Sample records for many-body problem

  1. Gravitational Many-Body Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makino, J.

    2008-04-29

    In this paper, we briefly review some aspects of the gravitational many-body problem, which is one of the oldest problems in the modern mathematical science. Then we review our GRAPE project to design computers specialized to this problem.

  2. Ground-state energies and charge radii of medium-mass nuclei in the unitary-model-operator approach

    NASA Astrophysics Data System (ADS)

    Miyagi, Takayuki; Abe, Takashi; Okamoto, Ryoji; Otsuka, Takaharu

    2014-09-01

    In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the numerical results of ground-state energies and charge radii of 16O, 40Ca, and 56Ni in the UMOA, and discuss the saturation property by comparing our results with those in the other many-body methods and also experimental data. In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the numerical results of ground-state energies and charge radii of 16O, 40Ca, and 56Ni in the UMOA, and discuss the saturation property by comparing our results with those in the other many-body methods and also experimental data. The part of numerical calculation has been done on the NEC SX8R at RCNP, Osaka University. This work was supported in part by MEXT SPIRE and JICFuS. It was also supported in part by the Program in part for Leading Graduate Schools, MEXT, Japan.

  3. Orbital motion (3rd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Roy, A. E.

    The fundamental principles of celestial mechanics are discussed in an introduction for students of astronomy, aerospace engineering, and geography. Chapters are devoted to the dynamic structure of the universe, coordinate and timekeeping systems, the reduction of observational data, the two-body problem, the many-body problem, general and special perturbations, and the stability and evolution of the solar system. Consideration is given to lunar theory, artificial satellites, rocket dynamics and transfer orbits, interplanetary and lunar trajectories, orbit determination and interplanetary navigation, binaries and other few-body systems, and many-body systems of stars. Diagrams, graphs, tables, and problems with solutions are provided.

  4. Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope

    NASA Astrophysics Data System (ADS)

    Hodgman, S. S.; Khakimov, R. I.; Lewis-Swan, R. J.; Truscott, A. G.; Kheruntsyan, K. V.

    2017-06-01

    In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s -wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.

  5. INTRODUCTION OF MANY-PARTICLE VARIABLES FOR THE TREATMENT OF SPECIAL TRANSLATIONALLY INVARIANT MANY-BODY PROBLEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobius, P.

    1960-05-01

    An attempt is raade to treat special translationally invariant many-body problems by coordinate transformations introducing many-particle variables. These are adapted coordinates of such kind that the condition of translational invariance and the Pauli principle can be satisfied automatically. They are homogeneous functions of the particle coordinates obeying certain differential equations. The Schrodinger equation is transformed into these variables. There exist examples of systems of interacting particles which can be separated exactly in the many-particle variables but not in the particle coordinates. (auth)

  6. A numerical projection technique for large-scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang

    2011-10-01

    We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.

  7. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.

    2018-03-01

    We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.

  8. Many-body problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parry, W.E.

    1973-01-01

    An introduction is given to techniques used in the many-body problem, and a reference book is given for those techniques. Sevcral different formulations of the techniques, and their interrelations, are discussed, to prepare the reader for the published literature. Examples are taken mostly from the physics of solids, fluids and plasmas. Second quantization, perturbation theory, Green functions and correlation functions, examples in the use of diagrammatic perturbation theory, the equation of motion method, magnetism (the drone-fermion representation), linear response and transport processes, niany- body systems at zero temperature, the variational principle and pair-wave approximation. (UK)

  9. The Effective-One-Body Approach to the General Relativistic Two Body Problem

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Nagar, Alessandro

    The two-body problem in General Relativity has been the subject of many analytical investigations. After reviewing some of the methods used to tackle this problem (and, more generally, the N-body problem), we focus on a new, recently introduced approach to the motion and radiation of (comparable mass) binary systems: the Effective One Body (EOB) formalism. We review the basic elements of this formalism, and discuss some of its recent developments. Several recent comparisons between EOB predictions and Numerical Relativity (NR) simulations have shown the aptitude of the EOB formalism to provide accurate descriptions of the dynamics and radiation of various binary systems (comprising black holes or neutron stars) in regimes that are inaccessible to other analytical approaches (such as the last orbits and the merger of comparable mass black holes). In synergy with NR simulations, post-Newtonian (PN) theory and Gravitational Self-Force (GSF) computations, the EOB formalism is likely to provide an efficient way of computing the very many accurate template waveforms that are needed for Gravitational Wave (GW) data analysis purposes.

  10. The nonequilibrium quantum many-body problem as a paradigm for extreme data science

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Nikolić, B. K.; Frieder, O.

    2014-12-01

    Generating big data pervades much of physics. But some problems, which we call extreme data problems, are too large to be treated within big data science. The nonequilibrium quantum many-body problem on a lattice is just such a problem, where the Hilbert space grows exponentially with system size and rapidly becomes too large to fit on any computer (and can be effectively thought of as an infinite-sized data set). Nevertheless, much progress has been made with computational methods on this problem, which serve as a paradigm for how one can approach and attack extreme data problems. In addition, viewing these physics problems from a computer-science perspective leads to new approaches that can be tried to solve more accurately and for longer times. We review a number of these different ideas here.

  11. Periodically driven ergodic and many-body localized quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponte, Pedro; Department of Physics and Astronomy, University of Waterloo, ON N2L 3G1; Chandran, Anushya

    2015-02-15

    We study dynamics of isolated quantum many-body systems whose Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We support our conclusions by numerical simulations of disorderedmore » spin chains. We argue that our results hold for general driving protocols, and discuss their experimental implications.« less

  12. Solving the quantum many-body problem with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Carleo, Giuseppe; Troyer, Matthias

    2017-02-01

    The challenge posed by the many-body problem in quantum physics originates from the difficulty of describing the nontrivial correlations encoded in the exponential complexity of the many-body wave function. Here we demonstrate that systematic machine learning of the wave function can reduce this complexity to a tractable computational form for some notable cases of physical interest. We introduce a variational representation of quantum states based on artificial neural networks with a variable number of hidden neurons. A reinforcement-learning scheme we demonstrate is capable of both finding the ground state and describing the unitary time evolution of complex interacting quantum systems. Our approach achieves high accuracy in describing prototypical interacting spins models in one and two dimensions.

  13. Molecular Kondo effect in flat-band lattices

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Tien; Nguyen, Thuy Thi

    2018-04-01

    The Kondo effect of a single magnetic impurity embedded in the Lieb lattice is studied by the numerical renormalization group. When the band flatness is present in the local density of states at the impurity site, it quenches the participation of all dispersive electrons in the Kondo singlet formation and reduces the many-body Kondo problem to a two-electron molecular Kondo problem. A quantum entanglement of two spins, which is the two-electron molecular analog of the many-body Kondo singlet, is stable at low temperature, and the impurity contributions to thermodynamical and dynamical quantities are qualitatively different from that obtained in the many-body Kondo effect. The conditions for existence of the molecular Kondo effect in narrow band systems are also presented.

  14. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    DOE PAGES

    Jia, C. J.; Wang, Y.; Mendl, C. B.; ...

    2017-12-02

    Here, we describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the “checkerboard” decomposition of the Hamiltonian matrixmore » for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.« less

  15. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, C. J.; Wang, Y.; Mendl, C. B.

    Here, we describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the “checkerboard” decomposition of the Hamiltonian matrixmore » for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.« less

  16. Dominant partition method. [based on a wave function formalism

    NASA Technical Reports Server (NTRS)

    Dixon, R. M.; Redish, E. F.

    1979-01-01

    By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.

  17. The KS Method in Light of Generalized Euler Parameters.

    DTIC Science & Technology

    1980-01-01

    motion for the restricted two-body problem is trans- formed via the Kustaanheimo - Stiefel transformation method (KS) into a dynamical equation in the... Kustaanheimo - Stiefel2 transformation method (KS) in the two-body problem. Many papers have appeared in which specific problems or applications have... TRANSFORMATION MATRIX P. Kustaanheimo and E. Stiefel2 proposed a regularization method by intro- ducing a 4 x 4 transformation matrix and four-component

  18. MPPhys—A many-particle simulation package for computational physics education

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2014-03-01

    In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is deferred to graduate courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-school students in particular because of the use of particle systems in computer games. The missing link between the simple and the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however, by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and visualization can be combined for interactive visual explorations. Catalogue identifier: AERR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 111327 No. of bytes in distributed program, including test data, etc.: 608411 Distribution format: tar.gz Programming language: C++, OpenGL, GLSL, OpenCL. Computer: Linux and Windows platforms with OpenGL support. Operating system: Linux and Windows. RAM: Source Code 4.5 MB Complete package 242 MB Classification: 14, 16.9. External routines: OpenGL, OpenCL Nature of problem: Integrate N-body simulations, mass-spring models Solution method: Numerical integration of N-body-simulations, 3D-Rendering via OpenGL. Running time: Problem dependent

  19. In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem

    NASA Astrophysics Data System (ADS)

    Hergert, Heiko; Bogner, Scott K.; Lietz, Justin G.; Morris, Titus D.; Novario, Samuel J.; Parzuchowski, Nathan M.; Yuan, Fei

    We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrödinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory (Chap. 8), Configuration-Interaction Monte Carlo (Chap. 9), and the Self-Consistent Green's Function approach discussed in Chap. 11 The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.

  20. Chaotic Dynamics in the Planar Gravitational Many-Body Problem with Rigid Body Rotations

    NASA Astrophysics Data System (ADS)

    Kwiecinski, James A.; Kovacs, Attila; Krause, Andrew L.; Planella, Ferran Brosa; van Gorder, Robert A.

    The discovery of Pluto’s small moons in the last decade has brought attention to the dynamics of the dwarf planet’s satellites. With such systems in mind, we study a planar N-body system in which all the bodies are point masses, except for a single rigid body. We then present a reduced model consisting of a planar N-body problem with the rigid body treated as a 1D continuum (i.e. the body is treated as a rod with an arbitrary mass distribution). Such a model provides a good approximation to highly asymmetric geometries, such as the recently observed interstellar asteroid ‘Oumuamua, but is also amenable to analysis. We analytically demonstrate the existence of homoclinic chaos in the case where one of the orbits is nearly circular by way of the Melnikov method, and give numerical evidence for chaos when the orbits are more complicated. We show that the extent of chaos in parameter space is strongly tied to the deviations from a purely circular orbit. These results suggest that chaos is ubiquitous in many-body problems when one or more of the rigid bodies exhibits nonspherical and highly asymmetric geometries. The excitation of chaotic rotations does not appear to require tidal dissipation, obliquity variation, or orbital resonance. Such dynamics give a possible explanation for routes to chaotic dynamics observed in N-body systems such as the Pluto system where some of the bodies are highly nonspherical.

  1. Many-Body Effects in the Mesoscopic x-Ray Edge Problem

    NASA Astrophysics Data System (ADS)

    Hentschel, M.; R"Oder, G.; Ullmo, D.

    Many-body phenomena, a key interest in the investigation ofbulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray excition of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozières-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case.

  2. Localization in a random XY model with long-range interactions: Intermediate case between single-particle and many-body problems

    NASA Astrophysics Data System (ADS)

    Burin, Alexander L.

    2015-09-01

    Many-body localization in an XY model with a long-range interaction is investigated. We show that in the regime of a high strength of disordering compared to the interaction an off-resonant flip-flop spin-spin interaction (hopping) generates the effective Ising interactions of spins in the third order of perturbation theory in a hopping. The combination of hopping and induced Ising interactions for the power-law distance dependent hopping V (R ) ∝R-α always leads to the localization breakdown in a thermodynamic limit of an infinite system at α <3 d /2 where d is a system dimension. The delocalization takes place due to the induced Ising interactions U (R ) ∝R-2 α of "extended" resonant pairs. This prediction is consistent with the numerical finite size scaling in one-dimensional systems. Many-body localization in an XY model is more stable with respect to the long-range interaction compared to a many-body problem with similar Ising and Heisenberg interactions requiring α ≥2 d which makes the practical implementations of this model more attractive for quantum information applications. The full summary of dimension constraints and localization threshold size dependencies for many-body localization in the case of combined Ising and hopping interactions is obtained using this and previous work and it is the subject for the future experimental verification using cold atomic systems.

  3. Computational nuclear quantum many-body problem: The UNEDF project

    NASA Astrophysics Data System (ADS)

    Bogner, S.; Bulgac, A.; Carlson, J.; Engel, J.; Fann, G.; Furnstahl, R. J.; Gandolfi, S.; Hagen, G.; Horoi, M.; Johnson, C.; Kortelainen, M.; Lusk, E.; Maris, P.; Nam, H.; Navratil, P.; Nazarewicz, W.; Ng, E.; Nobre, G. P. A.; Ormand, E.; Papenbrock, T.; Pei, J.; Pieper, S. C.; Quaglioni, S.; Roche, K. J.; Sarich, J.; Schunck, N.; Sosonkina, M.; Terasaki, J.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2013-10-01

    The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.

  4. Construction of exact constants of motion and effective models for many-body localized systems

    NASA Astrophysics Data System (ADS)

    Goihl, M.; Gluza, M.; Krumnow, C.; Eisert, J.

    2018-04-01

    One of the defining features of many-body localization is the presence of many quasilocal conserved quantities. These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a challenging problem. Current numerical constructions often capture the conserved operators only approximately, thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence, our work provides an important tool expected to further boost inquiries into the breakdown of transport due to quenched disorder.

  5. Flexible configuration-interaction shell-model many-body solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Calvin W.; Ormand, W. Erich; McElvain, Kenneth S.

    BIGSTICK Is a flexible configuration-Interaction open-source shell-model code for the many-fermion problem In a shell model (occupation representation) framework. BIGSTICK can generate energy spectra, static and transition one-body densities, and expectation values of scalar operators. Using the built-in Lanczos algorithm one can compute transition probabflity distributions and decompose wave functions into components defined by group theory.

  6. BOOK REVIEW: The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics

    NASA Astrophysics Data System (ADS)

    Heggie, D.; Hut, P.

    2003-10-01

    The gravitational N-body problem is to describe the evolution of an isolated system of N point masses interacting only through Newtonian gravitational forces. For N =2 the solution is due to Newton. For N =3 there is no general analytic solution, but the problem has occupied generations of illustrious physicists and mathematicians including Laplace, Lagrange, Gauss and Poincaré, and inspired the modern subjects of nonlinear dynamics and chaos theory. The general gravitational N-body problem remains one of the oldest unsolved problems in physics. Many-body problems can be simpler than few-body problems, and many physicists have attempted to apply the methods of classical equilibrium statistical mechanics to the gravitational N-body problem for N gg 1. These applications have had only limited success, partly because the gravitational force is too strong at both small scales (the interparticle potential energy diverges) and large scales (energy is not extensive). Nevertheless, we now understand a rich variety of behaviour in large-N gravitating systems. These include the negative heat capacity of isolated, gravitationally bound systems, which is the basic reason why nuclear burning in the Sun is stable; Antonov's discovery that an isothermal, self-gravitating gas in a container is located at a saddle point, rather than a maximum, of the entropy when the gas is sufficiently dense and hence is unstable (the 'gravothermal catastrophe'); the process of core collapse, in which relaxation induces a self-similar evolution of the central core of the system towards (formally) infinite density in a finite time; and the remarkable phenomenon of gravothermal oscillations, in which the central density undergoes periodic oscillations by factors of a thousand or more on the relaxation timescale - but only if N gtrsim 104. The Gravitational Million-Body Problem is a monograph that describes our current understanding of the gravitational N-body problem. The authors have chosen to focus on N = 106 for two main reasons: first, direct numerical integrations of N-body systems are beginning to approach this threshold, and second, globular star clusters provide remarkably accurate physical instantiations of the idealized N-body problem with N = 105 - 106. The authors are distinguished contributors to the study of star-cluster dynamics and the gravitational N-body problem. The book contains lucid and concise descriptions of most of the important tools in the subject, with only a modest bias towards the authors' own interests. These tools include the two-body relaxation approximation, the Vlasov and Fokker-Planck equations, regularization of close encounters, conducting fluid models, Hill's approximation, Heggie's law for binary star evolution, symplectic integration algorithms, Liapunov exponents, and so on. The book also provides an up-to-date description of the principal processes that drive the evolution of idealized N-body systems - two-body relaxation, mass segregation, escape, core collapse and core bounce, binary star hardening, gravothermal oscillations - as well as additional processes such as stellar collisions and tidal shocks that affect real star clusters but not idealized N-body systems. In a relatively short (300 pages plus appendices) book such as this, many topics have to be omitted. The reader who is hoping to learn about the phenomenology of star clusters will be disappointed, as the description of their properties is limited to only a page of text; there is also almost no discussion of other, equally interesting N-body systems such as galaxies(N approx 106 - 1012), open clusters (N simeq 102 - 104), planetary systems, or the star clusters surrounding black holes that are found in the centres of most galaxies. All of these omissions are defensible decisions. Less defensible is the uneven set of references in the text; for example, nowhere is the reader informed that the classic predecessor to this work was Spitzer's 1987 monograph, Dynamical Evolution of Globular Clusters, or that the standard reference on the observational properties of stellar systems is Binney and Merrifield's Galactic Astronomy. A minor irritation is that many concepts are discussed several times before they are defined, and the index provides no pointer to the primary discussion; thus, for example, there are ten index entries for 'phase mixing' and no indication that the fourth of these refers to the actual definition. The book is intended as a graduate textbook but more likely it will be used mainly in other contexts: by theoretical researchers, as an indispensable reference on the dynamics of gravitational N-body systems; by observational astronomers, as a readable summary of the theory of star cluster evolution; and by physicists seeking a well-written and accessible introduction to a simple problem that remains fascinating and incompletely understood after three centuries. Scott Tremaine

  7. A Safari Through Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Dreizler, Reiner M.; Lüdde, Cora S.

    Density functional theory is widely used to treat quantum many body problems in many areas of physics and related fields. A brief survey of this method covering foundations, functionals and applications is presented here.

  8. Towards the Solution of the Many-Electron Problem in Real Materials: Equation of State of the Hydrogen Chain with State-of-the-Art Many-Body Methods

    DOE PAGES

    Motta, Mario; Ceperley, David M.; Chan, Garnet Kin-Lic; ...

    2017-09-28

    We present numerical results for the equation of state of an infinite chain of hydrogen atoms. A variety of modern many-body methods are employed, with exhaustive cross-checks and validation. Approaches for reaching the continuous space limit and the thermodynamic limit are investigated, proposed, and tested. The detailed comparisons provide a benchmark for assessing the current state of the art in many-body computation, and for the development of new methods. The ground-state energy per atom in the linear chain is accurately determined versus bond length, with a confidence bound given on all uncertainties.

  9. Towards the Solution of the Many-Electron Problem in Real Materials: Equation of State of the Hydrogen Chain with State-of-the-Art Many-Body Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motta, Mario; Ceperley, David M.; Chan, Garnet Kin-Lic

    We present numerical results for the equation of state of an infinite chain of hydrogen atoms. A variety of modern many-body methods are employed, with exhaustive cross-checks and validation. Approaches for reaching the continuous space limit and the thermodynamic limit are investigated, proposed, and tested. The detailed comparisons provide a benchmark for assessing the current state of the art in many-body computation, and for the development of new methods. The ground-state energy per atom in the linear chain is accurately determined versus bond length, with a confidence bound given on all uncertainties.

  10. A psychiatric dialogue on the mind-body problem.

    PubMed

    Kendler, K S

    2001-07-01

    Of all the human professions, psychiatry is most centrally concerned with the relationship of mind and brain. In many clinical interactions, psychiatrists need to consider both subjective mental experiences and objective aspects of brain function. This article attempts to summarize, in the form of a dialogue between a philosophically informed attending psychiatrist and three residents, the major philosophical positions on the mind-body problem. The positions reviewed include the following: substance dualism, property dualism, type identity, token identity, functionalism, eliminative materialism, and explanatory dualism. This essay seeks to provide a brief user-friendly introduction, from a psychiatric perspective, to current thinking about the mind-body problem.

  11. Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry

    NASA Astrophysics Data System (ADS)

    Latella, Ivan; Ben-Abdallah, Philippe; Biehs, Svend-Age; Antezza, Mauro; Messina, Riccardo

    2017-05-01

    A general theory of photon-mediated energy and momentum transfer in N -body planar systems out of thermal equilibrium is introduced. It is based on the combination of the scattering theory and the fluctuational-electrodynamics approach in many-body systems. By making a Landauer-like formulation of the heat transfer problem, explicit formulas for the energy transmission coefficients between two distinct slabs as well as the self-coupling coefficients are derived and expressed in terms of the reflection and transmission coefficients of the single bodies. We also show how to calculate local equilibrium temperatures in such systems. An analogous formulation is introduced to quantify momentum transfer coefficients describing Casimir-Lifshitz forces out of thermal equilibrium. Forces at thermal equilibrium are readily obtained as a particular case. As an illustration of this general theoretical framework, we show on three-body systems how the presence of a fourth slab can impact equilibrium temperatures in heat-transfer problems and equilibrium positions resulting from the forces acting on the system.

  12. Controlling the unruly maternal body: Losing and gaining control over the body during pregnancy and the postpartum period.

    PubMed

    Neiterman, Elena; Fox, Bonnie

    2017-02-01

    This paper examines the feeling of lost control of the body that so many women experience through pregnancy and the postpartum period - why they feel it and how they interpret that feeling - and women's responses to the sense of lost control. For the 63 Canadian women we interviewed, the sense of lost control was related to the degree they felt their bodies changed and the number of physical problems they experienced while pregnant. Many women's references to "luck" as the cause of body changes and problems experienced underscored how little control they felt they had when they were pregnant. At the same time, women felt responsible for the well-being of their babies, and thus experienced guilt about their unruly bodies. Careful attention to diet helped some women, but not others, regain some sense of control; women with past experience of pregnancy who "gave in" to body change were more sanguine. In the postpartum period, body work (especially exercise) functioned to increase women's sense of control, but a variety of motives led them to do this work. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ultracold Gas Theory from the Top-Down and Bottom-Up

    NASA Astrophysics Data System (ADS)

    Colussi, Victor E.

    Advances in trapping and cooling of ultracold gases over the last several decades have made it possible to test many formerly outstanding predictions from disparate branches of physics. This thesis touches on three historical problems that have found new life recently in the context of ultracold Bose gases of alkali atoms. The first problem revolves around an outstanding prediction from Boltzmann over a century and half old that the breathing mode of a isotropically trapped classical gas should oscillate indefinitely. I analyze recent experimental results, and attribute observed damping sources to trap imperfections. The second question is about the analogue of first and second sound modes from liquid helium in trapped dilute gases. I present the results of a joint theoretical/experimental investigation of the breathing mode of a finite temperature Bose-Einstein condensate (BEC), attributing a striking collapse revival behavior of the resultant oscillation to in-phase and out-of-phase normal modes of the thermal cloud and condensate. The third problem is that of the formation of Borromean ring-like three-body bound states, referred to as Efimov trimers, in strongly-interacting few-body systems. I extend the predicted spectrum of Efimov states into the realm of many degenerate internal levels, and investigate the difficult three-body elastic scattering problem. These questions are part of the broader theme of this thesis: How can our understanding of few-body physics in the ultracold limit be translated into statements about the bulk behavior of an ultracold gas? For weakly-interacting Bose gases, this translation is well-known: the many-body properties of the gas are well-described by the tracking just the one and two particle correlations. I analyze a generalization of this procedure to higher order correlations, the general connection between few-body physics and correlations in a dilute gas, and results for the emergence of Efimov physics in the magnetic phase of the strongly-interacting Bose gas.

  14. Symmetric Trajectories for the 2N-Body Problem with Equal Masses

    NASA Astrophysics Data System (ADS)

    Terracini, Susanna; Venturelli, Andrea

    2007-06-01

    We consider the problem of 2 N bodies of equal masses in mathbb{R}^3 for the Newtonian-like weak-force potential r -σ, and we prove the existence of a family of collision-free nonplanar and nonhomographic symmetric solutions that are periodic modulo rotations. In addition, the rotation number with respect to the vertical axis ranges in a suitable interval. These solutions have the hip-hop symmetry, a generalization of that introduced in [19], for the case of many bodies and taking account of a topological constraint. The argument exploits the variational structure of the problem, and is based on the minimization of Lagrangian action on a given class of paths.

  15. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  16. Many-particle theory of nuclear system with application to neutron-star matter and other systems

    NASA Technical Reports Server (NTRS)

    Yang, C. H.

    1978-01-01

    General problems in nuclear-many-body theory were considered. Superfluid states of neutron star matter and other strongly interacting many-fermion systems were analyzed by using the soft-core potential of Reid. The pion condensation in neutron star matter was also treated.

  17. Periodic solutions of a spring-pendulum system.

    NASA Technical Reports Server (NTRS)

    Broucke, R.; Baxa, P. A.

    1973-01-01

    A study has been made of a dynamical system composed of a pendulum and a harmonic oscillator, in order to show the remarkable resemblance with many classical celestial mechanics problems, in particular, the restricted three-body problem. It is shown that the well-known investigations of periodic orbits can be applied to the present dynamics problem.

  18. Classical integrable many-body systems disconnected with semi-simple Lie algebras

    NASA Astrophysics Data System (ADS)

    Inozemtsev, V. I.

    2017-05-01

    The review of the results in the theory of integrable many-body systems disconnected with semisimple Lie algebras is done. The one-dimensional systems of light Calogero-Sutherland-Moser particles interacting with one particle of infinite mass located at the origin are described in detail. In some cases the exact solutions of the equations of motion are obtained. The general theory of integration of the equations of motion needs the methods of algebraic geometry. The Lax pairs with spectral parameter are constructed for this purpose. The theory still contains many unsolved problems.

  19. Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics

    DTIC Science & Technology

    2012-02-24

    AND SUBTITLE Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics 6. AUTHORS Marian O...Maximum 200 words) Results of our earlier research in the realm of quantum optics were extended in order to solve the challenging technical problems of...efficient methods of generating UV light via quantum coherence. 14. SUBJECT TERMS Quantum coherence, quantum optics, lasers 15. NUMBER OF PAGES 15

  20. Application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1972-01-01

    The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.

  1. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, Eduardo; Maldacena, Juan; Chatterjee, Lali

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement inmore » both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.« less

  2. The Impact of Leprosy on Marital Relationships and Sexual Health among Married Women in Eastern Nepal

    PubMed Central

    van 't Noordende, Anna T.; Banstola, Nandlal; Dhakal, Krishna P.

    2016-01-01

    Background. Leprosy is one of the most stigmatized diseases known today. The stigma surrounding leprosy can be a major burden and affects many dimensions of a person's life, including intimate relationships. We aimed to investigate the experiences of women affected by leprosy regarding marital life and sexuality, comparing these to the experiences of women with other physical disabilities and to those of able-bodied women in South-East Nepal. Methods. This study used a qualitative approach and a cross-sectional, nonrandom survey design. Thirty women underwent in-depth interviews about their marital and sexual relationship by means of a semi-structured interview guide. These thirty women included ten women affected by leprosy, ten women with other physical disabilities, and ten able-bodied women living in South-East Nepal. Results. We found that many women faced violence and abuse in their marriages. However, women affected by leprosy appeared to face more problems with regard to their marital and sexual relationships than women with physical disabilities and able-bodied women. Some of these related to the fear of leprosy. Conclusions. Further research is recommended to investigate the extent of this problem and ways to ameliorate the situation of the affected women. Education and counselling at diagnosis may help prevent many of the problems reported. PMID:27047548

  3. On the simulation of indistinguishable fermions in the many-body Wigner formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, J.M., E-mail: jeanmichel.sellier@gmail.com; Dimov, I.

    2015-01-01

    The simulation of quantum systems consisting of interacting, indistinguishable fermions is an incredible mathematical problem which poses formidable numerical challenges. Many sophisticated methods addressing this problem are available which are based on the many-body Schrödinger formalism. Recently a Monte Carlo technique for the resolution of the many-body Wigner equation has been introduced and successfully applied to the simulation of distinguishable, spinless particles. This numerical approach presents several advantages over other methods. Indeed, it is based on an intuitive formalism in which quantum systems are described in terms of a quasi-distribution function, and highly scalable due to its Monte Carlo nature.more » In this work, we extend the many-body Wigner Monte Carlo method to the simulation of indistinguishable fermions. To this end, we first show how fermions are incorporated into the Wigner formalism. Then we demonstrate that the Pauli exclusion principle is intrinsic to the formalism. As a matter of fact, a numerical simulation of two strongly interacting fermions (electrons) is performed which clearly shows the appearance of a Fermi (or exchange–correlation) hole in the phase-space, a clear signature of the presence of the Pauli principle. To conclude, we simulate 4, 8 and 16 non-interacting fermions, isolated in a closed box, and show that, as the number of fermions increases, we gradually recover the Fermi–Dirac statistics, a clear proof of the reliability of our proposed method for the treatment of indistinguishable particles.« less

  4. Maximizing kinetic energy transfer in one-dimensional many-body collisions

    NASA Astrophysics Data System (ADS)

    Ricardo, Bernard; Lee, Paul

    2015-03-01

    The main problem discussed in this paper involves a simple one-dimensional two-body collision, in which the problem can be extended into a chain of one-dimensional many-body collisions. The result is quite interesting, as it provides us with a thorough mathematical understanding that will help in designing a chain system for maximum energy transfer for a range of collision types. In this paper, we will show that there is a way to improve the kinetic energy transfer between two masses, and the idea can be applied recursively. However, this method only works for a certain range of collision types, which is indicated by a range of coefficients of restitution. Although the concept of momentum, elastic and inelastic collision, as well as Newton’s laws, are taught in junior college physics, especially in Singapore schools, students in this level are not expected to be able to do this problem quantitatively, as it requires rigorous mathematics, including calculus. Nevertheless, this paper provides nice analytical steps that address some common misconceptions in students’ way of thinking about one-dimensional collisions.

  5. Many-body effects in electron liquids with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Simion, George E.

    The main topic of the present thesis is represented by the many-body effects which characterize the physical behavior of an electron liquid in various realizations. We begin by studying the problem of the response of an otherwise homogeneous electron liquid to the potential of an impurity embedded in its bulk. The most dramatic consequence of this perturbation is the existence of so called Friedel density oscillations. We present calculations of their amplitude valid in two as well as in three dimensions. The second problem we will discuss is that of the correlation effects in a three dimensional electron liquid in the metallic density regime. A number of quasiparticle properties are evaluated: the electron self-energy, the quasiparticle effective mass and the renormalization constant. We also present an analysis of the effective Lande g-factor as well as the compressibility. The effects of the Coulomb interactions beyond the random phase approximation have been treated by means of an approach based on the many-body local field factors theory and by utilizing the latest numerical results of Quantum Monte Carlo numerical simulations. The final chapter includes the results of our extensive work on various aspects regarding the two dimensional Fermi liquid in the presence of linear Rashba spin-orbit coupling. By using a number of many-body techniques, we have studied the interplay between spin-orbit coupling and electron-electron interaction. After proving an extension to the famous Overhauser Hartree-Fock instability theorem, a considerable amount of work will be presented on the problem of the density and spin response functions. For the study of the spin response, we will present the results of extensive numerical calculations based on the time dependent mean field theory approach.

  6. Expanded opportunities of THz passive camera for the detection of concealed objects

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2013-10-01

    Among the security problems, the detection of object implanted into either the human body or animal body is the urgent problem. At the present time the main tool for the detection of such object is X-raying only. However, X-ray is the ionized radiation and therefore can not be used often. Other way for the problem solving is passive THz imaging using. In our opinion, using of the passive THz camera may help to detect the object implanted into the human body under certain conditions. The physical reason of such possibility arises from temperature trace on the human skin as a result of the difference in temperature between object and parts of human body. Modern passive THz cameras have not enough resolution in temperature to see this difference. That is why, we use computer processing to enhance the passive THz camera resolution for this application. After computer processing of images captured by passive THz camera TS4, developed by ThruVision Systems Ltd., we may see the pronounced temperature trace on the human body skin from the water, which is drunk by person, or other food eaten by person. Nevertheless, there are many difficulties on the way of full soution of this problem. We illustrate also an improvement of quality of the image captured by comercially available passive THz cameras using computer processing. In some cases, one can fully supress a noise on the image without loss of its quality. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts.

  7. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    EPA Science Inventory

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  8. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation

    NASA Astrophysics Data System (ADS)

    Jerke, Jonathan; Tymczak, C. J.; Poirier, Bill

    We report on theoretical and computational developments towards a computationally efficient direct solve of the many-body Schrödinger wave equation for electronic systems. This methodology relies on two recent developments pioneered by the authors: 1) the development of a Cardinal Sine basis for electronic structure calculations; and 2) the development of a highly efficient and compact representation of multidimensional functions using the Canonical tensor rank representation developed by Belykin et. al. which we have adapted to electronic structure problems. We then show several relevant examples of the utility and accuracy of this methodology, scaling with system size, and relevant convergence issues of the methodology. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation.

  9. Synthesis of a controller for stabilizing the motion of a rigid body about a fixed point

    NASA Astrophysics Data System (ADS)

    Zabolotnov, Yu. M.; Lobanov, A. A.

    2017-05-01

    A method for the approximate design of an optimal controller for stabilizing the motion of a rigid body about a fixed point is considered. It is assumed that rigid body motion is nearly the motion in the classical Lagrange case. The method is based on the common use of the Bellman dynamic programming principle and the averagingmethod. The latter is used to solve theHamilton-Jacobi-Bellman equation approximately, which permits synthesizing the controller. The proposed method for controller design can be used in many problems close to the problem of motion of the Lagrange top (the motion of a rigid body in the atmosphere, the motion of a rigid body fastened to a cable in deployment of the orbital cable system, etc.).

  10. Ballistic Transport for Limit-Periodic Jacobi Matrices with Applications to Quantum Many-Body Problems

    NASA Astrophysics Data System (ADS)

    Fillman, Jake

    2017-03-01

    We study Jacobi matrices that are uniformly approximated by periodic operators. We show that if the rate of approximation is sufficiently rapid, then the associated quantum dynamics are ballistic in a rather strong sense; namely, the (normalized) Heisenberg evolution of the position operator converges strongly to a self-adjoint operator that is injective on the space of absolutely summable sequences. In particular, this means that all transport exponents corresponding to well-localized initial states are equal to one. Our result may be applied to a class of quantum many-body problems. Specifically, we establish a lower bound on the Lieb-Robinson velocity for an isotropic XY spin chain on the integers with limit-periodic couplings.

  11. Quasi-periodic continuation along a continuous symmetry

    NASA Astrophysics Data System (ADS)

    Salomone, Matthew David

    Given a system of differential equations which admits a continuous group of symmetries and possesses a periodic solution, we show that under certain nondegeneracy assumptions there always exists a continuous family containing infinitely many periodic and quasi-periodic trajectories. This generalizes the continuation method of Poincaré to orbits which are not necessarily periodic. We apply these results in the setting of the Lagrangian N -body problem of homogeneous potential to characterize an infinite family of rotating nonplanar "hip-hop" orbits in the four-body problem of equal masses, and show how some other trajectories in the N -body theory may be extended to infinite families of periodic and quasi-periodic trajectories.

  12. Achieving the Perfect Body: Nutritional Behaviors of Nonprofessional, Regional Female Dancers

    ERIC Educational Resources Information Center

    Griner, Brenda; Michiels Hernandez, Barbara L.; Strickland, George; Boatwright, Douglas

    2006-01-01

    For female students and professional dancers, dance imposes a low body-weight image. Despite high energy needs, many female dancers consume fewer nutrients than recommended when they perceive themselves as overweight. These abnormal behaviors can lead to malnutrition, dehydration, and vitamin deficiencies, or even to medical problems such as…

  13. The Slender Imbalance: An Overview of Body Image Related Problems and Solutions.

    ERIC Educational Resources Information Center

    McBride, Leslie

    The current emphasis on thinness has had a negative impact on many women and girls who suffer from a negative body image, poor self-concept, and depression, three conditions that often manifest themselves behaviorally through chronic dieting, compulsive exercise, and eating disorders. Socio-cultural factors that have contributed to this emphasis…

  14. [Nodular toxoplasmosis as a diagnostic and therapeutic problem].

    PubMed

    Zaorski, P; Kozłowski, J

    1999-01-01

    Enlargement of lymph nodes of the neck, slightly elevated body temperature and discomfort are symptoms characteristic of many illnesses. One of these can be toxoplasmosis. Because the rarity of its occurrence, sometimes toxoplasmosis may be last to be recognized. In many cases absence of specific additional examination guidelines can contribute to several problems with correct diagnosis. At the present time, the most reliable sample analysis methods are the examination of levels of antibodies IgG and IgM, and the histopathological verification. The authors also indicate that varying therapeutic effects using prophilactic treatment and insufficient additional examination could lead to diagnostic problems.

  15. How an interacting many-body system tunnels through a potential barrier to open space

    PubMed Central

    Lode, Axel U.J.; Streltsov, Alexej I.; Sakmann, Kaspar; Alon, Ofir E.; Cederbaum, Lorenz S.

    2012-01-01

    The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of α-decay, fusion and fission in nuclear physics, and photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constituent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a transparent and controllable physical system, an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schrödinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: The overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wave function in the respective processes. PMID:22869703

  16. Your Sexual Health

    MedlinePlus

    ... problems? Arousal is the name given to the physical and emotional changes that occur in the body as a result of sexual stimulation. Arousal can be affected by many things, including medications, ...

  17. Problems of Implementing Offender Programs in the Community

    ERIC Educational Resources Information Center

    Astbury, Brad

    2008-01-01

    Rehabilitation of offenders is, at present, an important focus among many correctional departments. A substantial body of international research literature now exists to guide the design and development of new programs that aim to reduce re-offending. However, successful implementation of these programs has been challenging for many correctional…

  18. Lattice Methods and the Nuclear Few- and Many-Body Problem

    NASA Astrophysics Data System (ADS)

    Lee, Dean

    This chapter builds upon the review of lattice methods and effective field theory of the previous chapter. We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.

  19. Behcet's Syndrome

    MedlinePlus

    Behcet's syndrome is a disease that involves vasculitis, which is inflammation of the blood vessels. It causes problems in many parts of the body. The ... National Institute of Arthritis and Musculoskeletal and Skin Diseases

  20. Beyond Deficit: Graduate Student Research-Writing Pedagogies

    ERIC Educational Resources Information Center

    Badenhorst, Cecile; Moloney, Cecilia; Rosales, Janna; Dyer, Jennifer; Ru, Lina

    2015-01-01

    Graduate writing is receiving increasing attention, particularly in contexts of diverse student bodies and widening access to universities. In many of these contexts, writing is seen as "a problem" in need of fixing. Often, the problem and the solution are perceived as being solely located in notions of deficit in individuals and not in…

  1. Enter the machine

    NASA Astrophysics Data System (ADS)

    Palittapongarnpim, Pantita; Sanders, Barry C.

    2018-05-01

    Quantum tomography infers quantum states from measurement data, but it becomes infeasible for large systems. Machine learning enables tomography of highly entangled many-body states and suggests a new powerful approach to this problem.

  2. Body handlers after terrorism in Oklahoma City: predictors of posttraumatic stress and other symptoms.

    PubMed

    Tucker, Phebe; Pfefferbaum, Betty; Doughty, Debby E; Jones, Dan E; Jordan, Fred B; Nixon, Sara Jo

    2002-10-01

    Posttraumatic stress and depressive symptoms were assessed in 51 body handlers after Oklahoma City's 1995 terrorist bombing. Although many handlers were inexperienced and knew someone killed, symptoms were low postdisaster and decreased significantly after 1 year. Higher symptomatology and seeking mental health treatment correlated with increases in alcohol use and new physical problems but not with demographics, exposure, or experience. Four respondents with the highest posttraumatic stress symptoms at both time points reported high physical and alcohol use problems and mental health treatment use, suggesting that these should be carefully assessed in body handlers postdisaster. Coping techniques are described, as well as possible reasons for unexpected resilience in the majority.

  3. Triangle Universities Nuclear Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.

  4. Squeezing the Efimov effect

    NASA Astrophysics Data System (ADS)

    Sandoval, J. H.; Bellotti, F. F.; Yamashita, M. T.; Frederico, T.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.

    2018-03-01

    The quantum mechanical three-body problem is a source of continuing interest due to its complexity and not least due to the presence of fascinating solvable cases. The prime example is the Efimov effect where infinitely many bound states of identical bosons can arise at the threshold where the two-body problem has zero binding energy. An important aspect of the Efimov effect is the effect of spatial dimensionality; it has been observed in three dimensional systems, yet it is believed to be impossible in two dimensions. Using modern experimental techniques, it is possible to engineer trap geometry and thus address the intricate nature of quantum few-body physics as function of dimensionality. Here we present a framework for studying the three-body problem as one (continuously) changes the dimensionality of the system all the way from three, through two, and down to a single dimension. This is done by considering the Efimov favorable case of a mass-imbalanced system and with an external confinement provided by a typical experimental case with a (deformed) harmonic trap.

  5. SPH for impact force and ricochet behavior of water-entry bodies

    NASA Astrophysics Data System (ADS)

    Omidvar, Pourya; Farghadani, Omid; Nikeghbali, Pooyan

    The numerical modeling of fluid interaction with a bouncing body has many applications in scientific and engineering application. In this paper, the problem of water impact of a body on free-surface is investigated, where the fixed ghost boundary condition is added to the open source code SPHysics2D1 to rectify the oscillations in pressure distributions with the repulsive boundary condition. First, after introducing the methodology of SPH and the option of boundary conditions, the still water problem is simulated using two types of boundary conditions. It is shown that the fixed ghost boundary condition gives a better result for a hydrostatics pressure. Then, the dam-break problem, which is a bench mark test case in SPH, is simulated and compared with available data. In order to show the behavior of the hydrostatics forces on bodies, a fix/floating cylinder is placed on free surface looking carefully at the force and heaving profile. Finally, the impact of a body on free-surface is successfully simulated for different impact angles and velocities.

  6. Slow dynamics in translation-invariant quantum lattice models

    NASA Astrophysics Data System (ADS)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  7. Eating attitude in the obese patients: the evaluation in terms of relational factors.

    PubMed

    Keskin, G; Engin, E; Dulgerler, S

    2010-12-01

    • Obesity has become an important health problem because of the gradually increasing incidence seen within all age groups. People with obesity problems are affected lifespan and health negatively. • Obesity can be described as disease that affects lifespan and health negatively, because of body fat deposition. • The eating attitudes, body perception, strategies for coping with stress in patient being treated for obesity and investigated the relationship between their eating attitudes and socio-demographic characteristics, body perceptions and strategies of coping with stress. • Misperception of the body and the ability to solve the problem increased as eating attitude defects increased. A positive correlation was between the eating attitude defects and habitude of pursing social support and ability of coping. Obesity, a complex disease, involves many psychological problems besides eating disorders. In this study, we aimed to examine the relationship between the eating attitude and body perception, which is thought to affect the eating attitude in the patients diagnosed as obese, the ability to solve the problem, the strategy of coping with stress and some socio-demographic features. A total of 99 adults aged between 20 and 68 years, who were examined in the Polyclinic of Endocrinology and Metabolism Diseases, Ege University, Türkiye, constituted the sample of the study. Eating Attitude Test, The Body Perception Scale and The Scale of Coping with Strategies were used in order to collect the data. Misperception of the body and the ability to solve the problem increased as eating attitude defects increased. A positive correlation was determined between the eating attitude defects and the habitude of pursuing social support and the ability of coping. © 2010 Blackwell Publishing.

  8. Stochastic Methods for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Pelz, Richard B.; Ogot, Madara

    1998-01-01

    The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.

  9. Nonlocality in many-body quantum systems detected with two-body correlators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tura, J., E-mail: jordi.tura@icfo.es; Augusiak, R.; Sainz, A.B.

    Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however,more » we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.« less

  10. Stabilization of Proteins by Polymer Conjugation via ATRP

    DTIC Science & Technology

    2008-08-31

    to increase their solubility and utility in organic solvents and to increase their stability in body. Protein-initiated ATRP would enable us to... Solvent solubilization, therapeutic proteins, hydrophilic polymers, protein stabilization Lance Mabus, Jason Berberich, Bhalchandra Lele, Virginia Depp... solvents and to increase their stability in body. Protein-initiated ATRP would enable us to overcome many problems in conventional technology that

  11. Janice VanCleave's the Human Body for Every Kid: Easy Activities That Make Learning Science Fun.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    This book provides fun experiments that teach known concepts about the human body. It is designed to teach facts, concepts, and problem-solving strategies. The scientific concepts presented can be applied to many similar situations, and the exercises and activities were selected for their ability to be explained in basic terms with little…

  12. Targeting Body Image Schema for Smoking Cessation among College Females: Rationale, Program Description, and Pilot Study Results

    ERIC Educational Resources Information Center

    Napolitano, Melissa A.; Lloyd-Richardson, Elizabeth E.; Fava, Joseph L.; Marcus, Bess H.

    2011-01-01

    Smoking among young adults is a significant public health problem. Despite the negative health effects, many young women smoke for weight and body image reasons. Understanding the factors that prompt young women to initiate and continue smoking is important for designing smoking cessation interventions. The aim of the current article is to outline…

  13. The Significance of Physical Education Content: "Sending the Message" in Physical Education Teacher Education

    ERIC Educational Resources Information Center

    Johnson, Tyler G.

    2012-01-01

    Mind-body dualism has likely influenced how many view human beings and their behavior--mind (i.e., thinking) is elevated over body (i.e., performing)--even in Physical Education Teacher Education. The problem is that such a perspective makes physical education content (i.e., dance, games, play, and sport) subsidiary to more "intellectual" or…

  14. Protection of Urban Water body Infrastructure - Policy Requirements

    NASA Astrophysics Data System (ADS)

    Neelakantan, T. R.; Ramakrishnan, K.

    2017-07-01

    Water body is an important infrastructure of urban landscape. Water bodies like tanks and ponds are constructed to harvest rainwater for local use. Such water bodies serve many environmental functions including flood and soil erosion control and are useful for irrigation, drinking water supply and groundwater recharge. A large number of water bodies recently have been lost due to anthropogenic activities and the remaining water bodies are under stress due to risk of degradation. There are many phases to solve or control the problem; starting from stopping the abuse, to restoration to monitoring and maintenance. In this situation, the existing urban and peri-urban water bodies are to be preserved and rehabilitated. In this study, policy requirements for the protection (preservation and rehabilitation) of water bodies are analyzed with special reference to Thanjavur city. Thanjavur city has many water bodies and moat around the Big-Temple and the palace, and stands as an evidence for water management in ancient days. These water bodies are to be protected and used properly for sustainable growth of the city. This paper envisages the following three: (a) need for evaluation of hydraulic and hydrologic properties of the water bodies for conserving rainwater and controlling flood water in the existing urban water bodies; (b) need for evaluation of potential of socio-environmental services by the water bodies, and (c) need for developing a relative importance index for protection of water bodies to prioritize the remedial actions.

  15. Low Energy Transfer to the Moon

    NASA Astrophysics Data System (ADS)

    Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D.

    2001-11-01

    New space missions are increasingly more complex; demand for exotic orbits to solve engineering problems has grown beyond the existing astrodynamic infrastructure based on two-body interactions. The delicate heteroclinic dynamics used by the Genesis Mission dramatically illustrate the need for a new paradigm: dynamical system study of three-body problem. Furthermore, this dynamics has much to say about the morphology and transport of materials within the Solar System. The cross-fertilization of ideas between the natural dynamics of the Solar System and applications to engineering has produced new techniques for constructing spacecraft trajectories with interesting characteristics. Specifically, these techniques are used here to produce a lunar capture mission which uses less fuel than a Hohmann transfer. We approximate the Sun-Earth-Moon-Spacecraft four-body problem as two three-body problems. Using the invariant manifold structures of the Lagrange points of the three-body systems, we are able to construct low energy transfer trajectories from the Earth which exhibit ballistic capture at the Moon. The techniques used in the design and construction of this trajectory may be applied in many situations. This is joint work with Martin W. Lo, Jerrold E. Marsden and Shane D. Ross and was partially supported by the National Science Foundation Grant No. KFI/ATM-9873133 under a contract with the Jet Propulsion Laboratory, NASA.

  16. Evaluation of ternary cementitious combinations : research project capsule.

    DOT National Transportation Integrated Search

    2009-03-01

    PROBLEM: Many entities currently use fly ash, slag, and other supplementary cementitious materials (SCMs) in Portland cement concrete (PCC) pavement and structures. Although the body of knowledge is limited, several states are currently using ternary...

  17. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2017-01-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to the eccentric anomaly and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are shown in excess of 1000 revolutions while subject to Earths J2 perturbation and lunar gravity.

  18. Entanglement branching operator

    NASA Astrophysics Data System (ADS)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  19. Many-body optimization using an ab initio monte carlo method.

    PubMed

    Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J

    2003-01-01

    Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.

  20. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-09-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.

  1. The Outcomes of Education and Training: What the Australian Research Is Telling Us, 2011-14. Research Summary

    ERIC Educational Resources Information Center

    Beddie, Francesca

    2015-01-01

    The body of research produced by the National Centre for Vocational Education Research (NCVER) over the lifetime of the 2011-14 National Research Priorities (see figure 1) has exposed many of the problems facing tertiary education and training. With the aim of "understanding the problem", the research has further investigated the…

  2. Electromagnetic and neutral-weak response functions of 4He and 12C

    NASA Astrophysics Data System (ADS)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, Steven C.; Schiavilla, R.

    2015-06-01

    Background: A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Purpose: The objective of the present work is to calculate the quasielastic electroweak response functions in light nuclei within the realistic dynamical framework outlined above. These response functions determine the inclusive cross section as function of the lepton momentum and energy transfers. Methods: Their ab initio calculation is a very challenging quantum many-body problem, since it requires summation over the entire excitation spectrum of the nucleus and inclusion in the electroweak currents of one- and many-body terms. Green's functions Monte Carlo methods allow one to circumvent both difficulties by computing the response in imaginary time (the so-called Euclidean response) and hence summing implicitly over the bound and continuum states of the nucleus, and by implementing specific algorithms designed to deal with the complicated spin-isospin structure of nuclear many-body operators. Results: Theoretical predictions for 4He and 12C, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. Conclusions: These results challenge the conventional picture of quasielastic inclusive scattering as being largely dominated by single-nucleon knockout processes.

  3. Electromagnetic and neutral-weak response functions of 4He and 12C

    DOE PAGES

    Lovato, A.; Gandolfi, Stefano; Carlson, Joseph Allen; ...

    2015-06-04

    A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. The objective of the present work is to calculate the quasielastic electroweak response functions in light nuclei within the realistic dynamical framework outlined above. These response functions determine the inclusive cross section as function of the lepton momentum and energy transfers. Their ab initio calculation is a very challenging quantum many-body problem,more » since it requires summation over the entire excitation spectrum of the nucleus and inclusion in the electroweak currents of one- and many-body terms. Green's functions Monte Carlo methods allow one to circumvent both difficulties by computing the response in imaginary time (the so-called Euclidean response) and hence summing implicitly over the bound and continuum states of the nucleus, and by implementing specific algorithms designed to deal with the complicated spin-isospin structure of nuclear many-body operators. Theoretical predictions for 4He and 12C, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. In conclusion, these results challenge the conventional picture of quasielastic inclusive scattering as being largely dominated by single-nucleon knockout processes.« less

  4. Compromise solution in the problem of change state control for the material body exposed to the external medium

    NASA Astrophysics Data System (ADS)

    Malafeyev, O. A.; Redinskikh, N. D.

    2018-05-01

    The problem of finding optimal temperature control of the material body state under the unknown in advance parameters of the external medium is formalized and studied in this paper. The problems of this type arise frequently in the real life. An optimal thermal regime is necessary to apply at the soil thawing or freezing, drying the building materials, heating the concrete to obtain the required strength, and so on. Problems of such type one can analyze making use the apparatus and methods of game theory. For describing the influence of external medium on the characteristics of different materials we make use the many-step two person zero-sum game in this paper. The compromise solution is taken as the optimality principle. The numerical example is given.

  5. The Hubbard Dimer: A Complete DFT Solution to a Many-Body Problem

    NASA Astrophysics Data System (ADS)

    Smith, Justin; Carrascal, Diego; Ferrer, Jaime; Burke, Kieron

    2015-03-01

    In this work we explain the relationship between density functional theory and strongly correlated models using the simplest possible example, the two-site asymmetric Hubbard model. We discuss the connection between the lattice and real-space and how this is a simple model for stretched H2. We can solve this elementary example analytically, and with that we can illuminate the underlying logic and aims of DFT. While the many-body solution is analytic, the density functional is given only implicitly. We overcome this difficulty by creating a highly accurate parameterization of the exact function. We use this parameterization to perform benchmark calculations of correlation kinetic energy, the adiabatic connection, etc. We also test Hartree-Fock and the Bethe Ansatz Local Density Approximation. We also discuss and illustrate the derivative discontinuity in the exchange-correlation energy and the infamous gap problem in DFT. DGE-1321846, DE-FG02-08ER46496.

  6. TRANSPORT EQUATION OF A PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1960-10-01

    It is shown that the many-body problem in plasmas can be handled explicitly. An equation describing the collective effects of the problem is derived. For simplicity, a onecomponent gas is considered in a continuous neutralizing background. The tool for handling the problem is provided by the general theory of irreversible processes in gases. The equation derived describes the interaction of electrons which are"dressed" by a polarization cloud. The polarization cloud differs from the Debye cloud. (B.O.G.)

  7. Electronic behavior of highly correlated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, A.

    1988-10-01

    This thesis addresses the question of the strongly interacting many-body problem: that is, systems where the interparticle correlations are so strong as to defy perturbative approaches. These subtle correlations occur in narrow band materials, such as the lanthanides and actinides, wherein the f-electrons are so localized that a variety of new phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As well, one has the alloying problem, where local interactions are paramount in determining the overall behavior. The technique employed in dealing with these systems is the Small Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms,more » coupled with periodic boundary conditions, is solved exactly. This is tantamount to solving a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical overhead is further reduced by employing the full space group and spin symmetries. By its very nature, the Small Cluster method is well able to handle short-range interactions, as well as the combinatorial complexity of the many-body problem, on an equal footing. The nature of long-range order and phase transition behavior cannot be incorporated, but sometimes clues as to their origin can be discerned. The calculations presented include: a two-band Anderson model for an intermediate-valence system, wherein photoemission and fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, such as copper-silver-gold; and a Hubbard model for a heavy- fermion system, wherein Fermi surface, transport, magnetic and superconducting properties are discussed. 148 refs., 31 figs., 24 tabs.« less

  8. State space approach to mixed boundary value problems.

    NASA Technical Reports Server (NTRS)

    Chen, C. F.; Chen, M. M.

    1973-01-01

    A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.

  9. Holographic interferometry applied to the measurement of displacements of the interior points of transparent bodies.

    PubMed

    Sciammarella, C A; Gilbert, J A

    1976-09-01

    Utilizing the light scattering property of transparent media, holographic interferometry is applied to the measurement of displacement at the interior planes of three dimensional bodies. The use of a double beam illumination and the introduction of a fictitious displacement make it feasible to obtain information corresponding to components of displacement projected on the scattering plane. When the proposed techniques are invoked, it is possible to eliminate the use of a matching index of refraction fluid in many problems involving symmetrically loaded prismatic bodies. Scattered light holographic interferometry is limited in its use to small changes in the index of refraction and to low values of relative retardation. In spite of these restrictions, a large number of technical problems in both statics and dynamics can be solved.

  10. Typical motions in multiple systems

    NASA Technical Reports Server (NTRS)

    Anosova, Joanna P.

    1990-01-01

    In very old times, people counted - one, two, many. The author wants to show that they were right. Consider the motions of isolated bodies: (1) N = 1 - simple motion; (2) N = 2 - Keplerian orbits; and (3) N = 3 - this is the difficult problem. In general, this problem can be studied only by computer simulations. The author studied this problem over many years (see, e.g., Agekian and Anosova, 1967; Anosova, 1986, 1989 a,b). The principal result is that two basic types of dynamics take place in triple systems. The first special type is the stable hierarchical systems with two almost Keplerian orbits. The second general type is the unstable triple systems with complicated motions of the bodies. By random choice of the initial conditions, by the Monte-Carlo method, the stable systems comprised about approx. 10% of the examined cases; the unstable systems comprised the other approx. 90% of cases under consideration. In N greater than 3, the studies of dynamics of such systems by computer simulations show that we have in general also the motions roughly as at the cases 1 - 3 with the relative negative or positive energies of the bodies. In the author's picture, the typical trajectories of the bodies in unstable triple systems of the general type of dynamics are seen. Such systems are disrupted always after close triple approaches of the bodies. These approaches play a role like the gravitational slingshot. Often, the velocities of escapers are very large. On the other hand, the movie also shows the dynamical processes of a formation, dynamical evolution and disruption of the temporary wide binaries in triples and a formation of final hard massive binaries in the final evolution of triples.

  11. Polynomial complexity despite the fermionic sign

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Prokof'ev, N.; Svistunov, B.; Van Houcke, K.; Werner, F.

    2017-04-01

    It is commonly believed that in unbiased quantum Monte Carlo approaches to fermionic many-body problems, the infamous sign problem generically implies prohibitively large computational times for obtaining thermodynamic-limit quantities. We point out that for convergent Feynman diagrammatic series evaluated with a recently introduced Monte Carlo algorithm (see Rossi R., arXiv:1612.05184), the computational time increases only polynomially with the inverse error on thermodynamic-limit quantities.

  12. The relation between the Gross Pitaevskii and Bogoliubov descriptions of a dilute Bose gas

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2003-07-01

    I formulate a 'pseudo-paradox' in the theory of a dilute Bose gas with repulsive interactions: the standard expression for the ground state energy within the Gross-Pitaevskii (GP) approximation is lower than that in the Bogoliubov approximation, and hence, by the standard variational argument, the former should prima facie be a better approximation than the latter to the true ground state—a conclusion which is of course opposite to the established wisdom concerning this problem. It is shown that the pseudo-paradox is (unsurprisingly) resolved by a correct transcription of the two-body scattering theory to the many-body case; however, contrary to what appears to be a widespread belief, the resolution has nothing to do with any spurious ultraviolet divergences which result from the replacement of the true interatomic potential by a delta-function pseudopotential. Rather, it relates to an infrared divergence which has the consequence that (a) the most obvious form of the GP 'approximation' actually does not correspond to any well-defined ansatz for the many-body wavefunction, and (b) that the 'best shot' at such a wavefunction always produces an energy which exceeds, or at best equals, that calculated in the Bogoliubov approximation. In fact, the necessity of the latter may be seen as a consequence of the need to reduce the Fock term in the energy, which is absent in the two-particle problem but dominant in the many-body case; it does this by increasing the density correlations, at distances less than or approximately equal to the correlation length \\xi , above the value extrapolated from the two-body case. As a by-product I devise an alternative formulation of the Bogoliubov approximation which does not require the explicit replacement of the true interatomic potential by a delta-function pseudopotential.

  13. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet

    NASA Astrophysics Data System (ADS)

    Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria

    2017-08-01

    Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.

  14. Code C# for chaos analysis of relativistic many-body systems

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Besliu, C.; Jipa, Al.; Bordeianu, C. C.; Felea, D.; Stan, E.; Esanu, T.

    2010-08-01

    This work presents a new Microsoft Visual C# .NET code library, conceived as a general object oriented solution for chaos analysis of three-dimensional, relativistic many-body systems. In this context, we implemented the Lyapunov exponent and the “fragmentation level” (defined using the graph theory and the Shannon entropy). Inspired by existing studies on billiard nuclear models and clusters of galaxies, we tried to apply the virial theorem for a simplified many-body system composed by nucleons. A possible application of the “virial coefficient” to the stability analysis of chaotic systems is also discussed. Catalogue identifier: AEGH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30 053 No. of bytes in distributed program, including test data, etc.: 801 258 Distribution format: tar.gz Programming language: Visual C# .NET 2005 Computer: PC Operating system: .Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread RAM: 128 Megabytes Classification: 6.2, 6.5 External routines: .Net Framework 2.0 Library Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, and energy conservation precision test. Additional comments: Easy copy/paste based deployment method. Running time: Quadratic complexity.

  15. Mécanique de Nonéquilibre à la Californienne

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.

    1997-02-01

    Academic freedom, combined with generous travel grants and tax-supported computing, made possible my 35 years' study of many-body problems. Here I first review some of the many high points of those years. I then describe recent work - with Harald Posch, Oyeon Kum, my wife Carol, Siegfried Hess, and Vic Castillo - which links together particle and continuum mechanics through “SPAM”, Smooth Particle Applied Mechanics.

  16. From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid.

    PubMed

    Hung, Chen-Lung; Gurarie, Victor; Chin, Cheng

    2013-09-13

    Predicting the dynamics of many-body systems far from equilibrium is a challenging theoretical problem. A long-predicted phenomenon in hydrodynamic nonequilibrium systems is the occurrence of Sakharov oscillations, which manifest in the anisotropy of the cosmic microwave background and the large-scale correlations of galaxies. Here, we report the observation of Sakharov oscillations in the density fluctuations of a quenched atomic superfluid through a systematic study in both space and time domains and with tunable interaction strengths. Our work suggests a different approach to the study of nonequilibrium dynamics of quantum many-body systems and the exploration of their analogs in cosmology and astrophysics.

  17. The theory and technique of yamuna body rolling.

    PubMed

    Suzuki, Satoshi

    2013-09-01

    [Purpose] This paper provides information about the theory and technique of Yamuna Body Rolling. In order to treat physical problems, using the specialized Yamuna Body Rolling balls, people can target superficial skin, fasciae, muscle fibers, tendons, ligaments, bones, internal organs, and the nervous system by themselves. The extraordinary effect of Yamuna Body Rolling is its multidimensional elongation of muscle fibers. In addition to the regular longitudinal elongation by the conventional stretch method, Yamuna Body Rolling enables the transversal and diagonal expansion of muscle fibers in order to move the body more dynamically. Hamstring, abdominal, and sideline routines are presented as examples for techniques of Yamuna Body Rolling. Yamuna Body Rolling can be applied to functional evaluation and therapeutic uses; therefore, it could provide many benefits in the treatment of different conditions in the medical field.

  18. BOOK REVIEW: The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics, 2nd edition

    NASA Astrophysics Data System (ADS)

    Robbin, J. M.

    2007-07-01

    he hallmark of a good book of problems is that it allows you to become acquainted with an unfamiliar topic quickly and efficiently. The Quantum Mechanics Solver fits this description admirably. The book contains 27 problems based mainly on recent experimental developments, including neutrino oscillations, tests of Bell's inequality, Bose Einstein condensates, and laser cooling and trapping of atoms, to name a few. Unlike many collections, in which problems are designed around a particular mathematical method, here each problem is devoted to a small group of phenomena or experiments. Most problems contain experimental data from the literature, and readers are asked to estimate parameters from the data, or compare theory to experiment, or both. Standard techniques (e.g., degenerate perturbation theory, addition of angular momentum, asymptotics of special functions) are introduced only as they are needed. The style is closer to a non-specialist seminar rather than an undergraduate lecture. The physical models are kept simple; the emphasis is on cultivating conceptual and qualitative understanding (although in many of the problems, the simple models fit the data quite well). Some less familiar theoretical techniques are introduced, e.g. a variational method for lower (not upper) bounds on ground-state energies for many-body systems with two-body interactions, which is then used to derive a surprisingly accurate relation between baryon and meson masses. The exposition is succinct but clear; the solutions can be read as worked examples if you don't want to do the problems yourself. Many problems have additional discussion on limitations and extensions of the theory, or further applications outside physics (e.g., the accuracy of GPS positioning in connection with atomic clocks; proton and ion tumor therapies in connection with the Bethe Bloch formula for charged particles in solids). The problems use mainly non-relativistic quantum mechanics and are organised into three sections: Elementary Particles, Nuclei and Atoms; Quantum Entanglement and Measurement; and Complex Systems. The coverage is not comprehensive; there is little on scattering theory, for example, and some areas of recent interest, such as topological aspects of quantum mechanics and semiclassics, are not included. The problems are based on examination questions given at the École Polytechnique in the last 15 years. The book is accessible to undergraduates, but working physicists should find it a delight.

  19. Aspects of Strongly Correlated Many-Body Fermi Systems

    NASA Astrophysics Data System (ADS)

    Porter, William J., III

    A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-theoretic observables in systems of interacting fermions, particularly the Renyi entanglement entropies Sn, even in many cases where the infamous sign problem does not appear. Several methods have been put forward to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios. This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that naive attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic insights, using intuition derived from the previous method and its successes to construct a simpler, better behaved, and more elegant algorithm. Using this method, in combination with new identities which allow us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density matrices, we compute high order Renyi entropies and perform a thorough comparison to this new algorithm's predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the Renyi entropies of degree n = 2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit using the algorithms detailed herein. We also detail an exact, few-body projective method which we use to characterize the entanglement properties of the two-body sector across a broad range of attractive couplings. In the many-body case, we determine universal scaling properties of this system, and for the two-body case, we compute the entanglement spectrum exactly, successfully characterizing a vast range of entanglement behavior across the BCS-BEC crossover.

  20. Predictive Simulation of Material Failure Using Peridynamics -- Advanced Constitutive Modeling, Verification and Validation

    DTIC Science & Technology

    2016-03-31

    particular physical model under consideration. Therefore, in the following the enrichment functions are discussed with respect to particular...some domains of influence are extended outside of the physical boundary, the reproducing conditions enforced in Eq. (6) guarantee the order of...often used in astrophysics problems, where many fluid problems are encountered and even “solid" bodies deform under their own gravity. It can also

  1. Modern hadron spectroscopy: a bridge between nuclear and particle physics.

    NASA Astrophysics Data System (ADS)

    Szczepaniak, A. P.

    2018-05-01

    In this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  2. Modern hadron spectroscopy: a bridge between nuclear and particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczepaniak, Adam P.

    Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  3. Modern hadron spectroscopy: a bridge between nuclear and particle physics

    DOE PAGES

    Szczepaniak, Adam P.

    2018-05-01

    Here, in this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  4. Few-Body Techniques Using Momentum Space for Bound and Continuum States

    NASA Astrophysics Data System (ADS)

    Yamashita, M. T.; Rosa, D. S.; Sandoval, J. H.

    2018-05-01

    This article is based on the notes (arxiv:1710.11228) written for a set of three lectures given in a school at the Max Planck Institute for the Physics of Complex Systems in October/2017 before the workshop "Critical Stability of Quantum Few-Body Systems". The last part of the article includes the specific topic presented in the workshop related to the dimensional effects in three-body systems. These notes are primarily dedicated to the students and are only a tentative to show a technique, among many others, to solve problems in a very rich area of the contemporary physics—the Few-Body Physics.

  5. Patients' experience of surplus skin after laparoscopic gastric bypass.

    PubMed

    Biörserud, Christina; Olbers, Torsten; Fagevik Olsén, Monika

    2011-03-01

    Previous studies have described that many obese patients who undergo bariatric surgery develop surplus skin. However, there is a lack of knowledge about where on the body the problems are located and to what extent surplus skin affects the person. The aim of this study was to examine whether and where patients develop surplus skin after laparoscopic gastric bypass and if there is any relation between surplus skin and the patient's sex, age, weight loss, or activity level. A questionnaire was constructed which included questions about surplus skin. The questionnaire was sent to 148 patients who had been operated with laparoscopic gastric bypass. One hundred and twelve (76%) responded of whom 77 were women and 35 men. At follow-up, 94 persons (84%) reported problems with surplus skin. The surplus skin was situated most commonly on the abdomen, the upper arms, and the inside of the thighs, but also on the back, the cheek and over the knees. Significantly, more women than men reported complications with surplus skin (p = 0.018), distributed over more body parts, specifically on the upper arms, medial thigh, and lateral back (p < 0.05). The surplus skin caused problems with fungal infections and itching, physical unpleasantness and complicated physical activity. There was no correlation between degree of problems with surplus skin and age, weight loss, or activity rate. Weight loss after gastric bypass reduces the medical risks of obesity but the psychosocial problems remain in many patients due to problems with surplus skin.

  6. A new single-particle basis for nuclear many-body calculations

    NASA Astrophysics Data System (ADS)

    Puddu, G.

    2017-10-01

    Predominantly, harmonic oscillator single-particle wave functions are the preferred choice for a basis in ab initio nuclear many-body calculations. These wave-functions, although very convenient in order to evaluate the matrix elements of the interaction in the laboratory frame, have too fast a fall-off at large distances. In the past, as an alternative to the harmonic oscillator, other single-particle wave functions have been proposed. In this work, we propose a new single-particle basis, directly linked to nucleon-nucleon interaction. This new basis is orthonormal and complete, has the proper asymptotic behavior at large distances and does not contain the continuum which would pose severe convergence problems in nuclear many body calculations. We consider the newly proposed NNLO-opt nucleon-nucleon interaction, without any renormalization. We show that, unlike other bases, this single-particle representation has a computational cost similar to the harmonic oscillator basis with the same space truncation and it gives lower energies for 6He and 6Li.

  7. Human Body Interfacing.

    ERIC Educational Resources Information Center

    Fryda, Lawrence J.; Harrington, Robert; Szumal, Clint

    Electronics Engineering Technology majors in the Industrial and Engineering Technology department at Central Michigan University have developed many real-world projects that represent the type of problem-solving projects encouraged by industry. Two projects that can be used by other educators as freestanding projects or as the core for further…

  8. Sediment and Total Phosphorous Contributors in Rock River Watershed

    EPA Science Inventory

    Total phosphorous (TP) and total suspended sediment (TSS) pollution is a problem in the US Midwest and is of particular concern in the Great Lakes region where many water bodies are already eutrophic. Increases in monoculture corn planting to feed ethanol based biofuel productio...

  9. Beyond computational difficulties: Survey of the two decades from the elaboration to the extensive application of the Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Martinez, Jean-Philippe

    2017-11-01

    The Hartree-Fock method, one of the first applications of the new quantum mechanics in the frame of the many-body problem, had been elaborated by Rayner Douglas Hartree in 1928 and Vladimir Fock in 1930. Promptly, the challenge of tedious computations was being discussed and it is well known that the application of the method benefited greatly from the development of computers from the mid-to-late 1950s. However, the years from 1930 to 1950 were by no means years of stagnation, as the method was the object of several considerations related to its mathematical formulation, possible extension, and conceptual understanding. Thus, with a focus on the respective attitudes of Hartree and Fock, in particular with respect to the concept of quantum exchange, the present work puts forward some mathematical and conceptual clarifications, which played an important role for a better understanding of the many-body problem in quantum mechanics.

  10. Numeric calculation of celestial bodies with spreadsheet analysis

    NASA Astrophysics Data System (ADS)

    Koch, Alexander

    2016-04-01

    The motion of the planets and moons in our solar system can easily be calculated for any time by the Kepler laws of planetary motion. The Kepler laws are a special case of the gravitational law of Newton, especially if you consider more than two celestial bodies. Therefore it is more basic to calculate the motion by using the gravitational law. But the problem is, that by gravitational law it is not possible to calculate the state of motion with only one step of calculation. The motion has to be numerical calculated for many time intervalls. For this reason, spreadsheet analysis is helpful for students. Skills in programmes like Excel, Calc or Gnumeric are important in professional life and can easily be learnt by students. These programmes can help to calculate the complex motions with many intervalls. The more intervalls are used, the more exact are the calculated orbits. The sutdents will first get a quick course in Excel. After that they calculate with instructions the 2-D-coordinates of the orbits of Moon and Mars. Step by step the students are coding the formulae for calculating physical parameters like coordinates, force, acceleration and velocity. The project is limited to 4 weeks or 8 lessons. So the calcualtion will only include the calculation of one body around the central mass like Earth or Sun. The three-body problem can only be shortly discussed at the end of the project.

  11. Adolescent fathers: an approach for intervention.

    PubMed

    Joshi, N P; Battle, S F

    1990-01-01

    Many myths exist concerning the needs and problems confronting adolescent fathers. Research on adolescent pregnancy has proliferated in the last decade. We now have a substantial body of empirically-based findings in this area. Unfortunately, few substantive findings are available on adolescent fathers, yet the magnitude of this problem has reached epidemic proportion. This article will provide an overview of current research on adolescent fathers and their needs and offer suggestions for appropriate intervention.

  12. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Astrophysics Data System (ADS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2018-01-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth's J 2 perturbation and lunar gravity included for a 500 revolution transfer.

  13. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Astrophysics Data System (ADS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2018-06-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth's J 2 perturbation and lunar gravity included for a 500 revolution transfer.

  14. Spectroscopy of collective excitations in interacting low-dimensional many-body systems using quench dynamics.

    PubMed

    Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail; Polkovnikov, Anatoli

    2007-11-16

    We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.

  15. Fast and reliable symplectic integration for planetary system N-body problems

    NASA Astrophysics Data System (ADS)

    Hernandez, David M.

    2016-06-01

    We apply one of the exactly symplectic integrators, which we call HB15, of Hernandez & Bertschinger, along with the Kepler problem solver of Wisdom & Hernandez, to solve planetary system N-body problems. We compare the method to Wisdom-Holman (WH) methods in the MERCURY software package, the MERCURY switching integrator, and others and find HB15 to be the most efficient method or tied for the most efficient method in many cases. Unlike WH, HB15 solved N-body problems exhibiting close encounters with small, acceptable error, although frequent encounters slowed the code. Switching maps like MERCURY change between two methods and are not exactly symplectic. We carry out careful tests on their properties and suggest that they must be used with caution. We then use different integrators to solve a three-body problem consisting of a binary planet orbiting a star. For all tested tolerances and time steps, MERCURY unbinds the binary after 0 to 25 years. However, in the solutions of HB15, a time-symmetric HERMITE code, and a symplectic Yoshida method, the binary remains bound for >1000 years. The methods' solutions are qualitatively different, despite small errors in the first integrals in most cases. Several checks suggest that the qualitative binary behaviour of HB15's solution is correct. The Bulirsch-Stoer and Radau methods in the MERCURY package also unbind the binary before a time of 50 years, suggesting that this dynamical error is due to a MERCURY bug.

  16. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    NASA Astrophysics Data System (ADS)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  17. Exploring the Use of Conceptual Metaphors in Solving Problems on Entropy

    ERIC Educational Resources Information Center

    Jeppsson, Fredrik; Haglund, Jesper; Amin, Tamer G.; Stromdahl, Helge

    2013-01-01

    A growing body of research has examined the experiential grounding of scientific thought and the role of experiential intuitive knowledge in science learning. Meanwhile, research in cognitive linguistics has identified many "conceptual metaphors" (CMs), metaphorical mappings between abstract concepts and experiential source domains,…

  18. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.

    PubMed

    Pronobis, Wiktor; Tkatchenko, Alexandre; Müller, Klaus-Robert

    2018-06-12

    Machine learning (ML) based prediction of molecular properties across chemical compound space is an important and alternative approach to efficiently estimate the solutions of highly complex many-electron problems in chemistry and physics. Statistical methods represent molecules as descriptors that should encode molecular symmetries and interactions between atoms. Many such descriptors have been proposed; all of them have advantages and limitations. Here, we propose a set of general two-body and three-body interaction descriptors which are invariant to translation, rotation, and atomic indexing. By adapting the successfully used kernel ridge regression methods of machine learning, we evaluate our descriptors on predicting several properties of small organic molecules calculated using density-functional theory. We use two data sets. The GDB-7 set contains 6868 molecules with up to 7 heavy atoms of type CNO. The GDB-9 set is composed of 131722 molecules with up to 9 heavy atoms containing CNO. When trained on 5000 random molecules, our best model achieves an accuracy of 0.8 kcal/mol (on the remaining 1868 molecules of GDB-7) and 1.5 kcal/mol (on the remaining 126722 molecules of GDB-9) respectively. Applying a linear regression model on our novel many-body descriptors performs almost equal to a nonlinear kernelized model. Linear models are readily interpretable: a feature importance ranking measure helps to obtain qualitative and quantitative insights on the importance of two- and three-body molecular interactions for predicting molecular properties computed with quantum-mechanical methods.

  19. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    PubMed Central

    Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D.; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers PMID:22355607

  20. Compact normalisations in the elliptic restricted three body problem

    NASA Astrophysics Data System (ADS)

    Palacián, Jesús F.; Vanegas, Jasson; Yanguas, Patricia

    2017-11-01

    This paper considers the spatial elliptic restricted three body problem in the case that the particle with negligible mass is revolving around one of the primaries. The system is modelled in an inertial frame through a Hamiltonian function representing a non-autonomous dynamical system with three degrees of freedom that depends periodically on time. Three Lie transformations are applied at first order to eliminate successively the mean anomaly of the infinitesimal particle's motion, the time dependence of the system and the argument of the node of the particle with negligible mass. All the transformations are implemented in a compact way, that is, carrying out the computations by means of infinite series. This approach can be very useful to deal with certain artificial satellite problems or, in general, with systems such that the ratio between the distance of the infinitesimal particle to the body around it orbits and the distance between the two primaries is smaller than one but close to it. In this case the Legendre expansion of the potential converges slowly and many terms of the series must be taken into consideration.

  1. [Research in theoretical nuclear physics]. [Annual progress report, July 1992--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapusta, J.I.

    1993-12-31

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm{sup 3}. Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important ismore » reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA.« less

  2. Effects of Energy Dissipation in the Sphere-Restricted Full Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Gabriel, T. S. J.

    Recently, the classical N-Body Problem has been adjusted to account for celestial bodies made of constituents of finite density. By imposing a minima on the achievable distance between particles, minimum energy resting states are allowed by the problem. The Full N-Body Problem allows for the dissipation of mechanical energy through surface-surface interactions via impacts or by way of tidal deformation. Barring exogeneous forces and allowing for the dissipation of energy, these systems have discrete, and sometimes multiple, minimum energy states for a given angular momentum. Building the dynamical framework of such finite density systems is a necessary process in outlining the evolution of rubble pile asteroids and other gravitational-granular systems such as protoplanetary discs, and potentially planetary rings, from a theoretical point of view. In all cases, resting states are expected to occur as a necessary step in the ongoing processes of solar system formation and evolution. Previous studies of this problem have been performed in the N=3 case where the bodies are indistinguishable spheres, with all possible relative equilibria and their stability having been identified as a function of the angular momentum of the system. These studies uncovered that at certain levels of angular momentum there exists two minimum energy states, a global and local minimum. Thus a question of interest is in which of these states a dissipative system would preferentially settle and the sensitivity of results to changes in dissipation parameters. Assuming equal-sized, perfectly-rigid bodies, this study investigates the dynamical evolution of three spheres under the influence of mutual gravity and impact mechanics as a function of dissipation parameters. A purpose-written, C-based, Hard Sphere Discrete Element Method code has been developed to integrate trajectories and resolve contact mechanics as grains evolve into minimum energy configurations. By testing many randomized initial conditions, statistics are measured regarding minimum energy states for a given angular momentum range. A trend in the Sphere-Restricted Full Three-Body Problem producing an end state of one configuration over another is found as a function of angular momentum and restitution.

  3. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    NASA Astrophysics Data System (ADS)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  4. The sound of moving bodies. Ph.D. Thesis - Cambridge Univ.

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth Steven

    1990-01-01

    The importance of the quadrupole source term in the Ffowcs, Williams, and Hawkings (FWH) equation was addressed. The quadrupole source contains fundamental components of the complete fluid mechanics problem, which are ignored only at the risk of error. The results made it clear that any application of the acoustic analogy should begin with all of the source terms in the FWH theory. The direct calculation of the acoustic field as part of the complete unsteady fluid mechanics problem using CFD is considered. It was shown that aeroelastic calculation can indeed be made with CFD codes. The results indicate that the acoustic field is the most susceptible component of the computation to numerical error. Therefore, the ability to measure the damping of acoustic waves is absolutely essential both to develop acoustic computations. Essential groundwork for a new approach to the problem of sound generation by moving bodies is presented. This new computational acoustic approach holds the promise of solving many problems hitherto pushed aside.

  5. A SURVEY ON THE ACCURACY OF WHOLE-BODY COUNTERS OPERATED IN FUKUSHIMA AFTER THE NUCLEAR DISASTER.

    PubMed

    Nakano, T; Kim, E; Tani, K; Kurihara, O; Sakai, K

    2016-09-01

    To check internal contamination, whole-body counters (WBCs) have been used continuously in Fukushima prefecture since the 2011 disaster. Many WBCs have been installed recently. The accuracy of these WBCs has been tested with bottle manikin absorption phantoms. No significant problems with the performance or accuracy of the WBCs have been found. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Experimental Measurements of Store Separation Using Dry Ice Models in a Subsonic Flow

    DTIC Science & Technology

    2011-03-01

    slender bodies separating from rectangular cavities into low subsonic freestreams. The first part of their work presents the three phases of...aerodynamic problems relevant to separation of a thin body of revolution from rectangular cavities into subsonic or transonic flows” 13 [3]. Like many... cavity dimensions of 1.5 x 1.5 x 5.0 inches, resulting in a length-to-depth ratio of 3.33, slightly less the 3.6-6.0 used in previous research

  7. Numerical Investigation of Flow Around Rectangular Cylinders with and Without Jets

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N .; Pidugu, S. B.

    1999-01-01

    The problem of flow past bluff bodies was studied extensively in the past. The problem of drag reduction is very important in many high speed flow applications. Considerable work has been done in this subject area in case of circular cylinders. The present study attempts to investigate the feasibility of drag reduction on a rectangular cylinder by flow injection by flow injection from the rear stagnation region. The physical problem is modeled as two-dimensional body and numerical analysis is carried out with and without trailing jets. A commercial code is used for this purpose. Unsteady computation is performed in case of rectangular cylinders with no trailing jets where as steady state computation is performed when jet is introduced. It is found that drag can be reduced by introducing jets with small intensity in rear stagnation region of the rectangular cylinders.

  8. Adapting Evidence-Based Interventions for Students with Developmental Disabilities

    ERIC Educational Resources Information Center

    Gilmore, Linda; Campbell, Marilyn; Shochet, Ian

    2016-01-01

    Students with developmental disabilities have many challenges with learning and adaptive behaviour, as well as a higher prevalence rate of mental health problems. Although there is a substantial body of evidence for effcacious interventions for enhancing resilience and promoting mental health in typically developing children, very few programs…

  9. Hot Bodies 400 Corporation: A Simple Guide for Small Business Startups [and] Teamwork: Problems and Solutions Workbook. For What You Wear...or Wear Not! An ICA Publication in Business and Behavioral Science.

    ERIC Educational Resources Information Center

    Bonilla, Carlos A., Ed.; Righetti, Candace S., Ed.

    Many cooperative learning programs are merely exhibitions of the willingness to work with others. They apply teams of people to do work that could be accomplished just as well by individuals. Successful programs focus on collaborative learning that fosters working together to solve problems beyond the capacity of any individual. A cooperative…

  10. Performance of a Heterogeneous Grid Partitioner for N-body Applications

    NASA Technical Reports Server (NTRS)

    Harvey, Daniel J.; Das, Sajal K.; Biswas, Rupak

    2003-01-01

    An important characteristic of distributed grids is that they allow geographically separated multicomputers to be tied together in a transparent virtual environment to solve large-scale computational problems. However, many of these applications require effective runtime load balancing for the resulting solutions to be viable. Recently, we developed a latency tolerant partitioner, called MinEX, specifically for use in distributed grid environments. This paper compares the performance of MinEX to that of METIS, a popular multilevel family of partitioners, using simulated heterogeneous grid configurations. A solver for the classical N-body problem is implemented to provide a framework for the comparisons. Experimental results show that MinEX provides superior quality partitions while being competitive to METIS in speed of execution.

  11. Pendulum rides, rotations and the Coriolis effect

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie; Modig, Conny

    2018-07-01

    An amusement park is full of examples that can be made into challenging problems for students, combining mathematical modelling with video analysis, as well as measurements in the rides. Traditional amusement ride related textbook problems include free-fall, circular motion, pendula and energy conservation in roller coasters, where the moving bodies are typically considered point-like. However, an amusement park can offer many more examples that are useful in physics and engineering education, many of them with strong mathematical content. This paper analyses forces on riders in a large rotating pendulum ride, where the Coriolis effect is sufficiently large to be visible in accelerometer data from the rides and leads to different ride experiences in different positions.

  12. Random Numbers and Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Scherer, Philipp O. J.

    Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.

  13. PREFACE: International Workshop on Statistical-Mechanical Informatics 2008 (IW-SMI 2008)

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito; Inoue, Jun-ichi; Kabashima, Yoshiyuki; Tanaka, Kazuyuki

    2009-01-01

    Statistical mechanical informatics (SMI) is an approach that applies physics to information science, in which many-body problems in information processing are tackled using statistical mechanics methods. In the last decade, the use of SMI has resulted in great advances in research into classical information processing, in particular, theories of information and communications, probabilistic inference and combinatorial optimization problems. It is expected that the success of SMI can be extended to quantum systems. The importance of many-body problems is also being recognized in quantum information theory (QIT), for which quantification of entanglement of bipartite systems has recently been almost completely established after considerable effort. SMI and QIT are sufficiently well developed that it is now appropriate to consider applying SMI to quantum systems and developing many-body theory in QIT. This combination of SMI and QIT is highly likely to contribute significantly to the development of both research fields. The International Workshop on Statistical-Mechanical Informatics has been organized in response to this situation. This workshop, held at Sendai International Conference Center, Sendai, Japan, 14-17 September 2008, and sponsored by the Grant-in-Aid for Scientific Research on Priority Areas `Deepening and Expansion of Statistical Mechanical Informatics (DEX-SMI)' (Head investigator: Yoshiyuki Kabashima, Tokyo Institute of Technology) (Project http://dex-smi.sp.dis.titech.ac.jp/DEX-SMI), was intended to provide leading researchers with strong interdisciplinary interests in QIT and SMI with the opportunity to engage in intensive discussions. The aim of the workshop was to expand SMI to quantum systems and QIT research on quantum (entangled) many-body systems, to discuss possible future directions, and to offer researchers the opportunity to exchange ideas that may lead to joint research initiatives. We would like to thank the contributors of the workshop as well as all the participants, who have enjoyed the workshop as well as their stay in Sendai, one of the most beautiful cities in Japan. This successful workshop will stimulate further development of the interdisciplinary research field of QIT and SMI. Masahito Hayashi, Jun-ichi Inoue, Yoshiyuki Kabashima and Kazuyuki Tanaka Editors The IW-SMI 2008 Organizing Committee Kazuyuki Tanaka, General Chair (Tohoku University) Yoshiyuki Kabashima, Vice-General Chair (Tokyo Institute of Technology) Jun-ichi Inoue, Program Chair (Hokkaido University) Masahito Hayashi, Pulications Chair (Tohoku University) Hidetoshi Nishimori (Tokyo Institute of Technology) Toshiyuki Tanaka (Kyoto University)

  14. Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem.

    PubMed

    Benson, Christopher R; Maffeo, Christopher; Fatila, Elisabeth M; Liu, Yun; Sheetz, Edward G; Aksimentiev, Aleksei; Singharoy, Abhishek; Flood, Amar H

    2018-05-07

    The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.

  15. Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.

    PubMed

    Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao

    2017-01-01

    Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.

  16. Toward Hamiltonian Adaptive QM/MM: Accurate Solvent Structures Using Many-Body Potentials.

    PubMed

    Boereboom, Jelle M; Potestio, Raffaello; Donadio, Davide; Bulo, Rosa E

    2016-08-09

    Adaptive quantum mechanical (QM)/molecular mechanical (MM) methods enable efficient molecular simulations of chemistry in solution. Reactive subregions are modeled with an accurate QM potential energy expression while the rest of the system is described in a more approximate manner (MM). As solvent molecules diffuse in and out of the reactive region, they are gradually included into (and excluded from) the QM expression. It would be desirable to model such a system with a single adaptive Hamiltonian, but thus far this has resulted in distorted structures at the boundary between the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard (nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system defined by two different MM potentials (MM/MM'). For the long-range interactions a numerical scheme is used (particle mesh Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both energy conservation and the correct solvent structure everywhere in this system.

  17. Self-consistent approach to many-body localization and subdiffusion

    NASA Astrophysics Data System (ADS)

    Prelovšek, P.; Herbrych, J.

    2017-07-01

    An analytical theory, based on the perturbative treatment of the disorder and extended into a self-consistent set of equations for the dynamical density correlations, is developed and applied to the prototype one-dimensional model of many-body localization. Results show a qualitative agreement with the numerically obtained dynamical structure factor in the whole range of frequencies and wave vectors, as well as across the transition to nonergodic behavior. The theory reveals the singular nature of the one-dimensional problem, whereby on the ergodic side the dynamics is subdiffusive with dynamical conductivity σ (ω ) ∝|ω| α , i.e., with vanishing dc limit σ0=0 and α <1 varying with disorder, while we get α >1 in the localized phase.

  18. Singularity free N-body simulations called 'Dynamic Universe Model' don't require dark matter

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    For finding trajectories of Pioneer satellite (Anomaly), New Horizons satellite going to Pluto, the Calculations of Dynamic Universe model can be successfully applied. No dark matter is assumed within solar system radius. The effect on the masses around SUN shows as though there is extra gravitation pull toward SUN. It solves the Dynamics of Extra-solar planets like Planet X, satellite like Pioneer and NH for 3-Position, 3-velocity 3-accelaration for their masses, considering the complex situation of Multiple planets, Stars, Galaxy parts and Galaxy centre and other Galaxies Using simple Newtonian Physics. It already solved problems Missing mass in Galaxies observed by galaxy circular velocity curves successfully. Singularity free Newtonian N-body simulations Historically, King Oscar II of Sweden an-nounced a prize to a solution of N-body problem with advice given by Güsta Mittag-Leffler in 1887. He announced `Given a system of arbitrarily many mass points that attract each according to Newton's law, under the assumption that no two points ever collide, try to find a representation of the coordinates of each point as a series in a variable that is some known function of time and for all of whose values the series converges uniformly.'[This is taken from Wikipedia]. The announced dead line that time was1st June 1888. And after that dead line, on 21st January 1889, Great mathematician Poincaré claimed that prize. Later he himself sent a telegram to journal Acta Mathematica to stop printing the special issue after finding the error in his solution. Yet for such a man of science reputation is important than money. [ Ref Book `Celestial mechanics: the waltz of the planets' By Alessandra Celletti, Ettore Perozzi, page 27]. He realized that he has been wrong in his general stability result! But till now nobody could solve that problem or claimed that prize. Later all solutions resulted in singularities and collisions of masses, given by many people . . . . . . . . . . . . . . . . . . . . . . . . .. Now I can say that the Dynamic Universe Model solves this classical N-body problem where only Newtonian Gravi-tation law and classical Physics were used. The solution converges at all points. There are no multiple values, diverging solutions or divided by zero singularities. Collisions of masses depend on physical values of masses and their space distribution only. These collisions do not happen due to internal inherent problems of Dynamic universe Model. If the mass distribution is homogeneous and isotropic, the masses will colloid. If the mass distribution is heterogeneous and anisotropic, they do not colloid. This approach solves many problems which otherwise can not be solved by General relativity, Steady state universe model etc. . .

  19. The effects of exposure to feminist ideology on women's body image.

    PubMed

    Peterson, Rachel D; Tantleff-Dunn, Stacey; Bedwell, Jeffrey S

    2006-09-01

    Body image disturbance has become a common problem among women and there is a need to focus on creating empirically supported treatments. Psychoeducational interventions have reduced body image dissatisfaction, but their impact is limited because they do not offer women adaptive methods of interpreting the many appearance-related messages they receive. This study examined if exposure to a feminist perspective may provide alternative interpretations of cultural messages, thereby increasing body image satisfaction. Participants were randomly assigned to a feminist or psychoeducational intervention, or a control group. Exposure to the feminist condition resulted in increased self-identification as a feminist and greater appearance satisfaction, and changes in feminist identity were related to positive changes in body image. The findings indicate that exposure to feminist theories may serve as an effective intervention strategy.

  20. Building machine learning force fields for nanoclusters

    NASA Astrophysics Data System (ADS)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  1. Laser-induced synlabia, cryptomenorrhea, and urine retention: A case report and literature review

    PubMed Central

    Fadul-Elahi, Thoraya; Janjua, Nusrat Batool

    2017-01-01

    Cosmetic laser use has many pros and cons. The worldwide use of laser for body hair removal has led to many medical complications. Unsupervised use of the laser for hair removal in vulva may result in many problems and can merely damage the vulva, although rarely, affecting the body image. This rare and novel case report is a 21 year old virgin who presented with acute urinary retention and cryptomenorrhea due to complete synlabia secondary to unsupervised vulval laser hair removal. The urinary retention was relieved by suprapubic catheterization initially. During examination under anesthesia, the fused labia were separated by a surgical incision with drainage of hematocolpos and then, a Foley's urethral catheter was inserted. She had an uneventful recovery. We report this case to emphasize on the supervised use of laser by trained and qualified personnel for hair removal in vulva to minimize its complications. PMID:29118543

  2. Three-Axis Time-Optimal Attitude Maneuvers of a Rigid-Body

    NASA Astrophysics Data System (ADS)

    Wang, Xijing; Li, Jisheng

    With the development trends for modern satellites towards macro-scale and micro-scale, new demands are requested for its attitude adjustment. Precise pointing control and rapid maneuvering capabilities have long been part of many space missions. While the development of computer technology enables new optimal algorithms being used continuously, a powerful tool for solving problem is provided. Many papers about attitude adjustment have been published, the configurations of the spacecraft are considered rigid body with flexible parts or gyrostate-type systems. The object function always include minimum time or minimum fuel. During earlier satellite missions, the attitude acquisition was achieved by using the momentum ex change devices, performed by a sequential single-axis slewing strategy. Recently, the simultaneous three-axis minimum-time maneuver(reorientation) problems have been studied by many researchers. It is important to research the minimum-time maneuver of a rigid spacecraft within onboard power limits, because of potential space application such as surveying multiple targets in space and academic value. The minimum-time maneuver of a rigid spacecraft is a basic problem because the solutions for maneuvering flexible spacecraft are based on the solution to the rigid body slew problem. A new method for the open-loop solution for a rigid spacecraft maneuver is presented. Having neglected all perturbation torque, the necessary conditions of spacecraft from one state to another state can be determined. There is difference between single-axis with multi-axis. For single- axis analytical solution is possible and the switching line passing through the state-space origin belongs to parabolic. For multi-axis, it is impossible to get analytical solution due to the dynamic coupling between the axes and must be solved numerically. Proved by modern research, Euler axis rotations are quasi-time-optimal in general. On the basis of minimum value principles, a research for reorienting an inertial syrnmetric spacecraft with time cost function from an initial state of rest to a final state of rest is deduced. And the solution to it is stated below: Firstly, the essential condition for solving the problem is deduced with the minimum value principle. The necessary conditions for optimality yield a two point boundary-value problem (TPBVP), which, when solved, produces the control history that minimize time performance index. In the nonsingular control, the solution is the' bang-bang maneuver. The control profile is characterized by Saturated controls for the entire maneuver. The singular control maybe existed. It is only singular in mathematics. According to physical principle, the bigger the mode of the control torque is, the shorter the time is. So saturated controls are used in singular control. Secondly, the control parameters are always in maximum, so the key problem is to determine switch point thus original problem is changed to find the changing time. By the use of adjusting the switch on/off time, the genetic algorithm, which is a new robust method is optimized to determine the switch features without the gyroscopic coupling. There is improvement upon the traditional GA in this research. The homotopy method to find the nonlinear algebra is based on rigorous topology continuum theory. Based on the idea of the homotopy, the relaxation parameters are introduced, and the switch point is figured out with simulated annealing. Computer simulation results using a rigid body show that the new method is feasible and efficient. A practical method of computing approximate solutions to the time-optimal control- switch times for rigid body reorientation has been developed.

  3. The LATDYN user's manual

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Mcgowan, P. E.; Abrahamson, A. L.; Powell, M. G.

    1986-01-01

    The LATDYN User's Manual presents the capabilities and instructions for the LATDYN (Large Angle Transient DYNamics) computer program. The LATDYN program is a tool for analyzing the controlled or uncontrolled dynamic transient behavior of interconnected deformable multi-body systems which can undergo large angular motions of each body relative other bodies. The program accommodates large structural deformation as well as large rigid body rotations and is applicable, but not limited to, the following areas: (1) development of large flexible space structures; (2) slewing of large space structure components; (3) mechanisms with rigid or elastic components; and (4) robotic manipulations of beam members. Presently the program is limited to two dimensional problems, but in many cases, three dimensional problems can be exactly or approximately reduced to two dimensions. The program uses convected finite elements to affect the large angular motions involved in the analysis. General geometry is permitted. Detailed user input and output specifications are provided and discussed with example runstreams. To date, LATDYN has been configured for CDC/NOS and DEC VAX/VMS machines. All coding is in ANSII-77 FORTRAN. Detailed instructions regarding interfaces with particular computer operating systems and file structures are provided.

  4. Experientially Learning and Teaching in a Student-Directed Classroom

    ERIC Educational Resources Information Center

    Breunig, Mary

    2017-01-01

    There exists a relatively coherent body of research relevant to problem-based and transformational learning but too few studies that have empirically explored the many anecdotal claims of the attributes of experiential, student-directed pedagogy. The purpose of this present study was to explore students' and professor experiences with/in a…

  5. The Impact of Student Experiences with Diversity on Developing Graduate Attributes

    ERIC Educational Resources Information Center

    Denson, Nida; Zhang, Shirley

    2010-01-01

    While the emerging body of international research suggests that students' experiences with diversity impact positively on student learning and their preparation for entering a diverse workforce and society, no similar research is available in relation to students in Australian universities. Many of these outcomes, such as problem-solving, ability…

  6. Using Outperformance Pay to Motivate Academics: Insiders' Accounts of Promises and Problems

    ERIC Educational Resources Information Center

    Field, Laurie

    2015-01-01

    Many researchers have investigated the appropriateness of pay for outperformance, (also called "merit-based pay" and "performance-based pay") for academics, but a review of this body of work shows that the voice of academics themselves is largely absent. This article is a contribution to addressing this gap, summarising the…

  7. Students' Perceptions of Cheating and Plagiarism in Higher Institutions

    ERIC Educational Resources Information Center

    Owunwanne, Daniel; Rustagi, Narendra; Dada, Remi

    2010-01-01

    There is a growing body of evidence that cheating and plagiarism are prominent problems in many universities. In informal conversations, it seems that different students perceive plagiarism differently. In this paper, we conducted a survey at Howard University to examine or to follow up with this growing trend. Specifically, team leaders in school…

  8. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-05-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.

  9. Imaging By Ultrasound

    PubMed Central

    Kidney, Maria R.

    1986-01-01

    Imaging by ultrasound has dramatically changed the investigation and management of many clinical problems. It is useful in many different parts of the body. In this brief discussion, the following topics are considered: hepatic lesions, bleeding in early pregnancy, gynecological pathology (adnexal lesions), aortic aneurysms, thyroid nodules and scrotal masses. The usefulness of duplex carotid sonography, which combines ultrasonic imaging and Doppler studies, is also discussed. Other topics (gallstones, biliary obstruction, renal calculi, hydronephrosis) are discussed in the appropriate sections. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:21267202

  10. Determination of background levels on water quality of groundwater bodies: a methodological proposal applied to a Mediterranean River basin (Guadalhorce River, Málaga, southern Spain).

    PubMed

    Urresti-Estala, Begoña; Carrasco-Cantos, Francisco; Vadillo-Pérez, Iñaki; Jiménez-Gavilán, Pablo

    2013-03-15

    Determine background levels are a key element in the further characterisation of groundwater bodies, according to Water Framework Directive 2000/60/EC and, more specifically, Groundwater Directive 2006/118/EC. In many cases, these levels present very high values for some parameters and types of groundwater, which is significant for their correct estimation as a prior step to establishing thresholds, assessing the status of water bodies and subsequently identifying contaminant patterns. The Guadalhorce River basin presents widely varying hydrogeological and hydrochemical conditions. Therefore, its background levels are the result of the many factors represented in the natural chemical composition of water bodies in this basin. The question of determining background levels under objective criteria is generally addressed as a statistical problem, arising from the many aspects involved in its calculation. In the present study, we outline the advantages of applying two statistical techniques applied specifically for this purpose: (1) the iterative 2σ technique and (2) the distribution function, and examine whether the conclusions reached by these techniques are similar or whether they differ considerably. In addition, we identify the specific characteristics of each approach and the circumstances under which they should be used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Can Limiting Choice Increase Social Welfare? The Elderly and Health Insurance

    PubMed Central

    Hanoch, Yaniv; Rice, Thomas

    2006-01-01

    Herbert Simon's work on bounded rationality has had little impact on health policy discourse, despite numerous supportive findings. This is particularly surprising in regard to the elderly, a group marked by a decline in higher cognitive functions. Elders' cognitive capacity to make decisions will be challenged even further with the introduction of the new Medicare prescription drug benefit program, mainly because of the many options available. At the same time, a growing body of evidence points to the perils of having too many choices. By combining research from decision science, economics, and psychology, we highlight the potential problems with the expanding health insurance choices facing the elderly and conclude with some policy suggestions to alleviate the problem. PMID:16529568

  12. Hyperspherical Slater determinant approach to few-body fractional quantum Hall states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Bin, E-mail: yanbin@purdue.edu; Wooten, Rachel E.; Daily, Kevin M.

    2017-05-15

    In a recent study (Daily et al., 2015), a hyperspherical approach has been developed to study few-body fractional quantum Hall states. This method has been successfully applied to the exploration of few boson and fermion problems in the quantum Hall region, as well as the study of inter-Landau level collective excitations (Rittenhouse et al., 2016; Wooten et al., 2016). However, the hyperspherical method as it is normally implemented requires a subsidiary (anti-)symmetrization process, which limits its computational effectiveness. The present work overcomes these difficulties and extends the power of this method by implementing a representation of the hyperspherical many-body basismore » space in terms of Slater determinants of single particle eigenfunctions. A clear connection between the hyperspherical representation and the conventional single particle picture is presented, along with a compact operator representation of the theoretical framework. - Highlights: • A hyperspherical method has been implemented to study the quantum Hall effect. • The hyperspherical many-body basis space is represented with Slater determinants. • Example numerical studies of the 4- and 8-electron systems are presented.« less

  13. Understanding the many-body expansion for large systems. II. Accuracy considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Ka Un; Liu, Kuan-Yu; Richard, Ryan M.

    2016-04-28

    To complement our study of the role of finite precision in electronic structure calculations based on a truncated many-body expansion (MBE, or “n-body expansion”), we examine the accuracy of such methods in the present work. Accuracy may be defined either with respect to a supersystem calculation computed at the same level of theory as the n-body calculations, or alternatively with respect to high-quality benchmarks. Both metrics are considered here. In applications to a sequence of water clusters, (H{sub 2}O){sub N=6−55} described at the B3LYP/cc-pVDZ level, we obtain mean absolute errors (MAEs) per H{sub 2}O monomer of ∼1.0 kcal/mol for two-bodymore » expansions, where the benchmark is a B3LYP/cc-pVDZ calculation on the entire cluster. Three- and four-body expansions exhibit MAEs of 0.5 and 0.1 kcal/mol/monomer, respectively, without resort to charge embedding. A generalized many-body expansion truncated at two-body terms [GMBE(2)], using 3–4 H{sub 2}O molecules per fragment, outperforms all of these methods and affords a MAE of ∼0.02 kcal/mol/monomer, also without charge embedding. GMBE(2) requires significantly fewer (although somewhat larger) subsystem calculations as compared to MBE(4), reducing problems associated with floating-point roundoff errors. When compared to high-quality benchmarks, we find that error cancellation often plays a critical role in the success of MBE(n) calculations, even at the four-body level, as basis-set superposition error can compensate for higher-order polarization interactions. A many-body counterpoise correction is introduced for the GMBE, and its two-body truncation [GMBCP(2)] is found to afford good results without error cancellation. Together with a method such as ωB97X-V/aug-cc-pVTZ that can describe both covalent and non-covalent interactions, the GMBE(2)+GMBCP(2) approach provides an accurate, stable, and tractable approach for large systems.« less

  14. Evolution of the regions of the 3D particle motion in the regular polygon problem of (N+1) bodies with a quasi-homogeneous potential

    NASA Astrophysics Data System (ADS)

    Fakis, Demetrios; Kalvouridis, Tilemahos

    2017-09-01

    The regular polygon problem of (N+1) bodies deals with the dynamics of a small body, natural or artificial, in the force field of N big bodies, the ν=N-1 of which have equal masses and form an imaginary regular ν -gon, while the Nth body with a different mass is located at the center of mass of the system. In this work, instead of considering Newtonian potentials and forces, we assume that the big bodies create quasi-homogeneous potentials, in the sense that we insert to the inverse square Newtonian law of gravitation an inverse cube corrective term, aiming to approximate various phenomena due to their shape or to the radiation emitting from the primaries. Based on this new consideration, we apply a general methodology in order to investigate by means of the zero-velocity surfaces, the regions where 3D motions of the small body are allowed, their evolutions and parametric variations, their topological bifurcations, as well as the existing trapping domains of the particle. Here we note that this process is definitely a fundamental step of great importance in the study of many dynamical systems characterized by a Jacobian-type integral of motion in the long way of searching for solutions of any kind.

  15. Excitation spectrum of a mixture of two Bose gases confined in a ring potential with interaction asymmetry

    NASA Astrophysics Data System (ADS)

    Roussou, A.; Smyrnakis, J.; Magiropoulos, M.; Efremidis, N. K.; Kavoulakis, G. M.; Sandin, P.; Ögren, M.; Gulliksson, M.

    2018-04-01

    We study the rotational properties of a two-component Bose–Einstein condensed gas of distinguishable atoms which are confined in a ring potential using both the mean-field approximation, as well as the method of diagonalization of the many-body Hamiltonian. We demonstrate that the angular momentum may be given to the system either via single-particle, or ‘collective’ excitation. Furthermore, despite the complexity of this problem, under rather typical conditions the dispersion relation takes a remarkably simple and regular form. Finally, we argue that under certain conditions the dispersion relation is determined via collective excitation. The corresponding many-body state, which, in addition to the interaction energy minimizes also the kinetic energy, is dictated by elementary number theory.

  16. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning.

    PubMed

    Vitiello, Giuseppe

    2015-04-01

    The problem of the transition from the molecular and cellular level to the macroscopic level of observed assemblies of myriads of neurons is the subject addressed in this report. The great amount of detailed information available at molecular and cellular level seems not sufficient to account for the high effectiveness and reliability observed in the brain macroscopic functioning. It is suggested that the dissipative many-body model and thermodynamics might offer the dynamical frame underlying the rich phenomenology observed at microscopic and macroscopic level and help in the understanding on how to fill the gap between the bio-molecular and cellular level and the one of brain macroscopic functioning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Many-body dispersion interactions from the exchange-hole dipole moment model

    NASA Astrophysics Data System (ADS)

    Otero-de-la-Roza, A.; Johnson, Erin R.

    2013-02-01

    In this article, we present the extension of the exchange-hole dipole moment model (XDM) of dispersion interactions to the calculation of two-body and three-body dispersion energy terms to any order, 2l-pole oscillator strengths, and polarizabilities. By using the newly-formulated coefficients, we study the relative importance of the higher-order two-body and the leading non-additive three-body (triple-dipole) interactions in gas-phase as well as in condensed systems. We show that the two-body terms up to R-10, but not the terms of higher-order, are essential in the correct description of the dispersion energy, while there are a number of difficulties related to the choice of the damping function, which precludes the use three-body triple-dipole contributions in XDM. We conclude that further study is required before the three-body term can be used in production XDM density-functional calculations and point out the salient problems regarding its use.

  18. Approach to solution of coupled heat transfer problem on the surface of hypersonic vehicle of arbitrary shape

    NASA Astrophysics Data System (ADS)

    Bocharov, A. N.; Bityurin, V. A.; Golovin, N. N.; Evstigneev, N. M.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.; Fortov, V. E.

    2016-11-01

    In this paper, an approach to solve conjugate heat- and mass-transfer problems is considered to be applied to hypersonic vehicle surface of arbitrary shape. The approach under developing should satisfy the following demands. (i) The surface of the body of interest may have arbitrary geometrical shape. (ii) The shape of the body can change during calculation. (iii) The flight characteristics may vary in a wide range, specifically flight altitude, free-stream Mach number, angle-of-attack, etc. (iv) The approach should be realized with using the high-performance-computing (HPC) technologies. The approach is based on coupled solution of 3D unsteady hypersonic flow equations and 3D unsteady heat conductance problem for the thick wall. Iterative process is applied to account for ablation of wall material and, consequently, mass injection from the surface and changes in the surface shape. While iterations, unstructured computational grids both in the flow region and within the wall interior are adapted to the current geometry and flow conditions. The flow computations are done on HPC platform and are most time-consuming part of the whole problem, while heat conductance problem can be solved on many kinds of computers.

  19. ADHD Expressive Writing Difficulties of ADHD Children: When Good Declarative Knowledge Is Not Sufficient

    ERIC Educational Resources Information Center

    Re, Anna Maria; Cornoldi, Cesare

    2010-01-01

    A large body of evidence shows that many of the academic difficulties Attention Deficit Hyperactivity Disorder (ADHD) children have may be related to their problems in executive control. However, the particular case of expressive writing has not been deeply explored. The present study examines the typical school exercise of writing a letter.…

  20. Particle simulation of plasmas and stellar systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Clark, A.; Craddock, G.G.

    1985-04-01

    A computational technique is introduced which allows the student and researcher an opportunity to observe the physical behavior of a class of many-body systems. A series of examples is offered which illustrates the diversity of problems that may be studied using particle simulation. These simulations were in fact assigned as homework in a course on computational physics.

  1. Probing Student Reasoning Approaches through the Lens of Dual-Process Theories: A Case Study in Buoyancy

    ERIC Educational Resources Information Center

    Gette, Cody R.; Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

    2018-01-01

    A growing body of scholarly work indicates that student performance on physics problems stems from many factors, including relevant conceptual understanding. However, in contexts in which significant conceptual difficulties have been documented via research, it can be difficult to pinpoint and isolate such factors because students' written and…

  2. Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR

    ERIC Educational Resources Information Center

    Baglin, James

    2014-01-01

    Exploratory factor analysis (EFA) methods are used extensively in the field of assessment and evaluation. Due to EFA's widespread use, common methods and practices have come under close scrutiny. A substantial body of literature has been compiled highlighting problems with many of the methods and practices used in EFA, and, in response, many…

  3. Chiral EFT based nuclear forces: achievements and challenges

    NASA Astrophysics Data System (ADS)

    Machleidt, R.; Sammarruca, F.

    2016-08-01

    During the past two decades, chiral effective field theory has become a popular tool to derive nuclear forces from first principles. Two-nucleon interactions have been worked out up to sixth order of chiral perturbation theory and three-nucleon forces up to fifth order. Applications of some of these forces have been conducted in nuclear few- and many-body systems—with a certain degree of success. But in spite of these achievements, we are still faced with great challenges. Among them is the issue of a proper uncertainty quantification of predictions obtained when applying these forces in ab initio calculations of nuclear structure and reactions. A related problem is the order by order convergence of the chiral expansion. We start this review with a pedagogical introduction and then present the current status of the field of chiral nuclear forces. This is followed by a discussion of representative examples for the application of chiral two- and three-body forces in the nuclear many-body system including convergence issues.

  4. Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems

    NASA Astrophysics Data System (ADS)

    Macieszczak, Katarzyna; Zhou, YanLi; Hofferberth, Sebastian; Garrahan, Juan P.; Li, Weibin; Lesanovsky, Igor

    2017-10-01

    We investigate the dynamics of a generic interacting many-body system under conditions of electromagnetically induced transparency (EIT). This problem is of current relevance due to its connection to nonlinear optical media realized by Rydberg atoms. In an interacting system the structure of the dynamics and the approach to the stationary state becomes far more complex than in the case of conventional EIT. In particular, we discuss the emergence of a metastable decoherence-free subspace, whose dimension for a single Rydberg excitation grows linearly in the number of atoms. On approach to stationarity this leads to a slow dynamics, which renders the typical assumption of fast relaxation invalid. We derive analytically the effective nonequilibrium dynamics in the decoherence-free subspace, which features coherent and dissipative two-body interactions. We discuss the use of this scenario for the preparation of collective entangled dark states and the realization of general unitary dynamics within the spin-wave subspace.

  5. A New Approach on the Long Term Dynamics of NEO's Under Yarkovsky Effect.

    NASA Astrophysics Data System (ADS)

    Peláez, Jesús; Urrutxua, Hodei; Bombardelli, Claudio; Perez-Grande, Isabel

    2011-12-01

    A classical approach to the many-body problem is that of using special perturbation methods. Nowadays and due to the availability of high-speed computers is an essential tool in Space Dynamics which exhibits a great advantage: it is applicable to any orbit involving any number of bodies and all sorts of astrodynamical problems, especially when these problems fall into regions in which general perturbation theories are absent. One such case is, for example, that Near Earth Objects (NEO's) dynamics. In this field, the Group of Tether Dynamics of UPM (GDT) has developed a new regularisation scheme - called DROMO - which is characterised by only 8 ODE. This new regularisation scheme allows a new approach to the dynamics of NEO's in the long term, specially appropriated to consider the influence of the anisotropic thermal emission (Yarkovsky and YORP effects) on the dynamics. A new project, called NEODROMO, has been started in GDT that aims to provide a reliable tool for the long term dynamics of NEO's.

  6. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design Using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.

    2015-01-01

    Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multiobjective hybrid optimal control problem. The method is demonstrated on several real-world problems.

  7. Incidence of health problems associated with tattooed skin: a nation-wide survey in German-speaking countries.

    PubMed

    Klügl, Ines; Hiller, Karl-Anton; Landthaler, Michael; Bäumler, Wolfgang

    2010-08-01

    Millions of people are tattooed. However, the frequency of health problems is unknown. We performed an Internet survey in German-speaking countries. The provenance of tattooed participants (n = 3,411) was evenly distributed in Germany. The participants had many (28%; >4) and large tattoos (36%; >or=900 cm(2)). After tattooing, the people described skin problems (67.5%) or systemic reactions (6.6%). Four weeks after tattooing, 9% still had health problems. Six percent reported persistent health problems due to the tattoo, of which females (7.3%) were more frequently concerned than males (4.2%). Colored tattoos provoked more short-term skin (p = 0.003) or systemic (p = 0.0001) reactions than black tattoos. Also the size of tattoos and the age at the time of tattooing play a significant role in many health problems. Our results show that millions of people in the Western world supposedly have transient or persisting health problems after tattooing. Owing to the large number and size of the tattoos, tattooists inject several grams of tattoo colorants into the skin, which partly spread in the human body and stay for a lifetime. The latter might cause additional health problems in the long term. Copyright 2010 S. Karger AG, Basel.

  8. Structured light: theory and practice and practice and practice...

    NASA Astrophysics Data System (ADS)

    Keizer, Richard L.; Jun, Heesung; Dunn, Stanley M.

    1991-04-01

    We have developed a structured light system for noncontact 3-D measurement of human body surface areas and volumes. We illustrate the image processing steps and algorithms used to recover range data from a single camera image, reconstruct a complete surface from one or more sets of range data, and measure areas and volumes. The development of a working system required the solution to a number of practical problems in image processing and grid labeling (the stereo correspondence problem for structured light). In many instances we found that the standard cookbook techniques for image processing failed. This was due in part to the domain (human body), the restrictive assumptions of the models underlying the cookbook techniques, and the inability to consistently predict the outcome of the image processing operations. In this paper, we will discuss some of our successes and failures in two key steps in acquiring range data using structured light: First, the problem of detecting intersections in the structured light grid, and secondly, the problem of establishing correspondence between projected and detected intersections. We will outline the problems and solutions we have arrived at after several years of trial and error. We can now measure range data with an r.m.s. relative error of 0.3% and measure areas on the human body surface within 3% and volumes within 10%. We have found that the solution to building a working vision system requires the right combination of theory and experimental verification.

  9. Low-Thrust Trajectory Optimization with Simplified SQP Algorithm

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Scheeres, Daniel J.

    2017-01-01

    The problem of low-thrust trajectory optimization in highly perturbed dynamics is a stressing case for many optimization tools. Highly nonlinear dynamics and continuous thrust are each, separately, non-trivial problems in the field of optimal control, and when combined, the problem is even more difficult. This paper de-scribes a fast, robust method to design a trajectory in the CRTBP (circular restricted three body problem), beginning with no or very little knowledge of the system. The approach is inspired by the SQP (sequential quadratic programming) algorithm, in which a general nonlinear programming problem is solved via a sequence of quadratic problems. A few key simplifications make the algorithm presented fast and robust to initial guess: a quadratic cost function, neglecting the line search step when the solution is known to be far away, judicious use of end-point constraints, and mesh refinement on multiple shooting with fixed-step integration.In comparison to the traditional approach of plugging the problem into a “black-box” NLP solver, the methods shown converge even when given no knowledge of the solution at all. It was found that the only piece of information that the user needs to provide is a rough guess for the time of flight, as the transfer time guess will dictate which set of local solutions the algorithm could converge on. This robustness to initial guess is a compelling feature, as three-body orbit transfers are challenging to design with intuition alone. Of course, if a high-quality initial guess is available, the methods shown are still valid.We have shown that endpoints can be efficiently constrained to lie on 3-body repeating orbits, and that time of flight can be optimized as well. When optimizing the endpoints, we must make a trade between converging quickly on sub-optimal endpoints or converging more slowly on end-points that are arbitrarily close to optimal. It is easy for the mission design engineer to adjust this trade based on the problem at hand.The biggest limitation to the algorithm at this point is that multi-revolution transfers (greater than 2 revolutions) do not work nearly as well. This restriction comes in because the relationship between node 1 and node N becomes increasingly nonlinear as the angular distance grows. Trans-fers with more than about 1.5 complete revolutions generally require the line search to improve convergence. Future work includes: Comparison of this algorithm with other established tools; improvements to how multiple-revolution transfers are handled; parallelization of the Jacobian computation; in-creased efficiency for the line search; and optimization of many more trajectories between a variety of 3-body orbits.

  10. Relativistic many-body XMCD theory including core degenerate effects

    NASA Astrophysics Data System (ADS)

    Fujikawa, Takashi

    2009-11-01

    A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.

  11. Representations of body and space: theoretical concepts and controversies.

    PubMed

    Trojan, Jörg

    2015-09-01

    Recent years have seen a revived interest in how body and space are represented perceptually and how they affect human cognition and behaviour. Various conceptualisations of body and space have been proposed, alternately stressing neurophysiological, cognitive, or social aspects, but unified approaches are scarce. This short paper will give an overview of different views on body and space. At least three relevant dimensions can be identified in which concepts of body and space may differ: (1) perspective: while we conceptually differentiate between body and space perception, they imply each other and the underlying mechanisms overlap. (2) Level: representations of body and space may emerge at different processing levels, from spinal mechanisms guiding reflex movements to those we construct in our imagination. (3) Affect: representations of body and space are closely linked to affect, but this relationship has not received enough attention yet. Despite many empirical findings, our current views on body and space representations remain ambiguous. One problem may lie in the implicit diversity of "bodies" and "spaces" examined in different studies. Specifications of these concepts may help understand existing results better and are important for guiding future research.

  12. Magnetic spheres as foreign body into the bladder.

    PubMed

    Graziottin, Tulio M; de Freitas G Soares, Daniel; Da Ros, Carlos T; Sogari, Paulo R; Telöken, Cláudio; Laste, Paulo Roberto

    2013-10-01

    A great variety of foreign bodies in the lower urinary tract have been described; many of them are self-inflicted by the patient with masturbatory purposes. Depending on the nature of the foreign body the diagnostic and management might be challenging. We report a case of an unusual magnetic self-inserted foreign body into the bladder for autoerotism and briefly discuss the diagnostic and therapeutic implications in this challenging situation. We describe all the steps we have used to adequately diagnose the problem, describe the foreign body and treatments for the patient. Related articles were found by utilizing the PubMed database and are summarized in this study.   The management approach must be planned according to the nature of the foreign body and should minimize bladder and urethral trauma. However, most of cases can be managed endoscopically. Removal of magnetic foreign body may be quite challenging, requiring high-level surgical skills and minimally invasive techniques resulting in fast recovery and low complication rate. © 2012 International Society for Sexual Medicine.

  13. Comparative study of the LOCV and the FHNC approaches for the nucleonic matter problem

    NASA Astrophysics Data System (ADS)

    Tafrihi, Azar; Modarres, Majid

    2016-03-01

    The nucleonic matter problem is investigated by comparing the lowest order constrained variational (LOCV) method with the Fermi hypernetted chain (FHNC) theory, emphasizing the role of the LOCV correlation functions. In this way, the central correlation functions are used in the LOCV formalism, for the Bethe homework problem. It is shown that the LOCV computations reasonably agree with those of FHNC. Moreover, the FHNC calculations are performed with the LOCV correlation functions. It is found that, assuming the LOCV or the parametrized correlation functions, the FHNC computations do not change significantly. So, one may conclude that the mentioned consistencies refer to the choice of the LOCV correlation functions. Because, the contribution of the many-body cluster terms can be ignored, if the LOCV correlation functions satisfy the normalization constraint. Then, using the AV 18 interaction, the operator-dependent (OD) correlation functions are employed in the LOCV calculations. Note that the LOCV OD correlation functions are obtained by averaging over the states. It turns out that the overall behaviour of the LOCV OD correlation functions are similar to those of FHNC. Although, due to the many-body effects which are considered in the FHNC calculations, the LOCV results fairly differ from those of FHNC. Finally, it is worth mentioning that, unlike the recent FHNC calculations, the spin-orbit-dependent correlation functions are included in the LOCV approach.

  14. Harmful effects of 41 and 202 MHz radiations on some body parts and tissues.

    PubMed

    Kumar, Vijay; Vats, R P; Pathak, P P

    2008-08-01

    Many types of invisible electromagnetic waves are produced in our atmosphere. When these radiations penetrate our body, electric fields are induced inside the body, resulting in the absorption of power, which is different for different body parts and also depends on the frequency of radiations. Higher power absorption may result into health problems. In this communication, effects of electromagnetic waves (EMW) of 41 and 202 MHz frequencies transmitted by the TV tower have been studied on skin, muscles, bone and fat of human. Using international standards for safe exposure limits of specific absorption rate (SAR), we have found the safe distance from TV transmission towers for two frequencies. It is suggested that transmission towers should be located away from the thickly populated areas and people should keep away from the transmission towers, as they radiate electromagnetic radiations that are harmful to some parts/tissues of body.

  15. Evaluation of work posture and quantification of fatigue by Rapid Entire Body Assessment (REBA)

    NASA Astrophysics Data System (ADS)

    Rizkya, I.; Syahputri, K.; Sari, R. M.; Anizar; Siregar, I.

    2018-02-01

    Work related musculoskeletal disorders (MSDs), poor body postures, and low back injuries are the most common problems occurring in many industries including small-medium industries. This study presents assessment and evaluation of ergonomic postures of material handling worker. That evaluation was carried out using REBA (Rapid Entire Body Assessment). REBA is a technique to quantize the fatigue experienced by the worker while manually lifting loads. Fatigue due to abnormal work posture leads to complaints of labor-perceived pain. REBA methods were used to an assessment of working postures for the existing process by a procedural analysis of body postures involved. This study shows that parts of the body have a high risk of work are the back, neck, and upper arms with REBA score 9, so action should be taken as soon as possible. Controlling actions were implemented to those process with high risk then substantial risk reduction was achieved.

  16. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    DOE PAGES

    Savukov, I. M.; Filin, D. V.

    2014-12-29

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreementmore » with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.« less

  17. CI+MBPT calculations of Ar I energies, g factors, and transition line strengths

    NASA Astrophysics Data System (ADS)

    Savukov, I. M.

    2018-03-01

    Excited states of noble gas atoms present certain challenges to atomic theory for several reasons: first, relativistic effects are important and LS coupling is not optimal; second, energy intervals can be quite small, leading to strong mixing of states; third, many-body perturbation theory for hole states does not converge well. Previously, some attempts were made to solve this problem, using for example the all-order coupled-cluster approach and particle-hole configuration-interaction many-body perturbation theory (CI-MBPT) with modified denominators. However, while these approaches were promising, the accuracy was still limited. In this paper, we calculate Ar I energies, g factors, and transition amplitudes using ab initio CI-MBPT with eight valence electrons to avoid the problem of slow convergence of MBPT due to strong interaction between 3p and 3s states. We also included in CI many dominant states obtained by double excitations of the ground state configuration. Thus perturbation corrections were needed only for 1s, 2s, 2p core electrons non-included in valence-valence CI, which are quite small. We found that energy, g factors, and electric dipole matrix elements are in reasonable agreement with experiments. It is noteworthy that the theory agreed well with accurately measured g factors. Experimental oscillator strengths have large uncertainty, so in some cases we made a comparison with average values.

  18. Particular Solutions in Four body problem with solar wind drag

    NASA Astrophysics Data System (ADS)

    Kumari, Reena; Singh Kushvah, Badam

    2012-07-01

    To study the motion of a group of celestial objects/bodies interacting with each other under gravitational attraction. We formulated a four body problem with solar wind drag of one radiating body, rotating about their common center of mass with central configuration. We suppose that the governing forces of the motion of four body problems are mutual gravitational attractions of bodies and drag force of radiating body. Firstly, we derive the equations of motion using new co-ordinates for the four body problem. Again, we find the integrals of motions under different cases regarding to the mass of the bodies. Then we find the zero velocity surfaces and particular solutions. Finally, we examined the effect of solar wind drag on the motion of the four body problem. Keywords: Four Body Problem; Particular Solutions; Radiation Force; Zero Velocity Surfaces.

  19. Development of Global 30m Resolution Water Body Map with Permanent/Temporal Water Body Separation Using Satellite Acquired Images of Landsat GLS Datasets

    NASA Astrophysics Data System (ADS)

    Ikeshima, D.; Yamazaki, D.; Yoshikawa, S.; Kanae, S.

    2015-12-01

    The specification of worldwide water body distribution is important for discovering hydrological cycle. Global 3-second Water Body Map (G3WBM) is a global scale map, which indicates the distribution of water body in 90m resolutions (http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM/index.html). This dataset was mainly built to identify the width of river channels, which is one of major uncertainties of continental-scale river hydrodynamics models. To survey the true width of the river channel, this water body map distinguish Permanent Water Body from Temporary Water Body, which means separating river channel and flood plain. However, rivers with narrower width, which is a major case in usual river, could not be observed in this map. To overcome this problem, updating the algorithm of G3WBM and enhancing the resolutions to 30m is the goal of this research. Although this 30m-resolution water body map uses similar algorithm as G3WBM, there are many technical issues attributed to relatively high resolutions. Those are such as lack of same high-resolution digital elevation map, or contamination problem of sub-pixel scale object on satellite acquired image, or invisibility of well-vegetated water body such as swamp. To manage those issues, this research used more than 30,000 satellite images of Landsat Global Land Survey (GLS), and lately distributed topography data of Shuttle Rader Topography Mission (SRTM) 1 arc-second (30m) digital elevation map. Also the effect of aerosol, which would scatter the sun reflectance and disturb the acquired result image, was considered. Due to these revises, the global water body distribution was established in more precise resolution.

  20. Ultra-sensitive pressure dependence of bandgap of rutile-GeO2 revealed by many body perturbation theory.

    PubMed

    Samanta, Atanu; Jain, Manish; Singh, Abhishek K

    2015-08-14

    The reported values of bandgap of rutile GeO2 calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO2 using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.

  1. Dynamic Nuclear Polarization and the Paradox of Quantum Thermalization.

    PubMed

    De Luca, Andrea; Rosso, Alberto

    2015-08-21

    Dynamic nuclear polarization (DNP) is to date the most effective technique to increase the nuclear polarization opening disruptive perspectives for medical applications. In a DNP setting, the interacting spin system is quasi-isolated and brought out of equilibrium by microwave irradiation. Here we show that the resulting stationary state strongly depends on the ergodicity properties of the spin many-body eigenstates. In particular, the dipolar interactions compete with the disorder induced by local magnetic fields resulting in two distinct dynamical phases: while for weak interaction, only a small enhancement of polarization is observed, for strong interactions the spins collectively equilibrate to an extremely low effective temperature that boosts DNP efficiency. We argue that these two phases are intimately related to the problem of thermalization in closed quantum systems where a many-body localization transition can occur varying the strength of the interactions.

  2. Teaching Independent Learning Skills in the First Year: A Positive Psychology Strategy for Promoting Law Student Well-Being

    ERIC Educational Resources Information Center

    Field, Rachael; Duffy, James; Huggins, Anna

    2015-01-01

    Empirical evidence in Australia and overseas has established that in many university disciplines, students begin to experience elevated levels of psychological distress in their first year of study. There is now a considerable body of empirical data that establishes that this is a significant problem for law students. Psychological distress may…

  3. On the motion of hairy black holes in Einstein-Maxwell-dilaton theories

    NASA Astrophysics Data System (ADS)

    Julié, Félix-Louis

    2018-01-01

    Starting from the static, spherically symmetric black hole solutions in massless Einstein-Maxwell-dilaton (EMD) theories, we build a "skeleton" action, that is, we phenomenologically replace black holes by an appropriate effective point particle action, which is well suited to the formal treatment of the many-body problem in EMD theories. We find that, depending crucially on the value of their scalar cosmological environment, black holes can undergo steep "scalarization" transitions, inducing large deviations to the general relativistic two-body dynamics, as shown, for example, when computing the first post-Keplerian Lagrangian of EMD theories.

  4. Stay Healthy During Pregnancy for Your Baby’s Sake… and Yours!

    EPA Pesticide Factsheets

    Lead can get into your body many ways. You can breathe in dirt or dust that contains lead. Cookware and some glazed pottery may release lead into food. Some folk remedies and cosmetics contain high levels of lead. Even lead you were exposed to as a child may still be stored in your bones and be released into your blood stream during pregnancy. The lead in your blood stream can pass into your baby’s body and cause the baby to have health problems. Follow these easy steps to lower lead exposure, and protect your unborn baby:

  5. Jastrow-like ground states for quantum many-body potentials with near-neighbors interactions

    NASA Astrophysics Data System (ADS)

    Baradaran, Marzieh; Carrasco, José A.; Finkel, Federico; González-López, Artemio

    2018-01-01

    We completely solve the problem of classifying all one-dimensional quantum potentials with nearest- and next-to-nearest-neighbors interactions whose ground state is Jastrow-like, i.e., of Jastrow type but depending only on differences of consecutive particles. In particular, we show that these models must necessarily contain a three-body interaction term, as was the case with all previously known examples. We discuss several particular instances of the general solution, including a new hyperbolic potential and a model with elliptic interactions which reduces to the known rational and trigonometric ones in appropriate limits.

  6. The bliss (not the problem) of motor abundance (not redundancy).

    PubMed

    Latash, Mark L

    2012-03-01

    Motor control is an area of natural science exploring how the nervous system interacts with other body parts and the environment to produce purposeful, coordinated actions. A central problem of motor control-the problem of motor redundancy-was formulated by Nikolai Bernstein as the problem of elimination of redundant degrees-of-freedom. Traditionally, this problem has been addressed using optimization methods based on a variety of cost functions. This review draws attention to a body of recent findings suggesting that the problem has been formulated incorrectly. An alternative view has been suggested as the principle of abundance, which considers the apparently redundant degrees-of-freedom as useful and even vital for many aspects of motor behavior. Over the past 10 years, dozens of publications have provided support for this view based on the ideas of synergic control, computational apparatus of the uncontrolled manifold hypothesis, and the equilibrium-point (referent configuration) hypothesis. In particular, large amounts of "good variance"-variance in the space of elements that has no effect on the overall performance-have been documented across a variety of natural actions. "Good variance" helps an abundant system to deal with secondary tasks and unexpected perturbations; its amount shows adaptive modulation across a variety of conditions. These data support the view that there is no problem of motor redundancy; there is bliss of motor abundance.

  7. City personification as problem solving to strengthen the wholeness of the city: study case in Serui city, Papua

    NASA Astrophysics Data System (ADS)

    Hardine, Y. R. I.; Herlily

    2018-03-01

    Serui City in Papua Province has many unique characters and must be maintained for the sake of the continuity of its identity. However, this city still lacks the facility and depend on other areas. Accordingly, it becomes vulnerable. The wholeness of the city is not just by having strong character but also having strength regarding vitality. The loss of it can affect the character and even eliminate it. Cities and people have many similarities regarding character and vitality. Therefore, there is a chance to solve the problems in the city using the similar approach to treat the human. We called city personification methods as problem-solving to the city. It means that we treat the city as a human being so that the problem can be solved as the human’s treatment. The personification of this city is conducted because of the many treatments that have proven effective in humans and may also be powerful to manifest in city. The personification makes the design will only focus on the particular networks and not on the whole “body,” remain in the hope for strengthening (maintain and improve) the quality of wholeness (character and vitality) city which in this case is Serui.

  8. Mean-field theory of baryonic matter for QCD in the large Nc and heavy quark mass limits

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Cohen, Thomas D.

    2013-11-01

    We discuss theoretical issues pertaining to baryonic matter in the combined heavy-quark and large Nc limits of QCD. Witten's classic argument that baryons and interacting systems of baryons can be described in a mean-field approximation with each of the quarks moving in an average potential due to the remaining quarks is heuristic. It is important to justify this heuristic description for the case of baryonic matter since systems of interacting baryons are intrinsically more complicated than single baryons due to the possibility of hidden color states—states in which the subsystems making up the entire baryon crystal are not color-singlet nucleons but rather colorful states coupled together to make a color-singlet state. In this work, we provide a formal justification of this heuristic prescription. In order to do this, we start by taking the heavy quark limit, thus effectively reducing the problem to a many-body quantum mechanical system. This problem can be formulated in terms of integrals over coherent states, which for this problem are simple Slater determinants. We show that for the many-body problem, the support region for these integrals becomes narrow at large Nc, yielding an energy which is well approximated by a single coherent state—that is a mean-field description. Corrections to the energy are of relative order 1/Nc. While hidden color states are present in the exact state of the heavy quark system, they only influence the interaction energy below leading order in 1/Nc.

  9. Medical legacy of Apollo. [physiological effects of stresses

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1974-01-01

    Since Apollo crews enjoyed freedom of movement and experienced many of the same problems as earlier crews, confinement had to be ruled out in the etiology of space flight-related changes. Apollo was a mission of physiological firsts: the first inflight illnesses were reported, and a series of cardiac arrhythmias occurred. The most important physiological changes were decreased cardiovascular responsiveness, reduced red blood cell mass, and musculoskeletal deterioration. Vestibular-related problems were also noted for the first time. Crewmen lost weight as a result of a hypocaloric regimen inflight and a tendency to lose body tissue under hypogravic conditions. Aldosterone production increased causing some intracellular fluid loss. Very few of the crewmen experienced any psychological problems after Apollo.

  10. Childhood body-focused behaviors and social behaviors as risk factors of eating disorders.

    PubMed

    Mangweth, Barbara; Hausmann, Armand; Danzl, Claudia; Walch, Thomas; Rupp, Claudia I; Biebl, Wilfried; Hudson, James I; Pope, Harrison G

    2005-01-01

    The risk factors for adolescent eating disorders are poorly understood. It is generally agreed, however, that interactions with one's body and interactions with others are two important features in the development of anorexia and bulimia nervosa. Therefore, we assessed a variety of childhood body-focused behaviors and childhood social behaviors in eating-disordered patients as compared to non-eating-disordered subjects. We compared 50 female inpatients with eating disorders (anorexia or bulimia nervosa), 50 female inpatients with polysubstance dependence, and 50 nonpatient female control subjects with no history of eating or substance abuse disorders (all defined by DSM-IV criteria), using a semi-structured interview of our own design. We asked questions about (1) childhood body-focused behaviors (e.g. thumb-sucking) and body-focused family experiences (e.g. bodily caresses), and (2) childhood social behaviors (e.g. numbers of close friends) and family social styles (e.g. authoritarian upbringing). Many body-focused measures, such as feeding problems, auto-aggressive behavior, lack of maternal caresses, and family taboos regarding nudity and sexuality, characterized eating-disordered patients as opposed to both comparison groups, as did several social behaviors, such as adjustment problems at school and lack of close friends. However, nail-biting, insecure parental bonding, and childhood physical and sexual abuse were equally elevated in both psychiatric groups. It appears that eating-disordered patients, as compared to substance-dependent patients and healthy controls, show a distinct pattern of body-focused and social behaviors during childhood, characterized by self-harm, a rigid and 'body-denying' family climate, and lack of intimacy. Copyright (c) 2005 S. Karger AG, Basel.

  11. Statistical benchmark for BosonSampling

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Kuipers, Jack; Urbina, Juan-Diego; Mayer, Klaus; Tichy, Malte Christopher; Richter, Klaus; Buchleitner, Andreas

    2016-03-01

    Boson samplers—set-ups that generate complex many-particle output states through the transmission of elementary many-particle input states across a multitude of mutually coupled modes—promise the efficient quantum simulation of a classically intractable computational task, and challenge the extended Church-Turing thesis, one of the fundamental dogmas of computer science. However, as in all experimental quantum simulations of truly complex systems, one crucial problem remains: how to certify that a given experimental measurement record unambiguously results from enforcing the claimed dynamics, on bosons, fermions or distinguishable particles? Here we offer a statistical solution to the certification problem, identifying an unambiguous statistical signature of many-body quantum interference upon transmission across a multimode, random scattering device. We show that statistical analysis of only partial information on the output state allows to characterise the imparted dynamics through particle type-specific features of the emerging interference patterns. The relevant statistical quantifiers are classically computable, define a falsifiable benchmark for BosonSampling, and reveal distinctive features of many-particle quantum dynamics, which go much beyond mere bunching or anti-bunching effects.

  12. Toward Anatomical Simulation for Breath Training in Mind/Body Medicine

    NASA Astrophysics Data System (ADS)

    Sanders, Benjamin; Dilorenzo, Paul; Zordan, Victor; Bakal, Donald

    The use of breath in healing is poorly understood by patients and professionals alike. Dysfunctional breathing is a characteristic of many unexplained symptoms and mind/body medical professionals seek methods for breath training to alleviate such problems. Our approach is to re-purpose and evolve a recently developed anatomically inspired respiration simulation which was created for synthesizing motion in entertainment for the use of visualization in breath training. In mind/body medicine, problems are often created from patients being advised to breathe according to some standard based on pace or volume. However, a breathing pattern that is comfortable and effortless for one person may not have the same benefits for the next person. The breathing rhythm which is most effortless for each person needs to be dynamically identified. To this end, in this chapter, we employ optimization to modify a generic model of respiration to fit the breath patterns of specific individuals. In practice, the corresponding visualization which is specific to individual patients could be used to train proper breath behavior, both by showing specific (abnormal) practice and recommended modification(s).

  13. Neutron matter with Quantum Monte Carlo: chiral 3N forces and static response

    DOE PAGES

    Buraczynski, M.; Gandolfi, S.; Gezerlis, A.; ...

    2016-03-14

    Neutron matter is related to the physics of neutron stars and that of neutron-rich nuclei. Moreover, Quantum Monte Carlo (QMC) methods offer a unique way of solving the many-body problem non-perturbatively, providing feedback on features of nuclear interactions and addressing scenarios that are inaccessible to other approaches. Our contribution goes over two recent accomplishments in the theory of neutron matter: a) the fusing of QMC with chiral effective field theory interactions, focusing on local chiral 3N forces, and b) the first attempt to find an ab initio solution to the problem of static response.

  14. Journey Through Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Yang, C. N.

    2013-05-01

    My first involvement with statistical mechanics and the many body problem was when I was a student at The National Southwest Associated University in Kunming during the war. At that time Professor Wang Zhu-Xi had just come back from Cambridge, England, where he was a student of Fowler, and his thesis was on phase transitions, a hot topic at that time, and still a very hot topic today...

  15. Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2017-11-01

    We develop a quaternion method for regularizing the differential equations of the perturbed spatial restricted three-body problem by using the Kustaanheimo-Stiefel variables, which is methodologically closely related to the quaternion method for regularizing the differential equations of perturbed spatial two-body problem, which was proposed by the author of the present paper. A survey of papers related to the regularization of the differential equations of the two- and threebody problems is given. The original Newtonian equations of perturbed spatial restricted three-body problem are considered, and the problem of their regularization is posed; the energy relations and the differential equations describing the variations in the energies of the system in the perturbed spatial restricted three-body problem are given, as well as the first integrals of the differential equations of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations of perturbed spatial restricted three-body problem written in terms of rotating coordinate systems whose angular motion is described by the rotation quaternions (Euler (Rodrigues-Hamilton) parameters) are considered; and the differential equations for angular momenta in the restricted three-body problem are given. Local regular quaternion differential equations of perturbed spatial restricted three-body problem in the Kustaanheimo-Stiefel variables, i.e., equations regular in a neighborhood of the first and second body of finite mass, are obtained. The equations are systems of nonlinear nonstationary eleventhorder differential equations. These equations employ, as additional dependent variables, the energy characteristics of motion of the body under study (a body of a negligibly small mass) and the time whose derivative with respect to a new independent variable is equal to the distance from the body of negligibly small mass to the first or second body of finite mass. The equations obtained in the paper permit developing regular methods for determining solutions, in analytical or numerical form, of problems difficult for classicalmethods, such as the motion of a body of negligibly small mass in a neighborhood of the other two bodies of finite masses.

  16. Body Image in Adult Women: Moving Beyond the Younger Years

    PubMed Central

    Kilpela, Lisa Smith; Becker, Carolyn Black; Wesley, Nicole; Stewart, Tiffany

    2015-01-01

    In spite of copious literature investigating body dissatisfaction and its correlates in adolescents and young adult women, exploration of body image disturbances in adult women remains an underrepresented domain in the literature. Yet, there are many reasons to suspect that body image in adult women both may differ from and possibly be more complex than that of younger women. Adult women face myriad factors influencing body image beyond those delineated in the body image literature on adolescents and young adult women. For instance, aging-related physiological changes shift the female body further away from the thin-young-ideal, which is the societal standard of female beauty. Further, life priorities and psychological factors evolve with age as well. As such, adult women encounter changes that may differentially affect body image across the lifespan. This paper aims to provide an up-to-date review of the current literature on the relationship between body image and associated mental and physical health problems and behaviors in adult women. In addition, we explore factors that may influence body image in adult women. Lastly, we use this review to identify significant gaps in the existing literature with the aim of identifying critical targets for future research. PMID:26052476

  17. Comparing histology and gonadosomatic index for determining spawning condition of small-bodied riverine fishes

    USGS Publications Warehouse

    Brewer, S.K.; Rabeni, C.F.; Papoulias, D.M.

    2008-01-01

    We compared gonadosomatic index (GSI) and histological analysis of ovaries for identifying reproductive periods of fishes to determine the validity of using GSI in future studies. Four small-bodied riverine species were examined in our comparison of the two methods. Mean GSI was significantly different between all histological stages for suckermouth minnow and red shiner. Mean GSI was significantly different between most stages for slenderhead darter; whereas stages 3 and 6 were not significantly different, the time period when these stages are present would allow fisheries biologists to distinguish between the two stages. Mean GSI was not significantly different for many histological stages in stonecat. Difficulties in distinguishing between histological stages and GSI associated with stonecat illustrate potential problems obtaining appropriate sample sizes from species that move to alternative habitats to spawn. We suggest that GSI would be a useful tool in identifying mature ovaries in many small-bodied, multiple-spawning fishes. This information could be combined with data from histology during mature periods to pinpoint specific spawning events. ?? 2007 Blackwell Munksgaard.

  18. Quantum Monte Carlo calculations of weak transitions in A = 6 – 10 nuclei

    DOE PAGES

    Pastore, S.; Baroni, A.; Carlson, J.; ...

    2018-02-26

    {\\it Ab initio} calculations of the Gamow-Teller (GT) matrix elements in themore » $$\\beta$$ decays of $^6$He and $$^{10}$$C and electron captures in $^7$Be are carried out using both variational and Green's function Monte Carlo wave functions obtained from the Argonne $$v_{18}$$ two-nucleon and Illinois-7 three-nucleon interactions, and axial many-body currents derived from either meson-exchange phenomenology or chiral effective field theory. The agreement with experimental data is excellent for the electron captures in $^7$Be, while theory overestimates the $^6$He and $$^{10}$$C data by $$\\sim 2\\%$$ and $$\\sim 10\\%$$, respectively. We show that for these systems correlations in the nuclear wave functions are crucial to explain the data, while many-body currents increase by $$\\sim 2$$--$$3\\%$$ the one-body GT contributions. These findings suggest that the longstanding $$g_A$$-problem, {\\it i.e.}, the systematic overprediction ($$\\sim 20 \\%$$ in $$A\\le 18$$ nuclei) of GT matrix elements in shell-model calculations, may be resolved, at least partially, by correlation effects.« less

  19. Symplectic no-core configuration interaction framework for ab initio nuclear structure. II. Structure of rotational states

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; McCoy, Anna E.; Dytrych, Tomas

    2017-09-01

    Rotational band structure is readily apparent as an emergent phenomenon in ab initio nuclear many-body calculations of light nuclei, despite the incompletely converged nature of most such calculations at present. Nuclear rotation in light nuclei can be analyzed in terms of approximate dynamical symmetries of the nuclear many-body problem: in particular, Elliott's SU (3) symmetry of the three-dimensional harmonic oscillator and the symplectic Sp (3 , R) symmetry of three-dimensional phase space. Calculations for rotational band members in the ab initio symplectic no-core configuration interaction (SpNCCI) framework allow us to directly examine the SU (3) and Sp (3 , R) nature of rotational states. We present results for rotational bands in p-shell nuclei. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.

  20. Stochastic evaluation of second-order many-body perturbation energies.

    PubMed

    Willow, Soohaeng Yoo; Kim, Kwang S; Hirata, So

    2012-11-28

    With the aid of the Laplace transform, the canonical expression of the second-order many-body perturbation correction to an electronic energy is converted into the sum of two 13-dimensional integrals, the 12-dimensional parts of which are evaluated by Monte Carlo integration. Weight functions are identified that are analytically normalizable, are finite and non-negative everywhere, and share the same singularities as the integrands. They thus generate appropriate distributions of four-electron walkers via the Metropolis algorithm, yielding correlation energies of small molecules within a few mE(h) of the correct values after 10(8) Monte Carlo steps. This algorithm does away with the integral transformation as the hotspot of the usual algorithms, has a far superior size dependence of cost, does not suffer from the sign problem of some quantum Monte Carlo methods, and potentially easily parallelizable and extensible to other more complex electron-correlation theories.

  1. Capture of planetesimals into a circumterrestrial swarm

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1984-01-01

    The lunar origin model considered involves processing of protolunar material through a circumterrestrial swarm of particles. Once such a swarm has formed, it can gain mass by capturing infalling planetesimals and ejecta from giant impacts on the Earth, although the angular momentum supply from these sources remains a problem. Examined is the first stage of formation of a geocentric swarm by capture of planetesimals from initialy heliocentric orbits. The only plausible capture mechanism that is not dependent on very low approach velocities is the mutual collision of planetesimals passing within Earth's sphere of influence. This capture scenario was tested directly by many body numerical integration of planetesimal orbits in near Earth space. Results agree that the systematic contribution of angular momentum is insufficient to maintain an orbiting swarm under heavy bombardment. Thus, a circumterrestrial swarm can be formed rather easily, but is hard to sustain because the mean net angular momentum of a many body swarm is small.

  2. Time Crystal Platform: From Quasicrystal Structures in Time to Systems with Exotic Interactions.

    PubMed

    Giergiel, Krzysztof; Miroszewski, Artur; Sacha, Krzysztof

    2018-04-06

    Time crystals are quantum many-body systems that, due to interactions between particles, are able to spontaneously self-organize their motion in a periodic way in time by analogy with the formation of crystalline structures in space in condensed matter physics. In solid state physics properties of space crystals are often investigated with the help of external potentials that are spatially periodic and reflect various crystalline structures. A similar approach can be applied for time crystals, as periodically driven systems constitute counterparts of spatially periodic systems, but in the time domain. Here we show that condensed matter problems ranging from single particles in potentials of quasicrystal structure to many-body systems with exotic long-range interactions can be realized in the time domain with an appropriate periodic driving. Moreover, it is possible to create molecules where atoms are bound together due to destructive interference if the atomic scattering length is modulated in time.

  3. Time Crystal Platform: From Quasicrystal Structures in Time to Systems with Exotic Interactions

    NASA Astrophysics Data System (ADS)

    Giergiel, Krzysztof; Miroszewski, Artur; Sacha, Krzysztof

    2018-04-01

    Time crystals are quantum many-body systems that, due to interactions between particles, are able to spontaneously self-organize their motion in a periodic way in time by analogy with the formation of crystalline structures in space in condensed matter physics. In solid state physics properties of space crystals are often investigated with the help of external potentials that are spatially periodic and reflect various crystalline structures. A similar approach can be applied for time crystals, as periodically driven systems constitute counterparts of spatially periodic systems, but in the time domain. Here we show that condensed matter problems ranging from single particles in potentials of quasicrystal structure to many-body systems with exotic long-range interactions can be realized in the time domain with an appropriate periodic driving. Moreover, it is possible to create molecules where atoms are bound together due to destructive interference if the atomic scattering length is modulated in time.

  4. Dephasing Catastrophe in 4-ε Dimensions: A Possible Instability of the Ergodic (Many-Body-Delocalized) Phase.

    PubMed

    Liao, Yunxiang; Foster, Matthew S

    2018-06-08

    In two dimensions, dephasing by a bath cuts off Anderson localization that would otherwise occur at any energy density for fermions with disorder. For an isolated system with short-range interactions, the system can be its own bath, exhibiting diffusive (non-Markovian) thermal density fluctuations. We recast the dephasing of weak localization due to a diffusive bath as a self-interacting polymer loop. We investigate the critical behavior of the loop in d=4-ε dimensions, and find a nontrivial fixed point corresponding to a temperature T^{*}∼ε>0 where the dephasing time diverges. Assuming that this fixed point survives to ε=2, we associate it with a possible instability of the ergodic phase. Our approach may open a new line of attack against the problem of the ergodic to many-body-localized phase transition in d>1 spatial dimensions.

  5. Dephasing Catastrophe in 4 -ɛ Dimensions: A Possible Instability of the Ergodic (Many-Body-Delocalized) Phase

    NASA Astrophysics Data System (ADS)

    Liao, Yunxiang; Foster, Matthew S.

    2018-06-01

    In two dimensions, dephasing by a bath cuts off Anderson localization that would otherwise occur at any energy density for fermions with disorder. For an isolated system with short-range interactions, the system can be its own bath, exhibiting diffusive (non-Markovian) thermal density fluctuations. We recast the dephasing of weak localization due to a diffusive bath as a self-interacting polymer loop. We investigate the critical behavior of the loop in d =4 -ɛ dimensions, and find a nontrivial fixed point corresponding to a temperature T*˜ɛ >0 where the dephasing time diverges. Assuming that this fixed point survives to ɛ =2 , we associate it with a possible instability of the ergodic phase. Our approach may open a new line of attack against the problem of the ergodic to many-body-localized phase transition in d >1 spatial dimensions.

  6. Ultra-sensitive pressure dependence of bandgap of rutile-GeO{sub 2} revealed by many body perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Atanu; Singh, Abhishek K.; Jain, Manish

    2015-08-14

    The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p)more » orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.« less

  7. Anatomy of quantum critical wave functions in dissipative impurity problems

    NASA Astrophysics Data System (ADS)

    Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge

    2017-02-01

    Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.

  8. Construction of Hamiltonians by supervised learning of energy and entanglement spectra

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki; Nakagawa, Yuya O.; Sugiura, Sho; Oshikawa, Masaki

    2018-02-01

    Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter, nuclear, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impossible to treat these problems from first principles. Thus the construction of a proper model, namely, effective Hamiltonian, is essential. Here, we propose a simple supervised learning algorithm for constructing Hamiltonians from given energy or entanglement spectra. We apply the proposed scheme to the Hubbard model at the half-filling, and compare the obtained effective low-energy spin model with several analytic results based on the high-order perturbation theory, which have been inconsistent with each other. We also show that our approach can be used to construct the entanglement Hamiltonian of a quantum many-body state from its entanglement spectrum as well. We exemplify this using the ground states of the S =1 /2 two-leg Heisenberg ladders. We observe a qualitative difference between the entanglement Hamiltonians of the two phases (the Haldane and the rung singlet phase) of the model due to the different origin of the entanglement. In the Haldane phase, we find that the entanglement Hamiltonian is nonlocal by nature, and the locality can be restored by introducing the anisotropy and turning the ground state into the large-D phase. Possible applications to the model construction from experimental data and to various problems of strongly correlated systems are discussed.

  9. Medical assessment in athletes.

    PubMed

    Pruna, Ricard; Lizarraga, Antonia; Domínguez, David

    2018-04-13

    Practicing sports at a professional level requires the body to be in good health. The fact of carrying out a continuous and high intensity physical activity in the presence of pathological conditions and/or a maladaptation of the body can be detrimental to the athletes' health and, therefore, to their performance. Many of the problems that arise in the sports field could be prevented with a periodic and well-structured medical assessment. In this review, we describe the protocol of the medical service of a high-level sports club for the assessment of its professional athletes. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  10. Hypersonic Flight and the Re-Entry Problem: The Twenty-First Wright Brothers Lecture

    NASA Technical Reports Server (NTRS)

    Allen, H. Julian

    1958-01-01

    Up to this point the discussion of the problems of rocket vehicles has been confined to the effects of phenomena which have in the past been important ones for lower speed aircraft and will continue to be important for aircraft of all speeds. Now with considerable extension of both speed and altitude, other phenomena also become important. The nature of some problems will be altered, as a result, and new problems, of course, will be encountered. First, it is well to note that our interest in bluff bodies for ballistic vehicles in particular, and in rounded-nosed bodies generally, has changed our emphasis in aerodynamics. The detached bow waves which occur with such bodies at high supersonic speeds complicate the calculations of the flow-field characteristics. In the present period, much attention is being given to such studies. In addition, at the very high altitudes attained by most of the rocket-craft, the mean free path of air molecules can be of the same order, or long, compared to the dimensions of the vehicles. Thus, slip-flow and free-molecule-flow studies are of interest, particularly for satellite vehicles." The aerodynatnicist must deal with air having unfamiliar states and properties. Second, at hypersonic speeds where, for example, air is greatly decelerated, it may undergo considerable change in composition, the degree of change depending upon many factors. Dissociation of oxygen and nitrogen molecules can occur and, in addition, thermal ionization of many of the constituents. It is naturally to be expected that the convective heat transfer will, as a result, be altered from what it was for the "perfect" gas, and this has been the subject of much recent research effort. Moreover, the decelerated gas becomes capable of radiating energy and the radiative heat transfer must generally be considered for hypersonic vehicles, particularly for long-range ballistic rockets. It is not only the aerodynamic heating problems that are affected. The fact that at very high air temperature the gas becomes electrically conductive introduces new problems in radio wave transmission and reception. In addition, a conducting gas flow can, of course, be influenced by a magnetic field. The study of such flows, which has been termed "magneto gas dynamics," is still in too primitive a state to indicate how important a role it can play, but many interesting possibilities suggest themselves. Third, our experience with airplanes powered by air-breathing engines has naturally been restricted to the stratosphere, or lower. Our ignorance increases with altitude. For rockets, literally, "the sky's the limit," and it is not surprising that a great emphasis has now been placed on obtaining a more thorough understanding of the whole atmosphere. These studies are not aimed at an understanding of the chemical and physical characteristics alone, but also of the occurrence of high-energy particles, from meteors to cosmic rays, and the nature of the problems they will promote.

  11. On Faraday's law in the presence of extended conductors

    NASA Astrophysics Data System (ADS)

    Bilbao, Luis

    2018-06-01

    The use of Faraday's Law of induction for calculating the induced currents in an extended conducting body is discussed. In a general case with arbitrary geometry, the solution to the problem of a moving metal object in the presence of a magnetic field is difficult and implies solving Maxwell's equations in a time-dependent situation. In many cases, including cases with good conductors (but not superconductors) Ampère's Law can be neglected and a simpler solution based solely in Faraday's law can be obtained. The integral form of Faraday's Law along any loop in the conducting body is equivalent to a Kirkhhoff's voltage law of a circuit. Therefore, a numerical solution can be obtained by solving a linear system of equations corresponding to a discrete number of loops in the body.

  12. Body-Based Gender Recognition Using Images from Visible and Thermal Cameras

    PubMed Central

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-01-01

    Gender information has many useful applications in computer vision systems, such as surveillance systems, counting the number of males and females in a shopping mall, accessing control systems in restricted areas, or any human-computer interaction system. In most previous studies, researchers attempted to recognize gender by using visible light images of the human face or body. However, shadow, illumination, and time of day greatly affect the performance of these methods. To overcome this problem, we propose a new gender recognition method based on the combination of visible light and thermal camera images of the human body. Experimental results, through various kinds of feature extraction and fusion methods, show that our approach is efficient for gender recognition through a comparison of recognition rates with conventional systems. PMID:26828487

  13. Body-Based Gender Recognition Using Images from Visible and Thermal Cameras.

    PubMed

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-01-27

    Gender information has many useful applications in computer vision systems, such as surveillance systems, counting the number of males and females in a shopping mall, accessing control systems in restricted areas, or any human-computer interaction system. In most previous studies, researchers attempted to recognize gender by using visible light images of the human face or body. However, shadow, illumination, and time of day greatly affect the performance of these methods. To overcome this problem, we propose a new gender recognition method based on the combination of visible light and thermal camera images of the human body. Experimental results, through various kinds of feature extraction and fusion methods, show that our approach is efficient for gender recognition through a comparison of recognition rates with conventional systems.

  14. The collision singularity in a perturbed n-body problem.

    NASA Technical Reports Server (NTRS)

    Sperling, H. J.

    1972-01-01

    Collision of all bodies in a perturbed n-body problem is analyzed by an extension of the author's results for a perturbed two-body problem (1969). A procedure is set forth to prove that the absolute value of energy in a perturbed n-body system remains bounded until the moment of collision. It is shown that the characteristics of motion in both perturbed problems are basically the same.

  15. Quantum many-body effects in x-ray spectra efficiently computed using a basic graph algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Prendergast, David

    2018-05-01

    The growing interest in using x-ray spectroscopy for refined materials characterization calls for an accurate electronic-structure theory to interpret the x-ray near-edge fine structure. In this work, we propose an efficient and unified framework to describe all the many-electron processes in a Fermi liquid after a sudden perturbation (such as a core hole). This problem has been visited by the Mahan-Noziéres-De Dominicis (MND) theory, but it is intractable to implement various Feynman diagrams within first-principles calculations. Here, we adopt a nondiagrammatic approach and treat all the many-electron processes in the MND theory on an equal footing. Starting from a recently introduced determinant formalism [Phys. Rev. Lett. 118, 096402 (2017), 10.1103/PhysRevLett.118.096402], we exploit the linear dependence of determinants describing different final states involved in the spectral calculations. An elementary graph algorithm, breadth-first search, can be used to quickly identify the important determinants for shaping the spectrum, which avoids the need to evaluate a great number of vanishingly small terms. This search algorithm is performed over the tree-structure of the many-body expansion, which mimics a path-finding process. We demonstrate that the determinantal approach is computationally inexpensive even for obtaining x-ray spectra of extended systems. Using Kohn-Sham orbitals from two self-consistent fields (ground and core-excited state) as input for constructing the determinants, the calculated x-ray spectra for a number of transition metal oxides are in good agreement with experiments. Many-electron aspects beyond the Bethe-Salpeter equation, as captured by this approach, are also discussed, such as shakeup excitations and many-body wave function overlap considered in Anderson's orthogonality catastrophe.

  16. Clinical physiology of bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  17. The 3D elliptic restricted three-body problem: periodic orbits which bifurcate from limiting restricted problems. Complex instability

    NASA Astrophysics Data System (ADS)

    Ollé, Mercè; Pacha, Joan R.

    1999-11-01

    In the present work we use certain isolated symmetric periodic orbits found in some limiting Restricted Three-Body Problems to obtain, by numerical continuation, families of symmetric periodic orbits of the more general Spatial Elliptic Restricted Three Body Problem. In particular, the Planar Isosceles Restricted Three Body Problem, the Sitnikov Problem and the MacMillan problem are considered. A stability study for the periodic orbits of the families obtained - specially focused to detect transitions to complex instability - is also made.

  18. Dynamical Chaos in the Wisdom-Holman Integrator: Origins and Solutions

    NASA Technical Reports Server (NTRS)

    Rauch, Kevin P.; Holman, Matthew

    1999-01-01

    We examine the nonlinear stability of the Wisdom-Holman (WH) symplectic mapping applied to the integration of perturbed, highly eccentric (e-0.9) two-body orbits. We find that the method is unstable and introduces artificial chaos into the computed trajectories for this class of problems, unless the step size chosen 1s small enough that PeriaPse is always resolved, in which case the method is generically stable. This 'radial orbit instability' persists even for weakly perturbed systems. Using the Stark problem as a fiducial test case, we investigate the dynamical origin of this instability and argue that the numerical chaos results from the overlap of step-size resonances; interestingly, for the Stark-problem many of these resonances appear to be absolutely stable. We similarly examine the robustness of several alternative integration methods: a time-regularized version of the WH mapping suggested by Mikkola; the potential-splitting (PS) method of Duncan, Levison, Lee; and two original methods incorporating approximations based on Stark motion instead of Keplerian motion. The two fixed point problem and a related, more general problem are used to conduct a comparative test of the various methods for several types of motion. Among the algorithms tested, the time-transformed WH mapping is clearly the most efficient and stable method of integrating eccentric, nearly Keplerian orbits in the absence of close encounters. For test particles subject to both high eccentricities and very close encounters, we find an enhanced version of the PS method-incorporating time regularization, force-center switching, and an improved kernel function-to be both economical and highly versatile. We conclude that Stark-based methods are of marginal utility in N-body type integrations. Additional implications for the symplectic integration of N-body systems are discussed.

  19. Finite‐fault Bayesian inversion of teleseismic body waves

    USGS Publications Warehouse

    Clayton, Brandon; Hartzell, Stephen; Moschetti, Morgan P.; Minson, Sarah E.

    2017-01-01

    Inverting geophysical data has provided fundamental information about the behavior of earthquake rupture. However, inferring kinematic source model parameters for finite‐fault ruptures is an intrinsically underdetermined problem (the problem of nonuniqueness), because we are restricted to finite noisy observations. Although many studies use least‐squares techniques to make the finite‐fault problem tractable, these methods generally lack the ability to apply non‐Gaussian error analysis and the imposition of nonlinear constraints. However, the Bayesian approach can be employed to find a Gaussian or non‐Gaussian distribution of all probable model parameters, while utilizing nonlinear constraints. We present case studies to quantify the resolving power and associated uncertainties using only teleseismic body waves in a Bayesian framework to infer the slip history for a synthetic case and two earthquakes: the 2011 Mw 7.1 Van, east Turkey, earthquake and the 2010 Mw 7.2 El Mayor–Cucapah, Baja California, earthquake. In implementing the Bayesian method, we further present two distinct solutions to investigate the uncertainties by performing the inversion with and without velocity structure perturbations. We find that the posterior ensemble becomes broader when including velocity structure variability and introduces a spatial smearing of slip. Using the Bayesian framework solely on teleseismic body waves, we find rake is poorly constrained by the observations and rise time is poorly resolved when slip amplitude is low.

  20. The dimensionality reduction at surfaces as a playground for many-body and correlation effects

    NASA Astrophysics Data System (ADS)

    Tejeda, A.; Michel, E. G.; Mascaraque, A.

    2013-03-01

    Low-dimensional systems have always deserved attention due to the peculiarity of their physics, which is different from or even at odds with three-dimensional expectations. This is precisely the case for many-body effects, as electron-electron correlation or electron-phonon coupling are behind many intriguing problems in condensed matter physics. These interesting phenomena at low dimensions can be studied in one of the paradigms of two dimensionality—the surface of crystals. The maturity of today's surface science techniques allows us to perform thorough experimental studies that can be complemented by the current strength of state-of-the-art calculations. Surfaces are thus a natural two-dimensional playground for studying correlation and many-body effects, which is precisely the object of this special section. This special section presents a collection of eight invited articles, giving an overview of the current status of selected systems, promising techniques and theoretical approaches for studying many-body effects at surfaces and low-dimensional systems. The first article by Hofmann investigates electron-phonon coupling in quasi-free-standing graphene by decoupling graphene from two different substrates with different intercalating materials. The following article by Kirschner deals with the study of NiO films by electron pair emission, a technique particularly well-adapted for studying high electron correlation. Bovensiepen investigates electron-phonon coupling via the femtosecond time- and angle-resolved photoemission spectroscopy technique. The next article by Malterre analyses the phase diagram of alkalis on Si(111):B and studies the role of many-body physics. Biermann proposes an extended Hubbard model for the series of C, Si, Sn and Pb adatoms on Si(111) and obtains the inter-electronic interaction parameters by first principles. Continuing with the theoretical studies, Bechstedt analyses the influence of on-site electron correlation in insulating antiferromagnetic surfaces. Ortega reports on the gap of molecular layers on metal systems, where the metal-organic interaction affects the organic gap through correlation effects. Finally, Cazalilla presents a study of the phase diagram of one-dimensional atoms or molecules displaying a Kondo-exchange interaction with the substrate. Acknowledgments The editors are grateful to all the invited contributors to this special section of Journal of Physics: Condensed Matter. We also thank the IOP Publishing staff for handling the administrative matters and the refereeing process. Correlation and many-body effects at surfaces contents The dimensionality reduction at surfaces as a playground for many-body and correlation effectsA Tejeda, E G Michel and A Mascaraque Electron-phonon coupling in quasi-free-standing grapheneJens Christian Johannsen, Søren Ulstrup, Marco Bianchi, Richard Hatch, Dandan Guan, Federico Mazzola, Liv Hornekær, Felix Fromm, Christian Raidel, Thomas Seyller and Philip Hofmann Exploring highly correlated materials via electron pair emission: the case of NiO/Ag(100)F O Schumann, L Behnke, C H Li and J Kirschner Coherent excitations and electron-phonon coupling in Ba/EuFe2As2 compounds investigated by femtosecond time- and angle-resolved photoemission spectroscopyI Avigo, R Cortés, L Rettig, S Thirupathaiah, H S Jeevan, P Gegenwart, T Wolf, M Ligges, M Wolf, J Fink and U Bovensiepen Understanding the insulating nature of alkali-metal/Si(111):B interfacesY Fagot-Revurat, C Tournier-Colletta, L Chaput, A Tejeda, L Cardenas, B Kierren, D Malterre, P Le Fèvre, F Bertran and A Taleb-Ibrahimi What about U on surfaces? Extended Hubbard models for adatom systems from first principlesPhilipp Hansmann, Loïg Vaugier, Hong Jiang and Silke Biermann Influence of on-site Coulomb interaction U on properties of MnO(001)2 × 1 and NiO(001)2 × 1 surfacesA Schrön, M Granovskij and F Bechstedt On the organic energy gap problemF Flores, E Abad, J I Martínez, B Pieczyrak and J Ortega Easy-axis ferromagnetic chain on a metallic surfaceMiguel A Cazalilla

  1. Computing singularities of perturbation series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less

  2. Learning phase transitions by confusion

    NASA Astrophysics Data System (ADS)

    van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.

    2017-02-01

    Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.

  3. Phase Space Approach to Dynamics of Interacting Fermions

    NASA Astrophysics Data System (ADS)

    Davidson, Shainen; Sels, Dries; Kasper, Valentin; Polkovnikov, Anatoli

    Understanding the behavior of interacting fermions is of fundamental interest in many fields ranging from condensed matter to high energy physics. Developing numerically efficient and accurate simulation methods is an indispensable part of this. Already in equilibrium, fermions are notoriously hard to handle due to the sign problem. Out of equilibrium, an important outstanding problem is the efficient numerical simulation of the dynamics of these systems. In this work we develop a new semiclassical phase-space approach (a.k.a. the truncated Wigner approximation) for simulating the dynamics of interacting lattice fermions in arbitrary dimensions. We demonstrate the strength of the method by comparing the results to exact diagonalization (ED) on small 1D and 2D systems. We furthermore present results on Many-Body Localized (MBL) systems in 1D and 2D, and demonstrate how the method can be used to determine the MBL transition.

  4. New central configurations of the (n + 1) -body problem

    NASA Astrophysics Data System (ADS)

    Fernandes, Antonio Carlos; Garcia, Braulio Augusto; Llibre, Jaume; Mello, Luis Fernando

    2018-01-01

    In this article we study central configurations of the (n + 1) -body problem. For the planar (n + 1) -body problem we study central configurations performed by n ≥ 2 bodies with equal masses at the vertices of a regular n-gon and one body with null mass. We also study spatial central configurations considering n bodies with equal masses at the vertices of a regular polyhedron and one body with null mass.

  5. Acoustical Method of Whole-Body Hydration Status Monitoring.

    PubMed

    Sarvazyan, A P; Tsyuryupa, S N; Calhoun, M; Utter, A

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  6. Acoustical method of whole-body hydration status monitoring

    NASA Astrophysics Data System (ADS)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  7. How cosmic rays were discovered and why they received this misnomer

    NASA Astrophysics Data System (ADS)

    Dorman, I. V.; Dorman, L. I.

    2014-05-01

    As many great discoveries, the phenomenon of cosmic rays was discovered mainly accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. We describe the history how step by step cosmic rays was discovered and why this phenomenon received misnomer, how in cosmic rays was discovered the first antiparticle - positron. These discoveries were recognized among greatest in the 20th Century and were awarded by Nobel Prize.

  8. A nonperturbative light-front coupled-cluster method

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2012-10-01

    The nonperturbative Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated in terms of Dirac's light-front coordinates and then approximated by the exponential-operator technique of the many-body coupled-cluster method. This approximation eliminates any need for the usual approximation of Fock-space truncation. Instead, the exponentiated operator is truncated, and the terms retained are determined by a set of nonlinear integral equations. These equations are solved simultaneously with an effective eigenvalue problem in the valence sector, where the number of constituents is small. Matrix elements can be calculated, with extensions of techniques from standard coupled-cluster theory, to obtain form factors and other observables.

  9. Proceedings of Meeting on Problems and Techniques Associated with the Decontamination and Sterilization of Spacecraft

    NASA Technical Reports Server (NTRS)

    Posner, Jack (Editor)

    1961-01-01

    The United States is about to embark on an ambitious program of Lunar and Space Exploration. This program will not only serve the needs of the national and international scientific community but will also enhance the prestige of the United States in the eyes of the peoples of the world.There are many problems associated with such pioneering investigations, among which is included the effecting of adequate safe- guards against biological contamination of celestial bodies with ter- restrial microorganisms. In the not too distant future, the reverse problem of preventing contamination of our terrestrial body with extraterrestrial microorganisms must be considered. In order to determine the current status of decontamination and sterilization procedures and to arrive at areas of research required in order to increase the knowledge in this field, the NASA sponsored a meeting at which time this problem was discussed. Invitations to attend this meeting were extended to agencies actively concerned with the development of spacecraft and launch vehicles as well as those groups involved in the investigation and development of decontamination and sterilization techniques. The meeting was held in Washington, D, C. on June 29, 1960. The recorded minutes of this meeting, which have been edited, are included in this paper, as well as a listing of recommendations resulting from the deliberations.

  10. A New Skin Tensiometer Device: Computational Analyses To Understand Biodynamic Excisional Skin Tension Lines.

    PubMed

    Paul, Sharad P; Matulich, Justin; Charlton, Nick

    2016-07-25

    One of the problems in planning cutaneous surgery is that human skin is anisotropic, or directionally dependent. Indeed, skin tension varies between individuals and at different body sites. Many a surgeon has tried to design different devices to measure skin tension to help plan excisional surgery, or to understand wound healing. However, many of the devices have been beset with problems due to many confounding variables - differences in technical ability, material (sutures) used and variability between different users. We describe the development of a new skin tensiometer that overcomes many historical technical issues. A new skin tension measuring device is presented here. It was designed to be less user-dependent, more reliable and usable on different bodily sites. The design and computational optimizations are discussed. Our skin tensiometer has helped understand the differences between incisional and excisional skin lines. Langer, who pioneered the concept of skin tension lines, created incisional lines that differ from lines caused by forces that need to be overcome when large wounds are closed surgically (excisional tension). The use of this innovative device has led to understanding of skin biomechanics and best excisional skin tension (BEST) lines.

  11. A New Skin Tensiometer Device: Computational Analyses To Understand Biodynamic Excisional Skin Tension Lines

    PubMed Central

    Paul, Sharad P.; Matulich, Justin; Charlton, Nick

    2016-01-01

    One of the problems in planning cutaneous surgery is that human skin is anisotropic, or directionally dependent. Indeed, skin tension varies between individuals and at different body sites. Many a surgeon has tried to design different devices to measure skin tension to help plan excisional surgery, or to understand wound healing. However, many of the devices have been beset with problems due to many confounding variables - differences in technical ability, material (sutures) used and variability between different users. We describe the development of a new skin tensiometer that overcomes many historical technical issues. A new skin tension measuring device is presented here. It was designed to be less user-dependent, more reliable and usable on different bodily sites. The design and computational optimizations are discussed. Our skin tensiometer has helped understand the differences between incisional and excisional skin lines. Langer, who pioneered the concept of skin tension lines, created incisional lines that differ from lines caused by forces that need to be overcome when large wounds are closed surgically (excisional tension). The use of this innovative device has led to understanding of skin biomechanics and best excisional skin tension (BEST) lines. PMID:27453542

  12. Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Kos, Pavel; Ljubotina, Marko; Prosen, Tomaž

    2018-04-01

    A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985), 10.1098/rspa.1985.0078] within the so-called diagonal approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form factor K (t ) (Fourier transform of the spectral pair correlation function) from semiclassics has been completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004), 10.1103/PhysRevLett.93.014103]. In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed the "many-body localized phase" and "ergodic phase." In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide a clear theoretical explanation for these observations. We compute K (t ) in the leading two orders in t and show its agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin-1 /2 models in a periodically kicking transverse field. In particular, we relate K (t ) to partition functions of a class of twisted classical Ising models on a ring of size t ; hence, the leading-order RMT behavior K (t )≃2 t is a consequence of translation and reflection symmetry of the Ising partition function.

  13. Musculoskeletal injuries description of an under-recognized injury problem among military personnel.

    PubMed

    Hauret, Keith G; Jones, Bruce H; Bullock, Steven H; Canham-Chervak, Michelle; Canada, Sara

    2010-01-01

    Although injuries are recognized as a leading health problem in the military, the size of the problem is underestimated when only acute traumatic injuries are considered. Injury-related musculoskeletal conditions are common in this young, active population. Many of these involve physical damage caused by micro-trauma (overuse) in recreation, sports, training, and job performance. The purpose of this analysis was to determine the incidence of injury-related musculoskeletal conditions in the military services (2006) and describe a standardized format in which to categorize and report them. The subset of musculoskeletal diagnoses found to be injury-related in previous military investigations was identified. Musculoskeletal injuries among nondeployed, active duty service members in 2006 were identified from military medical surveillance data. A matrix was used to report and categorize these conditions by injury type and body region. There were 743,547 injury-related musculoskeletal conditions in 2006 (outpatient and inpatient, combined), including primary and nonprimary diagnoses. In the matrix, 82% of injury-related musculoskeletal conditions were classified as inflammation/pain (overuse), followed by joint derangements (15%) and stress fractures (2%). The knee/lower leg (22%), lumbar spine (20%), and ankle/foot (13%) were leading body region categories. When assessing the magnitude of the injury problem in the military services, injury-related musculoskeletal conditions should be included. When these injuries are combined with acute traumatic injuries, there are almost 1.6 million injury-related medical encounters each year. The matrix provides a standardized format to categorize these injuries, make comparisons over time, and focus prevention efforts on leading injury types and/or body regions. Published by Elsevier Inc.

  14. Dignity and the ownership and use of body parts.

    PubMed

    Foster, Charles

    2014-10-01

    Property-based models of the ownership of body parts are common. They are inadequate. They fail to deal satisfactorily with many important problems, and even when they do work, they rely on ideas that have to be derived from deeper, usually unacknowledged principles. This article proposes that the parent principle is always human dignity, and that one will get more satisfactory answers if one interrogates the older, wiser parent instead of the younger, callow offspring. But human dignity has a credibility problem. It is often seen as hopelessly amorphous or incurably theological. These accusations are often just. But a more thorough exegesis exculpates dignity and gives it its proper place at the fountainhead of bioethics. Dignity is objective human thriving. Thriving considerations can and should be applied to dead people as well as live ones. To use dignity properly, the unit of bioethical analysis needs to be the whole transaction rather than (for instance) the doctor-patient relationship. The dignity interests of all the stakeholders are assessed in a sort of utilitarianism. Its use in relation to body part ownership is demonstrated. Article 8(1) of the European Convention of Human Rights endorses and mandates this approach.

  15. Space Solar Power Multi-body Dynamics and Controls, Concepts for the Integrated Symmetrical Concentrator Configuration

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; McDonald, Emmett J.

    2000-01-01

    Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.

  16. Efficient implementation of the many-body Reactive Bond Order (REBO) potential on GPU

    NASA Astrophysics Data System (ADS)

    Trędak, Przemysław; Rudnicki, Witold R.; Majewski, Jacek A.

    2016-09-01

    The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPU to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.

  17. Quantum Entanglement in Neural Network States

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-04-01

    Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural networks in representing quantum many-body states regardless of how much entanglement they possess, which paves a novel way to bridge computer-science-based machine-learning techniques to outstanding quantum condensed-matter physics problems.

  18. THE REGULATION ROLE OF CAROTID BODY PERIPHERAL CHEMORECEPTORS IN PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL CONDITIONS.

    PubMed

    Lazovic, Biljana; Zlatkovic Svenda, Mirjana; Durmic, Tijana; Stajic, Zoran; Duric, Vesna; Zugic, Vladimir

    2016-11-01

    The major oxygen sensors in the human body are peripheral chemoreceptors. also known as interoreceptors- as connected with internal organs, located in the aortic arch and in the body of the common carotid artery. Chemoreceptor function under physiological conditions. Stimulation of peripheral chemoreceptors during enviromental hypoxia causes a reflex-mediated increased ventilation, followed by the increase of the muscle sympatic activity, aiming to maintain tissue oxygen homeostatis, as well as glucosae, homeostatis. Besides that, peripheral chemoreceptors interact with central chemoreceptors. responsible for carbon dioxide changes . and they are able to modulate each other. Chemoreceptor function in pathophysiological conditions. Investigations of respiratory function in many pathological processes, such as hypertension, obstructive sleep apnea, congestive heart failure and many other diseases that are presented with enhanced peripheral chemosensitivity and impaired functional sy mpatholysis ultimately determine the peripheral chemorcceptor role and significance of peripheral chemoreceptors in the process of those pathological conditions development. Considering this, the presumed influence of peripheral chemoreceptors is important in patients having the above mentioned pathology. The importance and the role of peripheral chemoreceptors in the course of the breathing control is still controversial, despite many scientific attempts to solve this problem. The main objective of this review is to give the latest data on the peripheral chemoreceptor role and to highlight the importance of peripheral chemoreceptors for maintaining of oxygen homeostasis in pateints with hypoxia caused by either physiological or pathological conditions.

  19. Experimental characterization of a quantum many-body system via higher-order correlations.

    PubMed

    Schweigler, Thomas; Kasper, Valentin; Erne, Sebastian; Mazets, Igor; Rauer, Bernhard; Cataldini, Federica; Langen, Tim; Gasenzer, Thomas; Berges, Jürgen; Schmiedmayer, Jörg

    2017-05-17

    Quantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model, relevant for diverse disciplines ranging from particle physics to condensed matter. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.

  20. Measurement of relative density of tissue using wavelet analysis and neural nets

    NASA Astrophysics Data System (ADS)

    Suyatinov, Sergey I.; Kolentev, Sergey V.; Buldakova, Tatyana I.

    2001-01-01

    Development of methods for indirect measurement of substance's consistence and characteristics is highly actual problem of medical diagnostics. Many diseases bring about changes of tissue density or appearances of alien bodies (e.g. stones in kidneys or gallbladders). Propose to use wavelet-analysis and neural nets for indirect measurement of relative density of tissue by images of internal organs. It shall allow to reveal a disease on early stage.

  1. Medical Marijuana.

    PubMed

    Capriotti, Teri

    2016-01-01

    The use of medicinal marijuana is increasing. Marijuana has been shown to have therapeutic effects in certain patients, but further research is needed regarding the safety and efficacy of marijuana as a medical treatment for various conditions. A growing body of research validates the use of marijuana for a variety of healthcare problems, but there are many issues surrounding the use of this substance. This article discusses the use of medical marijuana and provides implications for home care clinicians.

  2. Veritas Asteroid Family Still Holds Secrets?

    NASA Astrophysics Data System (ADS)

    Novakovic, B.

    2012-12-01

    Veritas asteroid family has been studied for about two decades. These studies have revealed many secrets, and a respectable knowledge about this family had been collected. Here I will present many of these results and review the current knowledge about the family. However, despite being extensively studied, Veritas family is still a mystery. This will be illustrated through the presentation of the most interesting open problems. Was there a secondary collision within this family? Does asteroid (490) Veritas belong to the family named after it? How large was the parent body of the family? Finally, some possible directions for future studies that aims to address these questions are discussed as well.

  3. Status and future of lunar geoscience

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Moon is of special interest among the many and diverse bodies of the solar system because it serves as a scientific baseline for understanding the terrestrial planets, its origin is closely tied to the early history of the Earth, and its proximity permits a variety of space applications such as mining and establishment of bases and colonies. Data acquisition and analysis have enabled advances to be made and the remaining questions in many fields of lunar geoscience to be identified. The status and unresolved problems of lunar science are discussed. Immediate needs, new unmanned missions, and a return to the Moon (a lunar base) are examined.

  4. Wicked problems and a 'wicked' solution.

    PubMed

    Walls, Helen L

    2018-04-13

    'Wicked' is the term used to describe some of the most challenging and complex issues of our time, many of which threaten human health. Climate change, biodiversity loss, persisting poverty, the advancing obesity epidemic, and food insecurity are all examples of such wicked problems. However there is a strong body of evidence describing the solutions for addressing many of these problems. Given that much is known about how many of these problems could be addressed - and given the risks of not acting - what will it take to create the 'tipping point' needed for effective action? A recent (2015) court ruling in The Hague held that the Dutch government's stance on climate change was illegal, ordering them to cut greenhouse gas emissions by at least 25% within 5 years (by 2020), relative to 1990 levels. The case was filed on behalf of 886 Dutch citizens, suing the government for violating human rights and climate changes treaties by failing to take adequate action to prevent the harmful impacts of climate change. This judicial ruling has the potential to provide a way forward, inspiring other civil movements and creating a template from which to address other wicked problems. This judicial strategy to address the need to lower greenhouse gas emissions in the Netherlands is not a magic bullet, and requires a particular legal and institutional setting. However it has the potential to be a game-changer - providing an example of a strategy for achieving domestic regulatory change that is likely to be replicable in some countries elsewhere, and providing an example of a particularly 'wicked' (in the positive, street-slang sense of the word) strategy to address seemingly intractable and wicked problems.

  5. Error driven remeshing strategy in an elastic-plastic shakedown problem

    NASA Astrophysics Data System (ADS)

    Pazdanowski, Michał J.

    2018-01-01

    A shakedown based approach has been for many years successfully used to calculate the distributions of residual stresses in bodies made of elastic-plastic materials and subjected to cyclic loads exceeding their bearing capacity. The calculations performed indicated the existence of areas characterized by extremely high gradients and rapid changes of sign over small areas in the stress field sought. In order to account for these changes in sign, relatively dense nodal meshes had to be used during calculations in disproportionately large parts of considered bodies, resulting in unnecessary expenditure of computer resources. Therefore the effort was undertaken to limit the areas of high mesh densities and drive the mesh regeneration algorithm by selected error indicators.

  6. [A Matter of Nerves - Applied Neurophysiology of Female Sexuality].

    PubMed

    Bischof, Karoline

    2015-06-17

    Sexual problems are often attributed to psychological or physical deficits that are difficult to modify, or to a poor lover. In contrast, the neurophysiological interaction between body and brain can be understood as fundamental for the genital and emotional experience of sexuality. Neuropsychological discoveries and clinical observations show that elevated muscle tension, superficial breathing and reduced body movement, as employed by many individuals during sexual arousal, will limit the perception of arousal and the degree of sexual pleasure. In contrast, deep breathing and variations in movement and muscle tension support it. Through the use of self awareness exercises and physical learning steps, patients can integrate their sexuality and increases its resistance to psychological, medical and relational interferences.

  7. Problem Solving: Helping Students Move From Novices Toward Experts

    NASA Astrophysics Data System (ADS)

    Harper, Kathleen A.

    2010-10-01

    When introductory physics students engage in problem solving, they often exhibit behaviors that can frustrate their teachers. Some well-known examples of these habits include refusing to draw free-body diagrams, hunting through the book to find an example problem to use as a (perhaps inappropriate) template, and the classic ``plug-n-chug'' mentality. Studies in science education and cognitive science have yielded rational explanations for many of these novice behaviors and lay a groundwork for instructors to aid their students in beginning to develop more expert-like skills and behaviors. A few examples of these studies, as well as curricular tools that have developed as a result, will be shared. These tools not only encourage students to try more expert-like strategies, but also prime them for developing conceptual understanding.

  8. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem.

    PubMed

    Englander, Jacob A; Conway, Bruce A

    2017-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto.

  9. Fermi gases with imaginary mass imbalance and the sign problem in Monte-Carlo calculations

    NASA Astrophysics Data System (ADS)

    Roscher, Dietrich; Braun, Jens; Chen, Jiunn-Wei; Drut, Joaquín E.

    2014-05-01

    Fermi gases in strongly coupled regimes are inherently challenging for many-body methods. Although progress has been made analytically, quantitative results require ab initio numerical approaches, such as Monte-Carlo (MC) calculations. However, mass-imbalanced and spin-imbalanced gases are not accessible to MC calculations due to the infamous sign problem. For finite spin imbalance, the problem can be circumvented using imaginary polarizations and analytic continuation, and large parts of the phase diagram then become accessible. We propose to apply this strategy to the mass-imbalanced case, which opens up the possibility to study the associated phase diagram with MC calculations. We perform a first mean-field analysis which suggests that zero-temperature studies, as well as detecting a potential (tri)critical point, are feasible.

  10. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Conway, Bruce

    2016-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto.

  11. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem

    PubMed Central

    Englander, Jacob A.; Conway, Bruce A.

    2017-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto. PMID:29515289

  12. A survey of body sensor networks.

    PubMed

    Lai, Xiaochen; Liu, Quanli; Wei, Xin; Wang, Wei; Zhou, Guoqiao; Han, Guangyi

    2013-04-24

    The technology of sensor, pervasive computing, and intelligent information processing is widely used in Body Sensor Networks (BSNs), which are a branch of wireless sensor networks (WSNs). BSNs are playing an increasingly important role in the fields of medical treatment, social welfare and sports, and are changing the way humans use computers. Existing surveys have placed emphasis on the concept and architecture of BSNs, signal acquisition, context-aware sensing, and system technology, while this paper will focus on sensor, data fusion, and network communication. And we will introduce the research status of BSNs, the analysis of hotspots, and future development trends, the discussion of major challenges and technical problems facing currently. The typical research projects and practical application of BSNs are introduced as well. BSNs are progressing along the direction of multi-technology integration and intelligence. Although there are still many problems, the future of BSNs is fundamentally promising, profoundly changing the human-machine relationships and improving the quality of people's lives.

  13. [Giving medico-legal opinions in cases with suspicion of medical mistake. part 2. Expert evidence in cases with suspicion of medical mistake - expectations, possibilities, threats…].

    PubMed

    Chowaniec, Czesław; Chowaniec, Małgorzata; Wilk, Mateusz

    Problems of medical mistake and therapeutic failure are inextricably linked with realization of medical services. In recent years, mostly by the media and increasing demanding attitude, a rapid increase of initiated cases opened by judicial body in conjunction with medical mistake made by medical staff is observed. Making medico-legal opinions is not easy task and often face many difficulties. These consist of lacks in medical documentation, time rigor, formal tightening and need to create team that consist of both forensic medicine specialist and clinicians, who together shall write complex medico-legal opinion. This article touches the essence of the opinion-making problem in the aspect of medical mistake. It shows specifics of the role of forensic medicine specialist, his challenges and difficulties in creating opinions. The article confronts real possibilities of court experts with expectations of judicial body, outlining new challenges and dangers which court experts have to face.

  14. A Survey of Body Sensor Networks

    PubMed Central

    Lai, Xiaochen; Liu, Quanli; Wei, Xin; Wang, Wei; Zhou, Guoqiao; Han, Guangyi

    2013-01-01

    The technology of sensor, pervasive computing, and intelligent information processing is widely used in Body Sensor Networks (BSNs), which are a branch of wireless sensor networks (WSNs). BSNs are playing an increasingly important role in the fields of medical treatment, social welfare and sports, and are changing the way humans use computers. Existing surveys have placed emphasis on the concept and architecture of BSNs, signal acquisition, context-aware sensing, and system technology, while this paper will focus on sensor, data fusion, and network communication. And we will introduce the research status of BSNs, the analysis of hotspots, and future development trends, the discussion of major challenges and technical problems facing currently. The typical research projects and practical application of BSNs are introduced as well. BSNs are progressing along the direction of multi-technology integration and intelligence. Although there are still many problems, the future of BSNs is fundamentally promising, profoundly changing the human-machine relationships and improving the quality of people's lives. PMID:23615581

  15. GPU-accelerated computing for Lagrangian coherent structures of multi-body gravitational regimes

    NASA Astrophysics Data System (ADS)

    Lin, Mingpei; Xu, Ming; Fu, Xiaoyu

    2017-04-01

    Based on a well-established theoretical foundation, Lagrangian Coherent Structures (LCSs) have elicited widespread research on the intrinsic structures of dynamical systems in many fields, including the field of astrodynamics. Although the application of LCSs in dynamical problems seems straightforward theoretically, its associated computational cost is prohibitive. We propose a block decomposition algorithm developed on Compute Unified Device Architecture (CUDA) platform for the computation of the LCSs of multi-body gravitational regimes. In order to take advantage of GPU's outstanding computing properties, such as Shared Memory, Constant Memory, and Zero-Copy, the algorithm utilizes a block decomposition strategy to facilitate computation of finite-time Lyapunov exponent (FTLE) fields of arbitrary size and timespan. Simulation results demonstrate that this GPU-based algorithm can satisfy double-precision accuracy requirements and greatly decrease the time needed to calculate final results, increasing speed by approximately 13 times. Additionally, this algorithm can be generalized to various large-scale computing problems, such as particle filters, constellation design, and Monte-Carlo simulation.

  16. Distributed digital signal processors for multi-body flexible structures

    NASA Technical Reports Server (NTRS)

    Lee, Gordon K. F.

    1992-01-01

    Multi-body flexible structures, such as those currently under investigation in spacecraft design, are large scale (high-order) dimensional systems. Controlling and filtering such structures is a computationally complex problem. This is particularly important when many sensors and actuators are located along the structure and need to be processed in real time. This report summarizes research activity focused on solving the signal processing (that is, information processing) issues of multi-body structures. A distributed architecture is developed in which single loop processors are employed for local filtering and control. By implementing such a philosophy with an embedded controller configuration, a supervising controller may be used to process global data and make global decisions as the local devices are processing local information. A hardware testbed, a position controller system for a servo motor, is employed to illustrate the capabilities of the embedded controller structure. Several filtering and control structures which can be modeled as rational functions can be implemented on the system developed in this research effort. Thus the results of the study provide a support tool for many Control/Structure Interaction (CSI) NASA testbeds such as the Evolutionary model and the nine-bay truss structure.

  17. The Problem of Confounding in Studies of the Effect of Maternal Drug Use on Pregnancy Outcome

    PubMed Central

    Källén, Bengt

    2012-01-01

    In most epidemilogical studies, the problem of confounding adds to the uncertainty in conclusions drawn. This is also true for studies on the effect of maternal drug use on birth defect risks. This paper describes various types of such confounders and discusses methods to identify and adjust for them. Such confounders can be found in maternal characteristics like age, parity, smoking, use of alcohol, and body mass index, subfertility, and previous pregnancies including previous birth of a malformed child, socioeconomy, race/ethnicity, or country of birth. Confounding by concomitant maternal drug use may occur. A geographical or seasonal confounding can exist. In rare instances, infant sex and multiple birth can appear as confounders. The most difficult problem to solve is often confounding by indication. The problem of confounding is less important for congenital malformations than for many other pregnancy outcomes. PMID:22190949

  18. Periodic orbits in the restricted four-body problem with two equal masses

    NASA Astrophysics Data System (ADS)

    Burgos-García, Jaime; Delgado, Joaquín

    2013-06-01

    The restricted (equilateral) four-body problem consists of three bodies of masses m 1, m 2 and m 3 (called primaries) lying in a Lagrangian configuration of the three-body problem i.e., they remain fixed at the apices of an equilateral triangle in a rotating coordinate system. A massless fourth body moves under the Newtonian gravitation law due to the three primaries; as in the restricted three-body problem (R3BP), the fourth mass does not affect the motion of the three primaries. In this paper we explore symmetric periodic orbits of the restricted four-body problem (R4BP) for the case of two equal masses where they satisfy approximately the Routh's critical value. We will classify them in nine families of periodic orbits. We offer an exhaustive study of each family and the stability of each of them.

  19. Time Scale for Adiabaticity Breakdown in Driven Many-Body Systems and Orthogonality Catastrophe

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim

    2017-11-01

    The adiabatic theorem is a fundamental result in quantum mechanics, which states that a system can be kept arbitrarily close to the instantaneous ground state of its Hamiltonian if the latter varies in time slowly enough. The theorem has an impressive record of applications ranging from foundations of quantum field theory to computational molecular dynamics. In light of this success it is remarkable that a practicable quantitative understanding of what "slowly enough" means is limited to a modest set of systems mostly having a small Hilbert space. Here we show how this gap can be bridged for a broad natural class of physical systems, namely, many-body systems where a small move in the parameter space induces an orthogonality catastrophe. In this class, the conditions for adiabaticity are derived from the scaling properties of the parameter-dependent ground state without a reference to the excitation spectrum. This finding constitutes a major simplification of a complex problem, which otherwise requires solving nonautonomous time evolution in a large Hilbert space.

  20. A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: theory, implementation, and examples.

    PubMed

    Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav

    2015-01-28

    We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N(6) does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B2N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.

  1. How to fix a broken clock

    PubMed Central

    Schroeder, Analyne M.; Colwell, Christopher S.

    2013-01-01

    Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article, we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system. PMID:24120229

  2. Complex basis functions for molecular resonances: Methodology and applications

    NASA Astrophysics Data System (ADS)

    White, Alec; McCurdy, C. William; Head-Gordon, Martin

    The computation of positions and widths of metastable electronic states is a challenge for molecular electronic structure theory because, in addition to the difficulty of the many-body problem, such states obey scattering boundary conditions. These resonances cannot be addressed with naïve application of traditional bound state electronic structure theory. Non-Hermitian electronic structure methods employing complex basis functions is one way that we may rigorously treat resonances within the framework of traditional electronic structure theory. In this talk, I will discuss our recent work in this area including the methodological extension from single determinant SCF-based approaches to highly correlated levels of wavefunction-based theory such as equation of motion coupled cluster and many-body perturbation theory. These approaches provide a hierarchy of theoretical methods for the computation of positions and widths of molecular resonances. Within this framework, we may also examine properties of resonances including the dependence of these parameters on molecular geometry. Some applications of these methods to temporary anions and dianions will also be discussed.

  3. Fad diets and obesity--Part I: Measuring weight in a clinical setting.

    PubMed

    Moyad, Mark A

    2004-04-01

    Obesity is a recognized epidemic in many regions around the world and billions of dollars are spent each year in attempting to combat this problem. However, before a discussion of the different conventional and alternative treatments for obesity can be initiated, it is first critical to determine whether or not a certain individual is actually overweight, obese, or has an excess of adipose tissue. Therefore, a review of the various popular and unpopular measurements of obesity is needed. A variety of measurements exist such as bioelectrical impedance, body mass index (BMI), crude weight, densitometry, dual energy x-ray absorptiometry (DEXA), lean body mass (LBM), skinfold thickness, and waist-to-hip ratio (WHR). All of these measurements contain inherent advantages and disadvantages, but many of these can still be used in a clinical setting. Health professionals should acquaint themselves with these different measurements in order to take the first step in bringing attention to and potentially treating a condition that affects virtually every medical discipline.

  4. Hydrodynamic optimality of balistiform and gymnotiform locomotion

    NASA Astrophysics Data System (ADS)

    Sprinkle, Brennan; Bale, Rahul; Bhalla, Amneet Pal Singh; MacIver, Malcolm A.; Patankar, Neelesh A.

    2017-03-01

    Some groups of fish have evolved to generate propulsion using undulatory elongated fins while maintaining a relatively rigid body. The fins run along the body axis and can be dorsal, ventral, dorsoventral pairs or left-right pairs. These fish are termed as median/paired fin (MPF) swimmers. The movement of these groups of fish was studied in an influential series of papers by Lighthill and Blake. In this work, we revisit this problem by performing direct numerical simulations. We interrogate two issues. First, we investigate and explain a key morphological feature, which is the diagonal fin insertion found in many MPF swimmers such as the knifefish. Not only are these results of biological relevance, but these are also useful in engineering to design bioinspired highly maneuverable underwater vehicles. Second, we investigate whether there is a mechanical advantage in the form of reduced cost of transport (COT) (energy spent per unit distance traveled) for not undulating the entire body. We find that a rigid body attached to an undulating fin leads to a reduced COT.

  5. Nanomaterials for Drugs Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Márquez, Francisco; Morant, Carmen

    Nanotechnology has revolutionized engineering, biology, chemistry, physics and medicine of today. These disciplines are evolving thanks to the ongoing development of new materials and applications. Nanomedicine, as application of nanotechnology in the field of health care, has undergone unprecedented development. Some of these changes have real applications as, for example, the use of nanoparticles in MRI imaging, in hyperthermia, in immunotherapy, or to improve the bioavailability of drugs, among others. Furthermore, when a drug is administered to a patient, the blood distributes it throughout the body. In the case of very localized diseases (i.e. tumors), only a small fraction ofmore » the drug reaches the target. Chemotherapy is one of the most aggressive treatment options used in some types of cancer, and is usually administered intravenously. The drug circulates throughout the body, reaching and destroying healthy and cancerous tissues, producing side effects throughout the body, sometimes with serious consequences for the health of the patient (nephrotoxicity, cardiotoxicity, peripheral neuropathy, anemia, etc.) in this type of therapy. Among the many applications of nanotechnology, the fabrication of nanostructures capable of safely transporting these drugs is seen as a strategy for reducing these side effects. Nanoparticles are able to carry and release the drug in the right place and with the required dose, greatly reducing the problems associated with direct treatment with these drugs. In recent years, there have been continuous improvements in the design and development of new tailor-made drug delivery systems, including hollow magnetic nanoparticles, liposomal structures, dendrimers, nanoporous silicon, etc. These structures can be obtained with different molecular weights (in the case of polymers), structures, shapes, and even with the appropriate functional groups for interaction at the desired positions. But, a great effort is still required to solve many of the current problems, including toxicity, aggregation, solubility and stability in the human body, physiological processes of elimination, identification of targets by highly specific receptors, controlled drug release over time, etc.« less

  6. Nanomaterials for Drugs Delivery

    DOE PAGES

    Márquez, Francisco; Morant, Carmen

    2014-07-01

    Nanotechnology has revolutionized engineering, biology, chemistry, physics and medicine of today. These disciplines are evolving thanks to the ongoing development of new materials and applications. Nanomedicine, as application of nanotechnology in the field of health care, has undergone unprecedented development. Some of these changes have real applications as, for example, the use of nanoparticles in MRI imaging, in hyperthermia, in immunotherapy, or to improve the bioavailability of drugs, among others. Furthermore, when a drug is administered to a patient, the blood distributes it throughout the body. In the case of very localized diseases (i.e. tumors), only a small fraction ofmore » the drug reaches the target. Chemotherapy is one of the most aggressive treatment options used in some types of cancer, and is usually administered intravenously. The drug circulates throughout the body, reaching and destroying healthy and cancerous tissues, producing side effects throughout the body, sometimes with serious consequences for the health of the patient (nephrotoxicity, cardiotoxicity, peripheral neuropathy, anemia, etc.) in this type of therapy. Among the many applications of nanotechnology, the fabrication of nanostructures capable of safely transporting these drugs is seen as a strategy for reducing these side effects. Nanoparticles are able to carry and release the drug in the right place and with the required dose, greatly reducing the problems associated with direct treatment with these drugs. In recent years, there have been continuous improvements in the design and development of new tailor-made drug delivery systems, including hollow magnetic nanoparticles, liposomal structures, dendrimers, nanoporous silicon, etc. These structures can be obtained with different molecular weights (in the case of polymers), structures, shapes, and even with the appropriate functional groups for interaction at the desired positions. But, a great effort is still required to solve many of the current problems, including toxicity, aggregation, solubility and stability in the human body, physiological processes of elimination, identification of targets by highly specific receptors, controlled drug release over time, etc.« less

  7. Aero-disaster in Port Harcourt, Nigeria: a case study.

    PubMed

    Seleye-Fubara, D; Etebu, E N; Amakiri, Cnt

    2011-01-01

    Aero-disaster in Nigeria is posing a serious problem to government, the public and relatives of victims, as many lives are lost in a single event. A case study based on an incident at an international airport in Nigeria on December 10, 2005. Detailed autopsy was performed on 97 fully identified bodies out of the 106 victims. Variables considered include ages, sex, pattern of injuries and death as well as problems associated with identification of bodies. A total of 97 (91.5%) out of the 106 deaths recorded were autopsied. Nine (8.5%) bodies were beyond identification, and hence autopsy could not be properly done on them. Fifty-nine (60.8%) were males and 38 (39.2%) were females, giving a ratio of 1.4:1. Sixty-one (62.9%) were children and adolescents below the age of 20 years. Severe burns 27 (27.8%), multiple injuries with burns 21 (21.6%), inhalation of fumes 20 (20.6%), multiple injuries only 16 (16.5%), severe head injury alone 11 (11.3%) and ruptured viscous 2 (2.1%) were the causes of death at autopsy in that order of frequency. Aero-disaster, though rare in Port Harcourt, is posing a serious problem in Nigeria in recent times. Various agencies should be established to adequately control mass disasters in Nigeria. Adequate maintenance of aircraft and strict observation and enforcement of aviation laws may drastically reduce the frequency of accidents and subsequent deaths.

  8. Concluding Remarks

    NASA Astrophysics Data System (ADS)

    Gibson, B. F.

    2007-01-01

    These observations represent the author's personal perspective regarding the ideas presented at this third Asia Pacific Conference on Few-Body Problems in Physics. It is not intended as a summary talk in the traditional sense, but is comprised of remarks emphasizing physics not speakers. Many of the talks covered results of those other than the speaker, and the ideas discussed will hopefully outlive the rapporteurs bringing these ideas to life at APFB05 held at the Suranaree University of Technology in Nakhon Ratchasima.

  9. [Knee-related Pain Problems during Pregnancy Correlate with an Increase in Body Weight. Results of a Prospective Study].

    PubMed

    Spahn, G; Lesser, A; Hofmann, G O; Schiele, R

    2015-10-01

    This study aimed to evaluate the incidence of knee pain or the intensification of knee-related problems during pregnancy. We hypothesised that the occurrence of knee problems correlates with an increase in body weight during pregnancy. A total of 326 women (30(th)-40(th) week of pregnancy) were involved in this study. At onset of the pregnancy, the patients were 29.4 [95% CI 28.8-29.9] years of age. We asked all patients retrospectively about their anthropometric data at the beginning of pregnancy. All patients provided information about former knee problems, knee problems occurring after onset of pregnancy or any increase in these problems. These knee patients were re-evaluated 6 weeks after childbirth. At follow-up, the patients were asked about their knee problems and about their body weight. At the beginning of pregnancy, the mean body weight was 68.0 kg (95% CI 64.4-69.6; range 41-117). The mean BMI of all patients was 24.5 kg/m² (25% CI 23.9-25.0; range 17.0-26.0). The absolute body weight increased by 13.8 kg (95% CI 13.2-1.5; range 3-38). A total of 24 patients (7.4%) reported new knee problems during pregnancy. 2 patients reported an increase in knee-related problems during pregnancy (0.6%). The incidence of knee-related problems (new cases and increase of problems n=26) was 26/326 or 7.6/100 pregnancies. In patients without knee problems, the pregnancy-related increase in the BMI (ΔBMI) was 4.8 kg/m² (95% CI 4.6-5.1, range 1.1-14.1). In cases with incident knee problems, the ΔBMI was 5.9 kg/m² (95% CI 4.9-6.9, range 2.1-11.8). The increase in body weight (Δbody weight) in patients without knee problems was 13.5 kg (95% CI 12.9-14.2, range 3-38). Patients with incident knee pain experienced a Δbody weight of 16.8 kg (95% CI 13.9-19.4, range 6-35). The differences in ΔBMI and Δbody weight were significant (p=0.009). A Δbody weight >20 kg was a significant risk factor for pregnancy-related knee pain significant risk factor pregnancy related pain. A total of 23 incident cases (92%) underwent a follow-up interview 6 weeks after parturition. At this time, a total of 6 patients (26.1%) had not experienced further knee problems, whereas persistent knee problems were reported in the remaining patients (73.9%). Patients without any knee complaints [body weight 72.5 kg (CI 95% 60.9-83.9)] tended to have a lower body weight at follow-up than patients with persistent knee pain [85.5 kg (CI 95% 71.8-99.1), p=0.162]. There is a body weight-associated increase in the incidence of functional knee pain in pregnant women. In about one-third of the cases, knee problems persist after pregnancy and are associated with a residual increase in body weight. Thus, we conclude that body weight is a potential risk factor for functional knee pain. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Cycling chair: a novel vehicle for the lower limbs disabled

    NASA Astrophysics Data System (ADS)

    Takahashi, Takayuki; Nishiyyama, Yuuki; Ozawa, Yukiko; Nakano, Eiji; Handa, Yasunobu

    2005-12-01

    The goal of our research is to develop a practical vehicle for lower limbs disabled to improve their mobility and health. The most significant mechanical character of the proposed vehicle is that it is driven by the lower limbs of the disabled themselves. We call it as Cycling Chair. Disuse of the lower limbs leads many subsidiary issues on health, deteriorating the whole-body circulation, it is the most serious problem, cases so-called the disuse syndrome. The proposed Cycling Chair solves those problems by using the leg-driven mechanism. In this paper, the mechanism of the Cycling Chair and the way to drive the chair by paraplegics are discussed. Some experimental results are also presented.

  11. Mind-body dualism and the biopsychosocial model of pain: what did Descartes really say?

    PubMed

    Duncan, G

    2000-08-01

    In the last two decades there have been many critics of western biomedicine's poor integration of social and psychological factors in questions of human health. Such critiques frequently begin with a rejection of Descartes' mind-body dualism, viewing this as the decisive philosophical moment, radically separating the two realms in both theory and practice. It is argued here, however, that many such readings of Descartes have been selective and misleading. Contrary to the assumptions of many recent authors, Descartes' dualism does attempt to explain the union of psyche and soma - with more depth than is often appreciated. Pain plays a key role in Cartesian as well as contemporary thinking about the problem of dualism. Theories of the psychological origins of pain symptoms persisted throughout the history of modern medicine and were not necessarily discouraged by Cartesian mental philosophy. Moreover, the recently developed biopsychosocial model of pain may have more in common with Cartesian dualism than it purports to have. This article presents a rereading of Descartes' mental philosophy and his views on pain. The intention is not to defend his theories, but to re-evaluate them and to ask in what respect contemporary theories represent any significant advance in philosophical terms.

  12. Clinical Holistic Medicine: Classic Art of Healingor the Therapeutic Touch

    PubMed Central

    Ventegodt, Søren; Morad, Mohammed; Merrick, Joav

    2004-01-01

    Touching is often a forgotten part of medicine. The manual medicine or therapeutic touch (TT) is much more powerful than many modern, biomedically oriented physicians think. Pain and discomfort can be alleviated just by touching the sick area and in this way help the patient to be in better contact with the tissue and organs of their body. Lack of presence in the body seems to be connected with many symptoms that can be readily reversed simply by sensitive touch. When touch is combined with therapeutic work on mind and feelings, holistic healing seems to be facilitated and many problems can be solved in a direct and easy way in the clinic without drugs. This paper gives examples of the strength of manual medicine or therapeutic touch in its most simple form, and points to the power of physical contact between physician and his patient in the context of the theory and practice of holistic healing. Intimacy seems highly beneficial for the process of healing and it is very important to distinguish clearly between intimacy and sexuality for the physician and his patent to be able to give and receive touch without fear and without holding back emotionally. PMID:15010568

  13. Multiple representations and free-body diagrams: Do students benefit from using them?

    NASA Astrophysics Data System (ADS)

    Rosengrant, David R.

    2007-12-01

    Introductory physics students have difficulties understanding concepts and solving problems. When they solve problems, they use surface features of the problems to find an equation to calculate a numerical answer often not understanding the physics in the problem. How do we help students approach problem solving in an expert manner? A possible answer is to help them learn to represent knowledge in multiple ways and then use these different representations for conceptual understanding and problem solving. This solution follows from research in cognitive science and in physics education. However, there are no studies in physics that investigate whether students who learn to use multiple representations are in fact better problem solvers. This study focuses on one specific representation used in physics--a free body diagram. A free-body diagram is a graphical representation of forces exerted on an object of interest by other objects. I used the free-body diagram to investigate five main questions: (1) If students are in a course where they consistently use free body diagrams to construct and test concepts in mechanics, electricity and magnetism and to solve problems in class and in homework, will they draw free-body diagrams on their own when solving exam problems? (2) Are students who use free-body diagrams to solve problems more successful then those who do not? (3) Why do students draw free-body diagrams when solving problems? (4) Are students consistent in constructing diagrams for different concepts in physics and are they consistent in the quality of their diagrams? (5) What are possible relationships between features of a problem and how likely a student will draw a free body diagram to help them solve the problem? I utilized a mixed-methods approach to answer these questions. Questions 1, 2, 4 and 5 required a quantitative approach while question 3 required a qualitative approach, a case study. When I completed my study, I found that if students are in an environment which fosters the use of representations for problem solving and for concept development, then the majority of students will consistently construct helpful free-body diagrams and use them on their own to solve problems. Additionally, those that construct correct free-body diagrams are significantly more likely to successfully solve the problem. Finally, those students that are high achieving tend to use diagrams more and for more reasons then students who have low course grades. These findings will have major impacts on how introductory physics instructors run their classes and how curriculums are designed. These results favor a problem solving strategy that is rich with representations.

  14. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  15. Effects of body and organ size on absorbed dose: there is no standard patient. [Radiation dose distribution in patients following radionuclide administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, J.W.

    1976-01-01

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patientmore » does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient. (auth)« less

  16. Childhood obesity in Asia: the value of accurate body composition methodology.

    PubMed

    Hills, Andrew P; Mokhtar, Najat; Brownie, Sharon; Byrne, Nuala M

    2014-01-01

    Childhood obesity, a significant global public health problem, affects an increasing number of low- and middle-income countries, including in Asia. The obesity epidemic has been fuelled by the rapid nutrition and physical activity transition with the availability of more energy-dense nutrient-poor foods and lifestyles of many children dominated by physical inactivity. During the growing years the pace and quality of grow this best quantified by a combination of anthropometric and body composition measures. However, where normative data are available, this has typically been collected on Caucasian children. To better define and characterise overweight and obesity in Asian children, and to monitor nutrition and physical activity interventions, there is a need to increase the use of standardized anthropometric and body composition methodologies. The current paper reports on initiatives facilitated by the International Atomic Energy Agency (IAEA) and outlines future research needs for the prevention and management of childhood obesity in Asia.

  17. Over a thousand new periodic orbits of a planar three-body system with unequal masses

    NASA Astrophysics Data System (ADS)

    Li, Xiaoming; Jing, Yipeng; Liao, Shijun

    2018-05-01

    The three-body problem is common in astronomy, examples of which are the solar system, exoplanets, and stellar systems. Due to its chaotic characteristic, discovered by Poincaré, only three families of periodic three-body orbits were found in 300 years, until 2013 when Šuvakov and Dmitrašinović (2013, Phys. Rev. Lett., 110, 114301) found 13 new periodic orbits of a Newtonian planar three-body problem with equal mass. Recently, more than 600 new families of periodic orbits of triple systems with equal mass were found by Li and Liao (2017, Sci. China-Phys. Mech. Astron., 60, 129511). Here, we report 1349 new families of planar periodic orbits of the triple system where two bodies have the same mass and the other has a different mass. None of the families have ever been reported, except the famous "figure-eight" family. In particular, 1223 among these 1349 families are entirely new, i.e., with newly found "free group elements" that have been never reported, even for three-body systems with equal mass. It has been traditionally believed that triple systems are often unstable if they are non-hierarchical. However, all of our new periodic orbits are in non-hierarchical configurations, but many of them are either linearly or marginally stable. This might inspire the long-term astronomical observation of stable non-hierarchical triple systems in practice. In addition, using these new periodic orbits as initial guesses, new periodic orbits of triple systems with three unequal masses can be found by means of the continuation method, which is more general and thus should have practical meaning from an astronomical viewpoint.

  18. An O(N) and parallel approach to integral problems by a kernel-independent fast multipole method: Application to polarization and magnetization of interacting particles

    NASA Astrophysics Data System (ADS)

    Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; Qin, Jian; Karpeev, Dmitry; Hernandez-Ortiz, Juan; de Pablo, Juan J.; Heinonen, Olle

    2016-08-01

    Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O(N2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Method (FMM) to evaluate the integrals in O(N) operations, with O(N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. The results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.

  19. An O( N) and parallel approach to integral problems by a kernel-independent fast multipole method: Application to polarization and magnetization of interacting particles

    DOE PAGES

    Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; ...

    2016-08-10

    Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O( N 2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Methodmore » (FMM) to evaluate the integrals in O( N) operations, with O( N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. Lastly, the results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.« less

  20. 3D reconstruction of highly fragmented bone fractures

    NASA Astrophysics Data System (ADS)

    Willis, Andrew; Anderson, Donald; Thomas, Thad; Brown, Thomas; Marsh, J. Lawrence

    2007-03-01

    A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treatment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid alignment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses two new problems unique to the reconstruction of fractured bones: (1) non-stationary noise inherent in surfaces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a fragment may correspond to many other fragments.

  1. The obesity epidemic: scope of the problem and management strategies.

    PubMed

    Graves, Barbara W

    2010-01-01

    As the obesity epidemic increases, primary care clinicians are encountering obesity and health problems associated with obesity more frequently than ever before. In 2007, 41% of women were classified as obese, with a body mass index (BMI) of 30 or higher. Non-Hispanic blacks and Hispanics are more likely to be obese than white, non-Hispanics. A wide spectrum of health problems has been associated with obesity, including cardiovascular disease, diabetes, metabolic syndrome, osteoarthritis, and polycystic ovary syndrome. Obesity has been shown to be a low-grade inflammatory state, which may be responsible for many of the comorbidities. The general consensus recommends screening for obesity and counseling to promote weight loss. In some cases, pharmacotherapy and or bariatric surgery may be recommended. Copyright © 2010 American College of Nurse-Midwives. Published by Elsevier Inc. All rights reserved.

  2. Connection between three-body configuration and four-body configuration of the Sitnikov problem when one of the masses approaches zero: circular case

    NASA Astrophysics Data System (ADS)

    Shahbaz Ullah, M.; Hassan, M. R.

    2014-09-01

    In this manuscript we have established averaged equation of motion of the Sitnikov restricted three- body and four-body problem when all the primaries are point masses, by applying the Van der Pol transformation and averaging technique of J. Guckenheimer and P. Holmes (in Nonlinear Oscillations, Dynamical System Bifurcations of Vector Fields, Springer, Berlin, 1983). In addition to the resonance criterion at the 3/2 commensurability we have chosen ω=2 n/3, n=4, ω is the angular velocity of the coordinate system. Further we established the Series solution of the three-body and four-body problem in the sense of Sitnikov. Lastly the periodicities of the solutions have been examined by the Poincare section and four-body and three-body problem have been compared by different comparative graphs and surfaces.

  3. Chiral topological phases from artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl

    2018-05-01

    Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.

  4. Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet

    NASA Astrophysics Data System (ADS)

    Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando; Carr, Lincoln D.

    2018-06-01

    We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.

  5. Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet.

    PubMed

    Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E; Sols, Fernando; Carr, Lincoln D

    2018-06-08

    We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.

  6. Some new concepts in the n-body and 3-body problems

    NASA Astrophysics Data System (ADS)

    Kyrala, A.

    1982-06-01

    A new approach to the n-body problem in terms of an rms particle velocity and a harmonic mean particle separation has been constructed by using averaging procedures formulated in terms of a single parameter. A systematic classification of escape and collision processes by means of specific polynomials, which can be used somewhat like generating functions, is introduced. For n-body problems with non-null total angular momentum, an rms angular momentum is defined which together with a harmonic mean centroidal moment of inertia characterizes the rotational kinetic energy. Finally, a graphical construction for the equipotentials of the three-body problem is given and attention is drawn to the use of the apex, defined as the point of least average separation, in this problem. It is supposed that the n-bodies interact with one another via the Newtonian potential in an inertial system.

  7. The Human Mind As General Problem Solver

    NASA Astrophysics Data System (ADS)

    Gurr, Henry

    2011-10-01

    Since leaving U Cal Irvine Neutrino Research, I have been a University Physics Teacher, and an Informal Researcher Of Human Functionality. My talk will share what I discovered about the best ways to learn, many of which are regularities that are to be expected from the Neuronal Network Properties announced in the publications of physicist John Joseph Hopfield. Hopfield's Model of mammalian brain-body, provides solid instructive understanding of how best Learn, Solve Problems, Live! With it we understand many otherwise puzzling features of our intellect! Examples Why 1) Analogies and metaphors powerful in class instruction, ditto poems. 2) Best learning done in physical (Hands-On) situations with tight immediate dynamical feedback such as seen in learning to ride bike, drive car, speak language, etc. 3) Some of the best learning happens in seeming random exploration, bump around, trial and error. 4) Scientific discoveries happen, with no apparent effort, at odd moments. 5) Important discoveries DEPEND on considerable frustrating effort, then Flash of Insight AHA EURIKA.

  8. Classical Mechanics: A Modern Introduction

    NASA Astrophysics Data System (ADS)

    McCall, Martin W.

    2000-12-01

    Classical Mechanics is a clear introduction to the subject, combining a user-friendly style with an authoritative approach, whilst requiring minimal prerequisite mathematics - only elementary calculus and simple vectors are presumed. The text starts with a careful look at Newton's Laws, before applying them in one dimension to oscillations and collisions. More advanced applications - including gravitational orbits, rigid body dynamics and mechanics in rotating frames - are deferred until after the limitations of Newton's inertial frames have been highlighted through an exposition of Einstein's Special Relativity. The examples given throughout are often unusual for an elementary text, although they are made accessible through discussion and diagrams. Complete revision summaries are given at the end of each chapter, together with problems designed to be both illustrative and challenging. Features: * Comprehensive introduction to classical mechanics and relativity * Many novel examples, e.g. stability of the universe, falling cats, crickets bats and snooker * Includes many problems with numerical answers * Revision notes at the end of each chapter

  9. The effects of physical and psychosocial factors and ergonomic conditions on the prevalence of musculoskeletal disorders among dentists in Malaysia.

    PubMed

    Taib, Mohd Firdaus Mohd; Bahn, Sangwoo; Yun, Myung Hwan; Taib, Mohd Syukri Mohd

    2017-01-01

    Musculoskeletal disorders (MSDs) have been recognized as one of the main occupational health problems for dentists. Many studies have suggested that dentists experience work-related pain or discomfort in the neck, shoulder, and back, as well as in other parts of the body. This study aimed to examine the relationship between specific physical and psychosocial factors and/or ergonomic conditions on MSD symptoms among dentists in Malaysia. A group of 85 dentists was asked to complete a questionnaire to determine whether their complaints were related to physical and psychosocial factors and/or ergonomic conditions in their practices. Among the nine reviewed body areas, the shoulders were most often affected by symptoms of MSDs (92.7%). Moreover, MSDs of the neck and upper back were most likely to prevent these practitioners from engaging in normal activities (32.9%). In general, no significant differences were found in the prevalence of MSD symptoms in relation to gender, age, body mass index, years in practice, number of patients, and frequency of breaks. Our results were consistent with those reported in other studies that focused on MSD problems among dentists in other countries. To reduce the prevalence of MSDs, more attention should be paid to instituting ergonomically sensible approaches in the dental practice setting.

  10. The impact of controlled nutrition during the dry period on dairy cow health, fertility and performance.

    PubMed

    Beever, David E

    2006-12-01

    Average dairy herd fertility is declining, with more serves per successful conception, extended calving intervals and increased culling due to failure to rebreed, all adding significant costs to milk production. Genetics, management and nutrition have all contributed to this decline in fertility; the paper focuses primarily on nutritional issues. The extent of body condition loss after calving and its possible impact on fertility is considered, with evidence that this phenomenon is common in many herds irrespective of average milk yields. Body tissue mobilisation after calving increases the flux of non-esterified fatty acids to the liver and pathways of fatty acid metabolism are considered. Particular attention is given to the effects of high plasma non-esterified fatty acid levels on fat accumulation in liver cells and possible impacts on nitrogen and glucose metabolism. Current nutritional practices with early lactation cows which aim to stimulate milk yield and peak milk production but have been shown to exacerbate body condition loss, are reviewed. The paper also considers cow health issues during the peri-parturient period and how these may affect milk yield and fertility. It is concluded that current feeding practices for dry cows, with the provision of increasing amounts of the lactation ration during the Close-up period to accustom the rumen microbes and offset the expected reduction in feed intake as pregnancy reaches term, have largely failed to overcome peri-parturient health problems, excessive body condition loss after calving or declining fertility. From an examination of the energy and protein requirements of dry cows, it is suggested that current Close-up feeding practices can lead to luxury intakes of nutrients that can increase fat deposition in the viscera and the liver. Under such conditions, metabolism of nutrients by the cow may be compromised. In contrast, limited feeding throughout the whole dry period has been shown to prevent many of the problems which can affect peri-parturient cows. A new feeding strategy based on a low energy: high fibre ration (9 MJ metabolisable energy and 130 g crude protein/kg ration dry matter) containing high levels of chopped straw and offered ad libitum as a total mixed ration throughout the whole dry period is proposed. The performance of 32 dairy farms in France where this strategy has been adopted for at least 3 years is provided, with positive outcomes now being obtained by UK and Irish dairy farmers. Independent US research evidence has confirmed some of these benefits whilst limited data on cow fertility is presented. It is hypothesised that luxury feeding during the dry period can cause cows to become insulin resistant leading to an increased risk of type II diabetes. Such cows are likely to have poorer fertility whilst possible mechanisms which increase the risk of peri-parturient health problems are discussed. Further research to understand the mechanisms of these effects is required and is currently ongoing. However the magnitude of the effects noted on an increasing number of dairy farms suggests this approach to feeding the dry cow is capable of bringing real benefits to many dairy herds in terms of fewer health problems, reduced body condition loss and improved fertility.

  11. Body modification and substance use in adolescents: is there a link?

    PubMed

    Brooks, Traci L; Woods, Elizabeth R; Knight, John R; Shrier, Lydia A

    2003-01-01

    To describe the characteristics of body modification among adolescents and to determine whether adolescents who engage in body modification are more likely to screen positive for alcohol and other drug problems than those who do not. Adolescents aged 14 to 18 years presenting to an urban adolescent clinic for routine health care completed a questionnaire about body modification and a substance use assessment battery that included the 17-item Problem Oriented Screening Instrument for Teenagers Alcohol/Drug Use and Abuse Scale (POSIT-ADS). Body modification was defined as piercings (other than one pair of bilateral earlobe piercings in females), tattoos, scarification, and branding. Problem substance use was defined as a POSIT-ADS score > or =1. Data were analyzed using logistic regression to determine whether the presence of body modification was an independent predictor of problem substance use. The 210 participants had a mean (+/- SD) age of 16.0 (+/- 1.4) years and 63% were female. One hundred adolescents (48%) reported at least one body modification; girls were more likely than boys to have body modification (59% vs. 28%, p < or = .0005). Ninety (42%) reported piercings, 22 (10%) tattoos, 9 (4%) scarification, and 1 (< 1%) branding; 21 (10%) had more than one type of body modification. These were in a variety of locations, most commonly the ear and the nose (piercings) or the extremities (tattoos). One-third of the sample (33%) screened positive for problem substance use on the POSIT-ADS questionnaire. Controlling for age, adolescents with body modification had 3.1 times greater odds of problem substance use than those without body modification (95% CI 1.7, 5.8). Body modification was associated with self-reported problem alcohol and other drug use among middle adolescents presenting for primary care. More research is needed to determine the clinical and sociocultural significance of body modification and its relationship to substance use in this population. Copyright Society for Adolescent Medicine, 2003

  12. The Sharma-Parthasarathy stochastic two-body problem

    NASA Astrophysics Data System (ADS)

    Cresson, J.; Pierret, F.; Puig, B.

    2015-03-01

    We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in ["Dynamics of a stochastically perturbed two-body problem," Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.

  13. Numerical simulations of flying and swimming of biological systems with the viscous vortex particle method

    NASA Astrophysics Data System (ADS)

    Eldredge, Jeff

    2005-11-01

    Many biological mechanisms of locomotion involve the interaction of a fluid with a deformable surface undergoing large unsteady motion. Analysis of such problems poses a significant challenge to conventional grid-based computational approaches. Particularly in the moderate Reynolds number regime where many insects and fish function, viscous and inertial processes are both important, and vorticity serves a crucial role. In this work, the viscous vortex particle method is shown to provide an efficient, intuitive simulation approach for investigation of these biological systems. In contrast with a grid-based approach, the method solves the Navier--Stokes equations by tracking computational particles that carry smooth blobs of vorticity and exchange strength with one another to account for viscous diffusion. Thus, computational resources are focused on the physically relevant features of the flow, and there is no need for artificial boundary conditions. Building from previously-developed techniques for the creation of vorticity to enforce no-throughflow and no-slip conditions, the present method is extended to problems of coupled fluid--body dynamics by enforcement of global conservation of momenta. The application to several two-dimensional model problems is demonstrated, including single and multiple flapping wings and free swimming of a three-linkage fish.

  14. Synergies from using higher order symplectic decompositions both for ordinary differential equations and quantum Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matuttis, Hans-Georg; Wang, Xiaoxing

    Decomposition methods of the Suzuki-Trotter type of various orders have been derived in different fields. Applying them both to classical ordinary differential equations (ODEs) and quantum systems allows to judge their effectiveness and gives new insights for many body quantum mechanics where reference data are scarce. Further, based on data for 6 × 6 system we conclude that sampling with sign (minus-sign problem) is probably detrimental to the accuracy of fermionic simulations with determinant algorithms.

  15. Equivalence between the Arquès-Walsh sequence formula and the number of connected Feynman diagrams for every perturbation order in the fermionic many-body problem

    NASA Astrophysics Data System (ADS)

    Castro, E.

    2018-02-01

    From the perturbative expansion of the exact Green function, an exact counting formula is derived to determine the number of different types of connected Feynman diagrams. This formula coincides with the Arquès-Walsh sequence formula in the rooted map theory, supporting the topological connection between Feynman diagrams and rooted maps. A classificatory summing-terms approach is used, in connection to discrete mathematical theory.

  16. Development and Application of New Algorithms for the Simulation of Viscous Compressible Flows with Moving Bodies in Three Dimensions.

    DTIC Science & Technology

    1996-12-01

    ranging from academic to industrial demonstrated the utility of the developed procedure for ab initio surface meshing from discrete data, such as...academic to industrial demonstrate the utility of the pro- hypersonic reentry problems, where ray-tracing based on posed procedure for ab initio surface...data input within industrial simulations. The origi- nal CAD dataset had over 500 surface patches, many All of the surface grids shown were obtained

  17. Black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Carlip, S.

    2014-10-01

    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this paper, will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.

  18. Finite Element Simulation Methods for Dry Sliding Wear

    DTIC Science & Technology

    2008-03-27

    effects of wear only occur on a microscopic level (3; 14; 17). A third reason that wear is not well understood is that it involves many different...material or one with a higher coefficient of friction there will be more of a problem with high pressure points. A third possibility is to spread the...For the local model the rail is modeled as a deformable body , and a small, 1 mm, square is taken from the slipper as the submodel. 5.2 The Global

  19. Consumer product safety: A systems problem

    NASA Technical Reports Server (NTRS)

    Clark, C. C.

    1971-01-01

    The manufacturer, tester, retailer, consumer, repairer disposer, trade and professional associations, national and international standards bodies, and governments in several roles are all involved in consumer product safety. A preliminary analysis, drawing on system safety techniques, is utilized to distinguish the inter-relations of these many groups and the responsibilities that they are or could take for product safety, including the slow accident hazards as well as the more commonly discussed fast accident hazards. The importance of interactive computer aided information flow among these groups is particularly stressed.

  20. Genuine quantum correlations in quantum many-body systems: a review of recent progress

    NASA Astrophysics Data System (ADS)

    De Chiara, Gabriele; Sanpera, Anna

    2018-07-01

    Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.

  1. Body image and sexual problems in young women with breast cancer.

    PubMed

    Fobair, Pat; Stewart, Susan L; Chang, Subo; D'Onofrio, Carol; Banks, Priscilla J; Bloom, Joan R

    2006-07-01

    The purpose of this study was to determine the frequency of body image and sexual problems in the first months after treatment among women diagnosed with breast cancer at age 50 or younger. Breast cancer treatment may have severe effects on the bodies of younger women. Surgical treatment may be disfiguring, chemotherapy may cause abrupt menopause, and hormone replacement is not recommended. A multi-ethnic population-based sample of 549 women aged 22-50 who were married or in a stable unmarried relationship were interviewed within seven months of diagnosis with in situ, local, or regional breast cancer. Body image and sexual problems were experienced by a substantial proportion of women in the early months after diagnosis. Half of the 546 women experienced two or more body image problems some of the time (33%), or at least one problem much of the time (17%). Among sexually active women, greater body image problems were associated with mastectomy and possible reconstruction, hair loss from chemotherapy, concern with weight gain or loss, poorer mental health, lower self-esteem, and partner's difficulty understanding one's feelings. Among the 360 sexually active women, half (52%) reported having a little problem in two or more areas of sexual functioning (24%), or a definite or serious problem in at least one area (28%). Greater sexual problems were associated with vaginal dryness, poorer mental health, being married, partner's difficulty understanding one's feelings, and more body image problems, and there were significant ethnic differences in reported severity. Difficulties related to sexuality and sexual functioning were common and occurred soon after surgical and adjuvant treatment. Addressing these problems is essential to improve the quality of life of young women with breast cancer.

  2. Body image in the person with a stoma.

    PubMed

    Cohen, A

    1991-01-01

    Body image is the mental picture one has of one's physical being that develops from birth and continues throughout life and is related to different factors affecting its formation and dynamics. A crisis such as the creation of a stoma leads to an alteration in body image and an awareness of the meaning of the change in appearance and function of an individual. The individual's behavior is examined in several domains: physical, mental, emotional, social, sexual, and economical. When one domain is disturbed the others will be influenced. A person's rehabilitation after ostomy surgery is a continuous process of adaptation and is directed toward returning to a normal way of life. Many factors affect this adaptation to an alteration in body image and are relevant to the patient and family. These factors include, but are not limited to, the disease process, treatment(s), and medical and nursing care in the hospital and community. Knowledge about actual and potential problems associated with an alteration in body image enables the nurse to assess the meaning of the alteration in body image for the individual patient and family, provide counseling before and after the surgery, and intervene so that the individual will be able to adapt to an alteration in body image and return to one's previous activities of daily living and lifestyle.

  3. [Immigrant women at the health center. Monitoring of pregnancy and contraception].

    PubMed

    Austveg, B

    1987-01-23

    Over the past decade, Norwegian cities have experienced an influx of immigrants, many from third world countries. Women from these societies have brought with them cultural traditions and mores regarding birth, prevention and their own bodies which can present many problems and challenges to public health personnel. This study specifically deals with the experiences of midwives and clinicians working with immigrant women in Oslo, and offers some recommendations to health care staffs in their counseling and treating such women. Many things which seem obvious to Western-trained clinicians may not seem so to their patients, and when staff are not understood or are questioned they may interpret this as a challenge of their authority and competence. For example, Norwegian health workers, having been reared in a society concerned about the "population explosion" and often having been trained to readily equate large families with poverty and/or ignorance of birth control, must attempt to try and understand that this is not necessarily true, and that such attitudes can limit the effectiveness of counseling in sensitive areas. Most Asian and African societies see children as an economic resource. The author accordingly urges health care workers to approach their patients in this area, as in others, with empathy and to try and be aware of their assumptions. Cultural traditions should also be taken into account when recommending a particular form of birth control to a woman or couple requesting such advice. Some methods will be more or less acceptable to different nationalities. For instance, many Asian cultures view menstruation as a necessary part of nature's plan to maintain balance between the "hot" and "cold" forces of the body, and since oral contraceptives often reduce flow, they might be considered as harmful. Condoms, on the other hand, may be more readily acceptable since they do not affect body rhythms. Coitus interruptus is the most widely practices form of birth control in the world, and is probably more reliable than the West believes. Despite stereotype thinking that women fail to reach orgasm with this method, most couples who practice it seem to experience no problems. The rhythm method usually will be less attractive to women of many societies, since examining one's own cervix secretion and touching one's body will be unacceptable to many. In counseling or parental care and birthing, workers are urged to realize the role ritual plays, and to accept such practices as Pakistani mothers massaging their young infants and themselves. Unless harmful medically, we should be careful not to criticize such practices, but to learn from them in creating a good relationship with patients. Giving birth in a large Norwegian hospital may itself seem frightening to many immigrant women, and if a Moslem woman there is criticized for keeping still after giving birth (for 40 days in the Islamic faith), this may only create more anxiety. Guidelines are provided for promoting physician-patient communication, such as talking to and looking at the patient--not the interpreter--and to avoid using difficult sentences or concepts.

  4. Relationship of a desire of thinness and eating behavior among Japanese underweight female students.

    PubMed

    Mase, Tomoki; Miyawaki, Chiemi; Kouda, Katsuyasu; Fujita, Yuki; Ohara, Kumiko; Nakamura, Harunobu

    2013-06-01

    We conducted a questionnaire survey among Japanese female students to explore the influence of a desire for thinness and dietary behaviors on the development of eating disorders. Self-reported measures of socio-demographic characteristics, body weight perception, height and weight, and dietary and exercise behavior were completed by 631 female university students at 6 universities in Kyoto, Japan. Many students had a desire for thinness (underweight students, 51.7 %; normal-weight students, 88.8 %), whereas ideal weight and body mass index were lower in the students with a desire for thinness than the students without a desire for thinness, and were also lower in the underweight students than the normal-weight students. The eating attitude test (EAT-26) scores of underweight students with a desire for thinness were higher than those of the normal-weight students with a desire for thinness. As a result of a logistic regression analysis, underweight, desire for thinness, and experience with weight control were positively associated with eating problems. Further, the association of eating problems increased along with the increase in the number of factors (underweight, desire for thinness, and experience with weight control). These results indicate that underweight females have strong associations with eating problems.

  5. Screening of Blood Levels of Mercury, Cadmium, and Copper in Pregnant Women in Dakahlia, Egypt: New Attention to an Old Problem.

    PubMed

    Motawei, Shimaa M; Gouda, Hossam E

    2016-06-01

    Heavy metals toxicity is a prevalent health problem particularly in developing countries. Mercury and cadmium are toxic elements that have no physiologic functions in human body. They should not be present in the human body by any concentration. Copper, on the other hand, is one of the elements that are essential for normal cell functions and a deficiency as well as an excess of which can cause adverse health effects. To test blood levels of mercury, cadmium, and copper in pregnant women in Dakahlia, Egypt. Using atomic absorption spectrophotometry, blood levels of cadmium, mercury, and copper were measured in 150 pregnant women attending to the antenatal care in Mansoura University Hospital in Dakahlia governorate, Egypt. The mean ± SD of blood mercury, cadmium, and copper levels were found to be far from their levels in the population surveys carried in developed countries like United States of America (USA) and Canada. Heavy metal intoxication and accumulation is a major health hazard. Developing countries, including Egypt, still lack many of the regulatory policies and legislations to control sources of pollution exposure. This should be dealt with in order to solve this problem and limit its health consequences.

  6. On the usefulness of relativistic space-times for the description of the Earth's gravitational field

    NASA Astrophysics Data System (ADS)

    Soffel, Michael; Frutos, Francisco

    2016-12-01

    The usefulness of relativistic space-times for the description of the Earth's gravitational field is investigated. A variety of exact vacuum solutions of Einstein's field equations (Schwarzschild, Erez and Rosen, Gutsunayev and Manko, Hernández-Pastora and Martín, Kerr, Quevedo, and Mashhoon) are investigated in that respect. It is argued that because of their multipole structure and influences from external bodies, all these exact solutions are not really useful for the central problem. Then, approximate space-times resulting from an MPM or post-Newtonian approximation are considered. Only in the DSX formalism that is of the first post-Newtonian order, all aspects of the problem can be tackled: a relativistic description (a) of the Earth's gravity field in a well-defined geocentric reference system (GCRS), (b) of the motion of solar system bodies in a barycentric reference system (BCRS), and (c) of inertial and tidal terms in the geocentric metric describing the external gravitational field. A relativistic SLR theory is also discussed with respect to our central problem. Orders of magnitude of many effects related to the Earth's gravitational field and SLR are given. It is argued that a formalism with accuracies better than of the first post-Newtonian order is not yet available.

  7. The quest for novel modes of excitation in exotic nuclei

    NASA Astrophysics Data System (ADS)

    Paar, N.

    2010-06-01

    This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.

  8. International coordination of biomedical research.

    PubMed

    Owen, S G

    1976-01-01

    Recent efforts at international coordination in biomedical research have taken place at two levels. At the level of the working clinician and scientist, European regionalism has become increasingly manifest in such organizations as the European Society for Clinical Investigation, the European Organization for Research into the Treatment of Cancer, the European Molecular Biology Organization and many others. These have developed largely, though not entirely, independently of government funding. At the level of science policy, i.e. of bodies supporting biomedical research mainly from public funds, the major developments have been the Comité de la Recherche Médicale of the European Community and the much wider association of European Medical Research Councils, based on the whole of Western Europe; in October 1975 the latter group became incorporated into the new European Science Foundation as the first Standing Committee of that body. Wider, interregional, cooperation presents greater problems, though there have been some modest successes, and the multinational drive on research into six of the major health problems of the Third World now being proposed by WHO holds further promise for the future.

  9. Childhood exposure to violence and lifelong health: clinical intervention science and stress-biology research join forces.

    PubMed

    Moffitt, Terrie E

    2013-11-01

    Many young people who are mistreated by an adult, victimized by bullies, criminally assaulted, or who witness domestic violence react to this violence exposure by developing behavioral, emotional, or learning problems. What is less well known is that adverse experiences like violence exposure can lead to hidden physical alterations inside a child's body, alterations that may have adverse effects on life-long health. We discuss why this is important for the field of developmental psychopathology and for society, and we recommend that stress-biology research and intervention science join forces to tackle the problem. We examine the evidence base in relation to stress-sensitive measures for the body (inflammatory reactions, telomere erosion, epigenetic methylation, and gene expression) and brain (mental disorders, neuroimaging, and neuropsychological testing). We also review promising interventions for families, couples, and children that have been designed to reduce the effects of childhood violence exposure. We invite intervention scientists and stress-biology researchers to collaborate in adding stress-biology measures to randomized clinical trials of interventions intended to reduce effects of violence exposure and other traumas on young people.

  10. Periodic orbits of hybrid systems and parameter estimation via AD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guckenheimer, John.; Phipps, Eric Todd; Casey, Richard

    Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical modelsmore » of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method [GM00, Phi03]. Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance between two given periodic orbits which is then minimized using a trust-region minimization algorithm [DS83] to find optimal fits of the model to a reference orbit [Cas04]. There are two different yet related goals that motivate the algorithmic choices listed above. The first is to provide a simple yet powerful framework for studying periodic motions in mechanical systems. Formulating mechanically correct equations of motion for systems of interconnected rigid bodies, while straightforward, is a time-consuming error prone process. Much of this difficulty stems from computing the acceleration of each rigid body in an inertial reference frame. The acceleration is computed most easily in a redundant set of coordinates giving the spatial positions of each body: since the acceleration is just the second derivative of these positions. Rather than providing explicit formulas for these derivatives, automatic differentiation can be employed to compute these quantities efficiently during the course of a simulation. The feasibility of these ideas was investigated by applying these techniques to the problem of locating stable walking motions for a disc-foot passive walking machine [CGMR01, Gar99, McG91]. The second goal for this work was to investigate the application of smooth optimization methods to periodic orbit parameter estimation problems in neural oscillations. Others [BB93, FUS93, VB99] have favored non-continuous optimization methods such as genetic algorithms, stochastic search methods, simulated annealing and brute-force random searches because of their perceived suitability to the landscape of typical objective functions in parameter space, particularly for multi-compartmental neural models. Here we argue that a carefully formulated optimization problem is amenable to Newton-like methods and has a sufficiently smooth landscape in parameter space that these methods can be an efficient and effective alternative. The plan of this paper is as follows. In Section 1 we provide a definition of hybrid systems that is the basis for modeling systems with discontinuities or discrete transitions. Sections 2, 3, and 4 briefly describe the Taylor series integration, periodic orbit tracking, and parameter estimation algorithms. For full treatments of these algorithms, we refer the reader to [Phi03, Cas04, CPG04]. The software implementation of these algorithms is briefly described in Section 5 with particular emphasis on the automatic differentiation software ADMC++. Finally, these algorithms are applied to the bipedal walking and Hodgkin-Huxley based neural oscillation problems discussed above in Section 6.« less

  11. Code C# for chaos analysis of relativistic many-body systems with reactions

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Besliu, C.; Jipa, Al.; Stan, E.; Esanu, T.; Felea, D.; Bordeianu, C. C.

    2012-04-01

    In this work we present a reaction module for “Chaos Many-Body Engine” (Grossu et al., 2010 [1]). Following our goal of creating a customizable, object oriented code library, the list of all possible reactions, including the corresponding properties (particle types, probability, cross section, particle lifetime, etc.), could be supplied as parameter, using a specific XML input file. Inspired by the Poincaré section, we propose also the “Clusterization Map”, as a new intuitive analysis method of many-body systems. For exemplification, we implemented a numerical toy-model for nuclear relativistic collisions at 4.5 A GeV/c (the SKM200 Collaboration). An encouraging agreement with experimental data was obtained for momentum, energy, rapidity, and angular π distributions. Catalogue identifier: AEGH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 184 628 No. of bytes in distributed program, including test data, etc.: 7 905 425 Distribution format: tar.gz Programming language: Visual C#.NET 2005 Computer: PC Operating system: Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread. One processor used for each many-body system. RAM: 128 Megabytes Classification: 6.2, 6.5 Catalogue identifier of previous version: AEGH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1464 External routines: Net Framework 2.0 Library Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems with reactions. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Treatment of two particles reactions and decays. For each particle, calculation of the time measured in the particle reference frame, according to the instantaneous velocity. Possibility to dynamically add particle properties (spin, isospin, etc.), and reactions/decays, using a specific XML input file. Basic support for Monte Carlo simulations. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, “clusterization map”, and energy conservation precision test. As an example of use, we implemented a toy-model for nuclear relativistic collisions at 4.5 A GeV/c. Reasons for new version: Following our goal of applying chaos theory to nuclear relativistic collisions at 4.5 A GeV/c, we developed a reaction module integrated with the Chaos Many-Body Engine. In the previous version, inheriting the Particle class was the only possibility of implementing more particle properties (spin, isospin, and so on). In the new version, particle properties can be dynamically added using a dictionary object. The application was improved in order to calculate the time measured in the own reference frame of each particle. two particles reactions: a+b→c+d, decays: a→c+d, stimulated decays, more complicated schemas, implemented as various combinations of previous reactions. Following our goal of creating a flexible application, the reactions list, including the corresponding properties (cross sections, particles lifetime, etc.), could be supplied as parameter, using a specific XML configuration file. The simulation output files were modified for systems with reactions, assuring also the backward compatibility. We propose the “Clusterization Map” as a new investigation method of many-body systems. The multi-dimensional Lyapunov Exponent was adapted in order to be used for systems with variable structure. Basic support for Monte Carlo simulations was also added. Additional comments: Windows forms application for testing the engine. Easy copy/paste based deployment method. Running time: Quadratic complexity.

  12. The Sharma-Parthasarathy stochastic two-body problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cresson, J.; SYRTE/Observatoire de Paris, 75014 Paris; Pierret, F.

    2015-03-15

    We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.

  13. Irreducible projective representations and their physical applications

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Liu, Zheng-Xin

    2018-01-01

    An eigenfunction method is applied to reduce the regular projective representations (Reps) of finite groups to obtain their irreducible projective Reps. Anti-unitary groups are treated specially, where the decoupled factor systems and modified Schur’s lemma are introduced. We discuss the applications of irreducible Reps in many-body physics. It is shown that in symmetry protected topological phases, geometric defects or symmetry defects may carry projective Rep of the symmetry group; while in symmetry enriched topological phases, intrinsic excitations (such as spinons or visons) may carry projective Rep of the symmetry group. We also discuss the applications of projective Reps in problems related to spectrum degeneracy, such as in search of models without sign problem in quantum Monte Carlo simulations.

  14. The potential of computer software that supports the diagnosis of workplace ergonomics in shaping health awareness

    NASA Astrophysics Data System (ADS)

    Lubkowska, Wioletta

    2017-11-01

    The growing prevalence of health problems among computer workstation workers has become one of the biggest threats to the overall health of our population. That is why many modern scientists are looking for ways and methods to prevent and reverse these negative trends. The purpose of this article is to present the potential for practical use of computer programs to design an ergonomic workplace and postural loads. These programs help configure the computer workstation correctly and adopt the correct body position during work, which reduces the risk of health problems. Creating visually attractive programs helps encourage and inspire those who work with a computer to introduce ergonomic solutions and reject the sedentary lifestyle.

  15. Explicit solution techniques for impact with contact constraints

    NASA Technical Reports Server (NTRS)

    Mccarty, Robert E.

    1993-01-01

    Modern military aircraft transparency systems, windshields and canopies, are complex systems which must meet a large and rapidly growing number of requirements. Many of these transparency system requirements are conflicting, presenting difficult balances which must be achieved. One example of a challenging requirements balance or trade is shaping for stealth versus aircrew vision. The large number of requirements involved may be grouped in a variety of areas including man-machine interface; structural integration with the airframe; combat hazards; environmental exposures; and supportability. Some individual requirements by themselves pose very difficult, severely nonlinear analysis problems. One such complex problem is that associated with the dynamic structural response resulting from high energy bird impact. An improved analytical capability for soft-body impact simulation was developed.

  16. Explicit solution techniques for impact with contact constraints

    NASA Astrophysics Data System (ADS)

    McCarty, Robert E.

    1993-08-01

    Modern military aircraft transparency systems, windshields and canopies, are complex systems which must meet a large and rapidly growing number of requirements. Many of these transparency system requirements are conflicting, presenting difficult balances which must be achieved. One example of a challenging requirements balance or trade is shaping for stealth versus aircrew vision. The large number of requirements involved may be grouped in a variety of areas including man-machine interface; structural integration with the airframe; combat hazards; environmental exposures; and supportability. Some individual requirements by themselves pose very difficult, severely nonlinear analysis problems. One such complex problem is that associated with the dynamic structural response resulting from high energy bird impact. An improved analytical capability for soft-body impact simulation was developed.

  17. Use of various versions of Schwarz method for solving the problem of contact interaction of elastic bodies

    NASA Astrophysics Data System (ADS)

    Galanin, M. P.; Lukin, V. V.; Rodin, A. S.

    2018-04-01

    A definition of a sufficiently common problem of mechanical contact interaction in a system of elastic bodies is given. Various versions of realization of the Schwarz method for solving the contact problem numerically are described and the results of solution of a number of problems are presented. Special attention is paid to calculations where the grids in the bodies significantly differ in steps.

  18. NONUNIFORM FOURIER TRANSFORMS FOR RIGID-BODY AND MULTI-DIMENSIONAL ROTATIONAL CORRELATIONS

    PubMed Central

    BAJAJ, CHANDRAJIT; BAUER, BENEDIKT; BETTADAPURA, RADHAKRISHNA; VOLLRATH, ANTJE

    2013-01-01

    The task of evaluating correlations is central to computational structural biology. The rigid-body correlation problem seeks the rigid-body transformation (R, t), R ∈ SO(3), t ∈ ℝ3 that maximizes the correlation between a pair of input scalar-valued functions representing molecular structures. Exhaustive solutions to the rigid-body correlation problem take advantage of the fast Fourier transform to achieve a speedup either with respect to the sought translation or rotation. We present PFcorr, a new exhaustive solution, based on the non-equispaced SO(3) Fourier transform, to the rigid-body correlation problem; unlike previous solutions, ours achieves a combination of translational and rotational speedups without requiring equispaced grids. PFcorr can be straightforwardly applied to a variety of problems in protein structure prediction and refinement that involve correlations under rigid-body motions of the protein. Additionally, we show how it applies, along with an appropriate flexibility model, to analogs of the above problems in which the flexibility of the protein is relevant. PMID:24379643

  19. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  20. Genuine quantum correlations in quantum many-body systems: a review of recent progress.

    PubMed

    De Chiara, Gabriele; Sanpera, Anna

    2018-04-19

    Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.

  1. Potential of mean force between like-charged nanoparticles: Many-body effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-03-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

  2. Laser Technology in Interplanetary Exploration: The Past and the Future

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    2000-01-01

    Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.

  3. Correlated Photon Dynamics in Dissipative Rydberg Media

    NASA Astrophysics Data System (ADS)

    Zeuthen, Emil; Gullans, Michael J.; Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2017-07-01

    Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of a large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of nonperturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.

  4. Level statistics of disordered spin-1/2 systems and materials with localized Cooper pairs.

    PubMed

    Cuevas, Emilio; Feigel'man, Mikhail; Ioffe, Lev; Mezard, Marc

    2012-01-01

    The origin of continuous energy spectra in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. Although small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce a thermal bath and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels, which aquire a finite width. The important question is: what is the driving force and the mechanism of transition(s) between these two types of many-body systems - with and without intrinsic decoherence? Here we address this question via the numerical study of energy-level statistics of a system of interacting spin-1/2 with random transverse fields. We present the first evidence for a well-defined quantum phase transition between domains of discrete and continous many-body spectra in such spin models, implying the appearance of novel insulating phases in the vicinity of the superconductor-insulator transition in InO(x) and similar materials.

  5. Vertical and lateral forces when a permanent magnet above a superconductor traverses in arbitrary directions

    NASA Astrophysics Data System (ADS)

    Yang, Yong

    2008-12-01

    In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.

  6. On the autonomy of the concept of disease in psychiatry.

    PubMed

    Schramme, Thomas

    2013-01-01

    Does the reference to a mental realm in using the notion of mental disorder lead to a dilemma that consists in either implying a Cartesian account of the mind-body relation or in the need to give up a notion of mental disorder in its own right? Many psychiatrists seem to believe that denying substance dualism requires a purely neurophysiological stance for explaining mental disorder. However, this conviction is based on a limited awareness of the philosophical debate on the mind-body problem. This article discusses the reasonableness of the concept of mental disorder in relation to reductionist and eliminativist strategies in the philosophy of mind. It is concluded that we need a psychological level of explanation that cannot be reduced to neurophysiological findings in order to make sense of mental disorder.

  7. Super central configurations of the n-body problem

    NASA Astrophysics Data System (ADS)

    Xie, Zhifu

    2010-04-01

    In this paper, we consider the inverse problem of central configurations of the n-body problem. For a given q =(q1,q2,…,qn)ε(Rd)n, let S(q ) be the admissible set of masses by S(q )={m =(m1,…,mn)∣miεR+, q is a central configurationfor m}. For a given m εS(q), let Sm(q) be the permutational admissible set about m =(m1,m2,…,mn) by Sm(q)={m'∣m'εS(q), m'≠m and m' is apermutation of m}. Here, q is called a super central configuration if there exists m such that Sm(q) is nonempty. For any q in the planar four-body problem, q is not a super central configuration as an immediate consequence of a theorem proved by MacMillan and Bartky ["Permanent configurations in the problem of four bodies," Trans. Am. Math. Soc. 34, 838 (1932)]. The main discovery in this paper is the existence of super central configurations in the collinear three-body problem. We proved that for any q in the collinear three-body problem and any m εS(q), Sm(q) has at most one element and the detailed classification of Sm(q) is provided.

  8. Projected regression method for solving Fredholm integral equations arising in the analytic continuation problem of quantum physics

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-François; Neuberg, Richard; Hannah, Lauren A.; Millis, Andrew J.

    2017-11-01

    We present a supervised machine learning approach to the inversion of Fredholm integrals of the first kind as they arise, for example, in the analytic continuation problem of quantum many-body physics. The approach provides a natural regularization for the ill-conditioned inverse of the Fredholm kernel, as well as an efficient and stable treatment of constraints. The key observation is that the stability of the forward problem permits the construction of a large database of outputs for physically meaningful inputs. Applying machine learning to this database generates a regression function of controlled complexity, which returns approximate solutions for previously unseen inputs; the approximate solutions are then projected onto the subspace of functions satisfying relevant constraints. Under standard error metrics the method performs as well or better than the Maximum Entropy method for low input noise and is substantially more robust to increased input noise. We suggest that the methodology will be similarly effective for other problems involving a formally ill-conditioned inversion of an integral operator, provided that the forward problem can be efficiently solved.

  9. Bangladesh women report postpartum health problems.

    PubMed

    Goodburn, L

    1994-02-01

    The Bangladesh Rural Advancement Committee conducted operational research in Bangladesh to examine postpartum health problems. Researchers conducted focus groups, indepth interviews, and observation. More than 40% of the postpartum women had a delivery-related health problem by 2 weeks after delivery. 52% had signs or symptoms of anemia. Body needs after pregnancy, lactation, and blood loss during delivery exacerbate the nutritional anemia common to Bangladeshi women. 17% of the postpartum women had signs of infections. More than 50% had severe malnutrition, worsened by food taboos during the postpartum period. 60% of infant deaths occur in the neonatal period. The mortality risk is elevated in low birth weight (LBW) infants. In this study, more than 50% of the newborns were LBW infants. Many Bangladeshi mothers discard the colostrum and begin breast feeding several days after delivery. 11% of the postpartum women had breast problem (e.g., cracked nipples). Women believed that susceptibility to evil spirits accounted for their being more vulnerable to health problems during the postpartum. They feared leaving the household. These findings show a need for home visits to provide valuable postpartum care.

  10. The Distortion of a Body's Visible Shape at Relativistic Speeds

    ERIC Educational Resources Information Center

    Arkadiy, Leonov

    2009-01-01

    The problem of obtaining the apparent equation of motion and shape of a moving body from its arbitrary given equation of motion in special relativity is considered. Also the inverse problem of obtaining the body's equation of motion from a known equation of motion of its image is discussed. Some examples of this problem solution are considered. As…

  11. Some solutions of the general three body problem in form space

    NASA Astrophysics Data System (ADS)

    Titov, Vladimir

    2018-05-01

    Some solutions of three body problem with equal masses are first considered in form space. The solutions in usual euclidean space may be restored from these form space solutions. If constant energy h < 0, the trajectories are located inside of Hill's surface. Without loss of generality due to scale symmetry we can set h = -1. Such surface has a simple form in form space. Solutions of isosceles and rectilinear three body problems lie within Hill's curve; periodic solutions of free fall three body problem start in one point of this curve, and finish in another. The solutions are illustrated by number of figures.

  12. Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds

    PubMed Central

    Field, Daniel J.; Lynner, Colton; Brown, Christian; Darroch, Simon A. F.

    2013-01-01

    Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies. PMID:24312392

  13. Controlling dynamical entanglement in a Josephson tunneling junction

    NASA Astrophysics Data System (ADS)

    Ziegler, K.

    2017-12-01

    We analyze the evolution of an entangled many-body state in a Josephson tunneling junction and its dependence on the number of bosons and interaction strength. A N00N state, which is a superposition of two complementary Fock states, appears in the evolution with sufficient probability only for a moderate many-body interaction on an intermediate time scale. This time scale is inversely proportional to the tunneling rate. Many-body interaction strongly supports entanglement: The probability for creating an entangled state decays exponentially with the number of particles without many-body interaction, whereas it decays only like the inverse square root of the number of particles in the presence of many-body interaction.

  14. The polymorphism of estrogen receptor α is important for metabolic consequences associated with menopause.

    PubMed

    Pinkas, Jarosław; Gujski, Mariusz; Wierzbińska-Stępniak, Anna; Owoc, Alfred; Bojar, Iwona

    2016-01-01

    Menopause is associated with multiple health and metabolic consequences resulting from the decrease in estrogens level. Women at postmenopausal age are burdened with a higher risk of cardiovascular diseases, and the main cause of mortality in this group is ischemic heart disease. Estrogen deficiency is related, among other things, with frequent occurrence of dislipidemia, cessation of the beneficial effect of estrogens on the vascular wall, increase in body weight characterized by unfavourable redistribution of fatty tissue, with an increased amount of visceral fat and reduction of so-called non-fatty body mass. Estrogens exert an effect on metabolism, mainly through the genomic mechanism. The presence of α and β estrogen receptors was found in many tissues and organs. Recently, attention was paid to the fact that the effect of estrogens action on tissues and organs may depend not only on distribution, but also on their polymorphic types. The article presents the latest approach to the problem of metabolic consequences resulting from menopause, according to the possessed α estrogen receptor polymorphism (ERα).Genes encoding for ERα have many polymorphic variants, the most important of which from the clinical aspect are two single nucleotide polymorphisms (SNPs) - Xba1 and PvuII. The review of literature indicates that ERα polymorphisms are of great importance with respect to the effect of estrogens on the functioning of the body of a woman after menopause, and may imply the development of many pathological states, including the prevention or development of metabolic disorders. Identifying ERα polymorphisms may be useful in case of estrogen therapy for menopausal women who may benefit from it.

  15. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    NASA Astrophysics Data System (ADS)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  16. The many facets of the (non-relativistic) Nuclear Equation of State

    NASA Astrophysics Data System (ADS)

    Giuliani, G.; Zheng, H.; Bonasera, A.

    2014-05-01

    A nucleus is a quantum many body system made of strongly interacting Fermions, protons and neutrons (nucleons). This produces a rich Nuclear Equation of State whose knowledge is crucial to our understanding of the composition and evolution of celestial objects. The nuclear equation of state displays many different features; first neutrons and protons might be treated as identical particles or nucleons, but when the differences between protons and neutrons are spelled out, we can have completely different scenarios, just by changing slightly their interactions. At zero temperature and for neutron rich matter, a quantum liquid-gas phase transition at low densities or a quark-gluon plasma at high densities might occur. Furthermore, the large binding energy of the α particle, a Boson, might also open the possibility of studying a system made of a mixture of Bosons and Fermions, which adds to the open problems of the nuclear equation of state.

  17. Many-body coherent destruction of tunneling in photonic lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano

    2011-03-15

    An optical realization of the phenomenon of many-body coherent destruction of tunneling, recently predicted for interacting many-boson systems by Gong, Molina, and Haenggi [Phys. Rev. Lett. 103, 133002 (2009)], is proposed for light transport in engineered waveguide arrays. The optical system enables a direct visualization in Fock space of the many-body tunneling control process.

  18. SU(N ) fermions in a one-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Laird, E. K.; Shi, Z.-Y.; Parish, M. M.; Levinsen, J.

    2017-09-01

    We conduct a theoretical study of SU (N ) fermions confined by a one-dimensional harmonic potential. First, we introduce a numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU (N ) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz—derived for a Heisenberg SU(2) spin chain—is extendable to these N -component systems. Lastly, we consider balanced SU (N ) Fermi gases that have an equal number of particles in each spin state for N =2 ,3 ,4 . In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N -component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.

  19. Bound states of dipolar bosons in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Volosniev, A. G.; Armstrong, J. R.; Fedorov, D. V.; Jensen, A. S.; Valiente, M.; Zinner, N. T.

    2013-04-01

    We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-body structures in this geometry are determined as a function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three-, four- and five-body problems in two or more tubes. Our results indicate that in the weakly coupled limit the intertube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom. This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known.

  20. The mind-body problem.

    PubMed

    Chambliss, Bryan

    2018-05-04

    The mind-body problem is the problem of explaining how the happenings of our mental lives are related to physical states, events and processes. Proposed solutions to the problem vary by whether and how they endorse physicalism, the claim that mental states are ultimately "nothing over and above" physical states, and by how they understand the interactions between mental and physical states. Physicalist solutions to the mind-body problem have been dominant in the last century, with the variety of physicalism endorsed (reductive or nonreductive) depending upon both the outcome of philosophical arguments and methodological developments in the cognitive and neural sciences. After outlining the dominant contemporary approach to the mind-body problem, I examine the prospects for a solution in light of developments in the cognitive sciences, especially the scientific study of consciousness. This article is categorized under: Philosophy > Consciousness Philosophy > Metaphysics Philosophy > Foundations of Cognitive Science. © 2018 Wiley Periodicals, Inc.

  1. Many-Body Interactions in Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, C. Huy; Reddy, Sandeep K.; Chen, Karl

    Many-body effects in ice are investigated through a systematic analysis of the lattice energies of several proton ordered and disordered phases, which are calculated with different flexible water models, ranging from pairwise additive (q-TIP4P/F) to polarizable (TTM3-F and AMOE-BA BA) and explicit many-body (MB-pol) potential energy functions. Comparisons with available experimental and diffusion Monte Carlo data emphasize the importance of an accurate description of the individual terms of the many-body expansion of the interaction energy between water molecules for the correct prediction of the energy ordering of the ice phases. Further analysis of the MB-pol results, in terms of fundamentalmore » energy contributions, demonstrates that the differences in lattice energies between different ice phases are sensitively dependent on the subtle balance between short-range two-body and three-body interactions, many-body induction, and dispersion energy. Here, by correctly reproducing many-body effects at both short range and long range, it is found that MB-pol accurately predicts the energetics of different ice phases, which provides further support for the accuracy of MB-pol in representing the properties of water from the gas to the condensed phase.« less

  2. Many-Body Interactions in Ice

    DOE PAGES

    Pham, C. Huy; Reddy, Sandeep K.; Chen, Karl; ...

    2017-02-28

    Many-body effects in ice are investigated through a systematic analysis of the lattice energies of several proton ordered and disordered phases, which are calculated with different flexible water models, ranging from pairwise additive (q-TIP4P/F) to polarizable (TTM3-F and AMOE-BA BA) and explicit many-body (MB-pol) potential energy functions. Comparisons with available experimental and diffusion Monte Carlo data emphasize the importance of an accurate description of the individual terms of the many-body expansion of the interaction energy between water molecules for the correct prediction of the energy ordering of the ice phases. Further analysis of the MB-pol results, in terms of fundamentalmore » energy contributions, demonstrates that the differences in lattice energies between different ice phases are sensitively dependent on the subtle balance between short-range two-body and three-body interactions, many-body induction, and dispersion energy. Here, by correctly reproducing many-body effects at both short range and long range, it is found that MB-pol accurately predicts the energetics of different ice phases, which provides further support for the accuracy of MB-pol in representing the properties of water from the gas to the condensed phase.« less

  3. Universal Relation among the Many-Body Chern Number, Rotation Symmetry, and Filling

    NASA Astrophysics Data System (ADS)

    Matsugatani, Akishi; Ishiguro, Yuri; Shiozaki, Ken; Watanabe, Haruki

    2018-03-01

    Understanding the interplay between the topological nature and the symmetry property of interacting systems has been a central matter of condensed matter physics in recent years. In this Letter, we establish nonperturbative constraints on the quantized Hall conductance of many-body systems with arbitrary interactions. Our results allow one to readily determine the many-body Chern number modulo a certain integer without performing any integrations, solely based on the rotation eigenvalues and the average particle density of the many-body ground state.

  4. Why might they be giants? Towards an understanding of polar gigantism.

    PubMed

    Moran, Amy L; Woods, H Arthur

    2012-06-15

    Beginning with the earliest expeditions to the poles, over 100 years ago, scientists have compiled an impressive list of polar taxa whose body sizes are unusually large. This phenomenon has become known as 'polar gigantism'. In the intervening years, biologists have proposed a multitude of hypotheses to explain polar gigantism. These hypotheses run the gamut from invoking release from physical and physiological constraints, to systematic changes in developmental trajectories, to community-level outcomes of broader ecological and evolutionary processes. Here we review polar gigantism and emphasize two main problems. The first is to determine the true strength and generality of this pattern: how prevalent is polar gigantism across taxonomic units? Despite many published descriptions of polar giants, we still have a poor grasp of whether these species are unusual outliers or represent more systematic shifts in distributions of body size. Indeed, current data indicate that some groups show gigantism at the poles whereas others show nanism. The second problem is to identify underlying mechanisms or processes that could drive taxa, or even just allow them, to evolve especially large body size. The contenders are diverse and no clear winner has yet emerged. Distinguishing among the contenders will require better sampling of taxa in both temperate and polar waters and sustained efforts by comparative physiologists and evolutionary ecologists in a strongly comparative framework.

  5. Body mass index and percentage of body fat as indicators for obesity in an adolescent athletic population.

    PubMed

    Etchison, William C; Bloodgood, Elizabeth A; Minton, Cholly P; Thompson, Nancy J; Collins, Mary Ann; Hunter, Stephen C; Dai, Hongying

    2011-05-01

    Body mass index (BMI) is widely accepted in determining obesity. Skinfold thickness measurements have been commonly used to determine percentage of body fat. The authors hypothesize that because BMI does not measure fat directly but relies on body weight alone, a large percentage of athletic adolescents will be misclassified as obese by BMI. Cross-sectional study. To compare BMI and skinfold measurements as indicators for obesity in the adolescent athletic population, anthropometric data (height, weight, percentage body fat, age, and sex) were recorded from 33 896 student athletes (average age, 15 years; range, 11-19 years) during preparticipation physical examinations from 1985 to 2003. BMI was calculated from height and weight. Percentage of body fat was determined by measuring skinfold thickness. According to their BMI percentile, 13.31% of adolescent athletes were obese. Using the skinfold method, only 5.95% were obese. Of those classified as obese by the BMI, 62% were considered false positives by the skinfold method. In contrast, there was a 99% probability that the nonobese by BMI would not be obese by the skinfold method (negative predictive value = 0.99). BMI is a measurement of relative body weight, not body composition. Because lean mass weighs far more than fat, many adolescent athletes are incorrectly classified as obese based on BMI. Skinfold testing provides a more accurate body assessment than BMI in adolescent athletes. Correct body composition data can help to provide better diet and activity guidelines and prevent the psychological problems associated with being labeled as obese.

  6. Quasi-static modeling of human limb for intra-body communications with experiments.

    PubMed

    Pun, Sio Hang; Gao, Yue Ming; Mak, PengUn; Vai, Mang I; Du, Min

    2011-11-01

    In recent years, the increasing number of wearable devices on human has been witnessed as a trend. These devices can serve for many purposes: personal entertainment, communication, emergency mission, health care supervision, delivery, etc. Sharing information among the devices scattered across the human body requires a body area network (BAN) and body sensor network (BSN). However, implementation of the BAN/BSN with the conventional wireless technologies cannot give optimal result. It is mainly because the high requirements of light weight, miniature, energy efficiency, security, and less electromagnetic interference greatly limit the resources available for the communication modules. The newly developed intra-body communication (IBC) can alleviate most of the mentioned problems. This technique, which employs the human body as a communication channel, could be an innovative networking method for sensors and devices on the human body. In order to encourage the research and development of the IBC, the authors are favorable to lay a better and more formal theoretical foundation on IBC. They propose a multilayer mathematical model using volume conductor theory for galvanic coupling IBC on a human limb with consideration on the inhomogeneous properties of human tissue. By introducing and checking with quasi-static approximation criteria, Maxwell's equations are decoupled and capacitance effect is included to the governing equation for further improvement. Finally, the accuracy and potential of the model are examined from both in vitro and in vivo experimental results.

  7. Nutritional status and health outcomes for older people with dementia living in institutions.

    PubMed

    Lou, Meei-Fang; Dai, Yu-Tzu; Huang, Guey-Shiun; Yu, Po-Jui

    2007-12-01

    This paper is a report of a study to determine changes over a 3-month period among older people with dementia living in long-term care settings, related to: (1) changes in body mass index, and (2) health outcomes and associated factors. Nutritional deficiencies are common problems among older people, but frequently unrecognized, both in long-term care settings and in the community. A cross-sectional design with repeated measures of body weights and medical record reviews was adopted. The study was conducted in 2003 in two long-term care facilities for older people with dementia in Taiwan. Fifty-five residents participated in the study. Eighteen percent of the residents were under-nourished (body mass index <18.5). There was a trend toward decreasing body mass index over the 3-month study period. Residents with low body mass index tended to need assistance at mealtimes. Nineteen residents, many receiving naso-gastric tube-feeding, experienced adverse health events during the study period. Dependency in eating was the major factor differentiating residents with normal or low body mass index values, and also in distinguishing those who experienced adverse health outcomes. Assessment of eating ability, mode of feeding and measurement of body weight can be used by nurses in long-term care settings for early identification of the nutritional status of older people with dementia.

  8. Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    NASA Technical Reports Server (NTRS)

    Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2001-01-01

    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.

  9. SDG Fermion-Pair Algebraic SO(12) and Sp(10) Models and Their Boson Realizations

    NASA Astrophysics Data System (ADS)

    Navratil, P.; Geyer, H. B.; Dobes, J.; Dobaczewski, J.

    1995-11-01

    It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which we introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained also in situations where there is no underlying SU(3) symmetry.

  10. Parallel aeroelastic computations for wing and wing-body configurations

    NASA Technical Reports Server (NTRS)

    Byun, Chansup

    1994-01-01

    The objective of this research is to develop computationally efficient methods for solving fluid-structural interaction problems by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures on parallel computers. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.

  11. Generation of three-dimensional body-fitted grids by solving hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  12. Generation of three-dimensional body-fitted grids by solving hyperbolic and parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  13. Electronic thermal transport in strongly correlated multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Zlatić, V.; Shvaika, A. M.

    2007-01-01

    The formalism for a linear-response many-body treatment of the electronic contributions to thermal transport is developed for multilayered nanostructures. By properly determining the local heat-current operator, it is possible to show that the Jonson-Mahan theorem for the bulk can be extended to inhomogeneous problems, so the various thermal-transport coefficient integrands are related by powers of frequency (including all effects of vertex corrections when appropriate). We illustrate how to use this formalism by showing how it applies to measurements of the Peltier effect, the Seebeck effect, and the thermal conductance.

  14. On the Analysis of Output Information of S-tree Method

    NASA Astrophysics Data System (ADS)

    Bekaryan, Karen M.; Melkonyan, Anahit A.

    2007-08-01

    On of the most popular and effective method of analysis of hierarchical structure of N-body gravitating systems is method of S-tree diagrams. Apart from many interesting peculiarities, the method, unfortunately, is not free from some disadvantages, among which most important is an extremely complexity of analysis of output information. To solve this problem a number of methods are suggested. From our point of view, most effective approach is an application of all these methods simultaneousely. This allows to obtaine more complete and objective «picture» concerning a final distribution.

  15. Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics

    PubMed Central

    Kreula, J. M.; Clark, S. R.; Jaksch, D.

    2016-01-01

    We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673

  16. Dynamical localization of coupled relativistic kicked rotors

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  17. Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas

    PubMed Central

    Takei, Nobuyuki; Sommer, Christian; Genes, Claudiu; Pupillo, Guido; Goto, Haruka; Koyasu, Kuniaki; Chiba, Hisashi; Weidemüller, Matthias; Ohmori, Kenji

    2016-01-01

    Many-body correlations govern a variety of important quantum phenomena such as the emergence of superconductivity and magnetism. Understanding quantum many-body systems is thus one of the central goals of modern sciences. Here we demonstrate an experimental approach towards this goal by utilizing an ultracold Rydberg gas generated with a broadband picosecond laser pulse. We follow the ultrafast evolution of its electronic coherence by time-domain Ramsey interferometry with attosecond precision. The observed electronic coherence shows an ultrafast oscillation with a period of 1 femtosecond, whose phase shift on the attosecond timescale is consistent with many-body correlations among Rydberg atoms beyond mean-field approximations. This coherent and ultrafast many-body dynamics is actively controlled by tuning the orbital size and population of the Rydberg state, as well as the mean atomic distance. Our approach will offer a versatile platform to observe and manipulate non-equilibrium dynamics of quantum many-body systems on the ultrafast timescale. PMID:27849054

  18. Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.

    PubMed

    Egan, Colin K; Paesani, Francesco

    2018-04-10

    The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.

  19. A call for more science in forensic science.

    PubMed

    Bell, Suzanne; Sah, Sunita; Albright, Thomas D; Gates, S James; Denton, M Bonner; Casadevall, Arturo

    2018-05-01

    Forensic science is critical to the administration of justice. The discipline of forensic science is remarkably complex and includes methodologies ranging from DNA analysis to chemical composition to pattern recognition. Many forensic practices developed under the auspices of law enforcement and were vetted primarily by the legal system rather than being subjected to scientific scrutiny and empirical testing. Beginning in the 1990s, exonerations based on DNA-related methods revealed problems with some forensic disciplines, leading to calls for major reforms. This process generated a National Academy of Science report in 2009 that was highly critical of many forensic practices and eventually led to the establishment of the National Commission for Forensic Science (NCFS) in 2013. The NCFS was a deliberative body that catalyzed communication between nonforensic scientists, forensic scientists, and other stakeholders in the legal community. In 2017, despite continuing problems with forensic science, the Department of Justice terminated the NCFS. Just when forensic science needs the most support, it is getting the least. We urge the larger scientific community to come to the aid of our forensic colleagues by advocating for urgently needed research, testing, and financial support.

  20. AIDS-MEDICOLEGAL ASPECTS.

    PubMed

    Kotabagi, R B; Pathak, P R; Apte, V V

    1999-04-01

    AIDS/HIV Positivity has been the most widely debated disease of this century. Reasons for this are manifold, viz-the non-availability of cure and consequent 100% mortality of a full blown case; its mode of transmission-homosexual and heterosexual activities; widespread occurrence amongst 'main liners'; and patients receiving blood and blood products etc. These aspects have created a dreaded halo around AIDS as well as social stigma. Even the medical community is not exempt from these problems. Unfortunately, legislatures around the world, more so in India, have lagged behind in clarifying many legal issues involved by not enacting specific laws pertaining to AIDS. Consequently many legal & ethical doubts arise in the minds of doctors when confronted with a case of AIDS either in a live patient or in a dead body. In addition, the disease being incurable & 100% fatal, makes it essential to adopt effective preventive measures which in turn need thorough knowledge of social aspects of the epidemic. Certain medicolegal, and ethical aspects of the problem of AIDS are recapitulated in this article for the benefit of the medical community.

  1. Mimicking multichannel scattering with single-channel approaches

    NASA Astrophysics Data System (ADS)

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2010-02-01

    The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold Li6 and Rb87 atoms in the ground state and in the presence of a static magnetic field B. The obtained MC solutions are used to test various existing as well as presently developed SC approaches. It was found that many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only within the framework of the SC approximation. The applicability of various SC approximations is tested for a transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is explained by the two-channel approximation for the MFR.

  2. Qualitative methods in quantum theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migdal, A.B.

    The author feels that the solution of most problems in theoretical physics begins with the application of qualitative methods - dimensional estimates and estimates made from simple models, the investigation of limiting cases, the use of the analytic properties of physical quantities, etc. This book proceeds in this spirit, rather than in a formal, mathematical way with no traces of the sweat involved in the original work left to show. The chapters are entitled Dimensional and model approximations, Various types of perturbation theory, The quasi-classical approximation, Analytic properties of physical quantities, Methods in the many-body problem, and Qualitative methods inmore » quantum field theory. Each chapter begins with a detailed introduction, in which the physical meaning of the results obtained in that chapter is explained in a simple way. 61 figures. (RWR)« less

  3. Equilibria of the symmetric collinear restricted four-body problem with radiation pressure

    NASA Astrophysics Data System (ADS)

    Arribas, M.; Abad, A.; Elipe, A.; Palacios, M.

    2016-02-01

    In this paper, a restricted four-body problem with radiation pressure is considered. The three primaries are supposed in a collinear central configuration where both masses and both radiation forces of peripheral bodies are equal. After an adequate formulation, the problem is reduced to a tri-parametric one. A complete analysis of the position of equilibria and their stability in the space of parameters is performed.

  4. Analytical stability criteria for the Caledonian Symmetric Four and Five Body Problems

    NASA Astrophysics Data System (ADS)

    Steves, Bonnie; Shoaib Afridi, Mohammad; Sweatman, Winston

    2017-06-01

    Analytical studies of the stability of three or more body gravitational systems are difficult because of the greater number of variables involved with the increasing number of bodies and the limitation of 10 integrals that exist in the gravitational n-body problem. Utilisation of symmetries or the neglecting of the masses of some of the bodies compared to others can simplify the dynamical problem and enable global analytical stability solutions to be derived. These symmetric and restricted few body systems with their analytical stability criterion can then provide useful information on the stability of the general few body system when near symmetry or the restricted situation. Even with symmetrical reductions, analytical stability derivations for four and five body problems are rare. In this paper, we develop an analytical stability criterion for the Caledonian Symmetric Five Body Problem (CS5BP) , a dynamically symmetrical planar problem with two pairs of equal masses and a fifth mass located at the centre of mass. Sundman’s inequality is applied to derive boundary surfaces to the allowed real motion of the system. This enables the derivation of a stability criterion valid for all time for the hierarchical stability of the CS5BP and its subset the Caledonian Symmetric Four Body Problem (CSFBP), where the central mass is taken to be equal to zero. We show that the hierarchical stability depends solely on the Szebehely constant C0, which is a function of the total energy H and angular momentum c. The critical value Ccrit at which the system becomes hierarchically stable for all time depends only on the two mass ratios of the symmetric five body system. We then explore the effect on the stability of the whole system of adding an increasing massive central body. It is shown both analytically and numerically that all CS5BPs and CSFBPs of different mass ratios are hierarchically stable if C0 > 0.0659 and C0 > 0.0465, respectively. The Caledonian Symmetric Four and Five Body gravitational models are relevant to the study of the stability and evolution of symmetric quadruple/quintuple stellar clusters and symmetric exoplanetary systems of two planets orbiting a binary/triplet of stars.

  5. The topology of the regularized integral surfaces of the 3-body problem

    NASA Technical Reports Server (NTRS)

    Easton, R.

    1971-01-01

    Momentum, angular momentum, and energy of integral surfaces in the planar three-body problem are considered. The end points of orbits which cross an isolating block are identified. It is shown that this identification has a unique extension to an identification which pairs the end points of orbits entering the block and which end in a binary collision with the end points of orbits leaving the block and which come from a binary collision. The problem of regularization is that of showing that the identification of the end points of crossing orbits has a continuous, unique extension. The regularized phase space for the three-body problem was obtained, as were regularized integral surfaces for the problem on which the three-body equations of motion induce flows. Finally the topology of these surfaces is described.

  6. Planet Earth, Humans, Gravity and Their Connection to Natural Medicine-Essence from a 5000 Yrs Old Ancient Pedagogy

    NASA Astrophysics Data System (ADS)

    Lakshmanan, S.; Monsanto, C.; Radjendirane, B.

    2015-12-01

    According to the Ancient Indian Science, the fundamental constituents of planet earth are the five elements (Solid, Liquid, Heat, Air and Akash (subtlest energy field)). The same five elements constitute the human body. The Chinese and many other native traditions have used their deep understanding of these elements to live in balance with the planet. David Suzuki has elaborated on this key issue in his classic book, The Legacy: "Today we are in a state of crisis, and we must join together to respond to that crisis. If we do so, Suzuki envisions a future in which we understand that we are the Earth and live accordingly. All it takes is imagination and a determination to live within our, and the planet's, means". Gravity, the common force that connects both the body and earth plays a major role in the metabolism as well as the autonomous function of different organs in the body. Gravity has a direct influence on the fruits and vegetables that are grown on the planet as well. As a result, there is a direct relationship among gravity, food and human health. My talk will cover the missing link between the Earth's Gravity and the human health. A new set of ancient axioms will be used to address this and many other issues that are remain as "major unsolved problems" linking modern Geophysical and Health sciences.

  7. The epidemiology of obesity: the size of the problem.

    PubMed

    James, W P T

    2008-04-01

    The epidemic of obesity took off from about 1980 and in almost all countries has been rising inexorably ever since. Only in 1997 did WHO accept that this was a major public health problem and, even then, there was no accepted method for monitoring the problem in children. It was soon evident, however, that the optimum population body mass index is about 21 and this is particularly true in Asia and Latin America where the populations are very prone to developing abdominal obesity, type 2 diabetes and hypertension. These features are now being increasingly linked to epigenetic programming of gene expression and body composition in utero and early childhood, both in terms of fat/lean tissue ratios and also in terms of organ size and metabolic pathway regulation. New Indian evidence suggests that insulin resistance at birth seems linked to low birth weight and a higher proportion of body fat with selective B12 deficiency and abnormalities of one carbon pool metabolism potentially responsible and affecting 75% of Indians and many populations in the developing world. Biologically there are also adaptive biological mechanisms which limit weight loss after weight gain and thereby in part account for the continuing epidemic despite the widespread desire to slim. Logically, the burden of disease induced by inappropriate diets and widespread physical inactivity can be addressed by increasing physical activity (PA), but simply advocating more leisure time activity is unrealistic. Substantial changes in urban planning and diet are needed to counter the removal of any every day need for PA and the decades of misdirected food policies which with free market forces have induced our current 'toxic environment'. Counteracting this requires unusual policy initiatives.

  8. Quantum power functional theory for many-body dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Matthias, E-mail: Matthias.Schmidt@uni-bayreuth.de

    2015-11-07

    We construct a one-body variational theory for the time evolution of nonrelativistic quantum many-body systems. The position- and time-dependent one-body density, particle current, and time derivative of the current act as three variational fields. The generating (power rate) functional is minimized by the true current time derivative. The corresponding Euler-Lagrange equation, together with the continuity equation for the density, forms a closed set of one-body equations of motion. Space- and time-nonlocal one-body forces are generated by the superadiabatic contribution to the functional. The theory applies to many-electron systems.

  9. Noninvasive biosensor for hypoglycemia

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, Karunakaran

    2003-01-01

    Hypoglycemia-abnormal decrease in blood sugar- is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This is especially a concern in early childhood years when the nervous system is still developing. Hypoglycemic unawareness (in which the body"s normal ability to signal low blood sugar doesn"t work and an oncoming low blood sugar episode proceeds undetected) is a particularly frightening problem for many people with diabetes. Researchers have now uncovered evidence that repeated bouts of insulin-induced hypoglycemia can harm the brain over time, causing confusion, abnormal behavior, loss of consciousness, and seizures. Extreme cases have resulted in coma and death. In this paper, a non-invasive biosensor in a wrist watch along with a wireless data downloading system is proposed.

  10. On the autonomy of the concept of disease in psychiatry

    PubMed Central

    Schramme, Thomas

    2013-01-01

    Does the reference to a mental realm in using the notion of mental disorder lead to a dilemma that consists in either implying a Cartesian account of the mind-body relation or in the need to give up a notion of mental disorder in its own right? Many psychiatrists seem to believe that denying substance dualism requires a purely neurophysiological stance for explaining mental disorder. However, this conviction is based on a limited awareness of the philosophical debate on the mind-body problem. This article discusses the reasonableness of the concept of mental disorder in relation to reductionist and eliminativist strategies in the philosophy of mind. It is concluded that we need a psychological level of explanation that cannot be reduced to neurophysiological findings in order to make sense of mental disorder. PMID:23882252

  11. Existence of liouvillian solutions in the problem of motion of a rotationally symmetric body on a sphere

    NASA Astrophysics Data System (ADS)

    Kuleshov, Alexander S.; Katasonova, Vera A.

    2018-05-01

    The problem of rolling without slipping of a rotationally symmetric rigid body on a sphere is considered. The rolling body is assumed to be subjected to the forces, the resultant of which is directed from the center of mass G of the body to the center O of the sphere, and depends only on the distance between G and O. In this case the solution of this problem is reduced to solving the second order linear differential equation over the projection of the angular velocity of the body onto its axis of symmetry. Using the Kovacic algorithm we search for liouvillian solutions of the corresponding second order differential equation in the case, when the rolling body is a dynamically symmetric ball.

  12. Disordered eating among preadolescent boys and girls: the relationship with child and maternal variables.

    PubMed

    Gonçalves, Sónia; Silva, Margarida; Gomes, A Rui; Machado, Paulo P P

    2012-04-01

    (i) To analyze the eating behaviors and body satisfaction of boys and girls and to examine their mothers' perceptions of these two domains; and (ii) to evaluate eating problem predictors using child body mass index (BMI), self-esteem, and body satisfaction as well as maternal BMI, eating problems, and satisfaction with their child's body. The participants included 111 children (54.1% girls aged between 9 and 12 years old) and their mothers. Assessment measures included the Child Eating Attitude Test, the Self-Perception Profile for Children, the Eating Disorders Questionnaire, and the Child Eating Behavior Questionnaire. Child and maternal measures also included BMI and Collins Figure Drawings. (i) No association between child and maternal BMI for either sex was found; (ii) no difference was found between boys and girls with regard to eating behavior; (iii) most children revealed a preference for an ideal body image over their actual body image; (iv) most mothers preferred thinner bodies for their children; (v) greater BMI was related to higher body dissatisfaction; and (vi) child BMI and dissatisfaction with body image predicted eating disturbances in boys, whereas self-esteem, maternal BMI, and eating behavior predicted them in girls. Maternal eating problems and BMI were related to female eating problems only.

  13. Disordered Eating among Preadolescent Boys and Girls: The Relationship with Child and Maternal Variables

    PubMed Central

    Gonçalves, Sónia; Silva, Margarida; Gomes, A. Rui; Machado, Paulo P. P.

    2012-01-01

    Objective: (i) To analyze the eating behaviors and body satisfaction of boys and girls and to examine their mothers’ perceptions of these two domains; and (ii) to evaluate eating problem predictors using child body mass index (BMI), self-esteem, and body satisfaction as well as maternal BMI, eating problems, and satisfaction with their child’s body. The participants included 111 children (54.1% girls aged between 9 and 12 years old) and their mothers. Assessment measures included the Child Eating Attitude Test, the Self-Perception Profile for Children, the Eating Disorders Questionnaire, and the Child Eating Behavior Questionnaire. Child and maternal measures also included BMI and Collins Figure Drawings. Results: (i) No association between child and maternal BMI for either sex was found; (ii) no difference was found between boys and girls with regard to eating behavior; (iii) most children revealed a preference for an ideal body image over their actual body image; (iv) most mothers preferred thinner bodies for their children; (v) greater BMI was related to higher body dissatisfaction; and (vi) child BMI and dissatisfaction with body image predicted eating disturbances in boys, whereas self-esteem, maternal BMI, and eating behavior predicted them in girls. Discussion: Maternal eating problems and BMI were related to female eating problems only. PMID:22606370

  14. Experience with Free Bodies

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1985-01-01

    Some of the problems that confront an analyst in free body modeling, to satisfy rigid body conditions are discussed and with some remedies for these problems are presented. The problems of detecting these culprits at various levels within the analysis are examined. A new method within NASTRAN for checking the model for defects very early in the analysis without requiring the analyst to bear the expense of an eigenvalue analysis before discovering these defects is outlined.

  15. Finite difference solutions of heat conduction problems in multi-layered bodies with complex geometries

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.

    1984-01-01

    A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.

  16. Evidence-based medicine: Dupuytren contracture.

    PubMed

    Eaton, Charles

    2014-05-01

    After studying this article, the participant should be able to: (1) Describe features and clinical importance of Dupuytren diathesis. (2) Explain the difference between the new definition of recurrence used in collagenase studies compared with prior definitions of recurrence. (3) Compare and list the main advantage/main disadvantage of fasciectomy versus minimally invasive treatment (collagenase injection or needle aponeurotomy) of Dupuytren contracture. The large body of existing literature on Dupuytren disease is spread across many journals in many specialties. It is thus a daunting task for practitioners to follow trends and practice recommendations. It is also a testimony to the lack of an acceptable solution to this common problem. Recent publications provide evidence to highlight controversies and challenge some traditional teachings. Literature from 2010 to 2012 was reviewed with the intent of clarifying some of these issues.

  17. Multiloop functional renormalization group for general models

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-02-01

    We present multiloop flow equations in the functional renormalization group (fRG) framework for the four-point vertex and self-energy, formulated for a general fermionic many-body problem. This generalizes the previously introduced vertex flow [F. B. Kugler and J. von Delft, Phys. Rev. Lett. 120, 057403 (2018), 10.1103/PhysRevLett.120.057403] and provides the necessary corrections to the self-energy flow in order to complete the derivative of all diagrams involved in the truncated fRG flow. Due to its iterative one-loop structure, the multiloop flow is well suited for numerical algorithms, enabling improvement of many fRG computations. We demonstrate its equivalence to a solution of the (first-order) parquet equations in conjunction with the Schwinger-Dyson equation for the self-energy.

  18. Captured by details: sense-making, language and communication in autism.

    PubMed

    Noens, Ilse L J; van Berckelaer-Onnes, Ina A

    2005-01-01

    The communication of people with autism spectrum disorder (ASD) is characterized by a qualitative impairment in verbal and non-verbal communication. In past decades a growing body of descriptive studies has appeared on language and communication problems in ASD. Reviews suggest that the development of formal and semantic aspects is relatively spared, whereas pragmatic skills are considered to be specifically impaired. This unique profile was interpreted mainly within the framework of the theory of mind hypothesis, which links the social-communicative problems of people with autism to an incapacity to attribute mental states to themselves and others. This approach has proven useful, but has also left many questions unanswered. In more recent publications, limited intentionality and symbol formation have been identified as core problems in ASD. Problems in symbol formation in particular might be better understood from the viewpoint of the central coherence hypothesis, which conceptualizes ASD as a weaker drive for the integration of information. Possible links between cognitive findings and communication evoke new perspectives with respect to the complex of communication problems in ASD. The reader of this manuscript will be able to (1) describe the communication deficit in ASD; (2) discuss the central coherence account of ASD in relation to problems in sense-making; and (3) explain how these difficulties might lead to problems in communication in autism.

  19. Stefan problem for a finite liquid phase and its application to laser or electron beam welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasuya, T.; Shimoda, N.

    1997-10-01

    An exact solution of a heat conduction problem with the effect of latent heat of solidification (Stefan problem) is derived. The solution of the one dimensional Stefan problem for a finite liquid phase initially existing in a semi-infinite body is applied to evaluate temperature fields produced by laser or electron beam welding. The solution of the model has not been available before, as Carslaw and Jaeger [{ital Conduction of Heat in Solids}, 2nd ed. (Oxford University Press, New York, 1959)] pointed out. The heat conduction calculations are performed using thermal properties of carbon steel, and the comparison of the Stefanmore » problem with a simplified linear heat conduction model reveals that the solidification rate and cooling curve over 1273 K significantly depend on which model (Stefan or linear heat conduction problem) is applied, and that the type of the thermal model applied has little meaning for cooling curve below 1273 K. Since the heat conduction problems with a phase change arise in many important industrial fields, the solution derived in this study is ready to be used not only for welding but also for other industrial applications. {copyright} {ital 1997 American Institute of Physics.}« less

  20. Framing the Mind-Body Problem in Contemporary Neuroscientific and Sunni Islamic Theological Discourse.

    PubMed

    Qazi, Faisal; Fette, Don; Jafri, Syed S; I Padela, Aasim

    2018-07-01

    Famously posed by seventeenth-century French philosopher René Descartes, the mind-body problem remains unresolved in western philosophy and science, with both disciplines unable to move convincingly beyond the dualistic model. The persistence of dualism calls for a reframing of the problem through interdisciplinary modes of inquiry that include non-western points of view. One such perspective is Islamic theology of the soul, which, while approaching the problem from a distinct point of view, also adopts a position commensurate with (substance) dualism. Using this point of convergence as a conceptual starting point, we argue that bringing into dialogue contemporary neuroscientific, philosophy of mind, and Sunni Islamic theological discourses may provide a fruitful way of reframing the age-old mind-body problem. This paper provides an overview of how these three discourses have approached the issue of the mind-body (-soul) problem. Juxtaposing these three discourses, we hope, may ignite further scholarly dialogue and investigation.

  1. Low back pain in car drivers: A review of studies published 1975 to 2005

    NASA Astrophysics Data System (ADS)

    Gallais, Lenka; Griffin, Michael J.

    2006-12-01

    This review investigates whether there is evidence of an association between car driving and low back pain, and evidence that whole-body vibration contributes to low back pain in car drivers. The evidence of an association between various physical, psychosocial and individual factors and low back pain in car drivers was also investigated. From 23 epidemiological studies of low back problems in groups that reported car driving, nine studies fulfilled simple criteria for detailed review: four cross-sectional studies, three case-control studies and two longitudinal studies. The definition of low back pain was often unclear and, mostly, the physiological mechanisms causing low back pain were not considered. Eight of the nine studies concluded that there was an increase in low back pain among car drivers but there was little consideration of the influence of the many physical factors, individual factors and psychosocial factors that might be associated with an increase in low back pain. Consequently, there is insufficient evidence to form a conclusion on whether whole-body vibration, postural stressors or other factors, specific or not specific to driving, are common causes of low back problems in car drivers.

  2. Cartography of asteroids and comet nuclei from low resolution data

    NASA Technical Reports Server (NTRS)

    Stooke, Philip J.

    1992-01-01

    High resolution images of non-spherical objects, such as Viking images of Phobos and the anticipated Galileo images of Gaspra, lend themselves to conventional planetary cartographic procedures: control network analysis, stereophotogrammetry, image mosaicking in 2D or 3D, and airbrush mapping. There remains the problem of a suitable map projection for bodies which are extremely elongated or irregular in shape. Many bodies will soon be seen at lower resolution (5-30 pixels across the disk) in images from speckle interferometry, the Hubble Space Telescope, ground-based radar, distinct spacecraft encounters, and closer images degraded by smear. Different data with similar effective resolutions are available from stellar occultations, radar or lightcurve convex hulls, lightcurve modeling of albedo variations, and cometary jet modeling. With such low resolution, conventional methods of shape determination will be less useful or will fail altogether, leaving limb and terminator topography as the principal sources of topographic information. A method for shape determination based on limb and terminator topography was developed. It has been applied to the nucleus of Comet Halley and the jovian satellite Amalthea. The Amalthea results are described to give an example of the cartographic possibilities and problems of anticipated data sets.

  3. Childhood exposure to violence and lifelong health: Clinical intervention science and stress biology research join forces

    PubMed Central

    Moffitt, Terrie E.

    2013-01-01

    Many young people who are mistreated by an adult, victimized by bullies, criminally assaulted, or who witness domestic violence react to this violence exposure by developing behavioral, emotional, or learning problems. What is less well known is that adverse experiences like violence exposure can lead to hidden physical alterations inside a child’s body, alterations which may have adverse effects on life-long health. We discuss why this is important for the field of developmental psychopathology and for society, and we recommend that stress-biology research and intervention science join forces to tackle the problem. We examine the evidence base in relation to stress-sensitive measures for the body (inflammatory reactions, telomere erosion, epigenetic methylation, and gene expression) and brain (mental disorders, neuroimaging, and neuropsychological testing). We also review promising interventions for families, couples, and children that have been designed to reduce the effects of childhood violence exposure. We invite intervention scientists and stress-biology researchers to collaborate in adding stress-biology measures to randomized clinical trials of interventions intended to reduce effects of violence exposure and other traumas on young people. PMID:24342859

  4. Top Mysteries of the Mind: Insights From the Default Space Model of Consciousness

    PubMed Central

    Jerath, Ravinder; Beveridge, Connor

    2018-01-01

    Aside from the nature of consciousness itself, there are still many unsolved problems in the neurosciences. Despite the vast and quickly growing body of work in this field, we still find ourselves perplexed at seemingly simple qualities of our mental being such as why we need to sleep. The neurosciences are at least beginning to take a hold on these mysteries and are working toward solving them. We hold a perspective that metastable consciousness models, specifically the Default Space Model (DSM), provide insights into these mysteries. In this perspective article, we explore some of these curious questions in order to elucidate the interesting points they bring up. The DSM is a dynamic, global theory of consciousness that involves the maintenance of an internal, 3D simulation of the external, physical world which is the foundation and structure of consciousness. This space is created and filled by multiple frequencies of membrane potential oscillations throughout the brain and body which are organized, synchronized and harmonized by the thalamus. The veracity of the DSM is highlighted here in its ability to further understanding of some of the most puzzling problems in neuroscience.

  5. Top Mysteries of the Mind: Insights From the Default Space Model of Consciousness.

    PubMed

    Jerath, Ravinder; Beveridge, Connor

    2018-01-01

    Aside from the nature of consciousness itself, there are still many unsolved problems in the neurosciences. Despite the vast and quickly growing body of work in this field, we still find ourselves perplexed at seemingly simple qualities of our mental being such as why we need to sleep. The neurosciences are at least beginning to take a hold on these mysteries and are working toward solving them. We hold a perspective that metastable consciousness models, specifically the Default Space Model (DSM), provide insights into these mysteries. In this perspective article, we explore some of these curious questions in order to elucidate the interesting points they bring up. The DSM is a dynamic, global theory of consciousness that involves the maintenance of an internal, 3D simulation of the external, physical world which is the foundation and structure of consciousness. This space is created and filled by multiple frequencies of membrane potential oscillations throughout the brain and body which are organized, synchronized and harmonized by the thalamus. The veracity of the DSM is highlighted here in its ability to further understanding of some of the most puzzling problems in neuroscience.

  6. Investigation of Lyapunov stability of a central configuration in the restricted four-body problem

    NASA Astrophysics Data System (ADS)

    Bardin, B. S.; Esipov, P. A.

    2018-05-01

    The restricted planar four-body problem is considered. It is supposed that one of four bodies has infinitesimal mass and does not affect on motions of three other bodies. If two bodies have equal masses then there exists a central configuration such that three bodies are located in vertex of an equilateral triangle and the fourth body having infinitesimal mass is located in perpendicular bisector of the triangle. By using the method of normal forms and KAM theory stability of the above configuration is studied in the sense of Lyapunov.

  7. Drude weight fluctuations in many-body localized systems

    NASA Astrophysics Data System (ADS)

    Filippone, Michele; Brouwer, Piet W.; Eisert, Jens; von Oppen, Felix

    2016-11-01

    We numerically investigate the distribution of Drude weights D of many-body states in disordered one-dimensional interacting electron systems across the transition to a many-body localized phase. Drude weights are proportional to the spectral curvatures induced by magnetic fluxes in mesoscopic rings. They offer a method to relate the transition to the many-body localized phase to transport properties. In the delocalized regime, we find that the Drude weight distribution at a fixed disorder configuration agrees well with the random-matrix-theory prediction P (D ) ∝(γ2+D2) -3 /2 , although the distribution width γ strongly fluctuates between disorder realizations. A crossover is observed towards a distribution with different large-D asymptotics deep in the many-body localized phase, which however differs from the commonly expected Cauchy distribution. We show that the average distribution width <γ >, rescaled by L Δ ,Δ being the average level spacing in the middle of the spectrum and L the systems size, is an efficient probe of the many-body localization transition, as it increases (vanishes) exponentially in the delocalized (localized) phase.

  8. The Mind-Body Problem.

    ERIC Educational Resources Information Center

    Fodor, Jerry A.

    1981-01-01

    Describes several different philosophies of mind with each philosophy's explanation of the mind-body problem. Philosophies discussed include dualism, materialism, functionalism, radical behaviorism, logical behaviorism and central-state identity. (DS)

  9. Body Weight, Self-Esteem, and Depression in Korean Female Adolescents.

    ERIC Educational Resources Information Center

    Kim, Oksoo; Kim, Kyeha

    2001-01-01

    Examined whether body mass index (BMI) and perception of a body weight problem predict level of self esteem and depression in Korean female adolescents. Results showed that perception of a weight problem, but not BMI, contributed significantly to the prediction of level of self esteem and depression. (BF)

  10. Vortex matter stabilized by many-body interactions

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino

    2017-10-01

    This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.

  11. Ballistic near-field heat transport in dense many-body systems

    NASA Astrophysics Data System (ADS)

    Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe

    2018-01-01

    Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.

  12. Attitude and Configuration Control of Flexible Multi-Body Spacecraft

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Ki; Cochran, John E., Jr.

    2002-06-01

    Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

  13. Light-matter interaction in transition metal dichalcogenides and their heterostructures

    NASA Astrophysics Data System (ADS)

    Wurstbauer, Ursula; Miller, Bastian; Parzinger, Eric; Holleitner, Alexander W.

    2017-05-01

    The investigation of two-dimensional (2D) van der Waals materials is a vibrant, fast-moving and still growing interdisciplinary area of research. These materials are truly 2D crystals with strong covalent in-plane bonds and weak van der Waals interaction between the layers, and have a variety of different electronic, optical and mechanical properties. Transition metal dichalcogenides are a very prominent class of 2D materials, particularly the semiconducting subclass. Their properties include bandgaps in the near-infrared to the visible range, decent charge carrier mobility together with high (photo-) catalytic and mechanical stability, and exotic many-body phenomena. These characteristics make the materials highly attractive for both fundamental research as well as innovative device applications. Furthermore, the materials exhibit a strong light-matter interaction, providing a high sunlight absorbance of up to 15% in the monolayer limit, strong scattering cross section in Raman experiments, and access to excitonic phenomena in van der Waals heterostructures. This review focuses on the light-matter interaction in MoS2, WS2, MoSe2 and WSe2, which is dictated by the materials’ complex dielectric functions, and on the multiplicity of studying the first-order phonon modes by Raman spectroscopy to gain access to several material properties such as doping, strain, defects and temperature. 2D materials provide an interesting platform for stacking them into van der Waals heterostructures without the limitation of lattice mismatch, resulting in novel devices for applications but also to enable the study of exotic many-body interaction phenomena such as interlayer excitons. Future perspectives of semiconducting transition metal dichalcogenides and their heterostructures for applications in optoelectronic devices will be examined, and routes to study emergent fundamental problems and many-body quantum phenomena under excitations with photons will be discussed.

  14. The Different Patterns of Gesture between Genders in Mathematical Problem Solving of Geometry

    NASA Astrophysics Data System (ADS)

    Harisman, Y.; Noto, M. S.; Bakar, M. T.; Amam, A.

    2017-02-01

    This article discusses about students’ gesture between genders in answering problems of geometry. Gesture aims to check students’ understanding which is undefined from their writings. This study is a qualitative research, there were seven questions given to two students of eight grade Junior High School who had the equal ability. The data of this study were collected from mathematical problem solving test, videoing students’ presentation, and interviewing students by asking questions to check their understandings in geometry problems, in this case the researchers would observe the students’ gesture. The result of this study revealed that there were patterns of gesture through students’ conversation and prosodic cues, such as tones, intonation, speech rate and pause. Female students tended to give indecisive gestures, for instance bowing, hesitating, embarrassing, nodding many times in shifting cognitive comprehension, forwarding their body and asking questions to the interviewer when they found tough questions. However, male students acted some gestures such as playing their fingers, focusing on questions, taking longer time to answer hard questions, staying calm in shifting cognitive comprehension. We suggest to observe more sample and focus on students’ gesture consistency in showing their understanding to solve the given problems.

  15. Designing Dynamic Adaptive Policy Pathways using Many-Objective Robust Decision Making

    NASA Astrophysics Data System (ADS)

    Kwakkel, Jan; Haasnoot, Marjolijn

    2017-04-01

    Dealing with climate risks in water management requires confronting a wide variety of deeply uncertain factors, while navigating a many dimensional space of trade-offs amongst objectives. There is an emerging body of literature on supporting this type of decision problem, under the label of decision making under deep uncertainty. Two approaches within this literature are Many-Objective Robust Decision Making, and Dynamic Adaptive Policy Pathways. In recent work, these approaches have been compared. One of the main conclusions of this comparison was that they are highly complementary. Many-Objective Robust Decision Making is a model based decision support approach, while Dynamic Adaptive Policy Pathways is primarily a conceptual framework for the design of flexible strategies that can be adapted over time in response to how the future is actually unfolding. In this research we explore this complementarity in more detail. Specifically, we demonstrate how Many-Objective Robust Decision Making can be used to design adaptation pathways. We demonstrate this combined approach using a water management problem, in the Netherlands. The water level of Lake IJselmeer, the main fresh water resource of the Netherlands, is currently managed through discharge by gravity. Due to climate change, this won't be possible in the future, unless water levels are changed. Changing the water level has undesirable flood risk and spatial planning consequences. The challenge is to find promising adaptation pathways that balance objectives related to fresh water supply, flood risk, and spatial issues, while accounting for uncertain climatic and land use change. We conclude that the combination of Many-Objective Robust Decision Making and Dynamic Adaptive Policy Pathways is particularly suited for dealing with deeply uncertain climate risks.

  16. [The first and foremost tasks of the medical service].

    PubMed

    Chizh, I M

    1997-07-01

    Now in connection with common situation in Russian Federation the problem of reinforcements of army and fleet by healthy personnel, scare of a call-up quota and its poor quality are the main problems of the Armed Forces at the state level. The uniform complex program of medico-social maintenance of the citizens during preparation for military service is necessary. The modern situation is difficult due to many infectious diseases, so the role and the place of military-medical service grows. In last years structure of quota, served by the military doctors, and number of other parameters have greatly changed, that require revision of some priorities. A problem of reinforcements of the Armed Forces by medical service officers remains actual, for decision of which a full-bodied admission on military medical faculty is required, as well as admission of the officers under contract and calling-up of reserve officers. In article the main lessons, received by the medical service during combat actions in Republic of Chechnya are also formulated.

  17. Parallel Computing Strategies for Irregular Algorithms

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.

  18. [Black urine or black sclera of the eyes? Consider alkaptonuria].

    PubMed

    Gubbels, Nanda P; Sijbrand, Merijn H; Onstenk, Ron

    2014-01-01

    Alkaptonuria is a rare metabolic disorder due to a defect in the gene for homogentisic acid oxidase. This results in an accumulation of homogentisic acid, which leads to the deposit of pigment in the connective tissue in the body. This causes problems and symptoms in various organ systems, such as early artropathy, dark-coloured urine, black sclerae, dark-coloured aortic valves and an increased risk of kidney stones and gall stones. Various specialists may see patients with this disease. The diagnosis is often missed. We describe a 69-year-old woman who underwent surgery due to joint problems, which showed up black cartilage. It turned out that for many years she had also had eye and heart problems. Not until later in life was she diagnosed with alkaptonuria. There is no curative treatment for alkaptonuria at the moment. Early recognition of the disease can increase the quality of life. Preventative check-ups and guidance are also therefore necessary.

  19. [Current problems in determining children's nutritional needs].

    PubMed

    Koletzko, B; Toschke, A M; Von Kries, R

    2004-03-01

    Meeting children's nutritional needs is of fundamental importance for their immediate and later health, well-being, and performance. Age-adapted reference values of nutrient intake form the basis for analysis of the current situation and for policy planning, but for many nutrients they cannot be precisely defined due to inadequate scientific data. Therefore, such values are often extrapolated from adult reference values based on age-adapted mean body weight or body surface data, although such extrapolation does not reflect age-related physiological changes. There are considerable differences between various expert recommendations, in part also due to differences in definitions and underlying concepts for deriving reference values. Improvements and international harmonization are urgently needed. Nutritional needs of many children and adolescents are not adequately met at present. A particularly obvious indication is the epidemic-like increase of pediatric overweight and obesity, which could result in markedly increased prevalences of later metabolic syndrome, diabetes, and cardiovascular diseases. Contributing to increasing childhood obesity are low physical activity, changing eating culture and behavior, frequent consumption of high-fat foods with high energy density, and increasing portion sizes. Changes are urgently needed and might be achievable with close collaboration between scientists, public institutions, and industry.

  20. Renormalization of myoglobin–ligand binding energetics by quantum many-body effects

    PubMed Central

    Weber, Cédric; Cole, Daniel J.; O’Regan, David D.; Payne, Mike C.

    2014-01-01

    We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory. This combination of methods explicitly accounts for dynamical and multireference quantum physics, such as valence and spin fluctuations, of the 3d electrons, while treating a significant proportion of the protein (more than 1,000 atoms) with DFT. The computed electronic structure of the myoglobin complexes and the nature of the Fe–O2 bonding are validated against experimental spectroscopic observables. We elucidate and solve a long-standing problem related to the quantum-mechanical description of the respiration process, namely that DFT calculations predict a strong imbalance between O2 and CO binding, favoring the latter to an unphysically large extent. We show that the explicit inclusion of the many-body effects induced by the Hund’s coupling mechanism results in the correct prediction of similar binding energies for oxy- and carbonmonoxymyoglobin. PMID:24717844

  1. A Keplerian-based Hamiltonian splitting for gravitational N-body simulations

    NASA Astrophysics Data System (ADS)

    Gonçalves Ferrari, G.; Boekholt, T.; Portegies Zwart, S. F.

    2014-05-01

    We developed a Keplerian-based Hamiltonian splitting for solving the gravitational N-body problem. This splitting allows us to approximate the solution of a general N-body problem by a composition of multiple, independently evolved two-body problems. While the Hamiltonian splitting is exact, we show that the composition of independent two-body problems results in a non-symplectic non-time-symmetric first-order map. A time-symmetric second-order map is then constructed by composing this basic first-order map with its self-adjoint. The resulting method is precise for each individual two-body solution and produces quick and accurate results for near-Keplerian N-body systems, like planetary systems or a cluster of stars that orbit a supermassive black hole. The method is also suitable for integration of N-body systems with intrinsic hierarchies, like a star cluster with primordial binaries. The superposition of Kepler solutions for each pair of particles makes the method excellently suited for parallel computing; we achieve ≳64 per cent efficiency for only eight particles per core, but close to perfect scaling for 16 384 particles on a 128 core distributed-memory computer. We present several implementations in SAKURA, one of which is publicly available via the AMUSE framework.

  2. Neural Correlates of Perceiving Emotional Faces and Bodies in Developmental Prosopagnosia: An Event-Related fMRI-Study

    PubMed Central

    Van den Stock, Jan; van de Riet, Wim A. C.; Righart, Ruthger; de Gelder, Beatrice

    2008-01-01

    Many people experience transient difficulties in recognizing faces but only a small number of them cannot recognize their family members when meeting them unexpectedly. Such face blindness is associated with serious problems in everyday life. A better understanding of the neuro-functional basis of impaired face recognition may be achieved by a careful comparison with an equally unique object category and by a adding a more realistic setting involving neutral faces as well facial expressions. We used event-related functional magnetic resonance imaging (fMRI) to investigate the neuro-functional basis of perceiving faces and bodies in three developmental prosopagnosics (DP) and matched healthy controls. Our approach involved materials consisting of neutral faces and bodies as well as faces and bodies expressing fear or happiness. The first main result is that the presence of emotional information has a different effect in the patient vs. the control group in the fusiform face area (FFA). Neutral faces trigger lower activation in the DP group, compared to the control group, while activation for facial expressions is the same in both groups. The second main result is that compared to controls, DPs have increased activation for bodies in the inferior occipital gyrus (IOG) and for neutral faces in the extrastriate body area (EBA), indicating that body and face sensitive processes are less categorically segregated in DP. Taken together our study shows the importance of using naturalistic emotional stimuli for a better understanding of developmental face deficits. PMID:18797499

  3. On the characteristic exponents of the general three-body problem

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1976-01-01

    A description is given of some properties of the characteristic exponents of the general three-body problem. The variational equations on which the analysis is based are obtained by linearizing the Lagrangian equations of motion in the neighborhood of a given known solution. Attention is given to the fundamental matrix of solutions, the characteristic equation, the three trivial solutions of the variational equations of the three-body problem, symmetric periodic orbits, and the half-period properties of symmetric periodic orbits.

  4. Biodynamics of deformable human body motion

    NASA Technical Reports Server (NTRS)

    Strauss, A. M.; Huston, R. L.

    1976-01-01

    The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.

  5. Thermoplasticity of coupled bodies in the case of stress-dependent heat transfer

    NASA Technical Reports Server (NTRS)

    Kilikovskaya, O. A.

    1987-01-01

    The problem of the thermal stresses in coupled deformable bodies is formulated for the case where the heat-transfer coefficient at the common boundary depends on the stress-strain state of the bodies (e.g., is a function of the normal pressure at the common boundary). Several one-dimensional problems are solved in this formulation. Among these problems is the determination of the thermal stresses in an n-layer plate and in a two-layer cylinder.

  6. A study analysis of cable-body systems totally immersed in a fluid stream

    NASA Technical Reports Server (NTRS)

    Delaurier, J. D.

    1972-01-01

    A general stability analysis of a cable-body system immersed in a fluid stream is presented. The analytical portion of this analysis treats the system as being essentially a cable problem, with the body dynamics giving the end conditions. The mathematical form of the analysis consists of partial differential wave equations, with the end and auxiliary conditions being determined from the body equations of motion. The equations uncouple to give a lateral problem and a longitudinal problem as in first order airplane dynamics. A series of tests on a tethered wind tunnel model provide a comparison of the theory with experiment.

  7. Understanding quantum work in a quantum many-body system.

    PubMed

    Wang, Qian; Quan, H T

    2017-03-01

    Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)2160-330810.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)1539-375510.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.

  8. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics: Quantum many-body physics of ultracold molecules in optical lattices: models and simulation methods

    NASA Astrophysics Data System (ADS)

    Wall, Michael

    2014-03-01

    Experimental progress in generating and manipulating synthetic quantum systems, such as ultracold atoms and molecules in optical lattices, has revolutionized our understanding of quantum many-body phenomena and posed new challenges for modern numerical techniques. Ultracold molecules, in particular, feature long-range dipole-dipole interactions and a complex and selectively accessible internal structure of rotational and hyperfine states, leading to many-body models with long range interactions and many internal degrees of freedom. Additionally, the many-body physics of ultracold molecules is often probed far from equilibrium, and so algorithms which simulate quantum many-body dynamics are essential. Numerical methods which are to have significant impact in the design and understanding of such synthetic quantum materials must be able to adapt to a variety of different interactions, physical degrees of freedom, and out-of-equilibrium dynamical protocols. Matrix product state (MPS)-based methods, such as the density-matrix renormalization group (DMRG), have become the de facto standard for strongly interacting low-dimensional systems. Moreover, the flexibility of MPS-based methods makes them ideally suited both to generic, open source implementation as well as to studies of the quantum many-body dynamics of ultracold molecules. After introducing MPSs and variational algorithms using MPSs generally, I will discuss my own research using MPSs for many-body dynamics of long-range interacting systems. In addition, I will describe two open source implementations of MPS-based algorithms in which I was involved, as well as educational materials designed to help undergraduates and graduates perform research in computational quantum many-body physics using a variety of numerical methods including exact diagonalization and static and dynamic variational MPS methods. Finally, I will mention present research on ultracold molecules in optical lattices, such as the exploration of many-body physics with polyatomic molecules, and the next generation of open source matrix product state codes. This work was performed in the research group of Prof. Lincoln D. Carr.

  9. Problemas de nervos: a multivocal symbol of distress for Portuguese immigrants.

    PubMed

    James, Susan; Fernandes, Mark; Navara, Geoffrey S; Harris, Sara; Foster, Durwin

    2009-06-01

    This article outlines research on a previous unstudied form of suffering specific to the Portugese immigrant community: problemas de nervos. Thirty-two Portuguese immigrant women (in Waterloo, ON and Boston, MA) were interviewed and each completed a questionnaire. Cluster analysis demonstrated that problemas de nervos has many meanings. The study profiled symptoms, causes and therapies associated with four variations of this culture-specific form of distress: "mal da cabeca" meaning problems with/in the head (e.g., lack of control, visions); " aflição" meaning affliction (e.g., nervous attacks, heart problems); immigration stress (causing sleep disturbances); and, conflicts with others (resulting in pressure within the body). None of the symptom clusters reported matched criteria for a DSM-IV-TR diagnosis, suggesting that problemas de nervos represents an idiomatic rather than universal expression of distress.

  10. Cluster expansion for ground states of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  11. The computationalist reformulation of the mind-body problem.

    PubMed

    Marchal, Bruno

    2013-09-01

    Computationalism, or digital mechanism, or simply mechanism, is a hypothesis in the cognitive science according to which we can be emulated by a computer without changing our private subjective feeling. We provide a weaker form of that hypothesis, weaker than the one commonly referred to in the (vast) literature and show how to recast the mind-body problem in that setting. We show that such a mechanist hypothesis does not solve the mind-body problem per se, but does help to reduce partially the mind-body problem into another problem which admits a formulation in pure arithmetic. We will explain that once we adopt the computationalist hypothesis, which is a form of mechanist assumption, we have to derive from it how our belief in the physical laws can emerge from *only* arithmetic and classical computer science. In that sense we reduce the mind-body problem to a body problem appearance in computer science, or in arithmetic. The general shape of the possible solution of that subproblem, if it exists, is shown to be closer to "Platonist or neoplatonist theology" than to the "Aristotelian theology". In Plato's theology, the physical or observable reality is only the shadow of a vaster hidden nonphysical and nonobservable, perhaps mathematical, reality. The main point is that the derivation is constructive, and it provides the technical means to derive physics from arithmetic, and this will make the computationalist hypothesis empirically testable, and thus scientific in the Popperian analysis of science. In case computationalism is wrong, the derivation leads to a procedure for measuring "our local degree of noncomputationalism". Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Lateral-Directional Parameter Estimation on the X-48B Aircraft Using an Abstracted, Multi-Objective Effector Model

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.; Waggoner, Erin R.; Taylor, Brian R.

    2011-01-01

    The problem of parameter estimation on hybrid-wing-body aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aerodynamic control effectors that act in coplanar motion. This adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of flight and simulation data must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, time-decorrelation techniques are applied to a model structure selected through stepwise regression for simulated and flight-generated lateral-directional parameter estimation data. A virtual effector model that uses mathematical abstractions to describe the multi-axis effects of clamshell surfaces is developed and applied. Comparisons are made between time history reconstructions and observed data in order to assess the accuracy of the regression model. The Cram r-Rao lower bounds of the estimated parameters are used to assess the uncertainty of the regression model relative to alternative models. Stepwise regression was found to be a useful technique for lateral-directional model design for hybrid-wing-body aircraft, as suggested by available flight data. Based on the results of this study, linear regression parameter estimation methods using abstracted effectors are expected to perform well for hybrid-wing-body aircraft properly equipped for the task.

  13. Theory of many-body radiative heat transfer without the constraint of reciprocity

    NASA Astrophysics Data System (ADS)

    Zhu, Linxiao; Guo, Yu; Fan, Shanhui

    2018-03-01

    Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.

  14. Re-engaging with places: Understanding bio-geo-graphical disruption and flow in adult brain injury survivors.

    PubMed

    Meijering, Louise; Theunissen, Nicky; Lettinga, Ant T

    2018-05-05

    Acquired Brain Injury (ABI) is one of the most common causes of disability and death in adults worldwide. After a period of rehabilitation, many ABI survivors still face complex mind/body conditions when they try to take up their former life again. Besides lasting visible impairments such as weakness and loss of body balance, there are often less obvious disabilities such as extreme fatigue, hypersensitivity for stimuli, memory, concentration and attention problems or personality changes. The aim of this paper is to understand how ABI survivors and their significant others renegotiate their engagements with everyday places, using the concepts of bio-geo-graphical disruption and flow. We conducted in-depth interviews and did a place-mapping exercise with 18 adult ABI survivors and their significant others. The data were analysed according to the principles of thematic analysis, with use of Atlas.ti. In the struggles of ABI survivors' relations with place, our findings show diversity in personal experiences and strategies, as well as commonalities at a more general level. First, having access to meaningful places, old and new, and coming to terms with the fact that some places may not be accessible anymore, appeared to be vital in the participants' process of healing. Second, the interplay or, as we call it, reciprocity, between different places can contribute to wellbeing: for instance, the security and continuity found at home may enable ABI survivors to handle a trip to a crowded city centre. Thus, by framing mind/body problems of ABI survivors in terms of a network of meaningful places rather than as a body with lost functions, our study shows how the reciprocity between multiple places has a potentially positive effect on life post-ABI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A miniature implantable coil that can be wrapped around a tubular organ within the human body

    NASA Astrophysics Data System (ADS)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.

  16. Historical review of a long-overlooked paper by R. A. Daly concerning the origin and early history of the Moon

    NASA Astrophysics Data System (ADS)

    Baldwin, Ralph B.; Wilhelms, Don E.

    1992-03-01

    In 1946 the great geologist R. A. Daly published an important paper in which he discussed a great many problems concerning the Moon and its features and origin. His paper was almost completely ignored by the scientists of the day and was ``lost'' for nearly half a century. The present paper marks an attempt to outline Daly's contributions to the interpretation of these lunar problems, in particular the origin of the Moon. One of the major ideas, which probably was the incentive for him to write the paper, was that the Moon was born as a result of a very early glancing collision of the Earth and a planet-sized body. Other subjects covered are the origin of the craters from Earth fragments, although meteoritic impact is also presented; the nature of the maria as lava from the body of the Moon; and origin of the lines of small craters as produced by gas escaping from the Moon. Daly rejected all non impact models for crater origin except for the tiny gas-made aligned pits. He vigorously stated that the Moon was largely created from the body of the Earth and discussed three methods by which this could be accomplished, one internal and two external, before settling on the glancing collision model. Daly clearly was the pioneer in presenting the impact model of the origin of the Moon. Much later, works by others have modified the hypothesis, but this is only natural evolution. Two other ``lost'' papers will be mentioned to show that this is an all too frequent occurrence. In 1893 Gilbert wrote a milestone paper that was generally unrecognized for more than 50 years. He espoused the impact theory of the origin of lunar basins and craters. He was wrong about the mechanism involved, but he was right about the impact idea. Similarly, Öpik in 1916 showed that impact craters must be formed by explosions due to the high energies of striking meteorites. He showed that such impacts, even at low angles of fall would result in circular craters, thus correcting Gilbert, whom he did not mention. His paper also ``disappeared'' for many years. Early recognition and understanding of these three papers would have advanced lunar studies by many years.

  17. Influence of electromagnetic radiation produced by mobile phone on some biophysical blood properties in rats.

    PubMed

    El-Bediwi, Abu Bakr; Saad, Mohamed; El-kott, Attall F; Eid, Eman

    2013-04-01

    Effects of electromagnetic radiation produced by mobile phone on blood viscosity, plasma viscosity, hemolysis, Osmotic fragility, and blood components of rats have been investigated. Experimental results show that there are significant change on blood components and its viscosity which affects on a blood circulation due to many body problems. Red blood cells, White blood cells, and Platelets are broken after exposure to electromagnetic radiation produced by mobile phone. Also blood viscosity and plasma viscosity values are increased but Osmotic fragility value decreased after exposure to electromagnetic radiation produced by mobile phone.

  18. Application of multiple grids topology to supersonic internal/external flow interactions

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.; Smith, R. E.

    1988-01-01

    For many aerodynamic applications, it is very difficult to construct a smooth body-fitted grid around complex configurations. An approach, called 'multiple grids' or 'zonal grids', which subdivides the entire physical domain into several subdomains, is used to overcome such difficulties. The approach is applied to obtain the solutions to the Euler equations for the supersonic internal/external flow around a fighter-aircraft configuration. Steady-state solutions are presented for Mach 2 at 0, 3.79, 7, and 10 deg angles-of-attack. The problem of conservative treatment at the zonal interfaces is also addressed.

  19. Quantum rotor model for a Bose-Einstein condensate of dipolar molecules.

    PubMed

    Armaitis, J; Duine, R A; Stoof, H T C

    2013-11-22

    We show that a Bose-Einstein condensate of heteronuclear molecules in the regime of small and static electric fields is described by a quantum rotor model for the macroscopic electric dipole moment of the molecular gas cloud. We solve this model exactly and find the symmetric, i.e., rotationally invariant, and dipolar phases expected from the single-molecule problem, but also an axial and planar nematic phase due to many-body effects. Investigation of the wave function of the macroscopic dipole moment also reveals squeezing of the probability distribution for the angular momentum of the molecules.

  20. Optical monitoring of scoliosis by 3D medical laser scanner

    NASA Astrophysics Data System (ADS)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  1. Polaronic and dressed molecular states in orbital Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Xu, Junjun; Qi, Ran

    2018-04-01

    We consider the impurity problem in an orbital Feshbach resonance (OFR), with a single excited clock state | e ↑⟩ atom immersed in a Fermi sea of electronic ground state | g ↓⟩. We calculate the polaron effective mass and quasi-particle residue, as well as the polaron to molecule transition. By including one particle-hole excitation in the molecular state, we find significant correction to the transition point. This transition point moves toward the BCS side for increasing particle densities, which suggests that the corresponding many-body physics is similar to a narrow resonance.

  2. On the representation of many-body interactions in water

    DOE PAGES

    Medders, Gregory R.; Gotz, Andreas W.; Morales, Miguel A.; ...

    2015-09-09

    Our recent work has shown that the many-body expansion of the interactionenergy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. Moreover, it is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representationmore » of the waterinteractions from the gas to the condensed phase. Likewise, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.« less

  3. PREFACE: Open Problems in Nuclear Structure Theory: Introduction Open Problems in Nuclear Structure Theory: Introduction

    NASA Astrophysics Data System (ADS)

    Dobaczewski, Jacek

    2010-06-01

    Nuclear structure theory is a domain of physics faced at present with great challenges and opportunities. A larger and larger body of high-precision experimental data has been and continues to be accumulated. Experiments on very exotic short-lived isotopes are the backbone of activity at numerous large-scale facilities. Over the years, tremendous progress has been made in understanding the basic features of nuclei. However, the theoretical description of nuclear systems is still far from being complete and is often not very precise. Many questions, both basic and practical, remain unanswered. The goal of publishing this special focus issue of Journal of Physics G: Nuclear and Particle Physics on Open Problems in Nuclear Structure Theory (OPeNST) is to construct a fundamental inventory thereof, so that the tasks and available options become more clearly exposed and that this will help to stimulate a boost in theoretical activity, commensurate with the experimental progress. The requested format and scope of the articles on OPeNST was quite flexible. The journal simply offered the possibility to provide a forum for the material, which is very often discussed at conferences during the coffee breaks but does not normally have sufficient substance to form regular publications. Nonetheless, very often formulating a problem provides a major step towards its solution, and it may constitute a scientific achievement on its own. Prospective authors were therefore invited to find their own balance between the two extremes of very general problems on the one hand (for example, to solve exactly the many-body equations for a hundred particles) and very specific problems on the other hand (for example, those that one could put in one's own grant proposal). The authors were also asked not to cover results already obtained, nor to limit their presentations to giving a review of the subject, although some elements of those could be included to properly introduce the subject matter. The focus of these collected articles is therefore on the discussion of topics that are not yet understood, or that are poorly understood. We very much welcomed presentations on: (i) contradictory approaches, models, or theories that are, at present, difficult to reconcile, (ii) unsolved theoretical problems that hamper applications of existing methods, (iii) limitations of current approaches, (iv) difficulties in deriving and justifying models and theories, (v) generic problems in understanding or describing specific experimental data, and even (vi) all possible, wildest speculations and/or conjectures. The main idea behind the focus issue was to stimulate creative, unbounded thinking and provide young, but not only young, researchers with ideas that would promote further progress in this domain of science. The community of nuclear structure theorists enthusiastically responded to the idea of publishing the volume on OPeNST. It seemed that the idea struck the right chord and many colleagues were willing to share their observations on what research directions to follow and which problems to attack. The volume turned out to be a snapshot of the domain, revealing the burning questions that the community wants to address. All the articles also have a very interesting personal touch. They sometimes even present opposing or conflicting points of view, which is exactly what one would expect within a vibrant scientific discussion. All in all, the Editors of Journal of Physics G are very happy to offer you this unique collection, which will constitute very interesting reading for all those working in nuclear structure theory.

  4. Use of Invariant Manifolds for Transfers Between Three-Body Systems

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Howell, Kathleen

    2003-01-01

    The Lunar L1 and L2 libration points have been proposed as gateways granting inexpensive access to interplanetary space. To date, only individual solutions to the transfer between three-body systems have been found. The methodology to solve the problem for arbitrary three-body systems and entire families of orbits does not exist. This paper presents the initial approaches to solve the general problem for single and multiple impulse transfers. Two different methods of representing and storing 7-dimensional invariant manifold data are presented. Some particular solutions are presented for the transfer problem, though the emphasis is on developing methodology for solving the general problem.

  5. Representations of Invariant Manifolds for Applications in Three-Body Systems

    NASA Technical Reports Server (NTRS)

    Howell, K.; Beckman, M.; Patterson, C.; Folta, D.

    2004-01-01

    The Lunar L1 and L2 libration points have been proposed as gateways granting inexpensive access to interplanetary space. To date, only individual solutions to the transfer between three-body systems have been found. The methodology to solve the problem for arbitrary three-body systems and entire families of orbits is currently being studied. This paper presents an initial approach to solve the general problem for single and multiple impulse transfers. Two different methods of representing and storing the invariant manifold data are presented. Some particular solutions are presented for two types of transfer problems, though the emphasis is on developing the methodology for solving the general problem.

  6. Nonequilibrium quantum dynamics and transport: from integrability to many-body localization

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Moore, Joel E.

    2016-06-01

    We review the non-equilibrium dynamics of many-body quantum systems after a quantum quench with spatial inhomogeneities, either in the Hamiltonian or in the initial state. We focus on integrable and many-body localized systems that fail to self-thermalize in isolation and for which the standard hydrodynamical picture breaks down. The emphasis is on universal dynamics, non-equilibrium steady states and new dynamical phases of matter, and on phase transitions far from thermal equilibrium. We describe how the infinite number of conservation laws of integrable and many-body localized systems lead to complex non-equilibrium states beyond the traditional dogma of statistical mechanics.

  7. Thouless energy and multifractality across the many-body localization transition

    NASA Astrophysics Data System (ADS)

    Serbyn, Maksym; Papić, Z.; Abanin, Dmitry A.

    2017-09-01

    Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across this transition in two different models of disordered spin chains. We show that the behavior of matrix elements can be used to characterize the breakdown of thermalization and to extract the many-body Thouless energy. We find that upon increasing the disorder strength the system enters a critical region around the many-body localization transition. The properties of the system in this region are: (i) the Thouless energy becomes smaller than the level spacing, (ii) the matrix elements show critical dependence on the energy difference, and (iii) the matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. This critical region decreases with the system size, which we interpret as evidence for a diverging correlation length at the many-body localization transition. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values and shed light on the critical behavior near the many-body localization transition.

  8. Age, Physical Activity, Physical Fitness, Body Composition, and Incidence of Orthopedic Problems.

    ERIC Educational Resources Information Center

    Research Quarterly for Exercise and Sport, 1989

    1989-01-01

    Effects of age, physical activity, physical fitness, and body mass index (BMI) on the occurrence of orthopedic problems were examined. For men, physical fitness, BMI, and physical activity were associated with orthopedic problems; for women, physical activity was the main predictor. Age was not a factor for either gender. (JD)

  9. Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson’s disease patients

    NASA Astrophysics Data System (ADS)

    Araki, Katsuya; Yagi, Naoto; Ikemoto, Yuka; Yagi, Hisashi; Choong, Chi-Jing; Hayakawa, Hideki; Beck, Goichi; Sumi, Hisae; Fujimura, Harutoshi; Moriwaki, Taro; Nagai, Yoshitaka; Goto, Yuji; Mochizuki, Hideki

    2015-12-01

    Lewy bodies (LBs), which mainly consist of α-synuclein (α-syn), are neuropathological hallmarks of patients with Parkinson’s disease (PD). The fine structure of LBs is unknown, and LBs cannot be made artificially. Nevertheless, many studies have described fibrillisation using recombinant α-syn purified from E. coli. An extremely fundamental problem is whether the structure of LBs is the same as that of recombinant amyloid fibrils. Thus, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to analyse the fine structure of LBs in the brain of PD patients. Our results showed a shift in the infrared spectrum that indicates abundance of a β-sheet-rich structure in LBs. Also, 2D infrared mapping of LBs revealed that the content of the β-sheet structure is higher in the halo than in the core, and the core contains a large amount of proteins and lipids.

  10. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    PubMed

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.

  11. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    PubMed Central

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  12. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    PubMed

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  13. Connecting micro dynamics and population distributions in system dynamics models

    PubMed Central

    Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa

    2014-01-01

    Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model. PMID:25620842

  14. Symmetries in N-body problem

    NASA Astrophysics Data System (ADS)

    Xia, Zhihong

    2008-09-01

    The purpose of this note is to introduce some of the basic techniques in group theory to the study the symmetries of the Newtonian n-body problem. The main tool is the representations of finite groups.

  15. Denni Algorithm An Enhanced Of SMS (Scan, Move and Sort) Algorithm

    NASA Astrophysics Data System (ADS)

    Aprilsyah Lubis, Denni; Salim Sitompul, Opim; Marwan; Tulus; Andri Budiman, M.

    2017-12-01

    Sorting has been a profound area for the algorithmic researchers, and many resources are invested to suggest a more working sorting algorithm. For this purpose many existing sorting algorithms were observed in terms of the efficiency of the algorithmic complexity. Efficient sorting is important to optimize the use of other algorithms that require sorted lists to work correctly. Sorting has been considered as a fundamental problem in the study of algorithms that due to many reasons namely, the necessary to sort information is inherent in many applications, algorithms often use sorting as a key subroutine, in algorithm design there are many essential techniques represented in the body of sorting algorithms, and many engineering issues come to the fore when implementing sorting algorithms., Many algorithms are very well known for sorting the unordered lists, and one of the well-known algorithms that make the process of sorting to be more economical and efficient is SMS (Scan, Move and Sort) algorithm, an enhancement of Quicksort invented Rami Mansi in 2010. This paper presents a new sorting algorithm called Denni-algorithm. The Denni algorithm is considered as an enhancement on the SMS algorithm in average, and worst cases. The Denni algorithm is compared with the SMS algorithm and the results were promising.

  16. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.

    2015-01-01

    Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on several real-world problems. Two assumptions are frequently made to simplify the modeling of an interplanetary high-thrust trajectory during the preliminary design phase. The first assumption is that because the available thrust is high, any maneuvers performed by the spacecraft can be modeled as discrete changes in velocity. This assumption removes the need to integrate the equations of motion governing the motion of a spacecraft under thrust and allows the change in velocity to be modeled as an impulse and the expenditure of propellant to be modeled using the time-independent solution to Tsiolkovsky's rocket equation [1]. The second assumption is that the spacecraft moves primarily under the influence of the central body, i.e. the sun, and all other perturbing forces may be neglected in preliminary design. The path of the spacecraft may then be modeled as a series of conic sections. When a spacecraft performs a close approach to a planet, the central body switches from the sun to that planet and the trajectory is modeled as a hyperbola with respect to the planet. This is known as the method of patched conics. The impulsive and patched-conic assumptions significantly simplify the preliminary design problem.

  17. Relative equilibria in quasi-homogeneous planar three body problems

    NASA Astrophysics Data System (ADS)

    Arredondo, John A.

    2018-01-01

    In this paper we find the families of relative equilibria for the three body problem in the plane, when the interaction between the bodies is given by a quasi-homogeneous potential. The number of the relative equilibria depends on the values of the masses and on the size of the system, measured by the moment of inertia.

  18. Isomap transform for segmenting human body shapes.

    PubMed

    Cerveri, P; Sarro, K J; Marchente, M; Barros, R M L

    2011-09-01

    Segmentation of the 3D human body is a very challenging problem in applications exploiting volume capture data. Direct clustering in the Euclidean space is usually complex or even unsolvable. This paper presents an original method based on the Isomap (isometric feature mapping) transform of the volume data-set. The 3D articulated posture is mapped by Isomap in the pose of Da Vinci's Vitruvian man. The limbs are unrolled from each other and separated from the trunk and pelvis, and the topology of the human body shape is recovered. In such a configuration, Hoshen-Kopelman clustering applied to concentric spherical shells is used to automatically group points into the labelled principal curves. Shepard interpolation is utilised to back-map points of the principal curves into the original volume space. The experimental results performed on many different postures have proved the validity of the proposed method. Reliability of less than 2 cm and 3° in the location of the joint centres and direction axes of rotations has been obtained, respectively, which qualifies this procedure as a potential tool for markerless motion analysis.

  19. Early identification and interventions for students with mathematics difficulties.

    PubMed

    Gersten, Russell; Jordan, Nancy C; Flojo, Jonathan R

    2005-01-01

    This article highlights key findings from the small body of research on mathematics difficulties (MD) relevant to early identification and early intervention. The research demonstrates that (a) for many children, mathematics difficulties are not stable over time; (b) the presence of reading difficulties seems related to slower progress in many aspects of mathematics; (c) almost all students with MD demonstrate problems with accurate and automatic retrieval of basic arithmetic combinations, such as 6 + 3. The following measures appear to be valid and reliable indicators of potential MD in kindergartners: (a) magnitude comparison (i.e., knowing which digit in a pair is larger), (b) sophistication of counting strategies, (c) fluent identification of numbers, and (d) working memory (as evidenced by reverse digit span). These are discussed in terms of the components of number sense. Implications for early intervention strategies are explored.

  20. Computational Studies of Strongly Correlated Quantum Matter

    NASA Astrophysics Data System (ADS)

    Shi, Hao

    The study of strongly correlated quantum many-body systems is an outstanding challenge. Highly accurate results are needed for the understanding of practical and fundamental problems in condensed-matter physics, high energy physics, material science, quantum chemistry and so on. Our familiar mean-field or perturbative methods tend to be ineffective. Numerical simulations provide a promising approach for studying such systems. The fundamental difficulty of numerical simulation is that the dimension of the Hilbert space needed to describe interacting systems increases exponentially with the system size. Quantum Monte Carlo (QMC) methods are one of the best approaches to tackle the problem of enormous Hilbert space. They have been highly successful for boson systems and unfrustrated spin models. For systems with fermions, the exchange symmetry in general causes the infamous sign problem, making the statistical noise in the computed results grow exponentially with the system size. This hinders our understanding of interesting physics such as high-temperature superconductivity, metal-insulator phase transition. In this thesis, we present a variety of new developments in the auxiliary-field quantum Monte Carlo (AFQMC) methods, including the incorporation of symmetry in both the trial wave function and the projector, developing the constraint release method, using the force-bias to drastically improve the efficiency in Metropolis framework, identifying and solving the infinite variance problem, and sampling Hartree-Fock-Bogoliubov wave function. With these developments, some of the most challenging many-electron problems are now under control. We obtain an exact numerical solution of two-dimensional strongly interacting Fermi atomic gas, determine the ground state properties of the 2D Fermi gas with Rashba spin-orbit coupling, provide benchmark results for the ground state of the two-dimensional Hubbard model, and establish that the Hubbard model has a stripe order in the underdoped region.

  1. Nonobservable nature of the nuclear shell structure: Meaning, illustrations, and consequences

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Hergert, H.; Holt, J. D.; Somà, V.

    2015-09-01

    Background: The concept of single-nucleon shells constitutes a basic pillar of our understanding of nuclear structure. Effective single-particle energies (ESPEs) introduced by French [Proceedings of the International School of Physics "Enrico Fermi," Course XXXVI, Varenna 1965, edited by C. Bloch (Academic Press, New York, 1966)] and Baranger [Nucl. Phys. A 149, 225 (1970), 10.1016/0375-9474(70)90692-5] represent the most appropriate tool to relate many-body observables to a single-nucleon shell structure. As briefly discussed in Duguet and Hagen [Phys. Rev. C 85, 034330 (2012), 10.1103/PhysRevC.85.034330], the dependence of ESPEs on one-nucleon transfer probability matrices makes them purely theoretical quantities that "run" with the nonobservable resolution scale λ employed in the calculation. Purpose: Given that ESPEs provide a way to interpret the many-body problem in terms of simpler theoretical ingredients, the goal is to specify the terms, i.e., the exact sense and conditions, in which this interpretation can be conducted meaningfully. Methods: While the nuclear shell structure is both scale and scheme dependent, the present study focuses on the former. A detailed discussion is provided to illustrate the scale (in)dependence of observables and nonobservables and the reasons why ESPEs, i.e., the shell structure, belong to the latter category. State-of-the-art multireference in-medium similarity renormalization group and self-consistent Gorkov Green's function many-body calculations are employed to corroborate the formal analysis. This is done by comparing the behavior of several observables and of nonobservable ESPEs (and spectroscopic factors) under (quasi) unitary similarity renormalization group transformations of the Hamiltonian parametrized by the resolution scale λ . Results: The formal proofs are confirmed by the results of ab initio many-body calculations in their current stage of implementation. In practice, the unitarity of the similarity transformations is broken owing to the omission of induced many-body interactions beyond three-body operators and to the nonexact treatment of the many-body Schrödinger equation. The impact of this breaking is first characterized by quantifying the artificial running of observables over a (necessarily) finite interval of λ values. Then the genuine running of ESPEs is characterized and shown to be convincingly larger than the one of observables (which would be zero in an exact calculation). Conclusions: The nonobservable nature of the nuclear shell structure, i.e., the fact that it constitutes an intrinsically theoretical object with no counterpart in the empirical world, must be recognized and assimilated. Indeed, the shell structure cannot be determined uniquely from experimental data and cannot be talked about in an absolute sense as it depends on the nonobservable resolution scale employed in the theoretical calculation. It is only at the price of fixing arbitrarily (but conveniently) such a scale that one can establish correlations between observables and the shell structure. To some extent, fixing the resolution scale provides ESPEs (and spectroscopic factors) with a quasi-observable character. Eventually, practitioners can refer to nuclear shells and spectroscopic factors in their analyses of nuclear phenomena if, and only if, they use consistent structure and reaction theoretical schemes based on a fixed resolution scale they have agreed on prior to performing their analysis and comparisons.

  2. New periodic solutions for some planar N + 3-body problems with Newtonian potentials

    NASA Astrophysics Data System (ADS)

    Yuan, Pengfei; Zhang, Shiqing

    2018-03-01

    For some planar Newtonian N + 3-body problems, we use variational minimization methods to prove the existence of new periodic solutions satisfying that N bodies chase each other on a curve, and the other 3 bodies chase each other on another curve. From the definition of orbit spaces in our paper, we can find that they are new solutions which are also different from all the examples of Ferrario and Terracini (2004).

  3. Implantation of radio frequency identification device (RFID) microchip in disaster victim identification (DVI).

    PubMed

    Meyer, Harald J; Chansue, Nantarika; Monticelli, Fabio

    2006-03-10

    The tsunami catastrophe of December 2004 left more than 200,000 dead. Disaster victim identification (DVI) teams were presented with the unprecedented challenge of identifying thousands of mostly markedly putrefied and partially skeletised bodies. To this end, an adequate body tagging method is essential. Conventional body bag tagging in terms of writing on body bags and placing of tags inside body bags proved unsatisfactory and problem prone due to consequences of cold storage, formalin (formaldehyde) embalming and body numbers inside storage facilities. The placement of radio frequency identification device (RFID) microchips inside victim bodies provided a practical solution to problems of body tagging and attribution in the DVI setting encountered by the Austrian DVI team in Thailand in early 2005.

  4. Analytic Solution of the Problem of Additive Formation of an Inhomogeneous Elastic Spherical Body in an Arbitrary Nonstationary Central Force Field

    NASA Astrophysics Data System (ADS)

    Parshin, D. A.

    2017-09-01

    We study the processes of additive formation of spherically shaped rigid bodies due to the uniform accretion of additional matter to their surface in an arbitrary centrally symmetric force field. A special case of such a field can be the gravitational or electrostatic force field. We consider the elastic deformation of the formed body. The body is assumed to be isotropic with elasticmoduli arbitrarily varying along the radial coordinate.We assume that arbitrary initial circular stresses can arise in the additional material added to the body in the process of its formation. In the framework of linear mechanics of growing bodies, the mathematical model of the processes under study is constructed in the quasistatic approximation. The boundary value problems describing the development of stress-strain state of the object under study before the beginning of the process and during the entire process of its formation are posed. The closed analytic solutions of the posed problems are constructed by quadratures for some general types of material inhomogeneity. Important typical characteristics of the mechanical behavior of spherical bodies additively formed in the central force field are revealed. These characteristics substantially distinguish such bodies from the already completely composed bodies similar in dimensions and properties which are placed in the force field and are described by problems of mechanics of deformable solids in the classical statement disregarding the mechanical aspects of additive processes.

  5. Experience of excess skin and desire for body contouring surgery in post-bariatric patients.

    PubMed

    Staalesen, T; Fagevik Olsén, M; Elander, A

    2013-10-01

    This study was done to analyze the problems of post-bariatric patients with excess skin and to determine their interest in body contouring surgery. The self-administered Sahlgrenska Excess Skin Questionnaire (SESQ) was used together with a study-specific questionnaire. The patients who were operated with bariatric surgery at Sahlgrenska University Hospital between 1999 and 2008 were identified and sent the SESQ and a study-specific questionnaire. The response rate was 65% (23% men). The most common problem in both men and women was the feeling of having an unattractive body (91 and 67%, respectively). The most frequently reported sites of excess skin were the upper arms in women (91%) and the abdomen in men (78%). In both women and men, excess skin on the abdomen was reported to cause the most discomfort (median 7 and 3, respectively, on a scale from 0 to 10). Women reported significantly more problems, discomfort, and amount of excess skin (p < 0.05) than men. There was a strong correlation between the amount of excess skin and the degree of discomfort for all body parts. Seventeen percent of the responders had been operated with body contouring surgery of one body part and 5% of two or more. Fourteen percent desired body contouring surgery of one body part and 61% of two or more. Most post-bariatric patients, but women in particular, experience significant problems of excess skin and request body contouring surgery.

  6. Outlining a Framework for the Use of ICT in Disaster Management

    DTIC Science & Technology

    2014-09-01

    disaster relief operations. The research contributes to the body of knowledge by examining the problems and influences appearing with use of ICT in...usage of ICT in disaster relief operations. The research contributes to the body of knowledge by examining the problems and influences appearing...1 A. RESEARCH STRUCTURE ............................................................................2 1. Problem Statement

  7. Brief Report: Direct and Indirect Relations of Risk Factors with Eating Behavior Problems in Late Adolescent Females

    ERIC Educational Resources Information Center

    Mayer, Birgit; Muris, Peter; Meesters, Cor; Zimmermann-van Beuningen, Ritine

    2009-01-01

    This study explored correlations between risk factors and eating behavior problems in late adolescent, non-clinical females (N = 301). Participants completed questionnaires for assessing eating problems, the closely associated factors of Body Mass Index (BMI) and body dissatisfaction, and a number of other risk variables that are thought to be…

  8. Non-equilibrium many-body dynamics following a quantum quench

    NASA Astrophysics Data System (ADS)

    Vyas, Manan

    2017-12-01

    We study analytically and numerically the non-equilibrium dynamics of an isolated interacting many-body quantum system following a random quench. We model the system Hamiltonian by Embedded Gaussian Orthogonal Ensemble (EGOE) of random matrices with one plus few-body interactions for fermions. EGOE are paradigmatic models to study the crossover from integrability to chaos in interacting many-body quantum systems. We obtain a generic formulation, based on spectral variances, for describing relaxation dynamics of survival probabilities as a function of rank of interactions. Our analytical results are in good agreement with numerics.

  9. 12th US-Japan Seminar: Many Body Quantum Systems from Quantum Gases to Metrology and Information Processing. Held in Madison, Wisconsin on 20-24 September 2015

    DTIC Science & Technology

    2016-06-03

    Ultracold Atoms 5:10 Zelevinsky Ye Inouye High-precision spectroscopy with two-body quantum systems Low entropy quantum gas of polar molecules New limit...12th US-Japan Seminar: Many Body Quantum Systems from Quantum Gases to Metrology and Information Processing Support was provided for The 12th US...Japan Seminar on many body quantum systems which was held in Madison, Wisconsin from September 20 to 24, 2015 at the Monona Terrace Convention Center

  10. Executive cognitive functioning and the recognition of facial expressions of emotion in incarcerated violent offenders, non-violent offenders, and controls.

    PubMed

    Hoaken, Peter N S; Allaby, David B; Earle, Jeff

    2007-01-01

    Violence is a social problem that carries enormous costs; however, our understanding of its etiology is quite limited. A large body of research exists, which suggests a relationship between abnormalities of the frontal lobe and aggression; as a result, many researchers have implicated deficits in so-called "executive function" as an antecedent to aggressive behaviour. Another possibility is that violence may be related to problems interpreting facial expressions of emotion, a deficit associated with many forms of psychopathology, and an ability linked to the prefrontal cortex. The current study investigated performance on measures of executive function and on a facial-affect recognition task in 20 violent offenders, 20 non-violent offenders, and 20 controls. In support of our hypotheses, both offender groups performed significantly more poorly on measures of executive function relative to controls. In addition, violent offenders were significantly poorer on the facial-affect recognition task than either of the other two groups. Interestingly, scores on these measures were significantly correlated, with executive deficits associated with difficulties accurately interpreting facial affect. The implications of these results are discussed in terms of a broader understanding of violent behaviour. Copyright 2007 Wiley-Liss, Inc.

  11. Scientific Decision Making, Policy Decisions, and the Obesity Pandemic

    PubMed Central

    Hebert, James R.; Allison, David B.; Archer, Edward; Lavie, Carl J.; Blair, Steven N.

    2013-01-01

    Rising and epidemic rates of obesity in many parts of the world are leading to increased suffering and economic stress from diverting health care resources to treating a variety of serious, but preventable, chronic diseases etiologically linked to obesity, particularly type 2 diabetes mellitus and cardiovascular diseases. Despite decades of research into the causes of the obesity pandemic, we seem to be no nearer to a solution now than when the rise in body weights was first chronicled decades ago. The case is made that impediments to a clear understanding of the nature of the problem occur at many levels. These obstacles begin with defining obesity and include lax application of scientific standards of review, tenuous assumption making, flawed measurement and other methods, constrained discourse limiting examination of alternative explanations of cause, and policies that determine funding priorities. These issues constrain creativity and stifle expansive thinking that could otherwise advance the field in preventing and treating obesity and its complications. Suggestions are made to create a climate of open exchange of ideas and redirection of policies that can remove the barriers that prevent us from making material progress in solving a pressing major public health problem of the early 21st century. PMID:23726399

  12. Exploring Diverse Data Sets and Developing New Theories and Ideas With Project Integration Architecture

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.; Jones, William H.

    2005-01-01

    The development of new ideas is the essence of scientific research. This is frequently done by developing models of physical processes and comparing model predictions with results from experiments. With models becoming ever more complex and data acquisition systems becoming more powerful, the researcher is burdened with wading through data ranging in volume up to a level of many terabytes and beyond. These data often come from multiple, heterogeneous sources and usually the methods for searching through it are at or near the manual level. In addition, current documentation methods are generally limited to researchers pen-and-paper style notebooks. Researchers may want to form constraint-based queries on a body of existing knowledge that is, itself, distributed over many different machines and environments and from the results of such queries then spawn additional queries, simulations, and data analyses in order to discover new insights into the problem being investigated. Currently, researchers are restricted to working within the boundaries of tools that are inefficient at probing current and legacy data to extend the knowledge of the problem at hand and reveal innovative and efficient solutions. A framework called the Project Integration Architecture is discussed that can address these desired functionalities.

  13. Real-time control of optimal low-thrust transfer to the Sun-Earth L 1 halo orbit in the bicircular four-body problem

    NASA Astrophysics Data System (ADS)

    Salmani, Majid; Büskens, Christof

    2011-11-01

    In this article, after describing a procedure to construct trajectories for a spacecraft in the four-body model, a method to correct the trajectory violations is presented. To construct the trajectories, periodic orbits as the solutions of the three-body problem are used. On the other hand, the bicircular model based on the Sun-Earth rotating frame governs the dynamics of the spacecraft and other bodies. A periodic orbit around the first libration-point L1 is the destination of the mission which is one of the equilibrium points in the Sun-Earth/Moon three-body problem. In the way to reach such a far destination, there are a lot of disturbances such as solar radiation and winds that make the plans untrustworthy. However, the solar radiation pressure is considered in the system dynamics. To prevail over these difficulties, considering the whole transfer problem as an optimal control problem makes the designer to be able to correct the unavoidable violations from the pre-designed trajectory and strategies. The optimal control problem is solved by a direct method, transcribing it into a nonlinear programming problem. This transcription gives an unperturbed optimal trajectory and its sensitivities with respect perturbations. Modeling these perturbations as parameters embedded in a parametric optimal control problem, one can take advantage of the parametric sensitivity analysis of nonlinear programming problem to recalculate the optimal trajectory with a very smaller amount of computation costs. This is obtained by evaluating a first-order Taylor expansion of the perturbed solution in an iterative process which is aimed to achieve an admissible solution. At the end, the numerical results show the applicability of the presented method.

  14. The effects of cosmetic surgery on body image, self-esteem, and psychological problems.

    PubMed

    von Soest, T; Kvalem, I L; Roald, H E; Skolleborg, K C

    2009-10-01

    This study aims to investigate whether cosmetic surgery has an effect on an individual's body image, general self-esteem, and psychological problems. Further tests were conducted to assess whether the extent of psychological problems before surgery influenced improvements in postoperative psychological outcomes. Questionnaire data from 155 female cosmetic surgery patients from a plastic surgery clinic were obtained before and approximately 6 months after surgery. The questionnaire consisted of measures on body image, self-esteem, and psychological problems. Pre- and postoperative values were compared. Pre- and postoperative measures were also compared with the data compiled from a representative sample of 838 Norwegian women, aged 22-55, with no cosmetic surgery experience. No differences in psychological problems between the presurgery patient and comparison samples were found, whereas differences in body image and self-esteem between the sample groups were reported in an earlier publication. Analyses further revealed an improvement in body image (satisfaction with own appearance) after surgery. A significant but rather small effect on self-esteem was also found, whereas the level of psychological problems did not change after surgery. Postoperative measures of appearance satisfaction, self-esteem, and psychological problems did not differ from values derived from the comparison sample. Finally, few psychological problems before surgery predicted a greater improvement in appearance satisfaction and self-esteem after surgery. The study provides evidence of improvement in satisfaction with own appearance after cosmetic surgery, a variable that is thought to play a central role in understanding the psychology of cosmetic surgery patients. The study also points to the factors that surgeons should be aware of, particularly the role of psychological problems, which could inhibit the positive effects of cosmetic surgery.

  15. Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikbakht, Moladad, E-mail: mnik@znu.ac.ir

    2014-09-07

    A general formalism for calculating the radiative heat transfer in many body systems with anisotropic component is presented. Our scheme extends the theory of radiative heat transfer in isotropic many body systems to anisotropic cases. In addition, the radiative heating of the particles by the thermal bath is taken into account in our formula. It is shown that the radiative heat exchange (HE) between anisotropic particles and their radiative cooling/heating (RCH) could be enhanced several order of magnitude than that of isotropic particles. Furthermore, we demonstrate that both the HE and RCH can be tuned dramatically by particles relative orientationmore » in many body systems.« less

  16. Asymptotic solution of the problem for a thin axisymmetric cavern

    NASA Technical Reports Server (NTRS)

    Serebriakov, V. V.

    1973-01-01

    The boundary value problem which describes the axisymmetric separation of the flow around a body by a stationary infinite stream is considered. It is understood that the cavitation number varies over the length of the cavern. Using the asymptotic expansions for the potential of a thin body, the orders of magnitude of terms in the equations of the problem are estimated. Neglecting small quantities, a simplified boundary value problem is obtained.

  17. Fractal basins of attraction in the restricted four-body problem when the primaries are triaxial rigid bodies

    NASA Astrophysics Data System (ADS)

    Suraj, Md Sanam; Asique, Md Chand; Prasad, Umakant; Hassan, M. R.; Shalini, Kumari

    2017-11-01

    The planar equilateral restricted four-body problem, formulated on the basis of Lagrange's triangular solutions is used to determine the existence and locations of libration points and the Newton-Raphson basins of convergence associated with these libration points. We have supposed that all the three primaries situated on the vertices of an equilateral triangle are triaxial rigid bodies. This paper also deals with the effect of these triaxiality parameters on the regions of motion where the test particle is free to move. Further, the regions on the configuration plane filled by the basins of attraction are determined by using the multivariate version of the Newton-Raphson iterative system. The numerical study reveals that the triaxiality of the primaries is one of the most influential parameters in the four-body problem.

  18. Many-body van der Waals interactions in molecules and condensed matter.

    PubMed

    DiStasio, Robert A; Gobre, Vivekanand V; Tkatchenko, Alexandre

    2014-05-28

    This work reviews the increasing evidence that many-body van der Waals (vdW) or dispersion interactions play a crucial role in the structure, stability and function of a wide variety of systems in biology, chemistry and physics. Starting with the exact expression for the electron correlation energy provided by the adiabatic connection fluctuation-dissipation theorem, we derive both pairwise and many-body interatomic methods for computing the long-range dispersion energy by considering a model system of coupled quantum harmonic oscillators within the random-phase approximation. By coupling this approach to density functional theory, the resulting many-body dispersion (MBD) method provides an accurate and efficient scheme for computing the frequency-dependent polarizability and many-body vdW energy in molecules and materials with a finite electronic gap. A select collection of applications are presented that ascertain the fundamental importance of these non-bonded interactions across the spectrum of intermolecular (the S22 and S66 benchmark databases), intramolecular (conformational energies of alanine tetrapeptide) and supramolecular (binding energy of the 'buckyball catcher') complexes, as well as molecular crystals (cohesive energies in oligoacenes). These applications demonstrate that electrodynamic response screening and beyond-pairwise many-body vdW interactions--both captured at the MBD level of theory--play a quantitative, and sometimes even qualitative, role in describing the properties considered herein. This work is then concluded with an in-depth discussion of the challenges that remain in the future development of reliable (accurate and efficient) methods for treating many-body vdW interactions in complex materials and provides a roadmap for navigating many of the research avenues that are yet to be explored.

  19. Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence

    PubMed Central

    Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440

  20. Many-Body Effects on Bandgap Shrinkage, Effective Masses, and Alpha Factor

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.; Woo, Alex C. (Technical Monitor)

    2000-01-01

    Many-body Coulomb effects influence the operation of quantum-well (QW) laser diode (LD) strongly. In the present work, we study a two-band electron-hole plasma (EHP) within the Hatree-Fock approximation and the single plasmon pole approximation for static screening. Full inclusion of momentum dependence in the many-body effects is considered. An empirical expression for carrier density dependence of the bandgap renormalization (BGR) in an 8 nm GaAs/Al(0.3)G(4.7)As single QW will be given, which demonstrates a non-universal scaling behavior for quasi-two-dimension structures, due to size-dependent efficiency of screening. In addition, effective mass renormalization (EMR) due to momentum-dependent self-energy many-body correction, for both electrons and holes is studied and serves as another manifestation of the many-body effects. Finally, the effects on carrier density dependence of the alpha factor is evaluated to assess the sensitivity of the full inclusion of momentum dependence.

  1. Late Chondritic Additions and Planet and Planetesimal Growth: Evaluation of Physical and Chemical Mechanisms

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2013-01-01

    Studies of terrestrial peridotite and martian and achondritic meteorites have led to the conclusion that addition of chondritic material to growing planets or planetesimals, after core formation, occurred on Earth, Mars, asteroid 4 Vesta, and the parent body of the angritic meteorites [1-4]. One study even proposed that this was a common process in the final stages of growth [5]. These conclusions are based almost entirely on the highly siderophile elements (HSE; Re, Au, Pt, Pd, Rh, Ru, Ir, Os). The HSE are a group of eight elements that have been used to argue for late accretion of chondritic material to the Earth after core formation was complete (e.g., [6]). This idea was originally proposed because the D(metal/silicate) values for the HSE are so high, yet their concentration in the mantle is too high to be consistent with such high Ds. The HSE also are present in chondritic relative abundances and hence require similar Ds if this is the result of core-mantle equilibration. Since the work of [6] there has been a realization that core formation at high PT conditions can explain the abundances of many siderophile elements in the mantle (e.g., [7]), but such detailed high PT partitioning data are lacking for many of the HSE to evaluate whether such ideas are viable for all four bodies. Consideration of other chemical parameters reveals larger problems that are difficult to overcome, but must be addressed in any scenario which calls on the addition of chondritic material to a reduced mantle. Yet these problems are rarely discussed or emphasized, making the late chondritic (or late veneer) addition hypothesis suspect.

  2. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.; Chibisov, S. M.; Blagonravov, M. L.; Khodorovich, N. A.; Demurov, E. A.; Goryachev, V. A.; Kharlitskaya, E. V.; Eremina, I. S.; Meladze, Z. A.

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  3. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population.

    PubMed

    Ozheredov, V A; Chibisov, S M; Blagonravov, M L; Khodorovich, N A; Demurov, E A; Goryachev, V A; Kharlitskaya, E V; Eremina, I S; Meladze, Z A

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  4. Combining symmetry breaking and restoration with configuration interaction: A highly accurate many-body scheme applied to the pairing Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ripoche, J.; Lacroix, D.; Gambacurta, D.; Ebran, J.-P.; Duguet, T.

    2017-01-01

    Background: Ab initio many-body methods have been developed over the past ten years to address mid-mass nuclei. In their best current level of implementation, their accuracy is of the order of a few percent error on the ground-state correlation energy. Recently implemented variants of these methods are operating a breakthrough in the description of medium-mass open-shell nuclei at a polynomial computational cost while putting state-of-the-art models of internucleon interactions to the test. Purpose: As progress in the design of internucleon interactions is made, and as questions one wishes to answer are refined in connection with increasingly available experimental data, further efforts must be made to tailor many-body methods that can reach an even higher precision for an even larger number of observable quantum states or nuclei. The objective of the present work is to contribute to such a quest by designing and testing a new many-body scheme. Methods: We formulate a truncated configuration-interaction method that consists of diagonalizing the Hamiltonian in a highly truncated subspace of the total N -body Hilbert space. The reduced Hilbert space is generated via the particle-number projected BCS state along with projected seniority-zero two- and four-quasiparticle excitations. Furthermore, the extent by which the underlying BCS state breaks U(1 ) symmetry is optimized in the presence of the projected two- and four-quasiparticle excitations. This constitutes an extension of the so-called restricted variation after projection method in use within the frame of multireference energy density functional calculations. The quality of the newly designed method is tested against exact solutions of the so-called attractive pairing Hamiltonian problem. Results: By construction, the method reproduces exact results for N =2 and N =4 . For N =(8 ,16 ,20 ) , the error in the ground-state correlation energy is less than (0.006%, 0.1%, 0.15%) across the entire range of internucleon coupling defining the pairing Hamiltonian and driving the normal-to-superfluid quantum phase transition. The presently proposed method offers the advantage of automatic access to the low-lying spectroscopy, which it does with high accuracy. Conclusions: The numerical cost of the newly designed variational method is polynomial (N6) in system size. This method achieves unprecedented accuracy for the ground-state correlation energy, effective pairing gap, and one-body entropy as well as for the excitation energy of low-lying states of the attractive pairing Hamiltonian. This constitutes a sufficiently strong motivation to envision its application to realistic nuclear Hamiltonians in view of providing a complementary, accurate, and versatile ab initio description of mid-mass open-shell nuclei in the future.

  5. Many-body matter-wave dark soliton.

    PubMed

    Delande, Dominique; Sacha, Krzysztof

    2014-01-31

    The Gross-Pitaevskii equation--which describes interacting bosons in the mean-field approximation--possesses solitonic solutions in dimension one. For repulsively interacting particles, the stationary soliton is dark, i.e., is represented by a local density minimum. Many-body effects may lead to filling of the dark soliton. Using quasiexact many-body simulations, we show that, in single realizations, the soliton appears totally dark although the single particle density tends to be uniform.

  6. Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: a path for the optimization of low-energy many-body basis expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongnim; Reboredo, Fernando A.

    The self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo J. Chem. Phys. {\\bf 136}, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. {\\bf 89}, 6316 (1988)] are blended to obtain a method for the calculation of thermodynamic properties of many-body systems at low temperatures. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric trial wave functions. A statistical method is derived for the calculation of finite temperature properties of many-body systemsmore » near the ground state. In the process we also obtain a parallel algorithm that optimizes the many-body basis of a small subspace of the many-body Hilbert space. This small subspace is optimized to have maximum overlap with the one expanded by the lower energy eigenstates of a many-body Hamiltonian. We show in a model system that the Helmholtz free energy is minimized within this subspace as the iteration number increases. We show that the subspace expanded by the small basis systematically converges towards the subspace expanded by the lowest energy eigenstates. Possible applications of this method to calculate the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can be also used to accelerate the calculation of the ground or excited states with Quantum Monte Carlo.« less

  7. [The influence of training on rehabilitation and keep-fit tables on the chosen parameters of body weight].

    PubMed

    Krawczyk, Joanna; Wojciechowski, Jarosław; Leszczyński, Ryszard; Błaszczyk, Jan

    2010-01-01

    More and more people in the world contend with overweight or obesity, and this phenomenon at the moment is being recognized as one of the most important problems of modern civilization observed in many developed countries. Change of the lifestyle connected with turning from the active life to the more sedentary one and bad eating habits led to the development of overweight and obesity at an alarmingly fast rate with the parallel development of interests directed on conducting the research and looking for the effective methods of fighting against the overweight and obesity. The aim of the study was to evaluate some parameters of body weight among people being put on the healthy training on the rehabilitation and keep-fit tables Slender-Life. A group of 50 patients treated in sanatorium were included into the observation. Double measurement of body weight and thickness of the skin and fat were performed during the first and last days of the fifteen day training on the formerly mentioned tables. The statistically important decrease of examined parameters including the real body weight, fat mass, the BMI indication and the thickness of the skin and fat folds was detected. The healthy training on the rehabilitation and keep-fit tables Slender-Life causes the increase of the body fat-free weight. The positive acceptation of the rehabilitation on tables Slender-Life proves it should be applied.

  8. Studying non-equilibrium many-body dynamics using one-dimensional Bose gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langen, Tim; Gring, Michael; Kuhnert, Maximilian

    2014-12-04

    Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.

  9. Parallel Implementation of Numerical Solution of Few-Body Problem Using Feynman's Continual Integrals

    NASA Astrophysics Data System (ADS)

    Naumenko, Mikhail; Samarin, Viacheslav

    2018-02-01

    Modern parallel computing algorithm has been applied to the solution of the few-body problem. The approach is based on Feynman's continual integrals method implemented in C++ programming language using NVIDIA CUDA technology. A wide range of 3-body and 4-body bound systems has been considered including nuclei described as consisting of protons and neutrons (e.g., 3,4He) and nuclei described as consisting of clusters and nucleons (e.g., 6He). The correctness of the results was checked by the comparison with the exactly solvable 4-body oscillatory system and experimental data.

  10. Satellite capture as a restricted 2 + 2 body problem

    NASA Astrophysics Data System (ADS)

    Kanaan, Wafaa; Farrelly, David; Lanchares, Víctor

    2018-04-01

    A restricted 2 + 2 body problem is proposed as a possible mechanism to explain the capture of small bodies by a planet. In particular, we consider two primaries revolving in a circular mutual orbit and two small bodies of equal mass, neither of which affects the motion of the primaries. If the small bodies are temporarily captured in the Hill sphere of the smaller primary, they may get close enough to each other to exchange energy in such a way that one of them becomes permanently captured. Numerical simulations show that capture is possible for both prograde and retrograde orbits.

  11. Research in Celestial Mechanics and Differential Equations.

    DTIC Science & Technology

    Contents: A geopotential representation with sampling functions; Sampling functions as an alternative to spherical harmonics; The Levi - Civita ...restricted problem of three bodies ; Secular perturbations of periodic comets; Resonance in the restricted problem of three bodies ; Two centers of

  12. A multi-dimensional model of groupwork for adolescent girls who have been sexually abused.

    PubMed

    Lindon, J; Nourse, C A

    1994-04-01

    This paper describes a treatment approach for sexually abused adolescent girls using a group work model. The model incorporates three treatment modalities: a skills component, a psychotherapeutic component, and an educative component. The group ran for 16 sessions over a 6-month period and each girl was assessed prior to joining the group. The girls were again assessed at the end of treatment and a 6-months follow-up; all of them showed improvement on self-statements (outcome) and on behavioral measures assessed by others (follow-up). Girls who had been sexually abused demonstrated difficulties in many areas of their lives following abuse. These problems related to their feelings of guilt and helplessness in relation to both themselves and their abuser. Sexually abused children often have poor knowledge of sexual matters and demonstrate confusion over their own body image. Using a multidimensional model the problems following abuse can be addressed.

  13. The quantum Zeno effect in double well tunnelling

    NASA Astrophysics Data System (ADS)

    Lerner, L.

    2018-05-01

    Measurement lies at the heart of quantum theory, and introductory textbooks in quantum mechanics cover the measurement problem in topics such as the Schrödinger’s cat thought experiment, the EPR problem, and the quantum Zeno effect (QZE). In this article we present a new treatment of the QZE suitable for undergraduate students, for the case of a particle tunnelling between two wells while being observed in one of the wells. The analysis shows that as the observation rate increases, the tunnelling rate tends towards zero, in accordance with Zeno’s maxim ‘a watched pot never boils’. The method relies on decoherence theory, which replaces aspects of quantum collapse by the Schrödinger evolution of an open system, and its recently simplified treatment for undergraduates. Our presentation uses concepts familiar to undergraduate students, so that calculations involving many-body theory and the formal properties of the density matrix are avoided.

  14. [The birth of metapsychology. On the current interpretation of "Entwurf einer Psychologie" (1895)].

    PubMed

    Schmidt-Hellerau, C

    1995-12-01

    The general attitude towards Entwurf einer Psychologie (1895) is to reckon it among Freud's pre-analytic writings, i.e. that part of his work later more or less disowned by the author. Schmidt-Hellerau challenges this assessment by Freud and many of his successors, demonstrating that the Entwurf can legitimately be regarded as a meta-theory resolving - or skirting- the old classification problem of whether psychoanalysis is a science or an art by connecting the hitherto dissociated spheres of soma and psyche and conceptualizing of physiological and psychological processes. See thus, the Entwurf reveals itself as a theoretical document of astonishing modernity and undiminished relevance in that it records Freud's ambitious attempt to overcome the mind-body schism and the divide between neurophysiology and psychology. And it is precisely this problem, the author contends, which Freud's later metapsychology--and the controversies it has aroused--revolves around.

  15. Ionizing Radiation as an Industrial Health Problem

    PubMed Central

    Trewin, R. B.

    1964-01-01

    Ionizing radiation, first as x-rays, later in natural form, was discovered in Europe in the late 1890's. Immediate practical uses were found for these discoveries, particularly in medicine. Unfortunately, because of the crude early equipment and ignorance of the harmful effects of radiation, many people were injured, some fatally. Because of these experiences, committees and regulatory bodies were set up to study the problem. These have built up an impressive fund of knowledge useful in radiation protection. With the recent development of the peaceful uses of atomic energy, sources of radioactivity have appeared cheaply and in abundance. A rapidly growing number are finding industrial application. Because of their potential risk to humans, the industrial physician must acquire new knowledge and skills so that he may give proper guidance in this new realm of preventive medicine. The Radiation Protection Program of one such industry, the Hydro-Electric Power Commission of Ontario, is summarized. PMID:14105012

  16. Schizophrenia: A Systemic Disorder

    PubMed Central

    Kirkpatrick, Brian; Miller, Brian; García-Rizo, Clemente; Fernandez-Egea, Emilio

    2015-01-01

    The concept of schizophrenia that is most widely taught is that it is a disorder in which psychotic symptoms are the main problem, and a dysregulation of dopamine signaling is the main feature of pathophysiology. However, this concept limits clinical assessment, the treatments offered to patients, research, and the development of therapeutics. A more appropriate conceptual model is that: 1) schizophrenia is not a psychotic disorder, but a disorder of essentially every brain function in which psychosis is present; 2) it is not a brain disease, but a disorder with impairments throughout the body; 3) for many patients, neuropsychiatric problems other than psychosis contribute more to impairment in function and quality of life than does psychosis; and, 4) some conditions that are considered to be comorbid are integral parts of the illness. In conclusion, students, patients, and family members should be taught this model, along with its implications for assessment, research, and therapeutics. PMID:23518782

  17. Hello oil rig: The role of simulacra images in producing future reality

    NASA Astrophysics Data System (ADS)

    Ibrahim, Abdallah

    This project is the first approach to address the problem of the image through a discussion between science, philosophy, art history, art theory, and fine arts based on one body of specific art work designed especially to explain the role of the image in producing future reality models. This study is a continuation of the dialogue between important philosophers and thinkers about the image and its place in the contemporary scene. The technical fossil medium used in painting this project crosses the boundary between scientific research with its data sheets to art theory and fine arts with their aesthetic rhetoric thus bringing many disciplines together. Seven images were created to discuss the problem. The artwork and the academic research are both interacting in this paper in a multidiscipline discussion to uncover the role of the images in creating a new reality and in forging the hyperreal culture.

  18. Learning phase transitions by confusion

    NASA Astrophysics Data System (ADS)

    van Nieuwenburg, Evert; Liu, Ye-Hua; Huber, Sebastian

    Classifying phases of matter is a central problem in physics. For quantum mechanical systems, this task can be daunting owing to the exponentially large Hilbert space. Thanks to the available computing power and access to ever larger data sets, classification problems are now routinely solved using machine learning techniques. Here, we propose to use a neural network based approach to find transitions depending on the performance of the neural network after training it with deliberately incorrectly labelled data. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to a generic tool to identify unexplored transitions.

  19. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    PubMed

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  20. IONIZING RADIATION AS AN INDUSTRIAL HEALTH PROBLEM.

    PubMed

    TREWIN, R B

    1964-01-04

    Ionizing radiation, first as x-rays, later in natural form, was discovered in Europe in the late 1890's. Immediate practical uses were found for these discoveries, particularly in medicine. Unfortunately, because of the crude early equipment and ignorance of the harmful effects of radiation, many people were injured, some fatally. Because of these experiences, committees and regulatory bodies were set up to study the problem. These have built up an impressive fund of knowledge useful in radiation protection.With the recent development of the peaceful uses of atomic energy, sources of radioactivity have appeared cheaply and in abundance. A rapidly growing number are finding industrial application. Because of their potential risk to humans, the industrial physician must acquire new knowledge and skills so that he may give proper guidance in this new realm of preventive medicine.The Radiation Protection Program of one such industry, the Hydro-Electric Power Commission of Ontario, is summarized.

  1. Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets

    NASA Astrophysics Data System (ADS)

    Yuzbashyan, Emil A.

    2018-05-01

    We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.

  2. Linear Water Waves

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N.; Maz'ya, V.; Vainberg, B.

    2002-08-01

    This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'

  3. Respiratory alkalosis.

    PubMed

    Foster, G T; Vaziri, N D; Sassoon, C S

    2001-04-01

    Respiratory alkalosis is an extremely common and complicated problem affecting virtually every organ system in the body. This article reviews the various facets of this interesting problem. Respiratory alkalosis produces multiple metabolic abnormalities, from changes in potassium, phosphate, and calcium, to the development of a mild lactic acidosis. Renal handling of the above ions is also affected. The etiologies may be related to pulmonary or extrapulmonary disorders. Hyperventilation syndrome is a common etiology of respiratory alkalosis in the emergency department setting and is a diagnosis by exclusion. There are many cardiac effects of respiratory alkalosis, such as tachycardia, ventricular and atrial arrhythmias, and ischemic and nonischemic chest pain. In the lungs, vasodilation occurs, and in the gastrointestinal system there are changes in perfusion, motility, and electrolyte handling. Therapeutically, respiratory alkalosis is used for treatment of elevated intracranial pressure. Correction of a respiratory alkalosis is best performed by correcting the underlying etiology.

  4. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  5. Tsien's method for generating non-Keplerian trajectories. Part 2: The question of thrust to orbit a sphere and the restricted three-body problem

    NASA Technical Reports Server (NTRS)

    Murad, P. A.

    1993-01-01

    Tsien's method is extended to treat the orbital motion of a body undergoing accelerations and decelerations. A generalized solution is discussed for the generalized case where a body undergoes azimuthal and radial thrust and the problem is further simplified for azimuthal thrust alone. Judicious selection of thrust could generate either an elliptic or hyperbolic trajectory. This is unexpected especially when the body has only enough energy for a lower state trajectory. The methodology is extended treating the problem of vehicle thrust for orbiting a sphere and vehicle thrust within the classical restricted three-body problem. Results for the latter situation can produce hyperbolic trajectories through eigen value decomposition. Since eigen values for no-thrust can be imaginary, thrust can generate real eigen values to describe hyperbolic trajectories. Keplerian dynamics appears to represent but a small subset of a much larger non-Keplerian domain especially when thrust effects are considered. The need for high thrust long duration space-based propulsion systems for changing a trajectory's canonical form is clearly demonstrated.

  6. Effective viscoelastic properties of shales.

    NASA Astrophysics Data System (ADS)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel

    2017-04-01

    Shales are often characterized as being elasto-plastic: they deform elastically for stresses below a certain yield and plastically at the limit. This approach dismisses any time dependent behavior that occurs in nature. Our goal is to better understand this time dependency by considering the visco-elastic behavior of shales before plasticity is reached. Shales are also typically heterogeneous and the question arises as to how to derive their effective properties in order to model them as a homogeneous medium. We model shales using inclusion based models due to their versatility and their ability to represent the microstructure. The inclusions represent competent quartz or calcite grains which are set in a viscous matrix made of clay minerals. Our approach relies on both numerical and analytical results in two dimension and we use them to cross check each other. The numerical results are obtained using MILAMIN, a fast-finite element solver for large problems, while the analytical solutions are based on the correspondence principle of linear viscoelasticity. This principle allows us to use the results on effective properties already derived for elastic bodies and to adapt them to viscoelastic bodies. We start by revisiting the problem of a single inclusion in an infinite medium and then move on to consider many inclusions.

  7. Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food

    NASA Astrophysics Data System (ADS)

    Leung, M.; Ching, W. H.; Leung, D. Y. C.; Lam, G. C. K.

    2005-02-01

    A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others.

  8. Lactoferrin delivery systems: approaches for its more effective use.

    PubMed

    Onishi, Hiraku

    2011-11-01

    Recently, pharmacotherapy has advanced extensively, but there are still many refractory diseases which cannot be solved fully by existing therapeutic agents. Therefore, alternative medicine and health foods are now attracting much attention, for example, lactoferrin (LF): a multifunctional glycoprotein. As LF is non-toxic and low-cost, its application in healthcare and therapeutics is expected to be widespread. In this review, LF's general basic features are described. The interaction of LF with its receptors activates the immune system, including cytokine production and balance. In particular, the immune activation of orally administered LF is considered as a new strategy for the treatment of refractory diseases, such as inflammatory bowel disease, virus infection and tumor metastasis. Also mentioned are the problems associated with the use of LF. As LF is degraded rapidly in the body due to enzymatic hydrolysis, high amounts or frequent dosing is required; an appropriate delivery system may improve these problems and increase its efficiency. Chemical modifications, such as PEGylation, can enhance the stability of LF in the body, resulting in increased efficacy. Also, liposomes and enteric or microparticulate formulations can promote the function of LF in oral administration due to target site delivery and protection of LF from enzymatic hydrolysis. These delivery systems are expected to improve the utility of LF.

  9. Hip-Hop to Health Jr., an obesity prevention program for minority preschool children: baseline characteristics of participants.

    PubMed

    Stolley, Melinda R; Fitzgibbon, Marian L; Dyer, Alan; Van Horn, Linda; KauferChristoffel, Katherine; Schiffer, Linda

    2003-03-01

    The prevalence of obesity in the United States is a significant public health problem. Many obesity-related risk factors are more prevalent in minority populations. Given the recalcitrant nature of weight loss interventions for adults, prevention of overweight and obesity has become a high priority. The present study reports baseline data from an obesity prevention intervention developed for minority preschool children. Hip-Hop to Health Jr. is a 5-year randomized controlled intervention that targets 3- to 5-year-old minority children enrolled in 24 Head Start programs. Our primary aim is to test the effect of the intervention on change in body mass index. Data were collected on sociodemographic, anthropometric, behavioral, and cognitive variables for the children and parents at baseline. Participants included 416 black children, 337 black parents, 362 Latino children, and 309 Latino parents. Using body mass index for age and sex > or = the 95th percentile as the definition of overweight, 15% of the black children and 28% of the Latino children were overweight. More than 75% of the parents were either overweight or obese. The development of interventions to effectively prevent or control obesity early in life is crucial. These data highlight the escalating problem of weight control in minority populations.

  10. Silicon sensors for catheters and guide wires

    NASA Astrophysics Data System (ADS)

    Goosen, Hans F.

    2001-11-01

    One area that can make use of the miniature size of present day micro electromechanical systems (MEMS) is that of the medical field of minimally invasive interventions. These procedures, used for both diagnosis and treatment, use catheters that are advanced through the blood vessels deep into the body, without the need for surgery. However, once inside the body, the doctor performing the procedure is completely reliant on the information the catheter(s) can provide in addition to the projection imaging of a fluoroscope. A good range of sensors for catheters is required for a proper diagnosis. To this end, miniature sensors are being developed to be fitted to catheters and guide wires. As the accurate positioning of these instruments is problematic, it is necessary to combine several sensors on the same guide wire or catheter to measure several parameters in the same location. This however, brings many special problems to the design of the sensors, such as small size, low power consumption, bio-compatibility of materials, robust design for patient safety, a limited number of connections, packaging, etc. This paper will go into both the advantages and design problems of micromachined sensors and actuators in catheters and guide wires. As an example, a multi parameter blood sensor, measuring flow velocity, pressure and oxygen saturation, will be discussed.

  11. PREFACE: Advanced many-body and statistical methods in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Anghel, Dragos Victor; Sabin Delion, Doru; Sorin Paraoanu, Gheorghe

    2012-02-01

    It has increasingly been realized in recent times that the borders separating various subfields of physics are largely artificial. This is the case for nanoscale physics, physics of lower-dimensional systems and nuclear physics, where the advanced techniques of many-body theory developed in recent times could provide a unifying framework for these disciplines under the general name of mesoscopic physics. Other fields, such as quantum optics and quantum information, are increasingly using related methods. The 6-day conference 'Advanced many-body and statistical methods in mesoscopic systems' that took place in Constanta, Romania, between 27 June and 2 July 2011 was, we believe, a successful attempt at bridging an impressive list of topical research areas: foundations of quantum physics, equilibrium and non-equilibrium quantum statistics/fractional statistics, quantum transport, phases and phase transitions in mesoscopic systems/superfluidity and superconductivity, quantum electromechanical systems, quantum dissipation, dephasing, noise and decoherence, quantum information, spin systems and their dynamics, fundamental symmetries in mesoscopic systems, phase transitions, exactly solvable methods for mesoscopic systems, various extension of the random phase approximation, open quantum systems, clustering, decay and fission modes and systematic versus random behaviour of nuclear spectra. This event brought together participants from seventeen countries and five continents. Each of the participants brought considerable expertise in his/her field of research and, at the same time, was exposed to the newest results and methods coming from the other, seemingly remote, disciplines. The talks touched on subjects that are at the forefront of topical research areas and we hope that the resulting cross-fertilization of ideas will lead to new, interesting results from which everybody will benefit. We are grateful for the financial and organizational support from IFIN-HH, Ovidius University (where the conference took place), the Academy of Romanian Scientists and the Romanian National Authority for Scientific Research. This conference proceedings volume brings together some of the invited and contributed talks of the conference. The hope of the editors is that they will constitute reference material for applying many-body techniques to problems in mesoscopic and nuclear physics. We thank all the participants for their contribution to the success of this conference. D V Anghel and D S Delion IFIN-HH, Bucharest, Romania G S Paraoanu Aalto University, Finland Conference photograph

  12. Two-body problem in scalar-tensor theories as a deformation of general relativity: An effective-one-body approach

    NASA Astrophysics Data System (ADS)

    Julié, Félix-Louis; Deruelle, Nathalie

    2017-06-01

    In this paper we address the two-body problem in massless scalar-tensor (ST) theories within an effective-one-body (EOB) framework. We focus on the first building block of the EOB approach, that is, mapping the conservative part of the two-body dynamics onto the geodesic motion of a test particle in an effective external metric. To this end, we first deduce the second post-Keplerian (2PK) Hamiltonian of the two-body problem from the known 2PK Lagrangian. We then build, by means of a canonical transformation, a ST deformation of the general relativistic EOB Hamiltonian that allows us to incorporate the scalar-tensor (2PK) corrections to the currently best available general relativity EOB results. This EOB-ST Hamiltonian defines a resummation of the dynamics that may provide information on the strong-field regime, in particular, the ISCO location and associated orbital frequency, and can be compared to, other, e.g., tidal, corrections.

  13. A numerical investigation of viscous, incompressible flow past an axisymmetric body with and without spin

    NASA Astrophysics Data System (ADS)

    Weber, K. F.

    1985-12-01

    This study deals with a preliminary investigation of the effects of spin on the axisymmetric flow past a body of revolution. The study has its genesis larger problem of Magnus forces on spinning bodies at angle of attack. However, the fundamental behavior that arises when a spinning body is placed in a uniform stream is still not well understood; therefore, the problem of axisymmetric flow with spin was undertaken. The body consists of a 3-caliber cant-ogive blunted by a spherical nosecap, a 2-caliber cylindrical section, and a 1-caliber boattail. Numerical solutions of the compressible laminar Navier-Stokes equations are obtained using a modified version of the implicit-explicit method developed by MacCormack in 1981. The benchmark problem is the nonspinning body in uniform flow at a Reynolds number of 1.14. The results show that the modified method performs well and allows time steps that are in order of magnitude greater than those permitted by explicit stability criteria.

  14. Hip-hop solutions of the 2N-body problem

    NASA Astrophysics Data System (ADS)

    Barrabés, Esther; Cors, Josep Maria; Pinyol, Conxita; Soler, Jaume

    2006-05-01

    Hip-hop solutions of the 2N-body problem with equal masses are shown to exist using an analytic continuation argument. These solutions are close to planar regular 2N-gon relative equilibria with small vertical oscillations. For fixed N, an infinity of these solutions are three-dimensional choreographies, with all the bodies moving along the same closed curve in the inertial frame.

  15. Two career chaos

    NASA Astrophysics Data System (ADS)

    Tauxe, L.

    2002-12-01

    When I finished graduate school I suppose I imagined myself as my dad. He worked hard, loved his job and family, made a good living. But I also saw myself as my mom - making a home, raising kids, cooking dinner, saving the world. I thought: I can handle being my mom and my dad. I can handle being a scientist and a mother. I can DO this.ÿ What I never imagined was the chaotic dynamic of the two career couple. The motions of bodies moving in response to the force of gravity cannot be predicted exactly if there are too many bodies. They dance in a jerky jumble, now faster, then slowly, bouncing, jostling, bumping and flying apart. Just so are the career trajectories of the two career couple. One rises up, the other, slower, pulls it down; overtaking, blocking preventing, now supporting, pulling along, now holding back - not moving, leap frogging, racing in opposite directions and snapping back together with a crack.ÿ The problem is non-linear. The outcome depends on feedback, whether positive or negative. The outcome cannot be predicted. Cannot be determined.ÿ Perhaps it cannot be done. Perhaps both husband and wife cannot be both mother and father. Too many mothers, too many fathers. Chaos.ÿ But I believe it can be done. Not like our mothers and fathers but a different way. And maybe our jerky paths will keep us sharp, make us work harder, and lead us through lives that at least cannot be described as dull.ÿ

  16. Cultural perceptions of healthy weight in rural Appalachian youth.

    PubMed

    Williams, K J; Taylor, C A; Wolf, K N; Lawson, R F; Crespo, R

    2008-01-01

    Rates of overweight among US children have been rising over the past three decades. Changes in lifestyle behaviors, including dietary and physical activity habits, have been examined thoroughly to identify correlates of weight status in children. Youth in rural US Appalachia are at a disproportionately greater risk for obesity and related health complications. Inadequate physical activity and poor dietary habits are two primary causes of obesity that have been noted in West Virginia adolescents. Few existing data describes the decisional balance in performing lifestyle behaviors, nor the perceptions of these youth regarding their beliefs about weight. The purpose of this study was to identify the perceptions of a healthy weight in rural Appalachian adolescents. Ninth grade students were recruited from classroom presentations in four high schools throughout West Virginia. Interested parent-caregiver pairs returned forms to indicate interest in participation. Separate focus group interviews were conducted concurrently with adolescent and parents or caregivers to identify the cultural perceptions of a healthy weight. Questions were developed using grounded theory to explore how a healthy weight was defined, what factors dictate body weight, the perceived severity of the obesity issue, and the social or health ramifications of the condition. Verbatim transcripts were analyzed to identify dominant themes, and content analysis provided text segments to describe the themes. This article describes the data obtained from the adolescent focus groups. When asked what defined a healthy weight, the adolescents who participated in the focus groups placed great value on physical appearance and social acceptability. Students believed there was a particular number, either an absolute weight or body mass index value that determined a healthy weight. These numbers were usually conveyed by a physician; however, there was also a general acceptance of being 'thick' or a reliance on 'feeling healthy' as a determinant of maintaining a healthy weight. Despite these beliefs, many teens had unrealistic and unhealthy perceptions of weight. Female participants were more concerned with weight than males, some to the point of obsession. Both males and females expressed a social stigma associated with overweight. Issues of guilt and diminished self-esteem were prevalent. When asked about the extensiveness of the problem of childhood overweight, the students indicated that a degree of familiarity with being overweight has developed and 'you just get used to [seeing] it.' Because of the rising rates of chronic disease in this region, a fear was evident in these youth about the increased risk of developing these conditions in those who are overweight. Experiences with family members with diabetes and cardiovascular disease fueled these concerns, which instilled a fear of becoming overweight in many of the students. Many perceptions of healthy weight and appropriate body size were shaped by the media and entertainment industry. Additionally, some participants admitted to performing unsafe practices to reduce body mass, such as very low calorie diets or fasting. Youth in rural Appalachia present similar perceptions about weight as other children; however, differences in perceived healthy lifestyle habits and a general acceptance of a higher average body weight present additional challenges to addressing the increasing problem of child overweight. Despite the relative isolation of many of these communities, the media has a profound impact on weight valuation that has been intertwined with school-based health education and cultural values of health. These data will provide valuable information for the development of obesity prevention programs in rural Appalachia.

  17. Symmetry breaking and the geometry of reduced density matrices

    NASA Astrophysics Data System (ADS)

    Zauner, V.; Draxler, D.; Vanderstraeten, L.; Haegeman, J.; Verstraete, F.

    2016-11-01

    The concept of symmetry breaking and the emergence of corresponding local order parameters constitute the pillars of modern day many body physics. We demonstrate that the existence of symmetry breaking is a consequence of the geometric structure of the convex set of reduced density matrices of all possible many body wavefunctions. The surfaces of these convex bodies exhibit non-analyticities, which signal the emergence of symmetry breaking and of an associated order parameter and also show different characteristics for different types of phase transitions. We illustrate this with three paradigmatic examples of many body systems exhibiting symmetry breaking: the quantum Ising model, the classical q-state Potts model in two-dimensions at finite temperature and the ideal Bose gas in three-dimensions at finite temperature. This state based viewpoint on phase transitions provides a unique novel tool for studying exotic many body phenomena in quantum and classical systems.

  18. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Silva, R. E. F.; Blinov, Igor V.; Rubtsov, Alexey N.; Smirnova, O.; Ivanov, M.

    2018-05-01

    We bring together two topics that, until now, have been the focus of intense but non-overlapping research efforts. The first concerns high-harmonic generation in solids, which occurs when an intense light field excites a highly non-equilibrium electronic response in a semiconductor or a dielectric. The second concerns many-body dynamics in strongly correlated systems such as the Mott insulator. We show that high-harmonic generation can be used to time-resolve ultrafast many-body dynamics associated with an optically driven phase transition, with accuracy far exceeding one cycle of the driving light field. Our work paves the way for time-resolving highly non-equilibrium many-body dynamics in strongly correlated systems, with few femtosecond accuracy.

  19. Body image and sexuality in Indonesian adults with a disorder of sex development (DSD).

    PubMed

    Ediati, Annastasia; Juniarto, Achmad Zulfa; Birnie, Erwin; Drop, Stenvert L S; Faradz, Sultana M H; Dessens, Arianne B

    2015-01-01

    In Indonesia, disorders of sex development (DSDs) are not well recognized and medical care for affected individuals is scarce. Consequently, many patients live with ambiguous genitalia and appearance. We compared reported outcomes on body image, sexual functioning, and sexual orientation of 39 adults with DSDs (aged 18 to 41) and 39 healthy controls matched for gender, age, and residential setting (urban, suburban, rural). Differences in gender and treatment status (treated or untreated) were also explored. On body image, adults with DSDs reported dissatisfaction with sex-related body parts. Compared to the matched controls, women with DSDs reported greater sexual distress, and men with DSDs reported lower erectile and ejaculation frequencies, and more dissatisfaction with sexual life but not with sexual desire and activities. Men with DSDs who had undergone genital surgery reported higher erectile and ejaculation frequencies than untreated men. More women than men in the DSDs group reported a nonexclusive heterosexual orientation. DSDs and infertility had a great impact on sexuality. Fear of ostracism complicated DSD acceptance. Findings were compared to those of Western studies. Based on these results, education about DSDs and their psychosexual consequences may help reduce the sexual distress and problems in adults with DSDs and improve quality of life.

  20. Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.

    PubMed

    Keller, Ole

    2005-08-01

    On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.

Top