hollow-core slabs, and aerated concrete were produced to verify the utility of the CO2-curing process. These products exhibited a range of part dimensions and densities that were representative of the precast concrete industry. In the subsequent Demonstration of Commercial Development phase, the characteristics and performance of Solidia Cement made at a LafargeHolcim cement plant were established. This Solidia Cement was then used to demonstrate the CO2-curing process within operating concrete plants. Pavers, concrete masonry units and roofing tiles were produced according to ASTM and manufacturer specifications. A number of attractive manufacturing economies were recognized when Solidia Cement-based concrete parts were compared to their Portland cement based counterparts. These include reduced raw materials waste, reduced dependence on admixtures to control efflorescence, shorter curing time to full concrete strength, faster equipment clean-up, reduced equipment maintenance, and improved inventory management. These economies make the adoption of the Solidia Cement / CO2-curing process attractive even in the absence of environmental incentives. The culminating activity of the Demonstration of Commercial Development phase was the conversion of 10% of the manufacturing capacity at a concrete paver and block company from Portland cement-based products to Solidia Cement-based products. The successful completion of the Demonstration of Commercial Development phase clearly illustrated the environmental benefits associated with Solidia Cement and Solidia Concrete technologies. The industrial production of Solidia Cement, as a low-lime alternative to traditional Portland cement, reduces CO2 emissions at the cement kiln from 816 kg of CO2 per tonne of Portland cement clinker to 570 kg per tonne of Solidia Cement clinker. Industrial scale CO2-curing of Solidia Concrete sequestered a net of 183 kg of CO2 per tonne of Solidia Cement used in concrete pavers. Taken together, these two effects reduced the CO2 footprint associated with the production and use of cement in concrete products by over 50% (a reduction of 430 kg of CO2 per tonne of cement). Applied at the first commercial Solidia Concrete manufacturing site, the two effects will combine to reduce the CO2 footprint associated with the production and use of cement by over 10,000 tonnes per year. When applied across the precast concrete industry in the U.S., it is estimated that the CO2 footprint will be reduced by 8.6 million tonnes per year (20 million tonnes of cement used in precast concrete x 430 kg of CO2 per tonne of cement). Applied across the entire concrete industry in the U.S., it is expected that 43 million tonnes of CO2 will be avoided per year (100 million tonnes of cement used in all concrete x 430 kg of CO2 per tonne of cement).« less

  7. CVD diamond substrate for microelectronics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burden, J.; Gat, R.

    1996-11-01

    Chemical Vapor Deposition (CVD) of diamond films has evolved dramatically in recent years, and commercial opportunities for diamond substrates in thermal management applications are promising. The objective of this technology transfer initiative (TTI) is for Applied Science and Technology, Inc. (ASTEX) and AlliedSignal Federal Manufacturing and Technologies (FM&T) to jointly develop and document the manufacturing processes and procedures required for the fabrication of multichip module circuits using CVD diamond substrates, with the major emphasis of the project concentrating on lapping/polishing prior to metallization. ASTEX would provide diamond films for the study, and FM&T would use its experience in lapping, polishing,more » and substrate metallization to perform secondary processing on the parts. The primary goal of the project was to establish manufacturing processes that lower the manufacturing cost sufficiently to enable broad commercialization of the technology.« less

  8. Osteoblastic cell response to spark plasma-sintered zirconia/titanium cermets.

    PubMed

    Fernandez-Garcia, Elisa; Guillem-Marti, Jordi; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Ginebra, Maria-Pau; Lopez-Esteban, Sonia

    2015-01-01

    Ceramic/metal composites, cermets, arise from the idea to combine the dissimilar properties in the pure materials. This work aims to study the biocompatibility of new micro-nanostructured 3 Y-TZP/Ti materials with 25, 50 and 75 vol.% Ti, which have been successfully obtained by spark slasma sintering technology, as well as to correlate their surface properties (roughness, wettability and chemical composition) with the osteoblastic cell response. All samples had isotropic and slightly waved microstructure, with sub-micrometric average roughness. Composites with 75 vol.% Ti had the highest surface hydrophilicity. Surface chemical composition of the cermets correlated well with the relative amounts used for their fabrication. A cell viability rate over 80% dismissed any cytotoxicity risk due to manufacturing. Cell adhesion and early differentiation were significantly enhanced on materials containing the nanostructured 3 Y-TZP phase. Proliferation and differentiation of SaOS-2 were significantly improved in their late-stage on the composite with 75 vol.% Ti that, from the osseointegration standpoint, is presented as an excellent biomaterial for bone replacement. Thus, spark plasma sintering is consolidated as a suitable technology for manufacturing nanostructured biomaterials with enhanced bioactivity. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Interferometric thickness calibration of 300 mm silicon wafers

    NASA Astrophysics Data System (ADS)

    Wang, Quandou; Griesmann, Ulf; Polvani, Robert

    2005-12-01

    The "Improved Infrared Interferometer" (IR 3) at the National Institute of Standards and Technology (NIST) is a phase-measuring interferometer, operating at a wavelength of 1550 nm, which is being developed for measuring the thickness and thickness variation of low-doped silicon wafers with diameters up to 300 mm. The purpose of the interferometer is to produce calibrated silicon wafers, with a certified measurement uncertainty, which can be used as reference wafers by wafer manufacturers and metrology tool manufacturers. We give an overview of the design of the interferometer and discuss its application to wafer thickness measurements. The conversion of optical thickness, as measured by the interferometer, to the wafer thickness requires knowledge of the refractive index of the material of the wafer. We describe a method for measuring the refractive index which is then used to establish absolute thickness and thickness variation maps for the wafer.

  10. Electronic manufacturing and packaging in Japan

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John A.; Meieran, Eugene S.; Pecht, Michael; Peeples, John W.; Tummala, Rao R.

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies. Japan has established this marked competitive advantage in electronics as a consequence of developing low-cost, high-volume consumer products. Japan's infrastructure, and the remarkable cohesiveness of vision and purpose in government and industry, are key factors in the success of Japan's electronics industry. Although Japan will continue to dominate consumer electronics in the foreseeable future, opportunities exist for the United States and other industrial countries to capture an increasingly large part of the market. The JTEC panel has identified no insurmountable barriers that would prevent the United States from regaining a significant share of the consumer electronics market; in fact, there is ample evidence that the United States needs to aggressively pursue high-volume, low-cost electronic assembly, because it is a critical path leading to high-performance electronic systems.

  11. Early Market TRL/MRL Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronnebro, Ewa; Stetson, Ned

    he focus of this report is TRL/MRL analysis of hydrogen storage; it documents the methodology and results of an effort to identify hydrogen storage technologies’ technical and manufacturing readiness for early market motive and non-motive applications and to provide a path forward toward commercialization. Motive applications include materials handling equipment (MHE) and ground support equipment (GSE), such as forklifts, tow tractors, and specialty vehicles such as golf carts, lawn mowers and wheel chairs. Non-motive applications are portable, stationary or auxiliary power units (APUs) and include portable laptops, backup power, remote sensor power, and auxiliary power for recreational vehicles, hotels, hospitals,more » etc. Hydrogen storage technologies assessed include metal hydrides, chemical hydrides, sorbents, gaseous storage, and liquid storage. The assessments are based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies at varying levels of development. The manufacturing status could be established from eight risk elements: Technical Maturity, Design, Materials, Cost & Funding, Process Capability, Personnel, Facilities and Manufacturing Planning. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. This technology readiness assessment (TRA) report documents the process used to conduct the TRA/MRA (technology and manufacturing readiness assessment), reports the TRL and MRL for each assessed technology and provides recommendations based on the findings. To investigate the state of the art and needs to mature the technologies, PNNL prepared a questionnaire to assign TRL and MRL for each hydrogen storage technology. The questionnaire was sent to identified hydrogen storage technology developers and manufacturers who were asked to perform a self-assessment. We included both domestic and international organizations including U.S. national laboratories, U.S. companies, European companies and Japanese companies. PNNL collected the data and performed an analysis to deduce the level of maturity and to provide program recommendations.« less

  12. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronnebro, Ewa

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale thatmore » is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.« less

  13. Three phase power conversion system for utility interconnected PV applications

    NASA Astrophysics Data System (ADS)

    Porter, David G.

    1999-03-01

    Omnion Power Engineering Corporation has developed a new three phase inverter that improves the cost, reliability, and performance of three phase utility interconnected photovoltaic inverters. The inverter uses a new, high manufacturing volume IGBT bridge that has better thermal performance than previous designs. A custom easily manufactured enclosure was designed. Controls were simplified to increase reliability while maintaining important user features.

  14. Technological Improvements for Digital Fire Control Systems

    DTIC Science & Technology

    2017-09-30

    Final Technical Status Report For DOTC-12-01-INIT061 Technological Improvements for Digital Fire Control Systems Reporting Period: 30 Sep...Initiative Information Develop and fabricate next generation designs using advanced materials and processes. This will include but is not limited to...4.2 Develop manufacturing processes 100% 4.3 Develop manufacturing processes 100% 4.4 Develop manufacturing processes 100% 5 Design Tooling

  15. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mac Dougall, James

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, andmore » pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO 2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.« less

  16. Additive direct-write microfabrication for MEMS: A review

    NASA Astrophysics Data System (ADS)

    Teh, Kwok Siong

    2017-12-01

    Direct-write additive manufacturing refers to a rich and growing repertoire of well-established fabrication techniques that builds solid objects directly from computer- generated solid models without elaborate intermediate fabrication steps. At the macroscale, direct-write techniques such as stereolithography, selective laser sintering, fused deposition modeling ink-jet printing, and laminated object manufacturing have significantly reduced concept-to-product lead time, enabled complex geometries, and importantly, has led to the renaissance in fabrication known as the maker movement. The technological premises of all direct-write additive manufacturing are identical—converting computer generated three-dimensional models into layers of two-dimensional planes or slices, which are then reconstructed sequentially into threedimensional solid objects in a layer-by-layer format. The key differences between the various additive manufacturing techniques are the means of creating the finished layers and the ancillary processes that accompany them. While still at its infancy, direct-write additive manufacturing techniques at the microscale have the potential to significantly lower the barrier-of-entry—in terms of cost, time and training—for the prototyping and fabrication of MEMS parts that have larger dimensions, high aspect ratios, and complex shapes. In recent years, significant advancements in materials chemistry, laser technology, heat and fluid modeling, and control systems have enabled additive manufacturing to achieve higher resolutions at the micrometer and nanometer length scales to be a viable technology for MEMS fabrication. Compared to traditional MEMS processes that rely heavily on expensive equipment and time-consuming steps, direct-write additive manufacturing techniques allow for rapid design-to-prototype realization by limiting or circumventing the need for cleanrooms, photolithography and extensive training. With current direct-write additive manufacturing technologies, it is possible to fabricate unsophisticated micrometer scale structures at adequate resolutions and precisions using materials that range from polymers, metals, ceramics, to composites. In both academia and industry, direct-write additive manufacturing offers extraordinary promises to revolutionize research and development in microfabrication and MEMS technologies. Importantly, direct-write additive manufacturing could appreciably augment current MEMS fabrication technologies, enable faster design-to-product cycle, empower new paradigms in MEMS designs, and critically, encourage wider participation in MEMS research at institutions or for individuals with limited or no access to cleanroom facilities. This article aims to provide a limited review of the current landscape of direct-write additive manufacturing techniques that are potentially applicable for MEMS microfabrication.

  17. Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies

    PubMed Central

    Rial, Javier; de Vicente, Javier; Skårman, Björn; Vidarsson, Hilmar; Larsson, Per-Olof

    2018-01-01

    Abstract Searching for high-performance permanent magnets components with no limitation in shape and dimensions is highly desired to overcome the present design and manufacturing restrictions, which affect the efficiency of the final devices in energy, automotive and aerospace sectors. Advanced 3D-printing of composite materials and related technologies is an incipient route to achieve functional structures avoiding the limitations of traditional manufacturing. Gas-atomized MnAlC particles combined with polymer have been used in this work for fabricating scalable rare earth-free permanent magnet composites and extruded flexible filaments with continuous length exceeding 10 m. Solution casting has been used to synthesize homogeneous composites with tuned particles content, made of a polyethylene (PE) matrix embedding quasi-spherical particles of the ferromagnetic τ-MnAlC phase. A maximum filling factor of 86.5 and 72.3% has been obtained for the composite and the filament after extrusion, respectively. The magnetic measurements reveal no deterioration of the properties of the MnAlC particles after the composite synthesis and filament extrusion. The produced MnAlC/PE materials will serve as precursors for an efficient and scalable design and fabrication of end-products by different processing techniques (polymerized cold-compacted magnets and 3D-printing, respectively) in view of technological applications (from micro electromechanical systems to energy and transport applications). PMID:29887921

  18. Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies.

    PubMed

    Palmero, Ester M; Rial, Javier; de Vicente, Javier; Camarero, Julio; Skårman, Björn; Vidarsson, Hilmar; Larsson, Per-Olof; Bollero, Alberto

    2018-01-01

    Searching for high-performance permanent magnets components with no limitation in shape and dimensions is highly desired to overcome the present design and manufacturing restrictions, which affect the efficiency of the final devices in energy, automotive and aerospace sectors. Advanced 3D-printing of composite materials and related technologies is an incipient route to achieve functional structures avoiding the limitations of traditional manufacturing. Gas-atomized MnAlC particles combined with polymer have been used in this work for fabricating scalable rare earth-free permanent magnet composites and extruded flexible filaments with continuous length exceeding 10 m. Solution casting has been used to synthesize homogeneous composites with tuned particles content, made of a polyethylene (PE) matrix embedding quasi-spherical particles of the ferromagnetic τ -MnAlC phase. A maximum filling factor of 86.5 and 72.3% has been obtained for the composite and the filament after extrusion, respectively. The magnetic measurements reveal no deterioration of the properties of the MnAlC particles after the composite synthesis and filament extrusion. The produced MnAlC/PE materials will serve as precursors for an efficient and scalable design and fabrication of end-products by different processing techniques (polymerized cold-compacted magnets and 3D-printing, respectively) in view of technological applications (from micro electromechanical systems to energy and transport applications).

  19. Study of capabilities and limitations of 3D printing technology

    NASA Astrophysics Data System (ADS)

    Lemu, H. G.

    2012-04-01

    3D printing is one of the developments in rapid prototyping technology. The inception and development of the technology has highly assisted the product development phase of product design and manufacturing. The technology is particularly important in educating product design and 3D modeling because it helps students to visualize their design idea, to enhance their creative design process and enables them to touch and feel the result of their innovative work. The availability of many 3D printers on the market has created a certain level of challenge for the user. Among others, complexity of part geometry, material type, compatibility with 3D CAD models and other technical aspects still need in-depth study. This paper presents results of the experimental work on the capabilities and limitations of the Z510 3D printer from Z-corporation. Several parameters such as dimensional and geometrical accuracy, surface quality and strength as a function of model size, orientation and file exchange format are closely studied.

  20. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Effinger, Mike; Stahl, H. Philip

    2015-01-01

    The Advanced Mirror Technology Development (AMTD) project is in phase 2 of a multiyear effort, initiated in FY 2012. This effort is to mature, by at least a half Technology Readiness Level step, the critical technologies required to enable 4-meter or larger ultraviolet, optical, and infrared (UVOIR) space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD continues to achieve all of its goals and has accomplished all of its milestones to date. This has been achieved by assembling an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes; by deriving engineering specifications for advanced normal-incidence mirror systems needed to make the required science measurements; and by defining and prioritizing the most important technical problems to be solved. Our results have been presented to the CoPAG and Mirror Tech Days 2013, and proceedings papers of the 2013 and 2014 SPIE Optics & Photonics Symposia have been published.

  1. Sharing risk between payer and provider by leasing health technologies: an affordable and effective reimbursement strategy for innovative technologies?

    PubMed

    Edlin, Richard; Hall, Peter; Wallner, Klemens; McCabe, Christopher

    2014-06-01

    The challenge of implementing high-cost innovative technologies in health care systems operating under significant budgetary pressure has led to a radical shift in the health technology reimbursement landscape. New reimbursement strategies attempt to reduce the risk of making the wrong decision, that is, paying for a technology that is not good value for the health care system, while promoting the adoption of innovative technologies into clinical practice. The remaining risk, however, is not shared between the manufacturer and the health care payer at the individual purchase level; it continues to be passed from the manufacturer to the payer at the time of purchase. In this article, we propose a health technology payment strategy-technology leasing reimbursement scheme-that allows the sharing of risk between the manufacturer and the payer: the replacing of up-front payments with a stream of payments spread over the expected duration of benefit from the technology, subject to the technology delivering the claimed health benefit. Using trastuzumab (Herceptin) in early breast cancer as an exemplar technology, we show how a technology leasing reimbursement scheme not only reduces the total budgetary impact of the innovative technology but also truly shares risk between the manufacturer and the health care system, while reducing the value of further research and thus promoting the rapid adoption of innovative technologies into clinical practice. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  2. Effect of Si content on microstructure and thermo-physical properties of the joint of Sip/6063Al composite by laser melting deposition

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Tian, Ze; Li, Peng; Chen, Yanbin; Zhang, Hengquan; Gu, Jingyan; Su, Xuan

    2017-12-01

    Laser melting deposition (LMD), an additive manufacturing-based technology, was utilized to join Sip/6063Al composite creatively with different Si weight contents (Al-Si 5%, 12%, 20% and 30%). Influence of the Si content on the constitutional phases, microstructural characteristics, and thermo-physical properties of the layer by layer built-up weld beads was investigated. Experimental results showed that the increasing of deposited Si content could lead to a marked increment of both size and volume of precipitated Si phase, and the circled α-Al phase decreased as a whole. The Si/Al interface began to decrease for the sample Al-Si30 wt.% due to the connection of Si phases. The α-Al phase within the (Al, Si) eutectic were observed to exhibit two sub-micron solidification morphologies, columnar grains and equiaxed grains, respectively. In general, by increasing the content of the deposited Si, the thermal conductivity decreased owing to the decreasing of α-Al phase with high conductivity, and the coefficient of thermal expansion (CTE) had the same varying trend which was attributed to the increasing volume fraction of stiff precipitated Si phase and Si-Si contiguity.

  3. Overview of NASA/OAST efforts related to manufacturing technology

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1976-01-01

    An overview of some of NASA's current efforts related to manufacturing technology and some possible directions for the future are presented. The topics discussed are: computer-aided design, composite structures, and turbine engine components.

  4. Does technology acceleration equate to mask cost acceleration?

    NASA Astrophysics Data System (ADS)

    Trybula, Walter J.; Grenon, Brian J.

    2003-06-01

    The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor sup-plier community and the manufacturers. INTERNATIONAL SEMATECH has revaluated the projected cost of advanced technology masks. Building on the methodology developed in 1996 for mask costs, this work provided a critical review of mask yields and factors relating to the manufacture of photolithography masks. The impact of the yields provided insight into the learning curve for leading edge mask manufac-turing. The projected mask set cost was surprising, and the ability to provide first and second year cost estimates provided additional information on technology introduction. From this information, the impact of technology acceleration can be added to the projected yields to evaluate the impact on mask costs.

  5. The Development of Model for Measuring Railway Wheels Manufacturing Readiness Level

    NASA Astrophysics Data System (ADS)

    Inrawan Wiratmadja, Iwan; Mufid, Anas

    2016-02-01

    In an effort to grow the railway wheel industry in Indonesia and reduce the dependence on imports, Metal Industries Development Center (MIDC) makes the implementation of the railway wheel manufacturing technology in Indonesia. MIDC is an institution based on research and development having a task to research the production of railway wheels prototype and acts as a supervisor to the industry in Indonesia, for implementing the railway wheel manufacturing technology. The process of implementing manufacturing technology requires a lot of resources. Therefore it is necessary to measure the manufacturing readiness process. Measurement of railway wheels manufacturing readiness was in this study done using the manufacturing readiness level (MRL) model from the United States Department of Defense. MRL consists of 10 manufacturing readiness levels described by 90 criteria and 184 sub-criteria. To get a manufacturing readiness measurement instrument that is good and accurate, the development process involved experts through expert judgment method and validated with a content validity ratio (CVR). Measurement instrument developed in this study consist of 448 indicators. The measurement results show that MIDC's railway wheels manufacturing readiness is at the level 4. This shows that there is a gap between the current level of manufacturing readiness owned by MIDC and manufacturing readiness levels required to achieve the program objectives, which is level 5. To achieve the program objectives at level 5, a number of actions were required to be done by MIDC. Indicators that must be improved to be able to achieve level 5 are indicators related to the cost and financing, process capability and control, quality management, workers, and manufacturing management criteria.

  6. Evaluating Opportunities to Improve Material and Energy Impacts in Commodity Supply Chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, Rebecca J.; Carpenter, Alberta

    When evaluated at the process level, next-generation technologies may be more energy and emissions intensive than current technology. However, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Material Flows through Industry (MFI) scenario modeling tool. The MFI tool is a cradle-to-gate linear network model of the U.S. industrial sector that can model a wide range of manufacturing scenarios, including changes inmore » production technology, increases in industrial energy efficiency, and substitution between functionally equivalent materials. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing a steel supply chain to the supply chains of several functionally equivalent materials. Several of the alternatives to the baseline steel supply chain include next-generation production technologies and materials. Results of the case study show that aluminum production scenarios can out-perform the steel supply chain by using either an advanced smelting technology or an increased aluminum recycling rate. The next-generation material supply chains do not perform as well as either aluminum or steel, but may offer additional use phase reductions in energy and emissions that are outside the scope of the MFI tool. Future work will combine results from the MFI tool with a use phase analysis.« less

  7. Refrigeration and air-conditioning technology workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, P. J.; Counce, D. M.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before themore » year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.« less

  8. The Impact of Numerical Control Technology and Computer Aided Manufacturing on Curriculum Development in Industrial Education and Technology. A Final Report.

    ERIC Educational Resources Information Center

    Bauch, Klaus Dieter

    The study was designed to investigate the effects of Numerical Control Technology and Computer-Aided Manufacturing (NC/CAM) in American industry on industrial education and engineering technology education. The specific purpose was to identify a data base and rationale for curriculum development in NC/CAM through a comparison of views by…

  9. AAC technology transfer: an AAC-RERC report.

    PubMed

    Higginbotham, D Jeffery; Beukelman, David; Blackstone, Sarah; Bryen, Diane; Caves, Kevin; Deruyter, Frank; Jakobs, Thomas; Light, Janice; McNaughton, David; Moulton, Bryan; Shane, Howard; Williams, Michael B

    2009-03-01

    Transferring innovative technologies from the university to the manufacturing sector can often be an elusive and problematic process. The Rehabilitation and Engineering Research Center on Communication Enhancement (AAC-RERC) has worked with the manufacturing community for the last 10 years. The purpose of this article is to discuss barriers to technology transfer, to outline some technology transfer strategies, and to illustrate these strategies with AAC-RERC related activities.

  10. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  11. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today’s technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. As a result, this scheme can be applied tomore » any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.« less

  12. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    PubMed Central

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C.; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G.

    2017-01-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers. PMID:28248317

  13. The application of phase grating to CLM technology for the sub-65nm node optical lithography

    NASA Astrophysics Data System (ADS)

    Yoon, Gi-Sung; Kim, Sung-Hyuck; Park, Ji-Soong; Choi, Sun-Young; Jeon, Chan-Uk; Shin, In-Kyun; Choi, Sung-Woon; Han, Woo-Sung

    2005-06-01

    As a promising technology for sub-65nm node optical lithography, CLM(Chrome-Less Mask) technology among RETs(Resolution Enhancement Techniques) for low k1 has been researched worldwide in recent years. CLM has several advantages, such as relatively simple manufacturing process and competitive performance compared to phase-edge PSM's. For the low-k1 lithography, we have researched CLM technique as a good solution especially for sub-65nm node. As a step for developing the sub-65nm node optical lithography, we have applied CLM technology in 80nm-node lithography with mesa and trench method. From the analysis of the CLM technology in the 80nm lithography, we found that there is the optimal shutter size for best performance in the technique, the increment of wafer ADI CD varied with pattern's pitch, and a limitation in patterning various shapes and size by OPC dead-zone - OPC dead-zone in CLM technique is the specific region of shutter size that dose not make the wafer CD increased more than a specific size. And also small patterns are easily broken, while fabricating the CLM mask in mesa method. Generally, trench method has better optical performance than mesa. These issues have so far restricted the application of CLM technology to a small field. We approached these issues with 3-D topographic simulation tool and found that the issues could be overcome by applying phase grating in trench-type CLM. With the simulation data, we made some test masks which had many kinds of patterns with many different conditions and analyzed their performance through AIMS fab 193 and exposure on wafer. Finally, we have developed the CLM technology which is free of OPC dead-zone and pattern broken in fabrication process. Therefore, we can apply the CLM technique into sub-65nm node optical lithography including logic devices.

  14. Web-enabling technologies for the factory floor: a web-enabling strategy for emanufacturing

    NASA Astrophysics Data System (ADS)

    Velez, Ricardo; Lastra, Jose L. M.; Tuokko, Reijo O.

    2001-10-01

    This paper is intended to address the different technologies available for Web-enabling of the factory floor. It will give an overview of the importance of Web-enabling of the factory floor, in the application of the concepts of flexible and intelligent manufacturing, in conjunction with e-commerce. As a last section, it will try to define a Web-enabling strategy for the application in eManufacturing. This is made under the scope of the electronics manufacturing industry, so every application, technology or related matter is presented under such scope.

  15. High Power RF Testing of A 3-Cell Superconducting Traveling Wave Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Kostin, Romna; Avrakhov, Pavel

    Euclid Techlabs has completed the Phase II SBIR project, entitled “High Power RF Testing of a 3-Cell Superconducting Traveling Wave Accelerating Structure” under Grant #DE-SC0006300. In this final technical report, we summarize the major achievements of Phase I of the project and review the details of Phase II of the project. The accelerating gradient in a superconducting structure is limited mainly by quenching, i.e., by the maximum surface RF magnetic field. Various techniques have been developed to increase the gradient. A traveling wave accelerating SC structure with a feedback waveguide was suggested to allow an increased transit time factor andmore » ultimately, a maximum gradient that is 22%-24% higher than in the best of the time standing wave SRF cavity solution. The proposed structure has an additional benefit in that it can be fabricated much longer than the standing wave ones that are limited by the field flatness factor. Taken together, all of these factors will result in a significant overall length and, correspondingly cost reduction of the SRF based linear collider ILC or SRF technology based FELs. In Phase I of this project, a 3-cell L-band SC traveling wave cavity was designed. Cavity shape, surface field ratios, inter-cell coupling coefficients, accelerating field flatness have been reviewed with the analysis of tuning issues. Moreover, the technological aspects of SC traveling wave accelerating structure fabrication have been studied. As the next step in the project, the Phase II experimental program included engineering design, manufacturing, surface processing and high gradient testing. Euclid Techlabs, LLC contracted AES, Inc. to manufacture two niobium cavities. Euclid Techlabs cold tested traveling wave regime in the cavity, and the results showed very good agreement with mathematical model specially developed for superconducting traveling wave cavity performance analysis. Traveling wave regime was adjusted by amplitude and phase variation of input signals due to application of developed power feeding scheme. Traveling wave excitation, adjustment and detection were successfully tested. Auxiliary equipment required for high power test such as the tuner, power and measure couplers, holding plates for VTS at Fermilab were developed and successfully tested. Both TW SRF cavities were fabricated by AES, Inc. without stiffening ribs before this company closed their production facility. Currently Roark EB welding company is finishing now welding process of the cavity for the high power testing at Fermilab VTS. Successful demonstration of high gradients in the 3-cell cavity along with studies of traveling wave excitation and tuning issues is leading to successful development of superconducting traveling wave technology for ILC applications and other future high energy SC accelerators.« less

  16. Combat Ration Network for Technology Implementation (CORANET II) Knurled Seal Heat Bar

    DTIC Science & Technology

    2010-08-01

    bench top comparison of ultrasonic sealing technology that included the participation of five ultrasonic sealing equipment manufacturers . Project...packaging journals • On-line web search yielded no useful research results • Contact with machine manufactures produced anecdotal evidence of improved...seal characteristics without documentation or research results • One manufacturer suggested rounded seal bars or seal rubbers for improved sealing

  17. Clean Energy Manufacturing Analysis Center (CEMAC) 2015 Research Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodhouse, Michael; Mone, Christopher; Chung, Donald

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber. This booklet summarizes key findings of CEMAC work to date, describes CEMAC's research methodology, and describes work to come.

  18. Near Net Shape Rapid Manufacture & Repair by LENS(registered trademark)

    DTIC Science & Technology

    2006-05-01

    J. Vlcek, “Property Investigation of Laser Cladded , Laser Sintered and Electron Beam Sintered Ti 6Al 4V”, AVT-139 Specialists Meeting on Cost...manufactured from advanced materials such as titanium alloys, superalloys or special steels are critical to the performance of the armed forces...10 years, CAD driven, additive manufacturing technologies have been developed. The leading technology for defence applications is Laser Engineered

  19. New thinking for the boiler room.

    PubMed

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  20. METAL FORMING (INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The Industrial Multimedia Branch's research program in metal products manufacturing was developed to identify environmental problems and deliver solutions for environmental improvements based on sustainable technology to the industry. There are over 35,000 manufacturing establish...

Top