Science.gov

Sample records for manure digestion systems

  1. Treatment of anaerobically digested dairy manure in a two-stage biofiltration system.

    PubMed

    Xia, Mengjing; Tao, Wendong; Wang, Ziyuan; Pei, Yuansheng

    2012-01-01

    High concentrations of ammonium and phosphate present a challenge to cost-effective treatment of anaerobically digested dairy manure. This study investigated the efficacy of a two-stage biofiltration system for passive treatment of digested dairy manure. The first stage pebble filters were batch loaded. When the slurry-like digested dairy manure was retained on pebble beds, soluble contaminants were removed before liquid infiltrated over 8-17 days. The pebble filters removed 70% of soluble chemical oxygen demand, 71% of soluble biochemical oxygen demand, 75% of ammonium, and 68% of orthophosphate. Nitrogen removal was attributed to the conventional nitrification - denitrification process and novel nitritation - anammox process. Aerobic ammonium oxidizing and anammox bacteria accounted for 25 and 23% of all bacteria, respectively, in the filtrate of the pebble filters. The longer it took for filtration, the greater the removal efficiency of soluble contaminants. The second stage sand filters had removal efficiencies of 17% for soluble chemical oxygen demand, 45% for soluble biochemical oxygen demand, 43% for ammonium, and 16% for orthophosphate during batch operations at a hydraulic retention time of 7 days. Aerobic ammonium oxidation and anammox were primarily responsible for nitrogen removal in the sand filters. Vegetation made an insignificant difference in treatment performance of the sand filters.

  2. Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey.

    PubMed

    Li, Yueh-Fen; Abraham, Christopher; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Yu, Zhongtang

    2015-10-01

    Temperature-phased anaerobic digestion (TPAD) has gained increasing attention because it provides the flexibility to operate digesters under conditions that enhance overall digester performance. However, research on impact of organic overloading rate (OLR) to microbiota of TPAD systems was limited. In this study, we investigated the composition and successions of the microbiota in both the thermophilic and the mesophilic digesters of a laboratory-scale TPAD system co-digesting dairy manure and waste whey before and during organic overloading. The thermophilic and the mesophilic digesters were operated at 50 and 35 °C, respectively, with a hydraulic retention time (HRT) of 10 days for each digester. High OLR (dairy manure with 5 % total solid and waste whey of ≥60.4 g chemical oxygen demand (COD)/l/day) resulted in decrease in pH and in biogas production and accumulation of volatile fatty acids (VFAs) in the thermophilic digester, while the mesophilic digester remained unchanged except a transient increase in biogas production. Both denaturant gradient gel electrophoresis (DGGE) and Illumina sequencing of 16S ribosomal RNA (rRNA) gene amplicons showed dramatic change in microbiota composition and profound successions of both bacterial and methanogenic communities. During the overloading, Thermotogae was replaced by Proteobacteria, while Methanobrevibacter and archaeon classified as WCHD3-02 grew in predominance at the expense of Methanoculleus in the thermophilic digester, whereas Methanosarcina dominated the methanogenic community, while Methanobacterium and Methanobrevibacter became less predominant in the mesophilic digester. Canonical correspondence analysis (CCA) revealed that digester temperature and pH were the most influential environmental factors that explained much of the variations of the microbiota in this TPAD system when it was overloaded.

  3. Inactivation of enteric indicator bacteria and system stability during dry co-digestion of food waste and pig manure.

    PubMed

    Jiang, Yan; Dennehy, Conor; Lawlor, Peadar G; Hu, Zhenhu; Zhan, Xinmin; Gardiner, Gillian E

    2017-08-26

    Provision of digestate with satisfactory biosafety is critical to land application of digestate and to the anaerobic digestion approach to treating manure and food waste (FW). No studies have been conducted on digestate biosafety in dry co-digestion systems. The aim of this study was to assess the inactivation efficiency and possible inactivation mechanism for three enteric indicator bacteria and the system stability during dry mesophilic anaerobic co-digestion of FW and pig manure (PM). The effects of two different inocula were examined at a rate of 50% based on volatile solids (VS): digestate taken from existing dry co-digestion digesters and dewatered anaerobic sludge from a local wastewater treatment plant. The FW/PM ratios of 50:50 and 75:25 on a VS basis were also assessed. The results showed that using digestate as the inoculum and a FW/PM ratio of 50:50 led to stable dry co-digestion, with the specific methane yield (SMY) of 252mL/gVSadded. Total volatile fatty acid (VFA) concentration was a significant inhibition factor for methane production during dry co-digestion (P<0.001). The data also showed that dry co-digestion of FW and PM effectively inactivated enteric indicator bacteria. E. coli and total coliforms counts decreased below the limit of detection (LOD, 10(2)CFU/g) within 4-7days, with free VFA identified as a significant inactivation factor. Enterococci were more resistant but nonetheless the counts decreased below the LOD within 12days in the digestate inoculum systems and 26-31days in the sludge inoculum systems. The residence time was the most significant inactivation factor for enterococci, with the free VFA concentration playing a secondary role at high FW/PM ratio in the sludge inoculum system. In conclusion, digestate as inoculum and the FW/PM ratio of 50:50 were preferable operation conditions to realize system stability, methane production and enteric indicator bacteria inactivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Anaerobic digestion of the liquid fraction of dairy manure

    SciTech Connect

    Haugen, V.; Dahlberg, S.; Lindley, J.A.

    1983-06-01

    The authors tested several solid liquid separation systems suitable for processing dairy manure prior to anaerobic digestion. None of the systems tried have completely satisfied the requirements. Evaluated effects of separation on biogas production. Unseparated dairy manure produced more biogas than the liquid fraction.

  5. Anaerobic digestion of livestock manures: A current opportunities casebook

    SciTech Connect

    Lusk, P.D.

    1995-08-01

    Growth and concentration of the livestock industry creates new opportunities for proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. One manure management system provides not only pollution prevention but also converts a problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products, including a renewable fuel. An introduction to the engineering economies of these technologies is provided, based on estimates of digesters that generate electricity from the recovered methane. Regression models used to estimate digester cost and internal rate of return are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.

  6. Horse manure as feedstock for anaerobic digestion.

    PubMed

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  7. Enhancement of biogas production by co-digestion of potato pulp with cow manure in a CSTR system.

    PubMed

    Sanaei-Moghadam, Akbar; Abbaspour-Fard, Mohammad Hossein; Aghel, Hasan; Aghkhani, Mohammad Hossein; Abedini-Torghabeh, Javad

    2014-08-01

    Anaerobic digestion (AD) process is a well-established method to generate energy from the organic wastes both from the environmental and economical perspectives. The purpose of present study is to evaluate energy production from potato wastes by incorporating cow manure into the process. Firstly, a laboratory pilot of one-stage biogas production was designed and built according to continuously stirred tank reactor (CSTR) system. The setup was able to automatically control the environmental conditions of the process including temperature, duration, and rate of stirring. AD experiment was exclusively performed on co-digestion of potato peel (PP) and cow manure (CM) in three levels of mixing ratio including 20:80, 50:50, 80:20 (PP:CM), and 0:100 as control treatment based on the volatile solid (VS) weight without adding initial inoculums. After hydraulic retention time (HRT) of 50 days on average 193, 256, 348, and 149 norm liter (LN) (kg VS)(-1), methane was produced for different mixing ratios, respectively. Statistical analysis shows that these gas productions are significantly different. The average energy was determined based on the produced methane which was about 2.8 kWh (kg VS)(-1), implying a significant energy production potential. The average chemical oxygen demand (COD) removal of treatments was about 61%, showing that it can be leached significantly with high organic matter by the employed pilot. The energy efficiency of 92% of the process also showed the optimum control of the process by the pilot.

  8. Dairy cow manure digester and cogenerator performance

    SciTech Connect

    Pigg, D.L.; Vetter, R.L.

    1985-01-01

    A 94 m/sup 3/ mesophilic digester with a 15 kW engine-generator was monitored. The average manure collected was 6.48 kg VS/cow/day. An ultimate methane yield (Bo) of 0.25 L CH4/g VS was calculated. The potential gross energy production was determined to be 3 kWh/cow/day.

  9. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran.

    PubMed

    Schievano, Andrea; Sciarria, Tommy Pepè; Gao, Yong Chang; Scaglia, Barbara; Salati, Silvia; Zanardo, Marina; Quiao, Wei; Dong, Renjie; Adani, Fabrizio

    2016-10-01

    This work describes how dark fermentation (DF), anaerobic digestion (AD) and microbial fuel cells (MFC) and solid-liquid separation can be integrated to co-produce valuable biochemicals (hydrogen and methane), bioelectricity and biofertilizers. Two integrated systems (System 1: AD+MFC, and System 2: DF+AD+MFC) are described and compared to a traditional one-stage AD system in converting a mixture (COD=124±8.1gO2kg(-1)Fresh Matter) of swine manure and rice bran. System 1 gave a biomethane yield of 182 LCH4kg(-1)COD-added, while System 2 gave L yields of bio-hydrogen and bio-methane of 27.3±7.2LH2kg(-1)COD-added and 154±14LCH4kg(-1)COD-added, respectively. A solid-liquid separation (SLS) step was applied to the digested slurry, giving solid and liquid fractions. The liquid fraction was treated via the MFC-steps, showing power densities of 12-13Wm(-3) (500Ω) and average bioelectricity yields of 39.8Whkg(-1)COD to 54.2Whkg(-1)COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The anaerobic co-digestion of fruit and vegetable waste and horse manure mixtures in a bench-scale, two-phase anaerobic digestion system.

    PubMed

    Smith, David B; Almquist, Catherine B

    2014-01-01

    In this study, the anaerobic digestion of mixtures of food waste (FW) and horse manure was investigated using a bench-scale two-phase reactor system. Both phases were maintained at 35 degrees C for the duration of the 30-day study period. The first phase reactors were prepared with biomass mixtures in deionized water such that each mixture had an initial total solids (TS) concentration of 6 wt%. The second phase reactors were inoculated with cow manure in water two weeks prior to the study period at 3 wt% TS. The biogas from all second phase reactors contained greater than 60 vol% methane in the biogas before they were used in the study, thus indicating the presence of active methanogens. Filtrate (5 mL) from the first phase was used as feed to the second phase reactor. The chemical oxygen demand (COD), total organic carbon, and volatile solids (VS) of the feed from Phase 1 increased with FW content in the biomass mixture, and so the organic loading rates (OLRs) to the Phase 2 reactors also increased. Accordingly, the volume ofbiogas and methane generated from Phase 2 also increased with FW content. The low OLR (<0.2 g VS/L/day), the use of a two-phase system, and the use of filtrate from Phase las feed to Phase 2 allowed for high utilization of the feed; the observed specific methane yields (mL/g COD) were greater than 80% of the theoretical yields for all mixtures. The methane yields were statistically similar to within a 95% confidence interval.

  11. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie

    2015-09-01

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters.

  12. Digestive System

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Digestive System KidsHealth > For Parents > Digestive System A A A ... the body can absorb and use. About the Digestive System Almost all animals have a tube-type digestive ...

  13. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure

    USDA-ARS?s Scientific Manuscript database

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion, yet in temperate climate digesters, require a considerable amount of additional heat en...

  14. Optimizing the Logistics of Anaerobic Digestion of Manure

    NASA Astrophysics Data System (ADS)

    Ghafoori, Emad; Flynn, Peter C.

    Electrical power production from the combustion of biogas from anaerobic digestion (AD) of manure is a means of recovering energy from animal waste. We evaluate the lowest cost method of moving material to and from centralized AD plants serving multiple confined feeding operations. Two areas are modeled, Lethbridge County, Alberta, Canada, an area of concentrated beef cattle feedlots, and Red Deer County, Alberta, a mixed-farming area with hog, dairy, chicken and beef cattle farms, and feedlots. We evaluate two types of AD plant: ones that return digestate to the source confined feeding operation for land spreading (current technology), and ones that process digestate to produce solid fertilizer and a dischargeable water stream (technology under development). We evaluate manure and digestate trucking, trucking of manure with return of digestate by pipelines, and pipelining of manure plus digestate. We compare the overall cost of power from these scenarios to farm or feedlot-based AD units. For a centralized AD plant with digestate return for land spreading the most economical transport option for manure plus digestate is by truck for the mixed-farming area and by pipelines for the concentrated feedlot area. For a centralized AD plant with digestate processing, the most economical transport option is trucking of manure for both cases.

  15. Mesophilic digestion kinetics of manure slurry.

    PubMed

    Karim, Khursheed; Klasson, K Thomas; Drescher, Sadie R; Ridenour, Whitney; Borole, Abhijeet P; Al-Dahhan, Muthanna H

    2007-09-01

    Anaerobic digestion kinetics study of cow manure was performed at 35 degrees C in bench-scale gas-lift digesters (3.78 l working volume) at eight different volatile solids (VS) loading rates in the range of 1.11-5.87 g l-1 day-1. The digesters produced methane at the rates of 0.44-1.18 l l-1 day-1, and the methane content of the biogas was found to increase with longer hydraulic retention time (HRT). Based on the experimental observations, the ultimate methane yield and the specific methane productivity were estimated to be 0.42 l CH4 (g VS loaded)-1 and 0.45 l CH4 (g VS consumed)-1, respectively. Total and dissolved chemical oxygen demand (COD) consumptions were calculated to be 59-17% and 78-43% at 24.4-4.6 days HRTs, respectively. Maximum concentration of volatile fatty acids in the effluent was observed as 0.7 g l-1 at 4.6 days HRT, while it was below detection limit at HRTs longer than 11 days. The observed methane production rate did not compare well with the predictions of Chen and Hashimoto's [1] and Hill's [2] models using their recommended kinetic parameters. However, under the studied experimental conditions, the predictions of Chen and Hashimoto's [1] model compared better to the observed data than that of Hill's [2] model. The nonlinear regression analysis of the experimental data was performed using a derived methane production rate model, for a completely mixed anaerobic digester, involving Contois kinetics [3] with endogenous decay. The best fit values for the maximum specific growth rate (micro m) and dimensionless kinetic parameter (K) were estimated as 0.43 day-1 and 0.89, respectively. The experimental data were found to be within 95% confidence interval of the prediction of the derived methane production rate model with the sum of residual squared error as 0.02.

  16. Inactivation of dairy manure-borne pathogens by anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Background: Anaerobic digestion of animal manure has the potential to inactivate enteric pathogens, thereby reducing exposures to livestock and humans when the products of digestion are disposed by land-spreading or irrigation or returned to livestock uses such as bedding. Data on digester effectiv...

  17. Overcoming challenges to struvite recovery from anaerobically digested dairy manure.

    PubMed

    Huchzermeier, Matthew P; Tao, Wendong

    2012-01-01

    Recovering struvite from dairy manure has consistently posed problems for researchers. This study separated solids from anaerobically digested dairy manure using a filtration system. Filtrate was rich in free magnesium (160 to 423 mg/L), ammonium (320 to 1800 mg N/L) and orthophosphate (93 to 332 mg P/L). High concentrations of free calcium (128 to 361 mg/L) and alkalinity (3309 to 6567 mg/L as CaCO3), however, may hinder struvite precipitation. Batch precipitation tests were conducted to identify and overcome factors that interfere with struvite formation. Precipitation tests at pH 9 identified calcium and ionic strength as most probable interferences. Calcium addition did not significantly change phosphorus removal efficiency, but decreased struvite purity because of formation of calcium phosphates when Ca:P activity ratio was greater than 0.5 to 1. Batch tests demonstrated effective calcium removal from anaerobically digested dairy manure through precipitation of calcium carbonate at pH 9 to 10 while retaining magnesium and orthophosphate, lessening hindrance to struvite formation.

  18. A mixed plug flow anaerobic digester for dairy manure

    SciTech Connect

    Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

    1985-01-01

    In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

  19. Biogas production from low temperature lagoon digesters treating livestock manure

    SciTech Connect

    Safley, L.M. Jr.; Westerman, P.W.

    1993-12-31

    Laboratory anaerobic digesters were fed dairy and swine manure at the rates of 0.1 and 0.2 kg volatile solids (VS)/m{sup 3}-day over the temperature range of 10--23{degrees}C. The digesters were operated successfully with little indication of instability.

  20. Optimizing the logistics of anaerobic digestion of manure.

    PubMed

    Ghafoori, Emad; Flynn, Peter C

    2007-04-01

    Electrical power production from the combustion of biogas from anaerobic digestion (AD) of manure is a means of recovering energy from animal waste. We evaluate the lowest cost method of moving material to and from centralized AD plants serving multiple confined feeding operations. Two areas are modeled, Lethbridge County, Alberta, Canada, an area of concentrated beef cattle feedlots, and Red Deer County, Alberta, a mixed-farming area with hog, dairy, chicken and beef cattle farms, and feedlots. We evaluate two types of AD plant: ones that return digestate to the source confined feeding operation for land spreading (current technology), and ones that process digestate to produce solid fertilizer and a dischargeable water stream (technology under development). We evaluate manure and digestate trucking, trucking of manure with return of digestate by pipelines, and pipelining of manure plus digestate. We compare the overall cost of power from these scenarios to farm or feedlot-based AD units. For a centralized AD plant with digestate return for land spreading the most economical transport option for manure plus digestate is by truck for the mixed-farming area and by pipelines for the concentrated feedlot area. For a centralized AD plant with digestate processing, the most economical transport option is trucking of manure for both cases.However, for the concentrated feedlot area, pipeline transport of manure is close in cost to trucking, and the impact of truck congestion would likely lead to selection of pipeline transport. For the mixed-farming area, centralized AD is more economical than for any individual farm or feedlot unit. For the concentrated feedlot area, a centralized AD plant is less economical than a feedlot-based AD unit more than 55,000 head (digestate return) and 300,000 head (digestate processing). The study demonstrates the viability of centralized AD plants vs farm-based units in most farming environments, and that careful analysis of the cost of

  1. Anaerobic digestion of livestock manures in the US: A current opportunities casebook

    SciTech Connect

    Lusk, P.D.

    1995-10-01

    Growth and concentration of the livestock industry creates new opportunities for proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. One manure management system provides not only pollution prevention but also converts a problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products, including a renewable fuel. An introduction to the engineering economies of these technologies is provided, based on estimates of digesters that generate electricity from the recovered methane. Regression models used to estimate digester cost and internal rate of return are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s ``lessons learned``, are provided as a reality check.

  2. Anaerobic digestion of livestock manures in the USA: A current opportunities casebook

    SciTech Connect

    Lusk, P.D.

    1994-12-31

    Growth and concentration of the livestock industry creates opportunities for the proper disposal of the large quantities of manures generated at dairy, swine and poultry farms. One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective alternative fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. An introduction to the engineering economies of these technologies is provided and possible end-use applications for methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.

  3. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  4. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    PubMed Central

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  5. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.

  6. The anaerobic co-digestion of sheep bedding and ⩾ 50% cattle manure increases biogas production and improves biofertilizer quality.

    PubMed

    Cestonaro, Taiana; Costa, Mônica Sarolli Silva de Mendonça; Costa, Luiz Antônio de Mendonça; Rozatti, Marcos Antonio Teofilo; Pereira, Dercio Ceri; Lorin, Higor Eisten Francisconi; Carneiro, Leocir José

    2015-12-01

    Sheep manure pellets are peculiarly shaped as small 'capsules' of limited permeability and thus are difficult to degrade. Fragmentation of manure pellets into a homogeneous mass is important for decomposition by microorganisms, and occurs naturally by physical shearing due to animal trampling, when sheep bedding is used. However, the high lignocellulose content of sheep bedding may limit decomposition of sheep manure. Here, we evaluated if co-digestion of sheep bedding with cattle manure would improve the yield and quality of the useful products of anaerobic digestion of sheep bedding--biogas and biofertilizer--by providing a source of nutrients and readily available carbon. Mixtures of sheep bedding and cattle manure in varying proportions (0%, 25%, 50%, 75%, or 100% cattle manure) were added to 6-L digesters, used in a batch system, and analyzed by uni and multivariate statistical tools. PC1, which explained 64.96% of data variability, can be referred to as 'organic fraction/productivity', because higher rates of organic fraction consumption (COD, cellulose and hemicellulose contents) led to higher digester productivity (biogas production, nutrient concentration, and sample stability changes). Therefore, productivity and organic fraction variables were most influenced by manure mixtures with higher (⩾ 50%) or lower (⩽ 25%) ratios of cattle manure, respectively. Increasing the amount of cattle manure up to 50% enhanced the biogas potential production from 142 L kg(-1)TS (0% of cattle manure) to 165, 171, 160 L biogas kg(-1)TS for the mixtures containing 100%, 75% and 50% of cattle manure, respectively. Our results show that the addition of ⩾ 50% cattle manure to the mixture increases biogas production and improves the quality of the final biofertilizer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Anaerobic co-digestion of dairy manure and potato waste

    NASA Astrophysics Data System (ADS)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow

  8. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    PubMed

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids.

  9. Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances.

    PubMed

    Tao, Wendong; Fattah, Kazi P; Huchzermeier, Matthew P

    2016-03-15

    Anaerobically digested dairy manure is rich in ammonium, orthophosphates, and magnesium, indicating a high potential for struvite recovery. Continuous generation of large amounts of dairy manure plus increasing global interest in anaerobic digestion of dairy manure suggest a huge market for struvite production with anaerobically digested dairy manure. However, the complex chemical composition of digested dairy manure presents hindrances to struvite recovery. This review paper assesses the significance and potential of struvite recovery from anaerobically digested dairy manure, identifies the factors hindering struvite recovery, and discusses the methods to overcome hindrances and the measures to improve phosphorus speciation of dairy manure for struvite formation. This paper proposes using "struvite recovery potential" or Pstruvite based on the least molar activity of struvite component ions in addition to "supersaturation ratio" to identify the potential for struvite recovery. The probable hindrances mainly include high Ca(2+) concentration and molar activity ratios of Ca(2+): Mg(2+) and Ca(2+): PO4(3-), high ionic strength, and high alkalinity. Struvite formation and purity is likely a function of all the interfering variables, rather than just a single factor with digested dairy manure. Potential enhancement measures need to be tested for technical and economic feasibility and applicability to various sources of digested dairy manure. This review paper provides guidance to overcoming the hindrances of digested dairy manure to struvite formation.

  10. Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement.

    PubMed

    Li, Ruirui; Duan, Na; Zhang, Yuanhui; Liu, Zhidan; Li, Baoming; Zhang, Dongming; Lu, Haifeng; Dong, Taili

    2017-09-19

    The present investigation targeted on a sustainable co-digestion system: microalgae Chlorella 1067 (Ch. 1067) was cultivated in chicken manure (CM) based digestate and then algae biomass was used as co-substrate for anaerobic digestion with CM. About 91% of the total nitrogen and 86% of the soluble organics in the digestate were recycled after the microalgae cultivation. The methane potential of co-digestion was evaluated by varying CM to Ch. 1067 ratios (0:10, 2:8, 4:6, 6:4, 8:2, 10:0 based on the volatile solids (VS)). All the co-digestion trials showed higher methane production than the calculated values, indicating synergy between the two substrates. Modified Gompertz model showed that co-digestion had more effective methane production rate and shorter lag phase. Co-digestion (8:2) achieved the highest methane production of 238.71mL⋅(g VS)(-1) and the most significant synergistic effect. The co-digestion (e.g. 8:2) presented higher and balanced content of dominant acidogenic bacteria (Firmicutes, Bacteroidetes, Proteobacterias and Spirochaetae). In addition, the archaea community Methanosaeta presented higher content than Methanosarcina, which accounted for the higher methane production. These findings indicated that the system could provide a practicable strategy for effectively recycling digestate and enhancing biogas production simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.

    PubMed

    Murto, M; Björnsson, L; Mattiasson, B

    2004-02-01

    The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.

  12. Tumble-mix anaerobic digestion of dry beef manure

    SciTech Connect

    Kottwitz, D.; Schulte, D.D.

    1982-12-01

    Anaerobic digestion of beef manure at an influent total solids concentration of 26% was demonstrated using an innovative tumble-mix fermenter. At an organic loading rate of 4.7 kg VS m-/sup 3/ d-/sup 1/ and a 23% VS influent concentration, a 54% volatile solids reduction was achieved. The average biogas production was 1.37 m/sup 3/ m-/sup 3/ d-/sup 1/ with a gas quality of 54% CH/sub 4/.

  13. Characterization of bacteria from a swine manure digester

    SciTech Connect

    Iannotti, E.L.; Fischer, J.R.; Sievers, D.M.

    1982-01-01

    One-hundred thirty bacteria isolated from a swine manure digester were predominately gram-positive anaerobes which were tentatively classified into the following genera: Peptostreptococcus, Eubacterium, Bacteroides, Lactobacillus, Peptococcus, Clostridiu, and Streptococcus plus two unidentified groups. The major fermentation products formed by these organisms included acetate, propionate, succinate, lactate, and ethanol, singly or in various combinations. Acetate was the sole end product of several groups. Few of the isolates (14%) reduced the pH below 6.0. The predominate bacteria appear to differ from the predominate organisms isolated from other anaerobic ecosystems.

  14. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  15. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    PubMed Central

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  16. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  17. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) can be recovered from different types of wastewaters. Among these wastewaters, anaerobically digested swine manure (digestate) is one with the highest N content in ammonia form. It is desirable to reduce the high ammonia content in swine manure because it reduces biogas production by in...

  18. Effects of anaerobic digestion and aerobic treatment on gaseous emissions from dairy manure storages

    USDA-ARS?s Scientific Manuscript database

    Effects of anaerobic digestion and aerobic treatment on the reduction of gaseous emissions from dairy manure storages were evaluated in this study. Screened dairy manure containing 3.5% volatile solids (VS) was either anaerobically digested or aerobically treated prior to storage in air-tight vessel...

  19. Dry Co-Digestion of Poultry Manure with Agriculture Wastes.

    PubMed

    Abouelenien, Fatma; Namba, Yuzaburo; Nishio, Naomichi; Nakashimada, Yutaka

    2016-03-01

    This study tested the effect on thermophilic and mesophilic digestion of poultry manure (PM) or treated poultry manure (TPM) by the addition of agriculture wastes (AWS) as a co-substrate under dry conditions. PM was co-digested with a mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Results were increased methane content in biogas, with decreased ammonia accumulation and volatile acids. The highest performance occurred under mesophilic conditions, with a 63 and 41.3 % increase in methane production from addition of AWS to TPM (562 vs. 344 mL g VS(-1) from control) and PM (406 vs. 287 mL g VS(-1) from control), respectively. Thermophilic conditions showed lower performance than mesophilic conditions. Addition of AWS increased methane production by 150 and 69.6 % from PM (323.4 vs. 129 mL g VS(-1) from control) and TPM (297.6 vs. 175.5 mL g VS(-1) from control), respectively. In all experiments, 100 % acetate produced was degraded to methane. Maximum ammonia accumulation was lowered to 43.7 % by mixing of AWS (range 5.35-8.55 vs. 7.81-12.28 g N kg(-1) bed). The pH was held at 7.3-8.8, a range suitable for methanogenesis.

  20. Digestive System

    MedlinePlus

    ... other substances that aid in digestion. Examples include: Cystic fibrosis is a chronic, inherited illness that not only ... To help manage their digestive problems, people with cystic fibrosis can take digestive enzymes and nutritional supplements. Hepatitis , ...

  1. The kinetics of methane production from co-digestion of cattle manure.

    PubMed

    Bakhov, Zh K; Korazbekova, K U; Lakhanova, K M

    2014-08-01

    In this article, the kinetics of methane production from co-digestion of liquid manure from cattle with the addition of winemaking waste, food waste and biowaste was investigated in order to describe and evaluate methanogenesis in terms of growth curve of methanogenic bacteria. Experiments were carried out in "Hohenheim"n biogas yield testing system at the temperature of 37 degrees C. The cumulative methane yield was 0.330 ± 0.038, 0.277 ± 0.041, 0.1480 ± 013 and 0.250 ± 0.025 m3 CH4 per kg oDM in normal condition, respectively in mono-digestion and co-digestion of liquid manure from cattle with winemaking, food and biowaste. The kinetic Gompertz parameters of methane production (P-potential yield of methane, R(m)-maximum methane production rate and λ-duration of lag phase) were analyzed. The highest potential methane yield (P) showed co-fermentation of liquid manure from cattle with biowaste 0.387 Nm3 (kg oDM)(-1), the highest methane production rate (R(m)) was 0.022 ± 0.003 Nm3 (kg oDM)(-1) day(-1) for mono-digestion of cattle slurry, the lowest 0.006 Nm3 (kg oDM)(-1) day(-1) was obtained during co-digestion with food waste. Duration of lag phase (λ) was within 10.17-14.60 days for all samples. Additional, the duration of digestion to produce 95% of the potential methane yield and efficient methane production was determined.

  2. Effect of anaerobic digestion temperature on odour, coliforms and chlortetracycline in swine manure or monensin in cattle manure.

    PubMed

    Varel, V H; Wells, J E; Shelver, W L; Rice, C P; Armstrong, D L; Parker, D B

    2012-04-01

    This study evaluated the effect of anaerobic digestion at 22, 38 and 55°C on odour, coliforms and chlortetracycline (CTC) in swine manure or monensin (MON) in cattle manure. Swine or cattle were fed the respective growth promotant, manure was collected, and 2-l laboratory methane digesters were established at the various temperatures and sampled over 25 or 28 days. After 21 days, the concentration of CTC in the 22, 38 and 55°C swine digester slurries decreased 7, 80 and 98%, respectively. Coliforms in the 22°C digester slurries were still viable after 25 days; however, they were not detectable in the 38 and 55°C slurries after 3 and 1 days, respectively. After 28 days, the concentration of MON in the 22, 38 and 55°C cattle digester slurries decreased 3, 8 and 27%, respectively. Coliforms in the 22°C cattle digester slurries were still viable after 28 days; however, they were not detectable in the 38 and 55°C slurries after 14 and 1 days, respectively. These studies indicate that anaerobic digestion at 38 or 55°C may be an effective treatment to reduce coliforms and CTC; however, it is not an effective treatment to reduce MON. More studies are needed to determine which pharmaceuticals are susceptible to degradation by a specific manure treatment to prevent negative environmental consequences. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  3. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass--animal manure mixtures.

    PubMed

    Ahn, H K; Smith, M C; Kondrad, S L; White, J W

    2010-02-01

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application with reduced environmental impacts. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion [>15% total solid (TS)] has an advantage over wet digestion (<10% TS) because it allows for the use of a smaller volume of reactor and because it reduces wastewater production. In addition, it produces a fertilizer that is easier to transport. Performance of anaerobic digestion of animal manure-switchgrass mixture was evaluated under dry (15% TS) and thermophilic conditions (55 degrees C). Three different mixtures of animal manure (swine, poultry, and dairy) and switchgrass were digested using batch-operated 1-L reactors. The swine manure test units showed 52.9% volatile solids (VS) removal during the 62-day trial, while dairy and poultry manure test units showed 9.3% and 20.2%, respectively. Over the 62 day digestion, the swine manure test units yielded the highest amount of methane 0.337 L CH4/g VS, while the dairy and poultry manure test units showed very poor methane yield 0.028 L CH4/g VS and 0.002 L CH4/g VS, respectively. Although dairy and poultry manure performed poorly, they may still have high potential as biomass for dry anaerobic digestion if appropriate designs are developed to prevent significant volatile fatty acid (VFA) accumulation and pH drop.

  4. Performance and microbial community dynamics in a two-phase anaerobic co-digestion system using cassava dregs and pig manure.

    PubMed

    Ren, Jiwei; Yuan, Xufeng; Li, Jie; Ma, Xuguang; Zhao, Ye; Zhu, Wanbing; Wang, Xiaofen; Cui, Zongjun

    2014-03-01

    The two-phase anaerobic co-digestion of cassava dregs (CD) with pig manure (PM) was evaluated using four sequencing batch reactors (SBRs) and a continuously stirred tank reactor (CSTR). The effect of seven different PM to CD volatile solid ratios (10:0, 8:2, 6:4, 5:5, 4:6, 2:8 and 0:10) on the acidification phase was investigated. Results indicated the concentrations of soluble chemical oxygen demand, NH4-N and volatile fatty acids increased substantially at seven ratios. Co-acidification of PM and CD performed well. Methanogenic fermentation of the acidification products at seven ratios was steady in CSTR. The highest methane yield and VS removal of 0.352m(3)/kg VSadded and 68.5% were achieved at PM:CD (4:6). The microbial population in CSTR was analyzed using molecular methods. Findings revealed that bacteria such as Firmicutes and Bacteroidetes, archaea such as Methanobacteriales and Methanomicrobiales were advantageous populations. Co-digestion of PM and CD supported higher quantity and diversity of methanogens.

  5. Dairy manure resource recovery utilizing two-stage anaerobic digestion - Implications of solids fractionation.

    PubMed

    Stowe, Edmond J; Coats, Erik R; Brinkman, Cynthia K

    2015-12-01

    Dairy manure management is increasingly becoming an environmental challenge. In this regard, manure anaerobic digestion (AD) can be applied to address environmental concerns; however, dairy manure AD remains economically uncompetitive. Ongoing research is focused on enhanced resource recovery from manure, including maximizing AD methane yield through a novel multi-stage AD configuration. Research presented herein centered on the hypothesis that separately digesting fine and coarse solids from fermented dairy manure would improve methane production; the hypothesis was disproven. While maximum methane concentration was realized on fine solids, combined solids AD yielded enhanced VS destruction. The diverse combined-solids substrate enriched for a more heterogeneous bacterial/archaeal consortium that balanced fermentation and methanogenesis to yield maximum product (methane). However, results suggest that targeted AD of the fat-rich fine solids could be a more optimal approach for processing manure; alternate (non-AD) methods could then be applied to extract value from the fibrous fraction.

  6. The dynamic changes and interactional networks of prokaryotic community between co-digestion and mono-digestions of corn stalk and pig manure.

    PubMed

    Wang, Min; Zhang, Xueying; Zhou, Jun; Yuan, Yuexiang; Dai, Yumei; Li, Dong; Li, Zhidong; Liu, Xiaofeng; Yan, Zhiying

    2017-02-01

    Anaerobic co-digestion is considered to be an efficient way to improve the biogas production. The abundance, dynamic and interactional networks of prokaryotic community were investigated between co-digestion and mono-digestions of corn stalk and pig manure in mesophilic batch test. Co-digestion showed higher methane production, and contributed to suitable microenvironment as well as stable prokaryotic community structure. The highest methane production was achieved with the highest relative abundance of Methanosaeta. Prokaryotic community in mono-digestions might inhibited by FA or FVFA. The functional modules in co-digestion and mono-digestion of pig manure clustered together with bigger size and higher degree, and the connections of metabolic functions were better-organized, which means high-efficient utilization of substrate and prevention of the two digestion systems crash. The partial mantel tests showed the functional modules were significantly affected by environmental factors. These results further explained that why co-digestion was more efficient than mono-digestion owing to suitable microenvironment.

  7. Methane and hydrogen sulfide production during co-digestion of forage radish and dairy manure

    USDA-ARS?s Scientific Manuscript database

    Forage radish cover crops were investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Lab-scale batch digesters (300 mL) were operated under mesophilic conditions during two experiments. In the first experiment, the optimal co-digestion ratio for ...

  8. Abatement of ammonia emissions from digested manure using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    A new strategy to avoid ammonia emissions from anaerobically digested swine manure was tested using the gas-permeable membrane process. Evaluation of the efficiency of ammonia recovery from digestate as well as mitigation of ammonia emissions to the atmosphere were carried out. Digestate was colle...

  9. Digestive System (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Digestive System KidsHealth > For Teens > Digestive System A A A ... out of the body as feces. About the Digestive System Every morsel of food we eat has to ...

  10. Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure.

    PubMed

    Fotidis, Ioannis A; Kougias, Panagiotis G; Zaganas, Ioannis D; Kotsopoulos, Thomas A; Martzopoulos, Gerasimos G

    2014-01-01

    Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural zeolite dosages on the mesophilic AD of poultry manure inoculated with a non-acclimatized to ammonia inoculum (dairy manure) was investigated. Additionally, a comparative analysis was performed between the data extracted from this study and the results of a previous study, which has been conducted under the same experimental conditions but with the use of ammonia acclimatized inoculum (swine manure). At 5 and 10 g zeolite L(-1), the methane yield of poultry manure was 43.4% and 80.3% higher compared with the experimental set without zeolite addition. However, the ammonia non-acclimatized inoculum was not efficient in digesting poultry manure even in the presence of 10 g zeolite L(-1), due to low methane production (only 39%) compared with the maximum theoretical yield. Finally, ammonia acclimatized inoculum and zeolite have demonstrated a possible 'synergistic effect', which led to a more efficient AD of poultry manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure.

  11. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.).

    PubMed

    Rehman, Kashif Ur; Cai, Minmin; Xiao, Xiaopeng; Zheng, Longyu; Wang, Hui; Soomro, Abdul Aziz; Zhou, Yusha; Li, Wu; Yu, Ziniu; Zhang, Jibin

    2017-03-22

    World trends toward the modern dairies intensification on large production units cause massive animal manure production and accumulation. Improper handling of manure produced by industrial farm operation greatly deteriorates the major environmental media including air, water and soil. The black soldier fly utilizes organic waste and converts it into larvae biomass to be used as livestock feed and into residues to be used as bio-fertilizer. However, due to the high ratio of cellulose, hemicellulose and lignin in dairy manure, this conversion is difficult. Therefore, dairy manure treated with chicken manure was digested by Hermetia illucens. In this paper, we found that the co-digestion process significantly enhanced the larval production, waste mass reduction, rate of larvae conversion, feed conversion ratio, nutrient reduction and fibers utilization. Whereas 40% dairy manure and 60% chicken manure group show better results than other manure mixtures and had a significantly increased the cellulose consumption by 61.19%, hemicellulose consumption by 53.22% and lignin consumption by 42.23% compared with 49.89%, 49.77% and 31.95%, respectively, in the dairy-only manure group. Finally, scanning electron microscopy was used to analyze the structural changes of dairy manure, chicken manure and their co-digestion mixtures. The scan electron microscopy showed the deterioration in the structure of dairy and chicken manure fibers by Hermetia illucens. Moreover, the carbon-nitrogen ratio was decreased in all end products of post vermicomposting. The results suggest that the co-digestion of 40% dairy manure with 60% chicken manure is an appropriate proportion for dairy manure management with the black soldier fly.

  12. Cow, sheep and llama manure at psychrophilic anaerobic co-digestion with low cost tubular digesters in cold climate and high altitude.

    PubMed

    Martí-Herrero, J; Alvarez, R; Cespedes, R; Rojas, M R; Conde, V; Aliaga, L; Balboa, M; Danov, S

    2015-04-01

    The aim of this research is to evaluate the co-digestion of cow and llama manure combined with sheep manure, in psychrophilic conditions and real field low cost tubular digesters adapted to cold climate. Four digesters were monitored in cold climate conditions; one fed with cow manure, a second one with llama manure, the third one with co-digestion of cow-sheep manure and the fourth one was fed with llama-sheep manure. The slurry had a mean temperature of 16.6 °C, the organic load rate was 0.44 kgvs m(-3) d(-1) and the hydraulic retention time was 80 days. After one hundred days biogas production was stable, as was the methane content and the pH of the effluent. The co-digestion of cow-sheep manure results in a biogas production increase of 100% compared to the mono-digestion of cow manure, while co-digestion of llama-sheep manure results in a decrease of 50% in biogas production with respect to mono-digestion of llama manure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition

    SciTech Connect

    Liu Zhanguang; Zhou Xuefei; Zhang Yalei; Zhu Hongguang

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5 kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.

  14. Serial CSTR digester configuration for improving biogas production from manure.

    PubMed

    Boe, Kanokwan; Angelidaki, Irini

    2009-01-01

    A new configuration of manure digesters for improving biogas production has been investigated in laboratory scale. A single thermophilic continuous-flow stirred tank reactor (CSTR) operated with a hydraulic retention time (HRT) of 15 days was compared to a serial CSTR configuration with volume distribution ratio of 80/20 and 90/10, and total HRT of 15 days. The results showed that the serial CSTR could obtain 11% higher biogas yield compared to the single CSTR. The increased biogas yield in the serial CSTR was mainly from the second reactor, which accounted for 16% and 12% of total biogas yield in the 90/10 and 80/20 configuration, respectively. VFA concentration in the serial CSTR was high in the first reactor but very low in the second reactor. The results from organic pulse load test showed that the second reactor in serial CSTR helped utilizing VFA produced from overloading in the first reactor, which improved the effluent quality and conversion efficiency of the serial CSTR.

  15. Dynamic simulation of cyclic batch anaerobic digestion of cattle manure.

    PubMed

    Keshtkar, A; Ghaforian, H; Abolhamd, G; Meyssami, B

    2001-10-01

    Cyclic batch reactors with periodical feeds and extractions, are often used in cattle manure anaerobic digestion. The dynamic behavior of this type of reactor was simulated in this study. The kinetic model developed by I. Angelidaki et al. [Biotechnol. Bioeng. 42 (1993) 159], together with microbial growth kinetics, conventional material balances for an ideally cyclic batch reactor, liquid-gas interactions, and liquid phase equilibrium chemistry were used in this study. The model showed good agreement with the experimental data of R.I. Mackie and M.P. Bryant [Appl. Microbiol. Biotechnol. 43 (1995) 346], and R. Borja et al. [Chem. Eng. J. 54 (1994) B9]. The effects of hydraulic retention time (HRT), organic loading rate, reactant concentrations, feeding interval, and initial conditions such as pH and ammonia concentration on process performance can be evaluated by the dynamic model. Also simulation results show that the equilibrium conditions can be considered for CO2 distribution between liquid and gas phases, especially for processes with long retention times.

  16. Geographic information system based manure application plan.

    PubMed

    Basnet, Badri B; Apan, Armando A; Raine, Steven R

    2002-02-01

    A geographic information system (GIS) based manure application plan has been developed for the site-specific application of animal waste to agricultural fields in the Westbrook sub-catchment of the Murray-Darling Basin, south-east Queensland, Australia. Sites suitable for animal waste application were identified using a GIS based weighted linear combination (WLC) model. The degree of land suitability for animal waste application was determined using a range of social, economic, environmental, and agricultural factors. As eutrophication and toxic blue-green algae blooms are a known problem in the catchment, the manure application rates were limited to the rate of crop phosphorus removal. Maximum manure application rate was calculated spatially by taking the crop nutrient (P2O5) requirement and the manure nutrient (P2O5) content into account. The environmental suitability of the fields receiving animal waste was considered in prescribing the final application rate of solid and liquid manures generated by local animal production facilities. The degree of site suitability of the agricultural fields was also used to suggest manure management practices to minimise the socio-environmental risks and increase the nutrient use efficiency of the applied manure. The amount of ammonium nitrogen (NH4-N) that would be added to the soil by satisfying the P2O5 requirement using manure sources was also calculated and an applied NH4-N map was created. This map could be used to assist farmers identify additional nitrogen requirements after manure application.

  17. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    PubMed

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery.

  18. Anaerobic digestibility of beef hooves with swine manure or slaughterhouse sludge.

    PubMed

    Xia, Yun; Wang, Ding-Kang; Kong, Yunhong; Ungerfeld, Emilio M; Seviour, Robert; Massé, Daniel I

    2015-04-01

    Anaerobic digestion is an effective method for treating animal by-products, generating at the same time green energy as methane (CH4). However, the methods and mechanisms involved in anaerobic digestion of α-keratin wastes like hair, nails, horns and hooves are still not clear. In this study we investigated the feasibility of anaerobically co-digesting ground beef hooves in the presence of swine manure or slaughterhouse sludge at 25 °C using eight 42-L Plexiglas lab-scale digesters. Our results showed addition of beef hooves statistically significantly increased the rate of CH4 production with swine manure, but only increased it slightly with slaughterhouse sludge. After 90-day digestion, 73% of beef hoof material added to the swine manure-inoculated digesters had been converted into CH4, which was significantly higher than the 45% level achieved in the slaughterhouse sludge inoculated digesters. BODIPY-Fluorescent casein staining detected proteolytic bacteria in all digesters with and without added beef hooves, and their relative abundances corresponded to the rate of methanogenesis of the digesters with the different inocula. Fluorescence in situ hybridization in combination with BODIPY-Fluorescent casein staining identified most proteolytic bacteria as members of genus Alkaliphilus in the subfamily Clostridiaceae 2 of family Clostridiaceae. They thus appear to be the bacteria mainly responsible for digestion of beef hooves. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition.

    PubMed

    Liu, Zhan-Guang; Zhou, Xue-Fei; Zhang, Ya-Lei; Zhu, Hong-Guang

    2012-01-01

    The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700m(3) chicken-manure continuous stirred tank reactor (CSTR). A 12.3L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35±1°C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5kg-COD/m(3)d over a hydraulic retention time of 1.5d, a maximum volumetric biogas production rate of 1.2m(3)/m(3)d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250mg/L) at an influent pH of 8.5-9.

  20. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge.

    PubMed

    Borowski, Sebastian; Domański, Jarosław; Weatherley, Laurence

    2014-02-01

    The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm(3)/kg VS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM=70:20:10 by weight) was only 336 dm(3)/kg VS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant.

  1. Impact of Anaerobic Digestion of Liquid Dairy Manure on Ammonia Volatilization Process

    NASA Astrophysics Data System (ADS)

    Koirala, K.

    2013-12-01

    The goal of this study was to determine the effect of anaerobic digestion (AD) on the mechanism of ammonia volatilization from liquid dairy manure, in storage or treatment lagoon, prior to land application. Physical-chemical properties of liquid dairy manure, which may affect ammonia volatilization process, were determined before and after AD. The properties of interest included: particle size distribution (PSD), total solids (TS), volatile solids (VS), viscosity, pH, total ammoniacal nitrogen (TAN), and ionic strength (IS). The overall mass transfer coefficient of ammonia (KoL) and the NH3 fraction of TAN (β) for the undigested (UD) and AD manures were then experimentally determined in a laboratory convective emission chamber (CEC) at a constant wind speed of 1.5 m s-1 and fixed air temperature of 25 °C at liquid manure temperatures of 15, 25, and 35 °C. The PSD indicated non-normal left skewed distribution for both AD and UD manures particles, suggestive of heavier concentrations of particles towards the lower particle size range. The volume median diameters (VMD) for solids from UD and AD were not significantly different (p= 0.65), but the geometric standard deviations (GSD) were significantly different (p = 0.001), indicating slightly larger particles but more widely distributed solids in UD than AD manure. Results also indicated significantly higher pH, TAN, ionic strength (IS) and viscosity in AD manure. The KoL and β for AD manure determined under identical conditions (air temperature, liquid temperature, and airflow) were significantly higher (p > 0.05) than for UD manure. Overall, these findings suggest that AD of dairy manure significantly increased initial ammonia volatilization potential from liquid dairy manure; with the largest increase (~62%) emanating from increased ammonium dissociation. The initial flux of ammonia, during the experiment period, was ~84% more from AD than in UD dairy manure. Keywords. Process based models, mass transfer

  2. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure.

    PubMed

    Oleskowicz-Popiel, Piotr; Lisiecki, Przemyslaw; Holm-Nielsen, Jens Bo; Thomsen, Anne Belinda; Thomsen, Mette Hedegaard

    2008-09-01

    In this communication, pretreatment of the anaerobically digested (AD) manure and the application of the pretreated AD manure as liquid medium for the simultaneous saccharification and fermentation (SSF) were described. Furthermore, fermentation of pretreated maize silage and wheat straw was investigated using 2l bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation. No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage.

  3. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion.

    PubMed

    Stone, James J; Clay, Sharon A; Zhu, Zhenwei; Wong, Kwok L; Porath, Laura R; Spellman, Garth M

    2009-10-01

    Tylosin and chlortetracycline (CTC) are antimicrobial chemicals that are fed to >45% of the US swine herds at therapeutic and sub-therapeutic dosages to enhance growth rates and treat swine health problems. These compounds are poorly absorbed during digestion so that the bioactive compound or metabolites are excreted. This study investigated the degradation and stabilization of swine manure that contained no additives and compared the observed processes with those of manure containing either tylosin or CTC. The batch anaerobic incubation lasted 216 days. The breakdown of insoluble organic matter through anaerobic hydrolysis reactions was faster for manure containing CTC compared with tylosin or no-antimicrobial treatments. Volatile fatty acid (VFA) accumulation, including acetate, butyrate, and propionate, was greater for CTC-containing manure compared to tylosin and no-antimicrobial treatments. The relative abundance of two aceticlastic methanogens, Methanosaetaceae and Methanosarcinaceae spp., were less for CTC manure than manure with no-antimicrobial treatment. In addition, generation of methane and carbon dioxide was inhibited by 27.8% and 28.4%, respectively, due to the presence of CTC. Tylosin effects on manure degradation were limited, however the relative abundance of Methanosarcinaceae spp. was greater than found in the CTC or no-antimicrobial manures. These data suggest that acetate and other C-1 VFA compounds would be effectively utilized during methanogenesis in the presence of tylosin.

  4. Survival of multidrug-resistant bacteria in thermophilic and mesophilic anaerobic co-digestion of dairy manure and waste milk.

    PubMed

    Beneragama, Nilmini; Iwasaki, Masahiro; Lateef, Suraju A; Yamashiro, Takaki; Ihara, Ikko; Umetsu, Kazutaka

    2013-05-01

    Anaerobic digestion is considered as a promising method to manage animal waste with antibiotic-resistant bacteria. Current research was conducted to investigate the survival of multidrug-resistant bacteria (MDRB) resistant to three groups of antibiotics: (i) cefazolin, neomycin, vancomycin, kanamycin (group 1); (ii) penicillin, oxytetracycline, ampicillin, streptomycin (group 2); and (iii) cefazolin, neomycin, vancomycin, kanamycin, penicillin, oxytetracycline, ampicillin, streptomycin (group 3), in anaerobic digestion of dairy manure and co-digestion of dairy manure and waste milk at 37°C and 55°C for 22 days, respectively. The population densities of three groups of MDRB on peptone, tryptone, yeast and glucose agar plates incubated at 30°C for 7 days before and after digestion showed 100% destruction in both digestates at thermophilic temperature. Overall reduction of more than 90% of three groups of MDRB was observed in mesophilic digestion with no significant differences (P > 0.05) between manure and milk mixture. Co-digestion of dairy manure and waste milk always produced significantly (P < 0.05) higher total gas and methane gas than digestion of manure alone at both temperatures. Gas production in each case was significantly (P < 0.05) higher in thermophilic digestion than in mesophilic digestion. The results demonstrate that thermophilic co-digestion of dairy manure and waste milk offers more benefits in terms of the environment and economy.

  5. Co-digestion of solid poultry manure with municipal sewage sludge.

    PubMed

    Borowski, Sebastian; Weatherley, Laurence

    2013-08-01

    The anaerobic digestion was investigated using mixed sewage sludge and poultry manure. The experiments showed that a 30% addition of poultry manure to the sewage sludge did not increase specific gas yield (376 dm(3)/kg VS versus 384 dm(3)/kg VS), however gas production rate as calculated per unit volume was 1.5 higher for sludge and manure mixture. The anaerobic digestion turned out to be inefficient in terms of pathogen treatment, since the reduction of Enterobacteriaceae reached only two logarithmic units. In the course of the digestion processes, nutrients were released to the supernatant, and longer SRT favored that phenomenon. The liquor after the digestion of sludge alone was rich in phosphates (348-358 gP/m(3)) and contained a lot of organic carbon (COD of 2705-6034 gO2/m(3)). Conversely, more ammonium nitrogen was found in the supernatant after co-digestion of sludge with manure (2094-2221 gN/m(3)). However, there was no evidence of ammonia inhibition.

  6. A novel treatment system to remove phosphorus from liquid manure

    USDA-ARS?s Scientific Manuscript database

    Lowering the total phosphorus (P) content of animal manure is one approach of addressing concerns over surplus P accumulation in soils resulting from land application of animal manure. We sought to develop a treatment system for liquid manures that conserves manure nitrogen (N) while removing most o...

  7. Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: a life cycle perspective.

    PubMed

    Rivas-García, Pasiano; Botello-Álvarez, José E; Abel Seabra, Joaquim E; da Silva Walter, Arnaldo C; Estrada-Baltazar, Alejandro

    2015-01-01

    The environmental profile of milk production in Mexico was analysed for three manure management scenarios: fertilization (F), anaerobic digestion (AD) and enhanced anaerobic digestion (EAD). The study used the life cycle assessment (LCA) technique, considering a 'cradle-to-gate' approach. The assessment model was constructed using SimaPro LCA software, and the life cycle impact assessment was performed according to the ReCiPe method. Dairy farms with AD and EAD scenarios were found to exhibit, respectively, 12% and 27% less greenhouse gas emissions, 58% and 31% less terrestrial acidification, and 3% and 18% less freshwater eutrophication than the F scenario. A different trend was observed in the damage to resource availability indicator, as the F scenario presented 6% and 22% less damage than the EAD and AD scenarios, respectively. The magnitude of environmental damage from milk production in the three dairy manure management scenarios, using a general single score indicator, was 0.118, 0.107 and 0.081 Pt/L of milk for the F, AD and EAD scenarios, respectively. These results indicate that manure management systems with anaerobic digestion can improve the environmental profile of each litre of milk produced.

  8. Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure.

    PubMed

    Turker, Gokhan; Aydin, Sevcan; Akyol, Çağrı; Yenigun, Orhan; Ince, Orhan; Ince, Bahar

    2016-07-01

    Management of manure containing veterinary antibiotics is a major concern in anaerobic treatment systems because of their possible adverse effects on microbial communities. Therefore, the aim of study was to investigate how oxytetracycline (OTC) influences bacteria and acetoclastic and hydrogenotrophic methanogens under varying operational conditions in OTC-medicated and non-medicated anaerobic cow manure digesters. Concentrations of OTC and its metabolites throughout the anaerobic digestion were determined using ultraviolet-high-performance liquid chromatography (UV-HPLC) and tandem liquid chromatography-mass spectrometry (LC/MS/MS), respectively. Fluorescent in situ hybridization, denaturing gradient gel electrophoresis, cloning, and sequencing analyses were used to monitor changes in microbial community structures. According to the results of analytical and molecular approaches, operating conditions highly influence active microbial community dynamics and associate with biogas production and elimination of OTC and its metabolites during anaerobic digestion of cow manure in the presence of an average initial concentration of 2.2 mg OTC/L. The impact of operating conditions has a drastic effect on acetoclastic methanogens than hydrogenotrophic methanogens and bacteria.

  9. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil.

    PubMed

    Resende, Juliana Alves; Godon, Jean-Jacques; Bonnafous, Anaïs; Arcuri, Pedro Braga; Silva, Vânia Lúcia; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2016-04-01

    Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied. Influence of the seasonal and temporal patterns on bacterial and archaeal communities were assessed by studying the variations in density, dynamic and diversity and structure. The average daily biogas produced in the summer and winter months was 18.7 and 16 L day(-1), respectively, and there was no difference in the average methane yield. Quantitative PCR analysis revealed that no differences in abundances and dynamics were found for bacterial communities and the total number of Archaea in different seasons. Analysis of bacterial clone libraries revealed a predominance of Firmicutes (54.5 %/summer and 46.7 %/winter) and Bacteroidetes (31.4 %/summer and 44.4 %/winter). Within the Archaea, the phylum Euryarchaeota was predominant in both digesters. Phylogenetic distribution showed changes in percentage between the phyla identified, but no alterations were recorded in the quality and amount of produced methane or community dynamics. The results may suggest that redundancy of microbial groups may have occurred, pointing to a more complex microbial community in the ecosystem related to this ambient temperature system.

  10. Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment.

    PubMed

    Jin, Ying; Hu, Zhenhu; Wen, Zhiyou

    2009-08-01

    Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively.

  11. Thermophilic anaerobic co-digestion of garbage, screened swine and dairy cattle manure.

    PubMed

    Liu, Kai; Tang, Yue-Qin; Matsui, Toru; Morimura, Shigeru; Wu, Xiao-Lei; Kida, Kenji

    2009-01-01

    Methane fermentation characteristics of garbage, swine manure (SM), dairy cattle manure (DCM) and mixtures of these wastes were studied. SM and DCM showed much lower volatile total solid (VTS) digestion efficiencies and methane yield than those of garbage. VTS digestion efficiency of SM was significantly increased when it was co-digested with garbage (Garbage: SM=1:1). Co-digestion of garbage, SM and DCM with respect to the relative quantity of each waste discharged in the Kikuchi (1: 16: 27) and Aso (1: 19: 12) areas indicated that co-digestion with garbage would improve the digestion characteristic of SM and DCM as far as the ratio of DCM in the wastes was maintained below a certain level. When the mixed waste (Garbage: SM: DCM=1:19:12) was treated using a thermophilic UAF reactor, methanogens responsible for the methane production were Methanoculleus and Methanosarcina species. Bacterial species in the phylum Firmicutes were dominant bacteria responsible for the digestion of these wastes. As the percentage of garbage in the mixed wastes used in this study was low (2-3%) and the digestion efficiency of DCM was obviously improved, the co-digestion of SM and DCM with limited garbage was a prospective method to treat the livestock waste effectively and was an attractive alternative technology for the construction of a sustainable environment and society in stock raising area.

  12. Your Digestive System (For Kids)

    MedlinePlus

    ... Room? What Happens in the Operating Room? Your Digestive System KidsHealth > For Kids > Your Digestive System A A ... the flush we were talking about! Dig That Digestive System You can help your digestive system by drinking ...

  13. Utilization of Re-processed Anaerobically Digested Fiber from Dairy Manure as a Container Media Substrate

    USDA-ARS?s Scientific Manuscript database

    The solid fraction (fiber) from the effluent of the anaerobic digestion of dairy manure by plug flow technology yields material that has consistent physical properties (total porosity, air filled porosity at saturation, and water holding capacity) to perform satisfactorily as a plant growth media su...

  14. ANAEROBIC DIGESTION OF FOOD WASTE AND DAIRY MANURE FOR BIOENERGY PRODUCTION

    USDA-ARS?s Scientific Manuscript database

    The performance of continuously mixed anaerobic digesters was evaluated in the laboratory for treating manure, food waste and their mixtures at 35 ± 2oC and a hydraulic retention time of 20 days. The first mixture was composed of 32% and 68%, and the second was composed of 48% and 52% food waste and...

  15. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology

    USDA-ARS?s Scientific Manuscript database

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonia recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1375 to 2089 milligram am...

  16. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure

    PubMed Central

    Sun, Li; Pope, Phillip B; Eijsink, Vincent G H; Schnürer, Anna

    2015-01-01

    Responses of bacterial and archaeal communities to the addition of straw during anaerobic digestion of manure at different temperatures (37°C, 44°C and 52°C) were investigated using five laboratory-scale semi-continuous stirred tank reactors. The results revealed that including straw as co-substrate decreased the species richness for bacteria, whereas increasing the operating temperature decreased the species richness for both archaea and bacteria, and also the evenness of the bacteria. Taxonomic classifications of the archaeal community showed that Methanobrevibacter dominated in the manure samples, while Methanosarcina dominated in all digesters regardless of substrate. Increase of the operating temperature to 52°C led to increased relative abundance of Methanoculleus and Methanobacterium. Among the bacteria, the phyla Firmicutes and Bacteroidetes dominated within all samples. Compared with manure itself, digestion of manure resulted in a higher abundance of an uncultured class WWE1 and lower abundance of Bacilli. Adding straw to the digesters increased the level of Bacteroidia, while increasing the operating temperature decreased the level of this class and instead increased the relative abundance of an uncultured genus affiliated to order MBA08 (Clostridia). A considerable fraction of bacterial sequences could not be allocated to genus level, indicating that novel phylotypes are resident in these communities. PMID:26152665

  17. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    PubMed

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp.

  18. Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations.

    PubMed

    Li, Kun; Liu, Ronghou; Sun, Chen

    2015-12-01

    Anaerobic digestions of pig manure (PM), dairy manure (DM), chicken manure (CM) and rabbit manure (RM) at initial volatile solid loading (VSL) of 8 g VS/L, 16 g VS/L, 32 g VS/L, 64 g VS/L were investigated under mesophilic conditions. The maximum methane yields of 410, 270, 377 and 323 mL CH4/g VSadded for PM, DM, CM and RM were all obtained at initial VSL of 8 g VS/L, respectively. The improvement of substrate concentration to 64 g VS/L not only decreased the methane yield and biodegradability both by 22.4%, 37.3%, 49.1% and 34.6% for PM, DM, CM and RM respectively, but also reduced the methane content in final biogas production. The Cone model (R(2): 0.9910-0.9974) showed a better fit to the experiment data and the calculated parameters indicated that anaerobic digestion of manures at higher loading has longer lag phase and lower hydrolysis rate.

  19. Gaseous nitrogen and bacterial responses to raw and digested dairy manure applications in incubated soil.

    PubMed

    Saunders, Olivia E; Fortuna, Ann-Marie; Harrison, Joe H; Cogger, Craig G; Whitefield, Elizabeth; Green, Tonia

    2012-11-06

    A study was conducted under laboratory conditions to compare rates of nitrous oxide (N(2)O) and ammonia (NH(3)) emissions when soil was amended with anaerobically digested dairy manure slurry containing <30% food byproducts, raw dairy manure slurry, or urea. Slurries were applied via surface and subsurface methods. A second objective was to correlate genes regulating nitrification and denitrification with rates of N(2)O production, slurry treatment, and application method. Ammonia volatilization from incubated soil ranged from 140 g kg(-1) of total N applied in digested slurry to 230 g kg(-1) in urea. Subsurface application of raw dairy manure slurry decreased ammonia volatilization compared with surface application. Anaerobic digestion increased N(2)O production. Cumulative N(2)O loss averaged 27 g kg(-1) of total N applied for digested slurry, compared with 5 g kg(-1) for raw dairy slurry. Genes of interest included a 16S rRNA gene selective for β-subgroup proteobacterial ammonia-oxidizers, amoA, narG, and nosZ quantified with quantitative polymerase chain reaction (qPCR) and real-time polymerase chain reaction (RT-PCR). Application of anaerobically digested slurry increased nitrifier and denitrifier gene copies that correlated with N(2)O production. Expression of all genes measured via mRNA levels was affected by N applications to soil. This study provides new information linking genetic markers in denitrifier and nitrifier populations to N(2)O production.

  20. Influence of the ultrasound pretreatment on anaerobic digestion of cattle manure, food waste and crude glycerine.

    PubMed

    Ormaechea, Pedro; Castrillón, Leonor; Marañón, Elena; Fernández-Nava, Yolanda; Negral, Luis; Megido, Laura

    2017-03-01

    To increase the production of methane, when cattle manure (CM) is digested, pretreatments can be applied and/or the manure can be co-digested with other wastes. In this research work, a mixture of CM, food waste (FW) and raw glycerine (Gly) in a proportion in weight of 87% CM, 10% FW and 3% Gly was digested, (a) without pretreatment and (b) with pretreatment by ultrasound, applying a sonication energy of 1040 kJ/kg total solids. Specific methane production was 290 L CH4/kg volatile solids (VS) without pretreatment and 520 L CH4/kg VS with pretreatment. With respect to the volumetric methane production, 1.07 L CH4/Lreactor.day was produced in the first case, and in the second case, 1.98 L CH4/Lreactor.day. We can conclude that the application of ultrasound pretreatment significantly improved the production of biogas.

  1. Optimizing the performance of a reactor by reducing the retention time and addition of glycerin for anaerobically digesting manure

    PubMed Central

    Timmerman, Maikel; Schuman, Els; van Eekert, Miriam; van Riel, Johan

    2015-01-01

    Anaerobic digestion of manure is a widely accepted technology for energy production. However, only a minimal portion of the manure production in the EU is anaerobically digested and occurs predominantly in codigestion plants. There is substantial potential for biogas plants that primarily operate on manure (>90%); however, the methane yields of manure are less compared to coproducts, which is one of the reasons for manure-based biogas plants often being economically non-viable. Therefore, it is essential to begin increasing the efficiency of these biogas plants. This study investigated the effect of decreasing retention time and introducing a moderate amount of glycerin on the biogas production as methods to improve efficiency. An experiment has been conducted with two different manure types in four biogas reactors. The results of the study demonstrated that, first, it was possible to decrease the retention time to 10–15 days; however, the effect on biogas production varied per manure type. Secondly, the biogas production almost triples at a retention time of 15.6 days with an addition of 4% glycerin. The relative production-enhancing effect of glycerin did not vary significantly with both manure types. However, the absolute production-enhancing effect of glycerin differed per manure type since the biogas production per gram VS differed per manure type. Thirdly, the positive effect of the glycerin input declines with shorter retention times. Therefore, the effect of glycerin addition depends on the manure type and retention time. PMID:25401272

  2. Optimizing the performance of a reactor by reducing the retention time and addition of glycerin for anaerobically digesting manure.

    PubMed

    Timmerman, Maikel; Schuman, Els; van Eekert, Miriam; van Riel, Johan

    2015-01-01

    Anaerobic digestion of manure is a widely accepted technology for energy production. However, only a minimal portion of the manure production in the EU is anaerobically digested and occurs predominantly in codigestion plants. There is substantial potential for biogas plants that primarily operate on manure (>90%); however, the methane yields of manure are less compared to coproducts, which is one of the reasons for manure-based biogas plants often being economically non-viable. Therefore, it is essential to begin increasing the efficiency of these biogas plants. This study investigated the effect of decreasing retention time and introducing a moderate amount of glycerin on the biogas production as methods to improve efficiency. An experiment has been conducted with two different manure types in four biogas reactors. The results of the study demonstrated that, first, it was possible to decrease the retention time to 10-15 days; however, the effect on biogas production varied per manure type. Secondly, the biogas production almost triples at a retention time of 15.6 days with an addition of 4% glycerin. The relative production-enhancing effect of glycerin did not vary significantly with both manure types. However, the absolute production-enhancing effect of glycerin differed per manure type since the biogas production per gram VS differed per manure type. Thirdly, the positive effect of the glycerin input declines with shorter retention times. Therefore, the effect of glycerin addition depends on the manure type and retention time.

  3. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano.

    PubMed

    Alvarez, René; Lidén, Gunnar

    2008-01-01

    Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 degrees C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m(-3) d(-1). Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process.

  4. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield.

  5. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano

    SciTech Connect

    Alvarez, Rene Liden, Gunnar

    2008-07-01

    Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 deg. C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m{sup -3} d{sup -1}. Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process.

  6. Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.

    PubMed

    Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M

    2017-06-01

    This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Optimization of anaerobic digestion of a mixture of Zea mays and Miscanthus sacchariflorus silages with various pig manure dosages.

    PubMed

    Bułkowska, K; Pokój, T; Klimiuk, E; Gusiatin, Z M

    2012-12-01

    Digestion of crop silage (Zea mays L. and Miscanthus sacchariflorus) with 0%, 7.5%, 12.5% and 25% pig manure as co-substrate was performed in continuous stirred-tank reactors, for a constant hydraulic retention time of 45 d and organic load rate of 2.1 g L(-1)d(-1). A matrix of correlations between biogas/methane production and parameters of anaerobic digestion was created in order to estimate process stability. The values of the correlation coefficients indicated that the most stable anaerobic digestion was achieved using 7.5% and 12.5% pig manure. In contrast, the positive correlation between ammonium and volatile fatty acids (r=0.8698, p<0.001) at 25% pig manure showed process instability. Compared to crop silage alone, pig manure favored the production of biogas and methane; the highest production rates were obtained with 12.5% pig manure.

  8. Evaluating the toxicity of food processing wastes as co-digestion substrates with dairy manure.

    PubMed

    Lisboa, Maria Sol; Lansing, Stephanie

    2014-07-01

    Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  10. Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures.

    PubMed

    Wang, Liang; Wang, Yingkuan; Chen, Paul; Ruan, Roger

    2010-12-01

    The present study, based on a previous batch-wise experiment, investigated a lab-scale semi-continuous cultivation of green microalgae Chlorella vulgaris (UTEX 2714), as a useful means for nutrient reduction as well as production of algal biomass which can be used as potential feedstock for the production of biofuel and other commodities, on 20 x diluted dairy manures. Both undigested and digested samples were applied in parallel experiments for comparison regarding the requirements of hydraulic retention times (HRTs), removal efficiencies of nitrogen, phosphorus, and chemical oxygen demand (COD), biomass productivities, and CO₂ sequestration abilities. It was demonstrated that algae grown in undigested dairy manure achieved removal rates of 99.7%, 89.5%, 92.0%, and 75.5% for NH₄+--N, TN, TP, and COD, respectively, under a 5-day HRT, while the HRT had to extend to 20 days in order to achieve 100.0% removal of NH₄+--N in digested one with simultaneous removals of 93.6% of TN, 89.2% of TP, and 55.4% of COD. The higher organic carbon contained in undigested dairy manure helped boost the growth of mixotrophic Chlorella, thus resulting in a much shorter HRT needed for complete removal of NH₄+--N. Moreover, algae grown in digested dairy manure provided more penitential than those grown in undigested one in CO₂ sequestration per milligram of harvested dried biomass (1.68 mg CO₂/mg dry weight (DW) vs 0.99 mg CO₂/mg DW), but did not surpass in total the amount of CO₂ sequestered on a 15-day period basis because of the better productivity gained in undigested dairy manure.

  11. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time.

    PubMed

    Dareioti, Margarita Andreas; Kornaros, Michael

    2015-01-01

    The aim of this study was to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production using a two-stage anaerobic process. Two continuously stirred tank reactors (CSTRs) were used under mesophilic conditions (37°C) in order to enhance acidogenesis and methanogenesis. A mixture of pretreated ensiled sorghum, cheese whey and liquid cow manure (55:40:5, v/v/v) was used. The acidogenic reactor was operated at six different HRTs of 5, 3, 2, 1, 0.75 and 0.5d, under controlled pH5.5, whereas the methanogenic reactor was operated at three HRTs of 24, 16 and 12d. The maximum H2 productivity (2.14L/LRd) and maximum H2 yield (0.70mol H2/mol carbohydrates consumed) were observed at 0.5d HRT. On the other hand, the maximum CH4 production rate of 0.90L/LRd was achieved at HRT of 16d, whereas at lower HRT the process appeared to be inhibited and/or overloaded. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Greenhouse gas emissions from passive composting of manure and digestate with crop residues and biochar on small-scale livestock farms in Vietnam.

    PubMed

    Vu, Quynh Duong; de Neergaard, Andreas; Tran, Toan Duc; Hoang, Huong Thi Thu; Vu, Van Thi Khanh; Jensen, Lars Stoumann

    2015-01-01

    This study investigated the effects of different mixing ratios of crop residues and biochar with liquid digestate from anaerobically treated pig manure on CH₄, CO₂, and N₂O emissions over 84 days in a system of passive aeration composting, resembling typical Vietnamese solid manure storage conditions. Two treatments with solid manure were included for comparison. The results showed that C losses through CH4 and CO₂emissions accounted for 0.06-0.28% and 1.9-26.7%, respectively, of initial total C. CH4 losses accounted for just 0.4-4.0% of total C losses. Total N losses accounted for 27.1-40% of initial total N in which N₂O emissions corresponded to 0.01-0.57% of initial total N, and hence accounted for only 0.1-1.8% of total N losses. It is assumed that the remainder was either the result of denitrification losses to N₂or ammonia volatilization. The composting of biochar (B) or crop residue with digestate (D) showed significantly lower CH4 and N₂O emissions compared with composting manure (M) (p < .05). The composting of digestate with biochar showed significantly lower CO₂and CH₄emissions and significantly higher N₂O emissions compared to the composting of digestate with rice straw (RS) (p < .05). The combined composting of digestate with biochar and rice straw (D + B + RS5:0.3:1) showed significantly reduced N₂O emissions compared with composting digestate with biochar with alone (p < .05). Composting sugar cane bagasse (SC) with digestate (D + SC) significantly reduced CH₄and N₂O emissions compared with the composting of rice straw with digestate (D + RS3.5:1 and D + RS5:1) (p < .05).

  13. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank.

  14. Low-temperature anaerobic digestion of swine manure in a plug-flow reactor.

    PubMed

    Massé, Daniel I; Gilbert, Yan; Saady, N M C; Liu, Charle

    2013-01-01

    A low-temperature (25 degrees C) anaerobic eight-compartment (PF01 to PF08) cascade reactor simulating a plug-flow reactor (PFR) treating pig manure was monitored for a year. The bioreactor was fed at an average loading rate of 2.4 +/- 0.2 g of total chemical oxygen demand (TCOD) per litre of reactor per day for a theoretical hydraulic retention time (HRT) of 67 +/- 7 d. An average of 79% of TCOD was removed from pig manure (converted into biogas and in sediments), whereas specific methane yields ranging from 397 to 482 NL CH4 kg(-1) VS (148.6 to 171.4 NL CH4 kg(-1) TCOD) were obtained. After 150 d, fluctuating performances of the process were observed, associated with solids accumulation in the upstream compartments, preventing the complete anaerobic digestion of swine manure in the compartments PF01 to PF04. Low-temperature anaerobic PFR represents an interesting alternative for the treatment of pig manure and recovery of green energy. Further investigations regarding a modified design, with better accumulating solids management, are needed to optimize the performance of this low-temperature PFR treating pig manure.

  15. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    PubMed Central

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  16. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    NASA Astrophysics Data System (ADS)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  17. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH.

    PubMed

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-11

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  18. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    SciTech Connect

    Ye, Jingqing; Li, Dong; Sun, Yongming; Wang, Guohui; Yuan, Zhenhong; Zhen, Feng; Wang, Yao

    2013-12-15

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.

  19. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures

    PubMed Central

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  20. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure.

    PubMed

    Ye, Jingqing; Li, Dong; Sun, Yongming; Wang, Guohui; Yuan, Zhenhong; Zhen, Feng; Wang, Yao

    2013-12-01

    In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37±1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9-70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.

  1. Co-digestion of cattle manure with food waste and sludge to increase biogas production.

    PubMed

    Marañón, E; Castrillón, L; Quiroga, G; Fernández-Nava, Y; Gómez, L; García, M M

    2012-10-01

    Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH(4)/kg VS(feed) for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36°C, for an OLR of 1.2g VS/L day. Increasing the OLR to 1.5g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55°C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  2. The survival of cefazolin-resistant bacteria in mesophilic co-digestion of dairy manure and waste milk.

    PubMed

    Beneragama, Nilmini; Moriya, Yusuke; Yamashiro, Takaki; Iwasaki, Masahiro; Lateef, Suraju A; Ying, Chun; Umetsu, Kazutaka

    2013-08-01

    The use of cefazolin to treat mastitic cows leads to cefazolin residues in milk and manure. This is responsible for the high occurrence of cefazolin resistant bacteria (CRB) in waste and the environment. Anaerobic digestion is considered to have the potential to reduce antibiotic-resistant bacteria present in waste that results from concentrated animal feeding operations. Thus, the objective of this study was to investigate the survival of CRB and the digester performance in mesophilic co-digestion of dairy manure and waste milk. The experiment was carried out using three digester compositions: 100% slurry (slurry), 50% slurry + 50% manure (manure mixture) and 50% slurry + 45% manure + 5% waste milk (milk mixture) in batch digesters of 1 l with a working volume of 800 ml in triplicate at 37°C for 34 days. The daily biogas production in each digester, and methane (CH4) and carbon dioxide compositions in the gas were determined. The population densities of total culturable bacteria (TCB) and CRB were determined by plate counts on agar media at day 0, 10, 20 and 34 of digestion. Milk mixture produced the highest (P < 0.05) daily and cumulative total and CH4 gas. The maximum percentage reductions of TCB and CRB in manure and milk mixture was observed at day 20, the values being 96.2%, 96.0% and 99.8% and 99.8% respectively. Final volatile fatty acids (VFA) and pH values of the digesters confirmed the digester stability. Based on the findings, mesophilic anaerobic digestion can be considered a potent method to avoid the dissemination of CRB in nature.

  3. Prokaryote community dynamics in anaerobic co-digestion of swine manure, rice straw and industrial clay residuals.

    PubMed

    Jiménez, Janet; Theuerl, Susanne; Bergmann, Ingo; Klocke, Michael; Guerra, Gilda; Romero-Romero, Osvaldo

    The aim of this study was to analyze the effect of the addition of rice straw and clay residuals on the prokaryote methane-producing community structure in a semi-continuously stirred tank reactor fed with swine manure. Molecular techniques, including terminal restriction fragment length polymorphism and a comparative nucleotide sequence analyses of the prokaryotic 16S rRNA genes, were performed. The results showed a positive effect of clay addition on methane yield during the co-digestion of swine manure and rice straw. At the digestion of swine manure, the bacterial phylum Firmicutes and the archaeal family Methanosarcinaceae, particularly Methanosarcina species, were predominant. During the co-digestion of swine manure and rice straw the microbial community changed, and with the addition of clay residual, the phylum Bacteroidetes predominated. The new nutritional conditions resulted in a shift in the archaeal family Methanosarcinaceae community as acetoclastic Methanosaeta species became dominant.

  4. Evaluation of a new fixed-bed digester design utilizing large media for flush dairy manure treatment.

    PubMed

    Zaher, Usama; Frear, Craig; Pandey, Paramod; Chen, Shulin

    2008-12-01

    A new anaerobic digester design for the treatment of diluted (<2% solids) flush dairy manure was evaluated. The new design was developed as an economic alternative for enhancing the performance of anaerobic lagoon systems in cold weather areas. The digester employed used automobile tires as fixed-bed media to improve bacterial retention. The digester was heated by steam injection and built underground to enhance insulation. The tires were sorted in a unique pattern for improving mixing and uniform temperature distribution. The system was tested on a pilot-scale. The treatment mechanism was explored by mathematical modeling. The observed treatment efficiency of the new design was comparable to that of conventional digesters operating at higher total solids concentrations (>4%). With a hydraulic retention time (HRT) of 17 days, the measured removal rates were 30-50% and 40-60% of TVS and COD, respectively. The new digester maintained longer solids retention time (SRT) as estimated using the model, supported by the observed thick biofilm formation and resistance to hydraulic overload. The model was used to analyze different operation scenarios varying both the organic and hydraulic loads.

  5. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology.

    PubMed

    Dube, P J; Vanotti, M B; Szogi, A A; García-González, M C

    2016-03-01

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonium (NH4(+)) recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1465-2097 mg NH4(+)-N L(-1) were treated using submerged membranes (0.13 cm(2) cm(-3)), low-rate aeration (120 mL air L-manure(-1) min(-1)) and nitrification inhibitor (22 mg L(-1)) to prevent nitrification. The experiment included a control without aeration. The pH of the manure with aeration rose from 8.6 to 9.2 while the manure without aeration decreased from 8.6 to 8.1. With aeration, 97-99% of the NH4(+) was removed in about 5 days of operation with 96-98% recovery efficiency. In contrast, without aeration it took 25 days to treat the NH4(+). Therefore, the recovery of NH4(+) was five times faster with the low-rate aeration treatment. This enhancement could reduce costs by 70%.

  6. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  7. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil.

    PubMed

    Costa Junior, Ciniro; Cerri, Carlos E P; Pires, Alexandre V; Cerri, Carlos C

    2015-02-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH4 and N2O) from the manure generated from 140 beef heifers confined for 90 days in the scope "housing to field application" by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO₂eq) per kg of animal live weight gain (lwg), with ~80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO₂eq per kg lwg(-1)). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO₂eq kg lwg(-1) or 95% (±45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (±47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems.

  8. Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin.

    PubMed

    Castrillón, L; Fernández-Nava, Y; Ormaechea, P; Marañón, E

    2011-09-01

    Biogas production by co-digestion of cattle manure with crude glycerin obtained from biodiesel production was studied after pre-treatment of the cattle manure or mixtures of cattle manure with different amounts of added glycerin with ultrasound. Batch experiments with 1,750 mL of medium containing 1,760 g of screened cattle manure or mixtures of cattle manure (screened or ground) and 70-140 mL or crude glycerin were incubated under mesophilic and thermophilic condition in stirred tank reactors. Under mesophilic conditions, the addition of 4% glycerin to screened manure increased biogas production by up to 400%. Application of sonication (20 kHz, 0.1 kW, and 4 min) to a mixture of manure+4% glycerin increased production of biogas by up to 800% compared to untreated manure. The best results were obtained under thermophilic conditions using sonicated mixtures of ground cattle manure with 6% added glycerin (348 L methane/kg COD removed were obtained). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Laboratory testing on the removal of the veterinary antibiotic doxycycline during long-term liquid pig manure and digestate storage.

    PubMed

    Widyasari-Mehta, Arum; Suwito, Hanna Resti Kartika Ayu; Kreuzig, Robert

    2016-04-01

    The veterinary antibiotic doxycycline (DOXY) is today frequently applied in conventional pig husbandry for the control of respiratory diseases. After the treatment, pigs excrete major amounts of DOXY as the unchanged active substance. Thus, DOXY residues were found in liquid manures and digestates of biogas plants at concentrations of mg kg(-1) dry weight. In order to assess the impact of field applications of contaminated manures and digestates on the entry of DOXY residues into arable and grassland soils, thorough information about the removal of DOXY during long-term storage of farm fertilizers is required. Since this aspect has been only less investigated for manures but not for digestates, first long-term storage simulation tests were performed at laboratory scale. Within the 170-d incubation periods under strictly anaerobic conditions, doxycycline was removed in liquid pig manure by 61% and in digestate by 76%. The calculated half-lives of 120 d and 91 d thus emphasized the persistence of doxycycline in both matrices. Due to the substance specific properties of DOXY, this removal was caused neither by mineralization, epimerization nor biotransformation. According to the high affinity of DOXY to manure and digestate solids, however, the formation of non-extractable residues has to be taken into account as the predominant concentration determining process. This was indicated by the sequential extraction procedure applied. Hence, these results confirmed that a full removal capacity for doxycycline cannot be reached through the long-term storage of farm fertilizers.

  10. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    PubMed

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH4) and carbon dioxide (CO2), but also includes other minor gases, such as hydrogen sulfide (H2S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H2S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H2S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H2S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H2S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H2S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H2S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs (Desulfovibrionaceae

  11. Testing low cost anaerobic digestion (AD) systems

    USDA-ARS?s Scientific Manuscript database

    To evaluate the potential for low technology and low cost digesters for small dairies, BARC and researchers from the University of Maryland installed six modified Taiwanese-model field-scale (FS) digesters near the original dairy manure digester. The FS units receive the same post-separated liquid ...

  12. Mono-fermentation of chicken manure: ammonia inhibition and recirculation of the digestate.

    PubMed

    Nie, Hong; Jacobi, H Fabian; Strach, Katrin; Xu, Chunming; Zhou, Hongjun; Liebetrau, Jan

    2015-02-01

    The effects of ammonia concentration on the performance and stability of mono-fermentation of chicken manure were investigated in a lab-scale continuous stirred tank reactor at 40 °C. Technical stripping was performed to remove ammonia from the liquid fraction of digestate, and the entire product was recycled to the fermenter to control ammonia concentration in the fermenter. Organic loading rate (OLR) of 5.3 gVS/(L d) was achieved with an average free ammonia nitrogen (FAN) concentration of 0.77 g/L and a specific gas yield of 0.39 L/gVS. When OLR was increased to 6.0 gVS/(L d), stable operation could be obtained with an average FAN concentration of 0.86 g/L and a specific gas yield of 0.27 L/gVS. Mono-fermentation of chicken manure was successfully carried out at high ammonia concentrations. Controlled recirculation of treated liquid fraction of digestate could be a solution in large-scale application for both: to avoid ammonia inhibition and minimize digestate.

  13. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    SciTech Connect

    Maranon, E.; Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y.; Gomez, L.; Garcia, M.M.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  14. Application of Bio-digestion for Capsule Gelatin-- From the Pharmaceutical Wastes to the Manure

    NASA Astrophysics Data System (ADS)

    Pan, C.; Huang, S.; Chang, Y.; Wen, J.

    2013-12-01

    The purpose of this study was to bio-digest the capsule gelatin from the waste of pharmaceutical processes such as cutting and stamping for capsule shells producing. We screened soil bacterial flora for capsule gelatin biolysis, and found the most competent one named Yuntech-7. A 15% (w/w) of capsule gelatin could fully digested by Yuntech-7 for 3 days growth with an N-limited medium in a 37°C incubator. In order to recycle and reuse the gelatin waste, the different percentages of capsule gelatin were co-composted with the vegetable residues to produce manure in an anaerobic fermentation by an extra Yuntech-7 inoculation. After 14 days incubation, we collected the filtrate to examine the contents of N, P, and K. The data shows that the P and K keep the same value by roughly between the blank and the control sets, but the total N values were approximately a 5-fold increase in 20% and a 10-fold increase in 40% of capsule gelatin integrated. We suggested that the capsule gelatin was majorly decomposed by Yuntech-7, because the total N value was no observable change in the capsule gelatin and vegetable residues co-compost with a Yuntech-7-free condition. We also performed some field tests using the capsule gelatin generated liquid manure, and the preliminary test shows the plants got great benefits on culture size and in environmental resistance. In conclusion, the process in bio-digestion of waste capsule gelatin by soil bacteria, Yuntech-7, was produced a valuable manure not only aliment the plants but also complement the soil bacterial populations.

  15. Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production.

    PubMed

    Li, Yangyang; Li, Yu; Zhang, Difang; Li, Guoxue; Lu, Jiaxin; Li, Shuyan

    2016-10-01

    Solid-state anaerobic co-digestion of tomato residues with dairy manure and corn stover was conducted at 20% total solids under 35°C for 45days. Results showed digestion of mixed tomato residues with dairy manure and corn stover improved methane yields. The highest VS reduction (46.2%) and methane yield (415.4L/kg VSfeed) were achieved with the ternary mixtures of 33% corn stover, 54% dairy manure, and 13% tomato residues, lead to a 0.5-10.2-fold higher than that of individual feedstocks. Inhibition of volatile fatty acids (VFAs) to biogas production occurred when more than 40% tomato residues were added. The results indicated that ternary mixtures diluted the inhibitors that would otherwise cause inhibition in the digestion of tomato residues as a mono-feedstock.

  16. Anaerobic co-digestion of kitchen waste and pig manure with different mixing ratios.

    PubMed

    Tian, Hailin; Duan, Na; Lin, Cong; Li, Xue; Zhong, Mingzhu

    2015-07-01

    Anaerobic co-digestion of kitchen waste (KW) and pig manure (PM) with seven different PM to KW total solids (TS) ratios of 1:0, 5:1, 3:1, 1:1, 1:3, 1:5 and 0:1 was conducted at mesophilic temperature (35 ± 1 °C) to investigate the feasibility and process performance. The co-digestion of PM and KW was found to be an available way to enhance methane production compared with solo-digestion of PM or KW. The ratio of PM to KW of 1:1 got the highest biodegradability (BDA) of 85.03% and a methane yield of 409.5 mL/gVS. For the co-digestion of KW and PM, there was no obvious inhibition of ammonia nitrogen because it was in an acceptable range from 1380 mg/L to 2020 mg/L in the whole process. However, severe methane inhibition and long lag phase due to the accumulation of volatile fatty acids (VFAs) was observed while the KW content was over 50%, and in the lag phase, propionic acid and butyric acid made up the major constituents of the total VFAs. The technical digestion time (T80: the time it takes to produce 80% of the digester's maximum gas production) of the above 7 ratios was 15, 21, 22, 27, 49, 62 and 61 days, respectively. In this study, a mixing ratio of 1:1 for PM and KW was found to maximize BDA and methane yield, provided a short digestion time and stable digestion performance and was therefore recommended for further study and engineering application.

  17. Animal manure digestion systems in central Europe

    SciTech Connect

    Koeberle, E.

    1996-01-01

    This work provides an overview of existing plants in Europe and describes the substrates being used. It focuses on the individual farm-scale and community plants, as these are the two main types now being built. It also describes plants currently under construction, especially in Germany and Denmark, where the major efforts are focused. A description of how the technique has developed over the past few years, its current state of development, the motivation and economic balance, and the substrate characteristics, is presented.

  18. Enhanced biogas production using cow manure to stabilize co-digestion of whey and primary sludge.

    PubMed

    Shilton, A; Powell, N; Broughton, A; Pratt, C; Pratt, S; Pepper, C

    2013-01-01

    Increasing biogas production from municipal anaerobic digesters via additional loading with industrial/agricultural wastes offers a low-cost, sustainable energy generation option of significant untapped potential. In this work, bench-top reactors were used to mimic a full-scale primary sludge digester operating at an organic loading rate (OLR) of 2.4 kg COD/m3 d and a 20 d hydraulic retention time (HRT). Co-digestion of whey with primary sludge was sustained at a loading rate of 3.2 kg COD/m3 d (17 d HRT) and boosted gas production to 151% compared to primary sludge digestion alone. Addition of chemical alkalinity enabled co-digestion of whey with primary sludge to be maintained at an elevated OLR of 6.4 kg COD/m3 d (11 d HRT) with gas production increased to 208%. However, when the chemical addition was simply replaced by cow manure, stable operation was maintained at OLRs of 5.2-6.9 kg COD/m3 d (11-14 d HRT) with gas production boosted up to 268%.

  19. Optimization of methane production by combining organic waste and cow manure as feedstock in anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Theresia, Martha; Priadi, Cindy Rianti

    2017-03-01

    The anaerobic digestion (AD) process from organic waste is often unstable due to the high concentration of Volatile Fatty Acids (VFAs). The purpose of this research was to determine/evaluate the production of methane using biochemical methane potential (BMP) test with two substrate combinations, consisted of organic waste and cow manure as buffer. BMP test conducted for 35 days at a temperature of ± 35°C by measuring the volume and concentration of biogas every week and testing the sample characteristics before and after the test. The result of the sample variation showed there was no significantly difference of methane volume in the 5th week except the variation of organic waste/cow manure: 12/1 to 3/1, but the sample with a ratio of 3/1 yielded the highest methane potential of 0,58 ± 0.015 (n = 3) LCH4/gr Volatile Solid. The addition of cow manure stabilized the condition of all variations during BMP test with VFAs/alkalinity <0.3 although Carbon/Nitogen ratio of each variation is <20.

  20. Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance.

    PubMed

    Böske, Janina; Wirth, Benjamin; Garlipp, Felix; Mumme, Jan; Van den Weghe, Herman

    2015-01-01

    Energetic use of complex lignocellulosic wastes has gained global interest. Thermophilic digestion of horse manure based on straw was investigated using the upflow anaerobic solid-state (UASS) process. Increasing the organic loading rate from 2.5 to 5.5gvsL(-)(1)d(-)(1) enhanced the average methane production rate from 0.387 to 0.687LCH4L(-)(1)d(-)(1), whereas the yield decreased from 154.8 to 124.8LCH4kgvs(-)(1). A single-stage and two-stage process design showed almost the same performance. Compared to prior experiments at mesophilic conditions, thermophilic conditions showed a significantly higher efficiency with an increase of 59.8% in methane yield and 58.1% in methane production rate. Additional biochemical methane potential (BMP) tests with two types of horse manure and four different bedding materials showed that wheat straw obtained the highest BMP. The results show that the thermophilic UASS process can be the key to an efficient energy recovery from straw-based manures.

  1. Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition.

    PubMed

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Yang, Gaihe; Wang, Xiaojiao; Feng, Yongzhong; Ren, Guangxin

    2014-08-01

    Anaerobic digestion (AD) with livestock manure is a promising way for biogas production. This work presents the influence of photo-dark fermentation on biogas production of pig manure (PM) and dairy manure (DM). All sets were conducted with temperature 35 ± 2 °C and total solid concentrations 8%: PM₁ and DM₁ in transparent reactor under sunlight for photo-dark fermentation, and PM₂ and DM₂ in non-transparent reactor for dark fermentation. DM₂ had the best cumulative biogas production (CBP) of 15,447.5 mL, followed by PM₁ (15,020 mL) with stable pH and low total ammonium nitrogen (TAN) concentration (1384.99 mg/L), and DM₁ and PM₂. The CBP of DM₂ was 5.77 times as much as PM₂. The relationship between CBP and four factors including volatile fatty acid (VFA), TAN, total alkalinity and pH was analyzed. pH gained the maximum determination coefficient with the CBP among all sets and total alkalinity showed negative correlation with CBP of PM₁ and DM₁.

  2. Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature.

    PubMed

    Babaee, Azadeh; Shayegan, Jalal; Roshani, Anis

    2013-07-03

    In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volume of 70 L was used. The digestion operated at 25°C, 30°C and 35°C with organic loading rates of 1.0, 2.0, 2.5, 3.0, 3.5 and 4.0 kg Volatile solid/m3d and a HRT of 15 days. At a temperature of 35°C, the methane yield was increased by 43% compared to 25°C. Anaerobic co-digestion appeared feasible with a loading rate of 3.0 kg VS/m3d at 35°C. At this state, the specific methane yield was calculated about 0.12 m3/kg VS with a methane content of 53-70.2% in the biogas. The volatile solid (VS) removal was 72%. As a result of volatile fatty acid accumulation and decrease in pH, when the loading rate was less than 1 or greater than 4 kg VS/m3d, the process was inhibited or overloaded, respectively. Both the lower and higher loading rates resulted in a decline in the methane yield.

  3. Aquaporins in Digestive System.

    PubMed

    Zhu, Shuai; Ran, Jianhua; Yang, Baoxue; Mei, Zhechuan

    2017-01-01

    In this chapter, we mainly discuss the expression and function of aquaporins (AQPs ) expressed in digestive system . AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5 and AQP8, and a member of aquaglyceroporin subfamily: AQP3. In the digestive glands, especially the liver, we discuss three members of aquaporin subfamily: AQP1, AQP5 and AQP8, a member of aquaglyceroporin subfamily: AQP9. AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP9 plays considerable role in glycerol metabolism , urea transport and hepatocellular carcinoma. Further investigation is necessary for specific locations and functions of AQPs in digestive system.

  4. Mesophilic anaerobic co-digestion of aloe peel waste with dairy manure in the batch digester: Focusing on mixing ratios and digestate stability.

    PubMed

    Huang, Xinlei; Yun, Sining; Zhu, Jiang; Du, Tingting; Zhang, Chen; Li, Xue

    2016-10-01

    Anaerobic co-digestion of aloe peel waste (APW) with dairy manure (DM) was evaluated in terms of biogas and methane yield, volatile solids (VS) removal rate, and the stability of digestate. Batch experiments were performed under mesophilic condition (36±1°C) at five different APW/DM wet weight ratios (1:0, 3:1, 1:1, 1:3, and 0:1). Experimental methane yield from the mixtures was higher than the yield from APW or DM alone, indicating the synergistic effect and benefits of co-digestion of APW with DM. The optimal mixing ratio of APW/DM was found to be 3:1. The cumulative methane yield was 195.1mL/g VS and the VS removal rate was 59.91%. The characteristics of the digestate were investigated by the thermal analysis which indicated the high stability in the samples of the co-digestion. The co-digestion can be an efficient way to improve the degradation efficiency of the bio-wastes and increase the energy output.

  5. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    PubMed

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2017-06-01

    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH4 kgVSfed(-1) for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Temperature response of methane production in liquid manures and co-digestates.

    PubMed

    Elsgaard, Lars; Olsen, Anne B; Petersen, Søren O

    2016-01-01

    Intensification of livestock production makes correct estimation of methanogenesis in liquid manure increasingly important for inventories of CH4 emissions. Such inventories currently rely on fixed methane conversion factors as knowledge gaps remain with respect to detailed temperature responses of CH4 emissions from liquid manure. Here, we describe the temperature response of CH4 production in liquid cattle slurry, pig slurry, and fresh and stored co-digested slurry from a thermophilic biogas plant. Subsamples of slurry were anoxically incubated at 20 temperatures from 5-52°C in a temperature gradient incubator and CH4 production was measured by gas chromatographic analysis of headspace gas after a 17-h incubation period. Methane production potentials at 5-37°C were described by the Arrhenius equation (modelling efficiencies, 79.2-98.1%), and the four materials showed a consistent activation energy (Ea) which averaged 81.0kJmol(-1) (95% confidence interval, 74.9-87.1kJmol(-1)) corresponding to a temperature sensitivity (Q10) of 3.4. In contrast, the frequency factor (A) differed among the slurry materials (30.1manure affect this parameter. The Ea estimate, based on individual slurry materials, was intermediate when compared to published values of 63 and 112.7kJmol(-1) derived from composite data, but was similar to Ea estimated for CH4 production at microbial community level across aquatic ecosystems, wetlands and rice paddies (89.3kJmol(-1)). This supports that the derived temperature sensitivity parameters may be applicable to dynamic modelling of CH4 emissions from livestock manure.

  7. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology

    PubMed Central

    Moset, Veronica; Poulsen, Morten; Wahid, Radziah; Højberg, Ole; Møller, Henrik Bjarne

    2015-01-01

    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m3 and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH4) yield, as well as better percentage of ultimate CH4 yield retrieved and lower residual CH4 emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability. PMID:25737010

  8. Influence of total solids concentration on the anaerobic co-digestion of sugar beet by-products and livestock manures.

    PubMed

    Aboudi, K; Álvarez-Gallego, C J; Romero-García, L I

    2017-05-15

    A series of batch anaerobic digestion assays were implemented to determine the influence of total solids concentration on the anaerobic digestion of sugar beet by-products and their co-digestion with two kind of livestock manures (pig and cow manures). The two total solid concentrations studied were 8% and 5%. Total solids contents above 8% were not evaluated because of the inappropriate rheological behaviour of sugar beet by-products at these concentrations. The best total solid content tested corresponded to 8%, achieving specific methane yields of 464.3 and 451.4mL/g VSadded for co-digestion with pig manure and cow manure respectively. These data were 1.5 times higher than that obtained for reactors operating with 5% total solids content. For individual digestion of sugar beet by-products, final methane yields operating at 8% were also higher than those measured at 5% total solids concentration. However, in these tests, a large delay in the start of biogas production was registered due to the inhibition caused by the accumulation of volatile fatty acids. No significant differences in the organic matter removal efficiencies were observed for the two total solids contents studied.

  9. Anaerobic digestion of poultry manure: A bench-scale evaluation of methane yield and process monitoring

    SciTech Connect

    Ripley, L.E.

    1988-01-01

    Poultry manure from a commercial farm (caged layers) was fed to three 5-liter, intermittently-mixed, mesophilic anaerobic digesters on a daily basis. Large batches of manure were frozen, then thawed and diluted as needed to give a consistent composition through each phase of the study. Volatile solids (VS) destruction, methane yield (Yma), alkalinity, and other parameters were evaluated at fifteen operating configurations, with feed concentrations of 4.0, 5.5, and 7.0% VS and hydraulic retention times (HRTs) ranging from 10 to 50 days. Effluent was partially decanted in two configurations to increase the solids retention time over the HRT by about 50%, and one configuration was a replicate to estimate experimental error. Digestion was successful at loading rates as high as 5.6 g VS per liter-day, although acclimation times as long as 5-7 HRTs were needed at start-up and between step-changes. The main problem at high loading rates was foam formation, which was controlled by chemical addition and increased mixing frequency. Grit and feathers were not serious problems at bench scale. VS destruction averaged 51.4% and was largely unaffected by HRT or feed concentration. Yma averaged 241 mls methane/g VS added, with low values in the 4.0% VS, 10-20 day HRT range. Yma also dropped 6% as the feed rose from 5.5% to 7.0 %. Batch (200 ml) bioassays indicated that the acetoclastic methanogens were not inhibited by volatile acids up to 5 g/l as HAc. Decant operation improved VS destruction slightly but had little effect on Yma. A double-endpoint alkalimetric technique was developed to rapidly and easily monitor digester performance.

  10. Comparison of two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion with one-stage thermophilic (55 degrees C) digestion of cattle manure.

    PubMed

    Nielsen, H B; Mladenovska, Z; Westermann, P; Ahring, B K

    2004-05-05

    A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species.

  11. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure.

    PubMed

    Resende, Juliana Alves; Silva, Vânia Lúcia; de Oliveira, Tamara Lopes Rocha; de Oliveira Fortunato, Samuel; da Costa Carneiro, Jailton; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2014-02-01

    Anaerobic digestion figures as a sustainable alternative to avoid discharge of cattle manure in the environment, which results in biogas and biofertilizer. Persistence of potentially pathogenic and drug-resistant bacteria during anaerobic digestion of cattle manure was evaluated. Selective cultures were performed for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC). Antimicrobial susceptibility patterns were determined and a decay of all bacterial groups was observed after 60days. Multidrug-resistant bacteria were detected both the influent and effluent. GPC, the most prevalent group was highly resistant against penicillin and levofloxacin, whereas resistance to ampicillin, ampicillin-sulbactam and chloramphenicol was frequently observed in the ENT and NFR groups. The data point out the need of discussions to better address management of biodigesters and the implementation of sanitary and microbiological safe treatments of animal manures to avoid consequences to human, animal and environmental health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge.

    PubMed

    Quiroga, G; Castrillón, L; Fernández-Nava, Y; Marañón, E; Negral, L; Rodríguez-Iglesias, J; Ormaechea, P

    2014-02-01

    This paper presents a study of the effect of applying ultrasound pre-treatment in the production of methane when co-digesting mixtures of cattle manure with food waste and sludge. A series of experiments were carried out under mesophilic and thermophilic conditions in continuously stirred-tank reactors containing 70% cattle manure, 20% food waste and 10% sewage sludge. Ultrasound pre-treatment allows operating at lower HRT, achieving higher volumetric methane yields: 0.85 L CH4/L day at 36°C and 0.82 CH4/L day at 55°C, when cattle manure and sewage sludge were sonicated. With respect to the non-sonicated waste, these values represent increases of up to 31% and 67% for mesophilic and thermophilic digestion, respectively.

  13. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application

    USDA-ARS?s Scientific Manuscript database

    Manure management at dairy production facilities, including anaerobic digestion (AD) and solid-liquid separation (SLS), has a strong potential for the abatement of greenhouse gas (GHG) and ammonia (NH3) emissions. This study evaluated the effects of AD, SLS, and AD+SLS on GHG and NH3 emissions durin...

  14. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.

    PubMed

    Wang, Liang; Li, Yecong; Chen, Paul; Min, Min; Chen, Yifeng; Zhu, Jun; Ruan, Roger R

    2010-04-01

    The present study was to investigate the effectiveness of using digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Different dilution multiples of 10, 15, 20, and 25 were applied to the digested manure and algal growth was compared in regard to growth rate, nutrient removal efficiency, and final algal fatty acids content and composition. Slower growth rates were observed with less diluted manure samples with higher turbidities in the initial cultivation days. A reverse linear relationship (R(2) = 0.982) was found between the average specific growth rate of the beginning 7 days and the initial turbidities. Algae removed ammonia, total nitrogen, total phosphorus, and COD by 100%, 75.7-82.5%, 62.5-74.7%, and 27.4-38.4%, respectively, in differently diluted dairy manure. COD in digested dairy manure, beside CO(2), proved to be another carbon source for mixotrophic Chlorella. Fatty acid profiles derived from triacylglyceride (TAG), phospholipid and free fatty acids showed that octadecadienoic acid (C18:2) and hexadecanoic acid (C16:0) were the two most abundant fatty acids in the algae. The total fatty acid content of the dry weight increased from 9.00% to 13.7% along with the increasing dilution multiples. Based on the results from this study, a process combining anaerobic digestion and algae cultivation can be proposed as an effective way to convert high strength dairy manure into profitable byproducts as well as to reduce contaminations to environment.

  15. Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters

    USDA-ARS?s Scientific Manuscript database

    Farmers are increasingly using forage radish as a winter cover crop to achieve multiple soil and environmental benefits. In this study, pilot-scale mixed digesters were used to quantify methane (CH4) and hydrogen sulfide (H2S) production when using forage radish, a sulfur-rich cover crop, as a co-d...

  16. Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues

    PubMed Central

    Zhang, Tong; Liu, Linlin; Song, Zilin; Ren, Guangxin; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2013-01-01

    Goat manure (GM) is an excellent raw material for anaerobic digestion because of its high total nitrogen content and fermentation stability. Several comparative assays were conducted on the anaerobic co-digestion of GM with three crop residues (CRs), namely, wheat straw (WS), corn stalks (CS) and rice straw (RS), under different mixing ratios. All digesters were implemented simultaneously under mesophilic temperature at 35±1 °C with a total solid concentration of 8%. Result showed that the combination of GM with CS or RS significantly improved biogas production at all carbon-to-nitrogen (C/N) ratios. GM/CS (30:70), GM/CS (70:30), GM/RS (30:70) and GM/RS (50:50) produced the highest biogas yields from different co-substrates (14840, 16023, 15608 and 15698 mL, respectively) after 55 d of fermentation. Biogas yields of GM/WS 30:70 (C/N 35.61), GM/CS 70:30 (C/N 21.19) and GM/RS 50:50 (C/N 26.23) were 1.62, 2.11 and 1.83 times higher than that of CRs, respectively. These values were determined to be the optimal C/N ratios for co-digestion. However, compared with treatments of GM/CS and GM/RS treatments, biogas generated from GM/WS was only slightly higher than the single digestion of GM or WS. This result was caused by the high total carbon content (35.83%) and lignin content (24.34%) in WS, which inhibited biodegradation. PMID:23825574

  17. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.

    PubMed

    Abouelenien, Fatma; Namba, Yuzaburo; Kosseva, Maria R; Nishio, Naomichi; Nakashimada, Yutaka

    2014-05-01

    The potential for methane production from semi-solid chicken manure (CM) and mixture of agricultural wastes (AWS) in a co-digestion process has been experimentally evaluated at thermophilic and mesophilic temperatures. To the best of author(')s knowledge, it is the first time that CM is co-digested with mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Two types of anaerobic digestion processes (AD process) were used, process 1 (P1) using fresh CM (FCM) and process 2 (P2) using treated CM (TCM), ammonia stripped CM, were conducted. Methane production in P1 was increased by 93% and 50% compared to control (no AWS added) with maximum methane production of 502 and 506 mL g(-1)VS obtained at 55°C and 35°C, respectively. Additionally, 42% increase in methane production was observed with maximum volume of 695 mL g(-1)VS comparing P2 test with P2 control under 55°C. Ammonia accumulation was reduced by 39% and 32% in P1 and P2 tests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process.

    PubMed

    Limoli, Alice; Langone, Michela; Andreottola, Gianni

    2016-07-01

    In this study, ammonia stripping by means of a turbulent mixing process followed by pH neutralization was investigated as a simple and cost-effective ammonia removal technique to treat raw manure digestate. Batch tests conducted using CaO, NaOH and H2O2 to control pH and temperature and combinations thereof showed that sodium hydroxide was the most suitable chemical, as it is easy to handle, minimizes treatment time and costs, does not increase the solid content of the sludge and allows to easily control the stripping process. NaOH dosage mainly depended on buffering capacity rather than on total solid content. The analysis of the ammonia stripping process indicated that ammonia removal was strongly dependent on pH, and ammonia removal rate followed the pseudo-first-order kinetics. Total solid content slightly influenced TAN removal efficiency. When NaOH was applied to treat raw digestate at pH 10 and mean temperature of 23 ± 2 °C, TAN removal efficiency reached 88.7% after 24 h of turbulent mixing stripping, without reaching inhibitory salinity levels. Moreover, pH neutralization with sulfuric acid following the stripping process improved raw digestate dewaterability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Struvite Crystallization of Anaerobic Digestive Fluid of Swine Manure Containing Highly Concentrated Nitrogen

    PubMed Central

    Lee, Eun Young; Oh, Min Hwan; Yang, Seung-Hak; Yoon, Tae Han

    2015-01-01

    In this study, the optimal operation factors for struvite crystallization for removing and recovering nitrogen and phosphorus from anaerobic digestive fluid of swine manure containing highly concentrated nitrogen was determined. Every experiment for the struvite crystallization reaction was conducted by placing 1,000 mL of digestion fluid in a 2,000 mL Erlenmeyer flask at various temperatures, pH, and mixing speed. Except for special circumstances, the digestion fluid was centrifuged (10,000 rpm, 10 min) and then the supernatant was used for the experiment at room temperature and 100 rpm. The optimal mole ratio of PO43−:Mg2+ was 1:1.5, and the pH effect ranging from 9 to 11 was similar, when mixed for 1 hour. Under this condition, the removal efficiency of NH4+-N and PO43−-P was 40% and 88.6%, respectively. X-shaped crystal was observed by light and scanning electron microscopy. In addition, struvite crystal structure was confirmed through X-ray diffraction analysis. PMID:26104412

  20. Struvite Crystallization of Anaerobic Digestive Fluid of Swine Manure Containing Highly Concentrated Nitrogen.

    PubMed

    Lee, Eun Young; Oh, Min Hwan; Yang, Seung-Hak; Yoon, Tae Han

    2015-07-01

    In this study, the optimal operation factors for struvite crystallization for removing and recovering nitrogen and phosphorus from anaerobic digestive fluid of swine manure containing highly concentrated nitrogen was determined. Every experiment for the struvite crystallization reaction was conducted by placing 1,000 mL of digestion fluid in a 2,000 mL Erlenmeyer flask at various temperatures, pH, and mixing speed. Except for special circumstances, the digestion fluid was centrifuged (10,000 rpm, 10 min) and then the supernatant was used for the experiment at room temperature and 100 rpm. The optimal mole ratio of PO4 (3-):Mg(2+) was 1:1.5, and the pH effect ranging from 9 to 11 was similar, when mixed for 1 hour. Under this condition, the removal efficiency of NH4 (+)-N and PO4 (3-)-P was 40% and 88.6%, respectively. X-shaped crystal was observed by light and scanning electron microscopy. In addition, struvite crystal structure was confirmed through X-ray diffraction analysis.

  1. Problems of the Digestive System

    MedlinePlus

    ... ASKED QUESTIONS FAQ120 WOMEN’S HEALTH Problems of the Digestive System • What are some common digestive problems? • What is ... of hormones during pregnancy can slow down the digestive system. How can constipation be treated? If constipation continues, ...

  2. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion.

    PubMed

    Sun, Chen; Cao, Weixing; Banks, Charles J; Heaven, Sonia; Liu, Ronghou

    2016-10-01

    The feasibility of co-digestion of chicken manure (CM) and maize silage (MS) without water dilution was investigated in 5-L digesters. Specific methane production (SMP) of 0.309LCH4g(-1) volatile solids (VS) was achieved but only at lower %CM. Above a critical threshold for total ammonia nitrogen (TAN), estimated at 7gNL(-1), VFA accumulated with a characteristic increase in acetic acid followed by its reduction and an increase in propionic acid. During this transition the predominant methanogenic pathway was hydrogenotrophic. Methanogenesis was completely inhibited at TAN of 9gNL(-1). The low digestibility of the mixed feedstock led to a rise in digestate TS and a reduction in SMP over the 297-day experimental period. Methanogenesis appeared to be failing in one digester but was recovered by reducing the %CM. Co-digestion was feasible with CM ⩽20% of feedstock VS, and the main limiting factor was ammonia inhibition.

  3. Tylosin and chlortetracycline effects during swine manure digestion: influence of sodium azide.

    PubMed

    Stone, James J; Clay, Sharon A; Spellman, Garth M

    2010-12-01

    The antibiotics tylosin and chlortetracycline (CTC), which are commonly used in pig production, were studied to determine their effects on swine manure digestion in the presence and absence of biocide sodium azide. CTC enhanced initial hydrolysis reactions through volatile suspended solids production, while inhibiting methane and carbon dioxide production. Tylosin did not affect methane and carbon dioxide production; however, the relative abundance of both hydrogen utilizing and acetate-only utilizing microbial populations was significantly compromised. Sodium azide in the absence of antibiotics enhanced metabolic output and initial biomass production, and this observation suggests that populations of Methanobacteriales and Methanosaetaceae spp. appeared to contain sufficient periplasmic bound reductase to effectively utilize acetate and hydrogen in the presence of sodium azide. However, the combination of sodium azide and either CTC or tylosin was a very effective metabolic inhibitor, inhibiting methane and carbon dioxide production and VSS consumption compared to their no-azide counterpart. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing--an overview.

    PubMed

    Magrí, Albert; Béline, Fabrice; Dabert, Patrick

    2013-12-15

    Completely autotrophic nitrogen removal (ANR) is based on the combination of partial nitritation (PN) and anaerobic ammonium oxidation (anammox). It is a promising alternative for the subsequent treatment of biogas digester supernatants in livestock manure processing and nitrogen surplus scenarios. However, as no full-scale experiences in the treatment of manure digestates by ANR have been published to date, future field studies addressing treatment of this kind of effluent would be of great interest. Some topics to be considered in these studies would be coupling anaerobic digestion and ANR, analysis of the factors that affect the process, comparing reactor configurations, microbial ecology, gas emissions, and achieving robust performance. This paper provides an overview of published studies on ANR. Specific issues related to the applicability of the process for treating manure digestates are discussed. The energy requirements of ANR are compared with those of other technological alternatives aimed at recovering nitrogen from digester supernatants. The results of the assessment were shown to depend on the composition of the supernatant. In this regard, the PN-anammox process was shown to be more competitive than other alternatives particularly at concentrations of up to 2 kg NH4(+)-N m(-3).

  5. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.

    PubMed

    Huang, Weiwei; Huang, Wenli; Yuan, Tian; Zhao, Ziwen; Cai, Wei; Zhang, Zhenya; Lei, Zhongfang; Feng, Chuanping

    2016-03-01

    The sustainability of an agricultural system depends highly upon the recycling of all useful substances from agricultural wastes. This study explored the feasibility of comprehensive utilization of C, N and P resources in swine manure (SM) through short-term dry anaerobic digestion (AD) followed by dry ammonia stripping, aiming at achieving (1) effective total volatile fatty acids (VFAs) production and separation; (2) ammonia recovery from the digestate; and (3) preservation of high P bioavailability in the solid residue for further applications. Specifically, two ammonia stripping strategies were applied and compared in this work: (I) ammonia stripping was directly performed with the digestate from dry AD of SM (i.e. dry ammonia stripping); and (II) wet ammonia stripping was conducted by using the resultant filtrate from solid-liquid separation of the mixture of digestate and added water. Results showed that dry AD of the tested SM at 55 °C, 20% TS and unadjusted initial pH (8.6) for 8 days produced relatively high concentrations of total VFAs (94.4 mg-COD/g-VS) and ammonia-N (20.0 mg/g-VS) with high potentially bioavailable P (10.6 mg/g-TS) remained in the digestate, which was considered optimal in this study. In addition, high ammonia removal efficiencies of 96.2% and 99.7% were achieved through 3 h' dry and wet stripping (at 55 °C and initial pH 11.0), respectively, while the total VFAs concentration in the digestate/filtrate remained favorably unchanged. All experimental data from the two stripping processes well fitted to the pseudo first-order kinetic model (R(2) = 0.9916-0.9997) with comparable theoretical maximum ammonia removal efficiencies (Aeq, >90%) being obtained under the tested dry and wet stripping conditions, implying that the former was more advantageous due to its much higher volumetric total ammonia-N removal rate thus much smaller reactor volume, less energy/chemicals consumption and no foaming problems. After 8 days' dry AD and 3

  6. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure

    PubMed Central

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: NH4+-N (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters. PMID:26648921

  7. Effects of Aging on the Digestive System

    MedlinePlus

    ... here for the Professional Version Home Digestive Disorders Biology of the Digestive System Effects of Aging on ... Version. DOCTORS: Click here for the Professional Version Biology of the Digestive System Overview of the Digestive ...

  8. Comparison based on environmental effects of nitrogen management techniques in a manure digestate case study.

    PubMed

    Paccanelli, Nicola; Teli, Aronne; Scaglione, Davide; Insabato, Gabriele; Casula, Alessandro

    2015-01-01

    Due to climate issues and favourable energy market, biogas is spreading as a manure management technique. Digestate is rich in nutrient and has to be handled in order to respect the 'nitrate directive' that limits nitrogen field application in areas defined as vulnerable. In this study, we compared different nitrogen management scenarios: a non-treatment option, a biological short-cut nitrification, a complete autotrophic process (anammox) and ammonia stripping from membrane filtration concentrate. The environmental effect comparison was obtained with 'Cross media effects analysis' and life cycle assessment (LCA). The results were different in some aspects, especially the impacts on eutrophication. According to cross media, the best process is DENO 2, while LCA shows similar impacts for all techniques and the best solution would be the no-treatment option. The main reason to adopt a digestate treatment technique is the lack of area for a correct disposal. If LCA eutrophication results are multiplied with the hectares necessary for each technology, a result similar to that of cross media is obtained.

  9. Continuous mesophilic anaerobic digestion of manure and rape oilcake - Experimental and modelling study.

    PubMed

    Jabłoński, Sławomir J; Biernacki, Piotr; Steinigeweg, Sven; Łukaszewicz, Marcin

    2015-01-01

    Rape oilcake is a by-product formed after the removal of oil from rapeseed. Due to the high content of organic matter rape oilcake seems a good substrate for anaerobic digestion when it cannot be used as fodder. The aim of this work was to optimise the parameters used in a mathematical model of anaerobic digestion for rapeseed oilcake and cattle manure. The composition of these substrates was determined in order to estimate model inputs. Optimised kinetic constants of hydrolysis and decomposition for oilcake (Kdis=0.77, KhydCH=0.55, khydPr=0.57, khydLi=0.30) were estimated based on batch fermentation. The accuracy of the model with improved input parameters was confirmed by continuous fermentation. The average concentration of methane in biogas was about 50%. The biogas production efficiency from organic matter (defined as volatile solids) was 0.42m(3)kg(-1) with an organic substrate loading rate equal to 3.18 kgm(-3)d(-1). The fermentation process demonstrated good stability and efficiency. The accuracy of the optimised model seems sufficient for use in modelling of a full scale process.

  10. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation.

    PubMed

    Passos, Fabiana; Ortega, Valentina; Donoso-Bravo, Andrés

    2017-03-01

    The aim of this study was to assess technically and economically the application thermochemical pretreatment in the anaerobic digestion of dairy cow manure. After selecting the optimum substrate to inoculum (S/I) ratio in a preliminary BMP test, the following tests compared 20 different pretreatment conditions varying temperature (100 and 37°C), exposure time (5 and 30min and 12 and 24h) and chemical doses (0.5, 2, 6 and 10% of HCl or NaOH). The highest value of maximum production rate was achieved at an S/I ratio of 0.25gVSsgVSi(-1). The major improvements of the methane potential were 23.6% with 10% of NaOH at 100°C for 5min and 20.6% with 2% of HCl at 37°C. The technical-economic analysis showed that the implementation of neither thermal alkali nor thermal-acid pretreatment would be feasible and the conventional one-step anaerobic digestion outperforms both alternatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Anaerobic co-digestion of cattle manure and alternative crops for the substitution of maize in South Europe.

    PubMed

    Kalamaras, S D; Kotsopoulos, T A

    2014-11-01

    In this study alternative agricultural substrates are investigated as potential substitutes of maize for biogas production in the region of South Europe. Crop silages of cardoon, maize, milk thistle and sorghum as well as bedding straw from cattle farm were examined in the anaerobic co-digestion procedure with cattle manure. Milk thistle crop was further investigated in a naturally sun dried form and the effect of mechanical, thermal and thermo-chemical pretreatments on fiber composition and methane yield was evaluated. Pretreatment with NaOH increase the solubilization by 77.7%. The co-digestion experiment was carried out in 28 batch reactors at 37°C. The highest methane yields of 308, 271 and 267LCH4kg(-1) of volatile solids were obtained by co-digestion of cattle manure with cardoon silage, thermo-chemical pretreated milk thistle stalks with NaOH and maize silage, respectively. Furthermore, co-digestion of bedding straw and cattle manure had similar methane yield with maize silage.

  12. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion.

    PubMed

    Wang, Rui; Chen, Meixue; Feng, Feng; Zhang, Junya; Sui, Qianwen; Tong, Juan; Wei, Yuansong; Wei, Dongbin

    2017-08-01

    As antibiotic and heavy metals are over used in the livestock industry, animal manure is a reservoir of antibiotic resistance genes (ARGs). Anaerobic digestion has been reported to have the potential to reduce ARGs. However, few studies investigated whether reduction of ARGs would be affected by different external pressures including antibiotics and heavy metals during anaerobic digestion. The purpose of this study was thus to investigate effects of both chlortetracycline (CTC) and Cu on reduction of ARGs, heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) during the swine manure anaerobic digestion. The results showed that the predominant ARGs (tetO, tetW, tetX, tetL) could be effectively reduced (approximately 1.00 log copies/g TS) through mesophilic anaerobic digestion. Microbial community evolution was the main driver. It was interesting that Treponema might indicate the termination of anaerobic digestion and compete with ARGs host bacteria. Addition of CTC, Cu and CTC+Cu affected microbial community change and hindered removal of ARGs, especially, CTC+Cu seriously affected Treponema and ARGs during anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation.

    PubMed

    Li, Ruirui; Duan, Na; Zhang, Yuanhui; Liu, Zhidan; Li, Baoming; Zhang, Dongming; Dong, Taili

    2017-10-01

    Anaerobic digestion (AD) is a promising alternative for livestock manure management. This paper presents the experimental results obtained through a batch experiment by using chicken manure (CM) and microalgae Chlorella sp. as co-substrates. The effect of co-digestion was evaluated by varying CM to Chlorella sp. ratios (0:10, 2:8, 4:6, 6:4, 8:2, 10: 0 based on the volatile solids (VS)). The major objective of this study is to evaluate the feasibility and synergistic impact of co-digestion of CM and Chlorella sp. Enhanced 14.20% and 76.86% methane production than CM and Chlorella sp. mono-digestion respectively was achieved in co-digestion at the ratio 8:2. In addition, the co-digestion at the ratio 8:2 showed significantly higher methane yield than the weighted average of the individual substrates' specific methane yield (WSMY), indicating strong synergy effect. The Illumina Miseq sequencing analysis showed that the AD process suppressed the acetoclastic methanogenesis Methanosaeta content; but partly enhanced hydrogenotrophic methanogenesis Methanosarcina, Methanospirillum and Methanobacterium, which was responsible for the methane production. The pre-treated microalgae was then introduced at the optimal ratio 8:2 to estimate the effect of pre-treatment of microalgae on AD process. However, the pre-treatment exhibited no positive effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of anaerobic digestion temperature on odour, coliforms and chlortetracycline in swine manure or monensin in cattle manure

    USDA-ARS?s Scientific Manuscript database

    Antibiotics used in animal feeding operations have been detected in the environment. There is a growing concern about the impact of these pharmaceutical compounds in the manure and the effect they may have on aquatic and terrestrial organisms, and the potential development of antibiotic resistant m...

  15. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    PubMed

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids.

  16. The digestive system: part 1.

    PubMed

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    This article, which forms part of the life sciences series and is the first of two articles on the digestive system, explores the structure and function of the digestive system. It is important that nurses understand how the digestive system works and its role in maintaining health. The article describes the gross structure of the gastrointestinal tract along with relevant physiology. It also outlines several disorders of the gastrointestinal tract and their treatment and nursing management. The second article will explain the liver, pancreas and gall bladder and their digestive functions, and provides a brief overview of the disorders of chronic liver disease, pancreatitis and gallstones.

  17. Methane production from thermophilic co‐digestion of dairy manure and waste milk obtained from therapeutically treated cows

    PubMed Central

    Iwasaki, Masahiro; Umetsu, Kazutaka

    2016-01-01

    Abstract Methane production from co‐digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (Pm)/g volatile solids added followed by SM in both A and B. This Pm of SMWM10 in A and B was statistically non‐significant (P > 0.05). More than 96% of cefazolin‐resistant bacteria and 100% of multi‐drug‐resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. PMID:27169788

  18. Methane production from thermophilic co-digestion of dairy manure and waste milk obtained from therapeutically treated cows.

    PubMed

    Beneragama, Nilmini; Iwasaki, Masahiro; Umetsu, Kazutaka

    2017-02-01

    Methane production from co-digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (Pm )/g volatile solids added followed by SM in both A and B. This Pm of SMWM10 in A and B was statistically non-significant (P > 0.05). More than 96% of cefazolin-resistant bacteria and 100% of multi-drug-resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  19. Seasonal and soil-type dependent emissions of nitrous oxide from irrigated desert soils amended with digested poultry manures.

    PubMed

    Posmanik, Roy; Nejidat, Ali; Dahan, Ofer; Gross, Amit

    2017-03-22

    Expansion of dryland agriculture requires intensive supplement of organic fertilizers to improve the fertility of nutrient-poor desert soils. The environmental impact of organic supplements in hot desert climates is not well understood. We report on seasonal emissions of nitrous oxide (N2O) from sand and loess soils, amended with limed and non-limed anaerobic digestate of poultry manure in the Israeli Negev desert. All amended soils had substantially higher N2O emissions, particularly during winter applications, compared to unammended soils. Winter emissions from amended loess (10-175mgN2Om(-2)day(-1)) were markedly higher than winter emissions from amended sand (2-7mgN2Om(-2)day(-1)). Enumeration of marker genes for nitrification and denitrification suggested that both have contributed to N2O emissions according to prevailing environmental conditions. Lime treatment of digested manure inhibited N2O emissions regardless of season or soil type, thus reducing the environmental impact of amending desert soils with manure digestate.

  20. Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate.

    PubMed

    Agyeman, Fred O; Tao, Wendong

    2014-01-15

    This study was to comprehensively evaluate the effects of food waste particle size on co-digestion of food waste and dairy manure at organic loading rates increased stepwise from 0.67 to 3 g/L/d of volatile solids (VS). Three anaerobic digesters were fed semi-continuously with equal VS amounts of food waste and dairy manure. Food waste was ground to 2.5 mm (fine), 4 mm (medium), and 8 mm (coarse) for the three digesters, respectively. Methane production rate and specific methane yield were significantly higher in the digester with fine food waste. Digestate dewaterability was improved significantly by reducing food waste particle size. Specific methane yield was highest at the organic loading rate of 2g VS/L/d, being 0.63, 0.56, and 0.47 L CH4/g VS with fine, medium, and coarse food waste, respectively. Methane production rate was highest (1.40-1.53 L CH4/L/d) at the organic loading rate of 3 g VS/L/d. The energy used to grind food waste was minor compared with the heating value of the methane produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Nitrogen and phosphorus recovery from anaerobic co-digestion residues of poultry manure and maize silage via struvite precipitation.

    PubMed

    Yilmazel, Y Dilsad; Demirer, Goksel N

    2013-08-01

    Anaerobic digestion is commonly used for the stabilization of agricultural and animal wastes. However, owing to the stringent environmental criteria, anaerobic digester effluents need to be further treated to reduce nutrient loads to the receiving water bodies. Struvite precipitation is one of the promising techniques applied for this purpose. Yet, in the majority of cases, struvite precipitation is only applied to the liquid phase of anaerobic digester effluents. This study investigated the recovery of nutrients from both the liquid and the solid phases of the phase-separated effluent of a full-scale biogas plant co-digesting poultry manure and maize silage. Struvite precipitation in the liquid phase led to 72.1% and 95.1% average removal efficiencies of ammonium-nitrogen (NH4-N) and orthophosphate respectively. Changing the external phosphorus source did not make any statistically significant difference in nutrient removal. An acidic phosphorus-dissolution process was applied to the solid phase sample to obtain a phosphorus-enriched solution. More than 90.0% of both NH4-N and PO4-P were recovered from the phosphorus-enriched solution with the amendments of magnesium and phosphorus. In the experiments performed without any addition of external magnesium- and phosphorus-containing chemicals, almost complete (99.6%) PO4-P recovery and partial (14.6%) NH4-N recovery were obtained. The results of this study could contribute to the understanding of nutrient recovery from anaerobic digestion residues of manure and agricultural wastes by struvite precipitation.

  2. Volume ratios between the thermophilic and the mesophilic digesters of a temperature-phased anaerobic digestion system affect their performance and microbial communities.

    PubMed

    Lv, Wen; Zhang, Wenfei; Yu, Zhongtang

    2016-01-25

    An experimental temperature-phased anaerobic digestion (TPAD) system, with the thermophilic digester operated at neutral pH and with a balanced acidogenesis and methanogenesis (referred to as NT-TPAD), was evaluated with respect to the microbial communities and population dynamics of methanogens when digesting dairy cattle manure at 15-day overall system hydraulic retention time (HRT). When fed a manure slurry of 10% total solid (TS), similar system performance, 36-38% volatile solid (VS) removal and 0.21-0.22 L methane g(-1) VS fed, was achieved between a 5-day and 7.5-day HRT for the thermophilic digester. However, the thermophilic digester achieved a greater volumetric biogas yield when operated at a 5-day RT than at a 7.5-day HRT (6.3 vs. 4.7 L/L/d), while the mesophilic digester had a stable volumetric biogas yield (about 1.0 L/L/d). Each of the digesters harbored distinct yet dynamic microbial populations, and some of the methanogens were significantly correlated with methane productions. Methanosarcina and Methanosaeta were the most important methanogenic genera in the thermophilic and the mesophilic digesters, respectively. The microbiological findings may help understand the metabolism that underpins the anaerobic processes within each of the two digesters of TPAD systems when fed dairy manure. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.

    PubMed

    El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze

    2004-11-01

    The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating.

  4. From mesophilic to thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples.

    PubMed

    Sun, Weimin; Yu, Guangwei; Louie, Tiffany; Liu, Tong; Zhu, Chengsheng; Xue, Gang; Gao, Pin

    2015-12-01

    The shift of microbial communities during a transition from mesophilic anaerobic digestion (MAD) to thermophilic anaerobic digestion (TAD) was characterized in two treatments. One treatment was inoculated with sludge and the other was inoculated with manure. In this study, methane was produced both in MAD and TAD, but TAD has slightly more methane produced than MAD. A broad phylogenetic spectrum of bacterial, archaeal, and fungal taxa at thermophilic conditions was detected. Coprothermobacter, Bacillus, Haloplasma, Clostridiisalibacter, Methanobacterium, Methanothermobacter, Saccharomycetales, Candida, Alternaria, Cladosporium, and Penicillium were found almost exclusively in TAD, suggesting their adaptation to thermophilic conditions and ecological roles in digesting the organic compounds. The characterization of the lesser-known fungal community revealed that fungi probably constituted an important portion of the overall community within TAD and contributed to this process by degrading complex organic compounds. The shift of the microbial communities between MAD and TAD implied that temperature drastically affected the microbial diversity in anaerobic digestion. In addition, the difference in microbial communities between sludge and manure indicated that different source of inoculum also affected the microbial diversity and community.

  5. Pretreatment of poultry manure anaerobic-digested effluents by electrolysis, centrifugation and autoclaving process for Chlorella vulgaris growth and pollutants removal.

    PubMed

    Wang, Mengzi; Wu, Yu; Li, Baoming; Dong, Renjie; Lu, Haifeng; Zhou, Hongde; Cao, Wei

    2015-01-01

    Different pretreatments (electrolysis, centrifugation and autoclaving) coupled with Chlorella vulgaris biological system was used for the treatment of poultry manure anaerobic-digested effluents. The pretreated effluents were used as the growth medium for algal cultivation. The pollutant removal efficiencies of the combined treatments were determined. Electrochemical pretreatment can efficiently remove the ammonia (NH4+), total phosphorus (TP), total organic carbon (TOC), total carbon (TC), turbidity and bacteria in the digested effluents. About 100.0% NH4+, turbidity and bacteria, 97.6% TP, 81.5% TOC and 96.6% inorganic carbon were removed by 5-h electrochemical treatment. The maximal algal biomass accumulation (0.53 g L(-1)) was obtained from culture in the effluents pretreated with 2-h electrolysis. The pollutants removal amounts by the combination of electrolysis and biological treatment were much higher than the other combinations.

  6. Biotic and abiotic roles of leachate recirculation in batch mode solid-state anaerobic digestion of cattle manure.

    PubMed

    Degueurce, Axelle; Tomas, Nair; Le Roux, Sophie; Martinez, José; Peu, Pascal

    2016-01-01

    Solid state anaerobic digestion, with leachate recirculation, is suitable for exploiting manure with a high solid content. The biotic and abiotic effects of the leachates were studied in lab-scale leach bed reactors (LBRs). LBRs were fed with cow manure and four leachates either biologically active or inert. The biotic impact of leachate was assessed by monitoring the microbial communities in the manure and in the leachates. LBRs with biologically active leachates, regardless to their origin, produced equivalent methane volumes (114.52±19.05 and 99.79±6.4NL/kgVS) while LBRs with inert leachates produced half less methane (60.22±5.71 and 58.87±13.2NL/kgVS) attesting to the biotic role of leachate. Moreover, its beneficial abiotic role is mainly due to its initial nutrient content, pH, and buffering capacity. The microbial community in the manure was strongly involved in methane production, and no transfer of microorganisms from the liquid phase was found (p<0.05). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An innovative intermittent-vacuum assisted thermophilic anaerobic digestion process for effective animal manure utilization and treatment.

    PubMed

    Zhang, Renchuan; Anderson, Erik; Addy, Min; Deng, Xiangyuan; Kabir, Fayal; Lu, Qian; Ma, Yiwei; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2017-11-01

    Intermittent-vacuum stripping (IVS) was developed as a pretreatment for thermophilic anaerobic digestion (TAD) to improve methanogenesis and hydrolysis activity through preventing free ammonia and hydrogen sulfide (H2S) inhibition from liquid swine manure (LSM). Over 98% of ammonia and 38% organic nitrogen were removed in 60min from 55°C to 85°C with vacuum pressure (from 100.63±3.79mmHg to 360.91±7.39mmHg) at initial pH 10.0 by IVS. Thermophilic methanogenesis and hydrolysis activity of pretreated LSM increased 52.25% (from 11.56±1.75% to 17.60±0.49%) in 25days and 40% (from 10days to 6days) in bio-methane potential assay. Over 80% H2S and total nitrogen were removed by IVS assistance, while around 70% nitrogen was recycled as ammonium sulfate. Therefore, IVS-TAD combination could be an effective strategy to improve TAD efficiency, whose elution is more easily utilized in algae cultivation and/or hydroponic system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Impact of Thermal Treatment on Biogas Production by Anaerobic Digestion of High-solid-content Swine Manure].

    PubMed

    Hu, Yu-ying; Wu, Jing; Wang, Shi-feng; Cao, Zhi-ping; Wang, Kai-jun; Zuo, Jian-e

    2015-08-01

    Livestock manure is a kind of waste with high organic content and sanitation risk. In order to investigate the impact of thermal treatment on the anaerobic digestion of high-solid-content swine manure, 70 degrees C thermal treatment was conducted to treat raw manure (solid content 27.6%) without any dilution. The results indicated that thermal treatment could reduce the organic matters and improve the performance of anaerobic digestion. When the thermal treatment time was 1d, 2d, 3d, 4d, the VS removal rates were 15.1%, 15.5%, 17.8% and 20.0%, respectively. The methane production rates (CH4/VSadd) were 284.4, 296.3, 309.2 and 264.4 mL x g(-1), which was enhanced by 49.7%, 55.9%, 62.7% and 39.2%, respectively. The highest methane production rate occurred when the thermal treatment time was 3d. The thermal treatment had an efficient impact on promoting the performance of methane production rate with a suitable energy consumption. On the other hand, thermal treatment could act as pasteurization. This showed that thermal treatment would be of great practical importance.

  9. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    SciTech Connect

    Solli, Linn Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.

  10. The effect of mixed-enzyme addition in anaerobic digestion on methane yield of dairy cattle manure.

    PubMed

    Sutaryo, Sutaryo; Ward, Alastair James; Møller, Henrik Bjarne

    2014-01-01

    This study investigates the effect of applying a mixture of enzymes (ME) to dairy cattle manure (DCM) as substrate in anaerobic digestion (AD). The aims of this study were to evaluate different methods of ME application to DCM at different temperatures and to investigate the effect of adding ME during the pre-treatment of the solid fractions of dairy cattle manure (SFDCM). The results showed that there was no positive effect of direct ME addition to substrate at either mesophilic (35 degrees C) or thermophilic (50 degrees C) process temperatures, but there was a significant 4.44% increase in methane yield when DCM, which had been incubated with ME addition at 50 degrees C for three days, was fed to a digester when compared to a control digester operating at the same retention time. Methane production was detected during the pre-treatment incubation, and the total sum methane yield during pre-treatment and digestion was found to be 8.33% higher than in the control. The addition of ME to the SFDCM in a pre-incubation stage of 20 h at 35 degrees C gave a significant increase in methane yield by 4.15% in a digester treating a mixed substrate (30% liquid fractions DCM and 70% enzyme-treated SFDCM) when compared with the control digester treating a similar mixed substrate with inactivated enzyme addition. The results indicate that direct physical contact of enzyme molecules and organic material in DCM prior to AD, without the intervention of extracellular enzymes from the indigenous microorganism population, was needed in order to increase methane yields.

  11. Influence of palm oil mill effluent as inoculum on anaerobic digestion of cattle manure for biogas production.

    PubMed

    Saidu, Mohammed; Yuzir, Ali; Salim, Mohd Razman; Salmiati; Azman, Shamila; Abdullah, Norhayati

    2013-08-01

    Anaerobic digestion for palm oil mill effluent (POME) is widely known for its potential in biogass production. In this study, the potential of using cattle manure for biogas production in complete mix anaerobic bioreactor was investigated using POME at unregulated pH and temperature. Two identical bioreactors were used in this study; namely R1 and R2 fed with cattle manure without and with POME as inoculum, respectively. Both bioreactors were allowed for five days to run in batch mode followed by semi continuous operations at HRT of 20 days. R2 produced 41% methane content compared to 18% produced in R1. A better COD percentage reduction of 45% was found in R2 which was operated with POME as inoculum compared to R1 with 35%. These results indicated that POME as inoculum has an influence on the start-up time and the rate of biogas produced.This findings will help in waste reduction.

  12. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure

    PubMed Central

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-01-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. PMID:24963997

  13. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure.

    PubMed

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-09-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens.

  14. Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control.

    PubMed

    Wu, Shubiao; Ni, Ping; Li, Jiaxi; Sun, Hao; Wang, Yanfei; Luo, Hongzhen; Dach, Jacek; Dong, Renjie

    2016-04-01

    The dynamics of ammonium accumulation and mitigation control in anaerobic digestion of chicken manure under the recycled utilization of liquid digested slurry were investigated by using an integrated approach in two laboratory-scale semi-continuously stirred tank reactors. In the reactor with direct recycled utilization of the anaerobic digested liquid slurry, total volatilized fatty acids (in CH3COOH) and NH4(+)-N increased from 1600mg/L to 8000mg/L and from 2600mg/L to 5000mg/L, respectively. The daily volumetric biogas production decreased from 1.4±0.1L/(L·d) to 0.8±0.1L/(L·d) with a reduction efficiency of 43±4%. Air stripping was integrated for ammonium mitigation of recycled liquid digested slurry and was shown to effectively reduce the ammonium to 3000mg/L. Correspondingly, the biogas production was recovered back to 1.4±0.1L/(L·d). This indicated the potential of the integration of air stripping for ammonium mitigation in an anaerobic digestion process with liquid digested slurry recirculation.

  15. Batch anaerobic co-digestion of cow manure and waste milk in two-stage process for hydrogen and methane productions.

    PubMed

    Lateef, Suraju A; Beneragama, Nilmini; Yamashiro, Takaki; Iwasaki, Masahiro; Umetsu, Kazutaka

    2014-03-01

    Anaerobic co-digestion of cow manure (CM) and waste milk (WM), produced by sick cows during treatment with antibiotics, was evaluated in two-stage process under thermophilic condition (55 °C) to determine the effect of WM addition on hydrogen (H2) and methane (CH4) production potentials, volatile solids (VS) removal, and energy recovery. Six CM to WM VS ratios of 100:0, 90:10, 70:30, 50:50, 30:70, and 10:90 were examined using 1-L batch digesters. The WM VS ratio of 30 % was found to be the minimum limit for significant increases in specific H2 and CH4 yields, and VS removal as compared to digestion of manure alone (P < 0.05). The highest specific H2 and CH4 yields, VS removal and energy yield were 38.2 mL/g VS, 627.6 mL/g VS, 78.4 % and 25,459.8 kJ/kg VS, respectively, in CM:WM 30:70. Lag phases to H2 and CH4 productions were observed in CM-WM mixtures, increased with increasing the amount of WM in the feedstock and were greater than 72 h in CM:WM 50:50 and 30:70. The digestion system failed in CM:WM 10:90. The results suggest that CM:WM 30:70 was optimum, however, due to limited amount of WM usually generated and long lag phase at this ratio which may make the process uneconomical, CM:WM 70:30 is recommended in practice.

  16. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline.

    PubMed

    Turker, Gokhan; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2017-08-29

    The way that antibiotic residues in manure follow is one of the greatest concerns due to its potential negative impacts on microbial communities, the release of metabolites and antibiotic resistant genes (ARGs) into the nature and the loss of energy recovery in anaerobic digestion (AD) systems. This study evaluated the link between different operating conditions, the biodegradation of oxytetracycline (OTC) and the formation of its metabolites and ARGs in anaerobic digesters treating cow manure. Microbial communities and ARGs were determined through the use of quantitative real-time PCR. The biodegradation of OTC and occurrence of metabolites were determined using UV-HPLC and LC/MS/MS respectively. The maximum quantity of resistance genes was also examined at the beginning of AD tests and concentration was in the order of: tetM >tetO. The numbers of ARGs were always higher at high volatile solids (VS) content and high mixing rate. The results of the investigation revealed that relationship between mixing rate and VS content plays a crucial role for elimination of ARGs, OTC and metabolites. This can be attributed to high abundance of microorganisms due to high VS content and their increased contact with elevated mixing rate. An increased interaction between microorganisms triggers the promotion of ARGs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Smoking and Your Digestive System

    MedlinePlus

    ... System Related Topics Section Navigation Digestive Diseases Abdominal Adhesions Acid Reflux (GER & GERD) in Adults Definition & Facts ... Eating, Diet, & Nutrition Clinical Trials Cyclic Vomiting Syndrome Dental Enamel Defects and Celiac Disease Dermatitis Herpetiformis Dermatitis ...

  18. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge.

    PubMed

    Vardon, Derek R; Sharma, B K; Scott, John; Yu, Guo; Wang, Zhichao; Schideman, Lance; Zhang, Yuanhui; Strathmann, Timothy J

    2011-09-01

    This study explores the influence of wastewater feedstock composition on hydrothermal liquefaction (HTL) biocrude oil properties and physico-chemical characteristics. Spirulina algae, swine manure, and digested sludge were converted under HTL conditions (300°C, 10-12 MPa, and 30 min reaction time). Biocrude yields ranged from 9.4% (digested sludge) to 32.6% (Spirulina). Although similar higher heating values (32.0-34.7 MJ/kg) were estimated for all product oils, more detailed characterization revealed significant differences in biocrude chemistry. Feedstock composition influenced the individual compounds identified as well as the biocrude functional group chemistry. Molecular weights tracked with obdurate carbohydrate content and followed the order of Spirulinamanure sludge. A similar trend was observed in boiling point distributions and the long branched aliphatic contents. These findings show the importance of HTL feedstock composition and highlight the need for better understanding of biocrude chemistries when considering bio-oil uses and upgrading requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Zhang, Li; Guo, Ai-Yun

    2017-03-08

    High concentrations of residual arsanilic acid occur in pig manure due to its use in feed to promote growth and control diseases. This study compared the effects of arsanilic acid at three concentrations (0, 325, and 650mg/kg dry pig manure) on the abundance of antibiotic resistance genes (ARGs) and the microbial community during anaerobic digestion. Addition of 650mg/kg arsanilic acid enhanced the absolute abundances of tetC, sul2, ermB, and gyrA more than twofold in the digestion product. Redundancy analysis indicated that the change in the microbial community structure was the main driver of variation in the ARGs profile. The As resistance gene arsC co-occurred with four ARGs and intI1, possibly causing the increase in ARGs under pressure by arsanilic acid. High arsanilic acid concentrations can increase the risk of ARGs occurring in anaerobic digestion products. The amount of arsanilic acid used as a feed additive should be controlled.

  20. Aquaporins in the digestive system.

    PubMed

    Matsuzaki, Toshiyuki; Tajika, Yuki; Ablimit, Abdushukur; Aoki, Takeo; Hagiwara, Haruo; Takata, Kuniaki

    2004-06-01

    Fluid transfer such as secretion and absorption is one of the major functions of the digestive system. Aquaporins are water channel proteins providing water transfer across the cellular membrane. At least six aquaporin isoforms are expressed in the digestive system. Aquaporin-1 (AQP1) is widely distributed in endothelial cells of capillaries and small vessels as well as in the central lacteals in the small intestine. AQP1 is also present in the duct system in the pancreas, liver, and bile duct. AQP3 is mainly expressed in the epithelia of the upper digestive tract from the oral cavity to the stomach and of the lower digestive tract from the distal colon to the anus. AQP4 is present in the parietal cells of the stomach and in the intestinal epithelia. AQP5 is expressed in acinar cells of the salivary, pyloric, and duodenal glands. AQP8 is expressed in the intestinal epithelia, salivary glands, pancreas, and liver. AQP9 is present in the liver and intestinal goblet cells. Aquaporins have important roles in the digestive system, such as AQP5 in saliva secretion, as shown by the studies on AQP5-null mice. In addition, water transfer across the digestive epithelia seems to occur not only via aquaporins but also via other transporter or channel systems. Copyright 2004 The Clinical Electron Microscopy Society of Japan

  1. The effect of milk co-digested with dairy manure on biogas production and COD removal in batch processes.

    PubMed

    Wu, Xiao; Zhu, Jun

    2010-10-01

    Co-digestion of dairy manure with milk for biogas production was investigated in this study using batch experiments. Lab-scale digesters consisting of 500 mL flasks were employed (effective working volume: 300 mL) with temperature controlled at 37 degrees C. A total of eight treatments at different milk additions were examined, i.e., control (without milk), 1, 3, 5, 7, 9, 14, and 19%. The results showed that the cumulative biogas volume produced over the experimental period increased from around 4984 mL for the control to 10,228 mL for the 19% treatment. In parallel, the cumulative CH4 volume produced increased from 3306 mL to 6515 mL in the same treatment percentages. The high milk chemical oxygen demand (COD) had no negative impact on the final COD removal by the digestion process, evidenced by the observed good efficiencies of COD removal by 49.7, 50.5, 58.7, 49.0, 62.1, 68.4, 73.4, and 77.8% for the control, 1, 3, 5, 7, 9, 14, and 19% milk treatments. This clearly indicated that COD removal was improved with the increasing milk content in the co-digestion process. There was a good linear relationship between the peak biogas production rates and the increasing milk treatments, with a correlation coefficient of 0.9930 (R2=0.9861), meaning that about 98.6% of the increase in peak biogas production rate could be explained by the milk addition. The study has provided useful information that it is feasible and beneficial to enhance the overall biogas and CH4 productivities by batch co-digesting dairy manure with milk.

  2. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect

    Lusk, P.

    1994-12-01

    One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Finally, anaerobic digestion has considerable potential beyond agribusiness. Examples of digesters currently employed by other industries are provided.

  3. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry.

    PubMed

    Widyasari-Mehta, Arum; Hartung, Susen; Kreuzig, Robert

    2016-07-15

    In conventional pig husbandry, antibiotics are frequently applied. Together with excreta, antibiotic residues enter liquid manures finally used as organic soil fertilizers or input materials for biogas plants. Therefore, this first screening study was performed to survey the application patterns of antibiotics from fall 2011 until spring 2013. Manures and digestates were then analyzed for selected antibiotic residues from spring 2012 to 2013. The data analysis of veterinary drug application documents revealed the use of 34 different antibiotics belonging to 11 substance classes at 21 farms under study. Antibiotics, particularly tetracyclines, frequently administered to larger pig groups were detected in manure samples up to higher mg kg(-1) dry weight (DW) concentrations. Antibiotic residues in digestates, furthermore, show that a full removal capacity cannot be guaranteed through the anaerobic digestion process in biogas plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.

    PubMed

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-01

    The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.

  5. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR).

    PubMed

    Li, Yeqing; Zhang, Ruihong; He, Yanfeng; Zhang, Chenyu; Liu, Xiaoying; Chen, Chang; Liu, Guangqing

    2014-03-01

    Anaerobic co-digestion of chicken manure and corn stover in batch and CSTR were investigated. The batch co-digestion tests were performed at an initial volatile solid (VS) concentration of 3gVS/L, carbon-to-nitrogen (C/N) ratio of 20, and retention time of 30d. The methane yield was determined to be 281±12mL/gVSadded. Continuous reactor was carried out with feeding concentration of 12% total solids and C/N ratio of 20 at organic loading rates (OLRs) of 1-4gVS/L/d. Results showed that at OLR of 4gVS/L/d, stable and preferable methane yield of 223±7mL/gVSadded was found, which was equal to energy yield (EY) of 8.0±0.3MJ/kgVSadded. Post-digestion of digestate gave extra EY of 1.5-2.6MJ/kgVSadded. Pyrolysis of digestate provided additional EY of 6.1MJ/kgVSadded. Pyrolysis can be a promising technique to reduce biogas residues and to produce valuable gas products simultaneously.

  6. The inactivation of a bovine enterovirus and a bovine parvovirus in cattle manure by anaerobic digestion, heat treatment, gamma irradiation, ensilage and composting.

    PubMed Central

    Monteith, H. D.; Shannon, E. E.; Derbyshire, J. B.

    1986-01-01

    A bovine enterovirus and a bovine parvovirus seeded into liquid cattle manure were rapidly inactivated by anaerobic digestion under thermophilic conditions (55 degrees C), but the same viruses survived for up to 13 and 8 days respectively under mesophilic conditions (35 degrees C). The enterovirus was inactivated in digested liquid manure heated to 70 degrees C for 30 min, but the parvovirus was not inactivated by this treatment. The enterovirus, seeded into single cell protein (the solids recovered by centrifugation of digested liquid manure), was inactivated by a gamma irradiation dose of 1.0 Mrad, but the parvovirus survived this dose. When single cell protein seeded with bovine enterovirus or bovine parvovirus was ensiled with cracked corn, the enterovirus was inactivated after a period of 30 days, while the parvovirus survived for 30 days in one of two experiments. Neither the enterovirus nor the parvovirus survived composting for 28 days in a thermophilic aerobic environment when seeded into the solid fraction of cattle manure. It was concluded that, of the procedures tested, only anaerobic digestion under thermophilic conditions appeared to be reliable method of viral inactivation to ensure the safety of single cell protein for refeeding to livestock. Composting appeared to be a suitable method for the disinfection of manure for use as a soil conditioner. PMID:3016083

  7. The inactivation of a bovine enterovirus and a bovine parvovirus in cattle manure by anaerobic digestion, heat treatment, gamma irradiation, ensilage and composting.

    PubMed

    Monteith, H D; Shannon, E E; Derbyshire, J B

    1986-08-01

    A bovine enterovirus and a bovine parvovirus seeded into liquid cattle manure were rapidly inactivated by anaerobic digestion under thermophilic conditions (55 degrees C), but the same viruses survived for up to 13 and 8 days respectively under mesophilic conditions (35 degrees C). The enterovirus was inactivated in digested liquid manure heated to 70 degrees C for 30 min, but the parvovirus was not inactivated by this treatment. The enterovirus, seeded into single cell protein (the solids recovered by centrifugation of digested liquid manure), was inactivated by a gamma irradiation dose of 1.0 Mrad, but the parvovirus survived this dose. When single cell protein seeded with bovine enterovirus or bovine parvovirus was ensiled with cracked corn, the enterovirus was inactivated after a period of 30 days, while the parvovirus survived for 30 days in one of two experiments. Neither the enterovirus nor the parvovirus survived composting for 28 days in a thermophilic aerobic environment when seeded into the solid fraction of cattle manure. It was concluded that, of the procedures tested, only anaerobic digestion under thermophilic conditions appeared to be reliable method of viral inactivation to ensure the safety of single cell protein for refeeding to livestock. Composting appeared to be a suitable method for the disinfection of manure for use as a soil conditioner.

  8. Co-digestion of grass silage and cow manure in a CSTR by re-circulation of alkali treated solids of the digestate.

    PubMed

    Jagadabhi, P S; Lehtomäki, A; Rintala, J

    2008-10-01

    Three laboratory, continuously stirred tank reactors (CSTRs) co-digesting grass silage and cow manure (forming 30% and 70% of substrate volatile solids (VS), respectively) were operated to evaluate the effects of re-circulating an alkali-treated and untreated solid fraction of the digestate back to the reactors. The CSTRs were operated at an organic loading rate (OLR) of 2 kg VS m(-3) day(-1) and hydraulic retention time (HRT) of 20 days with a semi-continuous mode of feeding. The feasibility of co-digestion with substrate VS containing 30% VS of crop was reinforced, resulting in average specific methane yield of about 180-185 1 CH4 kg(-1) VS. Re-circulation of the solid fraction of digestate back to the reactors in both alkali-treated and untreated forms decreased the methane yield by 11% and 21%, respectively, and resulted in operational problems such as scum formation and accumulation of the reactor materials. Batch studies were conducted to evaluate (i) the methane potentials of the solid fraction of digestate, and whole digestate with alkali treatments ranging from 20-60 g NaOH kg(-1) VS of substrate, and (ii) methane potentials of the accumulated reactor materials as top, middle and bottom layers. The solid fraction of digestate treated with 20 g NaOH kg(-1) VS showed higher specific methane yield (340 l CH4 kg(-1) VS) than the higher range of alkali treatments. The bottom layers of the control reactor and the reactor fed with alkali-treated solids gave a higher specific methane yield (93 and 85 l CH4 kg(-1) VS, respectively), and all three layers of untreated solids gave similar methane potentials.

  9. Comparative characterization of digestate versus pig slurry and cow manure - Chemical composition and effects on soil microbial activity.

    PubMed

    Risberg, Kajsa; Cederlund, Harald; Pell, Mikael; Arthurson, Veronica; Schnürer, Anna

    2017-03-01

    The growing number of biogas plants in Europe has resulted in increased production of nutrient-rich digestate with great potential as fertilizer for arable land. The nutrient composition of digestate varies with the substrate treated in the biogas plant and may contain compounds that stimulate or inhibit soil microbial activity. This study compared 20 digestates (D) with 10 pig slurries (PS) and 10 cow manures (CM) regarding their chemical content and their effect on soil microbial activities, i.e. potential ammonia oxidation rate (PAO) and soil respiration. The results showed no significant differences within the D group when divided based on substrate type. i.e. manure dominated vs. other organic waste materials in any of the tests. In general D contained significantly higher concentrations of ammonium while the concentrations of total carbon and volatile fatty acids were higher in PS and CM than in D. The D showed both stimulating and inhibiting effects on PAO, while all CM and all PS except one showed inhibiting effects on PAO. However, PAO activity was negatively correlated with the content of volatile fatty acids in the residues indicating that these compounds may be the cause of the inhibition. The maximum respiration activity (hpeakmax) was lower and the time point for the maximum respiration activity (tpeakmax) occurred earlier for D compared with CM and PS. This earlier peak time could be indicative of a high proportion of easily degradable carbon in D compared with PS and CM. However, the utilization rate of carbon, i.e. the proportion of added organic C converted to CO2-C during 12days, did not differ significantly between D, PS and CM, indicating that overall carbon quality in the different fertilizers was still roughly comparable. In short, our results suggest that digestates were different compared with PS and CM but without posing a higher risk with respect to their impact on soil microbial activity. Copyright © 2016 The Author(s). Published by

  10. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry.

    PubMed

    Kizito, Simon; Wu, Shubiao; Kipkemoi Kirui, W; Lei, Ming; Lu, Qimin; Bah, Hamidou; Dong, Renjie

    2015-02-01

    Due to its high adsorption capacity, the use of biochar to capture excess nutrients from wastewater has become a central focus in environmental remediation studies. In this study, its potential use in adsorption and removal of ammonium in piggery manure anaerobic digestate slurry was investigated. The adsorbed amount of NH4(+)-N (mg·g(-1)) and removal percentage as a function of adsorbent mass in solution, adsorbent particle size, NH4(+)-N concentration in the effluent, contact time, pH and temperature were quantified in batch equilibrium and kinetics experiments. The maximum NH4(+)-N adsorption from slurry at 1400 mgN·L(-1) was 44.64 ± 0.602 mg·g(-1) and 39.8 ± 0.54 mg·g(-1) for wood and rice husk biochar, respectively. For both biochars, adsorption increased with increase in contact time, temperature, pH and NH4(+)-N concentration but it decreased with increase in biochar particle size. Furthermore, the sorption process was endothermic and followed Langmuir (R(2)=0.995 and 0.998) and Pseudo-second order kinetic models (R(2)=0.998 and 0.999). Based on the removal amounts, we concluded that rice husk and wood biochar have potential to adsorb NH4(+)-N from piggery manure anaerobic digestate slurry, and thus can be used as nutrient filters prior to discharge into water streams. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Investigation of increasing organic loading rate in the co-digestion of energy crops and cow manure mix.

    PubMed

    Comino, Elena; Rosso, Maurizio; Riggio, Vincenzo

    2010-05-01

    The increase of the organic loading rate from 4.45 to 7.78 g-VS/l-d in a one stage, pilot biogas plant was investigated. The experiment was conducted using a co-digestion of cow manure and crop silage mix. The test was divided in three subsequent phases with different feeding ratios. The benefits of optimizing the proportion of crops and loading rate in co-digestion were shown by the fact that during feeding with 70% VS of crop in the feedstock, up to 109% higher specific methane yield was obtained than during the start up phase (only manure). It was also found that further increasing the proportion of crop silage up (to 80%) led to a process breakdown with a decrease of methane proportion down to 48%. On the basis of the present results, it could be possible to obtain an electricity production equal to 15 kwh per 1 t/d. At the end of the monitoring biogas yield was equal to 237 and 249l-CH(4)/kg-VS in the first two phases, and to 61.6l-CH(4)/kg-VS in the third one that led to a process breakdown. The result of this study show, that most agricultural biogas plant have a great potential for a significant capacity increase and technology improvement.

  12. Dry anaerobic digestion of high solids content dairy manure at high organic loading rates in psychrophilic sequence batch reactor.

    PubMed

    Massé, Daniel I; Saady, Noori M Cata

    2015-05-01

    Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively.

  13. Co-digestion of energy crops and industrial confectionery by-products with cow manure: batch-scale and farm-scale evaluation.

    PubMed

    Kaparaju, P; Luostarinen, S; Kalmari, E; Kalmari, J; Rintala, J

    2002-01-01

    The possible co-digestion of energy crops and industrial confectionery by-products with cow manure was evaluated firstly, through long-term batch experiments and secondly, in a farm-scale digester. In batch assays, digestion with mesophilically digested cow manure as inoculum resulted in specific methane yields (m3 kg(-1) VS added waste) of 0.35 for grass hay (particle size <1.0 cm); 0.26 for oats (0.5 cm) and 0.21 for clover (2.0 cm) harvested at vegetative stage and 0.14 (2.0 cm) for clover harvested at flowering stage. Specific methane yields (m3 kg(-1) VS added waste) for confectionery by-products were 0.37 for chocolate, 0.39 for black candy and 0.32 for confectionery raw material. Out the three particle sizes (2.0, 1.0 and 0.5 cm) tested, particle size of 1.0 cm was found ideal for digestion of grass hay and clover while, particle size reduction did not influence methane production from oats. Stage of the crop influenced the methane yields, with clover harvested at vegetative stage yielding 33% higher methane than when harvested at flowering stage. An approximate 60% enhancement in methane yield was noticed with the co-digestion of industrial confectionery wastes with cow manure in a full-scale farm digester.

  14. A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure.

    PubMed

    Wang, Ming; Sun, Xianli; Li, Pengfei; Yin, Lili; Liu, Dan; Zhang, Yingwei; Li, Wenzhe; Zheng, Guoxiang

    2014-07-01

    A novel alternate feeding mode was introduced to study the possibilities of improving methane yield from anaerobic co-digestion of food waste (FW) with chicken manure (CM). Two kinds of feeding sequence (a day FW and next day CM (FM/CM), two days FM and the third day CM (FW/FM/CM)) were investigated in semi-continuous anaerobic digestion and lasted 225 days, and the mono-digestions of FW and CM were used as control group, respectively. The feeding sequence of FW/CM and mono-digestion of CM were observed to fail to produce gas at hydraulic retention time (HRT) of 70 days due to the ammonia inhibition, however, the mode of FW/FM/CM was proved to successfully run at HRT of 35 days with a higher OLR of 2.50 kg L(-1)d(-1) and obtain a higher methane production rate of 507.58 ml g(-1) VS and volumetric biogas production rate of 2.1 L L(-1)d(-1).

  15. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production.

    PubMed

    Solli, Linn; Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-01

    This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37°C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% - 6% - 13% - 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS(-1), obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.

  16. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios

    USDA-ARS?s Scientific Manuscript database

    Two trials were conducted simultaneously to study the effect of alfalfa silage (AS) to corn silage (CS) ratio in the diet of lactating dairy cows on performance, digestibility, ruminal parameters, nitrogen (N) balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), ...

  17. Anaerobic digestion of palm oil mill effluent with lampung natural zeolite as microbe immobilization medium and digested cow manure as starter

    NASA Astrophysics Data System (ADS)

    Halim, Lenny; Mellyanawaty, Melly; Cahyono, Rochim Bakti; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Indonesia is well-known as the world's biggest palm oil producer with 32.5 million tons of annual production. Palm oil processing contributes to 60% wastewater, leading to environmental problem caused by excessive production of wastewater. This wastewater, i.e. Palm Oil Mill Effluent (POME), has high organic content (40,000-60,000 mg COD/L) which is potential for biogas production. However, its low pH value and long chain fatty acid content likely inhibit the anaerobic digestion. Porous media might reduce the inhibitory effect during POME digestion since the media act as both immobilization media for bacteria and as inhibitor adsorbent. Excessive amount of porous media might interfere with the nutrient consumption by microbes. There will be an optimum amount of porous media added, which depends on the wastewater characteristics. This research studied Lampung natural zeolite as immobilization media in digesting POME. The batch experiment was conducted for 40 days with different amount of natural zeolite, i.e. 0; 45; 100; and 200 g/g COD. Digested cow manure was used as the starter inoculum, considering the abundance of anaerobic bacteria therein. Zeolite addition was proven to accelerate COD reduction and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion. The addition of natural zeolite up to 45 g/g COD is considered enough to increase the COD removal (85.695 %), maintain the methane content up to 50%, and enhance the bacteria activity. However, larger amount of natural zeolite lowered the methane production and COD reduction, which indicated nutrient adsorption on to the media and hence caused decreasing nutrient access by the microbes.

  18. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    The gas-permeable membrane process can recover ammonia from wastewater with high nitrogen load, reducing pollution whilst converting ammonia into an ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali....

  19. Assessing anaerobic co-digestion of pig manure with agroindustrial wastes: the link between environmental impacts and operational parameters.

    PubMed

    Rodriguez-Verde, Ivan; Regueiro, Leticia; Carballa, Marta; Hospido, Almudena; Lema, Juan M

    2014-11-01

    Anaerobic co-digestion (AcoD) is established as a techno-economic profitable process by incrementing biogas yield (increased cost-efficiency) and improving the nutrient balance (better quality digestate) in comparison to mono-digestion of livestock wastes. However, few data are available on the environmental consequences of AcoD and most of them are mainly related to the use of energy crops as co-substrates. This work analysed the environmental impact of the AcoD of pig manure (PM) with several agroindustrial wastes (molasses, fish, biodiesel and vinasses residues) using life cycle assessment (LCA) methodology. For comparative purposes, mono digestion of PM has also been evaluated. Four out of six selected categories (acidification, eutrophication, global warming and photochemical oxidation potentials) showed environmental impacts in all the scenarios assessed, whereas the other two (abiotic depletion and ozone layer depletion potentials) showed environmental credits, remarking the benefit of replacing fossil fuels by biogas. This was also confirmed by the sensitivity analysis applied to the PM quality (i.e. organic matter content) and the avoided energy source demonstrating the importance of the energy recovery step. The influence of the type of co-substrate could not be discerned; however, a link between the environmental performance and the hydraulic retention time, the organic loading rate and the nutrient content in the digestate could be established. Therefore, LCA results were successfully correlated to process variables involved in AcoD, going a step further in the combination of techno-economic and environmental feasibilities.

  20. Synergism and effect of high initial volatile fatty acid concentrations during food waste and pig manure anaerobic co-digestion.

    PubMed

    Dennehy, Conor; Lawlor, Peadar G; Croize, Thomas; Jiang, Yan; Morrison, Liam; Gardiner, Gillian E; Zhan, Xinmin

    2016-10-01

    Anaerobic co-digestion of food waste (FW) and pig manure (PM) was undertaken in batch mode at 37°C in order to identify and quantify the synergistic effects of co-digestion on the specific methane yield (SMY) and reaction kinetics. The effects of the high initial volatile fatty acid (VFA) concentrations in PM on synergy observed during co-digestion, and on kinetic modelling were investigated. PM to FW mixing ratios of 1/0, 4/1, 3/2, 2/3, 1/4 and 0/1 (VS basis) were examined. No VFA or ammonia inhibition was observed. The highest SMY of 521±29ml CH4/gVS was achieved at a PM/FW mixing ratio of 1/4. Synergy in terms of both reaction kinetics and SMY occurred at PM/FW mixing ratios of 3/2, 2/3 and 1/4. Initial VFA concentrations did not explain the synergy observed. Throughout the study the conversion of butyric acid was inhibited. Due to the high initial VFA content of PM, conventional first order and Gompertz models were inappropriate for determining reaction kinetics. A dual pooled first order model was found to provide the best fit for the data generated in this study. The optimal mixing ratio in terms of both reaction kinetics and SMY was found at a PM/FW mixing ratio of 1/4.

  1. A beef herd model for simulating feed intake, animal performance, and manure excretion in farm systems.

    PubMed

    Rotz, C A; Buckmaster, D R; Comerford, J W

    2005-01-01

    A beef herd submodel was created for integration with other farm components to form a whole-farm model capable of simulating a wide range of beef production systems. This herd submodel determined the best available feed or feed mix to meet the fiber, energy, and protein requirements for each of up to six animal groups on the farm. The groups comprised any combination of cows, nursing calves, young heifers, yearling heifers, stockers, and finishing cattle. Protein, energy, and mineral requirements were determined for each group using the Cornell Net Carbohydrate and Protein System, Level 1. Diets were formulated to meet these requirements with available feeds, and the resulting feed intake, growth, and manure DM and nutrient (N, P, and K) excretions were predicted. Required feed characteristics included CP, ruminally degradable protein, acid detergent insoluble protein, NDF, P, and K concentrations. Feed intake was predicted by considering energy intake, potentially limited by fill, and exceeding a minimum roughage requirement. Fill and roughage limits were functions of feed NDF concentrations adjusted to consider particle size distribution and the relative rate of ruminal digestibility or the physical effectiveness of the fiber. The herd submodel was verified to predict feed intakes, nutrient requirements, diets, and manure excretions similar to those recommended or measured for beef animals. Incorporation of the beef herd submodel with other farm components, including crop growth (alfalfa, grass, corn, small grain, and soybean), harvest, storage, feeding, grazing, and manure handling, provided the Integrated Farm System Model. This comprehensive farm-simulation model is a useful research and teaching tool for evaluating and comparing the long-term performance, economics, and environmental impact of beef, dairy, and crop production systems.

  2. Evaluation of biogas production by dry anaerobic digestion of switchgrass-animal manure mixtures

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application without adverse environmental effects. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion (> 15% TS; total solid) has an advantage ov...

  3. Design and validation of field-scale anaerobic digesters treating dairy manure for small farms

    USDA-ARS?s Scientific Manuscript database

    Six field-scale (FS) digesters were designed, constructed, and tested using a plug-flow design used by millions of farmers in developing countries and reconfigured for a temperate climate. Digester efficiency was analyzed based on methane (CH4) production, volatile solids (VS) reduction, inoculum to...

  4. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective.

    PubMed

    De Vries, J W; Vinken, T M W J; Hamelin, L; De Boer, I J M

    2012-12-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage, maize silage and glycerin, beet tails, wheat yeast concentrate (WYC), and roadside grass. Mono-digestion reduced most impacts, but represented a limited source for bio-energy. Co-digestion with maize silage, beet tails, and WYC (competing with animal feed), and glycerin increased bio-energy production (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Co-digestion with wastes or residues like roadside grass gave the best environmental performance.

  5. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models.

    PubMed

    Kafle, Gopi Krishna; Chen, Lide

    2016-02-01

    There is a lack of literature reporting the methane potential of several livestock manures under the same anaerobic digestion conditions (same inoculum, temperature, time, and size of the digester). To the best of our knowledge, no previous study has reported biochemical methane potential (BMP) predicting models developed and evaluated by solely using at least five different livestock manure tests results. The goal of this study was to evaluate the BMP of five different livestock manures (dairy manure (DM), horse manure (HM), goat manure (GM), chicken manure (CM) and swine manure (SM)) and to predict the BMP using different statistical models. Nutrients of the digested different manures were also monitored. The BMP tests were conducted under mesophilic temperatures with a manure loading factor of 3.5g volatile solids (VS)/L and a feed to inoculum ratio (F/I) of 0.5. Single variable and multiple variable regression models were developed using manure total carbohydrate (TC), crude protein (CP), total fat (TF), lignin (LIG) and acid detergent fiber (ADF), and measured BMP data. Three different kinetic models (first order kinetic model, modified Gompertz model and Chen and Hashimoto model) were evaluated for BMP predictions. The BMPs of DM, HM, GM, CM and SM were measured to be 204, 155, 159, 259, and 323mL/g VS, respectively and the VS removals were calculated to be 58.6%, 52.9%, 46.4%, 81.4%, 81.4%, respectively. The technical digestion time (T80-90, time required to produce 80-90% of total biogas production) for DM, HM, GM, CM and SM was calculated to be in the ranges of 19-28, 27-37, 31-44, 13-18, 12-17days, respectively. The effluents from the HM showed the lowest nitrogen, phosphorus and potassium concentrations. The effluents from the CM digesters showed highest nitrogen and phosphorus concentrations and digested SM showed highest potassium concentration. Based on the results of the regression analysis, the model using the variable of LIG showed the best (R(2

  6. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure.

    PubMed

    Zhai, Ningning; Zhang, Tong; Yin, Dongxue; Yang, Gaihe; Wang, Xiaojiao; Ren, Guangxin; Feng, Yongzhong

    2015-04-01

    This study investigated the effects of different initial pH (6.0, 6.5, 7.0, 7.5 and 8.0) and uncontrolled initial pH (CK) on the lab-scale anaerobic co-digestion of kitchen waste (KW) with cow manure (CM). The variations of pH, alkalinity, volatile fatty acids (VFAs) and total ammonia nitrogen (NH4(+)-N) were analyzed. The modified Gompertz equation was used for selecting the optimal initial pH through comprehensive evaluation of methane production potential, degradation of volatile solids (VS), and lag-phase time. The results showed that CK and the fermentation with initial pH of 6.0 failed. The pH values of the rest treatments reached 7.7-7.9 with significantly increased methane production. The predicted lag-phase times of treatments with initial pH of 6.5 and 7.5 were 21 and 22 days, which were 10 days shorter than the treatments with initial pH of 7.0 and 8.0, respectively. The maximum methane production potential (8579 mL) and VS degradation rate (179.8 mL/g VS) were obtained when the initial pH was 7.5, which is recommended for co-digestion of KW and CM.

  7. Thermophilic co-digestion of cattle manure and food waste supplemented with crude glycerin in induced bed reactor (IBR).

    PubMed

    Castrillón, L; Marañón, E; Fernández-Nava, Y; Ormaechea, P; Quiroga, G

    2013-05-01

    The aim of the present research work was to boost biogas production from cattle manure (CM) by adding food waste (FW) and crude glycerin (Gly) from the biodiesel industry as co-substrates. For this purpose, different quantities of FW and Gly were added to CM and co-digested in an induced bed reactor (IBR) at 55 °C. Sonication pre-treatment was implemented in the CM+Gly mixture, applying 550 kJ/kg TS to enhance the biodegradability of these co-substrates. The best results were obtained with mixtures of 87/10/3 (CM/FW/Gly) (w/w) operating at an organic loading rate of 7 g COD/L day, obtaining 92% COD removal, a specific methane yield of 640 L CH4/kg VS and a methane production rate of 2.6L CH4/L day. These results doubled those obtained in the co-digestion of CM and FW without the addition of Gly (330 L CH4/kg VS and 1.2L CH4/L day). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production.

    PubMed

    Li, Jiang; Wei, Luoyu; Duan, Qiwu; Hu, Guoquan; Zhang, Guozhi

    2014-03-01

    The characteristics of anaerobic semi-continuous co-digestion of dairy manure (DM) with three crop straw residues (SRs), rice straw, corn stalks and wheat straw under five mass mixing ratios (SRs/DM) were investigated. During the anaerobic digestion (AD) process, four periods were identified: startup, first stage of stabilization, second stage of stabilization, and suppression. Following the four periods, the biogas production rate varied between 101 and 576mL L(-1)d(-1). A high CH4 content and volatile solid reduction was maintained at the SRs/DM mass mixing ratio 1:9. The highest cumulative biogas production of more than 19L was obtained at ratio 5:5. However, ratio 9:1 performed worst in the whole process. Systematic analysis of the elements revealed nitrogen, phosphorus, and trace elements contents were important for the AD. Overall, the semi-continuous AD is efficient within a wide range of SRs/DM mass mixing ratios.

  9. Energy production, nutrient recovery and greenhouse gas emission potentials from integrated pig manure management systems.

    PubMed

    Prapaspongsa, T; Poulsen, T G; Hansen, J A; Christensen, P

    2010-05-01

    Improper management of pig manure has resulted in environmental problems such as surface water eutrophication, ground water pollution, and greenhouse gas emissions. This study develops and compares 14 alternative manure management scenarios aiming at energy and nutrient extraction. The scenarios based on combinations of thermal pretreatment, anaerobic digestion, anaerobic co-digestion, liquid/solid separation, drying, incineration, and thermal gasification were compared with respect to their energy, nutrient and greenhouse gas balances. Both sole pig manure and pig manure mixed with other types of waste materials were considered. Data for the analyses were obtained from existing waste treatment facilities, experimental plants, laboratory measurements and literature. The assessment reveals that incineration combined with liquid/solid separation and drying of the solids is a promising management option yielding a high potential energy utilization rate and greenhouse gas savings. If maximum electricity production is desired, anaerobic digestion is advantageous as the biogas can be converted to electricity at high efficiency in a gas engine while allowing production of heat for operation of the digestion process. In conclusion, this study shows that the choice of technology has a strong influence on energy, nutrient and greenhouse gas balances. Thus, to get the most reliable results, it is important to consider the most representative (and up-to-date) technology combined with data representing the area or region in question.

  10. Distribution of sulfonamides in liquid and solid anaerobic digestates: effects of hydraulic retention time and swine manure to rice straw ratio.

    PubMed

    Jin, Hongmei; Xu, Caiyun; Du, Jing; Wu, Huashan; Huang, Hongying; Chang, Zhizhou; Xu, Yueding; Zhou, Lixiang

    2017-02-01

    The effects of hydraulic retention time (20 and 15 days) and swine manure to rice straw ratios on distribution of sulfonamides (SAs) in liquid and solid anaerobic digestates were studied using bench-scale completely stirred tank reactors at (37 ± 1) °C. Results showed that anaerobic digestion (AD) treatment exhibited a good removal effect on sulfadiazine (SDZ), sulfadimidine (SM2) and sulfachloropyridazine (SCP), especially at HRT = 20 days and co-digestion with swine manure and rice straw. The removal rates of SDZ and SM2 were more than 90%, but only 72.8% for SCP. The residual SAs were mainly remained in solid digestates, with residual rates ranging from 28.8% to 71.3%, 40.6% to 88.0, and 82.7% to 97.0% for SDZ, SM2 and SCP, respectively. Due to lower pKa and higher log K ow of SCP, its residue in solid digestates was far more than SDZ and SM2. Higher HRT and co-digestion could improve the degradation of SAs, which can also be put down to the occurrence of cometabolism of SAs and COD.

  11. Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition

    PubMed Central

    Wang, Xiaojiao; Lu, Xingang; Li, Fang; Yang, Gaihe

    2014-01-01

    Anaerobic digestion is a promising alternative to disposal organic waste and co-digestion of mixed organic wastes has recently attracted more interest. This study investigated the effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure (DM), chicken manure (CM) and rice straw (RS). We found that increased temperature improved the methane potential, but the rate was reduced from mesophilic (30∼40°C) to thermophilic conditions (50∼60°C), due to the accumulation of ammonium nitrogen and free ammonia and the occurrence of ammonia inhibition. Significant ammonia inhibition was observed with a C/N ratio of 15 at 35°C and at a C/N ratio of 20 at 55°C. The increase of C/N ratios reduced the negative effects of ammonia and maximum methane potentials were achieved with C/N ratios of 25 and 30 at 35°C and 55°C, respectively. When temperature increased, an increase was required in the feed C/N ratio, in order to reduce the risk of ammonia inhibition. Our results revealed an interactive effect between temperature and C/N on digestion performance. PMID:24817003

  12. Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition.

    PubMed

    Wang, Xiaojiao; Lu, Xingang; Li, Fang; Yang, Gaihe

    2014-01-01

    Anaerobic digestion is a promising alternative to disposal organic waste and co-digestion of mixed organic wastes has recently attracted more interest. This study investigated the effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure (DM), chicken manure (CM) and rice straw (RS). We found that increased temperature improved the methane potential, but the rate was reduced from mesophilic (30∼40°C) to thermophilic conditions (50∼60°C), due to the accumulation of ammonium nitrogen and free ammonia and the occurrence of ammonia inhibition. Significant ammonia inhibition was observed with a C/N ratio of 15 at 35°C and at a C/N ratio of 20 at 55°C. The increase of C/N ratios reduced the negative effects of ammonia and maximum methane potentials were achieved with C/N ratios of 25 and 30 at 35°C and 55°C, respectively. When temperature increased, an increase was required in the feed C/N ratio, in order to reduce the risk of ammonia inhibition. Our results revealed an interactive effect between temperature and C/N on digestion performance.

  13. Your Digestive System (For Kids)

    MedlinePlus

    ... upon what you've eaten. This process, called digestion , allows your body to get the nutrients and ... tasty food, see it, or think about it, digestion begins. Saliva (say: suh-LYE-vuh), or spit , ...

  14. Comparative study on open system digestion and microwave assisted digestion methods for metal determination in shrimp sludge compost.

    PubMed

    Nemati, Keivan; Abu Bakar, Nor Kartini; Bin Abas, Mhd Radzi; Sobhanzadeh, Elham; Low, Kah Hin

    2010-10-15

    The aim of this work was to evaluate two different digestion methods for the determination of the total concentration of metals (Zn, Cu, Cr, Ni, Pb and Cd) in shrimp sludge compost. The compost made from shrimp aquaculture sludge co-composted with organic materials (peat, crushed bark and manure) was used as an organic growing medium for crop. Open system digestion and microwave assisted digestion procedures were employed in sample preparation. Various combinations and volumes of hydrofluoric, nitric and hydrochloric acids were evaluated for the efficiency of both methods. A certified reference material (CRM 146) was used in the comparison of these two digestion methods. The results revealed a good agreement between both procedures and the certified valued. The best recoveries were found in the range between 95% and 99% for microwave assisted digestion with a mixture of 2 ml of HF, 6 ml of HNO(3) and 2 ml of HCl. This procedure was recommended as the method for digestion the compost herein based on the recovery analysis and time taken.

  15. Environmental and economic comparisons of manure application methods in farming systems

    USDA-ARS?s Scientific Manuscript database

    Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure including no...

  16. Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure.

    PubMed

    Liang, Yue-Gan; Li, Xiu-Juan; Zhang, Jin; Zhang, Li-Gan; Cheng, Beijiu

    2017-05-01

    Low methane production and high levels of heavy metal in pig slurries limit the feasibility of anaerobic digestion of pig manure. In this study, changes in the methane production and bioavailability of heavy metals in the anaerobic digestion of diluted pig manure were evaluated using single and combined action of microscale zero-valence iron (ZVI) and magnetite. After 30 days of anaerobic digestion, the methane yield ranged from 246.9 to 334.5 mL/g VS added, which increased by 20-26% in the group added with microscale ZVI and/or magnetite relative to that in the control group. Results of the first-order kinetic model revealed that addition of microscale ZVI and/or magnetite increased the biogas production potential, rather than the biogas production rate constant. These treatments also changed the distribution of chemical fractions for heavy metal. The addition of ZVI decreased the bioavailability of Cu and Zn in the solid digested residues. Moreover, a better performance was observed in the combined action of microscale ZVI and magnetite, and the ZVI anaerobic corrosion end-product, magnetite, might help enhance methane production through direct interspecies electron transfer in ZVI-anaerobic digestion process.

  17. Methane Recovery from Animal Manures The Current Opportunities Casebook

    SciTech Connect

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.

  18. Environmental diseases of the digestive system

    SciTech Connect

    Rubin, E.; Farber, J.L. )

    1990-03-01

    Environmental factors are important mediators of many diseases of the digestive system, defined as the alimentary tract and the accessory organs of digestion, the liver and pancreas. In this review, we principally focus on the action of chemical agents which are classified as (1) naturally occurring compounds, (2) occupational hazards, (3) therapeutic drugs, and (4) constituents of substances of abuse. In addition, the putative role of dietary habits in the pathogenesis of malignant diseases of the digestive system is discussed.54 references.

  19. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.

    PubMed

    Siciliano, A; De Rosa, S

    2014-01-01

    Land spreading of digestates causes the discharge of large quantities of nutrients into the environment, which contributes to eutrophication and depletion of dissolved oxygen in water bodies. For the removal of ammonia nitrogen, there is increasing interest in the chemical precipitation of struvite, which is a mineral that can be reused as a slow-release fertilizer. However, this process is an expensive treatment of digestate because large amounts of magnesium and phosphorus reagents are required. In this paper, a struvite precipitation-based process is proposed for an efficient recovery of digestate nutrients using low-cost reagents. In particular, seawater bittern, a by-product of marine salt manufacturing and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. Once the operating conditions are defined, the process enables the removal of more than 90% ammonia load, the almost complete recovery of magnesium and phosphorus and the production of a potentially valuable precipitate containing struvite crystals.

  20. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure.

    PubMed

    Zhou, Jun; Zhang, Rui; Liu, Fenwu; Yong, Xiaoyu; Wu, Xiayuan; Zheng, Tao; Jiang, Min; Jia, Honghua

    2016-10-01

    Laboratory-scale reactors, in which the pH could be auto-adjusted, were employed to investigate the mesophilic methane fermentation with pig manure (7.8% total solids) at pH 6.0, 7.0, and 8.0. Results showed that the performance of anaerobic digestion was strongly dependent on pH value. Biogas production and methane content at neutral pH 7.0 were significantly higher (16,607mL, 51.81%) than those at pH 6.0 (6916mL, 42.9%) and 8.0 (9739mL, 35.6%). Denaturing gradient gel electrophoresis fingerprinting and Shannon's index indicated that the samples contained highly diverse microbial communities. The major genus at pH 7.0 was Methanocorpusculum, compared with that was Methanosarcina at both pH 6.0 and 8.0. Our research revealed that cultures maintained at pH 7.0 could support increased biogas production, which has significant implications for the scale-up biogas engineering.

  1. Process performance and methane production optimizing of anaerobic co-digestion of swine manure and corn straw.

    PubMed

    Mao, Chunlan; Zhang, Tong; Wang, Xiaojiao; Feng, Yongzhong; Ren, Guangxin; Yang, Gaihe

    2017-08-24

    During anaerobic digestion (AD) process, process parameters e.g., VFA, pH, COD removal … and kinetic parameters e.g., hydrolysis rate, lag phase and methane production potential… are the important indicator for illustrating AD process performance, however, the AD process performance based on these parameters remains poorly understood. To estimate process performance focusing on initial pH and substrate composition, the effects of initial pH and swine manure to corn straw ratio on biogas production and these parameters and linkages of these parameters were analyzed. Also, the methane production was optimized. The results revealed that the maximum methane yield and methane production rate were obtained with initial pH 7.5 and SM/CS ratio of 70:30. Kinetic parameters are coupled with process parameters, especially for COD removal rate, VS degradation rate, VFA and pH. Hydrolysis constant positively correlated with pH, COD removal rate and VS degradation rate, then impacted methane production and lag phase. Meanwhile, lag phase and the maximum methane production rate were directly determined by VFA and COD removal rate. The optimum initial pH and SM/CS ratio were 7.15 and 0.62, respectively, with a predicted maximum methane content of 55.12%. Thinking these findings together, they provide a scientific theory for estimating AD performance.

  2. Influence of zinc on biogas production and antibiotic resistance gene profiles during anaerobic digestion of swine manure.

    PubMed

    Zhang, Ranran; Wang, Xiaojuan; Gu, Jie; Zhang, Yajun

    2017-07-08

    This study determined the accumulated biogas, methane content, and absolute abundances (AAs) of 14 common antibiotic resistance genes (ARGs) and two integrons during the anaerobic digestion of swine manure for 52days with different amounts of added zinc. The accumulated biogas increased by 51.2% and 56.0% with 125mgL(-1) (L) and 1250mgL(-1) (H) zinc, respectively, compared with the control with no added zinc (CK), but there was no significant difference between L and H. Compared with CK, excluding tetW and tetC, all the other ARGs detected in this study increased in the L and H reactors. However, the low concentration of zinc (L reactor) caused greater increases in the AAs of ARGs in the AD products. Redundancy analysis showed that NO3-N and bio-zinc significantly explained the changes in genes, where they accounted for 60.9% and 20.3% of the total variation in the environmental factors, respectively. Copyright © 2017. Published by Elsevier Ltd.

  3. Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure.

    PubMed

    Hernández, Mario Andrés; Rodríguez Susa, Manuel; Andres, Yves

    2014-09-01

    Coffee mucilage (CM), a novel substrate produced as waste from agricultural activity in Colombia, the largest fourth coffee producer in the world, was used for hydrogen production. The study evaluated three ratios (C1-3) for co-digestion of CM and swine manure (SM), and an increase in organic load to improve hydrogen production (C4). The hydrogen production was improved by a C/N ratio of 53.4 used in C2 and C4. The average hydrogen production rate in C4 was 7.6 NL H2/LCMd, which indicates a high hydrogen potential compare to substrates such as POME and wheat starch. In this condition, the biogas composition was 0.1%, 50.6% and 39.0% of methane, carbon dioxide and hydrogen, respectively. The butyric and acetic fermentation pathways were the main routes identified during hydrogen production which kept a Bu/Ac ratio at around 1.0. A direct relationship between coffee mucilage, biogas and cumulative hydrogen volume was established. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity.

    PubMed

    Lin, Lin; Wan, Chunli; Liu, Xiang; Lei, Zhongfang; Lee, Duu-Jong; Zhang, Yi; Tay, Joo Hwa; Zhang, Zhenya

    2013-12-01

    Batch experiments were carried out on anaerobic digestion of swine manure under 10 % of total solids and 60 g/L of zeolite addition at 35 °C. Four distinctive volatile fatty acid (VFAs) evolution stages were observed during the anaerobic process, i.e., VFA accumulation, acetic acid (HAc) and butyric acid (HBu) utilization, propionic acid (HPr) and valeric acid (HVa) degradation, and VFA depletion. Large decreases in HAc/HBu and HPr/HVa occurred respectively at the first and second biogas peaks. Biogas yield increased by 20 % after zeolite addition, about 356 mL/g VSadded with accelerated soluble chemical oxygen demand degradation and VFA (especially HPr and HBu) consumption in addition to a shortened lag phase between the two biogas peaks. Compared with Ca(2+) and Mg(2+) (100-300 mg/L) released from zeolite, simultaneous K(+) and NH4 (+) (580-600 mg/L) adsorptions onto zeolite particles contributed more to the enhanced biogasification, resulting in alleviated inhibition effects of ammonium on acidogenesis and methanogenesis, respectively. All the identified anaerobes could be grouped into Bacteroidetes and Firmicutes, and zeolite addition had no significant influence on the microbial biodiversity in this study.

  5. Growth optimisation of microalga mutant at high CO₂ concentration to purify undiluted anaerobic digestion effluent of swine manure.

    PubMed

    Cheng, Jun; Xu, Jiao; Huang, Yun; Li, Yuyou; Zhou, Junhu; Cen, Kefa

    2015-02-01

    Growth rate of the microalga Chlorella PY-ZU1 mutated by nuclear irradiation was optimised for use in the purification of undiluted anaerobic digestion effluent of swine manure (UADESM) with 3745 mg L(-1) chemical oxygen demand (COD) and 1135 mg L(-1) total nitrogen content. The problem of accessible carbon in UADESM was solved by continuous introduction of 15% (v/v) CO2. Adding phosphorus to UADESM and aeration of UADESM before inoculation both markedly reduced the lag phase of microalgal growth. In addition, the biomass yield and average growth rate of Chlorella PY-ZU1 increased significantly to 4.81 g L(-1) and 601.2 mg L(-1) d(-1), respectively, while the removal efficiencies of total phosphorus, COD and ammonia nitrogen increased to 95%, 79% and 73%, respectively. Thus, the findings indicate that Chlorella PY-ZU1 can be used for effective purification of UADESM, while the biomass can be safely used as animal feed supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Microbial community structure and performance of an anaerobic reactor digesting cassava pulp and pig manure.

    PubMed

    Panichnumsin, P; Ahring, B; Nopharatana, A; Chaiprasert, P

    2012-01-01

    Microbial community dynamics in response to changes in substrate types (i.e. pig manure (PM), cassava pulp (CP) and mixtures of PM and CP) were investigated in an anaerobic continuously stirred tank reactor (CSTR). Molecular identification of bacterial and archaeal domains were performed, using a 16S rDNA clone library with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) screening and phylogenetic analysis. Analysis of bacterial clone libraries revealed that the differences in the community structure corresponded to the substrate types. However, the Bacteroidetes were the most abundant group in all substrates, followed by the Clostridia. With pure PM, the dominant bacterial groups were Bacteroidales, Clostridia and Paludibacter. With a co-substrate, at CP to PM (CP:PM) ratio of 50:50, the sequences analysis revealed the greatest diversity of bacterial communities at class level, and the sequences affiliated with Cytophaga sp. became an exclusive predominant. With CP alone, Bacteroides sp. was the dominant species and this reactor had the lowest diversity of bacteria. Archaea observed in the CSTR fed with all substrate types were Methanosaeta sp., Methanosaeta concilii and Methanospirillum hungatei. Among the Archaea, Methanosaeta sp. was the exclusive predominant. The relative distribution of Archaea also changed regarding to the substrate types.

  7. Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: Effect of the organic loading rate (OLR) on process performance.

    PubMed

    Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro

    2015-10-01

    Anaerobic co-digestion of dried pellet of exhausted sugar beet cossettes (ESBC-DP) with pig manure (PM) was investigated in a semi-continuous stirred tank reactor (SSTR) under mesophilic conditions. Seven hydraulic retention times (HRT) from 20 to 5 days were tested with the aim to evaluate the methane productivities and volatile solids (VS) removal. The corresponding organic loading rates (OLR) ranged from 4.2 to 12.8 gVS/L(reactor) d. The findings revealed that highest system efficiency was achieved at an OLR of 11.2 gVS/L(reactor) d (6 days-HRT) with a methane production rate (MPR) and volatile solids (VS) reduction of 2.91 LCH4/L(reactor) d and 57.5%, respectively. The HRT of 5 days was found critical for the studied process, which leads to volatile fatty acids (VFA) accumulation and sharp drop in pH. However, the increase of HRT permits the recovery of system.

  8. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.

    PubMed

    Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo

    2015-01-01

    The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.

  9. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    SciTech Connect

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  10. Treating separated liquid dairy manure derived from mesophilic anaerobic digester effluent to reduce indicator pathogens and Salmonella concentrations for use as organic fertilizer.

    PubMed

    Collins, Elizabeth W; Ogejo, Jactone A; Krometis, Leigh Anne H

    2015-01-01

    Dairy manure has much potential for use as an organic fertilizer in the United States. However, the levels of indicator organisms and pathogens in dairy manure can be ten times higher than stipulated use guidelines by the National Organic Standards Board (NOSB) even after undergoing anaerobic digestion at mesophilic temperatures. The objective of this study was to identify pasteurization temperatures and treatment durations to reduce fecal coliforms, E. coli, and Salmonella concentrations in separated liquid dairy manure (SLDM) of a mesophilic anaerobic digester effluent to levels sufficient for use as an organic fertilizer. Samples of SLDM were pasteurized at 70, 75, and 80°C for durations of 0 to 120 min. Fecal coliforms, E. coli, and Salmonella concentrations were assessed via culture-based techniques. All of the tested pasteurization temperatures and duration combinations reduced microbial concentrations to levels below the NOSB guidelines. The fecal coliforms and E. coli reductions ranged 2from 0.76 to 1.34 logs, while Salmonella concentrations were reduced by more than 99% at all the pasteurization temperatures and active treatment durations.

  11. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.

    PubMed

    Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia

    2017-04-04

    For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kWe, converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH4, CO2, H2S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kWe (70.4% of nominal power), and the last period the power resulted in 788kWe (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells.

  12. Green farming systems for the Southeast USA using manure-to-energy conversion platforms

    USDA-ARS?s Scientific Manuscript database

    Livestock operations in the Southeastern USA are faced with implementing holistic solutions to address effective manure treatment through efficient energy management and safeguarding of supporting natural resources. By integrating waste-to-energy conversion platforms, future green farming systems ca...

  13. Electrochemical oxidation of the poultry manure anaerobic digested effluents for enhancing pollutants removal by Chlorella vulgaris.

    PubMed

    Wang, Mengzi; Cao, Wei; Wu, Yu; Lu, Haifeng; Li, Baoming

    2016-01-01

    The mechanisms and pseudo-kinetics of the electrochemical oxidation for wastewater treatment and the synergistic effect of combining algal biological treatment were investigated. NaCl, Na2SO4 and HCl were applied to compare the effect of electrolyte species on nutrients removal. NaCl was proved to be more efficient in removing ammonia ([Formula: see text]), total phosphorus (TP), total organic carbon (TOC) and inorganic carbon (IC). [Formula: see text] oxidation by using Ti/Pt-IrO2 electrodes was modelled, which indicates that the [Formula: see text] removal followed the zero-order kinetic with sufficient Cl(-) and the first-order kinetic with insufficient Cl(-), respectively. The feasibility of combining electrochemical oxidation with microalgae cultivation for wastewater treatment was also determined. A 2 h electrochemical pretreatment reduced 57% [Formula: see text], 76% TP, 72% TOC and 77% IC from the digested effluent, which is applied as feedstock for algae cultivation, and resulted in increasing both the biomass production and pollutants removal efficiencies of the algal biological process.

  14. Online Design Aid for Evaluating Manure Pit Ventilation Systems to Reduce Entry Risk.

    PubMed

    Manbeck, Harvey B; Hofstetter, Daniel W; Murphy, Dennis J; Puri, Virendra M

    2016-01-01

    On-farm manure storage pits contain both toxic and asphyxiating gases such as hydrogen sulfide, carbon dioxide, methane, and ammonia. Farmers and service personnel occasionally need to enter these pits to conduct repair and maintenance tasks. One intervention to reduce the toxic and asphyxiating gas exposure risk to farm workers when entering manure pits is manure pit ventilation. This article describes an online computational fluid dynamics-based design aid for evaluating the effectiveness of manure pit ventilation systems to reduce the concentrations of toxic and asphyxiating gases in the manure pits. This design aid, developed by a team of agricultural engineering and agricultural safety specialists at Pennsylvania State University, represents the culmination of more than a decade of research and technology development effort. The article includes a summary of the research efforts leading to the online design aid development and describes protocols for using the online design aid, including procedures for data input and for accessing design aid results. Design aid results include gas concentration decay and oxygen replenishment curves inside the manure pit and inside the barns above the manure pits, as well as animated motion pictures of individual gas concentration decay and oxygen replenishment in selected horizontal and vertical cut plots in the manure pits and barns. These results allow the user to assess (1) how long one needs to ventilate the pits to remove toxic and asphyxiating gases from the pit and barn, (2) from which portions of the barn and pit these gases are most and least readily evacuated, and (3) whether or not animals and personnel need to be removed from portions of the barn above the manure pit being ventilated.

  15. Online Design Aid for Evaluating Manure Pit Ventilation Systems to Reduce Entry Risk

    PubMed Central

    Manbeck, Harvey B.; Hofstetter, Daniel W.; Murphy, Dennis J.; Puri, Virendra M.

    2016-01-01

    On-farm manure storage pits contain both toxic and asphyxiating gases such as hydrogen sulfide, carbon dioxide, methane, and ammonia. Farmers and service personnel occasionally need to enter these pits to conduct repair and maintenance tasks. One intervention to reduce the toxic and asphyxiating gas exposure risk to farm workers when entering manure pits is manure pit ventilation. This article describes an online computational fluid dynamics-based design aid for evaluating the effectiveness of manure pit ventilation systems to reduce the concentrations of toxic and asphyxiating gases in the manure pits. This design aid, developed by a team of agricultural engineering and agricultural safety specialists at Pennsylvania State University, represents the culmination of more than a decade of research and technology development effort. The article includes a summary of the research efforts leading to the online design aid development and describes protocols for using the online design aid, including procedures for data input and for accessing design aid results. Design aid results include gas concentration decay and oxygen replenishment curves inside the manure pit and inside the barns above the manure pits, as well as animated motion pictures of individual gas concentration decay and oxygen replenishment in selected horizontal and vertical cut plots in the manure pits and barns. These results allow the user to assess (1) how long one needs to ventilate the pits to remove toxic and asphyxiating gases from the pit and barn, (2) from which portions of the barn and pit these gases are most and least readily evacuated, and (3) whether or not animals and personnel need to be removed from portions of the barn above the manure pit being ventilated. PMID:27303661

  16. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam.

    PubMed

    Huong, Luu Quynh; Madsen, Henry; Anh, Le Xuan; Ngoc, Pham Thi; Dalsgaard, Anders

    2014-02-01

    Biogas digesters are widely promoted and increasingly used to treat and generate gas from pig slurry worldwide. The objective of this study was to describe manure management practices with focus on biogas digestion among small scale pig farmers in Hue (50 farmers) and Hanoi (96 farmers) and to assess fecal contamination levels in biogas effluent. Results showed that 84% of the farmers in Hanoi and 42% in Hue used both pig slurry and human excreta for biogas production. Biogas digestion only reduced E. coli concentrations by 1 to 2 log units to 3.70 ± 0.84 Escherichia coli (log10) cfu/ml on average in effluent as compared with raw slurry. Biogas effluent was commonly used to fertilize vegetables or discharged directly into the garden or aquatic recipients. Reduced problems with bad smells and flies were reported as main reasons for establishing a biogas digester. Further studies are needed to assess human and animal health hazards associated with the discharge and use of biogas effluent from small-scale biogas systems. © 2013.

  17. Biological clocks and the digestive system.

    PubMed

    Scheving, L A

    2000-08-01

    Circadian rhythms play a major role in regulating the digestive systems of many organisms. Cell proliferation, migration, differentiation, and even structure vary as a function of time of day in many different digestive organs (i.e., stomach, gut, liver, and pancreas) and cell types, resulting in regionally specific temporal variations in protein and gene expression. Feeding and light set the hands of the digestive clock(s). However, the clockwork has a genetic basis. During the last 10 years, new developments have emerged in our understanding of how cells keep time. Surprisingly, clock genes in mammals are expressed not only in specialized time keepers in the brain, but also in peripheral organs, suggesting that the ability to keep time may also belong to cells within the digestive system. This article reviews several classic examples of circadian variation in the digestive system, with an emphasis on rhythms in cell proliferation, function, and structure. It also briefly summarizes several new ideas about how cells in the brain and possibly the digestive system keep time.

  18. The effects of calcium benzoate in diets with or without organic acids on dietary buffering capacity, apparent digestibility, retention of nutrients, and manure characteristics in swine.

    PubMed

    Mroz, Z; Jongbloed, A W; Partanen, K H; Vreman, K; Kemme, P A; Kogut, J

    2000-10-01

    Eight barrows (Yorkshire x [Finnish Landrace x Dutch Landrace]), initially 30 kg BW, were fitted with ileal cannulas to evaluate the effects of supplementing Ca benzoate (2.4%) and organic acids (OA) in the amount of 300 mEq acid/kg feed on dietary buffering capacity (BC), apparent digestibility and retention of nutrients, and manure characteristics. Swine were allotted in a 2 x 4 factorial arrangement of treatments according to a cyclic (8 x 5) changeover design. Two tapioca-corn-soybean meal-based diets were formulated without and with acidogenic Ca benzoate. Each diet was fed in combination with OA (none, formic, fumaric, or n-butyric acid). Daily rations were equal to 2.8 x maintenance requirement (418 kJ ME/BW(.75)) and were given in two portions. Chromic oxide (.25 g/kg) was used as a marker. On average, Ca benzoate lowered BC by 54 mEq/kg feed. This salt enhanced (P < .05) the ileal digestibility (ID) of DM, OM, arginine, isoleucine, leucine, phenylalanine, alanine, aspartic acid, and tyrosine (by up to 2.4 percentage units). Also, the total tract digestibility (TD) of DM, ash, Ca and GE, and Ca retention (percentage of intake) was greater (P < .05) in swine fed Ca benzoate, whereas N retention remained unaffected. Addition of all OA (formic and n-butyric acid, in particular) exerted a positive effect (P < .05) on the ID of amino acids (except for arginine, methionine, and cysteine). A similar effect (P < .05) was found for the TD of DM, OM, CP, Ca and total P and for the retention of N and Ca. In swine fed Ca benzoate, urinary pH decreased by 1.6 units (P < .001). In conclusion, dietary OA have a beneficial effect on the apparent ileal/total tract nutrient digestibilities, and Ca benzoate increased urine acidity, which could be effective against a rapid ammonia emission from manure of swine.

  19. Runoff losses from corn silage-manure cropping systems

    USDA-ARS?s Scientific Manuscript database

    Transport of P, N, and sediment via runoff from crop fields, especially where manure has been applied, can contribute to eutrophication and degradation of surface waters. We established a paired-watershed field site in central Wisconsin to evaluate surface runoff losses of nutrients and sediment fro...

  20. Function of obestatin in the digestive system.

    PubMed

    Xing, Yue-Xian; Yang, Liu; Kuang, Hong-Yu; Gao, Xin-Yuan; Liu, Hao-Ling

    2017-02-01

    Physical health has a direct relationship with digestive function. Any abnormalities in the link may cause malnutrition, endocrine disorders, and the decline of organ functions. Obestatin, a biologically active peptide, is encoded by the ghrelin gene. Most studies suggest that obestatin is a pleiotropic peptide, which acts by suppressing the motility of the gastrointestinal tract, regulating the secretion of insulin, reducing inflammation and apoptosis, and promoting proliferation. These characteristics suggest that obestatin may represent an efficient way to prevent the occurrence and development of some digestive diseases. However, the functions of obestatin are not clear, and even appear to be contradictory. The aim of this review was to discuss the close relationship between obestatin and the digestive system, and to provide a unique perspective for the future development of obestatin relative to digestive diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Metagenomic analysis of methanogen populations in three full-scale mesophilic anaerobic manure digesters operated on dairy farms in Vermont, USA.

    PubMed

    St-Pierre, Benoit; Wright, André-Denis G

    2013-06-01

    The microbial communities that produce biogas as a result of anaerobic digestion of manure remain poorly understood. Using next-generation sequencing, methanogen populations were investigated in three full scale mesophilic anaerobic digesters operated on dairy farms. A combined 50 246 non-chimeric sequence reads covering the V1-V3 hypervariable regions of the methanogen 16S rRNA gene were assigned to 307 species-level operational taxonomic units (OTUs). The Blue Spruce Farms (BSF) and Green Mountain Dairy (GMD) anaerobic digesters were found to have nearly identical methanogen profiles, with the overwhelming predominance of OTU 1 (98.5% and 99.7%, respectively), which showed 99.2% sequence identity to Methanosarcina thermophila. In contrast, methanogens from the Chaput Family Farms (CFF) anaerobic digester were more diverse, with five major OTUs belonging to four distinct phylogenetic groups (Methanomicrobiales, Methanosarcinales, Methanoplasmatales, and Methanobacteriales). Differences in management practices and years of operation were hypothesized as potential factors responsible for differences in the methanogen profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Manure-DNDC: a biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems

    USDA-ARS?s Scientific Manuscript database

    From the point of view of biogeochemistry, manure is a complex of organic matter containing minor minerals. When manure is excreted by animals, it undergoes a series of reactions such as decomposition, hydrolysis, ammonia volatilization, nitrification, denitrification, and fermentation from which ca...

  3. Cancer stem cells of the digestive system.

    PubMed

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Apparent seed digestibility and germination of seeds after passage through the digestive system of northern bobwhite

    USDA-ARS?s Scientific Manuscript database

    Limited information is available regarding the digestibility or germination of seed after the passage through the digestive system of northern bobwhites (Colinus virginianus), especially of plants associated with the sand sagebrush (Artemisia filifolia)-mixed prairie community. Thus, our objectives...

  5. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy.

    PubMed

    De Vries, J W; Groenestein, C M; De Boer, I J M

    2012-07-15

    Liquid animal manure and its management contributes to environmental problems such as, global warming, acidification, and eutrophication. To address these environmental issues and their related costs manure processing technologies were developed. The objective here was to assess the environmental consequences of a new manure processing technology that separates manure into a solid and liquid fraction and de-waters the liquid fraction by means of reverse osmosis. This results in a liquid mineral concentrate used as mineral nitrogen and potassium fertilizer and a solid fraction used for bio-energy production or as phosphorus fertilizer. Five environmental impact categories were quantified using life cycle assessment: climate change (CC), terrestrial acidification (TA), marine eutrophication (ME), particulate matter formation (PMF), and fossil fuel depletion (FFD). For pig as well as dairy cattle manure, we compared a scenario with the processing method and a scenario with additional anaerobic digestion of the solid fraction to a reference situation applying only liquid manure. Comparisons were based on a functional unit of 1 ton liquid manure. System boundaries were set from the manure storage under the animal house to the field application of all end products. Scenarios with only manure processing increased the environmental impact for most impact categories compared to the reference: ME did not change, whereas, TA and PMF increased up to 44% as a result of NH3 and NO(x) emissions from processing and storage of solid fraction. Including digestion reduced CC by 117% for pig manure and 104% for dairy cattle manure, mainly because of substituted electricity and avoided N2O emission from storage of solid fraction. FFD decreased by 59% for pig manure and increased 19% for dairy cattle manure. TA and PMF remained higher compared to the reference. Sensitivity analysis showed that CH4 emission from manure storage, NH3 emission from processing, and the replaced nitrogen

  6. Adenylyl cyclases in the digestive system

    PubMed Central

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2015-01-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  7. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Your Digestive System and How It Works

    MedlinePlus

    ... liquids a person consumes each day. Why is digestion important? Digestion is important for breaking down food ... www.ods.od.nih.gov. 1 How does digestion work? Digestion works by moving food through the ...

  9. Enhanced recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membranes and aeration

    USDA-ARS?s Scientific Manuscript database

    Atmospheric ammonia pollution from livestock wastes can be reduced using gas-permeable membrane technology by converting ammonia contained in the manure into ammonium salt for use in fertilizers. In this study, gas-permeable membrane technology was enhanced using aeration combined with nitrificatio...

  10. Methane Recovery from Animal Manures The Current Opportunities Casebook

    SciTech Connect

    Lusk, P.

    1998-09-01

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only provides pollution prevention but also can convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion (AD) of livestock manures is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the AD animal manures. U.S. livestock operations currently employ four types of anaerobic digester technology: slurry, plug-flow, complete-mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Case studies of operating digesters, with project and maintenance histories and the operators ''lessons learned,'' are included as reality checks. Factors necessary for successful projects, as well as a list of reasons explaining why some AD projects fail, are provided. The role of farm management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at farms willing to incorporate the uncertainties of a new technology. More than two decades of research has provided much information about how manure can be converted to an energy source; however, the American farmer has not been motivated

  11. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure.

    PubMed

    Dechrugsa, Sumeth; Kantachote, Duangporn; Chaiprapat, Sumate

    2013-10-01

    Biochemical methane potential (BMP) assay was conducted at 35 °C to evaluate the effects of inoculum to substrate ratio (ISR) and substrate mix ratio between para-grass and pig manure co-digesting using different inocula. Rubber latex digester (RLD) inoculum showed higher methanogenic activity (41.4 mL CH4/gVS) than pig farm digester (PFD) inoculum (37.3 mL CH4/gVS). However, the maximum methane yields, occurred at the highest para-grass mix ratio (G), were 369.6, 437.6, 465.9 and 442.6 mL CH4/gTSadded for RLD inoculum, versus 332.4, 475.0, 519.5 and 521.9 mL/gTSadded for PFD inoculum at ISR 1, 2, 3, and 4, respectively. HPr, HBu and HVa appeared at higher G, corresponding to substrate's higher biodegradability. Response surface indicated that higher ISR and G had a significantly positive impact on methane yield. It suggested the use of higher ISR, i.e. 3 or 4, for BMP assay of these co-substrates. Dominant species of fermentative bacteria in each inoculum was tested by DGGE.

  12. Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: A C/N optimization case.

    PubMed

    Hassan, Muhammad; Ding, Weimin; Shi, Zhendan; Zhao, Sanqin

    2016-07-01

    The present study emphasized the co-digestion of the thermal-H2O2 pretreated wheat straw (WS) and chicken manure (CM) with the waste activated sludge at four levels of C/N (35:1, 30:1, 25:1 and 20:1). All C/N compositions were found significant (P<0.05) to enhance methane generation and process stability during the anaerobic co-digestion of WS and CM. The experimental results revealed that the composition having C/N value of 20:1 was proved as optimum treatment with the methane enhancing capability of 85.11%, CODs removal efficiency of 48.55% and 66.83% VS removal as compared with the untreated WS. The other compositions having C/N of 25:1, 30:1 and 35:1 provided 75.85%, 63.04% and 59.96% enhanced methane respectively as compared with the control. Pretreatment of the WS reduced its C/N value up to 65%. Moreover, to optimize the most suitable C/N composition, the process stability of the co-digestion of WS and CM was deeply monitored.

  13. Evaluation of methane generation and process stability from anaerobic co-digestion of sugar beet by-product and cow manure.

    PubMed

    Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro

    2016-05-01

    The effect of mesophilic anaerobic co-digestion of dried pellets of exhausted sugar beet cossettes (ESBC-DP) and cow manure (CM) on the enhancement of methane generation and process stability were studied with the aim to select the best substrate mixture ratio. A series of batch experiments was conducted using the following five mixture ratios of ESBC-DP:CM: 0:100; 25:75; 50:50; 75:25 and 100:0. Best results were obtained from mixture ratios with ESBC-DP proportions in the range of 25-50%. Mixture ratio of 50:50 showed a specific methane production (SMP) increase of 81.4% and 25.5%, respectively, in comparison with mono-digestion of ESBC-DP and CM. Evolution of the indirect parameter named acidogenic substrate as carbon (ASC) could be used to provide more insight about the process stability of anaerobic digestion. ASC accumulation was observed in reactors with higher ESBC-DP proportions leading to a delay in VFAs consumption and conversion into methane.

  14. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure.

    PubMed

    Li, Dong; Liu, Shengchu; Mi, Li; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Liu, Xiaofeng

    2015-01-01

    In order to investigate the effects of feedstock ratio and organic loading rate (OLR) on the anaerobic mesophilic co-digestion of rice straw (RS) and cow manure (CM), batch tests (2.5L) were carried out at volatile solid (VS) ratios of 0:1, 1:2, 1:1, 2:1, and 1:0 (RS/CM), and continuous bench experiments (40 L) were carried out at OLRs of 3.0, 3.6, 4.2, 4.8, 6.0, 8.0, and 12.0 kg VS/(m(3) d) with optimal VS ratio. The optimal VS ratio was found to be 1:1. Stable and efficient co-digestion with average specific biogas production of 383.5L/kg VS and volumetric biogas production rate of 2.30 m(3)/(m(3) d) was obtained at an OLR of 6 kg VS/(m(3) d). Anaerobic co-digestion was severely inhibited by the accumulation of volatile fatty acids instead of ammonia when the OLR was 12 kg VS/(m(3) d). Further, significant foaming was observed at OLR ⩾ 8 kg VS/(m(3) d).

  15. Delivery Systems for Distance Education. ERIC Digest.

    ERIC Educational Resources Information Center

    Schamber, Linda

    This ERIC digest provides a brief overview of the video, audio, and computer technologies that are currently used to deliver instruction for distance education programs. The video systems described include videoconferencing, low-power television (LPTV), closed-circuit television (CCTV), instructional fixed television service (ITFS), and cable…

  16. Earth Systems Education. ERIC/CSMEE Digest.

    ERIC Educational Resources Information Center

    Mayer, Victor J.

    National concerns about the quality and effectiveness of science teaching have resulted in several efforts directed at restructuring the United States' science curriculum. This digest discusses recent initiatives of the Earth Systems Education. Topics discussed include: (1) efforts to understand the planet Earth; (2) the Program for Leadership in…

  17. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate.

    PubMed

    Ekpo, U; Ross, A B; Camargo-Valero, M A; Williams, P T

    2016-01-01

    Thermal hydrolysis and hydrothermal processing show promise for converting biomass into higher energy density fuels. Both approaches facilitate the extraction of inorganics into the aqueous product. This study compares the behaviour of microalgae, digestate, swine and chicken manure by thermal hydrolysis and hydrothermal processing at increasing process severity. Thermal hydrolysis was performed at 170°C, hydrothermal carbonisation (HTC) was performed at 250°C, hydrothermal liquefaction (HTL) was performed at 350°C and supercritical water gasification (SCWG) was performed at 500°C. The level of nitrogen, phosphorus and potassium in the product streams was measured for each feedstock. Nitrogen is present in the aqueous phase as organic-N and NH3-N. The proportion of organic-N is higher at lower temperatures. Extraction of phosphorus is linked to the presence of inorganics such as Ca, Mg and Fe in the feedstock. Microalgae and chicken manure release phosphorus more easily than other feedstocks. Copyright © 2015. Published by Elsevier Ltd.

  18. Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw.

    PubMed

    Wang, Xuemei; Li, Zifu; Zhou, Xiaoqin; Wang, Qiqi; Wu, Yanga; Saino, Mayiani; Bai, Xue

    2016-11-01

    The use of enzymes to improve anaerobic co-digestion (AcoD) of cow manure and corn straw was explored in this study, including cellulase pretreatment and direct additions of amylase and protease. The effects of enzymes on microbial community structure were investigated though PCR-DGGE method. Results showed that AcoD with amylase achieved the highest methane yield of 377.63ml·CH4/g·VS, which was an increase of 110.79%. The methane increment consumed the amylase of 4.18×10(-5)g/ml·CH4. Enzymes mainly affected the bacteria in the hydrolysis stage rather than the bacteria in the hydrogenesis and acetogenesis stage and the archaea in the methanogenesis stage. However, the experimental results demonstrated that enzymes had no negative influence on microbial communities; the predominant microbial communities were similar. Therefore, AcoD with amylase was an effective way to improve the bio-methane yield of cow manure and corn straw.

  19. Removal of Suspended Solids in Anaerobically Digested Slurries of Livestock and Poultry Manure by Coagulation Using Different Dosages of Polyaluminum Chloride

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhang, C. J.; Zhao, T. K.; Zhong, H.

    2017-01-01

    In this study, anaerobically digested slurries of livestock and poultry manure were pretreated by coagulation-sedimentation using an inorganic polymer coagulant, polyaluminum chloride (PAC). The effect of different PAC dosages on suspended solids (SS) removal and pH in the biogas slurries was assessed to provide reference values for reducing the organic load of biogas slurry in the coagulation-sedimentation process and explore the feasibility of reducing the difficulty in subsequent utilization or processing of biogas slurry. The results showed that for the pig slurry containing approximately 5000 mg/L SS, the removal rate of SS reached up to 81.6% with the coagulant dosage of 0.28 g/L PAC. For the chicken slurry containing approximately 2600 mg/L SS, the removal rate of SS was 30.2% with the coagulant dosage of 0.33 g/L PAC. The removal rate of SS in both slurries of livestock and poultry manure exhibited a downward trend with high PAC dosage. Therefore, there is a need to control the PAC dosage in practical use. The pH changed little in the two types of biogas slurries after treatment with different PAC dosages and both were in line with the standard values specified in the “Standards for Irrigation Water Quality”.

  20. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley.

    PubMed

    Battini, F; Agostini, A; Boulamanti, A K; Giuntoli, J; Amaducci, S

    2014-05-15

    This work analyzes the environmental impacts of milk production in an intensive dairy farm situated in the Northern Italy region of the Po Valley. Three manure management scenarios are compared: in Scenario 1 the animal slurry is stored in an open tank and then used as fertilizer. In scenario 2 the manure is processed in an anaerobic digestion plant and the biogas produced is combusted in an internal combustion engine to produce heat (required by the digester) and electricity (exported). Scenario 3 is similar to scenario 2 but the digestate is stored in a gas-tight tank. In scenario 1 the GHG emissions are estimated to be equal to 1.21 kg CO2 eq.kg(-1) Fat and Protein Corrected Milk (FPCM) without allocation of the environmental burden to the by-product meat. With mass allocation, the GHG emissions associated to the milk are reduced to 1.18 kg CO2 eq.kg(-1) FPCM. Using an economic allocation approach the GHG emissions allocated to the milk are 1.13 kg CO2 eq.kg(-1) FPCM. In scenarios 2 and 3, without allocation, the GHG emissions are reduced respectively to 0.92 (-23.7%) and 0.77 (-36.5%) kg CO2 eq.kg(-1) FPCM. If land use change due to soybean production is accounted for, an additional emission of 0.53 kg CO2 eq. should be added, raising the GHG emissions to 1.74, 1.45 and 1.30 kg CO2 eq kg(-1) FPCM in scenarios 1, 2 and 3, respectively. Primary energy from non-renewable resources decreases by 36.2% and 40.6% in scenarios 2 and 3, respectively, with the valorization of the manure in the biogas plant. The other environmental impact mitigated is marine eutrophication that decreases by 8.1% in both scenarios 2 and 3, mostly because of the lower field emissions. There is, however, a trade-off between non-renewable energy and GHG savings and other environmental impacts: acidification (+6.1% and +5.5% in scenarios 2 and 3, respectively), particulate matter emissions (+1.4% and +0.7%) and photochemical ozone formation potential (+41.6% and +42.3%) increase with the

  1. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows.

    PubMed

    Hristov, A N; Vander Pol, M; Agle, M; Zaman, S; Schneider, C; Ndegwa, P; Vaddella, V K; Johnson, K; Shingfield, K J; Karnati, S K R

    2009-11-01

    This experiment (replicated 3 x 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g of LA/d, or 530 g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15 d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition.

  2. Effects of Feeding Encapsulated Nitrate to Beef Cattle on Ammonia and Greenhouse Gas Emissions from Their Manure in a Short-Term Manure Storage System.

    PubMed

    Lee, Chanhee; Araujo, Rafael C; Koenig, Karen M; Hile, Michael L; Fabian-Wheeler, Eileen E; Beauchemin, Karen A

    2016-11-01

    A study was conducted to investigate effects of feeding encapsulated nitrate (EN) to beef cattle on ammonia (NH) and greenhouse gas emissions from their manure. Eight beef heifers were randomly assigned to diets containing 0 (control), 1, 2, or 3% EN (55% forage dry matter; EN replaced encapsulated urea in the control diet and therefore all diets were iso-nitrogenous) in a replicated 4 × 4 Latin square design. Urine and feces collected from individual animals were reconstituted into manure and incubated over 156 h using a steady-state flux chamber system to monitor NH, methane (CH), carbon dioxide (CO), and nitrous oxide (NO) emissions. Urinary, fecal, and manure nitrate (NO)-N concentration linearly increased ( < 0.001) with feeding EN, and urinary urea concentration tended to be lower ( = 0.078) for EN versus Control. The hourly emissions of NH, CO, and NO (mg head h) were not affected, although NH emission rates tended to be lower ( = 0.070) for EN compared with Control at 0 to 12 h. Cumulative NH, CO, and NO emissions over 156 h were not affected, but CH emissions were less (4.5 vs. 7.4 g head; = 0.027) for EN compared with Control. In conclusion, although NH emissions were initially lower for EN manures, total NH emitted over 156 h was not affected. Dietary EN lowered CH emissions from manure, and, despite greater NO concentrations in EN manure, NO emissions were not affected in this short-term incubation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.

    PubMed

    Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave

    2017-04-18

    Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.

  4. Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate based soil mixtures for biopurification systems.

    PubMed

    Mukherjee, Santanu; Tappe, Wolfgang; Weihermueller, Lutz; Hofmann, Diana; Köppchen, Stephan; Laabs, Volker; Schroeder, Tom; Vereecken, Harry; Burauel, Peter

    2016-02-15

    Biopurification systems, such as biofilters, are biotechnological tools to prevent point sources of pesticide pollution stemming from on-farm operations. For the purification processes pesticide sorption and mineralization and/or dissipation are essential and both largely depend on the type of filling materials and the pesticide in use. In this paper the mineralization and dissipation of three contrasting (14)C-labeled pesticides (bentazone, boscalid, and pyrimethanil) were investigated in laboratory incubation experiments using sandy soil, biochar produced from Pine woodchips, and/or digestate obtained from anaerobic digestion process using maize silage, chicken manure, beef and pig urine as feedstock. The results indicate that the addition of digestate increased pesticide mineralization, whereby the mineralization was not proportional to the digestate loads in the mixture, indicating a saturation effect in the turnover rate of pesticides. This effect was in correlation with the amount of water extractable DOC, obtained from the digestate based mixtures. Mixing biochar into the soil generally reduced total mineralization and led to larger sorption/sequestration of the pesticides, resulting in faster decrease of the extractable fraction. Also the addition of biochar to the soil/digestate mixtures reduced mineralization compared to the digestate alone mixture but mineralization rates were still higher as for the biochar/soil alone. In consequence, the addition of biochar to the soil generally decreased pesticide dissipation times and larger amounts of biochar led to high amounts of non-extractable residues of pesticide in the substrates. Among the mixtures tested, a mixture of digestate (5%) and biochar (5%) gave optimal results with respect to mineralization and simultaneous sorption for all three pesticides.

  5. Co-composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system.

    PubMed

    Qian, Xiaoyong; Shen, Genxiang; Wang, Zhenqi; Guo, Chunxia; Liu, Yangqing; Lei, Zhongfang; Zhang, Zhenya

    2014-02-01

    Composting is considered to be a primary treatment method for livestock manure and rice straw, and high degree of maturity is a prerequisite for safe land application of the composting products. In this study pilot-scale experiments were carried out to characterize the co-composting process of livestock manure with rice straw, as well as to establish a maturity evaluation index system for the composts obtained. Two pilot composting piles with different feedstocks were conducted for 3 months: (1) swine manure and rice straw (SM-RS); and (2) dairy manure and rice straw (DM-RS). During the composting process, parameters including temperature, moisture, pH, total organic carbon (TOC), organic matter (OM), different forms of nitrogen (total, ammonia and nitrate), and humification index (humic acid and fulvic acid) were monitored in addition to germination index (GI), plant growth index (PGI) and Solvita maturity index. OM loss followed the first-order kinetic model in both piles, and a slightly faster OM mineralization was achieved in the SM-RS pile. Also, the SM-RS pile exhibited slightly better performance than the DM-RS according to the evolutions of temperature, OM degradation, GI and PGI. The C/N ratio, GI and PGI could be included in the maturity evaluation index system in which GI>120% and PGI>1.00 signal mature co-composts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Vaccine therapies against digestive-system cancers].

    PubMed

    Sakakibara, Mitsuru; Kanto, Tatsuya

    2011-09-01

    Cancer vaccine is a promising tool to achieve therapeutic responses in patients by inducing anti-tumor immunity. Several cancer vaccine trials have been performed in patients with digestive-system cancers. Two major candidates are peptide vaccine and dendritic cell (DC) vaccine. Since their clinical impacts are still limited, extensive studies are underway in order to identify more effective antigens or to potentiate DC functions. We developed a novel DC possessing potent stimulating activity for Th1, CTL, and NK cells, which are desirable for clinical DC vaccines. We performed the clinical trial using such DC for the treatment of colorectal cancer. In some of vaccinated patients, the capacity of NK cells and CTLs was successfully enhanced. Thus, cancer vaccines could be a therapeutic option for digestive-system cancers.

  7. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions.

    PubMed

    Li, Yeqing; Zhang, Ruihong; Chen, Chang; Liu, Guangqing; He, Yanfeng; Liu, Xiaoying

    2013-12-01

    Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VS added was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2L methane/L reactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 2--correlations between microbiomes and environment.

    PubMed

    Regueiro, Leticia; Spirito, Catherine M; Usack, Joseph G; Hospodsky, Denina; Werner, Jeffrey J; Angenent, Largus T

    2015-12-15

    Here, we studied the microbiome succession and time-scale variability of four mesophilic anaerobic reactors in a co-digestion study with the objective to find links between changing environmental conditions and the microbiome composition. The changing environmental conditions were ensured by gradual increases in loading rates and mixing ratios of three co-substrates with a constant manure-feeding scheme during an operating period longer than 900 days. Each co-substrate (i.e., alkaline hydrolysate, food waste, and glycerol) was co-digested separately. High throughput 16S rRNA gene sequencing was used to examine the microbiome succession. The alkaline hydrolysate reactor microbiome shifted and adapted to high concentrations of free ammonia, total volatile fatty acids, and potassium to maintain its function. The addition of food waste and glycerol as co-substrates also led to microbiome changes, but to a lesser extent, especially in the case of the glycerol reactor microbiome. The divergence of the food waste reactor microbiome was primarily linked to increasing free ammonia levels in the reactor; though, these levels remained below previously reported inhibitory levels for acclimated biomass. The glycerol reactor microbiome succession included an increase in Syntrophomonadaceae family members, which have previously been linked to long-chain fatty acid degradation. The glycerol reactor exhibited rapid failure and limited adaptation at the end of the study.

  9. Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Lodge, Jeffrey S; Williamson, Anahita A; Trabold, Thomas A

    2016-06-01

    Anaerobic digestion of commercial food waste is a promising alternative to landfilling commercial food waste. This study characterized 11 types of commercial food wastes and 12 co-digestion blends. Bio-methane potential, biodegradable fraction, and apparent first-order hydrolysis rate coefficients were reported based upon biochemical methane potential (BMP) assays. Food waste bio-methane potentials ranged from 165 to 496 mL CH4/g VS. Substrates high in lipids or readily degradable carbohydrates showed the highest methane production. Average bio-methane potential observed for co-digested substrates was -5% to +20% that of the bio-methane potential of the individual substrates weighted by VS content. Apparent hydrolysis rate coefficients ranged from 0.19d(-1) to 0.65d(-1). Co-digested substrates showed an accelerated apparent hydrolysis rate relative to the weighted average of individual substrate rates. These results provide a database of key bio-digestion parameters to advance modeling and utilization of commercial food waste in anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nutrients removal from the secondary effluents of municipal domestic wastewater by Oscillatoria tenuis and subsequent co-digestion with pig manure.

    PubMed

    Cheng, Qunpeng; Deng, Fang; Li, Hongxia; Qin, ZhenHua; Wang, Mei; Li, Jianfen

    2017-09-12

    Batch experiments were carried out to investigate the performance of Oscillatoria tenuis to remove nitrogen, phosphorus and chemical oxygen demand (COD) from secondary effluents of municipal domestic wastewater. Meanwhile the potential of biogas production by collected O. tenuis co-digested with pig manure was also investigated. O. tenuis had a biomass productivity of 150 mg L(-1) d(-1), a removal rate of [Formula: see text] (96.1%), total phosphorus (82.9%) and COD (92.6%) within 7 d at an aeration rate of 1.0 L/min. The biochemical methane potential (BMP) test for O. tenuis fermented with pig manure was evaluated at three different ratios. The cumulative methane yield was 183 mL CH4/gVSadd at a mixing ratio (MR) of 3.0, 191 mL CH4/gVSadd at a MR of 2.0 and 84 mL CH4/gVSadd at a MR of 1.0. The maximum methane yield appeared at the ratio of 2.0. Meanwhile, acid-, alkali- and thermal-pretreatments were applied to raw microalgae biomass to promote biogas production. The highest methane productivity (256 mL CH4/gVSadd) was achieved by the thermal-pretreatment at 120°C, which was about 1.5 times higher than the non-pretreatment group (191 mL CH4/g VSadd).

  11. Nanostructured microfluidic digestion system for rapid high-performance proteolysis.

    PubMed

    Cheng, Gong; Hao, Si-Jie; Yu, Xu; Zheng, Si-Yang

    2015-02-07

    A novel microfluidic protein digestion system with a nanostructured and bioactive inner surface was constructed by an easy biomimetic self-assembly strategy for rapid and effective proteolysis in 2 minutes, which is faster than the conventional overnight digestion methods. It is expected that this work would contribute to rapid online digestion in future high-throughput proteomics.

  12. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios.

    PubMed

    Arndt, C; Powell, J M; Aguerre, M J; Wattiaux, M A

    2015-01-01

    Two trials were conducted simultaneously to study the effects of varying alfalfa silage (AS) to corn silage (CS) ratio in diets formulated to avoid excess protein or starch on lactating dairy cow performance, digestibility, ruminal parameters, N balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), methane (CH4), and ammonia-N (NH3-N)]. In trial 1 all measurements, except gas emissions, were conducted on 8 rumen-cannulated cows in replicated 4×4 Latin squares. In trial 2, performance and emissions were measured on 16 cows randomly assigned to 1 of 4 air-flow controlled chambers in a 4×4 Latin square. Dietary treatments were fed as total mixed rations with forage-to-concentrate ratio of 55:45 [dietary dry matter (DM) basis] and AS:CS ratios of 20:80, 40:60, 60:40, and 80:20 (forage DM basis). Measurements were conducted the last 3d of each 21-d period. Treatments did not affect DM intake, DM digestibility, and milk/DM intake. However, responses were quadratic for fat-and-protein-corrected milk, fat, and protein production, which reached predicted maxima for AS:CS ratio of 50:50, 49:51, and 34:66, respectively. Nitrogen use efficiency (milk N/N intake) decreased from 31 to 24g/100g as AS:CS ratio increased from 20:80 to 80:20. Treatments did not alter NH3-N/milk-N but tended to have a quadratic effect on daily NH3-N emission. Treatments had a quadratic effect on daily CH4 emission, which was high compared with current literature; they influenced CH4 emission per unit of neutral detergent fiber (NDF) intake and tended to influence CO2/NDF intake. Ruminal acetate-to-propionate ratio and total-tract NDF digestibility increased linearly with increasing AS:CS ratio. In addition, as AS:CS ratio increased from 20:80 to 80:20, NDF digested increased linearly from 2.16 to 3.24kg/d, but CH4/digested NDF decreased linearly from 270 to 190g/kg. These 2 counterbalancing effects likely contributed to the observed quadratic response in daily CH4

  13. The effect of high and low dietary crude protein and inulin supplementation on nutrient digestibility, nitrogen excretion, intestinal microflora and manure ammonia emissions from finisher pigs.

    PubMed

    Lynch, M B; Sweeney, T; Callan B Flynn, J J; O'Doherty, J V

    2007-09-01

    A 2 × 2 factorial experiment was performed to investigate the interaction between a high- and low-crude-protein (CP) diet (200 v. 140 g/kg) and inulin supplementation (0 v. 12.5 g/kg) on nutrient digestibility, nitrogen (N) excretion, intestinal microflora, volatile fatty acid (VFA) concentration and manure ammonia emissions from 24 boars (n = 6, 74.0 kg live weight). The diets were formulated to contain similar concentrations of digestible energy and lysine. Pigs offered the high-CP diets had a higher excretion of urinary N (P < 0.001), faecal N (P < 0.01) and total N (P < 0.001) than the pigs offered the low-CP diets. Inulin supplementation increased faecal N excretion (P < 0.05) and decreased the urine N : faeces N ratio (P < 0.05) compared with the inulin-free diets. There was no effect (P > 0.05) of dietary treatment on N retention. There was an interaction (P < 0.05) between dietary CP concentration and inulin supplementation on caecal Enterobacteria spp. Pigs offered the diet containing 200 g/kg of CP plus inulin decreased the population of Enterobacteria spp. compared to those with the inulin-supplemented 140 g/kg CP diet. However, CP level had no significant effect on the population of Enterobacteria spp. in the unsupplemented diets. Inulin supplementation increased caecal Bifidobacteria (P < 0.01) compared with the inulin-free diets. There was no effect of inulin supplementation on VFA concentration or intestinal pH (P > 0.05). Pigs offered the 200 g/kg CP diets had higher (P < 0.05) manure ammonia emissions from 0 to 240 h of storage than pigs offered the 140 g/kg CP. In conclusion, inulin supplementation resulted in an increase in Bifidobacteria concentration and a reduction in Enterobacteria spp. at the high CP level indicating that inulin has the ability to beneficially manipulate gut microflora in a proteolytic environment.

  14. Low-disturbance manure application methods in a corn silage-rye cover crop system

    USDA-ARS?s Scientific Manuscript database

    Incorporation of manure by tillage can conserve manure N by reducing ammonia volatilization losses, but tillage also incorporates crop residue, which increases erosion potential. This study compared several low-disturbance manure application methods, designed to incorporate manure while still mainta...

  15. Comparison of raw dairy manure slurry and anaerobically digested slurry as N sources for grass forage production

    USDA-ARS?s Scientific Manuscript database

    Our study was conducted to determine how raw dairy slurry and anaerobically digested slurry (dairy slurry and food waste) applied via broadcast and subsurface deposition to reed canary grass (Phalaris arundinacea) affected forage biomass, N uptake, apparent nitrogen recovery (ANR), and soil nitrate...

  16. Kinetics of anaerobic degradation of screened dairy manure by upflow fixed bed digesters: effect of natural zeolite addition.

    PubMed

    Nikolaeva, S; Sánchez, E; Borja, R; Raposo, F; Colmenarejo, M F; Montalvo, S; Jiménez-Rodríguez, A M

    2009-02-01

    The effect of the hydraulic retention time (HRT) on the performance of two up-flow anaerobic fixed bed digesters (UFAFBDs) packed with waste tire rubber (D1) and waste tire rubber and zeolite (D2) as micro-organism immobilization supports was studied. It was found that a first-order kinetic model described well the experimental results obtained. The kinetic constants for COD, BOD5, total solids (TS) and volatile solids (VS) removal were determined to be higher in digester D2 than in digester D1 or control. Specifically, they were 0.28 +/- 0.01, 0.32 +/- 0.02, 0.16 +/- 0.01 and 0.24 +/- 0.01 d(- 1) respectively for D1 and 0.33 +/- 0.02, 0.40 +/- 0.02, 0.21 +/- 0.01 and 0.28 +/- 0.01 d(- 1) respectively for D2. This was significant at the 95% confidence level. In addition, the first-order model was also adequate for assessing the effect of the HRT on the removal efficiency and methane production. Maximum methane yield and the first-order constant for methane production were determined and the results obtained were comparable with those obtained by other authors but operating at higher HRTs. Maximum methane yields and the kinetic constant for methane production were 11.1% and 29.4% higher in digester D2 than in D1.

  17. Expert system for control of anaerobic digesters

    SciTech Connect

    Pullammanappallil, P.C.; Svoronos, S.A.; Chynoweth, D.P.; Lyberatos, G.

    1998-04-05

    Anaerobic digestion is a biochemical process that converts organic matter into methane and carbon dioxide along with the production of bacterial matter. It is primarily used for waste and wastewater treatment but can also be used for energy production. Continuous anaerobic digesters are systems that present challenging control problems including the possibility that an unmeasured disturbance can change the sign of the steady-state process gain. An expert system is developed that recognizes changes in the sign of process gain and implements appropriate control laws. The sole on-line measured variable is the methane production rate, and the manipulated input is the dilution rate. The expert system changes the dilution rate according to one of four possible strategies: a constrained conventional set-point control law, a constant yield control law (CYCL) that is nearly optimal for the most common cause of change in the sign of the process gain, batch operation, or constant dilution rate. The algorithm uses a t test for determining when to switch to the CYCL and returns to the conventional set-point control law with bumpless transfer. The expert system has proved successful in several experimental tests: severe overload; mild, moderate, and severe underload; and addition of phenol in low and high levels. Phenol is an inhibitor that in high concentrations changes the sign of the process gain.

  18. Student Teachers' Ways of Thinking and Ways of Understanding Digestion and the Digestive System in Biology

    ERIC Educational Resources Information Center

    Çimer, Sabiha Odabasi; Ursavas, Nazihan

    2012-01-01

    The purpose of this study was to identify the ways in which student teachers understand digestion and the digestive system and, subsequently, their ways of thinking, as reflected in their problem solving approaches and the justification schemes that they used to validate their claims. For this purpose, clinical interviews were conducted with 10…

  19. Vitamin D and the digestive system.

    PubMed

    Stumpf, Walter E

    2008-01-01

    Target tissues of in vivo receptor binding and deposition of 1,25(OH)2 vitamin D3 and its oxygen analog OCT are reviewed in rats, mice, hamsters and zebra finch, identified with high-resolution microscopic autoradiography. Throughout the digestive system numerous sites with nuclear receptor binding of 3H-1,25(OH)2 vitamin D3 and 3H-OCT exist: in the oral region, epithelial cells of the oral cavity, tongue and gingiva, teeth odontoblast and ameloblast precursor pulp and stratum intermedium cells; in the parotid, submandibular and sublingual salivary glands, epithelial cells of striated ducts and granular convoluted tubules, intercalated ducts and acinar cells, as well as myoepithelial cells; in the stomach, neck mucous cells of gastric glands, endocrine cells of the antrum, and muscle cells of the pyloric sphincter; in the small and large intestine, absorptive and crypt epithelial cells; in the pancreas, predominantly islet B-cells. Perisinusoidal stellate (Ito) cells in the liver concentrate and retain variable amounts of radiolabeled compound in regions of their cytoplasm after administration of 3H-I,25(OH)2 vitamin D3 and 3H-25(OH) vitamin D3, probably sites of specific storage, similar to vitamin A. Submucosa in stomach and intestine also retain variable amounts of radiolabel, however unspecific with all compounds studied. In pilot studies with 3H-25(OH)2 vitamin D3 and 3H-24,25(OH)2 vitamin D3, no nuclear concentration was detectable. The reviewed data for vitamin D and its oxygen analogue OCT indicate genomic effects on multiple target tissues of the digestive system that involve cell proliferation and differentiation, endo- and exocrine secretion, digestion and absorption for maintaining optimal functions, with potentials for health prophylaxis and therapies.

  20. Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure.

    PubMed

    Zhang, Junya; Wang, Ziyue; Wang, Yawei; Zhong, Hui; Sui, Qianwen; Zhang, Changping; Wei, Yuansong

    2017-09-04

    The role of graphene oxide (GO) on anaerobic digestion (AD) of swine manure concerning the performance, microbial community and antibiotic resistance genes (ARGs) reduction was investigated. Results showed that methane production was reduced by 13.1%, 10.6%, 2.7% and 17.1% at GO concentration of 5mg/L, 50mg/L, 100mg/L and 500mg/L, respectively, but propionate degradation was enhanced along with GO addition. Both bacterial and archaeal community changed little after GO addition. AD could well reduce ARGs abundance, but it was deteriorated at the GO concentration of 50mg/L and 100mg/L and enhanced at 500mg/L, while no obvious changes at 5mg/L. Network and SEM analysis indicated that changes of each ARG was closely associated with variation of microbial community composition, environmental variables contributed most to the dynamics of ARGs indirectly, GO influenced the ARGs dynamics negatively and (heavy metal resistance genes (MRGs)) influenced the most directly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Environmental and economic comparisons of manure application methods in farming systems.

    PubMed

    Rotz, C A; Kleinman, P J A; Dell, C J; Veith, T L; Beegle, D B

    2011-01-01

    Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.

  2. The effects of substrate pre-treatment on anaerobic digestion systems: a review.

    PubMed

    Carlsson, My; Lagerkvist, Anders; Morgan-Sagastume, Fernando

    2012-09-01

    Focus is placed on substrate pre-treatment in anaerobic digestion (AD) as a means of increasing biogas yields using today's diversified substrate sources. Current pre-treatment methods to improve AD are being examined with regard to their effects on different substrate types, highlighting approaches and associated challenges in evaluating substrate pre-treatment in AD systems and its influence on the overall system of evaluation. WWTP residues represent the substrate type that is most frequently assessed in pre-treatment studies, followed by energy crops/harvesting residues, organic fraction of municipal solid waste, organic waste from food industry and manure. The pre-treatment effects are complex and generally linked to substrate characteristics and pre-treatment mechanisms. Overall, substrates containing lignin or bacterial cells appear to be the most amendable to pre-treatment for enhancing AD. Approaches used to evaluate AD enhancement in different systems is further reviewed and challenges and opportunities for improved evaluations are identified.

  3. Cropping System and Type of Pig Manure Affect Nitrate-Nitrogen Leaching in a Sandy Loam Soil.

    PubMed

    Karimi, Rezvan; Akinremi, Wole; Flaten, Don

    2017-07-01

    The application of livestock manure can result in the loss of nitrate-nitrogen (NO-N) and degrade surface and groundwater. A 3-yr lysimeter study was set up to compare the effect of cropping system and nitrogen (N)- and phosphorus (P)-based pig manure application rates on the loss of water and NO-N below the root zone. The experiment was a split-plot design with annual and perennial cropping systems as the main factor. Five nutrient management treatments were the subplots: N-based liquid pig manure application; P-based liquid pig manure application, N-based solid pig manure application, P-based solid pig manure application, and a control without amendment. The results showed that 40 to 60 kg NO-N ha was lost from the annual plots in 2010 and 23 to 60 kg NO-N ha in 2011, whereas a negligible amount of NO-N was lost from the perennial (<1 kg ha) plots in both years. The application of solid pig manure on a P basis followed by urea in subsequent years reduced the risk of NO-N leaching over the course of the rotation, likely due to immobilization of N by the straw in the solid pig manure. Our study showed that a perennial cropping system consisting of a mixture of grasses has the capacity to receive and utilize significant amounts of nutrients with negligible amount of nutrient leakages to the adjacent environment. The inclusion of grasses in a crop rotation and their use to take up excess nutrients are sustainable practices that will benefit the environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Developing methodologies for estimation of manure across livestock systems using agricultural census data

    NASA Astrophysics Data System (ADS)

    Khalil, Mohammad I.; Muldowney, John; Osborne, Bruce

    2017-04-01

    Livestock production and management-induced emissions of greenhouse gases (GHGs), comprising 18% of total global anthropogenic emissions together with air pollutants, have major atmospheric and ecosystem-related impacts. Identification of categorical/sub-categorical hotspots associated with these emissions and the estimation of emissions factors (EFs), including the use of the Intergovernmental Panel on Climate Change defaults (Tier 1), are key objectives in the preparation of reasonable, and transparent national reporting inventories (Tier 2). They also provide a basis for assessment of technological/management approaches for emissions reduction. For this, data on manure (solid/FYM and slurry/liquid) production across livestock categories, housing types and periods, storage types and application methodologies are required. However, relevant agricultural activity data are not sufficient to quantify the proportion and timing of the amounts of manure applied to major land use types and for different seasons. We have used the recent Census of Agriculture survey data 2010, collected by the Central Statistics Office, Ireland. Based on the compiled datasheets, several steps have been taken to generate missing information (e.g., number of individual livestock categories/subcategories) and to develop methodologies for calculating the proportion of slurry and manure production and application across farm categories. Among livestock categories, the proportion (%) of slurry over solids was higher for pigs (99:1) than the proportion derived from cattle (61:39). Solid manure production from other livestock systems derived mostly from loose-bedded houses. There were large differences between the proportions estimated using the number of farms and the livestock population. A major proportion of the slurry was applied to grassland (97 vs. 73) and the amounts applied in spring and summer were similar (40-42 vs. 36-39), but significantly higher than the autumn application (18 vs. 24

  5. Effect of feedlot manure collection techniques on ultimate methane yield

    SciTech Connect

    Williams, D.W.; Hills, D.J.

    1981-01-01

    Beef cattle manure collected from unpaved dirt feedlots has a significantly reduced energy production potential due to low organic content and dirt contamination. In laboratory batch fermentors beef feedlot manure of various ages was digested. The study showed that compared with fresh manure gas production at 100%, aged manure produced between 16 and 73% of the gas per kilogram of volatile solids added. More than one-half of the nitrogen was lost after the manure had aged three months. The resulting economic advantage of fresh manure over aged manure for energy and nitrogen recovery would be from $26 to $61/head/y.

  6. Effects of biopolymer encapsulation on trans fatty acid digestibility in an in vitro human digestion system.

    PubMed

    Hur, Sun Jin; Kim, Doo Hwan; Chun, Se Chul; Lee, Si Kyung; Keum, Young Soo

    2013-12-01

    The purpose of this study was to examine the effects of biopolymer encapsulation on the digestion of trans fatty acids by using an in vitro human digestion model. We simulated the main components of the human digestive system using a dialysis tubing system that contained synthetic saliva, gastric juice, and digestive enzymes of the small intestine. Trans fatty acid-enriched fat was encapsulated with 1% chitosan, pectin, cellulose, and β-glucan, and passed through the model system. Samples of trans fatty acid-enriched fat that were unencapsulated were more digestible than those that were encapsulated in biopolymers. Moreover, the levels of trans octadecenoic acids (18 : 1t) formed during the digestion of trans fatty acid-enriched fat were decreased upon biopolymer encapsulation. Fat samples enriched with trans fatty acids that were encapsulated with pectin or chitosan had lower free fatty acid contents and lipid oxidation values than unencapsulated control samples. These findings improve our understanding of the effects of biopolymer encapsulation on the digestion of total lipids and trans fatty acids within the gastrointestinal tract.

  7. Digestive Diseases

    MedlinePlus

    ... Digestive Diseases English English Español Digestive Diseases The digestive system made up of the gastrointestinal tract (GI), liver, ... while others are chronic, or long-lasting. Your Digestive System and How It Works Featured Topics Irritable Bowel ...

  8. Tillage system and time post-liquid dairy manure: Effects on runoff, sediment and nutrients losses

    USDA-ARS?s Scientific Manuscript database

    Liquid manure applied in agricultural lands improves soil quality. However, incorrect management of manure may cause environmental problems due to sediments and nutrients losses associated to runoff. The aims of this work were to: (i) evaluate the time effect of post-liquid dairy manure (LDM) applic...

  9. Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer.

    PubMed

    Mulbry, Walter; Westhead, Elizabeth Kebede; Pizarro, Carolina; Sikora, Lawrence

    2005-03-01

    An alternative to land spreading of manure is to grow crops of algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to evaluate the fertilizer value of dried algal biomass that had been grown using anaerobically digested dairy manure. Results from a flask study using two soils amended with algal biomass showed that 3% of total algal nitrogen (N) was present as plant available N at day 0. Approximately 33% of algal N was converted to plant available N within 21 days at 25 degrees C in both soils. Levels of Mehlich-3 extractable phosphorus (P) in the two soils rose with increasing levels of algal amendment but were also influenced by existing soil P levels. Results from plant growth experiments showed that 20-day old cucumber and corn seedlings grown in algae-amended potting mix contained 15-20% of applied N, 46-60% of available N, and 38-60% of the applied P. Seedlings grown in algae-amended potting mixes were equivalent to those grown with comparable levels of fertilizer amended potting mixes with respect to seedling dry weight and nutrient content. These results suggest that dried algal biomass produced from treatment of anaerobically digested dairy manure can substitute for commercial fertilizers used for potting systems.

  10. Application of rye green manure in wheat rotation system alters soil water content and chemical characteristics under dryland condition in Maragheh.

    PubMed

    Mosavi, S B; Jafarzadeh, A A; Nishabouri, M R; Ostan, Sh; Feiziasl, V

    2009-01-15

    This study was carried out with or without rye green manure along with 4 nitrogen fertilization treatments (0, 26, 103 and 337 (kg N ha(-1)) in 3 rotation system (green manure-wheat). Results showed that, although treatment effects on dryland wheat grain yield was not significant, but maximum grain yield (2484 kg ha(-1)) was obtained from application of rye green manure along with 26 kg N ha(-1); which is 22% more than check (without rye green manure) treatment. Green manure application with or without nitrogen increased EC (dS m(-1)), but decreased OC, P (av.), Cu (av.), Mn (av.), Zn (av.) and sand in the soil. In contrast to green manure, application of nitrogen along with green manure increased saturation and clay. In the stage of stem appearance, soil moisture content decreased 8% in green-manure application but with nitrogen application the moisture increased 6% compared with check in 0-20 cm depth. It can be concluded that, green manure application is useful along with nitrogen fertilizer application in long term. This treatment could increase soil moisture content, which leads to higher wheat grain yield in dryland areas. In addition, green manure application could change some soil characteristics such as soil TNV%, which decreases availability of some essential nutrients for dryland wheat.

  11. New systems for treatment of manure from confined animal production

    USDA-ARS?s Scientific Manuscript database

    New swine waste management systems developed in North Carolina to replace the anaerobic lagoons need to meet the strict performance standards of an environmentally superior technology (EST). These technologies must be able to substantially remove nutrients, heavy metals, emissions of ammonia, odors,...

  12. Stem cells in the Drosophila digestive system.

    PubMed

    Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X

    2013-01-01

    Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.

  13. Energy Integrated Dairy Farm digester and cogeneration system installation

    SciTech Connect

    Ross, C.C.; Walsh, J.L.

    1984-01-01

    Georgia Tech finished in December, 1983 Phase II (system installation and startup) of its four year Energy Integrated Dairy Farm System (EIDFS) program. This paper outlines the selection and installation of the anaerobic digestion and cogeneration components of the EIDFS.

  14. Digestive Diseases

    MedlinePlus

    ... cells and provide energy. This process is called digestion. Your digestive system is a series of hollow ... are also involved. They produce juices to help digestion. There are many types of digestive disorders. The ...

  15. Waste heat utilization in an anaerobic digestion system

    NASA Astrophysics Data System (ADS)

    Boissevain, Brett

    Anaerobic digestion has great potential as an energy source. Not only does it provide an effective method for waste mitigation, but it has the potential to generate significant quantities of fuel and electricity. In order to ensure efficient digestion and biomass utilization, however, the system must be continuously maintained at elevated temperatures. It is technically feasible to supplement such a system with outside energy, but it is more cost effective to heat the system using only the produced biogas. While there is considerable literature covering the theory of anaerobic digestion, there are very few practical studies to show how heat utilization affects system operation. This study considers the effect of major design variables (i.e. heat exchanger efficiencies and biogas conditioning) on promoting a completely self-sustaining digestion system. The thesis considers a real world system and analyzes how it can be improved to avoid the need of an external energy source.

  16. A full-scale house fly (Diptera: Muscidae) larvae bioconversion system for value-added swine manure reduction.

    PubMed

    Wang, Hang; Zhang, Zhijian; Czapar, George F; Winkler, Mari K H; Zheng, JianGuo

    2013-02-01

    Manure produced from confined animal farms can threaten public and environmental health if not managed properly. Herein, a full-scale commercial bioconversion operation in DeQing County, China for value-added swine manure reduction using house fly, Musca domestica L., larvae is reported. The greenhouse-assisted larvae bioreactor had a maximum daily treatment capacity of 35 m(3) fresh raw manure per day. The bioconversion process produced a fresh larvae yield of 95-120 kg m(3) fresh raw manure. This process provided an alternative animal foodstuff (having 56.9 and 23.8% protein and total fat as dry matter, respectively), as well as captured nutrients for agricultural re-utilization. Bioconversion reduced odour emission (characterized by 3-methylindole) and the Escherichia coli (E. coli) index by 94.5 and 92.0%, respectively, and reductions in total weight, moisture and total Kjeldahl nitrogen in solids were over 67.2, 80.0 and 76.0%, respectively. Yearly profit under this trial period ranged from US$33.4-46.1 per m(3). It is concluded that swine manure larvae bioconversion technology with subsequent production of value-added bio-products can be a promising avenue when considering a programme to reduce waste products in an intensive animal production system.

  17. Development and analysis of microbial characteristics of an acidulocomposting system for the treatment of garbage and cattle manure.

    PubMed

    Asano, Ryoki; Otawa, Kenichi; Ozutsumi, Yuhei; Yamamoto, Nozomi; Abdel-Mohsein, Hosnia Swafy; Nakai, Yutaka

    2010-10-01

    An acidulocomposting system for the treatment of cattle manure with little emission of ammonia gas was developed, and the structure of its microbial community was investigated by denaturing gradient gel electrophoresis (DGGE) and clone library construction. An acidulocomposting apparatus (BC20, 20 L) was operated for 79 days to treat 2 kg (wet wt) of garbage per 1 or 2 days. On day 80 of operation, the substrate was changed from garbage to cattle manure (1 kg of beef cattle manure was added to the apparatus every 2 or 3 days), and the system continued operating from days 80 to 158. The compost in the vessel was under acidic conditions at pH 5.2-5.8, and ammonia emission was below the detectable level (<5 ppm) throughout the period of cattle manure feeding. Total nitrogen and total carbon in the compost were 26-29 and 439-466 mg/g of dry weight, respectively, which are higher than those in general cattle manure compost. The main acids accumulated during operation were lactic and acetic. Sequencing analysis targeting the 16S rRNA gene revealed the stable dominance of the bacterial phylum Firmicutes, with a high proportion of the isolates belonging to the genus Bacillus. Using a culturing method with MRS agar, we isolated lactic acid bacteria (LAB) related to Pediococcus acidilactici, Weissella paramesenteroides, and Lactobacillus salivarius, indicating the existence of LAB in the system. These results indicate that acidulocomposting treatment of cattle manure is not accompanied by ammonia emission and that Bacillus and LAB may be the key components in the system.

  18. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems.

    PubMed

    Chen, Jing; Yu, Zhongtang; Michel, Frederick C; Wittum, Thomas; Morrison, Mark

    2007-07-01

    Erythromycin and tylosin are commonly used in animal production, and such use is perceived to contribute to the overall antimicrobial resistance (AR) reservoirs. Quantitative measurements of this type of AR reservoir in microbial communities are required to understand AR ecology (e.g., emergence, persistence, and dissemination). We report here the development, validation, and use of six real-time PCR assays for quantifying six classes of erm genes (classes A through C, F, T, and X) that encode the major mechanism of resistance to macrolides-lincosamides-streptogramin B (MLS(B)). These real-time PCR assays were validated and used in quantifying the six erm classes in five types of samples, including those from bovine manure, swine manure, compost of swine manure, swine waste lagoons, and an Ekokan upflow biofilter system treating hog house effluents. The bovine manure samples were found to contain much smaller reservoirs of each of the six erm classes than the swine manure samples. Compared to the swine manure samples, the composted swine manure samples had substantially reduced erm gene abundances (by up to 7.3 logs), whereas the lagoon or the biofilter samples had similar erm gene abundances. These preliminary results suggest that the methods of manure storage and treatment probably have a substantial impact on the persistence and decline of MLS(B) resistance originating from food animals, thus likely affecting the dissemination of such resistance genes into the environment. The abundances of these erm genes appeared to be positively correlated with those of the tet genes determined previously among these samples. These real-time PCR assays provide a rapid, quantitative, and cultivation-independent measurement of six major classes of erm genes, which should be useful for ecological studies of AR.

  19. Ecological physiology of diet and digestive systems.

    PubMed

    Karasov, William H; Martínez del Rio, Carlos; Caviedes-Vidal, Enrique

    2011-01-01

    The morphological and functional design of gastrointestinal tracts of many vertebrates and invertebrates can be explained largely by the interaction between diet chemical constituents and principles of economic design, both of which are embodied in chemical reactor models of gut function. Natural selection seems to have led to the expression of digestive features that approximately match digestive capacities with dietary loads while exhibiting relatively modest excess. Mechanisms explaining differences in hydrolase activity between populations and species include gene copy number variations and single-nucleotide polymorphisms. In many animals, both transcriptional adjustment and posttranscriptional adjustment mediate phenotypic flexibility in the expression of intestinal hydrolases and transporters in response to dietary signals. Digestive performance of animals depends also on their gastrointestinal microbiome. The microbiome seems to be characterized by large beta diversity among hosts and by a common core metagenome and seems to differ flexibly among animals with different diets.

  20. Sophisticated digestive systems in early arthropods.

    PubMed

    Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C

    2014-05-02

    Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian.

  1. Feed and manure use in low-N-input and high-N-input dairy cattle production systems

    NASA Astrophysics Data System (ADS)

    Powell, J. Mark

    2014-11-01

    In most parts of Sub-Saharan Africa fertilizers and feeds are costly, not readily available and used sparingly in agricultural production. In many parts of Western Europe, North America, and Oceania fertilizers and feeds are relatively inexpensive, readily available and used abundantly to maximize profitable agricultural production. A case study, dairy systems approach was used to illustrate how differences in feed and manure management in a low-N-input dairy cattle system (Niger, West Africa) and a high-N-input dairy production system (Wisconsin, USA) impact agricultural production and environmental N loss. In Niger, an additional daily feed N intake of 114 g per dairy animal unit (AU, 1000 kg live weight) could increase annual milk production from 560 to 1320 kg AU-1, and the additional manure N could greatly increase millet production. In Wisconsin, reductions in daily feed N intake of 100 g AU-1 would not greatly impact milk production but decrease urinary N excretion by 25% and ammonia and nitrous oxide emissions from manure by 18% to 30%. In Niger, compared to the practice of housing livestock and applying dung only onto fields, corralling cattle or sheep on cropland (to capture urinary N) increased millet yields by 25% to 95%. The additional millet grain due to dung applications or corralling would satisfy the annual food grain requirements of 2-5 persons; the additional forage would provide 120-300 more days of feed for a typical head of cattle; and 850 to 1600 kg ha-1 more biomass would be available for soil conservation. In Wisconsin, compared to application of barn manure only, corralling heifers in fields increased forage production by only 8% to 11%. The application of barn manure or corralling increased forage production by 20% to 70%. This additional forage would provide 350-580 more days of feed for a typical dairy heifer. Study results demonstrate how different approaches to feed and manure management in low-N-input and high-N-input dairy cattle

  2. Effect of feedlot manure collection techniques on ultimate methane yield

    SciTech Connect

    Williams, D.W.; Hills, D.J.

    1981-01-01

    Beef-cattle manure collected from unpaved dirt feedlots has a significantly decreased energy-production potential due to low organic content and dirt contamination. In laboratory batch fermentors beef-feedlot manure of various ages was digested. Compared with fresh manure-gas production at 100%, aged manure produced 16-73% of the gas/kg of volatile solids added. More than 1/2 of the N was lost after the manure had aged 3 months. Economic benefits of CH/sub 4/ and N recovery from manure of different ages are discussed.

  3. Role of microRNA-7 in digestive system malignancy.

    PubMed

    Chen, Wan-Qun; Hu, Ling; Chen, Geng-Xin; Deng, Hai-Xia

    2016-01-15

    There are several malignancies of the digestive system (including gastric, pancreatic and colorectal cancers, and hepatocellular carcinoma), which are the most common types of cancer and a major cause of death worldwide. MicroRNA (miR)-7 is abundant in the pancreas, playing an important role in pancreatic development and endocrine function. Expression of miR-7 is downregulated in digestive system malignancies compared with normal tissue. Although there are contrasting results for miR-7 expression, almost all research reveals that miR-7 is a tumor suppressor, by targeting various genes in specific pathways. Moreover, miR-7 can target different genes simultaneously in different malignancies of the digestive system. By acting on many cytokines, miR-7 is also involved in many gastrointestinal inflammatory diseases as a significant carcinogenic factor. Consequently, miR-7 might be a biomarker or therapeutic target gene in digestive system malignancies.

  4. The digestive system of the stony coral Stylophora pistillata.

    PubMed

    Raz-Bahat, M; Douek, J; Moiseeva, E; Peters, E C; Rinkevich, B

    2017-01-30

    Because hermatypic species use symbiotic algal photosynthesis, most of the literature in this field focuses on this autotrophic mode and very little research has studied the morphology of the coral's digestive system or the digestion process of particulate food. Using histology and histochemestry, our research reveals that Stylophora pistillata's digestive system is concentrated at the corals' peristome, actinopharynx and mesenterial filaments (MF). We used in-situ hybridization (ISH) of the RNA transcript of the gene that codes for the S. pistillata digestive enzyme, chymotrypsinogen, to shed light on the functionality of the digestive system. Both the histochemistry and the ISH pointed to the MF being specialized digestive organs, equipped with large numbers of acidophilic and basophilic granular gland cells, as well as acidophilic non-granular gland cells, some of which produce chymotrypsinogen. We identified two types of MF: short, trilobed MF and unilobed, long and convoluted MF. Each S. pistillata polyp harbors two long convoluted MF and 10 short MF. While the short MF have neither secreting nor stinging cells, each of the convoluted MF display gradual cytological changes along their longitudinal axis, alternating between stinging and secreting cells and three distinctive types of secretory cells. These observations indicate the important digestive role of the long convoluted MF. They also indicate the existence of novel feeding compartments in the gastric cavity of the polyp, primarily in the nutritionally active peristome, in the actinopharynx and in three regions of the MF that differ from each other in their cellular components, general morphology and chymotrypsinogen excretion.

  5. Development of the Digestive System-Experimental Challenges and Approaches of Infant Lipid Digestion.

    PubMed

    Abrahamse, Evan; Minekus, Mans; van Aken, George A; van de Heijning, Bert; Knol, Jan; Bartke, Nana; Oozeer, Raish; van der Beek, Eline M; Ludwig, Thomas

    2012-12-01

    At least during the first 6 months after birth, the nutrition of infants should ideally consist of human milk which provides 40-60 % of energy from lipids. Beyond energy, human milk also delivers lipids with a specific functionality, such as essential fatty acids (FA), phospholipids, and cholesterol. Healthy development, especially of the nervous and digestive systems, depends fundamentally on these. Epidemiological data suggest that human milk provides unique health benefits during early infancy that extend to long-lasting benefits. Preclinical findings show that qualitative changes in dietary lipids, i.e., lipid structure and FA composition, during early life may contribute to the reported long-term effects. Little is known in this respect about the development of digestive function and the digestion and absorption of lipids by the newborn. This review gives a detailed overview of the distinct functionalities that dietary lipids from human milk and infant formula provide and the profound differences in the physiology and biochemistry of lipid digestion between infants and adults. Fundamental mechanisms of infant lipid digestion can, however, almost exclusively be elucidated in vitro. Experimental approaches and their challenges are reviewed in depth.

  6. Digestive system fistula: a problem still relevant today.

    PubMed

    Głuszek, Stanisław; Korczak, Maria; Kot, Marta; Matykiewicz, Jarosław; Kozieł, Dorota

    2011-01-01

    Digestive system fistula originates most frequently as a complication after surgical procedures, less often occurs in the course of inflammatory diseases, but it can also result from neoplasm and injuries. THE AIM OF THE STUDY was to analyze the causes and retrospectively assess the perioperative procedures as well as the results of digestive system fistula treatment. MATERIAL AND METHODS. Own experience in digestive system fistula treatment was presented. The subject group consisted of 32 patients treated at the General Surgery, Oncology and Endocrinology Clinical Department between 01.05.2005 and 30.04.2010 due to different digestive tract diseases. The causes of the occurrence of digestive system fistula, methods and results of treatment were analyzed. RESULTS. The analysis covered 32 patients with digestive system fistula, among them 15 men and 17 women. Average age for men was 57 years (20-78), and for women 61 years (24-88). In 11 patients idiopathic fistula causally connected with primary inflammatory disease (7 cases) and with neoplasm (4 cases) was diagnosed, in 19 patients fistula was the result of complications after surgery, in 2 - after abdominal cavity injury. Recovery from fistula was achieved in 23 patients (72%) with the use of individually planned conservative therapy (TPN, EN, antibiotics, drainage, and others) and surgery, depending on the needs of individual patient. 5 patients (16%) died, whereas in 4 left (12%) recovery wasn't achieved (fistula in palliative patients, with advanced stages of neoplasm - bronchoesophageal fistula, the recurrence of uterine carcinoma). CONCLUSIONS. Recently the results of digestive system fistula treatment showed an improvement which manifests itself in mortality decrease and shortening of fistula healing time. Yet, digestive system fistula as a serious complication still poses a very difficult surgical problem.

  7. Environmental and economic assessment of integrated systems for dairy manure treatment coupled with algae bioenergy production.

    PubMed

    Zhang, Yongli; White, Mark A; Colosi, Lisa M

    2013-02-01

    Life cycle assessment (LCA) and life cycle costing (LCC) are used to investigate integrated algae bioenergy production and nutrient management on small dairy farms. Four cases are considered: a reference land-application scenario (REF), anaerobic digestion with land-application of liquid digestate (AD), and anaerobic digestion with recycling of liquid digestate to either an open-pond algae cultivation system (OPS) or an algae turf scrubber (ATS). LCA indicates that all three "improved" scenarios (AD, OPS, and ATS) are environmentally favorable compared to REF, exhibiting increases in net energy output up to 854GJ/yr, reductions in net eutrophication potential up to 2700kg PO(4)-eq/yr, and reductions in global warming potential up to 196Mg CO(2)-eq/yr. LCC reveals that the integrated algae systems are much more financially attractive than either AD or REF, whereby net present values (NPV) are as follows: $853,250 for OPS, $790,280 for ATS, -$62,279 for REF, and -$211,126 for AD. However, these results are highly dependent on the sale price for nutrient credits. Comparison of LCA and LCC results indicates that robust nutrient credit markets or other policy tools are required to align financial and environmental preferability of energy production systems and foster widespread adoption of sustainable nutrient management systems.

  8. Bile acid nuclear receptor FXR and digestive system diseases.

    PubMed

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-03-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases.

  9. Surface runoff from manured cropping systems assessed by the paired-watershed method, part 1: P, N, and sediment transport

    USDA-ARS?s Scientific Manuscript database

    Transport of P, N, and sediment via runoff from crop fields can contribute to degradation of surface waters. We established a paired-watershed study in central Wisconsin to evaluate surface runoff losses of nutrients, sediment, and pathogens from different manure/crop/tillage management systems for ...

  10. Overview of manure treatment in France.

    PubMed

    Loyon, L

    2017-03-01

    Manure treatment becomes a focal issue in relation to current EU and national policies on environmental, climate and renewable energy matters. The objective of this desk study was to collect all available data on the treatment of manure from cattle, pig and poultry farms for an overview of manure treatment in France. Specific surveys in 2008 showed that 12% of pig farms, 11% of poultry farms and 7.5% of cattle farms was concerned by manure treatment. Taken together, the treatment of pig, poultry and cattle manure accounted for 13.6milliontons corresponding to 11.3% of the total annual tonnage (120milliontons). The main processes, mostly applied on the farm, were composting (8.5milliontons), aerobic treatment (2.9milliontons of pig slurry) and anaerobic digestion (1milliontons). Other manure treatments, including physical-chemical treatment, were less frequent (0.4million of m(3)). Treated manure was mainly used to fertilize the soil and crops on the farm concerned. Manure treatment can thus be considered to be underused in France. However, anaerobic digestion is expected to expand to reach the European target of 20% of energy from renewable sources. Nevertheless, this expansion will depend on overcoming the constraint requiring registration or normalization of the use of the digestate as fertilizer. Thus, to avoid penalizing farmers, the further development or creation of collective processing platforms is recommended, combined with an N recovery process that will enable the production of organic amendments and fertilizers in an easy marketable form.

  11. Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam

    PubMed Central

    Vu, T. K. V.; Vu, D. Q.; Jensen, L. S.; Sommer, S. G.; Bruun, S.

    2015-01-01

    Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA) methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure in a system with a biogas digester reduced the impact potential from 4.4 kg carbon dioxide (CO2) equivalents to 3.2 kg CO2 equivalents compared with traditional manure management. However, this advantage could easily be compromised if digester construction is considered in the LCA or in situations where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to make biogas digesters sustainable, methods for recycling digestates are urgently required. PMID:25715690

  12. Impacts of a Swine Manure Spill on Phosphorus Partitioning in a Fluvial System: Evaluation of an alternative Manure Spill Remediation Method

    USDA-ARS?s Scientific Manuscript database

    Within the last decade there has been an international shift in livestock production that has resulted in an increased herd size per farm and a greater frequency of manure spills. Therefore, the objectives of this study were to determine the P partitioning between fluvial sediments following a manur...

  13. Geographic information systems (GIS) based model of dairy manure transportation and application with environmental quality consideration.

    PubMed

    Paudel, Krishna P; Bhattarai, Keshav; Gauthier, Wayne M; Hall, Larry M

    2009-05-01

    Survey information was used to develop a minimum cost spatial dairy manure transportation model where environmental quality and crop nutrient requirements were treated as constraints. The GIS model incorporated land use types, exact locations of dairy farms and farmlands, road networks, and distances from each dairy farm to receiving farmlands to identify dairy manure transportation routes that minimized costs relative to environmental and other constraints. Our analyses indicated that the characteristics of dairy manure, its bulk and relatively low primary N, P(2)O(5) and K(2)O nutrient levels limit the distribution areas or distances between the farms and the land over which the manure can be economically spread. Physical properties of the land limit the quantities of nutrients that can be applied because of excess nutrient buildup in soil and potential to harm nearby waterbodies and downstream people and places. Longer distances between dairy and farmland favor the use of commercial fertilizers due to the high cost of manure transportation. At $0.08 per ton per km transportation cost, the optimal cut-off distances for dairy manure application is 30km for N and 15km each for P(2)O(5) and K(2)O consistent rules. An analysis of dairy manure application to different crop types suggest that, on average, 1ha of land requires 61 tons of dairy manure to meet the recommended N, P(2)O(5) and K(2)O needs.

  14. Changes in chemical and microbiological properties of rabbit manure in a continuous-feeding vermicomposting system.

    PubMed

    Gómez-Brandón, María; Lores, Marta; Domínguez, Jorge

    2013-01-01

    In the present study the potential of the earthworm Eisenia fetida to process large amounts of waste was evaluated through continuous feeding reactors in which new layers of rabbit manure were added sequentially to form an age gradient inside the reactors. An optimal moisture level, ranging from 66% to 76%, was maintained throughout the process using an automatic watering system. The pH was close to 8.3, but decreased to 7.6 after 200 d of vermicomposting. No changes in electrical conductivity through the profile of layers were detected. Based on comparisons of phospholipid fatty acid (PLFA) profiles and microbial activity measurements (basal respiration), a decrease in the levels of bacteria and fungi in layers corresponding to vermicomposting times of more than 200 d occurred. This points to a higher degree of stabilisation in the final product, which is of utmost importance for its safe use as an organic amendment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy.

    PubMed

    Kim, Sang Yoon; Pramanik, Prabhat; Bodelier, Paul L E; Kim, Pil Joo

    2014-01-01

    Livestock manures are broadly used in agriculture to improve soil quality. However, manure application can increase the availability of organic carbon, thereby facilitating methane (CH4) production. Cattle and swine manures are expected to have different CH4 emission characteristics in rice paddy soil due to the inherent differences in composition as a result of contrasting diets and digestive physiology between the two livestock types. To compare the effect of ruminant and non-ruminant animal manure applications on CH4 emissions and methanogenic archaeal diversity during rice cultivation (June to September, 2009), fresh cattle and swine manures were applied into experimental pots at 0, 20 and 40 Mg fresh weight (FW) ha-1 in a greenhouse. Applications of manures significantly enhanced total CH4 emissions as compared to chemical fertilization, with cattle manure leading to higher emissions than swine manure. Total organic C contents in cattle (466 g kg-1) and swine (460 g kg-1) manures were of comparable results. Soil organic C (SOC) contents were also similar between the two manure treatments, but dissolved organic C (DOC) was significantly higher in cattle than swine manure. The mcrA gene copy numbers were significantly higher in cattle than swine manure. Diverse groups of methanogens which belong to Methanomicrobiaceae were detected only in cattle-manured but not in swine-manured soil. Methanogens were transferred from cattle manure to rice paddy soils through fresh excrement. In conclusion, cattle manure application can significantly increase CH4 emissions in rice paddy soil during cultivation, and its pretreatment to suppress methanogenic activity without decreasing rice productivity should be considered.

  16. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy

    PubMed Central

    Kim, Sang Yoon; Pramanik, Prabhat; Bodelier, Paul L. E.; Kim, Pil Joo

    2014-01-01

    Livestock manures are broadly used in agriculture to improve soil quality. However, manure application can increase the availability of organic carbon, thereby facilitating methane (CH4) production. Cattle and swine manures are expected to have different CH4 emission characteristics in rice paddy soil due to the inherent differences in composition as a result of contrasting diets and digestive physiology between the two livestock types. To compare the effect of ruminant and non-ruminant animal manure applications on CH4 emissions and methanogenic archaeal diversity during rice cultivation (June to September, 2009), fresh cattle and swine manures were applied into experimental pots at 0, 20 and 40 Mg fresh weight (FW) ha−1 in a greenhouse. Applications of manures significantly enhanced total CH4 emissions as compared to chemical fertilization, with cattle manure leading to higher emissions than swine manure. Total organic C contents in cattle (466 g kg−1) and swine (460 g kg−1) manures were of comparable results. Soil organic C (SOC) contents were also similar between the two manure treatments, but dissolved organic C (DOC) was significantly higher in cattle than swine manure. The mcrA gene copy numbers were significantly higher in cattle than swine manure. Diverse groups of methanogens which belong to Methanomicrobiaceae were detected only in cattle-manured but not in swine-manured soil. Methanogens were transferred from cattle manure to rice paddy soils through fresh excrement. In conclusion, cattle manure application can significantly increase CH4 emissions in rice paddy soil during cultivation, and its pretreatment to suppress methanogenic activity without decreasing rice productivity should be considered. PMID:25494364

  17. Quantifying physical structure changes and non-uniform water flow in cattle manure during dry anaerobic digestion process at lab scale: Implication for biogas production.

    PubMed

    André, L; Durante, M; Pauss, A; Lespinard, O; Ribeiro, T; Lamy, E

    2015-09-01

    The aim of this study was to investigate and quantify non-uniform water flow during dry AD and its implication for biogas production. Laboratory tracer experiments were performed on cattle manure over the course of AD. The evolution of the permeability, the dry bulk density, the dry porosity, the total and volatile solid contents of cattle manure at different stages of AD, revealed waste structure changes, impacting water flow and methane production. Tracer experiments and numerical modeling performed by using a physical non-equilibrium model indicated non-uniform preferential flow patterns during degradation. According to literature, the increase of inoculum recirculation frequency improved methane production rate. However, these results demonstrated that this improvement occurs only at the beginning of manure degradation. After 19 days of degradation the inoculum recirculation and the flow patterns modification had no effect on methane production rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. I. Crop yields and system performance.

    PubMed

    Ghosh, P K; Ramesh, P; Bandyopadhyay, K K; Tripathi, A K; Hati, K M; Misra, A K; Acharya, C L

    2004-10-01

    A field experiment was conducted on deep vertisols of Bhopal, India to evaluate the manural potential of three organic manures: farmyard manure (FYM), poultry manure (PM), phosphocompost (PC) vis-a-vis 0%, 75% and 100% recommended dose of fertilizer-NPK and to find out the most productive cropping system at various combinations of organic manures and chemical fertilizers. The seed yield of intercrop soybean (population converted to 100%) was 8.7% less than sole soybean whereas the grain yield of intercrop sorghum was 9.5% more than that of sole sorghum. However, the productivity in terms of soybean equivalent yield (SEY) was relatively high in intercropping system. The increasing NPK dose from 0% to 100% significantly improved SEY in sole sorghum and soybean/sorghum intercropping system and the integrated use of organics and inorganics recorded significantly more SEY than inorganics. The effect of nutrient management followed the order; 75% NPK + 5 t FYM ha(-1) > 75% NPK + 1.5 t PM ha(-1) > 75% NPK + 5 t PC ha(-1) > 100% NPK. Sorghum, both as sole and intercrop, responded more to PM while soybean to FYM. Application of 75% NPK in combination with PM or FYM or PC to preceding rainy season crops (soybean and sorghum) and 75% NPK to wheat produced significantly higher grain yield of wheat than those in inorganics and control indicating noticeable residual effect on the succeeding wheat crop and saving of 25% fertilizer-NPK. The effect of PC on rainy season crops was not as prominent as those of FYM and PM, but its residual effect on grain yield of wheat was comparable to those two organic manures. Among the cropping systems, soybean as preceding crop recorded the highest seed yield of wheat and was on a par with that of soybean/sorghum intercropping system. The yield of wheat following sorghum was the lowest. The total system productivity (TSP) was the highest in sorghum + soybean-wheat system and the lowest in the soybean-wheat system.

  19. Nitrogen dynamics in soil amended with manures composted in dynamic and static systems.

    PubMed

    Escudero, Ania; González-Arias, Ander; del Hierro, Oscar; Pinto, Miriam; Gartzia-Bengoetxea, Nahia

    2012-10-15

    The main objectives of this study were to evaluate the stability of three different composts and to study the N dynamics in soil incubated with the composts under laboratory conditions. The composts were produced from sheep manure processed by static pile composting (C1) and from cattle and sheep manure processed by dynamic pile composting (C2 and C3 respectively). Laboratory incubation assays were carried out at 28 °C to determine the amount of N mineralized and N leached under extreme rainfall conditions in the first 30 days after application of doses of each compost equivalent to 170 and 450 kg ha(-1) of N. There were no differences in the values of these parameters in samples of the composts produced by the static (C1) and dynamic (C3) systems, and both composts behaved in the same way when applied to soil. The chemical characteristics of the three final composts, the respiration rates and the lack of stimulation of total microbial biomass indicated that the composts were stable. However, the final C/N ratio was slightly higher in C2 than in C1 and C3 (14 compared with 10 and 11) as was the respiration rate of the high dose of C2 indicating that C2 was more labile, and thus less stable than C1 and C3. Compost C2 generated the highest N mineralization rates after application of different doses (6.5 and 13.1%), as well as the highest N supplying potential (54.7 and 36.2%), and thus the highest rate of mineral N leaching (16.8 and 16.5 mg L(-1) of NO(3)-N), probably as a result of the slight difference in lability. The N release after compost application was very low and thus the leaching potential was also low, indicating that high doses of mature compost (>170 kg ha(-1) of N) could be applied to soil.

  20. Molecular physiology of vesicular glutamate transporters in the digestive system.

    PubMed

    Li, Tao; Ghishan, Fayez-K; Bai, Liqun

    2005-03-28

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Packaging and storage of glutamate into glutamatergic neuronal vesicles require ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. Three vesicular glutamate transporters (VGLUT1-3) have been recently identified from neuronal tissue where they play a key role to maintain the vesicular glutamate level. Recently, it has been demonstrated that glutamate signaling is also functional in peripheral neuronal and non-neuronal tissues, and occurs in sites of pituitary, adrenal, pineal glands, bone, GI tract, pancreas, skin, and testis. The glutamate receptors and VGLUTs in digestive system have been found in both neuronal and endocrinal cells. The glutamate signaling in the digestive system may have significant relevance to diabetes and GI tract motility disorders. This review will focus on the most recent update of molecular physiology of digestive VGLUTs.

  1. Performance of two swine manure treatment systems on chemical composition and on the reduction of pathogens.

    PubMed

    Viancelli, A; Kunz, A; Steinmetz, R L R; Kich, J D; Souza, C K; Canal, C W; Coldebella, A; Esteves, P A; Barardi, C R M

    2013-01-01

    Swine effluents must be correctly handled to avoid negative environmental impacts. In this study, the profiles of two swine manure treatment systems were evaluated: a solid-liquid separation step, followed by an anaerobic reactor, and an aerobic step (System 1); and a biodigester followed by serial lagoons (System 2). Both systems were described by the assessment of chemical, bacterial and viral parameters. The results showed that in System 1, there was reduction of chemicals (COD, phosphorus, total Kjeldhal nitrogen - TKN - and NH(3)), total coliforms and Escherichia coli; however, the same reduction was not observed for Salmonella sp. Viral particles were significantly reduced but not totally eliminated from the effluent. In System 2, there was a reduction of chemicals, bacteria and viruses with no detection of Salmonella sp., circovirus, parvovirus, and torque teno virus in the effluent. The chemical results indicate that the treated effluent can be reused for cleaning swine facilities. However, the microbiological results show a need of additional treatment to achieve a complete inactivation for cases when direct contact with animals is required.

  2. Poultry waste digester. Final progress report

    SciTech Connect

    Shih, J.C.H.

    1983-01-01

    A simple and low-cost poultry waste digester (PWD) was constructed at North Carolina State University's Poultry Research Farm at Raleigh, N.C. The PWD system was designed to process a daily output of 600 kg of manure from 4000 caged laying hens. The system consisted of two digesters connected in series, a heating system, a hot water tank, and other metering equipment. The primary and secondary digesters were horizontal cylinders located partially below ground level. They were made of Red Mud plastic lining, supported in the insulated trenches, and covered with insulated roofs. The primary digester volume was 15 m/sup 3/ with an 8 m/sup 3/ liquid volume and a gas head-space above the liquid. The secondary digester volume was 30 m/sup 3/ with a 16 m/sup 3/ liquid volume. The temperature (50/sup 0/C) of the primary digester was maintained by the hot dilution water added with manure and a SolaRoll heating mat laid underneath the plastic lining. The design, operation, performance, energy balance, and economics of the digester are discussed and evaluated in this final progress report.

  3. Global manure nitrogen production and application in cropland during 1860-2014: a 5 arcmin gridded global dataset for Earth system modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Dangal, Shree R. S.; Yang, Jia; Pan, Shufen

    2017-09-01

    Given the important role of nitrogen input from livestock systems in terrestrial nutrient cycles and the atmospheric chemical composition, it is vital to have a robust estimation of the magnitude and spatiotemporal variation in manure nitrogen production and its application to cropland across the globe. In this study, we used the dataset from the Global Livestock Impact Mapping System (GLIMS) in conjunction with country-specific annual livestock populations to reconstruct the manure nitrogen production during 1860-2014. The estimated manure nitrogen production increased from 21.4 Tg N yr-1 in 1860 to 131.0 Tg N yr-1 in 2014 with a significant annual increasing trend (0.7 Tg N yr-1, p < 0.01). Changes in manure nitrogen production exhibited high spatial variability and concentrated in several hotspots (e.g., Western Europe, India, northeastern China, and southeastern Australia) across the globe over the study period. In the 1860s, the northern midlatitude region was the largest manure producer, accounting for ˜ 52 % of the global total, while low-latitude regions became the largest share (˜ 48 %) in the most recent 5 years (2010-2014). Among all the continents, Asia accounted for over one-fourth of the global manure production during 1860-2014. Cattle dominated the manure nitrogen production and contributed ˜ 44 % of the total manure nitrogen production in 2014, followed by goats, sheep, swine, and chickens. The manure nitrogen application to cropland accounts for less than one-fifth of the total manure nitrogen production over the study period. The 5 arcmin gridded global dataset of manure nitrogen production generated from this study could be used as an input for global or regional land surface and ecosystem models to evaluate the impacts of manure nitrogen on key biogeochemical processes and water quality. To ensure food security and environmental sustainability, it is necessary to implement proper manure management practices on cropland across the globe

  4. TRP channels in the digestive system

    PubMed Central

    Holzer, Peter

    2011-01-01

    Several of the 28 mammalian transient receptor potential (TRP) channel subunits are expressed throughout the alimentary canal where they play important roles in taste, chemo- and mechanosensation, thermoregulation, pain and hyperalgesia, mucosal function and homeostasis, control of motility by neurons, interstitial cells of Cajal and muscle cells, and vascular function. While the implications of some TRP channels, notably TRPA1, TRPC4, TRPM5, TRPM6, TRPM7, TRPV1, TRPV4, and TRPV6, have been investigated in much detail, the understanding of other TRP channels in their relevance to digestive function lags behind. The polymodal chemo- and mechanosensory function of TRPA1, TRPM5, TRPV1 and TRPV4 is particularly relevant to the alimentary canal whose digestive and absorptive function depends on the surveillance and integration of many chemical and physical stimuli. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 appear to be essential for the absorption of Ca2+ and Mg2+, respectively, while TRPM7 appears to contribute to the pacemaker activity of the interstitial cells of Cajal, and TRPC4 transduces smooth muscle contraction evoked by muscarinic acetylcholine receptor activation. The implication of some TRP channels in pathological processes has raised enormous interest in exploiting them as a therapeutic target. This is particularly true for TRPV1, TRPV4 and TRPA1, which may be targeted for the treatment of several conditions of chronic abdominal pain. Consequently, blockers of these TRP channels have been developed, and their clinical usefulness has yet to be established. PMID:20932260

  5. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    PubMed

    Tien, Yuan-Ching; Li, Bing; Zhang, Tong; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Marti, Romain; Topp, Edward

    2017-03-01

    Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so.

  6. Performance of a UASB-digester system treating domestic wastewater.

    PubMed

    Alvarez, J A; Armstrong, E; Presas, J; Gómez, M; Soto, M

    2004-10-01

    The anaerobic treatment of raw domestic wastewater by a novel technology consisting of an Up-flow Anaerobic Sludge Bed (UASB) reactor combined with a completely mixed digester for the stabilisation of the UASB sludge was assessed. A pilot-scale plant of the so-called UASB-Digester system was located at the municipal wastewater treatment facility of Santiago de Compostela (Northwest of Spain). The main aim of the Digester was to enhance the biodegradation of influent solids retained in the UASB reactor at low temperatures, then increasing its specific methanogenic activity. The sludge drawn from the middle zone of the UASB entered the upper zone of the Digester and then circulated from the bottom of the Digester to the UASB bottom. Circulating in an automated semi-continuous way, the flow of this sludge stream was selected in order to set a previously defined hydraulic retention time (HRT) (16-27 d) in the digester. The Digester temperature was set at an optimum value ranging from 25 to 35 degrees C. The steady state efficiency of the UASB system, at 6-8 h of HRT, 15-16 degrees C of temperature and 330-360 mg l(-1) of influent total chemical oxygen demand (TCOD) was 79% of total suspended solids (TSS) removal, 52% of TCOD removal and 60% of biological oxygen demand (BOD5) removal. The hydrolysis of retained solids reached 85%, while excess sludge generation was only 7% of influent TCOD. A stable anaerobic (pre)treatment of diluted domestic wastewater was reached as the sludge concentration in the reactor remained mainly constant and the specific methanogenic activity showed a slight increase.

  7. Sorption and transport of five sulfonamide antibiotics in agricultural soil and soil-manure systems.

    PubMed

    Wang, Na; Guo, Xinyan; Xu, Jing; Hao, Lijun; Kong, Deyang; Gao, Shixiang

    2015-01-01

    Animal manure application is a main spreading route of veterinary antibiotics in soil and groundwater. The sorption and leaching behavior of five commonly used sulfonamides in five typical soil and soil/manure mixtures from China were investigated in this study. Results showed that the empirical Freundlich equation fits well the sorption behavior of selected sulfonamides (r(2) was between 0.803 and 0.999, 1/n was between 0.68 and 1.44), and pH and soil organic carbon (OC) were the key impact factors to sorption and leaching. Addition of manure was found to increase the Kd values of sulfonamides in five different soils, following the rules that the more polar substances, the more increased extent of sorption after manure amendment (5.87 times for sulfadiazine with Log Kow = -0.09, and 2.49 times for sulfamethoxazole with Log Kow = 0.89). When the simulated rainfall amount reached 300 mL (180 mm), sulfonamides have high migration potential to the groundwater, especially in the soil with low OC and high pH. However, manure amendment increased the sorption capacity of sulfonamides in the top layer, thus it might play a role in decreasing the mobility of sulfonamides in soils. The systematic study would be more significant to assess the ecological risks and suggest considering the influence of manure amendment for the environmental fate of antibiotics.

  8. Chemical oxygen demand using closed microwave digestion system.

    PubMed

    Dharmadhikari, Dattatray M; Vanerkar, Atul P; Barhate, Nivedita M

    2005-08-15

    A new approach to determine the chemical oxygen demand (COD) using a closed microwave digestion (CMD) system to replace the conventional, time-consuming open reflux (OR) method is proposed. The procedure uses a laboratory-grade closed microwave digestion system (one magnetron) for the digestion of small volume of samples (3.0 mL) in a completely closed (90 mL) Teflon vessel, digesting 10 samples at a time in the range of COD values of 5-1000 mg L(-1). The digestion time required is 15 min as compared to the 2 h required for the conventional OR method. Chloride ion interference can be removed up to 6000 mg of Cl- ions L(-1) as compared to the 2000 mg of Cl- ions L(-1) removed by conventional OR method. The present work reveals that the filtration of effluent samples by membrane filter or homogenization is not essential to obtain reproducible results. The proposed method is cost-effective; saves time, energy, and reagents with providing precise results for both the pure organic compounds and wastewater samples; and is ecofriendly.

  9. 76 FR 39159 - Schedule for Rating Disabilities; The Digestive System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ...The Department of Veterans Affairs (VA) proposes to amend the portion of the Schedule for Rating Disabilities that addresses the Digestive System. The purpose of this change is to incorporate medical advances that have occurred since the last review, insert current medical terminology, and provide clear...

  10. Student Science Teachers' Ideas of the Digestive System

    ERIC Educational Resources Information Center

    Cardak, Osman

    2015-01-01

    The aim of this research is to reveal the levels of understanding of student science teachers regarding the digestive system. In this research, 116 student science teachers were tested by applying the drawing method. Upon the analysis of the drawings they made, it was found that some of them had misconceptions such as "the organs of the…

  11. Energy conversion of animal manures: Feasibility analysis for thirteen western states

    SciTech Connect

    Whittier, J.; Haase, S.; Milward, R.; Churchill, G.; Searles, M.B.; Moser, M.; Swanson, D.; Morgan, G.

    1993-12-31

    The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specific to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.

  12. Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure

    USDA-ARS?s Scientific Manuscript database

    Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Permeable manure storage covers can reduce NH3 emissions, however performance can decline as they degrade. Thermochemical conversion of biomass through pyrolysis and steam treatment could incre...

  13. Microwave treatment and struvite recovery potential of dairy manure.

    PubMed

    Qureshi, Asif; Lo, Kwang Victor; Liao, Ping Huang

    2008-05-01

    Microwave digestion of liquid dairy manure was tested for the release of nutrients, such as orthophosphates, ammonia-nitrogen, magnesium, calcium and potassium, both with and without the aid of an oxidizing agent (hydrogen peroxide). The orthophosphate to total phosphorus ratio of the manure increased from 21% to greater than 80% with 5 minutes of microwave treatment. More than 36% of total chemical oxygen demand (t-COD) of the manure was reduced when microwave digestion was assisted with peroxide addition. In addition, the volatile fatty acids (VFAs) distribution shifted to simpler chain acids (acetic acid in particular) with an increase in operating temperature. In the second part of the study, digested manure with increased soluble phosphate was tested for the recovery of struvite (magnesium ammonium phosphate) at different pH. It was found that up to 90% of orthophosphate can be removed from the solution. Overall, it was concluded that the oxidizing agent-assisted microwave digestion process can be used upstream of anaerobic digestion, following which the anaerobically digested manure can be used for struvite recovery. Thus, this microwave digestion process presents the potential for enhanced efficiencies in both manure digestion and struvite recovery.

  14. Effect of green manure in soil quality and nitrogen transfer to cherry tomato in the no tillage system

    NASA Astrophysics Data System (ADS)

    Ambrosano, Edmilson; Rossi, Fabricio; Dias, Fabio; Trivelin, Paulo; Tavares, Silvio; Muraoka, Takashi; Ambrosano, Glaucia; Salgado, Gabriela; Otsuk, Ivani

    2016-04-01

    The use of alternative fertilizers may reduce costs and promote sustainability to the family-based agro ecological production system. The objective of this study was to quantify the contribution of the green manure to the quality of the soil and the transference of the nitrogen to cherry tomatoes using the N-15 abundance method (FAPESP 11/05648-3). The experiment was carried out in Piracicaba, APTA/SAA, SP, Brazil. The IAC collection accesses 21 of cherry tomatoes were used. Each Plot consisted of six plants spaced 0.5 m and 0.9 m between rows, using a randomized-blocks design with eight treatments and five repetitions. The treatments consisted of green manure crops intercropped or not with cherry tomato, namely: jack bean (Canavalia ensiformis), sunn hemp (Crotalaria juncea L.), velvet bean (Mucuna deeringiana), mung bean (Vigna radiata (L.) Wilczek), white lupine (Lupinus albus L.) and cowpea (Vigna unguiculata (L.) Walp). Besides two witnesses, one with and another without corn straw. Five leaves with petiole of each plant part from the first ripe fruit and a bunch of fruits per plant are harvested. Samples of leaf and fruit were weighed and dried in a forced air oven and its dry weight measured. A subsample was ground in a Wiley mill and brought to the mass spectrometer (ANCA GSL) on the Stable Isotopes Laboratory of CENA/USP for δN-15 analysis. It measured the percentage of the transference of N from the green manure to the tomato; the tomato plants grown in monocropping were considered a control. It was found that 27 % of the N present in the fruit and 23% of the N present in the leaves came from the green manure. These results show that dur¬ing the development of the fruit of the tomato there is a greater translocation and consequently, a higher use of the N from the green manure in the fruits than in the leaves. This production system can reduce the use of nitrogen fertilizers. The presence of a green manure in non-intercropped treatments caused some soil

  15. 75 FR 82428 - VASRD Improvement Forum-Updating Disability Criteria for the Genitourinary System, Digestive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... AFFAIRS VASRD Improvement Forum--Updating Disability Criteria for the Genitourinary System, Digestive... System, Digestive System, Dental Conditions, and Infectious Diseases, Immune Disorders and Nutritional..., Immune Disorders and Nutritional Deficiencies (38 CFR 4.88-4.89), (2) the Digestive System (38 CFR 4.110...

  16. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    PubMed

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved.

  17. Coupling Cover Crops with Alternative Swine Manure Application Strategies: Manure-15N Tracer Studies

    USDA-ARS?s Scientific Manuscript database

    Integration of rye cover crops with alternative liquid swine (Sus scrofa L.) manure application strategies may enhance retention of manure N in corn (Zea mays L.) - soybean [Glycine max (L.) Merr] cropping systems. The objective of this study was to quantify uptake of manure derived-N by a rye (Seca...

  18. A highly concentrated diet increases biogas production and the agronomic value of young bull's manure.

    PubMed

    Mendonça Costa, Mônica Sarolli Silva de; Lucas, Jorge de; Mendonça Costa, Luiz Antonio de; Orrico, Ana Carolina Amorim

    2016-02-01

    The increasing demand for animal protein has driven significant changes in cattle breeding systems, mainly in feedlots, with the use of young bulls fed on diets richer in concentrate (C) than in forage (F). These changes are likely to affect animal manure, demanding re-evaluation of the biogas production per kg of TS and VS added, as well as of its agronomic value as a biofertilizer, after anaerobic digestion. Here, we determined the biogas production and agronomic value (i.e., the macronutrient concentration in the final biofertilizer) of the manure of young bulls fed on diets with more (80% C+20% F; 'HighC' diet) or less (65% C+35% F; 'LowC' diet) concentrate, evaluating the effects of temperature (25, 35, and 40°C) and the use of an inoculum, during anaerobic digestion. A total of 24 benchtop reactors were used, operating in a semi-continuous system, with a 40-day hydraulic retention time (HRT). The manure from animals given the HighC diet had the greatest potential for biogas production, when digested with the use of an inoculum and at 35 or 40°C (0.6326 and 0.6207m(3)biogas/kg volatile solids, or VS, respectively). We observed the highest levels of the macronutrients N, P, and K in the biofertilizer from the manure of animals given HighC. Our results show that the manure of young bulls achieves its highest potential for biogas production and agronomic value when animals are fed diets richer in concentrate, and that biogas production increases if digestion is performed at higher temperatures, and with the use of an inoculum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Microscopic anatomy of pycnogonida: II. Digestive system. III. Excretory system.

    PubMed

    Fahrenbach, W H; Arango, Claudia P

    2007-11-01

    The digestive system of several species of sea spiders (Pycnogonida, Arthropoda) was studied by electron microscopy. It is composed of the foregut inside a long proboscis, a midgut and a hindgut. Lips near the three jaws at the tip of the proboscis receive several hundred ductules originating from salivary glands. These previously undetected glands open on the lips, a fluted, projecting ridge at the external hinge line of the jaws, i.e., to the outside of the mouth. This disposition suggests affinities to the chelicerate line. The trigonal esophagus within the proboscis contains a complex, setose filter device, operated by dedicated muscles, that serves to reduce ingested food to subcellular dimensions. The midgut has diverticula into the bases of all legs. Its cells differentiate from the basal layer and contain a bewildering array of secretion droplets, lysosomes and phagosomes. In the absence of a hepatopancreas, the midgut serves both digestive and absorptive functions. The cuticle-lined hindgut lies in the highly reduced, peg-like abdomen. Traditionally, pycnogonids have been claimed to have no excretory organ at all. Such a structure, however, has been located in at least one ammotheid, Nymphopsis spinosissima, in which a simple, but standard, excretory gland has been found in the scape of the chelifore. It consists of an end sac, a straight proximal tubule, a short distal tubule, and a raised nephropore. The end sac is a thin-walled and polygonal chamber, about 150 microm in cross section, suspended in the hemocoel of the appendage, its edges radially tethered to the cuticle at more than half a dozen locations. This wall consists of a filtration basement membrane, 1-4 microm thick, facing the hemocoel, and internally of a continuous carpet of podocytes and their pedicels. The podocytes, measuring maximally 10 by 15 microm, have complex contents, of which a labyrinthine system of connected intracellular channels stands out. These coated cisternae open into a

  20. 38 CFR 4.114 - Schedule of ratings-digestive system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-digestive system. 4.114 Section 4.114 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Digestive System § 4.114 Schedule of ratings—digestive system. Ratings under diagnostic codes 7301 to 7329, inclusive, 7331, 7342, and 7345 to 7348...

  1. 38 CFR 4.114 - Schedule of ratings-digestive system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-digestive system. 4.114 Section 4.114 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Digestive System § 4.114 Schedule of ratings—digestive system. Ratings under diagnostic codes 7301 to 7329, inclusive, 7331, 7342, and 7345 to 7348...

  2. 38 CFR 4.114 - Schedule of ratings-digestive system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-digestive system. 4.114 Section 4.114 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Digestive System § 4.114 Schedule of ratings—digestive system. Ratings under diagnostic codes 7301 to 7329, inclusive, 7331, 7342, and 7345 to 7348...

  3. 38 CFR 4.114 - Schedule of ratings-digestive system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-digestive system. 4.114 Section 4.114 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Digestive System § 4.114 Schedule of ratings—digestive system. Ratings under diagnostic codes 7301 to 7329, inclusive, 7331, 7342, and 7345 to 7348...

  4. The complexities of hydrolytic enzymes from the termite digestive system.

    PubMed

    Saadeddin, Anas

    2014-06-01

    The main challenge in second generation bioethanol production is the efficient breakdown of cellulose to sugar monomers (hydrolysis). Due to the recalcitrant character of cellulose, feedstock pretreatment and adapted hydrolysis steps are needed to obtain fermentable sugar monomers. The conventional industrial production process of second-generation bioethanol from biomass comprises several steps: thermochemical pretreatment, enzymatic hydrolysis and sugar fermentation. This process is undergoing continuous optimization in order to increase the bioethanol yield and reduce the economic cost. Therefore, the discovery of new enzymes with high lignocellulytic activity or new strategies is extremely important. In nature, wood-feeding termites have developed a sophisticated and efficient cellulose degrading system in terms of the rate and extent of cellulose hydrolysis and exploitation. This system, which represents a model for digestive symbiosis has attracted the attention of biofuel researchers. This review describes the termite digestive system, gut symbionts, termite enzyme resources, in vitro studies of isolated enzymes and lignin degradation in termites.

  5. The isolation and characterization of new C. thermocellum strains and the evaluation of multiple anaerobic digestion systems

    NASA Astrophysics Data System (ADS)

    Lv, Wen

    The overall objective of my research was to improve the efficiencies of bioconversions that produce renewable energy from lignocellulosic biomass. To this end, my studies addressed issues important to two promising strategies: consolidated bioprocessing (CBP) and anaerobic digestion (AD). CBP achieves saccharolytic enzyme production, hydrolysis, and fermentation in a single step and is considered to be the most cost-effective model. Anaerobic bacteria that can be used in CBP are highly desirable. To that end, two thermophilic and cellulolytic bacterial strains were isolated and characterized (Chapter 3). Based on 16S rRNA gene sequence analysis, both strains CS7 and CS8 are closely related to Clostridium thermocellum ATCC 27405. However, they had significantly higher specific cellulase activities and ethanol/acetate ratios than C. thermocellum ATCC 27405. As a result, CS7 and CS8 are two new highly cellulolytic and ethanologenic C. thermocellum strains, with application potentials in research and development of CBP. As some of the most promising AD processes, two temperature-phased AD (TPAD) systems, in comparison with a thermophilic single-stage AD (TSAD) system and a mesophilic two-stage AD (MTAD) system, were studied in treating high-strength dairy cattle manure. The TPAD systems, with the thermophilic digesters acidified (AT-TPAD, Chapter 4) or operated at neutral pH (NT-TPAD, Chapter 5), were optimized at the thermophilic temperature of 50°C and a volume ratio between the thermophilic and the mesophilic digesters of 1:2. Despite similar methane productions, the NT-TPAD system achieved significantly higher volatile solid (VS) removal than the AT-TPAD system and needed no external pH adjustments (Chapter 6). At the same overall OLR, the TSAD system achieved the highest performance, followed by the NT-TPAD and the MTAD systems (Chapter 7). Each digester harbored distinct yet dynamic microbial populations, some of which were significantly correlated or associated

  6. [Mental disorders in digestive system diseases - internist's and psychiatrist's insight].

    PubMed

    Kukla, Urszula; Łabuzek, Krzysztof; Chronowska, Justyna; Krzystanek, Marek; Okopień, BogusŁaw

    2015-05-01

    Mental disorders accompanying digestive system diseases constitute interdisciplinary yet scarcely acknowledged both diagnostic and therapeutic problem. One of the mostly recognized examples is coeliac disease where patients endure the large spectrum of psychopathological symptoms, starting with attention deficit all the way down to the intellectual disability in extreme cases. It has not been fully explained how the pathomechanism of digestive system diseases affects patient's mental health, however one of the hypothesis suggests that it is due to serotonergic or opioid neurotransmission imbalance caused by gluten and gluten metabolites effect on central nervous system. Behavioral changes can also be invoked by liver or pancreatic diseases, which causes life-threatening abnormalities within a brain. It occurs that these abnormalities reflexively exacerbate the symptoms of primary somatic disease and aggravate its course, which worsens prognosis. The dominant mental disease mentioned in this article is depression which because of its effect on a hypothalamuspituitary- adrenal axis and on an autonomic nervous system, not only aggravates the symptoms of inflammatory bowel diseases but may accelerate their onset in genetically predisposed patients. Depression is known to negatively affects patients' ability to function in a society and a quality of their lives. Moreover, as far as children are concerned, the occurrence of digestive system diseases accompanied by mental disorders, may adversely affect their further physical and psychological development, which merely results in worse school performance. All those aspects of mental disorders indicate the desirability of the psychological care for patients with recognized digestive system disease. The psychological assistance should be provided immediately after diagnosis of a primary disease and be continued throughout the whole course of treatment. © 2015 MEDPRESS.

  7. On-farm environmental assessment of corn silage production systems receiving liquid dairy manure

    USDA-ARS?s Scientific Manuscript database

    Increased corn silage and manure production accompanying the proliferation of large dairies has prompted concern regarding their environmental impacts. Our objectives were (1) to quantify soil chemical properties and offsite nutrient transport under field-scale corn (Zea mays L.) silage production a...

  8. Soil organic carbon and nitrogen in long-term manure management system

    USDA-ARS?s Scientific Manuscript database

    Long-term studies are extremely beneficial to understand and evaluate changes in soil quality and sustainability of specific management practices. The objectives of this study were to evaluate the effects of 70 yr of moldboard plowing with manure (M) and commercial fertilizer (F) additions on soil o...

  9. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system.

    PubMed

    Lin, Hui; Sun, Wanchun; Zhang, Zulin; Chapman, Stephen J; Freitag, Thomas E; Fu, Jianrong; Zhang, Xin; Ma, Junwei

    2016-04-01

    This work investigated the responses of antibiotic resistance genes (ARGs) and the soil microbial community in a paddy-upland rotation system to mineral fertilizer (NPK) and different application dosages of manure combined with NPK. The occurrence of five tetracycline ARGs (tetA, tetB, tetC, tetG and tetW), two sulfonamide ARGs (sul1 and sul2) and one genetic element (IntI1) was quantified. NPK application showed only slight or no impact on soil ARGs abundances compared with the control without fertilizer. Soil ARGs abundances could be increased by manure-NPK application but was related to manure dosage (2250-9000 kg ha(-1)). Principal component analysis (PCA) showed that the soil ARG profile of the treatment with 9000 kg ha(-1) manure separated clearly from the other treatments; the ARGs that contributed most to the discrimination of this treatment were tetA, tetG, tetW, sul1, sul2 and IntI1. Community level physiological profile (CLPP) analysis showed that increasing manure dosage from 4500 kg ha(-1) to 9000 kg ha(-1) induced a sharp increase in almost all of the detected ARGs but would not change the microbial community at large. However, 9000 kg ha(-1) manure application produced a decline in soil microbial activity. Determination of antibiotics and heavy metals in soils suggested that the observed bloom of soil ARGs might associate closely with the accumulation of copper and zinc in soil.

  10. Safely Coupling Livestock and Crop Production Systems: How Rapidly Do Antibiotic Resistance Genes Dissipate in Soil following a Commercial Application of Swine or Dairy Manure?

    PubMed Central

    Marti, Romain; Tien, Yuan-Ching; Murray, Roger; Scott, Andrew; Sabourin, Lyne

    2014-01-01

    Animal manures recycled onto crop production land carry antibiotic-resistant bacteria. The present study evaluated the fate in soil of selected genes associated with antibiotic resistance or genetic mobility in field plots cropped to vegetables and managed according to normal farming practice. Referenced to unmanured soil, fertilization with swine or dairy manure increased the relative abundance of the gene targets sul1, erm(B), str(B), int1, and IncW repA. Following manure application in the spring of 2012, gene copy number decayed exponentially, reaching background levels by the fall of 2012. In contrast, gene copy number following manure application in the fall of 2012 or spring of 2013 increased significantly in the weeks following application and then declined. In both cases, the relative abundance of gene copy numbers had not returned to background levels by the fall of 2013. Overall, these results suggest that under conditions characteristic of agriculture in a humid continental climate, a 1-year period following a commercial application of raw manure is sufficient to ensure that an additional soil burden of antibiotic resistance genes approaches background. The relative abundance of several gene targets exceeded background during the growing season following a spring application or an application done the previous fall. Results from the present study reinforce the advisability of treating manure prior to use in crop production systems. PMID:24632259

  11. Relative contribution of maize and external manure amendment to soil carbon sequestration in a long-term intensive maize cropping system

    PubMed Central

    Zhang, Wenju; Liu, Kailou; Wang, Jinzhou; Shao, Xingfang; Xu, Minggang; Li, Jianwei; Wang, Xiujun; Murphy, Daniel V.

    2015-01-01

    We aimed to quantify the relative contributions of plant residue and organic manure to soil carbon sequestration. Using a 27-year-long inorganic fertilizer and manure amendment experiment in a maize (Zea mays L.) double-cropping system, we quantified changes in harvestable maize biomass and soil organic carbon stocks (0–20 cm depth) between 1986-2012. By employing natural 13C tracing techniques, we derived the proportional contributions of below-ground crop biomass return (maize-derived carbon) and external manure amendment (manure-derived carbon) to the total soil organic carbon stock. The average retention of maize-derived carbon plus manure-derived carbon during the early period of the trial (up to 11 years) was relatively high (10%) compared to the later period (22 to 27 years, 5.1–6.3%). About 11% of maize-derived carbon was converted to soil organic carbon, which was double the retention of manure-derived carbon (4.4–5.1%). This result emphasized that organic amendments were necessary to a win-win strategy for both SOC sequestration and maize production. PMID:26039186

  12. Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure?

    PubMed

    Marti, Romain; Tien, Yuan-Ching; Murray, Roger; Scott, Andrew; Sabourin, Lyne; Topp, Edward

    2014-05-01

    Animal manures recycled onto crop production land carry antibiotic-resistant bacteria. The present study evaluated the fate in soil of selected genes associated with antibiotic resistance or genetic mobility in field plots cropped to vegetables and managed according to normal farming practice. Referenced to unmanured soil, fertilization with swine or dairy manure increased the relative abundance of the gene targets sul1, erm(B), str(B), int1, and IncW repA. Following manure application in the spring of 2012, gene copy number decayed exponentially, reaching background levels by the fall of 2012. In contrast, gene copy number following manure application in the fall of 2012 or spring of 2013 increased significantly in the weeks following application and then declined. In both cases, the relative abundance of gene copy numbers had not returned to background levels by the fall of 2013. Overall, these results suggest that under conditions characteristic of agriculture in a humid continental climate, a 1-year period following a commercial application of raw manure is sufficient to ensure that an additional soil burden of antibiotic resistance genes approaches background. The relative abundance of several gene targets exceeded background during the growing season following a spring application or an application done the previous fall. Results from the present study reinforce the advisability of treating manure prior to use in crop production systems.

  13. Systemic Education Reform. ERIC Digest, Number 90.

    ERIC Educational Resources Information Center

    Thompson, James

    Economic forces and educational equity issues have combined to heighten calls for improved education for all students. Systemic reform calls for education to be reconceptualized from the ground up, beginning with the nature of teaching and learning, educational relationships, and school-community relationships. One of the assumptions made by…

  14. Effects of poultry manure, compost, and biochar amendments on soil nitrogen dynamics in maize production systems

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Tang, J.; Hastings, M. G.; Dell, C. J.; Sims, T.

    2013-12-01

    Intensification of animal agriculture has profound impacts on the global and local biogeochemistry of nitrogen (N), resulting in consequences to environmental and human health. In the Chesapeake Bay watershed, intensive agriculture is the primary contributor to N pollution, with animal manure comprising more than half of N from agriculture. Management interventions may play an important role in mitigating reactive N pollution in the Bay watershed. The objective of our research was to test management strategies that maximize benefits of poultry manure as an agricultural resource while minimizing it as a source of reactive nitrogen to the atmosphere and ground and surface waters. We conducted field experiments in two agricultural regions of the Chesapeake Bay watershed (Georgetown, Delaware and State College, Pennsylvania) to explore the effects of poultry manure amendments on gaseous N losses and soil N transformations. Treatments were applied at rates needed to meet the plant N demand at each site and included unfertilized controls, fertilizer N (urea), and raw, composted, or and biocharred poultry manure. The fate of the N from all sources was followed throughout the growing season. Global greenhouse gases emitted from soil (nitrous oxide [N2O] and carbon dioxide [CO2]) and regional air pollutants (nitrogen oxides [NOx] and ammonia [NH3]) were measured. Gas measurements were coupled with data on treatment effects on temperature, moisture, and concentrations of nitrate (NO3¬-) and ammonium (NH4+) in surface soils (0-10 cm). Soil NO3- and NH4+ were also measured approximately monthly in the soil profile (0-10, 10-30, 30-50, 50-70, and 70-100 cm) as an index of leaching potential. Plant N uptake and grain production were also quantified to quantify crop N use efficiency and compare measured N losses for each N source. Our results suggest that the form of poultry manure amendments can affect the magnitude of reactive N losses to the environment.

  15. Phenotypic flexibility of digestive system in Atlantic cod (Gadus morhua).

    PubMed

    Blier, P U; Dutil, J-D; Lemieux, H; Bélanger, F; Bitetera, L

    2007-02-01

    This study examined the restoration of the digestive capacity of Atlantic cod (Gadus morhua Linnaeus) following a long period of food deprivation. Fifty cod (48 cm, 1 kg) were food-deprived for 68 days and then fed in excess with capelin (Mallotus villosus Müller) on alternate days. Ten fish were sampled after 0, 2, 6, 14 and 28 days and the mass of the pyloric caeca, intestine and carcass determined. Two metabolic enzymes (cytochrome c oxidase and citrate synthase) were assayed in white muscle, pyloric caeca and intestine, and trypsin activity was measured in the pyloric caeca. A delay of 14 days was required before body mass started to increase markedly, whereas most of the increase in mass of both the pyloric caeca and intestine relative to fish length occurred earlier in the experiment. By day 14, the activities of trypsin and citrate synthase in the pyloric caeca as well as citrate synthase in the intestine had reached maxima. The growth of the digestive tissues and restoration of their metabolic capacities thus occur early upon refeeding and are likely required for recovery growth to take place. The phenotypic flexibility of the cod digestive system is therefore remarkable: increases in trypsin activity and size of pyloric caeca resulted in a combined 29-fold increase in digestive capacity of the fish during the refeeding period. Our study suggests that Atlantic cod are able to cope with marked fluctuations in food availability in their environment by making a rapid adjustment of their digestive capacity as soon as food availability increases.

  16. Plant Lectins as Medical Tools against Digestive System Cancers.

    PubMed

    Estrada-Martínez, Laura Elena; Moreno-Celis, Ulisses; Cervantes-Jiménez, Ricardo; Ferriz-Martínez, Roberto Augusto; Blanco-Labra, Alejandro; García-Gasca, Teresa

    2017-07-03

    Digestive system cancers-those of the esophagus, stomach, small intestine, colon-rectum, liver, and pancreas-are highly related to genetics and lifestyle. Most are considered highly mortal due to the frequency of late diagnosis, usually in advanced stages, caused by the absence of symptoms or masked by other pathologies. Different tools are being investigated in the search of a more precise diagnosis and treatment. Plant lectins have been studied because of their ability to recognize and bind to carbohydrates, exerting a variety of biological activities on animal cells, including anticancer activities. The present report integrates existing information on the activity of plant lectins on various types of digestive system cancers, and surveys the current state of research into their properties for diagnosis and selective treatment.

  17. [Effects of crop rotation and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system].

    PubMed

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-06-01

    We conducted a field experiment to evaluate the effects of rotation system and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system. Taking Chrysanthemum morifolium Ramat and wheat as experimental plants, treatments under Chrysanthemum continuous cropping system (M1), conventional Chrysanthemum-wheat rotation system (M2), and Chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg · 667 m(-2) (M3) were designed. Soil chemical properties, soil microbial biomass carbon (MBC) and nitrogen (MBN), and the amounts of different types of soil microorganisms were determined. Results showed that compared with M1, treatments of M2 and M3 significantly increased soil pH, organic matter, available N, P, and K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, but decreased the ratio of MBC/MBN, and the relative percentage of fungi in the total amount of microorganisms. Treatment of M3 had the highest contents of soil organic matter, available N, available P, available K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, with the values being 15.62 g · kg(-1), 64.75 mg · kg(-1), 83.26 mg · kg(-1), 96.72 mg · kg(-1), 217.40 mg · kg(-1), 38.41 mg · kg(-1), 22.31 x 10(6) cfu · g(-1), 56.36 x 10(3) cfu · g(-1), 15.90 x 10(5) cfu · g(-1), respectively. We concluded that rational crop rotation and bio-organic manure application could weaken soil acidification, improve soil fertility and microbial community structure, increase the efficiency of nutrition supply, and have a positive effect on reducing the obstacles of continuous cropping.

  18. Characterization of ammonia volatilization from liquid dairy manure

    NASA Astrophysics Data System (ADS)

    Koirala, Kedar

    Emission of gases, odor, and particulate matters from livestock manure is a major concern because of their potential adverse environmental impacts. For example, ammonia in the air has the potential to: negatively affect animal, human health and environment. Mitigation of ammonia emissions from livestock manure to protect animal and human health, and the environment, in general, is thus an important agenda for livestock producers, engineers, and environmental scientists. Proper understanding of the mechanisms or process of its volatilization from manure is the first step towards designing or formulating appropriate emissions mitigation strategies. This research investigated the effects of suspended solids, anaerobic digestion, and ionic strength on the ammonia (NH3) volatilization mechanism from liquid dairy manure. Experiments were conducted to: (i) assess the role of suspended solids characteristics on ammonia volatilization, (ii) evaluate the impacts of anaerobic digestion on the process governing NH 3 volatilization, and (iii) delineate the influences of suspended solids (SS) and ionic strength (IS) on the ammonia volatilization process from dairy manure. Two key parameters (the ammonia dissociation and the overall mass transfer coefficient (KoL)) that govern ammonia volatilization were evaluated to achieve these objectives. The physical and chemical properties of manure were also evaluated to further elucidate the respective processes. The suspended solids ammoniacal nitrogen adsorption properties did not significantly affect either the ammonium dissociation or the K oL; suggesting that the characteristics of manure suspended solids did not play a significant role in ammonia volatilization from liquid dairy manure. The dissociation of ammonium in anaerobically digested (AD) manure was significantly higher than in the undigested (UD) manure. However, KoL was less in AD manure than in UD manure, while an increase in total ammoniacal nitrogen (TAN) was observed

  19. Coupling dairy manure storage with injection to improve nitrogen management: whole-farm simulation using the integrated farm system Model

    USDA-ARS?s Scientific Manuscript database

    Application of livestock manure to farm soils represents a priority nutrient management concern in the Chesapeake Bay Watershed. Historically strong emphasis has been placed on adding manure storage to dairy operations, and, there has been recognition that manure application methods can be improved....

  20. Recovering Value from Waste: Anaerobic Digester System Basics

    EPA Pesticide Factsheets

    Biogas recovery may hold the key to unlocking the financial and environmental benefits of managing manure generated from livestock operations and organic wastes from the agriculture and food production sectors.

  1. Left-Right Asymmetric Morphogenesis in the Xenopus Digestive System

    USGS Publications Warehouse

    Muller, Jennifer K.; Prather, D.R.; Nascone-Yoder, N. M.

    2003-01-01

    The morphogenetic mechanisms by which developing organs become left-right asymmetric entities are unknown. To investigate this issue, we compared the roles of the left and right sides of the Xenopus embryo during the development of anatomic asymmetries in the digestive system. Although both sides contribute equivalently to each of the individual digestive organs, during the initial looping of the primitive gut tube, the left side assumes concave topologies where the right side becomes convex. Of interest, the concave surfaces of the gut tube correlate with expression of the LR gene, Pitx2, and ectopic Pitx2 mRNA induces ectopic concavities in a localized manner. A morphometric comparison of the prospective concave and convex surfaces of the gut tube reveals striking disparities in their rate of elongation but no significant differences in cell proliferation. These results provide insight into the nature of symmetry-breaking morphogenetic events during left-right asymmetric organ development. ?? 2003 Wiley-Liss, Inc.

  2. The Effects of Manure and Nitrogen Fertilizer Applications on Soil Organic Carbon and Nitrogen in a High-Input Cropping System

    PubMed Central

    Ren, Tao; Wang, Jingguo; Chen, Qing; Zhang, Fusuo; Lu, Shuchang

    2014-01-01

    With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn't increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure. PMID:24830463

  3. The effects of manure and nitrogen fertilizer applications on soil organic carbon and nitrogen in a high-input cropping system.

    PubMed

    Ren, Tao; Wang, Jingguo; Chen, Qing; Zhang, Fusuo; Lu, Shuchang

    2014-01-01

    With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn't increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure.

  4. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system.

    PubMed

    Dalkılıc, Kenan; Ugurlu, Aysenur

    2015-09-01

    This study investigates the biogas production from chicken manure at different organic loading rates (OLRs), in a mesophilic-thermophilic two stage anaerobic system. The system was operated on semi continuous mode under different OLRs [1.9 g volatile solids (VS)/L·d - 4.7 g VS/L·d] and total solid (TS) contents (3.0-8.25%). It was observed that the anaerobic bacteria acclimatized to high total ammonia nitrogen concentration (>3000 mg/L) originated as a result of the degradation of chicken manure. High volatile fatty acid concentrations were tolerated by the system due to high pH in the reactors. The maximum average biogas production rate was found as 554 mL/g VSfeed while feeding 2.2 g VS/L-d (2.3% VS - 3.8% TS) to the system. Average methane content of produced biogas was 74% during the study. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains

    NASA Astrophysics Data System (ADS)

    Bhatia, A.; Pathak, H.; Jain, N.; Singh, P. K.; Singh, A. K.

    Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice-wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH 4 emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH 4 emissions. The carbon equivalent emission from rice-wheat systems varied between 3816 and 4886 kg C equivalent ha -1 depending upon fertilizer and organic amendment. GWP of rice-wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice-wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.

  6. The ctenophore Mnemiopsis leidyi has a flow-through system for digestion with three consecutive phases of extracellular digestion.

    PubMed

    Bumann, D; Puls, G

    1997-01-01

    The ctenophore (comb jelly) Mnemiopsis leidyi is a periodically abundant and voracious predator in U.S. coastal waters. Mnemiopsis leidyi is especially competitive at high prey concentrations because of its very efficient extracellular digestion. We investigated the functional basis for these outstanding digestion capabilities. Extracellular digestion takes place in the pharynx and consists of three distinct and consecutive phases. The three phases take place in different regions of the pharynx so that various prey items can be treated simultaneously in each phase. The first phase is acidic, while the second and the third are alkaline. Extracellular digestion is completed by ciliary currents that mechanically disrupt the predigested food. Bulky indigestible food fragments are expelled through the mouth. Except for a small area, the paths for ingestion and egestion are separate. Hence, both ingestion and egestion can occur simultaneously. The flattened and elongated shape of the pharynx provides the morphological basis for this flow-through system with various regions for different digestive treatments of the food. This system is highly elaborated compared with those of other lower invertebrates and allows for an efficient, fast, and simultaneous digestion of many prey items, which accounts for the outstanding feeding capabilities of M. leidyi.

  7. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems

    PubMed Central

    Noyes, Noelle R.; Yang, Xiang; Linke, Lyndsey M.; Magnuson, Roberta J.; Cook, Shaun R.; Zaheer, Rahat; Yang, Hua; Woerner, Dale R.; Geornaras, Ifigenia; McArt, Jessica A.; Gow, Sheryl P.; Ruiz, Jaime; Jones, Kenneth L.; Boucher, Christina A.; McAllister, Tim A.; Belk, Keith E.; Morley, Paul S.

    2016-01-01

    It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents. PMID:27095377

  8. Anaerobic digestion of solid agroindustrial waste in semi-continuous mode: Evaluation of mono-digestion and co-digestion systems.

    PubMed

    Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2017-10-01

    The present study aimed at investigating the anaerobic digestion of four agroindustrial waste, namely cotton gin waste, winery waste, olive pomace and juice industry waste, in semi-continuous mode, conducting mono-digestion and co-digestion assays, using an artificial organic fraction sample as co-substrate. These assays were divided into two groups, in which different conditions were applied. Group I investigated the variation in two operational parameters, i.e. the organic loading rate (OLR) and the hydraulic retention time (HRT), while in Group II, the assays were fed with different substrates in a sequential order. Results showed more elevated specific methane yields for co-digestion assays compared with mono-digestion assays. Maximum yields were achieved at an OLR of 1.0gVS/(L·d) and a HRT reduced to half of the initial. Further reduction of the HRT coupled to an increase of the OLR generally caused a significant decrease of specific methane yields, as well as one case of severe overloading, i.e. the mono-digestion of juice industry waste, which resulted in instability and ultimately system failure. Sequential feeding with different substrates led to a more equilibrated operation, especially for co-digestion systems, with higher specific methane yields being observed during the phases corresponding to winery waste and juice industry waste substrates. Overall more positive results were obtained in the cases in which the latter substrates were fed to the reactors at process startup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Helicobacter-based mouse models of digestive system carcinogenesis.

    PubMed

    Rogers, Arlin B; Houghton, JeanMarie

    2009-01-01

    Animal models are necessary to reproduce the complex host, microbial and environmental influences associated with infectious carcinogenesis of the digestive system. Today, mouse models are preferred by most researchers because of cost efficiencies, rapid reproduction, choice of laboratory reagents, and availability of genetically engineered mutants to study specific gene functions in vivo. Mouse models have validated the once-provocative hypothesis that Helicobacter pylori infection is a major risk factor for gastric carcinoma, dispelling early skepticism over the pathogenic nature of this organism in the human stomach. Enterohepatic Helicobacter spp. induce inflammatory bowel disease and colorectal carcinoma in susceptible mouse strains, permitting study of host immunity and microbial factors at the cellular and molecular level. H. hepaticus is the only proven infectious hepatocarcinogen of mice and has been used to explore mechanisms of inflammation-associated liver cancer as seen in human chronic viral hepatitis. For example, this model was used to identify for the first time a potential mechanism for male-predominant liver cancer risk independent of circulating sex hormones. Helicobacter-based mouse models of digestive system carcino-genesis are used to investigate the basic biology of inflammation-associated human cancers and to evaluate therapeutic interventions at the discovery level. Because of exciting advances in genetic engineering of mice, in vivo imaging, and system-wide genomics and proteomics, these models will provide even more information in the future. This chapter introduces the mouse as a model species; summarizes important models of inflammation-associated cancer incited by murine Helicobacter infection; and describes methods for the collection, sampling, and histologic grading of mouse digestive system tissues.

  10. Ectonucleotidases in the digestive system: focus on NTPDase3 localization.

    PubMed

    Lavoie, Elise G; Gulbransen, Brian D; Martín-Satué, Mireia; Aliagas, Elisabet; Sharkey, Keith A; Sévigny, Jean

    2011-04-01

    Extracellular nucleotides and adenosine are biologically active molecules that bind members of the P2 and P1 receptor families, respectively. In the digestive system, these receptors modulate various functions, including salivary, gastric, and intestinal epithelial secretion and enteric neurotransmission. The availability of P1 and P2 ligands is modulated by ectonucleotidases, enzymes that hydrolyze extracellular nucleotides into nucleosides. Nucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase are the dominant ectonucleotidases at physiological pH. While there is some information about the localization of ecto-5'-nucleotidase and NTPDase1 and -2, the distribution of NTPDase3 in the digestive system is unknown. We examined the localization of these ectonucleotidases, with a focus on NTPDase3, in the gastrointestinal tract and salivary glands. NTPDase1, -2, and -3 are responsible for ecto-ATPase activity in these tissues. Semiquantitative RT-PCR, immunohistochemistry, and in situ enzyme activity revealed the presence of NTPDase3 in some epithelial cells in serous acini of salivary glands and mucous acini and duct cells of sublingual salivary glands, in cells from the stratified esophageal and forestomach epithelia, and in some enteroendocrine cells of the gastric antrum. Interestingly, NTPDase2 and ecto-5'-nucleotidase are coexpressed with NTPDase3 in salivary gland cells and stratified epithelia. In the colon, neurons express NTPDase3 and glial cells express NTPDase2. Ca(2+) imaging experiments demonstrate that NTPDases regulate P2 receptor ligand availability in the enteric nervous system. In summary, the specific localization of NTPDase3 in the digestive system suggests functional roles of the enzyme, in association with NTPDase2 and ecto-5'-nucleotidase, in epithelial functions such as secretion and in enteric neurotransmission.

  11. Plant utilization against digestive system disorder in Southern Assam, India.

    PubMed

    Choudhury, Prakash Roy; Choudhury, Manabendra Dutta; Ningthoujam, Sanjoy Singh; Mitra, Abhijit; Nath, Deepa; Talukdar, Anupam Das

    2015-12-04

    Being one of the most common types of life threatening diseases in Southern Assam, India, the digestive system disorders (DSD) have gained much attention in recent decades. Traditional beliefs and inadequate income of mass population result in the use of alternative phytotherapies to treat the diseases. The present paper documents the medicinal knowledge and utilization of plants for treatment of digestive system disorders in Southern Assam, India by Disease Consensus Index (DCI). It also determines the most suitable plant species used to treat digestive system disorders in the study area. The study was based on ethnomedicinal field survey covering a period of 1 year from 2014-2015. The ethnomedicinal information was collected by using semi-structured questionnaires from different traditional Bengali people having knowledge on medicinal plants. Collected data were analyzed by calculating DCI. During the survey, 29 informants were interviewed and a total of 49 plants under 46 genera belonging to 33 families were listed. Data analysis revealed that Litsea glutinosa, Momordica charantia, Andrographis paniculata, Lawsonia inermis, Cleome viscosa, Psidium guajava, Ageratum conyzoides, Cuscuta reflexa, Cynodon dactylon and Carica papaya are the most prominent plants among the people of Southern Assam for treating DSD. This explorative survey emphasizes the need to preserve and document the traditional healing practices for managing DSD inviting for more imminent scientific research on the plants to determine their efficacy as well as safety. With the help of statistical analysis (DCI), we propose 10 priority plants for DSD in present work. Systematic pharmacological study with these plants may contribute significant result. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  13. A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation.

    PubMed

    Zhong, Yuan; Ruan, Zhenhua; Zhong, Yingkui; Archer, Steven; Liu, Yan; Liao, Wei

    2015-03-01

    High energy demand hinders the development and application of aerobic microbial biofuel production from lignocellulosic materials. In order to address this issue, this study focused on developing an integrated system including anaerobic digestion and aerobic fungal fermentation to convert corn stover, animal manure and food wastes into microbial lipids for biodiesel production. Dairy manure and food waste were first anaerobically digested to produce energy and solid digestate (AD fiber). AD fiber and corn stover were then processed by a combined alkali and acid hydrolysis, followed by fungal lipid accumulation. The integrated process can generate 1L biodiesel and 1.9 kg methane from 12.8 kg dry dairy manure, 3.1 kg dry food wastes and 12.2 kg dry corn stover with a positive net energy of 57 MJ, which concludes a self-sustaining lignocellulosic biodiesel process and provides a new route to co-utilize corn stover and organic wastes for advanced biofuel production.

  14. Formation of the digestive system in zebrafish. I. Liver morphogenesis.

    PubMed

    Field, Holly A; Ober, Elke A; Roeser, Tobias; Stainier, Didier Y R

    2003-01-15

    Despite the essential functions of the digestive system, much remains to be learned about the cellular and molecular mechanisms responsible for digestive organ morphogenesis and patterning. We introduce a novel zebrafish transgenic line, the gutGFP line, that expresses GFP throughout the digestive system, and use this tool to analyze the development of the liver. Our studies reveal two phases of liver morphogenesis: budding and growth. The budding period, which can be further subdivided into three stages, starts when hepatocytes first aggregate, shortly after 24 h postfertilization (hpf), and ends with the formation of a hepatic duct at 50 hpf. The growth phase immediately follows and is responsible for a dramatic alteration of liver size and shape. We also analyze gene expression in the developing liver and find a correlation between the expression of certain transcription factor genes and the morphologically defined stages of liver budding. To further expand our understanding of budding morphogenesis, we use loss-of-function analyses to investigate factors potentially involved in this process. It had been reported that no tail mutant embryos appear to lack a liver primordium, as assessed by gata6 expression. However, analysis of gutGFP embryos lacking Ntl show that the liver is in fact present. We also find that, in these embryos, the direction of liver budding does not correlate with the direction of intestinal looping, indicating that the left/right behavior of these tissues can be uncoupled. In addition, we use the cloche mutation to analyze the role of endothelial cells in liver morphogenesis, and find that in zebrafish, unlike what has been reported in mouse, endothelial cells do not appear to be necessary for the budding of this organ.

  15. Gallstones, cholecystectomy, and risk of digestive system cancers.

    PubMed

    Nogueira, Leticia; Freedman, Neal D; Engels, Eric A; Warren, Joan L; Castro, Felipe; Koshiol, Jill

    2014-03-15

    Gallstones and cholecystectomy may be related to digestive system cancer through inflammation, altered bile flux, and changes in metabolic hormone levels. Although gallstones are recognized causes of gallbladder cancer, associations with other cancers of the digestive system are poorly established. We used the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database (1992-2005), which includes 17 cancer registries that cover approximately 26% of the US population, to identify first primary cancers (n = 236,850) occurring in persons aged ≥66 years and 100,000 cancer-free population-based controls frequency-matched by calendar year, age, and gender. Odds ratios and 95% confidence intervals were calculated using logistic regression analysis, adjusting for the matching factors. Gallstones and cholecystectomy were associated with increased risk of noncardia gastric cancer (odds ratio (OR) = 1.21 (95% confidence interval (CI): 1.11, 1.32) and OR = 1.26 (95% CI: 1.13, 1.40), respectively), small-intestine carcinoid (OR = 1.27 (95% CI: 1.01, 1.60) and OR = 1.78 (95% CI: 1.41, 2.25)), liver cancer (OR = 2.35 (95% CI: 2.18, 2.54) and OR = 1.26 (95% CI: 1.12, 1.41)), and pancreatic cancer (OR = 1.24 (95% CI: 1.16, 1.31) and OR = 1.23 (95% CI: 1.15, 1.33)). Colorectal cancer risk associated with gallstones and cholecystectomy decreased with increasing distance from the common bile duct (P-trend < 0.001). Hence, gallstones and cholecystectomy are associated with the risk of cancers occurring throughout the digestive tract.

  16. Effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in the digestive system of tilapia (Oreochromis niloticus).

    PubMed

    Dai, Wei; Du, Huahua; Fu, Linglin; Jin, Chengguan; Xu, Zirong; Liu, Huitao

    2009-02-01

    With the increasing occurrence of dietary lead (Pb) contamination in aquatic environment, threat of the dietary Pb toxicity to aquatic organisms attracted more attention. In this study, after being exposed to dietary Pb at concentrations of 0, 100, 400, and 800-microg/g dry weight for 60 days, the groups of tilapia (Oreochromis niloticus) were sacrificed and sampled to analyze the effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in tissues of the digestive system. The results showed that the Pb accumulation in tissues increased with the dietary Pb concentrations. Moreover, Pb accumulated in sampled tissues in the following order: intestine > stomach > liver. By observation of liver histological sections in optical microscope, lesions could be detected in the Pb-contaminated groups. It was also demonstrated that the inhibitory effect of dietary Pb on digestive enzyme activities was dietary Pb concentration dependent. Different degrees of inhibition of enzyme activities were exhibited in sampled tissues. It was indicated that digestive enzyme activities in the digestive system might be considered as the potential biomarkers of dietary Pb contamination in tilapia.

  17. Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures.

    PubMed

    Aira, Manuel; Bybee, Seth; Pérez-Losada, Marcos; Domínguez, Jorge

    2015-11-01

    Earthworms play a key role in nutrient cycling by interacting with microorganisms thus accelerating organic matter turnover in soil systems. As detritivores, some earthworm types ingest and digest a mixture of dead organic matter and microorganisms, like animal manures (i.e. animal gut microbiomes). Here we described the earthworm cast microbiome and the role ingested bacteria play on its composition. We fed Eisenia andrei with cow, horse and pig manures and determined the taxonomic and phylogenetic composition of the these manures before and after passage through the earthworm gut. Earthworm cast microbiomes showed a smaller diversity than the manure they fed on. Manures strongly differed in their taxonomic and phylogenetic composition, but these differences were markedly reduced once transformed into earthworm cast microbiomes after passage through the earthworm gut. The core earthworm cast microbiome comprised 30 OTUs (2.6% of OTUs from cast samples), of which 10 are possibly native to the earthworm gut. Most of the core cast microbiome OTUs belonged to phyla Actinobacteria and Proteobacteria, as opposed to already described animal core gut microbiomes, which are composed mainly of Firmicutes and Bacteroidetes. Our results suggest that earthworms build up their cast microbiome by selecting from the pool of ingested bacteria.

  18. Survey of dairy housing and manure management practices in California.

    PubMed

    Meyer, D; Price, P L; Rossow, H A; Silva-del-Rio, N; Karle, B M; Robinson, P H; DePeters, E J; Fadel, J G

    2011-09-01

    In 2007, a descriptive survey was mailed to all dairies in Glenn (G) and Tulare (T) Counties to identify current and future opportunities of manure management practices on California dairies. The purpose was to provide baseline information for development of outreach curriculum and a decision support tool to quantify potential benefits of various N management options on dairy farms. Such baseline information is valuable to staff regulating dairy facilities (e.g., San Joaquin Valley Unified Air Pollution Control District and Central Valley Regional Water Quality Control Board), dairy trade association representatives, and technology vendors. Response rates for each county were similar at 29.7% (n=19; G) and 26.7% (n=88; T). Mean milking herd size averaged 570 (range 50 to 3,000) cows in G and 1,800 (range 196 to 9,286) cows in T. Survey data are reported by location due to differences between counties in herd size, housing facilities, and climate. Freestalls are common housing facilities (63.2%, G; 38.6%, T) and separated solids and corral scrapings are commonly used as bedding in freestalls (81.8% G and 79.4% T). The most common methods of manure collection were flushing and scraping (18.8%, G; 44.7%, T), only flushing (43.8%, G; 34.1%, T), or only scraping daily or less frequently than daily (37.5%, G; 20.0%, T). Most dairy farms in G (63.2%) and T (70.5%) used some method of separating solids from liquids. However, mechanical separation systems alone were used by 5.3% G and 11.4% T of dairy farms. Storage or treatment ponds were found on 95.9% of dairies. Respondents identified existing manure management practices and did not indicate any new technologies were in use or being considered for manure management. Survey results were used to describe the 2 predominant manure management pathways of manure collection, storage, treatment, and utilization. Survey results will be used to develop and disseminate targeted information on manure treatment technologies, and on

  19. Pretreatment optimization, process control, mass and energy balances and economics of anaerobic co-digestion of Arachis hypogaea (Peanut) hull and poultry manure.

    PubMed

    Dahunsi, S O; Oranusi, S; Efeovbokhan, V E

    2017-10-01

    The study explored biogas production from the co-digestion of Arachis hypogaea hull and poultry droppings. Mechanical and thermo-alkaline pretreatments were applied to a sample of the mixture. Another sample was treated mechanically but without thermo-alkaline methods. Optimization was done using the Response Surface Methodology (RSM) and the Artificial Neural Networks (ANNs). The optimal values for each of the five major parameters optimized are Temperature of 32.00°C, pH of 7.62, Retention time of 30.00 day, Total solids of 12.00g/kg and Volatile solids of 10.00g/kg and the predicted biogas yield for RSM was 3903.1510(-3)m(3)/kg TSfed and 3338.310(-3)m(3)/kg TSfed for ANNs in the thermo-alkaline pretreated experiment. Gas chromatography show the CH4 and CO2 content of biogas generated to be 65.5±1.5%; 26±1% and 53±1%; 26±2% respectively. The co-digestion of peanut hull with poultry droppings and other energy-yielding substrates is further encouraged. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prenatal development of the digestive system in the horse.

    PubMed

    Rodrigues, Marcio N; Carvalho, Rafael C; Franciolli, Andre L R; Rodrigues, Rosângela F; Rigoglio, Nathia N; Jacob, Julio C F; Gastal, Eduardo L; Miglino, Maria A

    2014-07-01

    Since the horse has a highly precocial reproductive strategy, most organs are functionally well developed at birth and thus, embryonic and fetal life is interesting. Data on the development of important organs are very limited. Here, we detailed macroscopically and histologically the equine digestive system, focusing on the first third of gestation. At 21 days, the oral cavity was an empty space, and the liver contained proliferating endodermal cells. At 25 days, a fusiform stomach and the pancreatic bud were present. At 28 days, a small tongue and the esophagus occurred. At 30 days, primary and secondary palates were developed, the liver contained cords of hepatocytes, and the pancreas was triangular. At 40 days, crypts had formed in the intestinal loops, cell differentiation was observed in the hepatic parenchyma, and the pancreas was elongated. Pancreatic acini and islets were observed in fetuses of 50 days and intestines were highly convoluted. Three segments of the pharynx were distinguishable at 75 days. At 105 days, the intestinal villi were wide with round tips; especially, the liver, stomach, and oral cavity showed key steps of anatomical and cellular differentiation in early fetuses, whereas other areas, such as pancreas or pharynx were still immature in the investigated phase. Pluripotency analysis using Oct4 showed initial intense staining in all of the digestive system tissues and a later decreased becoming restricted to specific cell layers. In conclusion, our data may contribute to perform a chronological reference of developmental events for approaches predicting pregnancy disorders in horses.

  1. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid.

    PubMed

    Zhang, Benyue; Zhao, Hongyan; Yu, Hairu; Chen, Di; Li, Xue; Wang, Weidong; Piao, Renzhe; Cui, Zongjun

    2016-04-28

    The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l(-1) g(-1) VS, 322 l(-1) g-1 VS, and 304 l(-1) g(-1) VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml(-1) g(-1) VS, 461.73 ml(-1) g(-1) VS, and 451.76 ml(-1) g(-1) VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production.

  2. Development of a quantitative real-time PCR assay for detection and enumeration of methanogenic archaea in stored swine manure

    USDA-ARS?s Scientific Manuscript database

    Storage of swine manure is associated with the microbial production of a variety of odors and emissions which result from anaerobic digestion of materials present in the manure. In the United States, methane emissions from lagoons and manure storage pits are estimated to be over 40 Tg/year, account...

  3. Inhibitory Effects of Condensed Tannins on Sulfate-Reducing Bacteria Populations and Hydrogen Sulfide Production from Swine Manure

    USDA-ARS?s Scientific Manuscript database

    Odorous compounds and emissions associated with consolidated storage of swine manure are produced as a result of anaerobic microbial digestion of materials present in the manure. Hydrogen sulfide (H2S) is one such offensive and toxic odorant that can reach hazardous levels during manure storage and...

  4. Effect of green manure in soil quality and nitrogen transfer to cherry tomato in the no tillage system on corn straw

    NASA Astrophysics Data System (ADS)

    Ambrosano, Edmilson; Rossi, Fabricio; Dias, Fabio; Trivelin, Paulo; Muraoka, Takashi; Tavares, Silvio; Ambrosano, Glaucia

    2015-04-01

    The objective of this study was to quantify the contribution of green manure in on soil quality and nitrogen transfer to cherry tomatoes using the N-15 abundance method. The experiment was carried out in Piracicaba, APTA/SAA, SP, Brazil. The IAC collection accesses 21 of cherry tomatoes were used. Each Plot consisted of six plants spaced 0.5 m and 0.9 m between rows, conducted in a randomized block with eight treatments and five repetitions. The treatments were as green manures intercropping or not on cherry tomato, namely: jack bean (Canavalia ensiformis), sunn hemp (Crotalaria juncea L.), dwarf mucuna (Mucuna deeringiana), mung bean (Vigna radiata (L.) Wilczek ), white lupine (Lupinus albus L.) and cowpea (Vigna unguiculata (L.) Walp). Besides two witnesses, one without corn straw and another with corn straw. Five leaves with petiole of each plant part during the first ripe fruit and a bunch of fruits per plant are harvested. Samples of leaf and fruit were weighed and dried in an oven of forced air and its dry weight measured. A subsample was ground in a knife mill type Willy and brought to the mass spectrometer (ANCA GSL) on the Stable Isotopes Laboratory of CENA/USP for the analysis of δN-15. It measured the percentage of transfer of N green manure for tomato, the tomato plants grown as monocropped were considered a control and came to the result that 27 % N found in the fruit came from the green manure and the aerial part this figure was 23%. These results show that dur¬ing the fruit set of tomato can occur greater translocation and consequent higher utilization of N from green manure than in the aerial part. This production system can reduce the use of nitrogen fertilizers. The presence of a green manure in treatments not intercropped caused some soil alterations that could be detected in samples collected in the harvesting season. There was an increase in organic matter, Ca, Mg and Zn availability, and consequently in base saturation and pH. The presence

  5. 38 CFR 4.114 - Schedule of ratings-digestive system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Similarly, lung abscess due to amebiasis will be rated under the respiratory system schedule, diagnostic...-digestive system. 4.114 Section 4.114 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Digestive System § 4.114 Schedule of...

  6. Surface runoff from manured cropping systems assessed by the paired-watershed method, part 2: pathogen transport

    USDA-ARS?s Scientific Manuscript database

    Manure application to cultivated land is a sustainable approach for enhancing soil fertility and tilth. However, pathogens are common in manure and can be transported from application sites via runoff and potentially transmitted to livestock and humans. Our objective is to quantify a diverse group o...

  7. Economic analyses of pig manure treatment options in Ireland.

    PubMed

    Nolan, Tereza; Troy, Shane M; Gilkinson, Stephen; Frost, Peter; Xie, Sihuang; Zhan, Xinmin; Harrington, Caolan; Healy, Mark G; Lawlor, Peadar G

    2012-02-01

    An economic analysis was performed on treatment options for pig manure in Ireland. Costs were based on a 500 sow integrated pig farm producing 10,500 m(3) of manure per year at 4.8% dry matter. The anaerobic digestion of pig manure and grass silage (1:1; volatile solids basis) was unviable under the proposed tariffs, with costs at € 5.2 m(-3) manure. Subsequent solid-liquid separation of the digestate would cost an additional € 12.8 m(-3) manure. The treatment of the separated solid fraction by composting and of the liquid fraction by integrated constructed wetlands, would add € 2.8 and € 4.6 m(-3) manure, respectively to the treatment costs. The cost analysis presented showed that the technologies investigated are currently not cost effective in Ireland. Transport and spreading of raw manure, at € 4.9 m(-3) manure (15 km maximum distance from farm) is the most cost effective option.

  8. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems.

    PubMed

    Xia, Ao; Murphy, Jerry D

    2016-04-01

    Biogas production via anaerobic digestion (AD) has rapidly developed in recent years. In addition to biogas, digestate is an important byproduct. Liquid digestate is the major fraction of digestate and may contain high levels of ammonia nitrogen. Traditional processing technologies (such as land application) require significant energy inputs and raise environmental risks (such as eutrophication). Alternatively, microalgae can efficiently remove the nutrients from digestate while producing high-value biomass that can be used for the production of biochemicals and biofuels. Both inorganic and organic carbon sources derived from biogas production can significantly improve microalgal production. Land requirement for microalgal cultivation is estimated as 3% of traditional direct land application of digestate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Impact of organic loading rate on the performance of psychrophilic dry anaerobic digestion of dairy manure and wheat straw: long-term operation.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-04-01

    Development of efficient processes for valorising animal wastes would be a major advancement in cold-climate regions. This paper reports the results of long term (315 days experiment) of novel psychrophilic (20°C) dry anaerobic digestion (PDAD) of cow feces and wheat straw in laboratory scale sequence batch reactor operated at increasing organic loading rate. The PDAD process fed with a mixture of feces and straw (TS of 27%) over a treatment cycle length of 21 days at organic loading rate (OLR) 4.0, 5.0 and 6.0 g TCOD kg(-1) inoculum d(-1) (of 2.9 ± 0.1, 3.7 ± 0.1, and 4.4 ± 0.1g VS kg(-1) inoculum d(-1), respectively) resulted in average specific methane yield (SMY) of 187.3 ± 18.1, 163.6 ± 39.5, 150.8 ± 32.9 N L CH4 kg(-1)VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.4 at OLR of 6.0 g TCOD kg(-1) inoculum d(-1). Hydrolysis was the limiting step reaction.

  10. Manure on alfalfa

    USDA-ARS?s Scientific Manuscript database

    Many managers of crop-livestock operations could, or need to, utilize alfalfa fields in their manure management plans. The advantages to manure application on alfalfa need to be considered in the context of some potential concerns – plant damage from manure or wheel traffic, pathogen transmission in...

  11. Comparison of models used for national agricultural ammonia emission inventories in Europe: Litter-based manure systems

    NASA Astrophysics Data System (ADS)

    Reidy, B.; Webb, J.; Misselbrook, T. H.; Menzi, H.; Luesink, H. H.; Hutchings, N. J.; Eurich-Menden, B.; Döhler, H.; Dämmgen, U.

    Six N-flow models, used to calculate national ammonia (NH 3) emissions from agriculture in different European countries, were compared using standard data sets. Scenarios for litter-based systems were run separately for beef cattle and for broilers, with three different levels of model standardisation: (a) standardized inputs to all models (FF scenario); (b) standard N excretion, but national values for emission factors (EFs) (FN scenario); (c) national values for N excretion and EFs (NN scenario). Results of the FF scenario for beef cattle produced very similar estimates of total losses of total ammoniacal-N (TAN) (±6% of the mean total), but large differences in NH 3 emissions (±24% of the mean). These differences arose from the different approaches to TAN immobilization in litter, other N losses and mineralization in the models. As a result of those differences estimates of TAN available at spreading differed by a factor of almost 3. Results of the FF scenario for broilers produced a range of estimates of total changes in TAN (±9% of the mean total), and larger differences in the estimate of NH 3 emissions (±17% of the mean). The different approaches among the models to TAN immobilization, other N losses and mineralization, produced estimates of TAN available at spreading which differed by a factor of almost 1.7. The differences in estimates of NH 3 emissions decreased as estimates of immobilization and other N losses increased. Since immobilization and denitrification depend also on the C:N ratio in manure, there would be advantages to include C flows in mass-flow models. This would also provide an integrated model for the estimation of emissions of methane, non-methane VOCs and carbon dioxide. Estimation of these would also enable an estimate of mass loss, calculation of the N and TAN concentrations in litter-based manures and further validation of model outputs.

  12. Relationships between Digestive, Circulatory, and Urinary Systems in Portuguese Primary Textbooks

    ERIC Educational Resources Information Center

    Carvalho, Graça S.; Clèment, Pierre

    2007-01-01

    In this study, 63 Portuguese primary schoolbooks (1920-2005) were analyzed. The analysis focused on text information (reference to blood absorption and association of the digestive system to other human systems) and on information from images (presence or absence of image "confusion" (when the sequence of the digestive tract is not…

  13. Environmental residuals and capital costs of energy recovery from municipal sludge and feedlot manure

    SciTech Connect

    Ballou, S W; Dale, L; Johnson, R; Chambers, W; Mittelhauser, H

    1980-09-01

    The capital and environmental cost of energy recovery from municipal sludge and feedlot manure is analyzed. Literature on waste processing and energy conversion and interviews with manufacturers were used for baseline data for construction of theoretical models using three energy conversion processes: anaerobic digestion, incineration, and pyrolysis. Process characteristics, environmental impact data, and capital costs are presented in detail for each conversion system. The energy recovery systems described would probably be sited near large sources of sludge and manure, i.e., metropolitan sewage treatment plants and large feedlots in cattle-raising states. Although the systems would provide benefits in terms of waste disposal as well as energy production, they would also involve additional pollution of air and water. Analysis of potential siting patterns and pollution conflicts is needed before energy recovery systems using municipal sludge can be considered as feasible energy sources.

  14. The functional role of long non-coding RNA in digestive system carcinomas.

    PubMed

    Wang, Guang-Yu; Zhu, Yuan-Yuan; Zhang, Yan-Qiao

    2014-09-01

    In recent years, long non-coding RNAs (lncRNAs) are emerging as either oncogenes or tumor suppressor genes. Recent evidences suggest that lncRNAs play a very important role in digestive system carcinomas. However, the biological function of lncRNAs in the vast majority of digestive system carcinomas remains unclear. Recently, increasing studies has begun to explore their molecular mechanisms and regulatory networks that they are implicated in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in digestive system carcinomas. It is becoming clear that lncRNAs will be exciting and potentially useful for diagnosis and treatment of digestive system carcinomas, some of these lncRNAs might function as both diagnostic markers and the treatment targets of digestive system carcinomas.

  15. Integrated system for extraction, purification, and digestion of membrane proteins.

    PubMed

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Deng, Chunhui; Zhang, Xiangmin

    2016-05-01

    An integrated system was developed for directly processing living cells into peptides of membrane proteins. Living cells were directly injected into the system and cracked in a capillary column by ultrasonic treatment. Owing to hydrophilicity for broken pieces of the cell membrane, the obtained membranes were retained in a well-designed bi-filter. While cytoplasm proteins were eluted from the bi-filter, the membranes were dissolved and protein released by flushing 4% SDS buffer through the bi-filter. The membrane proteins were subsequently transferred into a micro-reactor and covalently bound in the reactor for purification and digestion. As the system greatly simplified the whole pretreatment processes and minimized both sample loss and contamination, it could be used to analyze the membrane proteome samples of thousand-cell-scales with acceptable reliability and stability. We totally identified 1348 proteins from 5000 HepG2 cells, 615 of which were annotated as membrane proteins. In contrast, with conventional method, only 233 membrane proteins were identified. It is adequately demonstrated that the integrated system shows promising practicability for the membrane proteome analysis of small amount of cells.

  16. Substitute fluid examinations for liquid manure

    NASA Astrophysics Data System (ADS)

    Schrader, Kevin; Riedel, Marco; Eichert, Helmut

    For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  17. Substitute fluid examinations for liquid manure

    NASA Astrophysics Data System (ADS)

    Schrader, Kevin; Riedel, Marco; Eichert, Helmut

    2016-11-01

    For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  18. Adenine nucleotide levels in a closed enzymatic digestion system for porcine islet isolation.

    PubMed

    Oshibe, Ikuro; Saito, Takuro; Sato, Yoshihiro; Saito, Takaharu; Tsukada, Manabu; Ise, Kazuya; Kenjo, Akira; Kimura, Takashi; Anazawa, Takayuki; Suzuki, Shigeya; Hashimoto, Yasuhiro; Gotoh, Mitusukazu

    2012-01-01

    Obtaining viable islets is a crucial step for successful islet transplantation. Adenosine triphosphate (ATP) is a marker of cell viability. However, little is known about any changes in the energy status of the tissues that are being digested during the digestion phase. We herein examined whether the ATP content in serially digested pancreatic tissue samples could be specific objective parameters that signal the optimal point to stop the digestion process. We obtained partial pancreata (body to tail) from 4- to 5-year-old pigs from a slaughterhouse. The tissue samples were preserved in M-Kyoto solution for less than 3 h. They were digested using an automated enzymatic and mechanical dissociation system at 37°C for 90 min following intraductal injection of Liberase HI. Samples were collected from the digestive circuit every 5 or 10 min to determine the ATP level, total adenine nucleotide (TAN) level, islet count (count/g), and yield of islet equivalent (IEQ) in the serial digestive fluids. The ATP and TAN levels, IEQ and islet count were increased and then decreased during digestion process. The profile of these parameters differed from case to case. However, when ATP changing ratio (respective value/precedent value) was compared with IEQ changing ratio, a greater than threefold increase in the ATP changing ratio followed by an increase in the islet count changing ratio within 5 min was consistently observed, indicating the optimal time to stop the digestion. The ATP levels of the handpicked islets in the digested samples were lower in the overdigested phase in comparison to those in the earlier digested phase. These results indicate that the ATP level in digested fluid could be an effective indicator to estimate the viability of cells as well as determine the optimal time to terminate the digestion process in order to obtain viable islets.

  19. Intermediate-scale high-solids anaerobic digestion system operational development

    SciTech Connect

    Rivard, C.J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.

  20. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System

    PubMed Central

    Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V.

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha−1 yr−1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000–250, 250–53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000–250 μm > 250–53μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient

  1. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System.

    PubMed

    Cai, Andong; Xu, Hu; Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1) yr(-1), respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000-250, 250-53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000-250 μm > 250-53 μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.

  2. Avoiding digester imbalance through real-time expert system control of dilution rate

    SciTech Connect

    Pullammanappallil, P.; Harmon, J.; Lyberatos, G.; Svoronos, S.A.; Chynoweth, D.P.

    1991-12-31

    Process control of anaerobic digesters is a particularly challenging problem because of the diversity of possible causes that can lead to digester imbalance. Conventional control schemes can fail in consequence of a reversal in the sign of the steady-state gain caused by some type of disturbance. In this work we present an expert system approach that takes into account the particularity of this process. The developed algorithm is demonstrated to compensate successfully for changes in the digester feed medium when simulated against a model for a continuous anaerobic digester.

  3. Validation of an in vitro digestive system for studying macronutrient decomposition in humans.

    PubMed

    Kopf-Bolanz, Katrin A; Schwander, Flurina; Gijs, Martin; Vergères, Guy; Portmann, Reto; Egger, Lotti

    2012-02-01

    The digestive process transforms nutrients and bioactive compounds contained in food to physiologically active compounds. In vitro digestion systems have proven to be powerful tools for understanding and monitoring the complex transformation processes that take place during digestion. Moreover, the investigation of the physiological effects of certain nutrients demands an in vitro digestive process that is close to human physiology. In this study, human digestion was simulated with a 3-step in vitro process that was validated in depth by choosing pasteurized milk as an example of a complex food matrix. The evolution and decomposition of the macronutrients was followed over the entire digestive process to the level of intestinal enterocyte action, using protein and peptide analysis by SDS-PAGE, reversed-phase HPLC, size exclusion HPLC, and liquid chromatography-MS. The mean peptide size after in vitro digestion of pasteurized milk was 5-6 amino acids (AA). Interestingly, mostly essential AA (93.6%) were released during in vitro milk digestion, a significantly different relative distribution compared to the total essential AA concentration of bovine milk (44.5%). All TG were degraded to FFA and monoacylglycerols. Herein, we present a human in vitro digestion model validated for its ability to degrade the macronutrients of dairy products comparable to physiological ranges. It is suited to be used in combination with a human intestinal cell culture system, allowing ex vivo bioavailability measurements and assessment of the bioactive properties of food components.

  4. Recombinant Saccharomyces cerevisiae expressing P450 in artificial digestive systems: a model for biodetoxication in the human digestive environment.

    PubMed

    Blanquet, S; Meunier, J P; Minekus, M; Marol-Bonnin, S; Alric, M

    2003-05-01

    The use of genetically engineered microorganisms such as bacteria or yeasts as live vehicles to carry out bioconversion directly in the digestive environment is an important challenge for the development of innovative biodrugs. A system that mimics the human gastrointestinal tract was combined with a computer simulation to evaluate the survival rate and cinnamate 4-hydroxylase activity of a recombinant model of Saccharomyces cerevisiae expressing the plant P450 73A1. The yeasts showed a high level of resistance to gastric and small intestinal secretions (survival rate after 4 h of digestion, 95.6% +/- 10.1% [n = 4]) but were more sensitive to the colonic conditions (survival rate after 4 h of incubation, 35.9% +/- 2.7% [n = 3]). For the first time, the ability of recombinant S. cerevisiae to carry out a bioconversion reaction has been demonstrated throughout the gastrointestinal tract. In the gastric-small intestinal system, 41.0% +/- 5.8% (n = 3) of the ingested trans-cinnamic acid was converted into p-coumaric acid after 4 h of digestion, as well as 8.9% +/- 1.6% (n = 3) in the stomach, 13.8% +/- 3.3% (n = 3) in the duodenum, 11.8% +/- 3.4% (n = 3) in the jejunum, and 6.5% +/- 1.0% (n = 3) in the ileum. In the large intestinal system, cinnamate 4-hydroxylase activity was detected but was too weak to be quantified. These results suggest that S. cerevisiae may afford a useful host for the development of biodrugs and may provide an innovative system for the prevention or treatment of diseases that escape classical drug action. In particular, yeasts may provide a suitable vector for biodetoxication in the digestive environment.

  5. Inclusion of Saccharina latissima in conventional anaerobic digestion systems.

    PubMed

    Ometto, F; Berg, A; Björn, A; Safaric, L; Svensson, B H; Karlsson, A; Ejlertsson, J

    2017-04-04

    Loading macroalgae into existing anaerobic digestion (AD) plants allows us to overcome challenges such as low digestion efficiencies, trace elements limitation, excessive salinity levels and accumulation of volatile fatty acids (VFAs), observed while digesting algae as a single substrate. In this work, the co-digestion of the brown macroalgae Saccharina latissima with mixed municipal wastewater sludge (WWS) was investigated in mesophilic and thermophilic conditions. The hydraulic retention time (HRT) and the organic loading rate (OLR) were fixed at 19 days and 2.1 g l(-1) d(-1) of volatile solids (VS), respectively. Initially, WWS was digested alone. Subsequently, a percentage of the total OLR (20%, 50% and finally 80%) was replaced by S. latissima biomass. Optimal digestion conditions were observed at medium-low algae loading (≤50% of total OLR) with an average methane yield close to [Formula: see text] and [Formula: see text] in mesophilic and thermophilic conditions, respectively. The conductivity values increased with the algae loading without inhibiting the digestion process. The viscosities of the reactor sludges revealed decreasing values with reduced WWS loading at both temperatures, enhancing mixing properties.

  6. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect

    1995-08-01

    This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.

  7. (Methane digester). Final report

    SciTech Connect

    Waybright, R.C.

    1981-01-01

    The purpose of the grant was to construct and operate a methane digester for dairy manure involving the latest state-of-the-art technics. The first step taken was to empty out the existing digester to evaluate its performance and to gain ideas of how to build the next digester so it would operate more efficiently. Next, the design criteria was set up in order to eliminate some problems involved with the first digester and also new ideas as to how to build the next one without a protective building and testing simplified construction technics. After this the digester construction was started with the completion date in late January. The digester was then filled and operated at different temperatures attempting to achieve the optimum operating range.

  8. Effects of dietary components on cancer of the digestive system.

    PubMed

    Zanini, Sara; Marzotto, Marta; Giovinazzo, Francesco; Bassi, Claudio; Bellavite, Paolo

    2015-01-01

    Cancer is the second leading cause of death in developed countries and poor diet and physical inactivity are major risk factors in cancer-related deaths. Therefore, interventions to reduce levels of smoking, improve diet, and increase physical activity must become much higher priorities in the general population's health and health care systems. The consumption of fruit and vegetables exerts a preventive effect towards cancer and in recent years natural dietary agents have attracted great attention in the scientific community and among the general public. Foods, such as tomatoes, olive oil, broccoli, garlic, onions, berries, soy bean, honey, tea, aloe vera, grapes, rosemary, basil, chili peppers, carrots, pomegranate, and curcuma contain active components that can influence the initiation and the progression of carcinogenesis, acting on pathways implied in cell proliferation, apoptosis and metastasis. The present review illustrates the main foods and their active components, including their antioxidant, cytotoxic, and pro-apoptotic properties, with a particular focus on the evidence related to cancers of the digestive system.

  9. Ontogeny of the digestive system of the Octopus bimaculatus paralarvae (Verril, 1883).

    PubMed

    López-Peraza, Diana Judith; Hernández-Rodríguez, Mónica; Barón-Sevilla, Benjamín

    2014-01-01

    The high mortalities registered in the larval stage during octopus culturing are mainly due to nutritional deficiencies of the food provided. To understand the cause of this problem, we studied the ontogenetic development of the digestive system of Octopus bimaculatus paralarvae. An egg batch was obtained from a gravid female collected in the Bay of Los Angeles, Baja California, Mexico, and it was incubated in the laboratory during the summer of 2011. We observed that the formation of the digestive system began at 33 days post-laying (DPL). The newly hatched paralarvae had already formed the organs involved in food ingestion and digestion, although it was not possible to know accurately their degree of maturity. The present research constitutes the first description at the histological level of the ontogenic development of the digestive system of the O. bimaculatus paralarvae. This serves as a basis for future studies of the digestive physiology of this species.

  10. The feasibility of a centralized biogas plant treating the manure produced by an organized animal farmers union in Turkey.

    PubMed

    Dereli, R K; Yangin-Gomec, C; Ozabali, A; Ozturk, I

    2012-01-01

    The aim of this study is to evaluate the feasibility and the energy recovery potential of mesophilic (30-35 °C) anaerobic digestion of animal wastes (manure) at a centralized biogas plant (CBP) for 35,000 cattle. The proposed CBP is composed of an equalization tank followed by pasteurization and 3+[1/2] modules; i.e. each module consists of four completely mixed anaerobic reactors with a capacity of treating the manure from 10,000 cattle. The effect of maize silage loading, as the co-substrate, both on biomethane production and feasibility of the system was also evaluated. Besides, the transport fuel substitutes of the produced biomethane with or without co-substrate were also investigated. Results of the proposed CBP indicated that biomethane production increased ca. 1.65 fold with co-substrate addition and pay-back periods for one module treating 10,000 cattle manure are calculated to be ca. 11 and 7.0 yr without and with silage addition, respectively. Besides, considering the potential revenue when replacing transport fuels, about 74 heavy goods vehicles or 1,560 cars may be powered per year by the biogas produced from the proposed CBP where the co-digestion of manure and maize silage is applied.

  11. Design of digestion systems for maximum methane production

    SciTech Connect

    Hill, D.T.

    1982-01-01

    A computer analysis of microbial kinetics of methane fermentation using the Contois kinetic model has shown that design of continuous flow anaerobic digesters can be based on two criteria: (a) maximum volumetric methane productivity or (b) maximum total daily methane production. The difference in performance of digesters designed on these two criteria is that over a given time period, the methane production from the digester designed for maximum total daily methane production will exceed the gas production of the digester designed for maximum volumetric methane productivity by 43, 74, 56 and 60 percent for dairy, poultry, swine and beef waste respectively. The influent feed concentration of volatile solids (VS), the detention time and the operating temperature are the major design factors which determine the maximum total daily methane production. Maximum volatile solids reduction based on developed kinetic data was 75, 56, 30 and 62 percent for swine, beef, dairy and poultry waste respectively. (Refs. 11).

  12. Structure and function of the digestive system of solen grandis dunker

    NASA Astrophysics Data System (ADS)

    Xiuzhen, Sheng; Wenbin, Zhan; Sulian, Ren

    2003-10-01

    Structure and function of the digestive system of a bivalve mollusc, Solen grandis, were studied using light microscopy and histochemical methods. The wall of digestive tube consists of four layers: the mucosal epithelium, connective tissue, muscular and fibrosa or serosa (only in the portion of rectum) from the inner to the outer. The ciliated columnar epithelial cells, dispersed by cup-shaped mucous cells, rest on a thin base membrane. There are abundant blood spaces in connective tissue layer. The digestive diverticula are composed of multi-branched duct and digestive tubules. The digestive tubules are lined with digestive and basophilic secretory cells, and surrounded by a layer of smooth muscle fibers and connective tissues. Activities of acid and alkaline phosphatases, esterase and lipase are detected in the digestive cells, and the epithelia of stomach and intestine, suggesting that these cells are capable of intracellular digesting of food materials and absorbing. Besides, acid phosphatase and esterase activities are present in the posterior portion of esophagus. Phagocytes are abundant in blood spaces and the lumens of stomach and intestine, containing brown granules derived from the engulfed food materials. The present work indicates that phagocytes play important roles in ingestion and digestion of food materials, which is supported as well by the activities of acid phosphatase, esterase and lipase detected in blood spaces.

  13. Silica nanoparticles to control the lipase-mediated digestion of lipid-based oral delivery systems.

    PubMed

    Tan, Angel; Simovic, Spomenka; Davey, Andrew K; Rades, Thomas; Boyd, Ben J; Prestidge, Clive A

    2010-04-05

    We investigate the role of hydrophilic fumed silica in controlling the digestion kinetics of lipid emulsions, hence further exploring the mechanisms behind the improved oral absorption of poorly soluble drugs promoted by silica-lipid hybrid (SLH) microcapsules. An in vitro lipolysis model was used to quantify the lipase-mediated digestion kinetics of a series of lipid vehicles formulated with caprylic/capric triglycerides: lipid solution, submicrometer lipid emulsions (in the presence and absence of silica), and SLH microcapsules. The importance of emulsification on lipid digestibility is evidenced by the significantly higher initial digestion rate constants for SLH microcapsules and lipid emulsions (>15-fold) in comparison with that of the lipid solution. Silica particles exerted an inhibitory effect on the digestion of submicrometer lipid emulsions regardless of their initial location, i.e., aqueous or lipid phases. This inhibitory effect, however, was not observed for SLH microcapsules. This highlights the importance of the matrix structure and porosity of the hybrid microcapsule system in enhancing lipid digestibility as compared to submicrometer lipid emulsions stabilized by silica. For each studied formulation, the digestion kinetics is well correlated to the corresponding in vivo plasma concentrations of a model drug, celecoxib, via multiple-point correlations (R(2) > 0.97). This supports the use of the lipid digestion model for predicting the in vivo outcome of an orally dosed lipid formulation. SLH microcapsules offer the potential to enhance the oral absorption of poorly soluble drugs via increased lipid digestibility in conjunction with improved drug dissolution/dispersion.

  14. [Establishment and Management of Multicentral Collection Bio-sample Banks of Malignant Tumors from Digestive System].

    PubMed

    Shen, Si; Shen, Junwei; Zhu, Liang; Wu, Chaoqun; Li, Dongliang; Yu, Hongyu; Qiu, Yuanyuan; Zhou, Yi

    2015-11-01

    To establish and manage of multicentral collection bio-sample banks of malignant tumors from digestive system, the paper designed a multicentral management system, established the standard operation procedures (SOPs) and leaded ten hospitals nationwide to collect tumor samples. The biobank has been established for half a year, and has collected 695 samples from patients with digestive system malignant tumor. The clinical data is full and complete, labeled in a unified way and classified to be managed. The clinical and molecular biology researches were based on the biobank, and obtained achievements. The biobank provides a research platform for malignant tumor of digestive system from different regions and of different types.

  15. Roles of F-box proteins in human digestive system tumors (Review).

    PubMed

    Gong, Jian; Lv, Liang; Huo, Jirong

    2014-12-01

    F-box proteins (FBPs), the substrate-recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige-nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.

  16. The future of anaerobic digestion and biogas utilization.

    PubMed

    Holm-Nielsen, J B; Al Seadi, T; Oleskowicz-Popiel, P

    2009-11-01

    One of the common tendencies of animal production activities in Europe and in developed countries in general is to intensify the animal production and to increase the size of the animal production units. High livestock density is always accompanied by production of a surplus of animal manure, representing a considerable pollution threat for the environment in these areas. Avoiding over-fertilization is not only important for environmental protection reasons but also for economical reasons. Intensive animal production areas need therefore suitable manure management, aiming to export and to redistribute the excess of nutrients from manure and to optimize their recycling. Anaerobic digestion of animal manure and slurries offers several benefits by improving their fertilizer qualities, reducing odors and pathogens and producing a renewable fuel - the biogas. The EU policies concerning renewable energy systems (RES) have set forward a fixed goal of supplying 20% of the European energy demands from RES by year 2020. A major part of the renewable energy will originate from European farming and forestry. At least 25% of all bioenergy in the future can originate from biogas, produced from wet organic materials such as: animal manure, whole crop silages, wet food and feed wastes, etc.

  17. Effects of low-disturbance manure application methods on N2O and NH3 emissions in a silage corn - rye cover crop system

    USDA-ARS?s Scientific Manuscript database

    Incorporation of manure by tillage can conserve manure N by reducing ammonia volatilization losses, but tillage also incorporates crop residue, which may increase erosion potential. This study compared several low-disturbance manure application methods, designed to incorporate manure while maintaini...

  18. Manure incorporation reduces environmental nitrogen loss while sustaining crop productivity in the subtropical wheat-maize rotation system: A comprehensive study of nitrogen cycling and balance

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; Zhu, Bo; Butterbach-Bahl, klaus; Brüggemann, Nicolas

    2016-04-01

    Balancing nitrogen (N) budgets of agricultural systems is essential for sustaining yields at lower environmental costs. The knowledge, however, of total N budgets of agricultural systems including all N fluxes is still rare in the literature. Here, we applied a combination of monitoring in situ N fluxes and field 15N tracer and 15N isotope dilution techniques to investigate the effects of different N fertilizers (control, synthetic fertilizer, 60% synthetic fertilizer N plus 40% pig manure N, pig manure only applied at the same N rate 280 kg N ha-1 yr-1) on N pools, cycling processes, fluxes and total N balances in a subtropical wheat-maize rotation system of China. Nitrate leaching and NH3 volatilization were main hydrological and gaseous N loss pathways, respectively. The warm and wet maize season was associated with significantly larger environmental N losses than the cooler and drier wheat season. The field 15N tracing experiment showed that the wheat system had high N retention capacity (˜50% of 15N application) but with short residence time. I.e. 90% of soil residual 15N labelled fertilizer in the wheat system were utilized by plants or lost to the environment in the subsequent maize season. Our annual total N balances of the different treatments revealed that combined synthetic and organic fertilization or manure only maintained the same level of yields and led to significantly lower N losses and higher N retention, even though larger NH3 volatilization losses were caused by manure incorporation. Thus, our study suggests that a combination of synthetic and organic N fertilizers is suitable for sustaining agricultural productivity while reducing environmental N losses through fostering interactions between the soil C and N cycle.

  19. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  20. The role of regulatory B cells in digestive system diseases.

    PubMed

    Zhou, Zhenyu; Gong, Lei; Wang, Xiaoyun; Hu, Zhen; Wu, Gaojue; Tang, Xuejun; Peng, Xiaobin; Tang, Shuan; Meng, Miao; Feng, Hui

    2017-04-01

    The past decade has provided striking insights into a newly identified subset of B cells known as regulatory B cells (Bregs). In addition to producing antibody, Bregs also regulate diseases via cytokine production and antigen presentation. This subset of B cells has protective and potentially therapeutic effects. However, the particularity of Bregs has caused some difficulties in conducting research on their roles. Notably, human B10 cells, which are Bregs that produce interleukin 10, share phenotypic characteristics with other previously defined B cell subsets, and currently, there is no known surface phenotype that is unique to B10 cells. An online search was performed in the PubMed and Web of Science databases for articles published providing evidences on the role of regulatory B cells in digestive system diseases. Abundant evidence has demonstrated that Bregs play a regulatory role in inflammatory, autoimmune, and tumor diseases, and regulatory B cells play different roles in different diseases, but future work needs to determine the mechanisms by which Bregs are activated and how these cells affect their target cells.

  1. Methane production from stillage/manure mixtures at a fuel alcohol plant

    SciTech Connect

    Williams, D.W.; Eastman, R.V.

    1986-01-01

    Steel tanks were retrofitted as anaerobic digesters to process stillage wastes from a fuel alcohol plant. In addition to the stillage, poultry manure will be digested to produce a total of almost 10,000 cubic meters of biogas per day. Electricity and thermal energy will be cogenerated from the methane, and the digested solids marketed as nursery soil.

  2. Association of Physical Activity by Type and Intensity With Digestive System Cancer Risk.

    PubMed

    Keum, NaNa; Bao, Ying; Smith-Warner, Stephanie A; Orav, John; Wu, Kana; Fuchs, Charles S; Giovannucci, Edward L

    2016-09-01

    Accumulating evidence indicates that common carcinogenic pathways may underlie digestive system cancers. Physical activity may influence these pathways. Yet, to our knowledge, no previous study has evaluated the role of physical activity in overall digestive system cancer risk. To examine the association between physical activity and digestive system cancer risk, accounting for amount, type (aerobic vs resistance), and intensity of physical activity. A prospective cohort study followed 43 479 men from the Health Professionals Follow-up Study from 1986 to 2012. At enrollment, the eligible participants were 40 years or older, were free of cancer, and reported physical activity. Follow-up rates exceeded 90% in each 2-year cycle. The amount of total physical activity expressed in metabolic equivalent of task (MET)-hours/week. Incident cancer of the digestive system encompassing the digestive tract (mouth, throat, esophagus, stomach, small intestine, and colorectum) and digestive accessory organs (pancreas, gallbladder, and liver). Over 686 924 person-years, we documented 1370 incident digestive system cancers. Higher levels of physical activity were associated with lower digestive system cancer risk (hazard ratio [HR], 0.74 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.59-0.93; P value for trend = .003). The inverse association was more evident with digestive tract cancers (HR, 0.66 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.51-0.87) than with digestive accessary organ cancers. Aerobic exercise was particularly beneficial against digestive system cancers, with the optimal benefit observed at approximately 30 MET-hours/week (HR, 0.68; 95% CI, 0.56-0.83; P value for nonlinearity = .02). Moreover, as long as the same level of MET-hour score was achieved from aerobic exercise, the magnitude of risk reduction was similar regardless of intensity of aerobic exercise. Physical activity, as indicated by MET-hours/week, was inversely associated with the risk of

  3. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.

    PubMed

    Kataki, Sampriti; Hazarika, Samarendra; Baruah, D C

    2017-01-01

    Alternative fertilizer resources have drawn attention in recent times in order to cope up with ever increasing demand for fertilizer. By-products of bioenergy system are considered favourable as organic fertilizer due to their ability to recycle plant nutrients. Present study evaluates fertilizer suitability of by-products of two bioenergy systems viz. 3 types of anaerobic digestion by-products (digestate) from local surplus biomass such as cowdung, Ipomoea carnea:cowdung (60:40) and ricestraw:green gram stover:cowdung (30:30:40) and one gasification by-product (biochar) from rice husk. Digestates were assessed considering 4 different application options of each viz. whole, solid, liquid and ash from solid digestates. Digestate characteristics (organic matter, macronutrients, micronutrients and heavy metal content) were found to be a function of feedstock and processing (solid liquid separation and ashing). Ipomoea carnea based digestates in all application options showed comparatively higher N, P, K, NH4(+)-N, Ca, Mg, S and micro nutrient content than other digestates. Separation concentrated plant nutrients and organic matter in solid digestates, making these suitable both as organic amendments and fertilizer. Separated liquid digestate shared larger fraction of ammonium nitrogen (61-91% of total content), indicating their suitability as readily available N source. However, fertilizer application of liquid digestate may not match crop requirements due to lower total nutrient concentration. Higher electrical conductivity of the liquid digestates (3.4-9.3mScm(-1)) than solid digestates (1.5-2mScm(-1)) may impart phyto-toxic effect upon fertilization due to salinity. In case of by-products with unstable organic fraction i.e. whole and solid digestates of rice straw:green gram stover:cowdung digestates (Humification index 0.7), further processing (stabilization, composting) may be required to maximize their fertilizer benefit. Heavy metal contents of the by

  4. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management Pt. 98, Subpt. JJ... digester type Cover type Methane collection efficiency Covered anaerobic lagoon (biogas capture) Bank...

  5. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management Pt. 98, Subpt. JJ... digester type Cover type Methane collection efficiency Covered anaerobic lagoon (biogas capture) Bank...

  6. Determining effects of multiple tannin manure applications on dairy forages and soil

    USDA-ARS?s Scientific Manuscript database

    Dietary choices for dairy cows have direct implications to nutrient availability from land-applied manure because of alterations to manure chemistry. Tannin additions to a dairy cow’s diet protect feed protein through rumen fermentation and digestion, resulting in reduced concentrations of urea nitr...

  7. Analyses of methanogenic archaea populations in swine feces and stored swine manure using 16S rDNA and mcrA PCR and pure culture isolation

    USDA-ARS?s Scientific Manuscript database

    Background: Storage of swine manure is associated with the microbial production of odorous compounds and gaseous emissions which result from anaerobic microbial digestion of materials present in the manure. In the United States, methane emissions from lagoons and manure storage pits are estimated to...

  8. Expression of nesfatin-1/NUCB2 in rodent digestive system

    PubMed Central

    Zhang, Ai-Qing; Li, Xue-Liang; Jiang, Chun-Ying; Lin, Lin; Shi, Rui-Hua; Chen, Jian-De; Oomura, Yutaka

    2010-01-01

    AIM: To observe the regional distributions and morphological features of nesfatin-1/nucleobindin-2 (NUCB2) immunoreactive (IR) cells in the rodent digestive system. METHODS: Paraffin-embedded sections of seven organs (pancreas, stomach, duodenum, esophagus, liver, small intestine and colon) dissected from sprague-dawley (SD) rats and institute of Cancer Research (ICR) mice were prepared. The regional distributions of nesfatin-1/NUCB2 IR cells were observed by immunohistochemical staining. The morphological features of the nesfatin-1/NUCB2 IR cells were evaluated by hematoxylin and eosin (HE) staining. Fresh tissues of the seven organs were prepared for Western blotting to analyze the relative protein levels of NUCB2 in each organ. RESULTS: Immunohistochemical staining showed that the nesfatin-1/NUCB2 IR cells were localized in the central part of the pancreatic islets, the lower third and middle portion of the gastric mucosal gland, and the submucous layer of the duodenum in SD rats and ICR mice. HE staining revealed that the morphological features of nesfatin-1/NUCB2 IR cells were mainly islet cells in the pancreas, endocrine cells in the stomach, and Brunner’s glands in the duodenum. Western blotting revealed that NUCB2 protein expression was higher in the pancreas, stomach and duodenum than in the esophagus, liver, small intestine and colon (P = 0.000). CONCLUSION: Nesfatin-1/NUCB2 IR cells are expressed in the pancreas, stomach and duodenum in rodents. These cells may play an important role in the physiological regulation of carbohydrate metabolism, gastrointestinal function and nutrient absorption. PMID:20380005

  9. Review of in vitro digestion models for rapid screening of emulsion-based systems.

    PubMed

    McClements, David Julian; Li, Yan

    2010-10-01

    There is increasing interest in understanding and controlling the digestion of emulsified lipids within the food and pharmaceutical industries. Emulsion-based delivery systems are being developed to encapsulate, protect, and release non-polar lipids, vitamins, nutraceuticals, and drugs. These delivery systems are also being used to control the stability and digestion of lipids within the human gastrointestinal tract so as to create foods that enhance satiety and reduce hunger. In vitro digestion models are therefore needed to test the efficacy of different approaches of controlling lipid digestion under conditions that simulate the human gastrointestinal tract. This article reviews the current status of in vitro digestion models for simulating lipid digestion, with special emphasis on the pH stat method. The pH stat method is particularly useful for the rapid screening of food emulsions and emulsion-based delivery systems with different compositions and structures. Successful candidates can then be tested with more rigorous in vitro digestion models, or using animal or human feeding studies. This journal is © The Royal Society of Chemistry 2010

  10. Digestive system-related pathophysiological symptoms of Sasang typology: Systematic review.

    PubMed

    Lee, Mi Suk; Sohn, Kyungwoo; Kim, Yun Hee; Hwang, Min-Woo; Kwon, Young Kyu; Bae, Na Young; Chae, Han

    2013-06-01

    The purpose of this study was to review clinical studies on digestive system-related pathophysiological symptoms of each Sasang type to obtain the generalizable typespecific clinical features, which are important for the diagnosis of the Sasang type and subsequent disease treatment. Sasang typology and digestive system symptom-related keywords were used to search through eight domestic and foreign databases up to March 2012. The results were organized and analyzed based on four categories [digestive function, appetite, eating pattern, and body mass index (BMI)] to elucidate type-specific symptoms. Sasang type-specific digestive system-related symptoms were identified by reviewing 30 related articles that were gathered by searching through the databases. The Tae-Eum (TE) type had the highest digestive functions and the So-Eum (SE) type had the lowest. The TE type appeared to have larger volume with fast eating speed compared with the SE type and individuals in the TE category preferred fatty or salty food, which is responsible for the high occurrence rates of organic digestive diseases such as gastritis. Moreover, BMI was higher in the TE type and lower in the SE type. We systematically reviewed previously published clinical reports on digestive functions, which can be used to meet the objective of Sasang-type differentiation and pathophysiological pattern identification.

  11. The prognostic significance of UCA1 for predicting clinical outcome in patients with digestive system malignancies

    PubMed Central

    Zhu, Zheng-Ming

    2017-01-01

    Background Urothelial Carcinoma Associated 1 (UCA1) was an originally identified lncRNA in bladder cancer. Previous studies have reported that UCA1 played a significant role in various types of cancer. This study aimed to clarify the prognostic value of UCA1 in digestive system cancers. Results The meta-analysis of 15 studies were included, comprising 1441 patients with digestive system cancers. The pooled results of 14 studies indicated that high expression of UCA1 was significantly associated with poorer OS in patients with digestive system cancers (HR: 1.89, 95 % CI: 1.52–2.26). In addition, UCA1 could be as an independent prognostic factor for predicting OS of patients (HR: 1.85, 95 % CI: 1.45–2.25). The pooled results of 3 studies indicated a significant association between UCA1 and DFS in patients with digestive system cancers (HR = 2.50; 95 % CI = 1.30–3.69). Statistical significance was also observed in subgroup meta-analysis. Furthermore, the clinicopathological values of UCA1 were discussed in esophageal cancer, colorectal cancer and pancreatic cancer. Materials and methods A comprehensive retrieval was performed to search studies evaluating the prognostic value of UCA1 in digestive system cancers. Many databases were involved, including PubMed, Web of Science, Embase and Chinese National Knowledge Infrastructure and Wanfang database. Quantitative meta-analysis was performed with standard statistical methods and the prognostic significance of UCA1 in digestive system cancers was qualified. Conclusions Elevated level of UCA1 indicated the poor clinical outcome for patients with digestive system cancers. It may serve as a new biomarker related to prognosis in digestive system cancers. PMID:28380443

  12. The prognostic significance of UCA1 for predicting clinical outcome in patients with digestive system malignancies.

    PubMed

    Liu, Fang-Teng; Dong, Qing; Gao, Hui; Zhu, Zheng-Ming

    2017-06-20

    Urothelial Carcinoma Associated 1 (UCA1) was an originally identified lncRNA in bladder cancer. Previous studies have reported that UCA1 played a significant role in various types of cancer. This study aimed to clarify the prognostic value of UCA1 in digestive system cancers. The meta-analysis of 15 studies were included, comprising 1441 patients with digestive system cancers. The pooled results of 14 studies indicated that high expression of UCA1 was significantly associated with poorer OS in patients with digestive system cancers (HR: 1.89, 95 % CI: 1.52-2.26). In addition, UCA1 could be as an independent prognostic factor for predicting OS of patients (HR: 1.85, 95 % CI: 1.45-2.25). The pooled results of 3 studies indicated a significant association between UCA1 and DFS in patients with digestive system cancers (HR = 2.50; 95 % CI = 1.30-3.69). Statistical significance was also observed in subgroup meta-analysis. Furthermore, the clinicopathological values of UCA1 were discussed in esophageal cancer, colorectal cancer and pancreatic cancer. A comprehensive retrieval was performed to search studies evaluating the prognostic value of UCA1 in digestive system cancers. Many databases were involved, including PubMed, Web of Science, Embase and Chinese National Knowledge Infrastructure and Wanfang database. Quantitative meta-analysis was performed with standard statistical methods and the prognostic significance of UCA1 in digestive system cancers was qualified. Elevated level of UCA1 indicated the poor clinical outcome for patients with digestive system cancers. It may serve as a new biomarker related to prognosis in digestive system cancers.

  13. [Role of alimentary factors in development of digestive system diseases].

    PubMed

    Gil'miiarova, F N; Radomskaia, V M; Gergel', N I; Gusiakova, O A; Zubova, I A; Sidorova, I F; Sazonova, O V; Kolesova, T A

    2009-01-01

    In work the data are presented, which characterize the connection of a diet with disease of illnesses of digestive organs which rises in process of increase of products that contain gluten and meat reduction in diet. Immune reaction is found out, that shows the appearance of antibodies. A gladin and fabric transglutaminaze. Reaction characteristics are different in people with different blood groups.

  14. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy.

    PubMed

    Li, Li; Somerset, Shawn

    2014-10-01

    Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis.

  15. Influence of bulking agents on CH4, N2O, and NH3 emissions during rapid composting of pig manure from the Chinese Ganqinfen system*

    PubMed Central

    Sun, Xiang-ping; Lu, Peng; Jiang, Tao; Schuchardt, Frank; Li, Guo-xue

    2014-01-01

    Mismanagement of the composting process can result in emissions of CH4, N2O, and NH3, which have caused severe environmental problems. This study was aimed at determining whether CH4, N2O, and NH3 emissions from composting are affected by bulking agents during rapid composting of pig manure from the Chinese Ganqinfen system. Three bulking agents, corn stalks, spent mushroom compost, and sawdust, were used in composting with pig manure in 60 L reactors with forced aeration for more than a month. Gas emissions were measured continuously, and detailed gas emission patterns were obtained. Concentrations of NH3 and N2O from the composting pig manure mixed with corn stalks or sawdust were higher than those from the spent mushroom compost treatment, especially the sawdust treatment, which had the highest total nitrogen loss among the three runs. Most of the nitrogen was lost in the form of NH3, which accounts for 11.16% to 35.69% of the initial nitrogen. One-way analysis of variance for NH3 emission showed no significant differences between the corn stalk and sawdust treatments, but a significant difference was noted between the spent mushroom compost and sawdust treatments. The introduction of sawdust reduced CH4 emission more than the corn stalks and spent mushroom compost. However, there were no significant differences among the three runs for total carbon loss. All treatments were matured after 30 d. PMID:24711356

  16. Brazilian beef cattle feedlot manure management: a country survey.

    PubMed

    Costa, C; Goulart, R S; Albertini, T Z; Feigl, B J; Cerri, C E P; Vasconcelos, J T; Bernoux, M; Lanna, D P D; Cerri, C C

    2013-04-01

    No information regarding the management of manure from beef cattle feedlots is available for Brazil. To fill this knowledge gap, a survey of 73 feedlots was conducted in 7 Brazilian states. In this survey, questions were asked regarding animal characteristics, their diets, and manure handling management from generation to disposal. These feedlots finished 831,450 animals in 2010. The predominant breed fed was Nellore, with average feeding periods of 60 to 135 d. Corn was the primary source of grain used in the feedlot diets (76% of surveyed animals) with concentrate inclusion levels ranging from 81 to 90% (38% of surveyed animals). The most representative manure management practice was the removal of manure from pens only at the end of the feeding period. Subsequently, the manure was stored in mounds before being applied to crop and pasture lands. Runoff, mainly from rainwater, was collected in retention ponds and used for agriculture. However, the quantity of runoff was not known. Manure was composted for only 20% of the animals in the survey and was treated in anaerobic digesters for only 1% of the animals. Manure from 59% of the cattle surveyed was used as fertilizer, providing a cost savings over the use of synthetic fertilizers. Overall, chemical analysis of the manure before application to fields was conducted for the manure of 56% of the surveyed animals, but the exact quantity applied (per hectare) was unknown for 48%. Feedlots representing 48% of the surveyed animals noted similar or greater crop and pasture yields when using manure, rather than synthetic fertilizers. In addition, 32% mentioned an increase in soil organic matter. Feedlots representing 88% of the surveyed cattle indicated that information concerning management practices that improve manure use efficiency is lacking. Feedlots representing 93% of the animals in the survey reported having basic information regarding the generation of energy and fertilizer with anaerobic digesters. However

  17. [Correlation analysis of G870A CCND1 gene polymorphism with digestive system tumors].

    PubMed

    Yang, Shu-Min; Shi, Ya-Lin

    2016-11-20

    To study the correlation of G870A CCND1 gene polymorphism and digestive system tumors. From August 2010 to August 2014, 164 digestive system cancer patients (including 82 patients with gastric cancer and 82 with colorectal cancer) and 82 healthy subjects (control group) were examined with PCR-restriction fragment length polymorphism (PCR-RFLP). The distribution of CCND1 gene G870A frequency in the 3 groups and its association with tumor staging and grading were analyzed. The frequencies of the GG, GA and AA genotypes in G870A CCND1 gene loci in patients with gastric cancer and colorectal cancer differed significantly from those in the control group (P<0.05). G870A CCND1 gene polymorphism was closely associated with an increased risk of digestive system tumors (P<0.05). The GA and AA genotypes were associated with a significantly higher risk of digestive system cancer risk than the GG genotype (P<0.05), and their frequencies were significantly higher in patients with tumors of higher pathological grade and in those in advanced tumor stages (P<0.05). G870A CCND1 gene polymorphism is associated with the risk of digestive system tumors. The allele A is associated with an increased risk of digestive system tumors and correlated with the tumor differentiation and staging of the tumor.

  18. On-line digestion system for protein characterization and proteome analysis.

    PubMed

    López-Ferrer, Daniel; Petritis, Konstantinos; Lourette, Natacha M; Clowers, Brian; Hixson, Kim K; Heibeck, Tyler; Prior, David C; Pasa-Tolić, Ljiljana; Camp, David G; Belov, Mikhail E; Smith, Richard D

    2008-12-01

    An efficient on-line digestion system that reduces the number of sample manipulation steps has been demonstrated for high-throughput proteomics. By incorporating a pressurized sample loop into a liquid chromatography-based separation system, both sample and enzyme (e.g., trypsin) can be simultaneously introduced to produce a complete, yet rapid digestion. Both standard proteins and a complex Shewanella oneidensis global protein extract were digested and analyzed using the automated online pressurized digestion system coupled to an ion mobility time-of-flight mass spectrometer, an ion trap mass spectrometer, or both. The system denatured, digested, and separated product peptides in a manner of minutes, making it amenable to on-line high-throughput applications. In addition to simplifying and expediting sample processing, the system was easy to implement and no cross-contamination was observed among samples. As a result, the online digestion system offers a powerful approach for high-throughput screening of proteins that could prove valuable in biochemical research (rapid screening of protein-based drugs).

  19. Chinese Milk Vetch as Green Manure Mitigates Nitrous Oxide Emission from Monocropped Rice System in South China.

    PubMed

    Xie, Zhijian; Shah, Farooq; Tu, Shuxin; Xu, Changxu; Cao, Weidong

    2016-01-01

    Monocropped rice system is an important intensive cropping system for food security in China. Green manure (GM) as an alternative to fertilizer N (FN) is useful for improving soil quality. However, few studies have examined the effect of Chinese milk vetch (CMV) as GM on nitrous oxide (N2O) emission from monocropped rice field in south China. Therefore, a pot-culture experiment with four treatments (control, no FN and CMV; CMV as GM alone, M; fertilizer N alone, FN; integrating fertilizer N with CMV, NM) was performed to investigate the effect of incorporating CMV as GM on N2O emission using a closed chamber-gas chromatography (GC) technique during the rice growing periods. Under the same N rate, incorporating CMV as GM (the treatments of M and NM) mitigated N2O emission during the growing periods of rice plant, reduced the NO3- content and activities of nitrate and nitrite reductase as well as the population of nitrifying bacteria in top soil at maturity stage of rice plant versus FN pots. The global warming potential (GWP) and greenhouse gas intensity (GHGI) of N2O from monocropped rice field was ranked as Msystem.

  20. Chinese Milk Vetch as Green Manure Mitigates Nitrous Oxide Emission from Monocropped Rice System in South China

    PubMed Central

    Xie, Zhijian; Shah, Farooq; Tu, Shuxin; Xu, Changxu; Cao, Weidong

    2016-01-01

    Monocropped rice system is an important intensive cropping system for food security in China. Green manure (GM) as an alternative to fertilizer N (FN) is useful for improving soil quality. However, few studies have examined the effect of Chinese milk vetch (CMV) as GM on nitrous oxide (N2O) emission from monocropped rice field in south China. Therefore, a pot-culture experiment with four treatments (control, no FN and CMV; CMV as GM alone, M; fertilizer N alone, FN; integrating fertilizer N with CMV, NM) was performed to investigate the effect of incorporating CMV as GM on N2O emission using a closed chamber-gas chromatography (GC) technique during the rice growing periods. Under the same N rate, incorporating CMV as GM (the treatments of M and NM) mitigated N2O emission during the growing periods of rice plant, reduced the NO3- content and activities of nitrate and nitrite reductase as well as the population of nitrifying bacteria in top soil at maturity stage of rice plant versus FN pots. The global warming potential (GWP) and greenhouse gas intensity (GHGI) of N2O from monocropped rice field was ranked as Msystem. PMID:27959949

  1. Morphology and three-dimensional reconstruction of the digestive system of Periplaneta americana.

    PubMed

    Ma, Hui; Liu, Zhi-Gang; Bao, Ying; Ran, Pi-Xin; Zhong, Nan-Shan

    2009-01-01

    A three-dimensional (3-D) model of the digestive system of Periplaneta americana was built for the first time based on hematoxylin and eosin (H&E) staining, the study of multiple cross-sections of the larval cockroach, and 3-D reconstruction technology. The digestive system of P. americana includes the foregut, midgut, and hindgut and takes up most of the celom. The foregut comprises almost one half of the digestive system (43.57%). The midgut, the critical region for digestion and absorption, has the second highest volume ratio (35.21%). The hindgut, with the lowest volume ratio (21.22%), includes the ileum, colon, and rectum. After the ileal valve is the colon. The 3-D model presented in this paper provides a stereoscopic view for studying the adjacent relationship and arrangement of different gut sections of P. americana.

  2. Manure use on alfalfa

    USDA-ARS?s Scientific Manuscript database

    Manure application to alfalfa is often necessary because of limited application windows during the year and limited land-to-livestock ratios to meet Comprehensive Nutrient Management Plan requirements. Manure applied before alfalfa planting or during production can improve yield and performance of t...

  3. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system

    PubMed Central

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-01-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. PMID:23834399

  4. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system.

    PubMed

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-09-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.

  5. Development of an in vitro system simulating bucco-gastric digestion to assess the physical and chemical changes of food.

    PubMed

    Hoebler, C; Lecannu, G; Belleville, C; Devaux, M-F; Popineau, Y; Barry, J-L

    2002-09-01

    The release of nutrients from solid food depends on the physical and chemical characteristics of substrates, and on dynamic physiological events including pH, gastric emptying and enzymatic secretion. Our laboratory has developed an in vitro digestive system mimicking mouth and stomach processes to determine physical and chemical changes of bread during digestion. To simulate oral-phase digestion, bread was minced and subjected to in vitro amylase digestion, releasing 219 +/- 11 g oligosaccharides/kg total carbohydrate. During the gastric phase, bread proteins, which are converted into insoluble aggregated proteins during breadmaking, were emptied in various states of peptic digestion: undigested aggregated proteins and degraded proteins of intermediate and low molecular weight. The mean particle size of ground bread decreased progressively to the end of the gastric digestion (from 292 to 109 microm). The in vitro digestive system proved to be a useful tool for understanding the dynamic digestion of various food components held within the structure of a food matrix.

  6. Digestive system development and study of acid and alkaline protease digestive capacities using biochemical and molecular approaches in totoaba (Totoaba macdonaldi) larvae.

    PubMed

    Galaviz, Mario A; López, Lus M; García Gasca, Alejandra; Álvarez González, Carlos Alfonso; True, Conal D; Gisbert, Enric

    2015-10-01

    The present study aimed to describe and understand the development of the digestive system in totoaba (Totoaba macdonaldi) larvae from hatching to 40 days post-hatch (dph) from morphological and functional perspectives. At hatch, the digestive system of totoaba was undifferentiated. The anus and the mouth opened at 4 and 5 dph, respectively. During exogenous feeding, development of the esophagus, pancreas, liver and intestine was observed with a complete differentiation of all digestive organs. Expression and activity of trypsin and chymotrypsin were observed as early as at 1 dph, and increments in their expression and activity coincided with changes in food items (live and compound diets) and morpho-physiological development of the accessory digestive glands. In contrast, pepsin was detected later during development, which includes the appearance of the gastric glands between 24 and 28 dph. One peak in gene expression was detected at 16 dph, few days before the initial development of the stomach at 20 dph. A second peak of pepsin expression was detected at day 35, followed by a peak of activity at day 40, coinciding with the change from live to artificial food. Totoaba larvae showed a fully morphologically developed digestive system between 24 and 28 dph, as demonstrated by histological observations. However, gene expression and activity of alkaline and acid proteases were detected earlier, indicating the functionality of the exocrine pancreas and stomach before the complete morphological development of the digestive organs. These results showed that integrative studies are needed to fully understand the development of the digestive system from a morphological and functional point of views, since the histological organization of digestive structures does not reflect their real functionality. These results indicate that the digestive system of totoaba develops rapidly during the first days post-hatch, especially for alkaline proteases, and the stomach

  7. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size

    SciTech Connect

    Silvestre, Gracia; Bonmatí, August; Fernández, Belén

    2015-09-15

    Highlights: • Methane production rate increased between 56% and 208% during OFMSW–SS codigestion. • The OFMSW particle size reduction from 20 to 8 mm did not affect the methane yield. • OFMSW–SS codigestion promoted β-oxidation and acetoclastic methanogenic activity. • The evolution of specific activity was a feasible tool to control the process. - Abstract: The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20 days. The SS–OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1 kg{sub COD} m{sup −3} d{sup −1} (1.9 kg{sub VS} m{sup −3} d{sup −1}), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20 mm to 8 mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.

  8. Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: Effect of collection system and particle size.

    PubMed

    Silvestre, Gracia; Bonmatí, August; Fernández, Belén

    2015-09-01

    The effect of organic fraction of municipal solid waste (OFMSW) loading rate and particulate size on the sewage sludge (SS) mesophilic anaerobic co-digestion was assessed in continuous stirred tank reactor at hydraulic retention time of 20days. The SS-OFMSW mixture composed by 54% of the volatile solids fed (inlet-VS), at OLR of 3.1kgCODm(-3)d(-1) (1.9kgVSm(-3)d(-1)), showed the highest increment on the volumetric methane production and yield of +200% and +59% respectively, under stable conditions. The effect of particulate size was assessed with the same mixture and same operational conditions but reducing the OFMSW particulate size from 20mm to 8mm with the aim to improve the hydrolysis step, but the results showed any influence in the OFMSW particulate size range analysed. In addition, specific biomass activity was assessed at the end of each co-digestion period. Results showed that OFMSW promoted β-oxidation syntrophic acetogens and the acetoclastic methanogens activity; although the last increase of the OFMSW percentage (from 47% to 54% inlet-VS) affected negatively the specific substrate activity, but not inhibitory effect was observed. Therefore, the results obtained in the continuous experiment could be related with some inhibitory or toxic effect and not due to hydrolysis limitation. The specific biomass activity test was demonstrated to be an interesting tool to evaluate and control the co-digestion process, especially when conventional parameters did not explain the behaviour of the biological system.

  9. Stability of Polyphenols Epigallocatechin Gallate and Pentagalloyl Glucose in a Simulated Digestive System

    PubMed Central

    Krook, Melanie A.; Hagerman, Ann E.

    2012-01-01

    Polyphenols found in foods and beverages are under intense scrutiny for their potential beneficial effects on human health. We examined the stability of two bioactive polyphenols, epigallocatechin-O-gallate (EGCg) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG), in a model digestive system at low oxygen tension with and without added digestive components and foods. Both compounds were stable at pH values of 5–6 and below, indicating gastric stability. Both compounds decomposed at pH 7.0. PGG was stabilized in a model system containing pepsin, pancreatin, bile and lipase, and/or baby food, but was not stabilized by dry cereal. EGCg was not stabilized by the addition of any biomolecule. The effects of polyphenols on human health should be evaluated in the context of their stability in the digestive tract with and without added digestive components and/or food. PMID:23028206

  10. Zeolite and swine inoculum effect on poultry manure biomethanation

    NASA Astrophysics Data System (ADS)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  11. In situ biogas stripping of ammonia from a digester using a gas mixing system.

    PubMed

    Serna-Maza, Alba; Heaven, Sonia; Banks, Charles J

    2017-02-22

    Previous studies have suggested the use of digester biogas mixing systems for in situ ammonia removal from anaerobic digestates. The feasibility of this was tested at moderate and complete gas mixing rates at mesophilic and thermophilic temperatures in a 75-L digester. Experimental results showed that at gas mixing rates typical of full-scale commercial digesters the reduction in total ammonia nitrogen concentrations would be insufficient to allow stable acetoclastic methanogenesis in mesophilic conditions, or to prevent total inhibition of methanogenic activity in thermophilic food waste digestion. Simulation based on batch column stripping experiments at 55°C at gas violent flow rates of 0.032 m(3) m(-2) min(-1) indicated that ammonia concentrations could be reduced below inhibitory values in thermophilic food waste digestion for organic loading rates of up to 6 kg VS m(-3) day(-1). These mixing rates are far in excess of those used in full-scale gas-mixed digesters and may not be operationally or commercially feasible.

  12. Dietary Sodium Suppresses Digestive Efficiency via the Renin-Angiotensin System.

    PubMed

    Weidemann, Benjamin J; Voong, Susan; Morales-Santiago, Fabiola I; Kahn, Michael Z; Ni, Jonathan; Littlejohn, Nicole K; Claflin, Kristin E; Burnett, Colin M L; Pearson, Nicole A; Lutter, Michael L; Grobe, Justin L

    2015-06-11

    Dietary fats and sodium are both palatable and are hypothesized to synergistically contribute to ingestive behavior and thereby obesity. Contrary to this hypothesis, C57BL/6J mice fed a 45% high fat diet exhibited weight gain that was inhibited by increased dietary sodium content. This suppressive effect of dietary sodium upon weight gain was mediated specifically through a reduction in digestive efficiency, with no effects on food intake behavior, physical activity, or resting metabolism. Replacement of circulating angiotensin II levels reversed the effects of high dietary sodium to suppress digestive efficiency. While the AT1 receptor antagonist losartan had no effect in mice fed low sodium, the AT2 receptor antagonist PD-123,319 suppressed digestive efficiency. Correspondingly, genetic deletion of the AT2 receptor in FVB/NCrl mice resulted in suppressed digestive efficiency even on a standard chow diet. Together these data underscore the importance of digestive efficiency in the pathogenesis of obesity, and implicate dietary sodium, the renin-angiotensin system, and the AT2 receptor in the control of digestive efficiency regardless of mouse strain or macronutrient composition of the diet. These findings highlight the need for greater understanding of nutrient absorption control physiology, and prompt more uniform assessment of digestive efficiency in animal studies of energy balance.

  13. Dietary Sodium Suppresses Digestive Efficiency via the Renin-Angiotensin System

    PubMed Central

    Weidemann, Benjamin J.; Voong, Susan; Morales-Santiago, Fabiola I.; Kahn, Michael Z.; Ni, Jonathan; Littlejohn, Nicole K.; Claflin, Kristin E.; Burnett, Colin M.L.; Pearson, Nicole A.; Lutter, Michael L.; Grobe, Justin L.

    2015-01-01

    Dietary fats and sodium are both palatable and are hypothesized to synergistically contribute to ingestive behavior and thereby obesity. Contrary to this hypothesis, C57BL/6J mice fed a 45% high fat diet exhibited weight gain that was inhibited by increased dietary sodium content. This suppressive effect of dietary sodium upon weight gain was mediated specifically through a reduction in digestive efficiency, with no effects on food intake behavior, physical activity, or resting metabolism. Replacement of circulating angiotensin II levels reversed the effects of high dietary sodium to suppress digestive efficiency. While the AT1 receptor antagonist losartan had no effect in mice fed low sodium, the AT2 receptor antagonist PD-123,319 suppressed digestive efficiency. Correspondingly, genetic deletion of the AT2 receptor in FVB/NCrl mice resulted in suppressed digestive efficiency even on a standard chow diet. Together these data underscore the importance of digestive efficiency in the pathogenesis of obesity, and implicate dietary sodium, the renin-angiotensin system, and the AT2 receptor in the control of digestive efficiency regardless of mouse strain or macronutrient composition of the diet. These findings highlight the need for greater understanding of nutrient absorption control physiology, and prompt more uniform assessment of digestive efficiency in animal studies of energy balance. PMID:26068176

  14. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

    PubMed Central

    Massé, Daniel I.; Cata Saady, Noori M.; Gilbert, Yan

    2014-01-01

    Simple Summary Beside their use to treat infections, antibiotics are used excessively as growth promoting factors in livestock industry. Animals discharge in their feces and urine between 70%–90% of the antibiotic administrated unchanged or in active metabolites. Because livestock manure is re-applied to land as a fertilizer, concerns are growing over spread of antibiotics in water and soil. Development of antibiotic resistant bacteria is a major risk. This paper reviewed the potential of anaerobic digestion to degrade antibiotics in livestock manure. Anaerobic digestion can degrade manure-laden antibiotic to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Abstract Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical) versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion. PMID

  15. The development of alum rates to enhance the remediation of phosphorus in fluvial systems following manure spills

    USDA-ARS?s Scientific Manuscript database

    Following the remediation of animal manure spills that reach surface waters, contaminated streambed sediments are often left in place and become a source for internal P loading within the stream in subsequent flow. The objective of this study was to develop treatment rates and combinations of alum a...

  16. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure as influenced by three swine management systems

    USDA-ARS?s Scientific Manuscript database

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vastly different microbial constituents in both the pig and the manure lagoons used to treat the fecal waste of the operation. While some of these changes may not be negative, it is possible th...

  17. Spatiotemporal soil organic carbon dynamics in irrigated corn silage-alfalfa production systems receiving liquid dairy manure

    USDA-ARS?s Scientific Manuscript database

    Accurately measuring soil organic C (SOC) stock changes over time is essential for verifying agronomic management effects on C sequestration. This study quantified the spatial and temporal changes in SOC stocks on adjacent 65-ha corn silage-alfalfa production fields receiving liquid dairy manure in...

  18. Improved method for recovery of organic solids from diluted swine manure in 3rd generation treatment system

    USDA-ARS?s Scientific Manuscript database

    Solid-liquid separation of the raw manure increases the capacity of decision making and opportunities for treatment. The high-rate separation up-front using flocculants allows recovery of most of the organic compounds, which can be used for manufacture of high-quality compost materials. However, t...

  19. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds.

    PubMed

    Di Maria, Francesco; Barratta, Martino; Bianconi, Francesco; Placidi, Pisana; Passeri, Daniele

    2017-01-01

    Solid anaerobic digestion batch (SADB) with liquid digestate recirculation and wet anaerobic digestion of organic waste were experimentally investigated. SADB was operated at an organic loading rate (OLR) of 4.55kgVS/m(3)day, generating about 252NL CH4/kgVS, whereas the wet digester was operated at an OLR of 0.9kgVS/m(3)day, generating about 320NL CH4/kgVS. The initial total volatile fatty acids concentrations for SADB and wet digestion were about 12,500mg/L and 4500mg/L, respectively. There were higher concentrations of ammonium and COD for the SADB compared to the wet one. The genomic analysis performed by high throughput sequencing returned a number of sequences for each sample ranging from 110,619 to 373,307. More than 93% were assigned to the Bacteria domain. Seven and nine major phyla were sequenced for the SADB and wet digestion, respectively, with Bacteroidetes, Firmicutes and Proteobacteria being the dominant phyla in both digesters. Taxonomic profiles suggested a methanogenic pathway characterized by a relevant syntrophic acetate-oxidizing metabolism mainly in the liquid digestate of the SADB. This result also confirms the benefits of liquid digestate recirculation for improving the efficiency of AD performed with high solids (>30%w/w) content.

  20. Relationship between protein deficiency in the ration of rats during early ontogeny and function of enzyme systems of digestive and non-digestive organs in adult life.

    PubMed

    Timofeeva, N M; Nikitina, A A; Egorova, V V; Gordova, L A

    2004-07-01

    Low protein content in the ration of rat pups during transfer from mixed to definitive nutrition (days 21-30 of life) has a negative impact on digestive function of the small intestine and trophic and barrier functions of the large intestine, liver, and kidneys and increases (sucrase, glycyl-L-leucin dipeptidase) or decreases (alkaline phosphatase, aminopeptidase M, glycyl-L-leucine dipeptidase) enzyme activities in these organs in 6-month-old rats. Protein deficiency during the early ontogeny modulates functioning of the enzyme systems in digestive and non-digestive organs in adult life, which can lead to the development of not only gastrointestinal, but other visceral diseases.

  1. Animal and industrial waste anaerobic digestion: USA status report

    SciTech Connect

    Lusk, P.D.

    1995-11-01

    Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries with a waste steam characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, mil, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the U.S. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

  2. Animal and industrial waste anaerobic digestion: USA status report

    SciTech Connect

    Lusk, P.D.

    1996-01-01

    Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries - with a waste stream characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, milk, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the US. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

  3. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  4. Reducing swine farm ammonia emission with a full-scale manure treatment system

    USDA-ARS?s Scientific Manuscript database

    A new full-scale treatment system in its second-generation was implemented at a 5000-head finishing swine farm in North Carolina to improve treatment lagoon water quality and reduce ammonia emissions. The system combined high-rate solid-liquid separation with nitrogen and phosphorus removal process...

  5. Inorganic fertilizer and poultry-litter manure amendments alter the soil microbial communities in agricultural systems

    USDA-ARS?s Scientific Manuscript database

    The effects of agricultural land management practices on soil prokaryotic diversity are not well described. We investigated three land usage systems (row cropped, ungrazed pasture, and cattle-grazed pasture) and two fertilizer systems (inorganic fertilizer or IF and poultry-litter or PL) and compare...

  6. Fuzzy multi attributive comparison of tillage crop and manure management systems

    USDA-ARS?s Scientific Manuscript database

    Determining the best alternative between cropping system options is often complicated by disparities in research results due to differences between years as a result of seasonal variability. The economic cost of the systems further complicates the determination of best alternative for sustainable c...

  7. [NADPH-diaphorase activity in digestive system of gastropod molluscs Achatina fulica and Littorina littorea].

    PubMed

    Zaĭtseva, O V; Kuznetsova, T V; Markosova, T G

    2009-01-01

    Localization and peculiarities of NO-ergic elements were studied for he first time throughout the entire length of digestive tract of the marine gastropod mollusc Achatina fulica (Prosobranchia) and the terrestrial molusc Littorina littorea (Pulmonata) by using histochemical method of detection of NADPH-diaphorase (NADPHd). NO-ergic cells and fibers were revealed in all parts of the mollusc digestive tract beginning from pharynx. An intensive NADPHd activity was found in many intraepithelial cells of the open type and in their processes in intra- and subepithelial nerve plexuses, single subepithelial neurons, granular connective tissue cells, and numerous nerve fibers among muscle elements of he digestive tract wall as well as in nerves innervating the tract. NADPHd was also present in receptor cells of he oral area and in the central A. fulica ganglia participating in innervation of the digestive tract. The digestive tract NO-ergic system ofA. fulica has a more complex organization that that of L. littorea. In the A. fulica pharynx, stomach, and midgut, directly beneath epithelium, there is revealed a complex system of glomerular structures formed by thin NADPHd-positive nerve fibers coming from the side of epithelium. More superficially under the main groups of muscle elements, small agglomerations of NADPHd-positive neurons are seen, which could be considered as primitive, non-formed microganglia. Peculiarities of distribution and a possible functional role of NO-ergic elements in the digestive tract of molluscs are discussed as compared with other invertebrate and vertebrate animals.

  8. Carbohydrases in the digestive system of the spined soldier bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae).

    PubMed

    Ghamari, Mahboob; Hosseininaveh, Vahid; Darvishzadeh, Ali; Chougule, Nanasaheb P

    2014-04-01

    The spined soldier bug, Podisus maculiventris, is a generalist predator of insects and has been used in biological control. However, information on the digestion of food in this insect is lacking. Therefore, we have studied the digestive system in P. maculiventris, and further characterized carbohydrases in the digestive tract. The midgut of all developmental stages was composed of anterior, median, and posterior regions. The volumes of the anterior midgut decreased and the median midgut increased in older instars and adults, suggesting a more important role of the median midgut in food digestion. However, carbohydrase activities were predominant in the anterior midgut. In comparing the specific activity of carbohydrases, α-amylase activity was more in the salivary glands (with two distinct activity bands in zymograms), and glucosidase and galactosidase activities were more in the midgut. Salivary α-amylases were detected in the prey hemolymph, demonstrating the role of these enzymes in extra-oral digestion. However, the catalytic efficiency of midgut α-amylase activity was approximately twofold more than that of the salivary gland enzymes, and was more efficient in digesting soluble starch than glycogen. Midgut α-amylases were developmentally regulated, as one isoform was found in first instar compared to three isoforms in fifth instar nymphs. Starvation significantly affected carbohydrase activities in the midgut, and acarbose inhibited α-amylases from both the salivary glands and midgut in vitro and in vivo. The structural diversity and developmental regulation of carbohydrases in the digestive system of P. maculiventris demonstrate the importance of these enzymes in extra-oral and intra-tract digestion, and may explain the capability of the hemipteran to utilize diverse food sources.

  9. [Retrospective analysis of correlative factors between digestive system injury and anticoagulant or antiplatelet-agents].

    PubMed

    Cui, Ning; Luo, Hesheng

    2014-05-27

    To explore the correlative factors and clinical characteristics of digestive system injury during the treatment of anticoagulant and (or) antiplatelet-agents. A total of 1 443 hospitalized patients on anticoagulant and (or) antiplatelet-agents from January 2010 to December 2013 at Renmin Hospital of Wuhan University were analyzed retrospectively. Their length of hospital stay was from 5 to 27 days. Most of them were elderly males (n = 880, 61.0%) with an average age of (62 ± 6) years. 1 138 patients (78.9%) were farmers, workers or someone without a specific occupation. During the treatment of anticoagulant/antiplatelet-agents, statistical difference existed (P = 0.01) between positively and negatively previous digestive disease groups for actively newly occurring digestive system injury (16.0% (41/256) vs 15.9% (189/1 187)). After the dosing of anticoagulant and (or) antiplatelet-agents, 57 (66.3%, 57/86) patients were complicated by hemorrhage of digestive tract, taking 62.9% (61/97) of all positive result patients for Helicobacter pylori test. Comparing preventive PPI group with no PPI group, there was no marked statistical differences (P = 2.67) for digestive system complication (including hemorrhage of digestive tract) while receiving anticoagulant and (or) antiplatelet-agents (13.9% (74/533) vs 17.1% (156/910)). During anticoagulant and/or antiplatelet-agent therapy, 185 patients (12.8%) were complicated by peptic ulcer or peptic ulcer with bleeding, 40 patients (2.8%) had erosive gastritis and 5 (0.3%) developed acute gastric mucosal lesions. And 42 of 76 patients complicated by hemorrhage of digestive tract underwent endoscopic hemostasis while 2 patients were operated. Ninety-seven patients (6.7%) died, including 61 (62.9%, 61/97) from hemorrhage of digestive tract. The remainder became cured, improved and discharged. Moreover, no significant statistical differences existed (P = 2.29) among three combination group (aspirin, clopidogrel, warfarin), two

  10. Energize It! An Ecologically Integrated Approach to the Study of the Digestive System and Energy Acquisition.

    ERIC Educational Resources Information Center

    Derting, Terry L.

    1992-01-01

    Develops a research-oriented method of studying the digestive system that integrates species' ecology with the form and function of this system. Uses problem-posing, problem-probing, and peer persuasion. Presents information for mammalian systems. (27 references) (MKR)

  11. Effects of legume green manures on forage produced in continuous wheat systems

    USDA-ARS?s Scientific Manuscript database

    Inorganic nitrogen (N) fertilizers are important to continuous systems of winter wheat (Triticum aestivum L. em Thell.) in the U.S. southern Great Plains (SGP). Costs have increased in recent years and resulted in producers considering legumes grown during summer fallow as N sources. This study (200...

  12. Cover Crop and Liquid Manure Effects on Soil Quality Indicators in a Corn Silage System.

    USDA-ARS?s Scientific Manuscript database

    Due to a lack of surface residue and organic matter inputs, continuous corn (Zea mays L.) silage production is one of the most demanding cropping systems imposed on our soil resources. In this study, our objective was to determine if using cover/companion crops and/or applying low-solids liquid dair...

  13. Microbiome characterization of MFCs used for the treatment of swine manure.

    PubMed

    Vilajeliu-Pons, Anna; Puig, Sebastià; Pous, Narcís; Salcedo-Dávila, Inmaculada; Bañeras, Lluís; Balaguer, Maria Dolors; Colprim, Jesús

    2015-05-15

    Conventional swine manure treatment is performed by anaerobic digestion, but nitrogen is not treated. Microbial Fuel Cells (MFCs) allow organic matter and nitrogen removal with concomitant electricity production. MFC microbiomes treating industrial wastewaters as swine manure have not been characterized. In this study, a multidisciplinary approach allowed microbiome relation with nutrient removal capacity and electricity production. Two different MFC configurations (C-1 and C-2) were used to treat swine manure. In C-1, the nitrification and denitrification processes took place in different compartments, while in C-2, simultaneous nitrification-denitrification occurred in the cathode. Clostridium disporicum and Geobacter sulfurreducens were identified in the anode compartments of both systems. C. disporicum was related to the degradation of complex organic matter compounds and G. sulfurreducens to electricity production. Different nitrifying bacteria populations were identified in both systems because of the different operational conditions. The highest microbial diversity was detected in cathode compartments of both configurations, including members of Bacteroidetes, Chloroflexiaceae and Proteobacteria. These communities allowed similar removal rates of organic matter (2.02-2.09 kg COD m(-3)d(-1)) and nitrogen (0.11-0.16 kg Nm(-3)d(-1)) in both systems. However, they differed in the generation of electric energy (20 and 2 mW m(-3) in C-1 and C-2, respectively). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The digestive system and nutritional considerations for individuals with Rett syndrome.

    PubMed

    Lotan, Meir; Zysman, Lilit

    2006-12-28

    Rett syndrome (RS) is a neurodevelopmental syndrome of genetic origin that mainly affects females. Individuals diagnosed with RS exhibit a variety of functional difficulties that impair their quality of life. One of the affected systems is the digestive system, where 74% of persons with RS have abnormal functioning. The affected digestive system causes this population to present an array of problems, such as gastroesophageal reflux (GER), constipation, and malnutrition, leading to failure to thrive (FTT), which resolves in reduced functional ability. Due to the severe effects of the dysfunctional digestive system of individuals with RS, this article will describe the problems common to this population, as well as propose some clinical suggestions for intervention.

  15. Important roles of P2Y receptors in the inflammation and cancer of digestive system

    PubMed Central

    Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui

    2016-01-01

    Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future. PMID:26908460

  16. Important roles of P2Y receptors in the inflammation and cancer of digestive system.

    PubMed

    Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui

    2016-05-10

    Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future.

  17. Histological study on the digestive system development of Takifugu rubripes larvae and juvenile

    NASA Astrophysics Data System (ADS)

    Wan, Zhenzhen; Gao, Tianxiang; Zhang, Xiumei; Chen, Chao; Yu, Changhong

    2006-01-01

    The digestive tract of Takifugu rubripes during early life stages was studied with light microscopy. At the beginning of hatching, the digestive tract is represented by a simple and undifferentiated straight tube and does not communicate with the exterior, as the mouth and anus are not open yet. At 2 d after hatching, a constriction between intestine and rectum that will become the intestino-rectal valve is visible. During the endogenous feeding phase, the yolk sac is resorbed and the digestive tract becomes functional and differentiated. The liver and pancreas also become apparent at this time. At onset of exogenous feeding (3 d after hatching), yolk sac resesves are not completely depleted, suggesting a period of mixed nutrition. The digestive tract differentiates fully into buccopharynx, esophagus, stomach, intestine and rectum. At 9 d after hatching, the yolk sac reserves are completely depleted. The most noticeable events occurring from 5 to 17 d after hatching are the transformation of the epithelia type, the differentiation of the pneumatic sac, the epithelial cell, gut convolution, mucosal fold increase, and the growth of liver and pancreas. From 18 to 27 d after hatching, the numbers of intestine folds and mucus cells increase progressively. From then on, morphological changes of digestive features are almost completed. At 27 d after hatching, the morphology and function of digestive system are similar to that of the adult.

  18. Field experiment with liquid manure and enhanced biochar

    NASA Astrophysics Data System (ADS)

    Dunst, Gerald

    2017-04-01

    Field experiments with low amounts of various liquid manure enhanced biochars. In 2016 a new machine was developed to inject liquid biochar based fertilizer directly into the crop root zone. A large-scale field experiment with corn and oil seed pumpkin was set-up on 42 hectares on 15 different fields in the south East of Austria. Three treatments were compared: (1) surface spreading of liquid manure as control (common practice), (2) 20 cm deep root zone injection with same amount of liquid manure, and (3) 20 cm deep root zone injection with same amount of liquid manure mixed with 1 to 2 tons of various nutrient enhanced biochars. The biochar were quenched with the liquid phase from a separated digestate from a biogas plant (feedstock: cow manure). From May to October nitrate and ammonium content was analyzed monthly from 0-30cm and 30-60cm soil horizons. At the end of the growing season the yield was determined. The root zone injection of the liquid manure reduced the nitrate content during the first two months at 13-16% compared to the control. When the liquid manure was blended with biochar, Nitrate soil content was lowest (reduction 40-47%). On average the root zone injection of manure-biochar increased the yield by 7% compared to the surface applied control and 3% compared to the root zone injected manure without biochar. The results shows, that biochar is able to reduce the Nitrate load in soils and increase the yield of corn at the same time. The nutrient efficiency of organic liquid fertilizers can be increased.

  19. Digestive recovery of sulfur-methyl-L-methionine and its bioaccessibility in Kimchi cabbages using a simulated in vitro digestion model system.

    PubMed

    Lee, Hae-Rim; Cho, Sun-Duk; Lee, Woon Kyu; Kim, Gun-Hee; Shim, Soon-Mi

    2014-01-15

    Sulfur-methyl-L-methionine (SMM) has been known to provide various biological functions such as radical scavenging effect, inhibition of adipocyte differentiation, and prevention of gastric mucosal damage. Kimchi cabbages are known to be a major food source providing SMM but its bioaccessibility has not been studied. The objective of current study was to determine both the digestive stability of SMM and the amount released from Kimchi cabbages under a simulated in vitro digestion model system. The in vitro digestion model system simulating a human gastrointestinal tract was carried out for measuring digestive recovery and bioaccessibility of SMM. SMM was quantified by using high-performance liquid chromatography with a fluorescence detector. Recovery of an SMM standard after digestion was 0.68 and 0.65% for fasted and fed conditions, respectively, indicating that the digestive stability of the SMM standard was not affected by dietary energy or co-ingested food matrix. The SMM standard was also significantly stable in acidic pH (P < 0.05). The bioaccessibility of SMM from Kimchi cabbages was measured under a fasted condition, resulted in 8.83, 14.71 and 10.88%, for salivary, gastric and small intestinal phases, respectively. Results from our study suggest that SMM from Kimchi cabbages, a component of food sources, is more bioavailable than SMM by itself. © 2013 Society of Chemical Industry.

  20. The effect of 1-week feed restriction on performance, digestibility of nutrients and digestive system development in the growing rabbit.

    PubMed

    Tůmová, E; Volek, Z; Chodová, D; Härtlová, H; Makovický, P; Svobodová, J; Ebeid, T A; Uhlířová, L

    2016-01-01

    A 3 to 4 week feed restriction of about 20% to 25% of the free intake is widely applied in rabbit breeding systems to reduce post-weaning digestive disorders. However, a short intensive feed restriction is described in few studies and can be beneficial for growing rabbits due to a longer re-alimentation period. The aim of this study was to evaluate the effect of ad libitum (AL) and two restriction levels of feeding (50 and 65 g/rabbit per day) applied for 1 week on performance, gastrointestinal morphology and physiological parameters during the restriction and during the re-alimentation period. Rabbits were divided into three experimental groups: AL rabbits were fed AL, R1 rabbits were restricted from 42 to 49 days of age and received 50 g daily (29% of AL) and R2 rabbits were restricted at the same age and were fed 65 g of feed daily (37% of AL). In the 1(st) week after weaning and in the weeks after restriction, all the groups were fed AL. During the restriction period, daily weight gain (DWG) in R1 significantly dropped to 11% (experiment 1) and 5% (experiment 2) compared with rabbits in the AL group, although they were fed 29% of AL, whereas in the R2 group it decreased to 20% (experiment 1) and 10% (experiment 2). In the week following feed restriction, DWG in the restricted groups increased (P<0.001) to 166% and 148% in R1 and to 128% and 145% in R2. Restricted rabbits in both the experiments reached up to 90% to 93% of the final live weight (70 days) of the AL group. Over the entire experimental period, feed restriction significantly decreased feed intake to 85% to 88% of the AL group; however, the feed conversion ratio was lower (P<0.05) only in experiment 1 (-6% in R1 and -4% in R2). Digestibilities of CP and fat were not significantly higher during the restriction period and during the 1(st) week of re-alimentation compared with the AL group. Significant interactions between feeding regime and age revealed the shortest large intestine in the AL group at

  1. Developmental expression and distribution of nesfatin-1/NUCB2 in the canine digestive system.

    PubMed

    Jiang, Shudong; Zhou, Weijuan; Zhang, Xingwang; Wang, Dengfeng; Zhu, Hui; Hong, Meizhen; Gong, Yajing; Ye, Jing; Fang, Fugui

    2016-03-01

    Nesfatin-1/NUCB2 is a neuropeptide that plays important roles in regulating food intake and energy homeostasis. The distribution of nesfatin-1/NUCB2 protein and mRNA has not been investigated in the canine digestive system. The present study was conducted to evaluate the expression of nesfatin-1/NUCB2 protein and NUCB2 mRNA in the canine digestive organs (esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, liver and pancreas). The tissues of the digestive system were collected from dogs at different developmental stages (infantile, juvenile, pubertal and adult). Nesfatin-1/NUCB2 protein localization in the organs of adult dogs was detected by immunohistochemistry. The expression of NUCB2 mRNA at the four developmental stages was analyzed by real-time fluorescence quantitative PCR (qRT-PCR). Nesfatin-1/NUCB2 protein was distributed in the fundic gland region of the stomach, and the islet area and exocrine portions of the pancreas. However, NUCB2 mRNA was found in all digestive organs, although the expression levels in the pancreas and stomach were higher than those in liver, duodenum and other digestive tract tissues (P<0.05) at the four different developmental stages of the dogs. In this study, nesfatin-1/NUCB2 was found to be present at high levels in the stomach and pancreas at both the protein and mRNA levels; however, NUCB2 expression was found at lower levels in all of the digestive organs. These findings provide the basis of further investigations to elucidate the functions of nefatin-1 in the canine digestive system. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems

    NASA Astrophysics Data System (ADS)

    Duan, Yinghua; Xu, Minggang; Gao, Suduan; Liu, Hua; Huang, Shaomin; Wang, Boren

    2016-09-01

    Improving soil fertility/productivity and reducing environmental impact of nitrogen (N) fertilization are essential for sustainable agriculture. Quantifying the contribution of various fertilization regimes to soil N storage and loss has been lacking in a wide range of spatiotemporal scales. Based on data collected from field experiments at three typical agricultural zones in China, soil N dynamics and N changes in soil profile (0-100 cm) were examined during 1990-2009 under chemical fertilization, manure incorporation with fertilizer, and fertilizer with straw return treatments. We employed a mass balance approach to estimate the N loss to the environment after taking into account soil N change. Results showed a significant increase in soil N storage under manure incorporation treatments, accompanied with the lowest N loss (ave.20-24% of total N input) compared to all other treatments (ave.35-63%). Both soil N distribution and mass balance data suggested higher leaching risk from chemical fertilization in acidic soil of southern China with higher precipitation than the other two sites. This research concludes that manure incorporation with chemical fertilizer not only can achieve high N use efficiency and improve soil fertility, but also leads to the lowest total N loss or damage to the environment.

  3. Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems

    PubMed Central

    Duan, Yinghua; Xu, Minggang; Gao, Suduan; Liu, Hua; Huang, Shaomin; Wang, Boren

    2016-01-01

    Improving soil fertility/productivity and reducing environmental impact of nitrogen (N) fertilization are essential for sustainable agriculture. Quantifying the contribution of various fertilization regimes to soil N storage and loss has been lacking in a wide range of spatiotemporal scales. Based on data collected from field experiments at three typical agricultural zones in China, soil N dynamics and N changes in soil profile (0–100 cm) were examined during 1990–2009 under chemical fertilization, manure incorporation with fertilizer, and fertilizer with straw return treatments. We employed a mass balance approach to estimate the N loss to the environment after taking into account soil N change. Results showed a significant increase in soil N storage under manure incorporation treatments, accompanied with the lowest N loss (ave.20–24% of total N input) compared to all other treatments (ave.35–63%). Both soil N distribution and mass balance data suggested higher leaching risk from chemical fertilization in acidic soil of southern China with higher precipitation than the other two sites. This research concludes that manure incorporation with chemical fertilizer not only can achieve high N use efficiency and improve soil fertility, but also leads to the lowest total N loss or damage to the environment. PMID:27650801

  4. Digester effluent’s agronomic and odor emission potential: A swine case study

    USDA-ARS?s Scientific Manuscript database

    This on-farm study looked at the full-scale treatment effects of anaerobic digestion on the composition of manure effluent from an agronomic and air quality perspective. The goal was to improve our understanding of the role that anaerobic digestion may play in managing manure as a fertilizer and in...

  5. Manure management for greenhouse gas mitigation.

    PubMed

    Petersen, S O; Blanchard, M; Chadwick, D; Del Prado, A; Edouard, N; Mosquera, J; Sommer, S G

    2013-06-01

    Ongoing intensification and specialisation of livestock production lead to increasing volumes of manure to be managed, which are a source of the greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O). Net emissions of CH4 and N2O result from a multitude of microbial activities in the manure environment. Their relative importance depends not only on manure composition and local management practices with respect to treatment, storage and field application, but also on ambient climatic conditions. The diversity of livestock production systems, and their associated manure management, is discussed on the basis of four regional cases (Sub-Saharan Africa, Southeast Asia, China and Europe) with increasing levels of intensification and priorities with respect to nutrient management and environmental regulation. GHG mitigation options for production systems based on solid and liquid manure management are then presented, and potentials for positive and negative interactions between pollutants, and between management practices, are discussed. The diversity of manure properties and environmental conditions necessitate a modelling approach for improving estimates of GHG emissions, and for predicting effects of management changes for GHG mitigation, and requirements for such a model are discussed. Finally, we briefly discuss drivers for, and barriers against, introduction of GHG mitigation measures for livestock production. There is no conflict between efforts to improve food and feed production, and efforts to reduce GHG emissions from manure management. Growth in livestock populations are projected to occur mainly in intensive production systems where, for this and other reasons, the largest potentials for GHG mitigation may be found.

  6. HER2 aberrations and heterogeneity in cancers of the digestive system: Implications for pathologists and gastroenterologists

    PubMed Central

    Fusco, Nicola; Bosari, Silvano

    2016-01-01

    Management of cancers of the digestive system has progressed rapidly into the molecular era. Despite the significant recent achievements in the diagnosis and treatment of these patients, the number of deaths for these tumors has currently plateaued. Many investigations have assessed the role of HER2 in tumors of the digestive system in both prognostic and therapeutic settings, with heterogeneous results. Novel testing and treatment guidelines are emerging, in particular in gastric and colorectal cancers. However, further advances are needed. In this review we provide a comprehensive overview of the current state-of-knowledge of HER2 alterations in the most common tumors of the digestive system and discuss the operational implications of HER2 testing. PMID:27672288

  7. HER2 aberrations and heterogeneity in cancers of the digestive system: Implications for pathologists and gastroenterologists.

    PubMed

    Fusco, Nicola; Bosari, Silvano

    2016-09-21

    Management of cancers of the digestive system has progressed rapidly into the molecular era. Despite the significant recent achievements in the diagnosis and treatment of these patients, the number of deaths for these tumors has currently plateaued. Many investigations have assessed the role of HER2 in tumors of the digestive system in both prognostic and therapeutic settings, with heterogeneous results. Novel testing and treatment guidelines are emerging, in particular in gastric and colorectal cancers. However, further advances are needed. In this review we provide a comprehensive overview of the current state-of-knowledge of HER2 alterations in the most common tumors of the digestive system and discuss the operational implications of HER2 testing.

  8. The role of hypoxia-inducible factor-2 in digestive system cancers.

    PubMed

    Zhao, J; Du, F; Shen, G; Zheng, F; Xu, B

    2015-01-15

    Hypoxia is an all but ubiquitous phenomenon in cancers. Two known hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, primarily mediate the transcriptional response to hypoxia. Despite the high homology between HIF-1α and HIF-2α, emerging evidence suggests differences between both molecules in terms of transcriptional targets as well as impact on multiple physiological pathways and tumorigenesis. To date, much progress has been made toward understanding the roles of HIF-2α in digestive system cancers. Indeed, HIF-2α has been shown to regulate multiple aspects of digestive system cancers, including cell proliferation, angiogenesis and apoptosis, metabolism, metastasis and resistance to chemotherapy. These findings make HIF-2α a critical regulator of this malignant phenotype. Here we summarize the function of HIF-2 during cancer development as well as its contribution to tumorigenesis in digestive system malignancies.

  9. Prognostic nutritional index as a prognostic biomarker for survival in digestive system carcinomas.

    PubMed

    Zhao, Yang; Xu, Peng; Kang, Huafeng; Lin, Shuai; Wang, Meng; Yang, Pengtao; Dai, Cong; Liu, Xinghan; Liu, Kang; Zheng, Yi; Dai, Zhijun

    2016-12-27

    The prognostic nutritional index (PNI) has been reported to correlate with the prognosis in patients with various malignancies. We performed a meta-analysis to determine the predictive potential of PNI in digestive system cancers. Twenty-three studies with a total of 7,384 patients suffering from digestive system carcinomas were involved in this meta-analysis. A lower PNI was significantly associated with the shorter overall survival (OS) [Hazard Ratio (HR) 1.83, 95% Confidence Interval (CI) 1.62-2.07], the poorer disease-free survival (DFS) (HR 1.85, 95% CI 1.19-2.89), and the higher rate of post-operative complications (HR 2.31, 95% CI 1.63-3.28). In conclusion, PNI was allowed to function as an efficient indicator for the prognosis of patients with digestive system carcinomas.

  10. Prognostic nutritional index as a prognostic biomarker for survival in digestive system carcinomas

    PubMed Central

    Zhao, Yang; Xu, Peng; Kang, Huafeng; Lin, Shuai; Wang, Meng; Yang, Pengtao; Dai, Cong; Liu, Xinghan; Liu, Kang; Zheng, Yi; Dai, Zhijun

    2016-01-01

    The prognostic nutritional index (PNI) has been reported to correlate with the prognosis in patients with various malignancies. We performed a meta-analysis to determine the predictive potential of PNI in digestive system cancers. Twenty-three studies with a total of 7,384 patients suffering from digestive system carcinomas were involved in this meta-analysis. A lower PNI was significantly associated with the shorter overall survival (OS) [Hazard Ratio (HR) 1.83, 95% Confidence Interval (CI) 1.62–2.07], the poorer disease-free survival (DFS) (HR 1.85, 95% CI 1.19–2.89), and the higher rate of post-operative complications (HR 2.31, 95% CI 1.63–3.28). In conclusion, PNI was allowed to function as an efficient indicator for the prognosis of patients with digestive system carcinomas. PMID:27888808

  11. Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse.

    PubMed

    Janke, Leandro; Leite, Athaydes F; Nikolausz, Marcell; Radetski, Claudemir M; Nelles, Michael; Stinner, Walter

    2016-02-01

    The anaerobic digestion of sugarcane filter cake and the option of co-digestion with bagasse were investigated in a semi-continuous feeding regime to assess the main parameters used for large-scale process designing. Moreover, fresh cattle manure was considered as alternative inoculum for the start-up of biogas reactors in cases where digestate from a biogas plant would not be available in remote rural areas. Experiments were carried out in 6 lab-scale semi-continuous stirred-tank reactors at mesophilic conditions (38±1°C) while the main anaerobic digestion process parameters monitored. Fresh cattle manure demonstrated to be appropriate for the start-up process. However, an acclimation period was required due to the high initial volatile fatty acids concentration (8.5gL(-1)). Regardless the mono-digestion of filter cake presented 50% higher biogas yield (480mLgVS(-1)) than co-digestion with bagasse (320mLgVS(-1)) during steady state conditions. A large-scale co-digestion system would produce 58% more biogas (1008m(3)h(-1)) than mono-digestion of filter cake (634m(3)h(-1)) due to its higher biomass availability for biogas conversion. Considering that the biogas production rate was the technical parameter that displayed the most relevant differences between the analyzed substrate options (0.99-1.45m(3)biogasm(3)d(-1)). The decision of which substrate option should be implemented in practice would be mainly driven by the available construction techniques, since economically efficient tanks could compensate the lower biogas production rate of co-digestion option.

  12. Comparison of Greenhouse Gas Emissions between Two Dairy Farm Systems (Conventional vs. Organic Management) in New Hampshire Using the Manure DNDC Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Dorich, C.; Contosta, A.; Li, C.; Brito, A.; Varner, R. K.

    2013-12-01

    Agriculture contributes 20 to 25 % of the total anthropogenic greenhouse gas (GHG) emissions globally. These agricultural emissions are primarily in the form of methane (CH4) and nitrous oxide (N2O) with these GHG accounting for roughly 40 and 80 % of the total anthropogenic emissions of CH4 and N2O, respectively. Due to varied management and the complexities of agricultural ecosystems, it is difficult to estimate these CH4 and N2O emissions. The IPCC emission factors can be used to yield rough estimates of CH4 and N2O emissions but they are often based on limited data. Accurate modeling validated by measurements is needed in order to identify potential mitigation areas, reduce GHG emissions from agriculture, and improve sustainability of farming practices. The biogeochemical model Manure DNDC was validated using measurements from two dairy farms in New Hampshire, USA in order to quantify GHG emissions under different management systems. One organic and one conventional dairy farm operated by the University of New Hampshire's Agriculture Experiment Station were utilized as the study sites for validation of Manure DNDC. Compilation of management records started in 2011 to provide model inputs. Model results were then compared to field collected samples of soil carbon and nitrogen, above-ground biomass, and GHG fluxes. Fluxes were measured in crop, animal, housing, and waste management sites on the farms in order to examine the entire farm ecosystem and test the validity of the model. Fluxes were measured by static flux chambers, with enteric fermentation measurements being conducted by the SF6 tracer test as well as a new method called Greenfeeder. Our preliminary GHG flux analysis suggests higher emissions than predicted by IPCC emission factors and equations. Results suggest that emissions from manure management is a key concern at the conventional dairy farm while bedded housing at the organic dairy produced large quantities of GHG.

  13. Confined space manure storage and facilities safety assessment.

    PubMed

    Murphy, D J; Manbeck, H B

    2014-07-01

    A mail survey of 1,200 farms across 16 states was conducted to identify the number, type, and size of manure storages per farm, as well as safety-related behaviors or actions related to entry into confined-space manure storage and handling facilities. Respondents provided data on 297 storage units and facilities, with approximately 75% reporting up to three storages per farm operation. Dimensions were provided for 254 manure pits: nearly 66% were less than or equal to 100 feet long, 75% were less than or equal to 40 feet wide, and 75% were less than or equal to 10 feet deep. Almost 14% of the reported storages were over 300 feet long, seven were wider than 100 feet, and 17 were more than 20 feet deep. Survey results suggest that most farm operations with confined-space manure storages do not follow best safety practices regarding their manure storages, including using gas detection equipment before entering a manure pit, using rescue lines when entering storages, or developing a written confined-space safety policy or plan. Survey results also suggest that few farmers post warning signs around their storages, post recommended ventilation times before entry, or conduct training for workers who enter confined-space manure storages. This article provides a benchmark against which the effectiveness of educational programs and design tools for confined-space manure pit ventilation systems and other confined-space manure pit safety interventions can be measured.

  14. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal.

    PubMed

    Hu, Bing; Min, Min; Zhou, Wenguang; Du, Zhenyi; Mohr, Michael; Chen, Paul; Zhu, Jun; Cheng, Yanling; Liu, Yuhuan; Ruan, Roger

    2012-12-01

    The objectives were to assess the feasibility of using fermented liquid swine manure (LSM) as nutrient supplement for cultivation of Chlorella sp. UMN271, a locally isolated facultative heterotrophic strain, and to evaluate the nutrient removal efficiencies by alga compared with those from the conventionally decomposed LSM-algae system. The results showed that addition of 0.1% (v/v) acetic, propionic and butyric acids, respectively, could promote algal growth, enhance nutrient removal efficiencies and improve total lipids productivities during a 7-day batch cultivation. Similar results were observed when the acidogenic fermentation was applied to the sterilized and raw digested LSM rich in volatile fatty acids (VFAs). High algal growth rate (0.90 d(-1)) and fatty acid content (10.93% of the dry weight) were observed for the raw VFA-enriched manure sample. Finally, the fatty acid profile analyses showed that Chlorella sp. grown on acidogenically digested manure could be used as a feedstock for high-quality biodiesel production.

  15. The Digestive System [and] Instructor's Guide. Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Sy