Science.gov

Sample records for manzana cydia pomonella

  1. Rapid Assessment of the Sex of Codling Moth, Cydia pomonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two different methods were tested to identify the sex of the early developmental stages of the codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) with a WZ/ZZ (female/male) sex chromosome system. Firstly, it was shown that the sex of all larval stages can be easily determined by the ...

  2. The Toxicology and Biochemical Characterization of Cantharidin on Cydia pomonella.

    PubMed

    Wu, Zheng-Wei; Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Cantharidin, a natural toxin produced by beetles in the families Meloidae and Oedemeridae, reported to be toxic to some pests, is being developed as a biopesticide in China. This study evaluates the toxicity and biochemical characterization of cantharidin on the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), an economically important fruit pest, under both laboratory and field conditions. Laboratory dose response bioassays showed that the LC50 value of cantharidin against neonate larvae was 0.057 mg ml(-1). Exposure of the larvae to 0.024 and 0.057 mg ml(-1) of cantharidin resulted in significant reduction in larval body weight. Neonate larvae exposed to LC10 of cantharidin showed increased glutathione S-transferase activity and significantly reduced the carboxylesterase and cytochrome P450-dependent mixed-function oxidase activities. Results also showed 16 and 25% ovicidal activity at concentrations of 0.057 and 0.14 mg ml(-1) of cantharidin, respectively. Field trials demonstrated cantharidin has a significant effect on both the first and second generations of C. pomonella larvae, but it exhibits a lower control efficiency than the chemical reference emamectin benzoate. Cantharidin may be considered a valuable tool for the control of codling moth.

  3. The chemosensory receptors of codling moth Cydia pomonella – expression in larvae and adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Codling moth, Cydia pomonella, is a worldwide key pest of apple and pear. Behavior-modifying semiochemicals are successfully used and are being further developed for environmentally safe control of codling moth. The chemical senses, olfaction and gustation, play critically important role...

  4. Mastrus ridibundus parasitoids eavesdrop on cocoon-spinning codling moth, Cydia pomonella, larvae

    NASA Astrophysics Data System (ADS)

    Jumean, Zaid; Unruh, Tom; Gries, Regine; Gries, Gerhard

    2005-01-01

    Cocoon-spinning larvae of the codling moth, Cydia pomonella L. (Lepidoptera: Olethreutidae) employ a pheromone that attracts or arrests conspecifics seeking pupation sites. Such intraspecific communication signals are important cues for illicit receivers such as parasitoids to exploit. We tested the hypothesis that the prepupal C. pomonella parasitoid Mastrus ridibundus Gravenhorst (Hymenoptera: Ichneumonidae) exploits the larval aggregation pheromone to locate host prepupae. In laboratory olfactometer experiments, female M. ridibundus were attracted to 3-day-old cocoons containing C. pomonella larvae or prepupae. Older cocoons containing C. pomonella pupae, or larvae and prepupae excised from cocoons, were not attractive. In gas chromatographic-electroantennographic detection (GC-EAD) analyses of bioactive Porapak Q extract of cocoon-derived airborne semiochemicals, ten compounds elicited responses from female M. ridibundus antennae. Comparative GC-mass spectrometry of authentic standards and cocoon-volatiles determined that these compounds were 3-carene, myrcene, heptanal, octanal, nonanal, decanal, (E)-2-octenal, (E)-2-nonenal, sulcatone, and geranylacetone. A synthetic 11-component blend consisting of these ten EAD-active compounds plus EAD-inactive (+)-limonene (the most abundant cocoon-derived volatile) was as effective as Porapak Q cocoon extract in attracting both female M. ridibundus and C. pomonella larvae seeking pupation sites. Only three components could be deleted from the 11-component blend without diminishing its attractiveness to M. ridibundus, which underlines the complexity of information received and processed during foraging for hosts. Mastrus ridibundus obviously “eavesdrop” on the pheromonal communication signals of C. pomonella larvae that reliably indicate host presence.

  5. Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella.

    PubMed

    Khani, Abbas; Moharramipour, Saeid

    2010-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), a worldwide apple pest, is classified as a freeze-intolerant organism and one of the most cold-tolerant pests. The objectives of this study were to examine the supercooling point of overwintering and non-diapausing larvae of C. pomonella as an index of its cold hardiness, and to assess larval mortality following 24 h exposure to extreme low temperatures ranging from -5 to -25 degrees C. The mean (+/-SE) supercooling point for feeding larvae (third through fifth instars) was -12.4 +/- 1.1 degrees C. The mean supercooling point for cocooned, non-diapausing larvae (i.e., non-feeding stages) decreased as the days that the arvae were cocooned increased and changed between -15.1 +/- 1.2 degrees C for one to two day cocooned arvae and -19.2 +/- 1.8 degrees C for less than five day cocooned larvae. The mean (+/-SE) supercooling point for other non-feeding stages containing pupae and overwintering larvae were -19.9 +/- 1.0 degrees C and -20.2 +/- 0.2 degrees C, respectively. Mean supercooling points of C. pomonella larvae were significantly lower during the winter months than the summer months, and sex had no effect on the supercooling point of C. pomonella larvae. The mortality of larvae increased significantly after individuals were exposed to temperatures below the mean supercooling point of the population. The supercooling point was a good predictor of cold hardiness.

  6. Evaluation of Lignins and Particle Films as Solar Protectants for the Granulovirus of the Codling Moth, Cydia pomonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of effective adjuvants for field application of the codling moth, Cydia pomonella L., granulovirus (CpGV) is of interest to improve the commercial viability and utility of this biological pesticide. We evaluated several materials as potential adjuvants to protect CpGV from ultra-v...

  7. Putative nicotinic acetylchloline receptor subunits express differentially through life cycle of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae). The nAChRs mediate the fast actions of the neurotransmitter acetylcholine in synaptic tr...

  8. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    PubMed Central

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-01-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses. PMID:26928635

  9. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-03-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses.

  10. Identification and functional analysis of the origins of DNA replication in the Cydia pomonella granulovirus genome.

    PubMed

    Hilton, Sally; Winstanley, Doreen

    2007-05-01

    The entire genome of Cydia pomonella granulovirus (CpGV) was systematically screened for origins of DNA replication, using an infection-dependent DNA replication assay in the granulovirus-permissive Cydia pomonella cell line, Cp14R. All seven cosmids in an overlapping library that covered the CpGV genome were found to replicate in the assay. A genomic library of 32 overlapping plasmids was subsequently screened. Plasmids that replicated were in turn subcloned into 1-2 kbp overlapping fragments. Eleven subclones replicated, each containing at least one of the 13 single-copy 74-76 bp imperfect palindromes, previously identified in the CpGV genome as possible origins of replication. Genome fragments of 156 bp, each containing one of the 13 palindromes, were cloned to verify replication and provided confirmation that these 13 palindromes are the only origins of replication in the genome. A real-time PCR method was developed for the quantification of DNA replication, which eliminated the need for Southern blotting and hybridization. A set of deletion clones allowed further quantitative characterization of one of the palindromes. The previously proposed non-homologous region origin of replication did not replicate in the assay.

  11. Structure-based discovery of potentially active semiochemicals for Cydia pomonella (L.)

    PubMed Central

    Liu, Jiyuan; Tian, Zhen; Zhang, Yalin

    2016-01-01

    The development of physiologically active semiochemicals is largely limited by the labor-consuming searching process. How to screen active semiochemicals efficiently is of significance to the extension of behavior regulation in pest control. Here pharmacophore modeling and shape-based virtual screening were combined to predict candidate ligands for Cydia pomonella pheromone binding protein 1 (CpomPBP1). Out of the predicted compounds, ETrME displayed the highest affinity to CpomPBP1. Further studies on the interaction between CpomPBP1 and ETrME, not only depicted the binding mode, but also revealed residues providing negative and positive contributions to the ETrME binding. Moreover, key residues involved in interacting with ETrME of CpomPBP1 were determined as well. These findings were significant to providing insights for the future searching and optimization of active semiochemicals. PMID:27708370

  12. The complete mitochondrial genome of the codling moth Cydia pomonella (Lepidoptera: Tortricidae).

    PubMed

    Shi, Bao-Cai; Liu, Wei; Wei, Shu-Jun

    2013-02-01

    The complete mitochondrial genome of the codling moth Cydia pomonella (Lepidoptera: Tortricidae) was determined. The genome is 15,253 bp long with 37 typical animal mitochondrial genes and an A+T-rich region. All genes are arranged in their conserved positions compared with the pupative ancestral arrangement of insects except for trnM, which was translocated to the upstream of the transfer RNA cluster trnI-trnQ as in all previously reported lepidopteran mitochondiral genomes. Seven portein-coding genes use ATG start codon and five use ATT. However, the cox1 gene uses the CGA start codon as it is found in all previous reported mitochondrial genomes of Lepidoptera. Nine protein-coding genes stop with termination codon TAA. Four protein-coding genes use incomplete stop codons TA or T. The A+T region is located between rrnS and trnM with a length of 331 bp.

  13. CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella.

    PubMed

    Věchtová, Pavlína; Dalíková, Martina; Sýkorová, Miroslava; Žurovcová, Martina; Füssy, Zoltán; Zrzavá, Magda

    2016-08-01

    Satellite DNA (satDNA) is a non-coding component of eukaryotic genomes, located mainly in heterochromatic regions. Relevance of satDNA began to emerge with accumulating evidence of its potential yet hardly comprehensible role that it can play in the genome of many organisms. We isolated the first satDNA of the codling moth (Cydia pomonella, Tortricidae, Lepidoptera), a species with holokinetic chromosomes and a single large heterochromatic element, the W chromosome in females. The satDNA, called CpSAT-1, is located on all chromosomes of the complement, although in different amounts. Surprisingly, the satellite is almost missing in the heterochromatic W chromosome. Additionally, we isolated mRNA from all developmental stages (1st-5th instar larva, pupa, adult), both sexes (adult male and female) and several tissues (Malpighian tubules, gut, heart, testes, and ovaries) of the codling moth and showed the CpSAT-1 sequence was transcribed in all tested samples. Using CpSAT-1 specific primers we amplified, cloned and sequenced 40 monomers from cDNA and gDNA, respectively. The sequence analysis revealed a high mutation rate and the presence of potentially functional motifs, mainly in non-conserved regions of the monomers. Both the chromosomal distribution and the sequence analysis suggest that CPSAT-1 has no function in the C. pomonella genome.

  14. Phenotypic screen for RNAi effects in the codling moth Cydia pomonella.

    PubMed

    Wang, Jinda; Gu, Liuqi; Ireland, Stephen; Garczynski, Stephen F; Knipple, Douglas C

    2015-11-10

    RNAi-based technologies have the potential to augment, or replace existing pest management strategies. However, some insect taxa are less susceptible to the induction of the post-transcriptional gene silencing effect than others, such as the Lepidoptera. Here we describe experiments to investigate the induction of RNAi in the codling moth, Cydia pomonella, a major lepidopteran pest of apple, pear, and walnut. Prior to a knockdown screen, fluorescently labeled small interfering RNA (siRNA) and double-stranded RNA (dsRNA) derived from green fluorescent protein (GFP) coding sequence were delivered to the surface of artificial diet to which neonate larvae were introduced and subsequently examined for the distribution of fluorescence in their tissues. Fluorescence was highly concentrated in the midgut but its presence in other tissues was equivocal. Next, dsRNAs were made for C. pomonella genes orthologous to those that have well defined deleterious phenotypes in Drosophila melanogaster. A screen was conducted using dsRNAs encoding cullin-1 (Cpcul1), maleless (Cpmle), musashi (Cpmsi), a homeobox gene (CpHbx), and pumilio (Cppum). The dsRNAs designed from these target genes were administered to neonate larvae by delivery to the surface of the growth medium. None of the dsRNA treatments affected larval viability, however Cpcul1-dsRNA had a significant effect on larval growth, with the average length of larvae about 3mm, compared to about 4mm in the control groups. Measurement of Cpcul1 transcript levels by quantitative real-time PCR (qRT-PCR) revealed a dose-dependent RNAi effect in response to increasing amount of Cpcul1-dsRNA. Despite their reduced size, Cpcul1-dsRNA-treated larvae molted normally and matured to adulthood in a manner similar to controls. In an additional experiment, Cpcul1-siRNA was found to induce similar stunting effect as that induced by Cpcul1-dsRNA.

  15. Effects of chlorpyrifos on enzymatic systems of Cydia pomonella (Lepidoptera: Tortricidae) adults.

    PubMed

    Morales, Laura Beatriz Parra; Alzogaray, Raúl Adolfo; Cichón, Liliana; Garrido, Silvina; Soleño, Jimena; Montagna, Cristina Mónica

    2015-12-25

    The control program of codling moth (Cydia pomonella L.) in the Río Negro and Neuquén Valley is intended to neonate larvae. However, adults may be subjected to sub-lethal pesticide concentrations generating stress which might enhance both mutation rates and activity of the detoxification system. This study assessed the exposure effects of chlorpyrifos on target enzyme and, both detoxifying and antioxidant systems of surviving adults from both a laboratory susceptible strain (LSS) and a field population (FP). The results showed that the FP was as susceptible to chlorpyrifos as the LSS and, both exhibited a similar chlorpyrifos-inhibitory concentration 50 (IC50 ) of acetylcholinesterase (AChE). The FP displayed higher carboxylesterase (CarE) and 7-ethoxycoumarine O-deethylase (ECOD) activities than LSS. Both LSS and FP showed an increase on CarE activity after the exposure to low-chlorpyrifos concentrations, followed by enzyme inhibition at higher concentrations. There were no significant differences neither in the activities of glutathione S-transferases (GST), catalase (CAT) and superoxide dismutase (SOD) nor in the reduced glutathione (GSH) content between LSS and FP. Moreover, these enzymes were unaffected by chlorpyrifos. In conclusion, control adults from the FP exhibited higher CarE and ECOD activities than control adults from the LSS. AChE and CarE activities were the most affected by chlorpyrifos. Control strategies used for C. pomonella, such as rotations of insecticides with different modes of action, will probably delay the evolution of insecticide resistance in field populations from the study area. This article is protected by copyright. All rights reserved.

  16. Attractants from Bartlett pear for codling moth, Cydia pomonella (L.), larvae

    NASA Astrophysics Data System (ADS)

    Knight, Alan L.; Light, Douglas M.

    2001-08-01

    The alkyl ethyl and methyl esters of (2 E,4 Z)-2,4-decadienoic acid found in head-space samples of ripe Bartlett pear ( Pyrus communis L.) stimulated a response from neonate larvae of the codling moth (CM), Cydia pomonella (L.), in both static-air Petri-plate and in upwind Y-tube and straight-tube olfactometer bioassays. In comparison with the known CM neonate attractant, ( E,E)-α-farnesene, ethyl (2 E,4 Z)-2,4-decadienoate was attractive at 10-fold and 1,000-fold lower threshold dosages in the Petri-plate and in the Y-tube bioassays, respectively. Methyl (2 E,4 Z)-2,4-decadienoate was attractive to CM neonates in these bioassays at much higher doses than ethyl (2 E,4 Z)-2,4-decadienoate. Other principal head-space volatiles from ripe pear fruit and pear leaves, including butyl acetate, hexyl acetate, ( Z)-3-hexenyl acetate, and ( E)-β-ocimene, were not attractive to CM neonates. The potential uses of these pear kairomones for monitoring and control of CM in walnuts and apple are discussed.

  17. A female-specific attractant for the codling moth, Cydia pomonella, from apple fruit volatiles

    NASA Astrophysics Data System (ADS)

    Hern, Alan; Dorn, Silvia

    Host plant-derived esters were investigated as potential female-specific attractants for the codling moth (CM), Cydia pomonella (L.), a key pest of apples worldwide. The behavioural effects of single and combined volatile compounds and of a natural odour blend were examined using olfactometry and wind-tunnel bioassays. The apple-derived volatile butyl hexanoate attracted mated females while it was behaviourally ineffective for males over a dosage range of more than three orders of magnitude in olfactometer assays. Female CM preferred this kairomone to the headspace volatiles from ripe apples. Both no-choice and choice trials in the wind-tunnel suggested that female moths might be effectively trapped by means of this compound. In contrast, headspace volatiles collected from ripe apple fruits as well as a blend containing the six dominant esters from ripe apples were behaviourally ineffective. A female-specific repellency was found for the component hexyl acetate in the olfactometer, but this ester had no significant effect in the wind-tunnel. Butyl hexanoate with its sex-specific attraction should be further evaluated for monitoring and controlling CM females in orchards.

  18. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella

    PubMed Central

    Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.

    2014-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935

  19. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella.

    PubMed

    Duménil, Claire; Judd, Gary J R; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T

    2014-09-26

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption.

  20. Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones

    PubMed Central

    Cattaneo, Alberto Maria; Gonzalez, Francisco; Bengtsson, Jonas M.; Corey, Elizabeth A.; Jacquin-Joly, Emmanuelle; Montagné, Nicolas; Salvagnin, Umberto; Walker, William B.; Witzgall, Peter; Anfora, Gianfranco; Bobkov, Yuriy V.

    2017-01-01

    Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication. PMID:28117454

  1. Impact of Cultivation and Subsequent Burial on Cydia pomonella (Lepidoptera: Tortricidae) and Conotrachelus nenuphar (Coleoptera: Curculionidae)

    PubMed Central

    Baughman, William B.; Nelson, Peter N.; Grieshop, Matthew J.

    2015-01-01

    We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. PMID:26470248

  2. Optimizing Aerosol Dispensers for Mating Disruption of Codling Moth, Cydia pomonella L.

    PubMed

    McGhee, Peter S; Miller, James R; Thomson, Donald R; Gut, Larry J

    2016-07-01

    Experiments were conducted in commercial apple orchards to determine if improved efficiencies in pheromone delivery may be realized by using aerosol pheromone dispensers for codling moth (CM), Cydia pomonella L., mating disruption. Specifically, we tested how reducing: pheromone concentration, period of dispenser operation, and frequency of pheromone emission from aerosol dispensers affected orientational disruption of male CM to pheromone-baited monitoring traps. Isomate® CM MIST formulated with 50 % less codlemone (3.5 mg/ emission) provided orientation disruption equal to the standard commercial formulation (7 mg / emission). Decreased periods of dispenser operation (3 and 6 h) and frequency of pheromone emission (30 and 60 min) provided a level of orientational disruption similar to the current standard protocol of releasing pheromone over a 12 h period on a 15 min cycle, respectively. These three modifications provide a means of substantially reducing the amount of pheromone necessary for CM disruption. The savings accompanying pheromone conservation could lead to increased adoption of CM mating disruption and, moreover, provide an opportunity for achieving higher levels of disruption by increasing dispenser densities.

  3. Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones.

    PubMed

    Cattaneo, Alberto Maria; Gonzalez, Francisco; Bengtsson, Jonas M; Corey, Elizabeth A; Jacquin-Joly, Emmanuelle; Montagné, Nicolas; Salvagnin, Umberto; Walker, William B; Witzgall, Peter; Anfora, Gianfranco; Bobkov, Yuriy V

    2017-01-24

    Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication.

  4. The chemosensory receptors of codling moth Cydia pomonella-expression in larvae and adults.

    PubMed

    Walker, William B; Gonzalez, Francisco; Garczynski, Stephen F; Witzgall, Peter

    2016-03-23

    Olfaction and gustation play critical roles in the life history of insects, mediating vital behaviors such as food, mate and host seeking. Chemosensory receptor proteins, including odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) function to interface the insect with its chemical environment. Codling moth, Cydia pomonella, is a worldwide pest of apple, pear and walnut, and behavior-modifying semiochemicals are used for environmentally safe control. We produced an Illumina-based transcriptome from antennae of males and females as well as neonate head tissue, affording a qualitative and quantitative analysis of the codling moth chemosensory receptor repertoire. We identified 58 ORs, 20 GRs and 21 IRs, and provide a revised nomenclature that is consistent with homologous sequences in related species. Importantly, we have identified several OR transcripts displaying sex-biased expression in adults, as well as larval-enriched transcripts. Our analyses have expanded annotations of the chemosensory receptor gene families, and provide first-time transcript abundance estimates for codling moth. The results presented here provide a strong foundation for future work on codling moth behavioral physiology and ecology at the molecular level, and may lead to the development of more precise biorational control strategies.

  5. Influence of juvenile hormone and mating on oogenesis and oviposition in the codling moth, cydia pomonella

    PubMed

    Webb; Shu; Ramaswamy; Dorn

    1999-01-01

    Oogenesis in the codling moth, Cydia pomonella, and the role of juvenile hormones (JHs) were addressed. Rudimentary ovarian structures were recognisable in day 3-4 pupae, when haemolymph JH was still undetectable by coupled gas chromatography-mass spectrometry in the selected ion mode (GC-MS/SIM). The presence of developing oocytes was observed by light microscopy on day 8, coincident with very low JH titres (0.74 +/- 0.05 ng/ml JH II). Chorionation was only evident upon emergence, following an increase in JH in the pharate adult (0h old: 4.71 +/- 0.34 ng/ml JH II). Analysis of haemolymph from virgin and mated females indicated that JH II was predominant, with approximately equal and lower quantities of JHs I and III (3.3- to 5.0-fold less). When pupae or newly emerged adults were treated with JH homologues, no alteration in ovarian protein content was apparent, but the JH mimetic, fenoxycarb, depressed the number of oocytes filling >/= 50% follicular volume. Chorion deposition was stimulated by JHs I, II, or III (10 &mgr;g), but not by fenoxycarb (0.05 &mgr;g, 10 &mgr;g). Mating provided correct stimuli for enhanced choriogenesis and egg laying, and, since haemolymph JH titres were concomitantly elevated (approximately 2-fold), it was postulated that the rise in JH elicited both these events. Application of JHs to virgin females, however, could not mimic mating; only increases in choriogenesis were induced: JH-treatment of virgins (or mated insects) significantly decreased oviposition rates over 24 and 48 h and markedly reduced the life-time total number of eggs. Arch. Copyright 1999 Wiley-Liss, Inc.

  6. Overwintering Strategy and Mechanisms of Cold Tolerance in the Codling Moth (Cydia pomonella)

    PubMed Central

    Rozsypal, Jan; Koštál, Vladimír; Zahradníčková, Helena; Šimek, Petr

    2013-01-01

    Background The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. Fully grown last instar larvae overwinter in diapause state. Their overwintering strategies and physiological principles of cold tolerance have been insufficiently studied. No elaborate analysis of overwintering physiology is available for European populations. Principal Findings We observed that codling moth larvae of a Central European population prefer to overwinter in the microhabitat of litter layer near the base of trees. Reliance on extensive supercooling, or freeze-avoidance, appears as their major strategy for survival of the winter cold. The supercooling point decreases from approximately −15.3°C during summer to −26.3°C during winter. Seasonal extension of supercooling capacity is assisted by partial dehydration, increasing osmolality of body fluids, and the accumulation of a complex mixture of winter specific metabolites. Glycogen and glutamine reserves are depleted, while fructose, alanine and some other sugars, polyols and free amino acids are accumulated during winter. The concentrations of trehalose and proline remain high and relatively constant throughout the season, and may contribute to the stabilization of proteins and membranes at subzero temperatures. In addition to supercooling, overwintering larvae acquire considerable capacity to survive at subzero temperatures, down to −15°C, even in partially frozen state. Conclusion Our detailed laboratory analysis of cold tolerance, and whole-winter survival assays in semi-natural conditions, suggest that the average winter cold does not represent a major threat for codling moth populations. More than 83% of larvae survived over winter in the field and pupated in spring irrespective of the overwintering microhabitat (cold-exposed tree trunk or temperature-buffered litter layer). PMID:23613923

  7. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella

    PubMed Central

    2014-01-01

    Background We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Results Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. Conclusions We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms. PMID:25471491

  8. Age-based mating success in the codling moth, Cydia pomonella, and the obliquebanded leafroller, Choristoneura rosaceana

    PubMed Central

    Jones, Vincent P.; Wiman, Nik G.

    2013-01-01

    In this study, the passage of spermatophores was examined between 1-day-old males mated in no-choice situations with females 0, 2, 4, or 6 days old and the converse for both the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), and the obliquebanded leafroller, Choristoneura rosaceana (Harris). For C. pomonella, female age had no effect on the passage of spermatophores from males, and only 6-day-old female C. rosaceana had reduced spermatophore number. The ages of moths at the time of mating had a greater effect on males, with C. pomonella males older than 2 days showing significant reductions in the ability to successfully pass a spermatophore to 1-day-old females. For C. rosaceana, 2- and 6-day-old males were significantly less likely to pass a spermatophore, but reduced transfer from 4-day-old males did not reach statistical significance. Wind-tunnel assays were used to evaluate the ability of 1- or 4-day-old males to fly upwind and successfully contact a young calling female. Four-day-old males were more likely to initiate flight upwind, but were less efficient at finding and contacting the females than younger males. This study suggests that evaluation of multiple components of the mating process are required to understand the effect of age at the time of mating on population dynamics of these moths. PMID:24784225

  9. Age-based mating success in the codling moth, Cydia pomonella, and the obliquebanded leafroller, Choristoneura rosaceana.

    PubMed

    Jones, Vincent P; Wiman, Nik G

    2013-01-01

    In this study, the passage of spermatophores was examined between 1-day-old males mated in no-choice situations with females 0, 2, 4, or 6 days old and the converse for both the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), and the obliquebanded leafroller, Choristoneura rosaceana (Harris). For C. pomonella, female age had no effect on the passage of spermatophores from males, and only 6-day-old female C. rosaceana had reduced spermatophore number. The ages of moths at the time of mating had a greater effect on males, with C. pomonella males older than 2 days showing significant reductions in the ability to successfully pass a spermatophore to 1-day-old females. For C. rosaceana, 2- and 6-day-old males were significantly less likely to pass a spermatophore, but reduced transfer from 4-day-old males did not reach statistical significance. Wind-tunnel assays were used to evaluate the ability of 1- or 4-day-old males to fly upwind and successfully contact a young calling female. Four-day-old males were more likely to initiate flight upwind, but were less efficient at finding and contacting the females than younger males. This study suggests that evaluation of multiple components of the mating process are required to understand the effect of age at the time of mating on population dynamics of these moths.

  10. Insecticide resistance may enhance the response to a host-plant volatile kairomone for the codling moth, Cydia pomonella (L.)

    NASA Astrophysics Data System (ADS)

    Sauphanor, Benoît; Franck, Pierre; Lasnier, Thérèse; Toubon, Jean-François; Beslay, Dominique; Boivin, Thomas; Bouvier, Jean-Charles; Renou, Michel

    2007-06-01

    The behavioral and electroantennographic responses of Cydia pomonella (L.) to the ripe pear volatile ethyl (2 E,4 Z)-2,4-decadienoate (Et- E, Z-DD), were compared in insecticide-susceptible and -resistant populations originating from southern France. A dose-response relationship to this kairomonal attractant was established for antennal activity and did not reveal differences between susceptible and resistant strains. Conversely, males of the laboratory strains expressing metabolic [cytochrome P450-dependent mixed-function oxidases (mfo)] or physiological (kdr-type mutation of the sodium-channel gene) resistance mechanisms exhibited a significantly higher response to Et- E, Z-DD than those of the susceptible strain in a wind tunnel experiment. No response of the females to this kairomone could be obtained in our wind-tunnel conditions. In apple orchards, mfo-resistant male moths were captured at significantly higher rates in kairomone-baited traps than in traps baited with the sex pheromone of C. pomonella. Such a differential phenomenon was not verified for the kdr-resistant insects, which exhibited a similar response to both the sex pheromone and the kairomonal attractant in apple orchards. Considering the widespread distribution of metabolic resistance in European populations of C. pomonella and the enhanced behavioral response to Et- E, Z-DD in resistant moths, the development of control measures based on this kairomonal compound would be of great interest for the management of insecticide resistance in this species.

  11. Longevity of the adult codling moth, Cydia pomonella, and the obliquebanded leafroller, Choristoneura rosaceana, in Washington apple orchards.

    PubMed

    Jones, Vincent P; Wiman, Nik G

    2008-01-01

    The longevity of adult codling moth (Cydia pomonella (L.) Lepidoptera: Tortricidae) and obliquebanded leafroller (Choristoneura rosaceana (Harris) Lepidoptera: Tortricidae) held in shaded vials in the tree canopy was measured during the normal flight periods during 2004 and 2005. In both years all codling moths were dead by 130 degree-days (DD) (21 d) in the spring and 121 DD (8 d) in the summer. On a degree-day basis, data were similar across sex, generation, and year, and a common curve adequately predicted the survival distribution. For the obliquebanded leafroller, there were longevity differences between the sexes, but not between generations or years. Use of empirical quantile-quantile plots showed that the female obliquebanded leafroller lived an average of 32% longer than males. Maximum longevity observed in these studies for obliquebanded leafrollers was 117 DD (11 d) across both generations. The implications of these data for population biology studies and quarantine requirements are discussed.

  12. Effects of Ginkgo biloba constituents on fruit-infesting behavior of codling moth (Cydia pomonella) in apples.

    PubMed

    Pszczolkowski, Maciej A; Durden, Kevin; Sellars, Samantha; Cowell, Brian; Brown, John J

    2011-10-26

    Codling moth, Cydia pomonella (L.), is a cosmopolitan pest of apple, potentially causing severe damage to the fruit. Currently used methods of combating this insect do not warrant full success or are harmful to the environment. The use of plant-derived semiochemicals for manipulation with fruit-infesting behavior is one of the new avenues for controlling this pest. Here, we explore the potential of Ginkgo biloba and its synthetic metabolites for preventing apple feeding and infestation by neonate larvae of C. pomonella. Experiments with crude extracts indicated that deterrent constituents of ginkgo are present among alkylphenols, terpene trilactones, and flavonol glycosides. Further experiments with ginkgo synthetic metabolites of medical importance, ginkgolic acids, kaempferol, quercetin, isorhamnetin, ginkgolides, and bilobalide, indicated that three out of these chemicals have feeding deterrent properties. Ginkgolic acid 15:0 prevented fruit infestation at concentrations as low as 1 mg/mL, bilobalide had deterrent effects at 0.1 mg/mL and higher concentrations, and ginkgolide B at 10 mg/mL. On the other hand, kaempferol and quercetin promoted fruit infestation by codling moth neonates. Ginkgolic acids 13:0, 15:1, and 17:1, isorhamnetin, and ginkgolides A and C had no effects on fruit infestation-related behavior. Our research is the first report showing that ginkgo constituents influence fruit infestation behavior and have potential applications in fruit protection.

  13. Occurrence and Prevalence of Insect Pathogens in Populations of the Codling Moth, Cydia pomonella L.: A Long-Term Diagnostic Survey

    PubMed Central

    Zimmermann, Gisbert; Huger, Alois M.; Kleespies, Regina G.

    2013-01-01

    About 20,550 larvae, pupae and adults of the codling moth, Cydia pomonella L., were diagnosed for pathogens during long-term investigations (1955–2012) at the Institute for Biological Control in Darmstadt, Germany. The prevailing entomopathogens diagnosed in these studies were insect pathogenic fungi, especially Beauveria bassiana and Isaria farinosa, the microsporidium, Nosema carpocapsae, the Cydia pomonella granulovirus (CpGV), as well as mostly undetermined bacteria. While the CpGV was observed exclusively in larvae and pupae from laboratory colonies or from field experiments with this virus, entomopathogenic fungi were most frequently diagnosed in last instars in autumn and in diapausing larvae and pupae in spring. B. bassiana was identified as the major fungal pathogen, causing larval prevalences of 0.9% to 100% (mean, about 32%). During prognostic long-term studies in larvae and adults of C. pomonella, N. carpocapsae was diagnosed in codling moth populations from various locations in Germany. The mean prevalence generally ranged between 20% and 50%. Experiments revealed that the fecundity and fertility of microsporidia-infected female adults were significantly reduced compared to healthy ones. The results underpin the importance of naturally occurring microbial antagonists and represent a base for further ecological studies on developing new or additional biological and integrated control strategies. PMID:26462428

  14. Application of Cydia pomonella expressed sequence tags: Identification and expression of three general odorant binding proteins in codling moth.

    PubMed

    Garczynski, Stephen F; Coates, Brad S; Unruh, Thomas R; Schaeffer, Scott; Jiwan, Derick; Koepke, Tyson; Dhingra, Amit

    2013-10-01

    The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8 341 expressed sequence tags was generated from Roche 454 GS-FLX sequencing of eight tissue-specific cDNA libraries. Putative chemosensory proteins (12) and odorant binding proteins (OBPs) (18) were annotated, which included three putative general OBP (GOBP), one more than typically reported for other Lepidoptera. To further characterize CpomGOBPs, we cloned cDNA copies of their transcripts and determined their expression patterns in various tissues. Cloning and sequencing of the 698 nt transcript for CpomGOBP1 resulted in the prediction of a 163 amino acid coding region, and subsequent RT-PCR indicated that the transcripts were mainly expressed in antennae and mouthparts. The 1 289 nt (160 amino acid) CpomGOBP2 and the novel 702 nt (169 amino acid) CpomGOBP3 transcripts are mainly expressed in antennae, mouthparts, and female abdomen tips. These results indicate that next generation sequencing is useful for the identification of novel transcripts of interest, and that codling moth expresses a transcript encoding for a new member of the GOBP subfamily.

  15. Juvenile hormone catabolism and oviposition in the codling moth, Cydia pomonella, as functions of age, mating status, and hormone treatment.

    PubMed

    Cole, Tracey J; Ramaswamy, Sonny B; Srinivasan, Asoka; Dorn, Silvia

    2002-01-01

    In vitro catabolism of juvenile hormone (JH) in haemolymph of adult female Cydia pomonella was ascribed mainly to juvenile hormone esterase (JHE) activity. No significant differences were noted between virgin and mated females 0-96 h post-emergence. Changes in JHE activity did not appear dependent upon fluctuations in JH titre; conversely, changes in JHE activity could not explain the changes in JH titres. Maximal JHE activity was recorded at 24 h (331.47 +/- 47.25 pmol/h/microl; 355.93 +/- 36.68 pmol/h/microl, virgin; mated insects, respectively) and preceded the peak in JH titres at 48 h. Topical application of JH II (10 ng-10 microg) or fenoxycarb (50 ng) enhanced JHE activity up to 640 and 56%, respectively. Treatment upon emergence with 10 microg JH II induced enzymic activity for less than 24 h, and when 10 microg JH II or 50 ng fenoxycarb were applied, circulating JH titres returned to control levels within 24 h. Oviposition was highly sensitive to exogenous JH and declined significantly with dosages >100 pg. To allow a degree of oocyte maturation before JH treatment, the hormone was administered at 6, 12, 24, or 48 h post-emergence and/or females were mated. Neither measure "protected" the system; oviposition declined immediately after JH application.

  16. A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.)

    NASA Astrophysics Data System (ADS)

    Light, Douglas M.; Knight, Alan L.; Henrick, Clive A.; Rajapaska, Dayananda; Lingren, Bill; Dickens, Joseph C.; Reynolds, Katherine M.; Buttery, Ronald G.; Merrill, Gloria; Roitman, James; Campbell, Bruce C.

    2001-08-01

    Ethyl (2 E, 4 Z)-2,4-decadienoate, a pear-derived volatile, is a species-specific, durable, and highly potent attractant to the codling moth (CM), Cydia pomonella (L.), a serious pest of walnuts, apples, and pears worldwide. This kairomone attracts both CM males and virgin and mated females. It is highly attractive to CM in both walnut and apple orchard contexts, but has shown limited effectiveness in a pear orchard context. Rubber septa lures loaded with ethyl (2 E, 4 Z)-2,4-decadienoate remained attractive for several months under field conditions. At the same low microgram load rates on septa, the combined gender capture of CM in kairomone-baited traps was similar to the capture rate of males in traps baited with codlemone, the major sex pheromone component. The particular attribute of attracting CM females renders this kairomone a novel tool for monitoring population flight and mating-ovipositional status, and potentially a major new weapon for directly controlling CM populations.

  17. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin.

    PubMed

    Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs.

  18. Evidence for a Second Type of Resistance against Cydia pomonella Granulovirus in Field Populations of Codling Moths.

    PubMed

    Jehle, J A; Schulze-Bopp, S; Undorf-Spahn, K; Fritsch, E

    2017-01-15

    Cydia pomonella granulovirus (CpGV) is an important biocontrol agent for the codling moth (CM) in organic and integrated apple production worldwide. Previously, Z chromosome-linked dominant resistance in at least 38 CM field populations in Europe was reported, threatening organic apple production. Growers responded by switching to a different resistance-breaking isolate of CpGV that could control these populations. Here, we report a nonuniform response of different CM field populations to CpGV isolates from CpGV genome groups A to E. Even more strikingly, one field population, NRW-WE, was resistant to all known CpGV genome groups except group B. Single-pair crossing experiments with a susceptible strain, followed by resistance testing of the F1 offspring, clearly indicated cross-resistance to CpGV isolates that had been considered to be resistance breaking. This finding provides clear evidence of a second, broader type of CpGV resistance with a novel mode of inheritance that cannot be fully explained by Z-linkage of resistance.

  19. Antennal response of codling moth males, Cydia pomonella L. (Lepidoptera: Tortricidae), to the geometric isomers of codlemone and codlemone acetate.

    PubMed

    Bäckman, A C; Anderson, P; Bengtsson, M; Löfqvist, J; Unelius, C R; Witzgall, P

    2000-06-01

    Single sensillum recordings from Cydia pomonella male antennae showed three different types of receptor neurons. The most abundant type was most sensitive to the main pheromone compound (E,E)-8,10-dodecadienol, while its response to the geometric isomers E,Z, Z,E and Z,Z was comparable to a tenfold lower dose of (E,E)-8,10-dodecadienol. This neuron type also responded to the four behaviorally antagonistic isomers of (delta,delta)-8,10-dodecadienyl acetate, among which it was most sensitive to the E,E isomer. Cross-adaptation studies showed that these compounds were all detected by the same receptor neuron type. Receptor neurons specifically tuned to (E,Z) or (Z,Z)-8,10-dodecadienol were not found, although these two compounds are behaviorally active. A second type of receptor neuron responded to all isomers of (delta,delta)-8,10-dodecadienyl acetate and was most sensitive to the E,E isomer. This neuron type did not respond to any of the isomers of (delta,delta)-8,10-dodecadienol. A third receptor neuron type was highly sensitive to the plant compound alpha-farnesene. The finding that the receptor neuron type tuned to the main pheromone compound responded even to strong behavioral antagonists aids the interpretation of ongoing behavioral studies for the development of the mating disruption technique in codling moth.

  20. Development of a Susceptibility Index of Apple Cultivars for Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) Oviposition.

    PubMed

    Joshi, Neelendra K; Rajotte, Edwin G; Myers, Clayton T; Krawczyk, Greg; Hull, Larry A

    2015-01-01

    Codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae) is a major fruit feeding pest of apples. Understanding susceptibility differences of various apple cultivars to CM oviposition is an important step in developing resistant varieties as well as monitoring and management strategies for this pest in apple orchards planted with mixed-cultivars. In this context, oviposition preferences of CM for the fruits of different apple cultivars were studied in laboratory bioassays using a series of no-choice and multiple-choice tests in 2006, 2007, and 2008. In 2006 and 2007, 10 apple cultivars, viz., Arlet, Fuji, Gala, Golden Delicious, Honeycrisp, Pristine, Delicious, Stayman, Sunrise, and York Imperial were evaluated, while in the 2008 tests, Golden Delicious, Honeycrisp, and York Imperial were evaluated. During the 2006 tests, preferred apple cultivars for CM oviposition were Golden Delicious and Fuji, while the least preferred were Arlet, Pristine, Sunrise, and Honeycrisp. Similarly, during the 2007 tests, Golden Delicious, Fuji and Stayman remained the preferred cultivars, while Arlet, Honeycrisp, Pristine, and Sunrise remained the least preferred cultivars. In the 2008 tests, Golden Delicious and Honeycrisp were the most and least preferred cultivars, respectively. Based on the oviposition preferences from these bioassays, a susceptibility index for each cultivar was developed. This index may be used as a standard measure in cultivar evaluations in breeding programs, and may assist fruit growers and crop consultants to select the most appropriate cultivar(s) for monitoring and detecting the initial signs of fruit injury from CM in an apple orchard planted with mixed-cultivars.

  1. Assessing the Global Risk of Establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models.

    PubMed

    Kumar, Sunil; Neven, Lisa G; Zhu, Hongyu; Zhang, Runzhi

    2015-08-01

    Accurate assessment of insect pest establishment risk is needed by national plant protection organizations to negotiate international trade of horticultural commodities that can potentially carry the pests and result in inadvertent introductions in the importing countries. We used mechanistic and correlative niche models to quantify and map the global patterns of the potential for establishment of codling moth (Cydia pomonella L.), a major pest of apples, peaches, pears, and other pome and stone fruits, and a quarantine pest in countries where it currently does not occur. The mechanistic model CLIMEX was calibrated using species-specific physiological tolerance thresholds, whereas the correlative model MaxEnt used species occurrences and climatic spatial data. Projected potential distribution from both models conformed well to the current known distribution of codling moth. None of the models predicted suitable environmental conditions in countries located between 20°N and 20°S potentially because of shorter photoperiod, and lack of chilling requirement (<60 d at ≤10°C) in these areas for codling moth to break diapause. Models predicted suitable conditions in South Korea and Japan where codling moth currently does not occur but where its preferred host species (i.e., apple) is present. Average annual temperature and latitude were the main environmental variables associated with codling moth distribution at global level. The predictive models developed in this study present the global risk of establishment of codling moth, and can be used for monitoring potential introductions of codling moth in different countries and by policy makers and trade negotiators in making science-based decisions.

  2. Incidence and transmission of a granulovirus in a large codling moth [Cydia pomonella L. (Lepidoptera: Tortricidae)] rearing facility.

    PubMed

    Cossentine, J E; Jensen, L B M; Eastwell, K C

    2005-11-01

    Incidences of potential per os Cydia pomonella granulovirus (CpGV) transmission within a large codling moth colony were identified. CpGV was detected in the water which is used to wash egg sheets. When pre-neonates were extracted from eggs prior to emergence and tested for the presence of CpGV, 40% were found to carry amounts of CpGV detectable by a polymerase chain reaction (PCR) assay, suggesting possible transovarial transmission of the virus. Although symptoms typical of virus infection and larval death were found infrequently within communal rearing trays, the frequency with which CpGV DNA was detected by PCR assays increased from a mean of 31% of 10-day-old larvae to 94% of 25-day-old larvae. CpGV in codling moth cadavers remained virulent after being held at 60 degrees C for 3 days under conditions similar to the treatment of spent diet at the rearing facility before its disposal. PCR tests of surface samples taken from air filters and rearing rooms of the rearing facility were found to contain CpGV. Bioassays of surface samples from the diet trash bin and a filter through which outside air is passed before entering the rearing chambers resulted in significant codling moth neonate mortality. The virulence of CpGV in dust from the spent diet and the original inadvertent positioning of the diet trash bin directly below one of the air intake ducts are suggested as a possible additional source of CpGV contamination within the facility.

  3. Putative nicotinic acetylcholine receptor subunits express differentially through the life cycle of codling moth, Cydia pomonella (Lepidoptera: Tortricidae).

    PubMed

    Martin, Jessica A; Garczynski, Stephen F

    2016-04-01

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Orchardists in Washington State are concerned about the possibility of codling moth field populations developing resistance to these two insecticides. In an effort to help mitigate this issue, we initiated a project to identify and characterize codling moth nAChR subunits expressed in heads. This study had two main goals; (i) identify transcripts from a codling moth head transcriptome that encode for nAChR subunits, and (ii) determine nAChR subunit expression profiles in various life stages of codling moth. From a codling moth head transcriptome, 24 transcripts encoding for 12 putative nAChR subunit classes were identified and verified by PCR amplification, cloning, and sequence determination. Characterization of the deduced protein sequences encoded by putative nAChR transcripts revealed that they share the distinguishing features of the cys-loop ligand-gated ion channel superfamily with 9 α-type subunits and 3 β-type subunits identified. Phylogenetic analysis comparing these protein sequences to those of other insect nAChR subunits supports the identification of these proteins as nAChR subunits. Stage expression studies determined that there is clear differential expression of many of these subunits throughout the codling moth life cycle. The information from this study will be used in the future to monitor for potential target-site resistance mechanisms to neonicotinoids and spinosads in tolerant codling moth populations.

  4. Entomopathogenic nematodes for the control of the codling moth (Cydia pomonella L.) in field and laboratory trials.

    PubMed

    Odendaal, D; Addison, M F; Malan, A P

    2016-09-01

    Three commercially available entomopathogenic nematode (EPN) strains (Steinernema feltiae and Heterorhabditis bacteriophora Hb1 and Hb2) and two local species (S. jeffreyense and S. yirgalemense) were evaluated for the control of the codling moth (Cydia pomonella). In field spray trials, the use of S. jeffreyense resulted in the most effective control (67%), followed by H. bacteriophora (Hb1) (42%) and S. yirgalemense (41%). Laboratory bioassays using spray application in simulated field conditions indicate S. feltiae to be the most virulent (67%), followed by S. yirgalemense (58%). A laboratory comparison of the infection and penetration rate of the different strains showed that, at 14°C, all EPN strains resulted in slower codling moth mortality than they did at 25°C. After 48 h, 98% mortality was recorded for all species involved. However, the washed codling moth larvae, cool-treated (at 14°C) with S. feltiae or S. yirgalemense, resulted in 100% mortality 24 h later at room temperature, whereas codling moth larvae treated with the two H. bacteriophora strains resulted in 68% and 54% control, respectively. At 14°C, S. feltiae had the highest average penetration rate of 20 IJs/larva, followed by S. yirgalemense, with 14 IJs/larva. At 25°C, S. yirgalemense had the highest penetration rate, with 39 IJs/larva, followed by S. feltiae, with 9 IJs/larva. This study highlights the biocontrol potential of S. jeffreyense, as well as confirming that S. feltiae is a cold-active nematode, whereas the other three EPN isolates tested prefer warmer temperatures.

  5. Development of a Susceptibility Index of Apple Cultivars for Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) Oviposition

    PubMed Central

    Joshi, Neelendra K.; Rajotte, Edwin G.; Myers, Clayton T.; Krawczyk, Greg; Hull, Larry A.

    2015-01-01

    Codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae) is a major fruit feeding pest of apples. Understanding susceptibility differences of various apple cultivars to CM oviposition is an important step in developing resistant varieties as well as monitoring and management strategies for this pest in apple orchards planted with mixed-cultivars. In this context, oviposition preferences of CM for the fruits of different apple cultivars were studied in laboratory bioassays using a series of no-choice and multiple-choice tests in 2006, 2007, and 2008. In 2006 and 2007, 10 apple cultivars, viz., Arlet, Fuji, Gala, Golden Delicious, Honeycrisp, Pristine, Delicious, Stayman, Sunrise, and York Imperial were evaluated, while in the 2008 tests, Golden Delicious, Honeycrisp, and York Imperial were evaluated. During the 2006 tests, preferred apple cultivars for CM oviposition were Golden Delicious and Fuji, while the least preferred were Arlet, Pristine, Sunrise, and Honeycrisp. Similarly, during the 2007 tests, Golden Delicious, Fuji and Stayman remained the preferred cultivars, while Arlet, Honeycrisp, Pristine, and Sunrise remained the least preferred cultivars. In the 2008 tests, Golden Delicious and Honeycrisp were the most and least preferred cultivars, respectively. Based on the oviposition preferences from these bioassays, a susceptibility index for each cultivar was developed. This index may be used as a standard measure in cultivar evaluations in breeding programs, and may assist fruit growers and crop consultants to select the most appropriate cultivar(s) for monitoring and detecting the initial signs of fruit injury from CM in an apple orchard planted with mixed-cultivars. PMID:26617629

  6. Gene expression analysis and enzyme assay reveal a potential role of the carboxylesterase gene CpCE-1 from Cydia pomonella in detoxification of insecticides.

    PubMed

    Yang, Xue-Qing

    2016-05-01

    Carboxylesterases (CarEs) are responsible for metabolism of xenobiotics including insecticides in insects. Understanding the expression patterns of a such detoxifying gene and effect of insecticides on its enzyme activity are important to clarify the function of this gene relevant to insecticides-detoxifying process, but little information is available in the codling moth Cydia pomonella (L.). In this study, we investigated the expression profiles of CarE gene CpCE-1 at different developmental stages and in different tissues of C. pomonella, as well as the larvae exposed to chlorpyrifos-ethyl and lambda-cyhalothrin by using absolute real-time quantitative PCR (absolute RT-qPCR). Results indicated that CpCE-1 expression was significantly altered during C. pomonella development stages, and this expression differed between sexes, with a higher transcript in females than males. Meanwhile, CpCE-1 is overexpressed in cuticle, midgut and head than silk gland, fat body and Malpighian tubules. Exposure of third instar larvae to a non-lethal dosage of chlorpyrifos-ethyl and lambda-cyhalothrin resulted in induction of CpCE-1 transcript. The total carboxylesterase enzyme activity was inhibited by chlorpyrifos-ethyl in vivo; in contrast, the activity of Escherichia coli produced recombinant CpCE-1 was significantly inhibited by both lambda-cyhalothrin and chlorpyrifos-ethyl in vitro. These results suggested that CpCE-1 in C. pomonella is potentially involved in the development and in detoxification of chlorpyrifos-ethyl and lambda-cyhalothrin.

  7. Impact of a North American isolate of the microsporidium Nosema carpocapsae on a laboratory population of the codling moth, Cydia pomonella.

    PubMed

    Siegel, J P; Lacey, L A; Vossbrinck, C R

    2001-11-01

    Nosema carpocapsae is a microsporidian pathogen of the codling moth, Cydia pomonella. We report the occurrence of this pathogen in a colony originating from collections made in the United States. This is the first record of N. carpocapsae infecting North American codling moths. This North American isolate of N. carpocapsae was indistinguishable from isolates received from New Zealand and Bulgaria, based on small subunit ribosomal RNA sequencing, but was more virulent than the previously described New Zealand isolate. In the laboratory, infected larvae and pupae had increased mortality compared to their uninfected counterparts and developmental time increased by 1 week. There was no effect on female fecundity. Within a cohort of eggs laid by infected females, neonates that emerged first were more likely to be uninfected. We established an uninfected colony by interrupting horizontal transmission and only utilizing the larvae that emerged from the first-laid eggs.

  8. Comparative Analysis of Recombinant Cytochrome P450 CYP9A61 from Cydia pomonella Expressed in Escherichia coli and Pichia pastoris.

    PubMed

    Yang, Xue-Qing; Wang, Wei; Tan, Xiao-Ling; Wang, Xiao-Qi; Dong, Hui

    2017-03-22

    On the basis of prior work, cytochrome P450 CYP9A61 was found to be enriched in fat bodies and during feeding stages, and transcription was induced by λ-cyhalothrin in Cydia pomonella. In this study, recombinant CYP9A61 was expressed in Escherichia coli and Pichia pastoris, and its biochemical properties were investigated. Substrate saturation curves and biochemical properties revealed that, in the presence of glycosylation, the yeast-secreted CYP9A61 exhibited a higher affinity for the substrate p-nitroanisole and was found to be more stable at certain pHs and temperatures than bacterially produced CYP9A61. Half-inhibitory concentrations (IC50) of three synthetic pyrethroids on both the bacterium- and yeast-expressed CYP9A61 suggested that recombinant CYP9A61 expressed in different hosts exhibits different inhibition properties. Taken together, our findings show that yeast-expressed CYP9A61 exhibits enzyme activity that is better than that expressed in bacteria and might be used for further metabolism assays to reveal the insecticide-detoxifying role of CYP9A61 in C. pomonella.

  9. Effect of temperature and sorbitol in improving the solubility of carboxylesterases protein CpCE-1 from Cydia pomonella and biochemical characterization.

    PubMed

    Yang, Xueqing; Zhang, Yalin

    2013-12-01

    Carboxylesterases (CEs) are enzymes responsible for the detoxification of insecticides in insects. In the Cydia pomonella, CEs are involved in synthetic pyrethroid, neonicotinoid, carbamate, and organophosphate detoxification. However, functional overexpression of CEs proteins in Escherichia coli systems often results in insoluble proteins. In this study, we expressed the fusion protein CpCE-1 in E. coli BL21 (DE3). This recombinant protein was overexpressed as inclusion bodies at 37 °C whereas it produced a higher percentage of soluble protein at lower growth temperatures. Production of soluble proteins and enzyme activity increased in the presence of sorbitol in the growth medium. The fusion protein was purified from the lysate supernatant using a Ni(2+)-NTA agarose gel column. The enzyme exhibited a higher affinity and substrate specificity for α-naphthyl acetate (α-NA), with k cat/K m of 100 s(-1) μM(-1) for α-NA, and the value is 29.78 s(-1) μM(-1) for β-naphthyl acetate. The V max and K m were also determined to be 12.9 μmol/min/mg protein and 13.4 μM using substrate α-NA. The optimum pH was 7.0 and temperature was 25 °C. An enzyme inhibition assay shows that PMSF and DEPC strongly inhibit the enzyme activity, while the metal ions Cu(2+) and Mg(2+) significantly activated the activity. More importantly, cypermethrin, methomyl, and acephate were found to suppress enzyme activity. The data demonstrated here provide information for heterologous expression of soluble protein and further study on insecticide metabolism in C. pomonella in vitro. This is the first report of the characterization of CEs protein from C. pomonella.

  10. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations

    PubMed Central

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-01-01

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized—among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides. PMID:27213431

  11. TRPA5, an Ankyrin Subfamily Insect TRP Channel, is Expressed in Antennae of Cydia pomonella (Lepidoptera: Tortricidae) in Multiple Splice Variants

    PubMed Central

    Cattaneo, Alberto Maria; Bengtsson, Jonas Martin; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Rota-Stabelli, Omar; Salvagnin, Umberto; Bassoli, Angela; Witzgall, Peter; Anfora, Gianfranco

    2016-01-01

    Transient receptor potential (TRP) channels are an ancient family of cation channels, working as metabotropic triggers, which respond to physical and chemical environmental cues. Perception of chemical signals mediate reproductive behaviors and is therefore an important target for sustainable management tactics against the codling moth Cydia pomonella L. (Lepidoptera: Tortricidae). However, olfactory behavior strongly depends on diel periodicity and correlation of chemical with physical cues, like temperature, and physical cues thus essentially contribute to the generation of behavioral response. From an antennal transcriptome generated by next generation sequencing, we characterized five candidate TRPs in the codling moth. The coding DNA sequence of one of these was extended to full length, and phylogenetic investigation revealed it to be orthologous of the TRPA5 genes, reported in several insect genomes as members of the insect TRPA group with unknown function but closely related to the thermal sensor pyrexia. Reverse transcription PCR revealed the existence of five alternate splice forms of CpTRPA5. Identification of a novel TRPA and its splice forms in codling moth antennae open for investigation of their possible sensory roles and implications in behavioral responses related to olfaction. PMID:27638948

  12. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme

    PubMed Central

    Chidawanyika, Frank; Terblanche, John S

    2011-01-01

    Sterile insect release (SIR) is used to suppress insect pest populations in agro-ecosystems, but its success hinges on the performance of the released insects and prevailing environmental conditions. For example, low temperatures dramatically reduce SIR efficacy in cooler conditions. Here, we report on the costs and benefits of thermal acclimation for laboratory and field responses of codling moth, Cydia pomonella. Using a component of field fitness, we demonstrate that low temperature acclimated laboratory-reared moths are recaptured significantly more (∼2–4×) under cooler conditions in the wild relative to warm-acclimated or control moths. However, improvements in low temperature performance in cold-acclimated moths came at a cost to performance under warmer conditions. At high ambient temperatures, warm-acclimation improved field performance relative to control or cold-acclimated moths. Laboratory assessments of thermal activity and their limits matched the field results, indicating that these laboratory assays may be transferable to field performance. This study demonstrates clear costs and benefits of thermal acclimation on laboratory and field performance and the potential utility of thermal pretreatments for offsetting negative efficacy in SIR programmes under adverse thermal conditions. Consequently, the present work shows that evolutionary principles of phenotypic plasticity can be used to improve field performance and thus possibly enhance pest control programmes seeking increased efficacy. PMID:25568003

  13. Evaluation of spray-dried lignin-based formulations and adjuvants as solar protectants for the granulovirus of the codling moth, Cydia pomonella (L).

    PubMed

    Arthurs, S P; Lacey, L A; Behle, R W

    2006-10-01

    Commercial formulations of the codling moth, Cydia pomonella L., granulovirus (CpGV) are limited by their short residual activity under orchard conditions in the Pacific Northwest. We evaluated spray-dried lignin-encapsulated formulations of CpGV for improved solar stability based on laboratory bioassays with a solar simulator and in field tests in an infested apple orchard. In laboratory tests, aqueous lignin formulations containing a high dosage of 3 x 10(10) occlusion bodies (OB)/L, with and without the additives titanium dioxide (TiO(2)) and sugar, provided significant solar protection of virus, i.e., mortality of codling moth exposed to lignin formulations that had been irradiated with 9.36 x 10(6) joules/m(2) was 92-94%, compared with 66-67% from a glycerin-stabilized product (Cyd-X) or suspension of pure unformulated virus at the same rates. By comparison, a lower dosage of the lignin formulation (3 x 10(8)OB/L) did not provide significant solar protection. Equivalent dosage-dependent patterns in solar protection were observed in further tests with the lignin formulation, when an intermediate (3 x 10(9)OB/L) as well as the low dosage provided no solar protection. Equivalent rates of a blank lignin formulation (containing no virus) did not affect larval mortality, suggesting a protective effect of the lignin on the virus at the high rate. The use of several spray adjuvants, 'NuFilm-17' and 'Organic Biolink' (sticker-spreaders at 0.06% v/v), 'Raynox' (sunburn protectant at 5% v/v), and 'Trilogy'(neem oil at 1% v/v) did not provide solar protection of a commercial CpGV preparation in laboratory tests. In season long orchard tests (Golden Delicious), the lignin formulation of CpGV applied at 6.57 x 10(12)OB/ha did not significantly improve control of codling moth or protection of fruit compared with Cyd-X at equivalent rates. Our studies show that lignin-based CpGV formulations provided solar protection at relatively high virus dosages. The testing of lignin

  14. Novaluron causes reduced egg hatch after treating adult codling moths, Cydia pomenella: support for transovarial transfer.

    PubMed

    Kim, Soo-Hoon S; Wise, John C; Gökçe, Avhan; Whalon, Mark E

    2011-01-01

    The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is a primary pest of apples throughout the United States. Reliance on broad spectrum organophosphates has been declining with the slated cancellation and has shifted towards narrow spectrum insecticides. Novaluron, a chitin synthesis inhibitor, has primarily been used for its ovicidal and larvacidal activities. However, recent studies have demonstrated a transovarial effect after exposure to adults. The effects of novaluron were studied to determine if reduced egg hatch occurs after exposure of different sexes to this compound. Effects of this compound through horizontal transfer were also compared with a topical application to C. pomonella eggs. Results from independent exposure of different sexes to novaluron were different than the control for all three exposure types; male only, female only, and both treated. The horizontal transfer experiment yielded no significant difference while the topical application of novaluron on eggs showed significantly lower egg hatch. Although novaluron has no direct toxicity to adults, the results of this study demonstrate that the delayed lethal activity of this compound reduces hatching of eggs laid by treated adults. Along with the direct ovicidal and larvicidal properties of novaluron, the delayed lethal activity provides an important contribution to the overall control seen in the field.

  15. Intra- and interspecific competition and host race formation in the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae).

    PubMed

    Feder, Jeffrey L; Reynolds, Katherine; Go, Wesley; Wang, Emma C

    1995-04-01

    Intra- and interspecific resource competition are potentially important factors affecting host plant use by phytophagous insects. In particular, escape from competitors could mediate a successful host shift by compensating for decreased feeding performance on a new plant. Here, we examine the question of host plant-dependent competition for apple (Malus pumila)- and hawthorn (Crataegus mollis)-infesting larvae of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae) at a field site near Grant, Michigan, USA. Interspecific competition from tortricid (Cydia pomonella, Grapholita prunivora, and Grapholita packardi) and agonoxenid (subfamily Blastodacninae) caterpillars and a curculionid weevil (Conotrachelus crataegi) was much stronger for R. pomonella larvae infesting the ancestral host hawthorn than the derived host apple. Egg to pupal survivorship was estimated as 52.8% for fly larvae infesting hawthorn fruit without caterpillars and weevils compared to only 27.3% for larvae in harthorns with interspecific insects. Survivorship was essentially the same between fly larvae infesting apples in the presence (44.8%) or absence (42.6%) of interspecific insects. Intraspecific competition among maggots was also stronger in hawthorns than apples. The order or time that a larva exited a hawthorn fruit was a significant determinant of its pupal mass, with earlier emerging larvae being heavier than later emerging larvae. This was not the case for larvae in apples, as the order or time that a larva exited an apple fruit had relatively little influence on its pupal mass. Our findings suggest that decreased performance related to host plant chemistry/nutrition may restrict host range expansion and race formation in R. pomonella to those plants where biotic/ecological factors (i.e. escape from competitors and parasitoids) adequately balance the survivorship equation. This balance permits stable fly populations to persist on novel plants, setting the stage for the

  16. Distribution Characteristics of Eggs and Neonate Larvae of Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae)

    PubMed Central

    Wearing, Christopher H.

    2016-01-01

    Literature is reviewed on the spatial distribution of the eggs and neonate larvae of codling moth on apple trees in relation to research conducted in Nelson, New Zealand. At Nelson, oviposition increased with height and was greater in the north and east of the trees and in those with greater fruit load in some seasons, which matches published reports. All publications and the research recorded high percentages of eggs laid singly within 10–15 cm of the fruit, with most eggs on leaves even within fruit clusters; oviposition on fruit clusters of different sizes was nonrandom because more eggs were laid on those with more fruit, but the aggregation of both per cluster and within clusters was even greater than that caused by the fruit number alone. Oviposition at random with respect to the fruit occurred only at very low population density. The choice of oviposition site between fruit and the adaxial leaf surface and abaxial leaf surface (AbLS) was variable and cultivar related. Cultivars on which eggs predominated on the AbLS were less frequent and characterized by low trichome density. In the literature, neonate larvae from eggs on the AbLS suffered greater mortality, as did those in Nelson that hatched more distant from the fruit. This review discusses the interaction between these distribution characteristics and species-specific host–plant volatiles, egg adhesion to plant surfaces, oviposition deterrents, predation, and their relevance to pest management. PMID:27429560

  17. Phenotypic screen for RNAi effects in the codling moth Cydia pomonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNAi-based technologies have the potential to augment, or replace existing pest management strategies. However, some insect taxa are less susceptible to the induction of the post-transcriptional gene silencing effect than others, such as the Lepidoptera. Here we describe experiments to investigate t...

  18. 75 FR 19390 - Cydia Pomonella Granulovirus; Product Cancellation Order for a Pesticide Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... INFORMATION CONTACT: Jeannine Kausch, Biopesticides and Pollution Prevention Division (7511P), Office of... pests, Cancellation order. ] Dated: April 6, 2010. W. Michael McDavit, Acting Director,...

  19. Resistance in Cydia pomonella to the Codling Moth Granulovirus in Europe: Could It Happen Here?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most specific control agents of codling moth (CM) is the granulovirus (CpGV) discovered in Mexico in 1963. Although first evaluated in North America, its commercial development and widespread use began in Europe. Use of CpGV has increased considerably in North America since 2000, especial...

  20. A flight cylinder bioassay as a simple, effective quality control test for Cydia pomonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of quality of the sterile male insects that are being mass-reared for release in area-wide integrated pest management programmes that include a sterile insect technique component is crucial for the success of these programmes. Routine monitoring of sterile male quality needs to be carried...

  1. Pesticides used against Cydia pomonella disrupt biological control of secondary pests of apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of codling moth management programs on secondary pests of apple were examined from 2008 to 2011 in five replicated large-plot trials. The orchards were chosen for a history of Eriosoma lanigerum and tetranychid mite outbreaks. Programs covered the first, second, or both generations of C....

  2. Evaluation of an aerosol emitter for mating disruption of Cydia pomonella in Italy.

    PubMed

    Baldessari, M; Rizzi, C; Tolotti, G; Angeli, G

    2013-01-01

    Some techniques have been developed to disrupt mating (MD) of codling moth (CM) by treating orchards with pheromone. Synthetic pheromone is applied to the crop as a formulation that is designed to protect these generally labile compounds from degradation while gradually releasing pheromone into the atmosphere. In Trentino South Tyrol MD has been adopted successfully (24,500 ha, i.e. 73% of the apple area) to control CM in heavily infested areas; while in areas with low pest pressure, less pesticides are usually applied (2-3 per year) and as a consequence, pheromone mating disruption is not considered economically convenient. Hand applied sealed plastic tubes and plastic ampoules are the two pheromone formulations more widely used. A new pheromone-based control technique, called Puffer, has been recently proposed. Puffers are battery-powered devices that release pheromone from pressurized aerosol cans every 15 minutes for 12 hours or 30 min for 24 hours. During each puff a quantity of 6.95 mg a.i. is emitted. The high release rate of pheromone per puff from aerosol dispensers is thought to compensate for their low application densities (2-2.5 puffer/hectare). Results of three year field trials carried out in Trentino-South Tyrol demonstrated the potential of Puffer as effective tool to control the moth.

  3. The chemosensory receptors of codling moth Cydia pomonella–expression in larvae and adults

    PubMed Central

    Walker, William B.; Gonzalez, Francisco; Garczynski, Stephen F.; Witzgall, Peter

    2016-01-01

    Olfaction and gustation play critical roles in the life history of insects, mediating vital behaviors such as food, mate and host seeking. Chemosensory receptor proteins, including odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) function to interface the insect with its chemical environment. Codling moth, Cydia pomonella, is a worldwide pest of apple, pear and walnut, and behavior-modifying semiochemicals are used for environmentally safe control. We produced an Illumina-based transcriptome from antennae of males and females as well as neonate head tissue, affording a qualitative and quantitative analysis of the codling moth chemosensory receptor repertoire. We identified 58 ORs, 20 GRs and 21 IRs, and provide a revised nomenclature that is consistent with homologous sequences in related species. Importantly, we have identified several OR transcripts displaying sex-biased expression in adults, as well as larval-enriched transcripts. Our analyses have expanded annotations of the chemosensory receptor gene families, and provide first-time transcript abundance estimates for codling moth. The results presented here provide a strong foundation for future work on codling moth behavioral physiology and ecology at the molecular level, and may lead to the development of more precise biorational control strategies. PMID:27006164

  4. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  5. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  6. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  7. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  8. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  9. The optimal sex pheromone release rate for trapping the codling moth Cydia pomonella (Lepidoptera: Tortricidae) in the field

    PubMed Central

    Liu, Wei; Xu, Jing; Zhang, Runzhi

    2016-01-01

    For successful pest management, codlemone (E, E-8,10-dodecadien-1-ol) is widely used to monitor codling moth. The pheromone release rate is essential for the lure’s attractiveness. The optimal sex pheromone release rate (V0) for trapping codling moth was evaluated during 2013–2014. The overwinter generation V0 was 6.7–33.4 μg wk−1, and moth catches (MCs) were 0.82 ± 0.11 adults/trap/week; MCs for lower (V1) and higher (V2) release rates were 52.4% and 46.3%, respectively, of that for V0. The first generation V0 was 18.4–29.6 μg wk−1, with MCs of 1.45 ± 0.29 adults/week/trap. V1 and V2 MCs were 34.5% and 31.7%, respectively, of those for V0. Combining across generations, the final V0 was 18.4–29.6 μg wk−1, with MCs of 1.07 ± 0.06 adults/week/trap. V1 and V2 MCs were 51.4% and 41.1%, respectively, of that for V0. Overwinter generation emergence was relatively concentrated, requiring a wider V0. Maintaining the release rate at 18.4–29.6 μg wk−1 could optimize the lure’s efficacy; this resulted in the capture of nearly 1.9 and 2.4 times more moths than V1 and V2, respectively. The results also indicate that a dispenser pheromone release rate of 200–300 times that of the female moth can perfectly outcompetes females in the field. PMID:26879373

  10. Climate change impact on development rates of the codling moth (Cydia pomonella L.) in the Wielkopolska region, Poland.

    PubMed

    Juszczak, Radosław; Kuchar, Leszek; Leśny, Jacek; Olejnik, Janusz

    2013-01-01

    The main goal of this paper is to estimate how the observed and predicted climate changes may affect the development rates and emergence of the codling moth in the southern part of the Wielkopolska region in Poland. In order to simulate the future climate conditions one of the most frequently used A1B SRES scenarios and two different IPCC climate models (HadCM3 and GISS modelE) are considered. A daily weather generator (WGENK) was used to generate temperature values for present and future climate conditions (time horizons 2020-2040 and 2040-2060). Based on the generated data set, the degree-days values were then calculated and the emergence dates of the codling moth at key stages were estimated basing on the defined thresholds. Our analyses showed that the average air surface temperature in the Wielkopolska region may increase from 2.8°C (according to GISS modelE) even up to 3.3°C (HadCM3) in the period of 2040-2060. With the warming climate conditions the cumulated degree-days values may increase at a rate of about 142 DD per decade when the low temperature threshold (T(low)) of 0°C is considered and 91 DD per decade when T(low) = 10°C. The key developmental stages of the codling moth may occur much earlier in the future climate conditions than currently, at a rate of about 3.8-6.8 days per decade, depending on the considered GCM model and the pest developmental stage. The fastest changes may be observed in the emergence dates of 95% of larvae of the second codling moth generation. This could increase the emergence probability of the pest third generation that has not currently occurred in Poland.

  11. Comparison of laboratory and field bioassays of lab-reared Cydia pomonella (Lepidoptera: Tortricidae) quality and field performance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maximum production and fitness of insect species that are mass-reared for biological control programs such as the sterile insect technique (SIT) have benefitted from the employment of quality control and quality management. With a growing interest in the use of SIT as a tactic for the suppression/e...

  12. Assessing the global risk of establishment of Codling moth (Cydia pomonella) using CLIMEX and MaxEnt niche models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate assessment of insect pest establishment risk is needed by national plant protection organizations to negotiate international trade of horticultural commodities that can potentially carry the pests and result in inadvertent introductions in the importing countries. We used mechanistic and co...

  13. Characterization of three transcripts encoding small heat shock proteins expressed in the codling moth, Cydia pomonella (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth is a major pest of apples and pears worldwide. Increasing knowledge of how this insect responds to environmental stress will improve field and postharvest control measures used against it. The small heat shock proteins (sHsps) play a major role in cellular responses to environmental st...

  14. Quality control tests of lab-reared Cydia pomonella and Cactoblastis cactorum field performance: Comparison of laboratory and field bioassays.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research, operational, and commercial programs which rely on mass-reared insects of high quality and performance, need accurate methods for monitoring quality degradation during each step of production, handling and release. With continued interest in the use of the sterile insect technique (SIT) a...

  15. New method for testing solar sensitivity of commercial formulations of the granulovirus of codling moth (Cydia pomonella, Tortricidae: Lepidoptera).

    PubMed

    Lacey, Lawrence A; Arthurs, Steven P

    2005-10-01

    A method for screening codling moth granulovirus (CpGV) formulation sensitivity to sunlight using specially prepared half apples and a solar simulator is described. The half apple preparation allows an even coverage of virus over the surface of the fruit that would not be possible using whole apples. Leaves and artificial medium were not usable for extended periods of exposure in the solar simulator due to excess drying. Fruit was sprayed with 10(-3) and 10(-5) dilutions of three commercial formulations of CpGV (Carpovirusine, Cyd-X, and Virosoft) and infested with codling moth neonates. Half of the sprayed fruit was exposed to 650 W/m2 for 4 h in an Atlas Suntest CPS solar simulator resulting in an accumulated radiant energy of 9.36x10(6) J/m2 before they were infested with neonate codling moth larvae. Spraying non-irradiated fruit with the 10(-3) dilution of Cyd-X and Virosoft resulted in nearly 100% mortality of neonate larvae. Irradiation reduced viral activity by 71-98% at the 10(-3) dilution and by up to 32% at the 10(-5) dilution relative to non-irradiated fruit. The procedures utilized enabled good preservation of the fruit throughout the incubation period and minimized invasion of the fruit by plant pathogens and saprophytic organisms. This laboratory method for screening candidate formulations and potential UV protectants could conserve time and resources by eliminating adjuvants with less potential in laboratory tests and field testing only the most promising candidates. It also enables year-round testing.

  16. The optimal sex pheromone release rate for trapping the codling moth Cydia pomonella (Lepidoptera: Tortricidae) in the field.

    PubMed

    Liu, Wei; Xu, Jing; Zhang, Runzhi

    2016-02-16

    For successful pest management, codlemone (E, E-8,10-dodecadien-1-ol) is widely used to monitor codling moth. The pheromone release rate is essential for the lure's attractiveness. The optimal sex pheromone release rate (V0) for trapping codling moth was evaluated during 2013-2014. The overwinter generation V0 was 6.7-33.4 μg wk(-1), and moth catches (MCs) were 0.82 ± 0.11 adults/trap/week; MCs for lower (V1) and higher (V2) release rates were 52.4% and 46.3%, respectively, of that for V0. The first generation V0 was 18.4-29.6 μg wk(-1), with MCs of 1.45 ± 0.29 adults/week/trap. V1 and V2 MCs were 34.5% and 31.7%, respectively, of those for V0. Combining across generations, the final V0 was 18.4-29.6 μg wk(-1), with MCs of 1.07 ± 0.06 adults/week/trap. V1 and V2 MCs were 51.4% and 41.1%, respectively, of that for V0. Overwinter generation emergence was relatively concentrated, requiring a wider V0. Maintaining the release rate at 18.4-29.6 μg wk(-1) could optimize the lure's efficacy; this resulted in the capture of nearly 1.9 and 2.4 times more moths than V1 and V2, respectively. The results also indicate that a dispenser pheromone release rate of 200-300 times that of the female moth can perfectly outcompetes females in the field.

  17. 76 FR 70438 - Manzana Wind LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Manzana Wind LLC; Supplemental Notice That Initial Market-Based Rate Filing...-referenced proceeding of Manzana Wind LLC's application for market-based rate authority, with an...

  18. Analysis of Surstylus and Aculeus Shape and Size Using Geometric Morphometrics to Discriminate Rhagoletis pomonella and Rhagoletis zephyria (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow both occur in the Pacific Northwest of the U. S. and are frequently confused with one another due to their morphological similarity. The apple maggot, R. pomonella, is a threat to commercial apples in the Pacific Northwest, whereas R. zephyr...

  19. Analysis of Body Measurements and Wing Shape to Discriminate Rhagoletis pomonella and Rhagoletis zephyria (Diptera: Tephritidae) in Washington state.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple maggot fly, Rhagoletis pomonella (Walsh), is a quarantine pest of apple in Washington state, and is morphologically almost indistinguishable from the snowberry maggot fly, R. zephyria Snow, which does not attack apples. Current methods used to distinguish R. pomonella from R. zephyria, such a...

  20. Attraction of pea moth Cydia nigricana to pea flower volatiles.

    PubMed

    Thöming, Gunda; Knudsen, Geir K

    2014-04-01

    The pea moth Cydia nigricana causes major crop losses in pea (Pisum sativum) production. We investigated attraction of C. nigricana females to synthetic pea flower volatiles in a wind tunnel and in the field. We performed electroantennogram analysis on 27 previously identified pea plant volatiles, which confirmed antennal responses to nine of the compounds identified in pea flowers. A dose-dependent response was found to eight of the compounds. Various blends of the nine pea flower volatiles eliciting antennal responses were subsequently studied in a wind tunnel. A four-compound blend comprising hexan-1-ol, (E)-2-hexen-1-ol, (Z)-β-ocimene and (E)-β-ocimene was equally attractive to mated C. nigricana females as the full pea flower mimic blend. We conducted wind-tunnel tests on different blends of these four pea flower compounds mixed with a headspace sample of non-flowering pea plants. By considering the effects of such green leaf background odour, we were able to identify (Z)- and (E)-β-ocimene as fundamental for host location by the pea moths, and hexan-1-ol and (E)-2-hexen-1-ol as being of secondary importance in that context. In the field, the two isomers of β-ocimene resulted in trap catches similar to those obtained with the full pea flower mimic and the four-compound blend, which clearly demonstrated the prime significance of the β-ocimenes as attractants of C. nigricana. The high level of the trap catches of female C. nigricana noted in this first field experiment gives a first indication of the potential use of such artificial kairomones in pea moth control.

  1. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the northwestern United States

    PubMed Central

    Arcella, Tracy; Hood, Glen R; Powell, Thomas H Q; Sim, Sheina B; Yee, Wee L; Schwarz, Dietmar; Egan, Scott P; Goughnour, Robert B; Smith, James J; Feder, Jeffrey L

    2015-01-01

    Hybridization may be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine pest R. pomonella (Walsh) is occurring and may aid the spread of the latter into more arid commercial apple-growing regions of central Washington state, USA. Results for 19 microsatellites implied hybridization occurring at a rate of 1.44% per generation between the species. However, there was no evidence for increased hybridization in central Washington. Allele frequencies for seven microsatellites in R. pomonella were more ‘R. zephyria-like’ in central Washington, suggesting that genes conferring resistance to desiccation may be adaptively introgressing from R. zephyria. However, in only one case was the putatively introgressing allele from R. zephyria not found in R. pomonella in the eastern USA. Thus, many of the alleles changing in frequency may have been prestanding in the introduced R. pomonella population. The dynamics of hybridization are therefore complex and nuanced for R. pomonella, with various causes and factors, including introgression for a portion, but not all of the genome, potentially contributing to the pest insect's spread. PMID:26366200

  2. Behavior of Over-wintering Filbertworm (Cydia latiferreana) (Lepidoptera: Tortricidae) Larvae and Their Control with Steinernema carpocapsae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filbertworm, Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae) is a key insect pest associated with hazelnuts in North America. The effect of nematode rate, water volume, and orchard floor cover on nematode efficacy was determined in field trials in fall and spring (October 2007 and May 200...

  3. Detection of an apple-infesting popoulation of Rhagoletis pomonella (Walsh) 1867 (Diptera: Tephritidae) in the state of Colorado, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh) 1867 (Tephritidae), is an economically important pest of apples (Malus domesica Borkh.) (Rosaceae) throughout much of the United States. The fly is endemic to the eastern U.S., where its primary host plants are several species of native hawthorns (C...

  4. Abundances of apple maggot, Rhagoletis pomonella, across different areas in central Washington, with special reference to black-fruited hawthorns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh), has infested native black-fruited hawthorn (mostly Crataegus douglasii Lindl.) in central Washington since at least 2003, but little is known about the fly’s ecology in hawthorns there. The main objective here was to determine adult and larval abu...

  5. The geographic distribution of Rhagoletis pomonella (Diptera:Tephritidae) in the western United States: Introduced species or native population?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella Walsh (Diptera: Tephritidae), is a major pest of commercially grown domesticated apple (Malus domestica) in North America. The shift of the fly from its native host hawthorn (Crataegus mollis) to apple in the eastern U.S. is often cited as an example of inc...

  6. Behavioral evidence for fruit odor discrimination and sympatric host races of Rhagoletis pomonella flies in the western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern U.S. is a model for sympatric host race formation. However, the fly is also present in the western U.S. where it ma...

  7. Ammonium carbonate is more attractive than apple and hawthorn fruit volatile lures to Rhagoletis pomonella (Diptera: Tephritidae) in Washington State.

    PubMed

    Yee, Wee L; Nash, Meralee J; Goughnour, Robert B; Cha, Dong H; Linn, Charles E; Feder, Jeffrey L

    2014-08-01

    The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the United States. In the eastern United States where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonella. However, the opposite may be true in the western United States. Here, we determined whether newly identified western apple and western hawthorn fruit volatiles are more attractive than ammonium carbonate (AC) to R. pomonella in apple, black hawthorn, and ornamental hawthorn trees in western Washington State. In all three host trees, sticky red sphere or yellow panel traps baited with AC generally caught more flies than traps baited with lures containing the four newly developed fruit blends (modified eastern apple, western apple, western ornamental hawthorn, and western black hawthorn) or two older blends (eastern apple and eastern downy hawthorn). Fruit volatiles also displayed more variation among trapping studies conducted at different sites, in different host trees, and across years than AC. The results imply that traps baited with AC represent the best approach to monitoring R. pomonella in Washington State.

  8. Susceptibility of fruit from diverse apple and crabapple germplasm to attack from apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple maggot, Rhagoletis pomonella (Walsh) is a pest of major concern to apple, Malus x domestica (Borkh.) production in eastern North America. Host-plant resistance to apple maggot among apple germplasm has been previously evaluated among a small number of exotic Malus accessions and domestic hyb...

  9. Are apple and hawthorn fruit volatiles more attractive than ammonium carbonate to Rhagoletis pomonella (Diptera: Tephritidae) in Washington state?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the U.S. In the eastern U.S. where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonel...

  10. A field test for host fruit odour discrimination and avoidance behaviour for Rhagoletis pomonella flies in the western United States.

    PubMed

    Sim, S B; Mattsson, M; Feder, Jasmine L; Cha, D H; Yee, W L; Goughnour, R B; Linn, C E; Feder, Jeffrey L

    2012-05-01

    Prezygotic isolation due to habitat choice is important to many models of speciation-with-gene-flow. Habitat choice is usually thought to occur through positive preferences of organisms for particular environments. However, avoidance of non-natal environments may also play a role in choice and have repercussions for post-zygotic isolation that preference does not. The recent host shift of Rhagoletis pomonella (Diptera: Tephritidae) from downy hawthorn, Crataegus mollis, to introduced apple, Malus domestica, in the eastern United States is a model for speciation-with-gene-flow. However, the fly is also present in the western United States where it was likely introduced via infested apples ≤ 60 years ago. R. pomonella now attacks two additional hawthorns in the west, the native C. douglasii (black hawthorn) and the introduced C. monogyna (English ornamental hawthorn). Flight tunnel tests have shown that western apple-, C. douglasii- and C. monogyna-origin flies all positively orient to fruit volatile blends of their respective natal hosts in flight tunnel assays. Here, we show that these laboratory differences translate to nature through field-trapping studies of flies in the state of Washington. Moreover, western R. pomonella display both positive orientation to their respective natal fruit volatiles and avoidance behaviour (negative orientation) to non-natal volatiles. Our results are consistent with the existence of behaviourally differentiated host races of R. pomonella in the west. In addition, the rapid evolution of avoidance behaviour appears to be a general phenomenon for R. pomonella during host shifts, as the eastern apple and downy hawthorn host races also are antagonized by non-natal fruit volatiles.

  11. Identification of the sex pheromone of the spruce seed moth, Cydia strobilella L.

    PubMed

    Wang, Hong-Lei; Svensson, Glenn P; Rosenberg, Olle; Bengtsson, Marie; Jirle, Erling V; Löfstedt, Christer

    2010-03-01

    The spruce seed moth, Cydia strobilella L., is a serious pest on cones of spruce (Picea spp.) in the Holarctic region. Previous studies from different parts of its area of distribution have reported conflicting results on the composition of its sex pheromone. By gas chromatography with electroantennographic detection, coupled gas chromatography-mass spectrometry, a Y-tube olfactometer bioassay, and field trials, the sex pheromone of Swedish populations of the species was identified as (8E,10E)-dodecadienyl acetate and (8E,10Z)-dodecadienyl acetate. About 0.5 pg of each pheromone component was extracted per female. The most attractive blend of EE- and EZ-isomers was about 6:4, respectively, and 0.3 microg of the blend per rubber septum was the most attractive dosage for field trapping. Monounsaturated components previously reported as sex pheromone components/attractants for C. strobilella, (E)-8-dodecenyl acetate in Canadian populations and (Z)-8-dodecenol in Polish and Dutch populations, did not attract any C. strobilella in this study. Large numbers of C. jungiella Clerck were trapped by using (8E,10Z)-dodecadienyl acetate alone, whereas (Z)-8-dodecenol attracted Pammene splendidulana Guenée and P. rhediella Clerck.

  12. Sensory specificity and speciation: a potential neuronal pathway for host fruit odour discrimination in Rhagoletis pomonella

    PubMed Central

    Batra, Srishti; Ramaswamy, Sree Subha; Feder, Jeffrey L.

    2016-01-01

    Behavioural changes in habitat or mate choice can trigger population divergence, leading to speciation. However, little is known about the neurological bases for such changes. Rhagoletis pomonella (Diptera: Tephritidae) is a model for ecological speciation via host plant shifts. Within the past 180 years, Rhagoletis flies infesting hawthorn (Crataegus spp.) shifted to attack domesticated apple (Malus pumila). The two populations differ in their olfactory preferences for apple versus hawthorn fruit. Here, we looked for patterns of sensory organization that may have contributed to this shift by characterizing the morphology, specificity and distribution of olfactory sensory neurons (OSNs) on the antennae of Rhagoletis responding to host fruit and non-host volatiles. Of 28 OSN classes identified, two colocalized OSN pairs were found that specifically responded to the major behavioural attractant and antagonist volatiles for each fly population. A reversal in the response of these OSNs to fruit volatiles, either through a switch in receptor expression between these paired neurons or changes in neuronal projections in the brain, could therefore account for the behavioural difference between apple and hawthorn flies. The finding supports the hypothesis that relatively minor changes in olfactory sensory pathways may contribute to rapid host shifting and divergence in Rhagoletis. PMID:28003447

  13. Abundance of apple maggot, Rhagoletis pomonella, across different areas in central Washington, with special reference to black-fruited hawthorns.

    PubMed

    Yee, Wee L; Klaus, Michael W; Cha, Dong H; Linn, Charles E; Goughnour, Robert B; Feder, Jeffrey L

    2012-01-01

    The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), infests non-commercial apple (Malus domestica (Borkh.) Borkh.) and native black-fruited hawthorns (mostly Crataegus douglasii Lindl.) in central Washington, but little has been published on the abundance of the fly in this region. In this paper, the abundance of R. pomonella across different sites near apple-growing areas in central Washington is documented in order to assess the threat of the fly to commercial apple orchards. The fly was first detected on traps in Klickitat, Yakima, and Kittitas Counties in 1981, 1995, and 1997, respectively. From 1981-2010 in Kittitas and Yakima Counties, only 0 to 4.7% of traps on apple, crabapple, and hawthorn trees were positive for flies, whereas in Klickitat County, located farther from commercial apple orchards, 0 to 41.9% of traps were positive. In 2008, in Yakima County and Goldendale in Klickitat County, 7.8% of black-fruited hawthorn trees were infested, with 0 to 0.00054 larvae per fruit. In 2010, in Kittitas and Yakima Counties and Goldendale in Klickitat County, 25.0% of C. douglasii trees were infested, with 0.00042 to 0.00248 larvae per fruit. In 2010, in a remote forested area of Klickitat County far from commercial apple orchards, 94.7% of C. douglasii trees were infested, with 0.20813 larvae per fruit. Overall results suggest R. pomonella is unlikely to develop high populations rapidly near major commercial apple-growing areas in central Washington, including in black-fruited hawthorns, increasing chances it can be kept out of commercial orchards.

  14. Abundance of Apple Maggot, Rhagoletis pomonella, Across Different Areas in Central Washington, with Special Reference to Black-Fruited Hawthorns

    PubMed Central

    Yee, Wee L.; Klaus, Michael W.; Cha, Dong H.; Linn, Charles E.; Goughnour, Robert B.

    2012-01-01

    The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), infests non-commercial apple (Malus domestica (Borkh.) Borkh.) and native black-fruited hawthorns (mostly Crataegus douglasii Lindl.) in central Washington, but little has been published on the abundance of the fly in this region. In this paper, the abundance of R. pomonella across different sites near apple-growing areas in central Washington is documented in order to assess the threat of the fly to commercial apple orchards. The fly was first detected on traps in Klickitat, Yakima, and Kittitas Counties in 1981, 1995, and 1997, respectively. From 1981–2010 in Kittitas and Yakima Counties, only 0 to 4.7% of traps on apple, crabapple, and hawthorn trees were positive for flies, whereas in Klickitat County, located farther from commercial apple orchards, 0 to 41.9% of traps were positive. In 2008, in Yakima County and Goldendale in Klickitat County, 7.8% of black-fruited hawthorn trees were infested, with 0 to 0.00054 larvae per fruit. In 2010, in Kittitas and Yakima Counties and Goldendale in Klickitat County, 25.0% of C. douglasii trees were infested, with 0.00042 to 0.00248 larvae per fruit. In 2010, in a remote forested area of Klickitat County far from commercial apple orchards, 94.7% of C. douglasii trees were infested, with 0.20813 larvae per fruit. Overall results suggest R. pomonella is unlikely to develop high populations rapidly near major commercial apple-growing areas in central Washington, including in black-fruited hawthorns, increasing chances it can be kept out of commercial orchards. PMID:23451979

  15. THE ACTION SPECTRUM FOR BREAKING DIAPAUSE IN THE CODLING MOTH, Laspeyresia pomonella (L.), AND THE OAK SILKWORM, Antheraea pernyi GUER.

    PubMed

    Norris, K H; Howell, F; Hayes, D K; Adler, V E; Sullivan, W N; Schechter, M S

    1969-08-01

    The action spectrum for breaking diapause in the oak silkworm, Antheraea pernyi Guer., and the codling moth, Laspeyresia pomonella (L.), was determined from 400 to 700 nm with a wedge-interference spectrograph. Insects were exposed to ten hours of white light, followed by six hours of spectral light each day for 45 days. The portion of the spectrum between 400 and 500 nm was found to be the most effective in terminating diapause. Diapause was broken for both insects with energy levels as low as 0.02 muw/cm(2).

  16. Identification of host fruit volatiles from hawthorn (Crataegus spp.) attractive to hawthorn-origin Rhagoletis pomonella flies.

    PubMed

    Nojima, Satoshi; Linn, Charles; Morris, Bruce; Zhang, Aijun; Roelofs, Wendell

    2003-02-01

    Solid-phase microextraction (SPME) and gas chromatography coupled with electroantennographic detection (GC-EAD) were used to identify volatile compounds from hawthorn fruit (Crataegus spp.) acting as behavioral attractants for hawthorn-infesting Rhagoletis pomonella flies. Consistent EAD activity was obtained for six chemicals: ethyl acetate (94.3%), 3-methylbutan-1-ol (4.0%), isoamyl acetate (1.5%), 4,8-dimethyl-1,3(E),7-nonatriene (0.07%), butyl hexanoate (0.01%), and dihydro-beta-ionone (0.10%). In a flight-tunnel bioassay, there was a dose-related increase in the percentage of flies flying upwind to the six-component mixture. Hawthorn-origin flies also made equivalent levels of upwind flight with the synthetic blend and an adsorbent extract of volatiles collected from whole fruit, each containing the same amount of the 3-methylbutan-1-ol compound. Significantly lower levels of upwind flight occurred to a previously identified volatile blend of ester compounds that attracts R. pomonella flies infesting domestic apples, compared with the hawthorn volatile mix. Selected subtraction assays showed further that the four-component mixture of 3-methylbutan-1-ol, 4,8-dimethyl-1,3(E),7-nonatriene, butyl hexanoate, and dihydro-beta-ionone also elicited levels of upwind flight equivalent to the six-component mix. Removal of 3-methylbutan-1-ol from the four-component blend resulted in complete loss of upwind flight behavior. Removal of dihydro-beta-ionone, 4,8-dimethyl-1,3(E),7-nonatriene, or butyl hexanoate from the four-component mixture resulted in significant decreases in the mean number of upwind flights compared to the four- or six-component mixtures.

  17. Potential for hypobaric storage as a phytosanitary treatment: Mortality of Rhagoletis pomonella (Diptera: Tephritidae) in apples and effects on fruit quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of low-oxygen atmospheres using low pressure, referred to as hypobaric conditions, to kill egg and 3rd instar Rhagoletis pomonella (Walsh) in apples was investigated. Infested apples were exposed to 3.33 and 6.67 kPa in glass jars at 25 and 30°C for 3-120 h. Probit analyses and lethal-d...

  18. Differential parasitism of seed-feeding Cydia (Lepidoptera: Tortricidae) by native and alien wasp species relative to elevation in subalpine Sophora (Fabaceae) forests on Mauna Kea, Hawaii

    USGS Publications Warehouse

    Oboyski, P.T.; Slotterback, J.W.; Banko, P.C.

    2004-01-01

    Alien parasitic wasps, including accidental introductions and purposefully released biological control agents, have been implicated in the decline of native Hawaiian Lepidoptera. Understanding the potential impacts of alien wasps requires knowledge of ecological parameters that influence parasitism rates for species in their new environment. Sophora seed-feeding Cydia spp. (Lepidoptera: Tortricidae) were surveyed for larval parasitoids to determine how native and alien wasps are partitioned over an elevation gradient (2200-2800 m) on Hawaii Island, Hawaii. Parasitism rate of native Euderus metallicus (Eulophidae) increased with increased elevation, while parasitism rate by immigrant Calliephialtes grapholithae (Ichneumonidae) decreased. Parasitism by Pristomerus hawaiiensis (Ichneumonidae), origins uncertain, also decreased with increased elevation. Two other species, Diadegma blackburni (Ichneumonidae), origins uncertain, and Brasema cushmani (Eupelmidae), a purposefully introduced biological control agent for pepper weevil, did not vary significantly with elevation. Results are contrasted with a previous study of this system with implications for the conservation of an endangered bird species that feed on Cydia larvae. Interpretation of results is hindered by lack of knowledge of autecology of moths and wasps, origins, phylogeny, systematics, competitive ability, and physiological limitations of each wasp species. These factors should be incorporated into risk analysis for biological control introductions and invasive species programs. ?? 2004 Kluwer Academic Publishers.

  19. Potential for hypobaric storage as a phytosanitary treatment: mortality of Rhagoletis pomonella (Diptera: Tephritidae) in apples and effects on fruit quality.

    PubMed

    Hulasare, Rajshekhar; Payton, Mark E; Hallman, Guy J; Phillips, Thomas W

    2013-06-01

    The efficacy of low-oxygen atmospheres using low pressure, referred to as hypobaric conditions, to kill egg and third-instar Rhagoletis pomonella (Walsh) in apples was investigated. Infested apples were exposed to 3.33 and 6.67 kPa in glass jars at 25 and 30 degrees C for times ranging from 3 to 120 h. Probit analyses and lethal dose ratio tests were performed to determine differences in lethal time values. Eggs were more tolerant of low pressure compared with third-instar R. pomonella. Mortality of eggs and larvae increased with increase in time of exposure to low pressure and temperature. Lower pressures increased percent mortality of eggs, but these values were not significantly different at the pressures tested in this investigation. The LT99 for R. pomonella eggs at 3.33 kPa was 105.98 and 51.46 h, respectively, at 25 and 30 degrees C, which was a significant effect of the higher temperature on egg mortality. Investigation into consumer acceptance of low-pressure-treated apples was done with 'Red Delicious' and 'Golden Delicious'. Apples exposed to 3.33 kPa at 25 and 30 degrees C for 3 and 5 d were stored at 1 degrees C for 2 wk and presented to a sensory panel for evaluation. The panelists rated treated apples with untreated controls for external and internal appearance and taste. Golden Delicious apples were unaffected for all three sensory factors across both temperatures and exposure times. Although taste was unaffected for Red Delicious, the internal and external appearances deteriorated. Use of low pressure for disinfestation and preservation of apples is a potential nonchemical alternative to chemical fumigants such as methyl bromide and phosphine.

  20. Rapid and repeatable shifts in life-history timing of Rhagoletis pomonella (Diptera: Tephritidae) following colonization of novel host plants in the Pacific Northwestern United States.

    PubMed

    Mattsson, Monte; Hood, Glen R; Feder, Jeffrey L; Ruedas, Luis A

    2015-12-01

    Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life-history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval-infested apples 40-65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early- and late-maturing apple varieties in the region. To investigate the life-history timing hypothesis, we used a field-based experiment to characterize the host-associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host-fruiting time generate allochronic isolation among apple-, black hawthorn-, and ornamental hawthorn-associated fly populations. We conclude that host-associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host-fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process.

  1. Identification of host fruit volatiles from domestic apple (Malus domestica), native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (C. monogyna) attractive to R. pomonella flies from the western U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonel...

  2. Identification of host fruit volatiles from domestic apple (Malus domestica), native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (C. monogyna) attractive to Rhagoletis pomonella flies from the western United States.

    PubMed

    Cha, Dong H; Yee, Wee L; Goughnour, Robert B; Sim, Sheina B; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2012-03-01

    The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies.

  3. Distance of response to host tree models by female apple maggot flies,Rhagoletis pomonella (Walsh) (Diptera: Tephritidae): Interaction of visual and olfactory stimuli.

    PubMed

    Green, T A; Prokopy, R J; Hosmer, D W

    1994-09-01

    Mature female apple maggot flies,Rhagoletis pomonella (Walsh), were released individually onto a single potted, fruitless hawthorne tree in the center of an open field. The tree was surrounded by four 1-m(2) plywood host tree models painted green or white, with or without synthetic host fruit odor (butyl hexanoate), and placed at one of several distances from the release tree. Each fly was permitted to forage freely on the release tree for up to 1 hr, or until it left the tree. Flies left the tree significantly sooner when green models with host fruit were present at 0.5, 1.5, or 2.5 m distance from the release tree than when these models were placed at a greater distance (4.5 m) from the release tree or when no models were present. Flies responded detectably to 1-m(2) models without odor up to a maximum distance of 1.5 m. These results suggest that female apple maggot flies did not detect green 1-m(2) models with odor 4.5 m away or models without odor 2.5 m or more away. Flies responded to white models with and without odor to a much lesser extent, both in terms of response distance and flight to and alightment upon models. Increasing model size to 2 m(2) increased the distance to 2.5 m at which flies responded to green models without odor. Decreasing model size to 0.5 m(2) reduced fly responsiveness to green or white models. The presence of host fruit odor alone, without the visual stimulus of a green model, did not influence residence time on the release tree.

  4. Identification of host fruit volatiles from three mayhaw species (Crataegus series Aestivales) attractive to mayhaw-origin Rhagoletis pomonella flies in the southern United States.

    PubMed

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula

  5. Nontarget effects of orchard pesticides on natural enemies: lessons from the field and laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nontarget effects of insecticide programs used to control codling moth, Cydia pomonella were studied in large-plot field trials in apples, pears, and walnuts in the western United States. We sampled the abundance of natural enemies and outbreaks of secondary pests. The insecticides used in the f...

  6. Accumulation of lead and arsenic by lettuce grown on lead-arsenate contaminated orchard soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lead-arsenate was one of the preferred insecticides used as foliar spray to control codling moth (Cydia pomonella) in apple (Malus sylvestris Mill) orchards from the 1900's to the 1960’s. Lead and arsenic are generally immobile and remain in the surface soil. Some of these contaminated lands are now...

  7. Effect of flooding lead-arsenate contaminated orchard soil on growth, arsenic and lead accumulation in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lead-arsenate has been used as a pesticide in controlling codling moth (Cydia pomonella) in apple and plum orchards from 1900-1960. As a result, many old orchards contain high levels of arsenic. Flooding soils contaminated by lead-arsenate could increase plant arsenic and lead and become a human h...

  8. N-butyl sulfide as an attractant and co-attractant for male and female codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research to discover and develop attractants for the codling moth (CM), Cydia pomonella L., has involved identification of the chemicals eliciting moth orientation to conspecific female moths, host fruits, fermented baits, and species of microbes. Pear eester, acetic acid, and N-butyl sulfide are am...

  9. Arsenic Recovery by Stinging Nettle From Lead-Arsenate Contaminated Orchard Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil contamination with arsenic (As) is common in orchards with a history of lead-arsenate pesticide application. This problem is prevalent in the U.S. Northeast where lead-arsenate foliar sprays were used to control codling moth (Cydia pomonella) in apple orchards. Arsenic is not easily biodegrad...

  10. Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of polyvinyl chloride polymer (pvc) dispensers loaded with two rates of ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), was compared with similar dispensers and two commercial dispensers l...

  11. Combining mutualistic yeast and pathogenic virus - a novel method for control for codling moth control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...

  12. Improving the performance of the Granulosis virus of Codling moth (Lepidoptera: Tortricideae) by adding the yeast Saccharomyces cerevisiae with sugar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies evaluated the effectiveness of adding Saccharomyces cerevisiae with brown cane sugar (sugar) to the codling moth granulosis virus, CpGV, to improve larval control of Cydia pomonella (L.), on apple. Neither the use of the yeast or sugar alone caused larval mortality greater than the water con...

  13. Before harvest survival of codling moth (Lepidoptera: Tortricidae) in artificially infested sweet cherries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to the 2009 season, sweet cherries, Prunus avium (L.) L., from North America were required to be fumigated with methyl bromide before being exported to Japan to eliminate possible infestation by codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). However, based on recent biological...

  14. Evidence for the non-pest status of codling moth on commercial fresh sweet cherries intended for export

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain acceptance of a systems approach as an alternative to methyl bromide fumigation for U.S. fresh sweet cherries, Prunus avium (L.) L., exported to Japan, additional evidence was needed to show that sweet cherries are poor or non-hosts for codling moth, Cydia pomonella (L.) (Lepidoptera: Tortri...

  15. Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomoness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted in North and South America during 2012-2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPV), and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck) and codling moth, Cydia pomonella (L.) in pome an...

  16. “This is not an apple”–yeast mutualism in codling moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. The larva of codling moth Cydia pomonella (Tortricidae, Lepidoptera) is known as the worm in the apple, mining the fruit for food. We show that codling moth larvae are closely associated with yeasts of the genus Metschnikowia. Yeast is an essential part of the larval diet and further promotes lar...

  17. Comparison of ex-situ volatile emissions from intact and mechanically damaged walnuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The codling moth (Cydia pomonella) and navel orangeworm (Amyelois transitella) are insect pests that inflict serious economic damage to California walnuts. Feeding by these larvae causes physical damage, resulting in lower kernel quality, and can lead to fungal contamination by the aflatoxigenic fun...

  18. Effects of temperature and modified atmospheres on diapausing 5th instar codling moth metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diapausing 5th instars of codling moth, Cydia pomonella, are serious quarantine pests of in-shell walnuts. Previous research indicates that heat treatments in combination with high concentrations of carbon dioxide and low concentrations of oxygen may be effective for controlling this pest in walnuts...

  19. Measuring local genetic variability in populations of codling moth (Lepidoptera: Tortricidae) across an unmanaged / commercial orchard interface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic structure of adult codling moth Cydia pomonella L., populations was characterized both inside a managed apple, Malus domestica Borkdhausen, orchard and in surrounding unmanaged hosts and non-host trees in central Chile during 2006-2007. Adult males were collected using an array of sex ph...

  20. Effects of short photoperiod on codling moth diapause and survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential presence of codling moth, Cydia pomonella L., in apples shipped to countries within the 30th latitudes has raised concerns that this pest could establish and spread in these countries. Previous research demonstrated that codling moth in apples handled under simulated commercial cold st...

  1. Combined approaches using sex pheromone and pear ester for behavioral disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies utilized the attractive properties of pear ester, ethyl (E,Z)-2,4-decadienoate, and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., for behavioural disruption. Standard dispensers loaded with codlemone alone or in combination with pear ester (c...

  2. Monitoring codling moth (Lepidoptera: Tortricidae) in sex phermone-treated orchards with (E)-4,8-dimethyl-1,3,7-nonatriene or pear ester in combination with codlemone and acetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traps baited with ethyl (E,Z)-2,4-decadienoate (pear ester) or (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) in two- or three-way combinations with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone) and acetic acid (AA) were evaluated for codling moth, Cydia pomonella (L.). All studies were conduct...

  3. Evaluating dispensers loaded with codlemone and pear ester for disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyvinyl chloride polymer (pvc) dispensers loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), were compared with similar dispensers and a commercial dispenser (Isomate®-C Plus) loaded with codle...

  4. Neural ensemble coding merges sex and habitat chemosensory signals in an insect herbivore (RSPB-2012-2496)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a neuroethological approach to study how blends of the main sex pheromone compound, codlemone, and three host plant volatiles, butyl hexanoate, ß-farnesene and pear ester, affect odor processing and ensuing behavior in the codling moth Cydia pomonella. In wind tunnel bioassays, a higher prop...

  5. Comparing mating disruption of codling moth with standard and meso dispensers loaded with pear ester and codlemone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted with hand-applied combo dispensers loaded with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone), and the pear volatile, (E,Z)-2,4-decadienoate (pear ester) for control of codling moth, Cydia pomonella (L.) in apple, Malus domestica Bordkhausen during 2012. Two types of...

  6. Monitoring codling moth (Lepidoptera: Tortricidae) in orchards treated with pear ester and sex pheromone combo dispensers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lures for monitoring codling moth, Cydia pomonella (L.), were tested in apple and walnut blocks treated with Cidetrak CM-DA Combo dispensers loaded with pear ester, ethyl (E, Z)-2,4-decadienoate (PE), and sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone). Total and female moth catches with combin...

  7. Control and monitoring of codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with novel high-load, low-density “meso” dispensers of sex pheromone and pear ester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel low-density per ha “meso” dispensers loaded with both pear ester, ethyl (E,Z)-2,4-decadienoate, kairomone and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., were evaluated versus meso dispensers loaded with pheromone-alone for their mating disru...

  8. Identification of fruit volatiles from green hawthorn (Crataegus viridis) and blueberry hawthorn (Crataegus brachyacantha) host plants attractive to different phenotypes of Rhagoletis pomonella flies in the southern United States.

    PubMed

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. In a companion paper, we showed that R. pomonella flies infesting two different mayhaw species (Crataegus opaca and C. aestivalis) can discriminate between volatile blends developed for each host fruit, and that these blends are different from previously constructed blends for northern fly populations that infest domestic apple (Malus domestica), downy hawthorn (Crataegus mollis), and flowering dogwood (Cornus florida). Here, we show by using coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays, that two additional southern hawthorn fly populations infesting C. viridis (green hawthorn) and C. brachyacantha (blueberry hawthorn) also can discriminate between volatile blends for each host fruit type. A 9-component blend was developed for C. viridis (3-methylbutan-1-ol [5%], butyl butanoate [19.5%], propyl hexanoate [1.5%], butyl hexanoate [24%], hexyl butanoate [24%], pentyl hexanoate [2.5%], 1-octen-3-ol [0.5%], pentyl butanoate [2.5%], and (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) [20.5%]) and an 8-component blend for C. brachyacantha (3-methylbutan-1-ol [0.6%], butyl acetate [50%], pentyl acetate [3.5%], butyl butanoate [9%], butyl hexanoate [16.8%], hexyl butanoate [16.8%], 1-octen-3-ol [0.3%], and pentyl butanoate [3%]). Crataegus viridis and C. brachyacantha-origin flies showed significantly higher levels of upwind oriented flight to their natal blend in flight tunnel assays compared to the alternate, non-natal blend and previously developed northern host plant blends. The presence of DMNT in C. viridis and butyl acetate in C. brachyacantha appeared to be largely responsible for driving the differential response. This sharp behavioral distinction underscores the diversity of odor response phenotypes in the southern USA, points to possible host race formation in these

  9. Propheromones derived from codlemone.

    PubMed

    Streinz, L; Horák, A; Vrkoč, J; Hrdý, I

    1993-01-01

    Tricarbonyl [(8,9,10,11-η-8,10-dodecadien-l-ol] iron and the corresponding acetate prepared from 8,10-dodecadien-1-ol or its acetate, comprise the protected double-bond system of the molecule. After coming in contact with ambient oxygen, the iron complexes in question slowly release the corresponding pheromones of, for example, the codling moth,Cydia pomonella, and the pea moth,Cydia nigricana in highE,E purity and amounts that are sufficient for pest monitoring. A simple dispenser for propheromone application is proposed. Results of release rates in laboratory conditions and field trials are given.

  10. Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae

    SciTech Connect

    Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.

    1985-03-01

    Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.

  11. Overview of areawide programs and the program for suppression of codling moth in the western USA directed by the United States Department of Agriculture--Agricultural Research Service.

    PubMed

    Calkins, Carrol O; Faust, Robert J

    2003-01-01

    An areawide suppression program for codling moth (Cydia pomonella L) populations was initiated in 1995 in Washington, Oregon and California under the direction of the US Department of Agriculture, Agricultural Research Service in cooperation with Washington State University, Oregon State University and University of California, Berkeley. Mating disruption was used to reduce the pest population while reducing and eliminating the use of organophosphate insecticides. During the 5-year program, the original 1064 hectares were expanded to 8400 hectares and from 66 grower participants to more than 400 participants. The acreage under mating disruption in the three states increased from 6000 hectares in 1994 to 54000 hectares in the year 2000.

  12. Real-time PCR assay for detection of a new simulant for poxvirus biothreat agents.

    PubMed

    Garnier, Laurence; Gaudin, Jean-Christophe; Bensadoun, Paul; Rebillat, Isabelle; Morel, Yannick

    2009-03-01

    Research and financial efforts spent on biodefense technologies highlight the current concern for biothreat event preparedness. Nonhazardous but relevant "simulant" microorganisms are typically used to simplify technological developments, testing, and staff training. The bacteriophage MS2, a small RNA virus, is classically used as the reference simulant for biothreat viruses within the biodefense community. However, variola virus, considered a major threat, displays very different features (size, envelope, and double-stranded DNA genome). The size parameter is critical for aerosol sampling, detection, and protection/filtration technologies. Therefore, a panel of relevant simulants should be used to cover the diversity of biothreat agents. Thus, we investigated a new virus model, the Cydia pomonella granulovirus (baculovirus), which is currently used as a biopesticide. It displays a size similar to that of poxviruses, is enveloped, and contains double-stranded DNA. To provide a molecular tool to detect and quantify this model virus, we developed an assay based on real-time PCR, with a limit of detection ranging from roughly 10 to a few tens of target copies per microl according to the sample matrix. The specificity of the assay against a large panel of potential cross-reactive microorganisms was checked, and the suitability of the assay for environmental samples, especially aerosol studies, was determined. In conclusion, we suggest that our PCR assay allows Cydia pomonella granulovirus to be used as a simulant for poxviruses. This assay may also be useful for environmental or crop treatment studies.

  13. Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues

    PubMed Central

    Gonzalez, Francisco; Witzgall, Peter; Walker, William B.

    2017-01-01

    Insects use chemical signals to find mates, food and oviposition sites. The main chemoreceptor gene families comprise odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). Understanding the evolution of these receptors as well as their function will assist in advancing our knowledge of how chemical stimuli are perceived and may consequently lead to the development of new insect management strategies. Tortricid moths are important pests in horticulture, forestry and agriculture around the globe. Here, we characterize chemoreceptors from the three main gene families of three economically important tortricids, based on male antennal transcriptomes using an RNA-Seq approach. We identified 49 ORs, 11 GRs and 23 IRs in the green budworm moth, Hedya nubiferana; 49 ORs, 12 GRs and 19 IRs in the beech moth, Cydia fagiglandana; and 48 ORs, 11 GRs and 19 IRs in the pea moth, Cydia nigricana. Transcript abundance estimation, phylogenetic relationships and molecular evolution rate comparisons with deorphanized receptors of Cydia pomonella allow us to hypothesize conserved functions and therefore candidate receptors for pheromones and kairomones. PMID:28150741

  14. Dominicanas entre La Gran Manzana y Quisqueya: Family, Schooling, and Language Learning in a Transnational Context

    ERIC Educational Resources Information Center

    Rodriguez, Tracy

    2009-01-01

    Drawing from a one-year qualitative research study, this article explores the transnational lives and experiences of three young women and their little sisters in New York with close ties to the Dominican Republic. Using ethnographic research methods--life history interviews, focus groups, participant observation, and document analysis, I examine…

  15. An attempt to increase efficacy of moth mating disruption by co-releasing pheromones with kairomones and to understand possible underlying mechanisms of this technique.

    PubMed

    Stelinski, Lukasz L; Gut, Larry J; Miller, James R

    2013-02-01

    Pheromone-based mating disruption is used worldwide for management of the internal fruit feeding codling moth, Cydia pomonella (L.). There has been recent interest in the potential of improving mating disruption of C. pomonella, and potentially other insect species in general, by broadcasting combinations of pheromone and attractive host-plant kairomones. Given that such kairomones are attractive by themselves (often to both sexes), and also enhance male moth response to their pheromone, it is possible that the effects of competitive attraction and potentially other mechanisms of disruption might be increased. Herein, we tested the hypothesis that mating disruption of C. pomonella could be enhanced by co-deploying pheromone with either of two kairomones: (2E, 4Z)-2, 4-decadienoate (pear ester), or (E)-β-farnesene, as compared with various pheromone blend components alone. When deployed individually, each kairomone caused a low level of synthetic lure trap disruption and (E)-β-farnesene also caused disruption of mating as measured by tethering virgin females. However, combined release of either pear ester or (E)-β-farnesene with pheromone within the same dispenser or as a co-deployed dispenser treatment, respectively, did not increase the level of mating disruption as compared with deploying pheromone alone. Disruption efficacy did not decline when reducing the amount of (E,E)-8,10-dodecadien-1-ol (codlemone) in dispensers by fourfold, when combined with pear ester. C. pomonella readily were observed briefly approaching all dispenser types (with and without pheromone) in the field. Exposure of male C. pomonella to pear ester alone in a manner mimicking observed field exposures did not reduce the number of males able to contact a female-mimic pheromone lure in flight tunnel assays. Also, reduction of male moth behavioral response to pheromone was similar after exposure to codlemone alone, and codlemone and pear ester after exposures that mimicked those observed in

  16. Neo-sex chromosomes and adaptive potential in tortricid pests

    PubMed Central

    Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Čapková Frydrychová, Radmila; Neven, Lisa G.; Sahara, Ken; Marec, František

    2013-01-01

    Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z–autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation. PMID:23569222

  17. Pharmacological analysis of feeding in a caterpillar: different transduction pathways for umami and saccharin?

    NASA Astrophysics Data System (ADS)

    Pszczolkowski, Maciej A.; Durden, Kevin; Marquis, Juleah; Ramaswamy, Sonny B.; Brown, John J.

    2009-05-01

    Neonate larvae of codling moth, Cydia pomonella (L.), modify their behavior in the presence of saccharin, monosodium glutamate (MSG), or L(+)-2-amino-4-phosphonobutyric acid (L-AP4) by commencing their feeding earlier. Previously published pharmacological analysis demonstrated that phagostimulatory effects of MSG and L-AP4 (which elicit umami taste sensation in humans) are reversed by adenylate cyclase activator and phosphodiesterase inhibitor. In this study, by measuring the time needed to start ingestion of foliage treated with mixtures of phagostimulants and signal transduction modulators, we show that phagostimulatory effects of l-aspartate (the third hallmark umami substance) are also abolished by both adenylate cyclase activator and phosphodiesterase inhibitor, but not by phospholipase C inhibitor. However, stimulatory effects of hemicalcium saccharin were affected only by phospholipase C inhibitor. The results suggest that codling moth neonates use different transduction pathways for perception of hemicalcium saccharin and umami.

  18. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.

    PubMed

    Baranek, Jakub; Kaznowski, Adam; Konecka, Edyta; Naimov, Samir

    2015-09-01

    Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests.

  19. Insecticidal Activity of Bacillus thuringiensis Strains Isolated from Soil and Water

    PubMed Central

    Konecka, Edyta; Baranek, Jakub; Hrycak, Anita; Kaznowski, Adam

    2012-01-01

    We attempted to search novel Bacillus thuringiensis strains that produce crystals with potential utility in plant protection and with higher activity than strains already used in biopesticide production. Seven B. thuringiensis soil and water isolates were used in the research. We predicted the toxicity of their crystals by cry gene identification employing PCR method. The isolate MPU B63 with interesting, according to us, genes content was used in evaluating its crystal toxicity against Cydia pomonella caterpillars. The strain MPU B63 was cultured from water sample and had cry1Ab, cry1B, and cry15 genes. The LC50 crystals of MPU B63 were compared to LC50 of commercial bioinsecticide Foray determined against C. pomonella (codling moth). The activity of MPU B63 inclusions against codling moth larvae was approximately 24-fold higher than that of Foray. The results are a promising introduction for further study evaluating the potential usefulness of isolate MPU B63 crystals in plant protection. PMID:22666145

  20. Conserved Patterns of Sex Chromosome Dosage Compensation in the Lepidoptera (WZ/ZZ): Insights from a Moth Neo-Z Chromosome

    PubMed Central

    Walters, James R.; Knipple, Douglas C.

    2017-01-01

    Where previously described, patterns of sex chromosome dosage compensation in the Lepidoptera (moths and butterflies) have several unusual characteristics. Other female-heterogametic (ZW/ZZ) species exhibit female Z-linked expression that is reduced compared with autosomal expression and male Z expression. In the Lepidoptera, however, Z expression typically appears balanced between sexes but overall reduced relative to autosomal expression, that is Z ≈ ZZ < AA. This pattern is not easily reconciled with theoretical expectations for the evolution of sex chromosome dosage compensation. Moreover, conflicting results linger due to discrepancies in data analyses and tissues sampled among lepidopterans. To address these issues, we performed RNA-seq to analyze sex chromosome dosage compensation in the codling moth, Cydia pomonella, which is a species from the earliest diverging lepidopteran lineage yet examined for dosage compensation and has a neo-Z chromosome resulting from an ancient Z:autosome fusion. While supported by intraspecific analyses, the Z ≈ ZZ < AA pattern was further evidenced by comparative study using autosomal orthologs of C. pomonella neo-Z genes in outgroup species. In contrast, dosage compensation appears to be absent in reproductive tissues. We thus argue that inclusion of reproductive tissues may explain the incongruence from a prior study on another moth species and that patterns of dosage compensation are likely conserved in the Lepidoptera. Notably, this pattern appears convergent with patterns in eutherian mammals (X ≈ XX < AA). Overall, our results contribute to the notion that the Lepidoptera present challenges both to classical theories regarding the evolution of sex chromosome dosage compensation and the emerging view of the association of dosage compensation with sexual heterogamety. PMID:28338816

  1. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    PubMed Central

    Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.

    2015-01-01

    The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088

  2. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    PubMed

    Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C

    2015-01-01

    The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.

  3. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    PubMed

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC.

  4. Reference gene selection for quantitative real-time PCR normalization in larvae of three species of Grapholitini (Lepidoptera: Tortricidae).

    PubMed

    Ridgeway, Jaryd A; Timm, Alicia E

    2015-01-01

    Despite the agricultural importance of species in the Grapholitini (Lepidoptera: Tortricidae), and the value of gene expression analysis for improved population management, few gene expression studies based on quantitative real-time PCR (qPCR) have been conducted for this tribe. Part of the reason for this lack of information is that suitable reference genes, which are fundamental for accurate normalization of qPCR studies, have not been identified for the tribe. Thus, the expression stability of six potential reference genes (ACT, AK, COI, EF1, ENO and TUB) was assessed in three different tissues (whole body, midgut and cuticle) of Cryptophlebia peltastica (Meyrick), Cydia pomonella (L.) and Thaumatotibia leucotreta (Meyrick). Additionally, these reference genes were tested using T. leucotreta at different temperatures (15°C, 25°C and 35°C) with and without baculovirus infection. Suitable reference genes were identified for the whole body and midgut tissue of all three species, and for cuticle tissue of Cy. pomonella and T. leucotreta. When T. leucotreta was infected with the virus at all temperature conditions ACT, AK and EF1 were found to be the most suitable reference genes for experimental normalization. In general, for all tissue types, species and stress conditions, AK and EF1 were the best-performing reference genes. However, even though the three species analysed were closely related and within the same tribe, each species required varying gene combinations for suitable normalization. This study provides the first reference gene evaluation for the Tortricidae, and paves the way for future qPCR analysis in Tortricidae.

  5. Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae).

    PubMed

    Saber, Moosa

    2011-08-01

    One focus of integrated pest management (IPM) is the use of biological and chemical control in an optimal way. The availability of selective pesticides is important as is information about both lethal and sublethal effects of pesticides on biocontrol agents. Acute and sublethal effects of imidacloprid and fenpyroximate exposure were studied on adult stage of egg parasitoid Trichogramma cacoeciae Marchal and the emergence rate and life table parameters were determined. The adult wasps were exposed to field recommended concentration (FRC) of the pesticides on glass plates. Field rates of imidacloprid and fenpyroximate caused 100 and 32% adult mortality, respectively. Based on concentration-response experiments, the LC(50) values of imidacloprid and fenpyroximate were 6.25 and 1,949 ppm, respectively. The effect of imidacloprid and fenpyroximate on larvae, prepupae and pupae of the parasitoid was tested by exposing parasitized eggs of Sitotroga cerealella Olivier or Cydia pomonella L. to the FRC. Imidacloprid and fenpyroximate reduced adult emergence by 10.7 and 29%, respectively, when S. cerealella eggs were used as the host and 10.9 and 24.9%, respectively, when C. pomonella eggs were used as the host. Population parameters of emerged adults from treated pre-imaginal stages by FRC of the pesticides were also studied. The parameters were longevity and progeny production of emergent adults and also intrinsic rate of increase (r ( m )), generation time (T) and doubling time (DT). Longevity and progeny production of the emergent adults was not affected by pesticide exposure in comparison to the control. In addition, none of population parameters such as r ( m ), T and DT were affected by pesticide exposure. The intrinsic rate of increase for the control, fenpyroximate and imidacloprid exposed populations were 0.388, 0.374, and 0.372 female offspring per female per day, respectively. Overall, results of this study suggest a relative compatibility between fenpyroximate

  6. Quantitative relationships between different injury factors and development of brown rot caused by Monilinia fructigena in integrated and organic apple orchards.

    PubMed

    Holb, I J; Scherm, H

    2008-01-01

    In a 4-year study, the incidence of various types of injuries (caused by insects, birds, growth cracks, mechanical wounding, and other, unidentified factors) was assessed in relation to brown rot development (caused by Monilinia fructigena) on fruit of three apple cultivars (Prima, Jonathan, and Mutsu) in integrated and organic blocks of two apple orchards in Hungary. In addition, populations of male codling moths (Cydia pomonella) were monitored with pheromone traps season-long in both management systems. On average, injury incidence on fruit at harvest was 6.1 and 19.2% in the integrated and organic treatments, respectively. Insect injury, which was caused primarily by C. pomonella, had the highest incidence among the five injury types, accounting for 79.4% of the total injury by harvest in the organic blocks and 36.6% in the integrated blocks. Levels of all other injury types remained close to zero during most of the season, but the incidence of bird injury and growth cracks increased markedly in the final 3 to 5 weeks before harvest in both production systems. Brown rot developed more slowly and reached a lower incidence in the integrated (6.4% final incidence on average) compared with the organic blocks (20.1% average incidence). In addition, the disease developed later but attained higher levels as the cultivar ripening season increased from early-maturing Prima to late-maturing Mutsu. Overall, 94.3 to 98.7% of all injured fruit were also infected by M. fructigena, whereas the incidence of brown-rotted fruit without visible injury was very low (0.8 to 1.6%). Correlation coefficients (on a per plot basis) and association indices (on a per-fruit basis) were calculated between brown rot and the various injury types for two selected assessment dates 4 weeks preharvest and at harvest. At both dates, the strongest significant (P < 0.05) relationships were observed between brown rot and insect injury and between brown rot and the cumulative number of trapped C

  7. Dose-morality and large-scale studies for controlling codling moth (Lepidoptera: Tortricidae) eggs on 'd'Agen' plums by using methyl bromide.

    PubMed

    Leesch, J G; Tebbets, J S; Obenland, D M; Vail, P V; Tebbets, J C

    1999-08-01

    Codling moth, Cydia pomonella (L.), eggs on 'd'Agen' cultivar of plums, Prunus salicina Lindl., were treated with methyl bromide to determine if a quarantine treatment could be developed so that the plums could be exported to Japan from the United States. Small-scale tests consisted of treating codling moth eggs on plums with various doses of methyl bromide at 20 degrees C for 2 h. Small-scale tests showed that 0- to 24-h-old eggs of codling moth on the plums were controlled by doses > 22.5 g/m3. Because testing showed that 48 g/m3 had no adverse effect on the quality of plums, this dose was chosen for large-scale testing to establish the quarantine dose. Large-scale tests consisted of treating plums at 18.5 degrees C for 2 h using methyl bromide at a dose of 48 mg/liter. Large-scale tests showed that the dose of 48 g/m3 killed all 0- to 24-h-old codling moth eggs exposed on plums in packing cartons without affecting the quality of the plums.

  8. Confirmation and efficacy tests against codling moth and oriental fruit moth in apples using combination heat and controlled atmosphere treatments.

    PubMed

    Neven, Lisa G; Rehfield-Ray, Linda

    2006-10-01

    Codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are serious pests of apples (Malus spp.) grown in the United States and other countries. In countries where these species are not found, there are strict quarantine restrictions in place to prevent their accidental introduction. The treatment used in this study consisted of hot, forced, moist air with a linear heating rate of 12 degrees C/h to a final chamber temperature of 46 degrees C under a 1% oxygen and 15% carbon dioxide environment. We found that the fourth instar of both species was the most tolerant to the treatment, with equal tolerance between the species. Efficacy tests against the fourth instar of both oriental fruit moth and codling moth by using a commercial controlled atmosphere temperature treatment system chamber resulted in > 5,000 individuals of each species being controlled using the combination treatment. Confirmation tests against codling moth resulted in mortality of > 30,000 fourth instars. These treatments may be used to meet quarantine restrictions for organic apples where fumigation with methyl bromide is not desirable.

  9. Combining mutualistic yeast and pathogenic virus--a novel method for codling moth control.

    PubMed

    Knight, Alan L; Witzgall, Peter

    2013-07-01

    The combination of a pathogenic virus and mutualistic yeasts isolated from larvae of codling moth Cydia pomonella is proposed as a novel insect control technique. Apples were treated with codling moth granulovirus (CpGV) and either one of three yeasts, Metschnikowia pulcherrima, Cryptococcus tephrensis, or Aureobasidium pullulans. The combination of yeasts with CpGV significantly increased mortality of neonate codling moth larvae, compared with CpGV alone. The three yeasts were equally efficient in enhancing the activity of CpGV. The addition of brown cane sugar to yeast further increased larval mortality and the protection of fruit against larvae. In comparison, without yeast, the addition of sugar to CpGV did not produce a significant effect. A field trial confirmed that fruit injury and larval survival were significantly reduced when apple trees were sprayed with CpGV, M. pulcherrima, and sugar. We have shown earlier that mutualistic yeasts are an essential part of codling moth larval diet. The finding that yeast also enhances larval ingestion of an insect-pathogenic virus is an opportunity for the development of a novel plant protection technique. We expect the combination of yeasts and insect pathogens to essentially contribute to future insect management.

  10. Separating the attractant from the toxicant improves attract-and-kill of codling moth (Lepidoptera: Tortricidae).

    PubMed

    Huang, Juan; Gut, Larry J; Miller, James R

    2013-10-01

    The behavior of codling moth, Cydia pomonella (L.), responding to three attract-and-kill devices was compared in flight tunnel experiments measuring attraction and duration of target contact. Placing a 7.6 by 12.6 cm card immediately upwind of a rubber septum releasing pheromone, dramatically increased the duration on the target to > 60 s. In this setting, nearly all the males flew upwind, landed on the card first, and spent the majority of time searching the card. In contrast, male codling moths spent < 15 s at the source if given the lure only. In a forced contact bioassay, knockdown rate or mortality of male codling moths increased in direct proportion to duration of contact on a lambda-cyhalothrin-loaded filter paper. When this insecticide-treated paper was placed immediately upwind of the lure in the flight tunnel, > 90% of males contacting the paper were knocked down 2 h after voluntary exposure. These findings suggest that past attempts to combine insecticide directly with sex pheromones into a small paste, gel, or other forms of dollops are ill-advised because moths are likely over-exposed to pheromone and vacate the target before obtaining a lethal dose of insecticide. It is better to minimize direct contact with the concentrated pheromone while enticing males to extensively search insecticide-treated surface nearby the lure.

  11. Regulatory Innovation, Mating Disruption and 4-Play(TM) in New Zealand.

    PubMed

    Suckling, David Maxwell; El-Sayed, Ashraf M; Walker, James T S

    2016-07-01

    Straight-chained lepidopteran pheromones are now regulated under a group standard in New Zealand, which is generic for moth pheromone products of similar low risk, under the Hazardous Substances and New Organisms Act (1996). This means that compliant new pheromone products can be developed and commercialized with low regulatory requirements. This encourages innovation and supports fruit industries interested in meeting export phytosanitary standards, while targeting low or nil residues of pesticides. Changes to pheromone blends for reasons such as technical improvements or variations in pest species composition in different crops can be made with minimal regulatory involvement. We illustrate how this system now operates with a four species mating disruption product commercialized in 2012. The odors involved in "4-Play™" consist of a range of components used by codling moth (Cydia pomonella), lightbrown apple moth (Epiphyas postvittana), green-headed leafroller (Planotortrix octo), and brown-headed leafroller (Ctenopseustis obliquana). The development of 4-Play™ illustrates how mating disruption of insects can support industry goals.

  12. Potential of mass trapping for long-term pest management and eradication of invasive species.

    PubMed

    El-Sayed, A M; Suckling, D M; Wearing, C H; Byers, J A

    2006-10-01

    Semiochemical-based pest management programs comprise three major approaches that are being used to provide environmentally friendly control methods of insect pests: mass trapping, "lure and kill," and mating disruption. In this article, we review the potential of mass trapping in long-term pest management as well as in the eradication of invasive species. We discuss similarities and differences between mass trapping and other two main approaches of semiochemical-based pest management programs. We highlight several study cases where mass trapping has been used either in long-term pest management [e.g., codling moth, Cydia pomonella (L.); pink bollworm, Pectinophora gossypiella (Saunders); bark beetles, palm weevils, corn rootworms (Diabrotica spp.); and fruit flies] or in eradication of invasive species [e.g., gypsy moth, Lymantria dispar (L.); and boll weevil, Anthonomus grandis grandis Boheman). We list the critical issues that affect the efficacy of mass trapping and compare these with previously published models developed to investigate mass trapping efficacy in pest control. We conclude that mass trapping has good potential to suppress or eradicate low-density, isolated pest populations; however, its full potential in pest management has not been adequately realized and therefore encourages further research and development of this technology.

  13. Gamma irradiation as a phytosanitary treatment for fresh pome fruits produced in Patagonia

    NASA Astrophysics Data System (ADS)

    Pérez, J.; Lires, C.; Horak, C.; Pawlak, E.; Docters, A.; Kairiyama, E.

    2009-07-01

    Argentina produces 1.8 million tons/year of apples ( Malus domestica L.) and pears ( Pyrus communis L.) in the Patagonia region. Cydia pomonella, codling moth, and Grapholita molesta, Oriental fruit moth, ( Lepidoptera: Tortricidae) are quarantine pests in pome fruits. Irradiation is a promising phytosanitary treatment because a dose of 200 Gy completely prevents pest adult emergence. A pilot irradiation process of commercially packaged 'Red Delicious' apples and 'Packham's Triumph' pears was performed in an irradiation facility with a Cobalt 60 source. Quality analyses were carried out at 0, 2, 4, 6 and 8 months of storage (1 °C, RH 99%) to evaluate fruit tolerance at 200, 400 and 800 Gy. Irradiation at 200 and 400 Gy had no undesirable effects on fruit quality (pulp firmness, external colour, soluble solids content (SSC), titratable acidity (TA) and sensory evaluations). Irradiation of 'Red Delicious' apples and 'Packham's Triumph' pears can be applied as a commercial quarantine treatment with a minimum absorbed dose of 200 Gy (to control codling moth and Oriental fruit moth) and <800 Gy (according to quality results).

  14. Choristoneura fumiferana Granulovirus p74 protein, a highly conserved baculoviral envelope protein.

    PubMed

    Rashidan, Kianoush Khajeh; Nassoury, Nasha; Tazi, Samia; Giannopoulos, Paresa N; Guertin, Claude

    2003-09-30

    A gene that encodes a homologue to baculoviral p74, an envelope-associated viral structural protein, has been identified and sequenced on the genome of Choristoneura fumiferana granulovirus (ChfuGV). A part of the ChfuGV p74 gene was located on an 8.9 kb BamHI subgenomic fragment using different sets of degenerated primers. These were designed using the results of the protein sequencing of a major 74 kDa structural protein that is associated with the occlusion-derived virus (ODV). The gene has a 1992 nucleotide (nt) open-reading frame (ORF) that encodes a protein with 663 amino acids with a predicted molecular mass of 74,812 Da. Comparative studies revealed the presence of two major conserved regions in the ChfuGV p74 protein. This study also shows that all of the p74 proteins contain two putative transmembrane domains at their C-terminal segments. At the nucleotide sequence level, two late promoter motifs (TAAG and GTAAG) were located upstream of the first ATG of the p74 gene. The gene contained a canonical poly(A) signal, AATAAA, at its 3 non-translated region. A phylogenetic tree for baculoviral p74 was constructed using a maximum parsimony analysis. The phylogenetic estimation demonstrated that ChfuGV p74 is related the closest to those of Cydia pomonella granulovirus (CpGV) and Phthorimaea operculella granulovirus (PhopGV).

  15. Choristoneura fumiferana granulovirus: sequence analysis and 5' characterization of ORF891.

    PubMed

    Bah, A; Lucarotti, C J; Arella, M; Guertin, C

    1999-01-01

    A gene located immediately upstream of the granulin gene of Choristoneura fumiferana (ChfuGV) granulovirus was identified, sequenced and named ORF891. The determined, putative open reading frame (ORF) of 891 bp encodes an estimated 34.6 kDa protein. The 5' end transcript of the gene was mapped and analysed. A putative promoter region organization of ChfuGV ORF891 contains a consensus late baculovirus promoter element, TAAG, and two putative early TATA boxes similar to the promoters of ORF909 of Cryptophlebia leucotreta granulovirus (ClGV). Sequence comparisons of ChfuGV ORF891 with ClGV ORF909 and Cydia pomonella granulovirus (CpGV) ORF124R showed respective homologies of 60.9 and 63.9% for nucleotides and 46.3% and 49.3% for amino acids. Homology of ChfuGV ORF891 with ME53 ORF of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) was 68.2% for nucleotides but a total lack of homology for amino acid sequences. Two zinc finger motifs are also associated with ChfuGV ORF891.

  16. Cost-benefit trade-offs of bird activity in apple orchards.

    PubMed

    Peisley, Rebecca K; Saunders, Manu E; Luck, Gary W

    2016-01-01

    Birds active in apple orchards in south-eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south-eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems.

  17. "This is not an apple"-yeast mutualism in codling moth.

    PubMed

    Witzgall, Peter; Proffit, Magali; Rozpedowska, Elzbieta; Becher, Paul G; Andreadis, Stefanos; Coracini, Miryan; Lindblom, Tobias U T; Ream, Lee J; Hagman, Arne; Bengtsson, Marie; Kurtzman, Cletus P; Piskur, Jure; Knight, Alan

    2012-08-01

    The larva of codling moth Cydia pomonella (Tortricidae, Lepidoptera) is known as the worm in the apple, mining the fruit for food. We here show that codling moth larvae are closely associated with yeasts of the genus Metschnikowia. Yeast is an essential part of the larval diet and further promotes larval survival by reducing the incidence of fungal infestations in the apple. Larval feeding, on the other hand, enables yeast proliferation on unripe fruit. Chemical, physiological and behavioral analyses demonstrate that codling moth senses and responds to yeast aroma. Female moths are attracted to fermenting yeast and lay more eggs on yeast-inoculated than on yeast-free apples. An olfactory response to yeast volatiles strongly suggests a contributing role of yeast in host finding, in addition to plant volatiles. Codling moth is a widely studied insect of worldwide economic importance, and it is noteworthy that its association with yeasts has gone unnoticed. Tripartite relationships between moths, plants, and microorganisms may, accordingly, be more widespread than previously thought. It, therefore, is important to study the impact of microorganisms on host plant ecology and their contribution to the signals that mediate host plant finding and recognition. A better comprehension of host volatile signatures also will facilitate further development of semiochemicals for sustainable insect control.

  18. Effects of short photoperiod on codling moth diapause and survival.

    PubMed

    Neven, Lisa G

    2013-02-01

    The potential presence of codling moth, Cydia pomonella L., in apples shipped to countries within the 30th latitudes has raised concerns that this pest could establish and spread in these countries. Previous research demonstrated that codling moth in apples handled under simulated commercial cold storage conditions and held under short day lengths could not break diapause and emerge in sufficient numbers to establish a minimum viable population. This study expands the in-fruit work by examining the ability of codling moth to establish a laboratory population under a short photoperiod of 12:12 (L:D) h, as compared with a long photoperiod of 16:8 (L:D) h. Codling moth larvae were collected from field infested fruits in 2010 and 2011. Moths were collected from the infested fruits and separated into two groups representing the two daylength conditions. In total, 1,004 larvae were monitored for adult emergence and ability to generate a subsequent population. Larvae held under the photoperiod of 12:12 (L:D) h generated only one moth in the 2 yr period, whereas larvae held under the photoperiod of 16:8 (L:D) h generated 186 females and 179 males, that sustained subsequent generations on artificial diet under laboratory conditions. These results indicate that under controlled environmental conditions, codling moth cannot complete diapause and emerge in sufficient numbers to sustain a viable population when held under a short photoperiod.

  19. Quality of mass-reared codling moth (Lepidoptera: Tortricidae) after long-distance transportation: 1. Logistics of shipping procedures and quality parameters as measured in the laboratory.

    PubMed

    Blomefield, T; Carpenter, J E; Vreysen, M J B

    2011-06-01

    The sterile insect technique (SIT) is a proven effective control tactic against lepidopteran pests when applied in an areawide integrated pest management program. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of sterile insects could be made more cost-effective through the importation of sterile moths produced in other production centers. For codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), this is an attractive option because mating studies have confirmed the absence of mating barriers between codling moth populations from geographically different areas. To assess the feasibility of long-distance transportation of codling moths, pupae and adult moths were transported in 2004 from Canada to South Africa in four shipments by using normal commercial transport routes. The total transport time remained below 67 h in three of the consignments, but it was 89 h in the fourth consignment. Temperature in the shipping boxes was fairly constant and remained between -0.61 and 0.16 degrees C for 76.8-85.7% of the time. The data presented indicate that transporting codling moths as adults and pupae from Canada to South Africa had little effect on moth emergence, longevity, and ability to mate, as assessed in the laboratory. These results provide support to the suggestion that the STT for codling moth in pome fruit production areas might be evaluated and implemented by the importation of irradiated moths from rearing facilities in a different country or hemisphere.

  20. N-Butyl sulfide as an attractant and coattractant for male and female codling moth (Lepidoptera: Tortricidae).

    PubMed

    Landolt, Peter J; Ohler, Bonnie; Lo, Peter; Cha, Dong; Davis, Thomas S; Suckling, David M; Brunner, Jay

    2014-04-01

    Research to discover and develop attractants for the codling moth, Cydia pomonella L., has involved identification of the chemicals eliciting moth orientation to conspecific female moths, host fruits, fermented baits, and species of microbes. Pear ester, acetic acid, and N-butyl sulfide are among those chemicals reported to attract or enhance attractiveness to codling moth. We evaluated the trapping of codling moth with N-butyl sulfide alone and in combination with acetic acid and pear ester in apple orchards. Acetic acid was attractive in two tests and N-butyl sulfide was attractive in one of two tests. N-Butyl sulfide increased catches of codling moth when used with acetic acid to bait traps. N-Butyl sulfide also increased catches of codling moth when added to traps baited with the combination of acetic acid and pear ester. Male and female codling moth both responded to these chemicals and chemical combinations. These results provide a new three-component lure comprising N-butyl sulfide, acetic acid, and pear ester that is stronger for luring codling moth females than other attractants tested.

  1. Toxicity of Six Insecticides on Codling Moth (Lepidoptera: Tortricidae) and Effect on Expression of Detoxification Genes.

    PubMed

    Yang, Xue-Qing; Wu, Zheng-Wei; Zhang, Ya-Lin; Barros-Parada, Wilson

    2016-02-01

    The codling moth, Cydia pomonella (L.), is a key worldwide fruit pest that has evolved high levels of resistance to almost all classes of conventional insecticides. Neonicotinoids, a new reduced-risk biorational insecticide class, have remained an effective control approach. In this study, the toxicity and sublethal effect of conventional and reduced-risk biorational insecticides on transcripts abundance of three detoxification genes in codling moth were determined. Bioassays on a codling moth laboratory strain suggested that acetamiprid had the highest oral toxicity against the third-instar larvae compared with the other five pesticides. Results also indicated that acetamiprid exhibits long-term efficacy against codling moth even at 120 h post feeding. Real-time quantitative polymerase chain reaction showed that the detoxification genes CYP9A61, CpGST1, and CpCE-1 were differentially induced or suppressed by deltamethrin, cypermethrin, methomyl, carbaryl, and imidacloprid, depending on the type of insecticides; in contrast, no significant difference in CYP9A61, CpGST1, and CpCE-1 expressions were observed after acetamiprid exposure, when compared with the control. These results suggest that the reduced-risk biorational insecticide acetamiprid is an effective insecticide with no induction of detoxification genes and can be integrated into the management of codling moth.

  2. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  3. Cost-benefit trade-offs of bird activity in apple orchards

    PubMed Central

    Saunders, Manu E.; Luck, Gary W.

    2016-01-01

    Birds active in apple orchards in south–eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south–eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems. PMID:27413639

  4. Respiratory response of fifth-instar codling moth (Lepidoptera: Tortricidae) to rapidly changing temperatures.

    PubMed

    Neven, L G

    1998-02-01

    Fifth-instar codling moth, Cydia pomonella (L.), larvae were exposed to 10 simulated heat treatments of apples and pears and CO2 levels were monitored as a measure of respiration. Marked increases in respiration rates (microliter CO2/mg/min) were noted during these treatments. Respiration peaked between 3.5 and 4.8 microliters CO2/mg/min; the amount of time to peak respiration depended on the heating rate and was correlated to the LT95. No differences were observed between male and female larvae in the timing of the peaks of CO2 production. In treatments where mortality occurred, CO2 levels dropped to zero, but only after a considerable time after death. Respiratory recovery rates, the time it took for CO2 levels to return to normal, were recorded after treatments at time points where CO2 production reached 3/4 and maximum peak. Respiration rates at constant temperatures were recorded within the range of 10-30 degrees C. Q10 over this range was 1.49, whereas Q10 was the greatest, 2.54, between 10 and 15 degrees C.

  5. Neural coding merges sex and habitat chemosensory signals in an insect herbivore

    PubMed Central

    Trona, Federica; Anfora, Gianfranco; Balkenius, Anna; Bengtsson, Marie; Tasin, Marco; Knight, Alan; Janz, Niklas; Witzgall, Peter; Ignell, Rickard

    2013-01-01

    Understanding the processing of odour mixtures is a focus in olfaction research. Through a neuroethological approach, we demonstrate that different odour types, sex and habitat cues are coded together in an insect herbivore. Stronger flight attraction of codling moth males, Cydia pomonella, to blends of female sex pheromone and plant odour, compared with single compounds, was corroborated by functional imaging of the olfactory centres in the insect brain, the antennal lobes (ALs). The macroglomerular complex (MGC) in the AL, which is dedicated to pheromone perception, showed an enhanced response to blends of pheromone and plant signals, whereas the response in glomeruli surrounding the MGC was suppressed. Intracellular recordings from AL projection neurons that transmit odour information to higher brain centres, confirmed this synergistic interaction in the MGC. These findings underscore that, in nature, sex pheromone and plant odours are perceived as an ensemble. That mating and habitat cues are coded as blends in the MGC of the AL highlights the dual role of plant signals in habitat selection and in premating sexual communication. It suggests that the MGC is a common target for sexual and natural selection in moths, facilitating ecological speciation. PMID:23595270

  6. 77 FR 24695 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ...: ER12-1557-000. Applicants: Southern California Edison Company. Description: Amended LGIA Manzana Wind LLC, Manzana Wind Project to be effective 6/18/2012. Filed Date: 4/18/12. Accession Number:...

  7. A field test for host discrimination and avoidance behavior for Rhagoletis pomonella flies in the western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prezygotic isolation due to habitat choice is important to many models of speciation-with-gene-flow. Habitat choice is usually thought to occur through positive preferences of organisms for particular environments. However, avoidance of non-natal environments may also play a role in choice and have ...

  8. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the Northwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization could be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine...

  9. Effect of temperature on long-term storage of codling moth granulovirus formulations.

    PubMed

    Lacey, Lawrence A; Headrick, Heather L; Arthurs, Steven P

    2008-04-01

    Codling moth, Cydia pomonella (L.), is the major pest of apple (Malus spp.) in the western United States and many other regions of the world. The codling moth granulovirus (CpGV) provides a selective and safe means of its control. We assessed the long-term stability and storage potential of two commercial formulations of CpGV, Cyd-X, and Virosoft. All assays were performed with individual C. pomonella neonate larvae in 2-ml vials on 1 ml of artificial larval diet that was surface inoculated with 10 microl of the test virus suspension. Baseline quantitative assays for the two formulations revealed that the LC50 and LC95 values (occlusion bodies per vial) did not differ significantly between the formulations. For year-long studies on Cyd-X stability, the product was stored at -20, 2, 25, and 35 degrees C, and quantitative bioassays were conducted after 0, 3, 6, and 12 mo of storage. Cyd-X retained good larvicidal activity from -20 to 25 degrees C, and it was the least negatively affected at the lowest temperature. Storage of Cyd-X at 35 degrees C was detrimental to its larvicidal activity within 3 mo of storage. For longer term storage studies, Cyd-X and Virosoft formulations were stored at 2, 25, and 35 degrees C, and assayed for larvicidal activity over a 3-yr period. For recently produced product, a 10-microl sample of a 10(-5) dilution of both formulations resulted in 95-100% mortality in neonate larvae. Larvicidal activity for the Cyd-X formulation remained essentially unaffected for 156 wk when stored at 2 and 25 degrees C, but it began to decline significantly after 20 wk of storage at 35 degrees C. The Virosoft formulation stored at 2 degrees C also remained active throughout the 3-yr study, but it began to decline in larvicidal activity after 144 wk at 25 degrees C and 40 wk at 35 degrees C. The information reported in this study should be useful to growers and commercial suppliers for avoiding decreases in CpGV potency due to improper storage conditions.

  10. Decriptions of new Tortricidae (Lepidoptera) reared from native fruit in Kenya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new genera (Concinocordis and Crotalaria) and 13 new species (Eugnosta kenyana, Eugnosta kereitana, Crotalaria crotalariae, Concinocordis wilsonarum, Anthozela psychotriae, Cosmetra podocarpivora, Cosmetra taitana, Gypsonoma scolopiae, Thaumatotibia salaciae, Cydia connara, Cydia sennae, Stenent...

  11. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38

    PubMed Central

    Gebhardt, Manuela M.; Eberle, Karolin E.; Radtke, Pit; Jehle, Johannes A.

    2014-01-01

    The baculovirus Cydia pomonella granulovirus (CpGV) is widely applied as a biocontrol agent of codling moth. After field resistance of codling moth populations had been observed against the commercially used Mexican (M) isolate of CpGV, infection experiments of larvae of the resistant codling moth strain CpRR1 showed that several other naturally occurring CpGV isolates (I12, S, E2, and I07) from different geographic origins are still infectious to resistant CpRR1. Whole-genome sequencing and phylogenetic analyses of these geographic CpGV variants revealed that their genomes share only a single common difference from that of CpGV-M, which is a mutation coding for a repeat of 24 nucleotides within the gene pe38; this mutation results in an additional repeat of eight amino acids that appears to be inserted to PE38 of CpGV-M only. Deletion of pe38 from CpGV-M totally abolished virus infection in codling moth cells and larvae, demonstrating that it is an essential gene. When the CpGV-M deletion mutant was repaired with pe38 from isolate CpGV-S, which originated from the commercial product Virosoft and is infectious for the resistant codling moth strain CpRR1, the repaired CpGV-M mutant was found to be fully infectious for CpRR1. Repair using pe38 from CpGV-M restored infectivity for the virus in sensitive codling moth strains, but not in CpRR1. Therefore, we conclude that CpGV resistance of codling moth is directed to CpGV-M but not to other virus isolates. The viral gene pe38 is not only essential for the infectivity of CpGV but it is also the key factor in overcoming CpGV resistance in codling moth. PMID:25331863

  12. Population Dynamics and Flight Phenology Model of Codling Moth Differ between Commercial and Abandoned Apple Orchard Ecosystems.

    PubMed

    Joshi, Neelendra K; Rajotte, Edwin G; Naithani, Kusum J; Krawczyk, Greg; Hull, Larry A

    2016-01-01

    Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae), which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight, and egg-hatch) allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator) that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth) models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e., PETE model). In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology.

  13. Improved monitoring of female codling moth (Lepidoptera: Tortricidae) with pear ester plus acetic acid in sex pheromone-treated orchards.

    PubMed

    Knight, Alan

    2010-08-01

    The performance of clear delta traps baited with 3.0 mg of pear ester, ethyl (E,Z)-2,4-decadienoate, and 5.0 ml of acetic acid in separate lures was compared with orange delta traps baited with a single lure containing 3.0 mg of both pear ester and the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) for codling moth, Cydia pomonella (L.), in apple, Malus domestica (Borkhausen). Residual analyses and field tests demonstrated that both the pear ester and acetic acid lures were effective for at least 8 wk. The two trap-lure combinations caught a similar number of total moths in an orchard treated with sex pheromone dispensers during short-term trials in 2008. However, the mean catch of female moths was significantly higher and male moths significantly lower in clear traps baited with pear ester and acetic acid versus orange traps baited with pear ester and codlemone. Season-long studies were conducted with these two trap-lure combinations in orchards treated with (n = 6) and without (n = 7) sex pheromone dispensers during 2009. The two trap-lure combinations caught similar numbers of moths in dispenser-treated orchards. In contrast, total catch was significantly higher (>2-fold) in the orange compared with the clear traps in untreated orchards. The clear caught >6-fold more females than the orange trap in both types of orchards. These studies suggest that deploying clear delta traps baited with pear ester and acetic acid can be an effective monitoring tool for female codling moth and an alternative to codlemone-baited traps in sex pheromone-treated orchards.

  14. Effect of Over-Tree Evaporative Cooling in Orchards on Microclimate and Accuracy of Insect Model Predictions.

    PubMed

    Chambers, Ute; Jones, Vincent P

    2015-12-01

    Orchard design and management practices can alter microclimate and, thus, potentially affect insect development. If sufficiently large, these deviations in microclimate can compromise the accuracy of phenology model predictions used in integrated pest management (IPM) programs. Sunburn causes considerable damage in the Pacific Northwest, United States, apple-producing region. Common prevention strategies include the use of fruit surface protectants, evaporative cooling (EC), or both. This study focused on the effect of EC on ambient temperatures and model predictions for four insects (codling moth, Cydia pomonella L.; Lacanobia fruitworm, Lacanobia subjuncta Grote and Robinson; oblique-banded leafroller, Choristoneura rosaceana Harris; and Pandemis leafroller, Pandemis pyrusana Kearfott). Over-tree EC was applied in July and August when daily maximum temperatures were predicted to be ≥30°C between 1200-1700 hours (15/15 min on/off interval) in 2011 and between 1200-1800 hours (15/10 min on/off interval, or continuous on) in 2012. Control plots were sprayed once with kaolin clay in early July. During interval and continuous cooling, over-tree cooling reduced average afternoon temperatures compared with the kaolin treatment by 2.1-3.2°C. Compared with kaolin-treated controls, codling moth and Lacanobia fruitworm egg hatch in EC plots was predicted to occur up to 2 d and 1 d late, respectively. The presence of fourth-instar oblique-banded leafroller and Pandemis leafroller was predicted to occur up to 2 d and 1 d earlier in EC plots, respectively. These differences in model predictions were negligible, suggesting that no adjustments in pest management timing are needed when using EC in high-density apple orchards.

  15. Use of glacial acetic acid to enhance bisexual monitoring of tortricid pests with kairomone lures in pome fruits.

    PubMed

    Knight, A L; Hilton, R; Basoalto, E; Stelinski, L L

    2014-12-01

    Studies were conducted to assess glacial acetic acid (GAA) with various host plant volatiles (HPVs) and the sex pheromone, (E,E)-8, 10-dodecadien-1-ol, of codling moth, Cydia pomonella (L), as lures in traps for tortricid pests that often co-occur in tree fruits in the western United States. In addition to codling moth, field trapping studies were conducted with oriental fruit moth, Grapholita molesta (Busck), obliquebanded leafroller Choristoneura rosaceana (Harris), the leafroller Pandemis pyrusana Kearfott, and the eyespotted budmoth, Spilonota ocellana (Denis and Schiffermüller). HPVs included ethyl (E,Z)-2,4-decadienoate (pear ester), (E)-4,8-dimethyl-1,3,7-nonatriene, butyl hexanoate, (E)-β-ocimene, (E)-β-farnesene, and farnesol. Three types of GAA co-lures differing in a 10-fold range in weekly evaporation rates were tested. The evaporation rate of GAA co-lures was an important factor affecting moth catches. The highest rate tested captured fewer codling moth but more leafrollers and eyespotted budmoth. GAA co-lures caught both sexes of each species. The field life of butyl hexanoate and (E)-β-ocimene lures were much shorter than pear ester or sex pheromone lures. Adding GAA to pear ester or to (E)-β-ocimene significantly increased the catches of only codling moth or oriental fruit moth, respectively. Combining pear ester or (E)-β-ocimene with GAA did not affect the catch of either species compared with the single more attractive HPV. Adding HPVs to GAA did not increase the catches of either leafroller species or eyespotted budmoth. Traps baited with pear ester, sex pheromone, and GAA for monitoring codling moth were also effective in classifying pest pressure of both leafroller species within orchards.

  16. Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy.

    PubMed

    Ioriatti, Claudio; Lucchi, Andrea

    2016-07-01

    - This review summarizes work done in Italy in taking semiochemical-based management of orchard and vineyard pests from the research and development stage to successful commercial deployment. Mating disruption (MD) of codling moth Cydia pomonella (CM) was originally introduced into the Trentino-South Tyrol areas to address the development of CM resistance to insecticides, particularly insect growth regulators (IGRs), and to mitigate the conflict at the rural/urban interface related to the extensive use of insecticides. Although the mountainous terrain of the area was not optimal for the efficacy of MD, commitment and determination led to the rapid adoption of MD technology throughout the region. Grower cooperatives and their field consultants were strongly influential in convincing growers to accept MD technology. Public research institutions conducted extensive research and education, and provided credible assessments of various MD technologies. By 2016, the deployment of MD in effective area-wide strategies in apple (22,100 ha) and grapes (10,450 ha), has resulted in better control of tortricid moth pests and a substantial decrease in insecticide use. Collaboration between the research community and the pheromone industry has resulted in the development of increasingly effective single-species dispensers, as well as multi-species dispensers for the control of both target and secondary pests. Over the last 20 years, hand-applied reservoir dispensers have shown excellent efficacy in both apple and grapes. Recently, aerosol dispensing systems have been shown to be effective in apple orchards. Further research is needed on the efficacy of aerosols in vineyards before the technology can be widely adopted. The successful implementation of MD in apple and grape production in Trentino-South Tyrol is expediting adoption of the technology in other Italian fruit production regions.

  17. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features.

    PubMed

    Síchová, Jindra; Nguyen, Petr; Dalíková, Martina; Marec, František

    2013-01-01

    Moths of the family Tortricidae constitute one of the major microlepidopteran groups in terms of species richness and economic importance. Yet, despite their overall significance, our knowledge of their genome organization is very limited. In order to understand karyotype evolution in the family Tortricidae, we performed detailed cytogenetic analysis of Grapholita molesta, G. funebrana, Lobesia botrana, and Eupoecilia ambiguella, representatives of two main tortricid subfamilies, Olethreutinae and Tortricinae. Besides standard cytogenetic methods, we used fluorescence in situ hybridization for mapping of major rRNA and histone gene clusters and comparative genomic hybridization to determine the level of molecular differentiation of the W and Z sex chromosomes. Our results in combination with available data in the codling moth, Cydia pomonella, and other tortricids allow us a comprehensive reconstruction of chromosomal evolution across the family Tortricidae. The emerging picture is that the karyotype of a common ancestor of Tortricinae and Olethreutinae differentiated from the ancestral lepidopteran chromosome print of n = 31 by a sex chromosome-autosome fusion. This rearrangement resulted in a large neo-sex chromosome pair and a karyotype with n = 30 conserved in most Tortricinae species, which was further reduced to n = 28 observed in Olethreutinae. Comparison of the tortricid neo-W chromosomes showed differences in their structure and composition presumably reflecting stochasticity of molecular degeneration of the autosomal part of the neo-W chromosome. Our analysis also revealed conservative pattern of the histone distribution, which is in contrast with high rDNA mobility. Despite the dynamic evolution of rDNA, we can infer a single NOR-chromosome pair as an ancestral state not only in tortricids but probably in all Lepidoptera. The results greatly expand our knowledge of the genome architecture in tortricids, but also contribute to the

  18. Chromosomal Evolution in Tortricid Moths: Conserved Karyotypes with Diverged Features

    PubMed Central

    Šíchová, Jindra; Nguyen, Petr; Dalíková, Martina; Marec, František

    2013-01-01

    Moths of the family Tortricidae constitute one of the major microlepidopteran groups in terms of species richness and economic importance. Yet, despite their overall significance, our knowledge of their genome organization is very limited. In order to understand karyotype evolution in the family Tortricidae, we performed detailed cytogenetic analysis of Grapholita molesta, G. funebrana, Lobesia botrana, and Eupoecilia ambiguella, representatives of two main tortricid subfamilies, Olethreutinae and Tortricinae. Besides standard cytogenetic methods, we used fluorescence in situ hybridization for mapping of major rRNA and histone gene clusters and comparative genomic hybridization to determine the level of molecular differentiation of the W and Z sex chromosomes. Our results in combination with available data in the codling moth, Cydia pomonella, and other tortricids allow us a comprehensive reconstruction of chromosomal evolution across the family Tortricidae. The emerging picture is that the karyotype of a common ancestor of Tortricinae and Olethreutinae differentiated from the ancestral lepidopteran chromosome print of n = 31 by a sex chromosome-autosome fusion. This rearrangement resulted in a large neo-sex chromosome pair and a karyotype with n = 30 conserved in most Tortricinae species, which was further reduced to n = 28 observed in Olethreutinae. Comparison of the tortricid neo-W chromosomes showed differences in their structure and composition presumably reflecting stochasticity of molecular degeneration of the autosomal part of the neo-W chromosome. Our analysis also revealed conservative pattern of the histone distribution, which is in contrast with high rDNA mobility. Despite the dynamic evolution of rDNA, we can infer a single NOR-chromosome pair as an ancestral state not only in tortricids but probably in all Lepidoptera. The results greatly expand our knowledge of the genome architecture in tortricids, but also contribute to the

  19. Relationship between behavior and physiology in an invasive pest species: oviposition site selection and temperature-dependent development of the oriental fruit moth (Lepidoptera: Tortricidae).

    PubMed

    Notter-Hausmann, Claudia; Dorn, Silvia

    2010-04-01

    Oviposition site selection is crucial for the reproductive success of a herbivore insect species with relatively sedentary larvae. The optimal oviposition theory, i.e., the preference-performance hypothesis, has thus far mainly been tested with a focus on nutritional quality of the host. This study investigates whether female oriental fruit moth Grapholita (Cydia) molesta choose a microhabitat for oviposition characterized by a temperature range within which their offspring perform best. Thermal preferences of females during oviposition were assessed in a circular temperature gradient arena. Offspring performance and survival were assessed under different constant temperature conditions. Females preferred oviposition sites of approximately 30 degrees C over lower and higher temperatures. At this temperature, egg, larval, and pupal development was significantly faster than at 22 and 25 degrees C, and larval development was also faster than at 33 degrees C. At 30 degrees C and at the lower temperatures tested, survival of eggs and larvae was significantly higher than at 33 degrees C, whereas development was precluded at 35 degrees C. Furthermore, female pupal weight attained at 30 and 33 degrees C exceeded that reached at the lower temperatures tested. Considering the potentially reduced predation risk caused by the shorter developmental time of eggs and larvae, the laboratory data suggest that this species maximizes its fitness by selecting a thermally optimal environment for its offspring, supporting the optimal oviposition theory. Conversely, it is known that the codling moth (C. pomonella) lacks a mechanism to avoid temperatures lethal to progeny development, which may reflect the differences in geographic ranges of these tortricids.

  20. Role of plant volatiles and hetero-specific pheromone components in the wind tunnel response of male Grapholita molesta (Lepidoptera: Tortricidae) to modified sex pheromone blends.

    PubMed

    Ammagarahalli, B; Chianella, L; Gomes, P; Gemeno, C

    2017-02-27

    Female Grapholita molesta (Busck) release a pheromone blend composed of two stereoisomeric acetates (Z8-12:Ac and E8-12:Ac), which in a 100:6 ratio stimulate maximum conspecific male approach. Z8-12:OH is described as a third pheromone component that increases responses to the acetate blend. Departures from the optimal pheromone blend ratio, or too high or low pheromone doses of the optimal blend ratio, result in lower male response. In a previous study, we show that plant volatiles synergize male response to a suboptimal-low pheromone concentration. In the present study, we show that the plant blend does not synergize male response to a suboptimal-high pheromone dose. The plant blend, however, synergized male response to pheromone blends containing unnatural Z:E-acetate isomer ratios. We revisited the role of alcohols in the pheromone response of G. molesta by replacing Z8-12:OH with conspecific and heterospecific pheromone alcohols or with plant odors. Codlemone, the alcohol sex pheromone of Cydia pomonella L., E8, E10-12:OH, did supplant the role of Z8-12:OH, and so did the plant volatile blend. Dodecenol (12:OH), which has been described as a fourth pheromone component of G. molesta, also increased responses, but not as much as Z8-12:OH, codlemone or the plant blend. Our results reveal new functions for plant volatiles on moth sex pheromone response under laboratory conditions, and shed new light on the role of alcohol ingredients in the pheromone blend of G. molesta.

  1. Sequence analysis of the Choristoneura occidentalis granulovirus genome.

    PubMed

    Escasa, Shannon R; Lauzon, Hilary A M; Mathur, Amanda C; Krell, Peter J; Arif, Basil M

    2006-07-01

    The genome of the Choristoneura occidentalis granulovirus (ChocGV) isolated from the western spruce budworm, Choristoneura occidentalis, was sequenced completely. It was 104,710 bp long, with a 67.3% A+T content and contained 116 potential open reading frames (ORFs) covering 88.4% of the genome. Of these, 29 ORFs were conserved in all fully sequenced baculovirus genomes, 30 were GV-specific, 53 were present in some nucleopolyhedroviruses (NPVs) and/or GVs, three were common to ChocGV and Choristoneura fumiferana GV (ChfuGV) and one was so far unique. To date, ChocGV is the only GV identified that contains a homologue of the apoptosis inhibitor protein P35/P49, present in some group I NPVs. It is also the first GV without a Xestia c-nigrum GV ORF 26 homologue. Five homologous regions (hrs)/repeat regions, lacking typical NPV hr palindromes were identified. ChocGV hrs were similar to each other but not to other GV hrs. A 1.8 kb repeat region with a high A+T content (81%) and multiple repeats of 21-210 bp was found between choc36 and 37. This area resembled the non-homologous region origin of DNA replication (non-hr ori) identified in Cryptophlebia leucotreta GV (CrleGV) and Cydia pomonella GV (CpGV). Based on the mean amino acid identities of homologous proteins, ChocGV was closest to fully sequenced genomes CpGV (52.3%) and CrleGV (52.1%). The closest amino acid identity was to individual ORFs from the partially sequenced ChfuGV genome (97.2% in 38 ORFs). Phylogenetic analysis placed ChocGV in a clade with CrleGV and CpGV.

  2. Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein.

    PubMed

    Gomis-Cebolla, Joaquín; Ruiz de Escudero, Iñigo; Vera-Velasco, Natalia Mara; Hernández-Martínez, Patricia; Hernández-Rodríguez, Carmen Sara; Ceballos, Tomás; Palma, Leopoldo; Escriche, Baltasar; Caballero, Primitivo; Ferré, Juan

    2017-01-01

    The Vip3Ca protein, discovered in a screening of Spanish collections of Bacillus thuringiensis, was known to be toxic to Chrysodeixis chalcites, Mamestra brassicae and Trichoplusia ni. In the present study, its activity has been tested with additional insect species and we found that Cydia pomonella is moderately susceptible to this protein. Vip3Ca (of approximately 90kDa) was processed to an approximately 70kDa protein when incubated with midgut juice in all tested species. The kinetics of proteolysis correlated with the susceptibility of the insect species to Vip3Ca. The activation was faster to slower in the following order: M. brassicae (susceptible), Spodoptera littoralis (moderately susceptible), Agrotis ipsilon and Ostrinia nubilalis (slightly susceptible). Processing Vip3Ca by O. nubilalis or M. brassicae midgut juice did not significantly changed its toxicity to either insect species, indicating that the low susceptibility of O. nubilalis is not due to a problem in the midgut processing of the toxin. M. brassicae larvae fed with Vip3Ca showed binding of this toxin to the apical membrane of the midgut epithelial cells. Histopathological inspection showed sloughing of the epithelial cells with further disruption, which suggests that the mode of action of Vip3Ca is similar to that described for Vip3Aa. Biotin-labeled Vip3Ca and Vip3Aa bound specifically to M. brassicae brush border membrane vesicles and both toxins competed for binding sites. This result suggests that insects resistant to Vip3A may also be cross-resistant to Vip3C, which has implications for Insect Resistance Management (IRM).

  3. Monitoring codling moth (Lepidoptera: Tortricidae) with passive interception traps in sex pheromone-treated apple orchards.

    PubMed

    Knight, A L

    2000-12-01

    Male and female codling moth, Cydia pomonella (L.), were monitored with passive interception traps (PI-traps) in apple orchards treated with sex pheromone dispensers. The proportion of mated females recaptured by PI-traps was significantly higher than the proportion released after the release of both sexes into a codling moth-infested orchard. However, no significant difference occurred between the proportion of mated females recaptured and released when only females were released into uninfested orchards. Replicated nine-tree apple plots situated either on the edge or in the center ofpheromone-treated apple orchards were monitored with PI-traps during first moth flight in 1995 and during both flights in 1996. Moths caught on PI-traps were predominately males. The first male moths were captured 7-10 d before females during the first flight in both years. Initial capture of virgin and mated females on PI-traps coincided in 1995. Mated females were captured 14 d after the first virgin females in 1996. The mean proportion of females that were mated ranged from 32 to 55% during the first flight and 85 to 92% during the second flight. Moth catch and fruit injury were significantly higher in the edge versus the center plots. The numbers of total and female moths caught with PI-traps were significantly correlated with fruit injury for each generation. The percentage of female moths caught on PI-traps that were mated was 32% lower and the mean oocyte load of all females was 42% higher in a pheromone-treated apple orchard than in the untreated crabapple grove monitored during May and June 1997.

  4. Improving the Performance of the Granulosis Virus of Codling Moth (Lepidoptera: Tortricidae) by Adding the Yeast Saccharomyces cerevisiae with Sugar.

    PubMed

    Knight, Alan L; Basoalto, Esteban; Witzgall, Peter

    2015-04-01

    Studies were conducted with the codling moth granulosis virus (CpGV) to evaluate whether adding the yeast Saccharomyces cerevisiae Meyen ex E. C. Hansen with brown cane sugar could improve larval control of Cydia pomonella (L.). Larval mortalities in dipped-apple bioassays with S. cerevisiae or sugar alone were not significantly different from the water control. The addition of S. cerevisiae but not sugar with CpGV significantly increased larval mortality compared with CpGV alone. The combination of S. cerevisiae and sugar with CpGV significantly increased larval mortality compared with CpGV plus either additive alone. The addition of S. cerevisiae improved the efficacy of CpGV similarly to the use of the yeast Metschnikowia pulcherrima (isolated from field-collected larvae). The proportion of uninjured fruit in field trials was significantly increased with the addition of S. cerevisiae and sugar to CpGV compared with CpGV alone only in year 1, and from the controls in both years. In comparison, larval mortality was significantly increased in both years with the addition of S. cerevisiae and sugar with CpGV compared with CpGV alone or from the controls. The numbers of overwintering larvae on trees was significantly reduced from the control following a seasonal program of CpGV plus S. cerevisiae and sugar. The addition of a microencapsulated formulation of pear ester did not improve the performance of CpGV or CpGV plus S. cerevisiae and sugar. These data suggest that yeasts can enhance the effectiveness of the biological control agent CpGV, in managing and maintaining codling moth at low densities.

  5. Identification, characterization and phylogenic analysis of conserved genes within the odvp-6e/odv-e56 gene region of Choristoneura fumiferana granulovirus.

    PubMed

    Rashidan, Kianoush Khajeh; Nassoury, Nasha; Giannopoulos, Paresa N; Mauffette, Yves; Guertin, Claude

    2004-03-31

    The genes that are located within the odvp-6e/odv-e56 region of the Choristoneura fumiferana granulovirus (ChfuGV) were identified by sequencing the 11 kb BamHI restriction fragment on the ChfuGV genome. The global GC content that was calculated from the data obtained from this genomic region was 34.96%. The open-reading frames (ORFs), located within the odvp-6e/odv-e56 region, are presented and compared to the equivalent ORFs that are located at the same region in other GVs. This region is composed of 14 ORFs, including three ORFs that are unique to ChfuGV with no obvious homologues in other baculoviruses as well as eleven ORFs with homologues to granuloviral ORFs, such as granulin, CfORF2, pk-1, ie-1, odv-e18, p49, and odvp-6e/odv-e56. In this study, the conceptual products of seven major conserved ORFs (granulin, CfORF2, IE-1, ODV-E18, p49 and ODVP-6E/ODV-E56) were used in order to construct phylogenetic trees. Our results show that granuloviruses can be grouped in 2 distinct groups as follows: Group I; Choristoneura fumiferana granulovirus (ChfuGV), Cydia pomonella granulovirus (CpGV), Phthorimaea operculella granulovirus (PhopGV), and Adoxophyes orana granulovirus (AoGV). Group II; Xestia c-nigrum granulovirus (XcGV), Plutella xylostella granulovirus (PxGV), and Trichoplusia ni granulovirus (TnGV). The ChfuGV conserved proteins are most closely related to those of CpGV, PhopGV, and AoGV. Comparative studies, performed on gene arrangements within this region of genomes, demonstrated that three GVs from group I maintain similar gene arrangements.

  6. Identification and characterization of a putative baculoviral transcriptional factor IE-1 from Choristoneura fumiferana granulovirus.

    PubMed

    Rashidan, Kianoush Khajeh; Nassoury, Nasha; Merzouki, Abderrazzak; Guertin, Claude

    2002-11-30

    A gene that encodes a protein homologue to baculoviral IE-1 was identified and sequenced in the genome of the Choristoneura fumiferana granulovirus (ChfuGV). The gene has an 1278 nucleotide (nt) open-reading frame (ORF) that encodes 426 amino acids with an estimated molecular weight of 50.33 kDa. At the nucleotide level, several cis-acting regulatory elements were detected within the promoter region of the ie-1 gene of ChfuGV along with other studied granuloviruses (GVs). Two putative CCAAT elements were detected within the noncoding leader region of this gene; one was located on the opposite strand at -92 and the other at -420 nt from the putative start triplet. Two baculoviral late promoter motifs (TAAG) were also detected within the promoter region of the ie-1 gene of ChfuGV. A single polyadenylation signal, AATAAA, was located 18nt downstream of the putative translational stop codon of ie-1 from ChfuGV. At the protein level, the amino acid sequence data that was derived from the nucleotide sequence in ChfuGV IE-1 was compared to those of the Cydia pomonella granulovirus (CpGV), Xestia c-nigrum granulovirus (XcGV) and Plutella xylostella granulovirus (PxGV). The C-terminal regions of the granuloviral IE-1 sequences appeared to be more conserved when compared to the N-terminal regions. A domain, similar to the basic helix-loop-helix like (bHLH-like) domain in NPVs, was detected at the C-terminal region of IE-1 from ChfuGV (residues 387 to 414). A phylogenetic tree for baculoviral IE-1 was constructed using a maximum parsimony analysis. A phylogenetic estimation demonstrates that ChfuGV IE-1 is most closely related to that of CpGV.

  7. Life stage toxicity and residual activity of insecticides to codling moth and oriental fruit moth (Lepidoptera: Tortricidae).

    PubMed

    Magalhaes, Leonardo C; Walgenbach, James F

    2011-12-01

    The codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are two key pests of apple (Malus domestica Borkh.) in North Carolina. Growers extensively relied on organophosphate insecticides, primarily azinphosmethyl, for > 40 yr to manage these pests. Because of organophosphate resistance development and regulatory actions, growers are transitioning to management programs that use new, reduced-risk, and OP-replacement insecticides. This study evaluated the toxicity of a diversity of replacement insecticides to eggs, larvae, and adults, as well as an assessment of their residual activity, to codling moth and oriental fruit moth. Laboratory-susceptible strains of both species were used for all bioassays. Fresh field-harvested apples were used as a media for assessing the ovicidal activity of insecticides. For larval studies, insecticides were topically applied to the surface of lima bean-based diet, onto which neonates were placed. Toxicity was based on two measures of mortality; 5-d mortality and development to adult stage. Ovicidal bioassays showed that oriental fruit moth eggs were generally more tolerant than codling moth eggs to insecticides, with novaluron, acetamiprid, and azinphoshmethyl having the highest levels of toxicity to eggs of both species. In contrast, codling moth larvae generally were more tolerant than oriental fruit moth to most insecticides. Methoxyfenozide and pyriproxyfen were the only insecticides with lower LC50 values against codling moth than oriental fruit moth neonates. Moreover, a number of insecticides, particularly the IGRs methoxyfenozide and novaluron, the anthranilic diamide chlorantriliprole, and the spinosyn spinetoram, provided equal or longer residual activity against codling moth compared with azinphosmethyl in field studies. Results are discussed in relation to their use in devising field use patterns of insecticides and for insecticide resistance monitoring programs.

  8. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38.

    PubMed

    Gebhardt, Manuela M; Eberle, Karolin E; Radtke, Pit; Jehle, Johannes A

    2014-11-04

    The baculovirus Cydia pomonella granulovirus (CpGV) is widely applied as a biocontrol agent of codling moth. After field resistance of codling moth populations had been observed against the commercially used Mexican (M) isolate of CpGV, infection experiments of larvae of the resistant codling moth strain CpRR1 showed that several other naturally occurring CpGV isolates (I12, S, E2, and I07) from different geographic origins are still infectious to resistant CpRR1. Whole-genome sequencing and phylogenetic analyses of these geographic CpGV variants revealed that their genomes share only a single common difference from that of CpGV-M, which is a mutation coding for a repeat of 24 nucleotides within the gene pe38; this mutation results in an additional repeat of eight amino acids that appears to be inserted to PE38 of CpGV-M only. Deletion of pe38 from CpGV-M totally abolished virus infection in codling moth cells and larvae, demonstrating that it is an essential gene. When the CpGV-M deletion mutant was repaired with pe38 from isolate CpGV-S, which originated from the commercial product Virosoft and is infectious for the resistant codling moth strain CpRR1, the repaired CpGV-M mutant was found to be fully infectious for CpRR1. Repair using pe38 from CpGV-M restored infectivity for the virus in sensitive codling moth strains, but not in CpRR1. Therefore, we conclude that CpGV resistance of codling moth is directed to CpGV-M but not to other virus isolates. The viral gene pe38 is not only essential for the infectivity of CpGV but it is also the key factor in overcoming CpGV resistance in codling moth.

  9. Oviposition Site Selection of the Codling Moth (Lepidoptera: Tortricidae) and its Consequences for Egg and Neonate Performance.

    PubMed

    Wei, Jing; Xu, Jing; Zhang, Runzhi

    2015-08-01

    The codling moth Cydia pomonella (L.) is a worldwide pest of pome fruit. A better understanding of oviposition site selection by this insect would help management of this pest in orchards. Oviposition site selection of codling moth was assessed by manipulative experiments and field survey. In addition, the temperatures of different sites were recorded. Neonate infestation and egg hatching were tested to evaluate the consequences of oviposition site selection. The percentage of eggs laid on the shady side of apple clusters was significantly higher than on the sunny side. How.ever, this was not influenced by leaf surface turning. Percentage of eggs on upper and lower leaf surfaces was significantly influenced by leaf surface turning. Percentage of eggs on the lower leaf surface was significantly higher than turned lower leaf surface (∼41.1% higher) and significantly higher (∼35.5%) on the turned upper leaf surface on than upper leaf surfaces. There was no significant difference in neonate infestation between leaves and fruit, as well as between the upper and lower leaf surfaces. Number of eggs hatching on the shady side of clusters was significantly higher than on the sunny side (56.3% higher). In both the manipulative experiment and field survey, codling moths did not choose the sites with the highest mean temperature, but chose sites suitable for egg development and hatching. This indicates that in the field codling moth, oviposition site selection is not strictly thermophilous, but they look for the lower leaf surface on the shady side, which benefits the offspring.

  10. Population Dynamics and Flight Phenology Model of Codling Moth Differ between Commercial and Abandoned Apple Orchard Ecosystems

    PubMed Central

    Joshi, Neelendra K.; Rajotte, Edwin G.; Naithani, Kusum J.; Krawczyk, Greg; Hull, Larry A.

    2016-01-01

    Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae), which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight, and egg-hatch) allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator) that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth) models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e., PETE model). In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology. PMID:27713702

  11. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  12. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  13. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  14. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  15. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2011-08-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  16. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  17. Potential for Using Acetic Acid Plus Pear Ester Combination Lures to Monitor Codling Moth in an SIT Program

    PubMed Central

    Judd, Gary J. R.

    2016-01-01

    Studies were conducted in commercial apple orchards in British Columbia, Canada, to determine whether lures combining ethyl-(E,Z)-2,4-decadienoate, pear ester (PE), with either acetic acid (AA) or sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone), might improve monitoring of codling moth, Cydia pomonella (L.), in an area-wide programme integrating sterile insect technology (SIT) and mating disruption (MD). Catches of sterile and wild codling moths were compared in apple orchards receiving weekly delivery of sterile moths (1:1 sex ratio) using white delta traps baited with either AA or PE alone, and in combination. Sterile and wild codling moths responded similarly to these kairomone lures. For each moth sex and type (sterile and wild), AA-PE lures were significantly more attractive than AA or PE alone. Bisexual catches with AA-PE lures were compared with those of commercial bisexual lures containing 3 mg of codlemone plus 3 mg of PE (Pherocon CM-DA Combo lure, Trécé Inc., Adair, OK, USA), and to catches of males with standard codlemone-loaded septa used in SIT (1 mg) and MD (10 mg) programmes, respectively. CM-DA lures caught the greatest number of sterile and wild male moths in orchards managed with SIT alone, or combined with MD, whereas AA-PE lures caught 2–3× more females than CM-DA lures under both management systems. Sterile to wild (S:W) ratios for male versus female moths in catches with AA-PE lures were equivalent, whereas in the same orchards, male S:W ratios were significantly greater than female S:W ratios when measured with CM-DA lures. Male S:W ratios measured with CM-DA lures were similar to those with codlemone lures. CM-DA and codlemone lures appear to overestimate S:W ratios as measured by AA-PE lures, probably by attracting relatively more sterile males from long range. Using AA-PE lures to monitor codling moths in an SIT programme removes fewer functional sterile males and reduces the need for trap maintenance compared with using

  18. Estimation of the change in the harmfulness of selected pests in expected climate - European area

    NASA Astrophysics Data System (ADS)

    Svobodova, E.; Trnka, M.; Zalud, Z.; Semeradova, D.; Dubrovsky, M.; Sefrova, H.

    2010-09-01

    Climate change is likely to be a dominant factor affecting the lifecycle and overall occurrence of pest's species whose development is directly linked with climate conditions. This study is focused on the estimation of the potential occurrence and generation growth of selected pests causing the significant damages on the yield of crops over western part of Europe in changing climate. Modelled species involved the main pest of potato Colorado potato beetle (Leptinotarsa decemlineata, Say 1824), the pest of maize European corn borer (Ostrinia nubilalis, Hubner 1796), the pest which causes the damages in orchards and decreases the yield of apples, Codling moth (Cydia pomonella, Linnaeus 1758) and Cereal leaf beetle (Oulema melanopus, Linnaeus 1758) seriously affecting wheat production. The development of these pests' is driven mainly by temperature of the environment, which is in turn function of air temperature. The climate change is likely to lead to an earlier once and prolongation of the growing season and in the same time accelerate pests' developmental rate and will increase number of generations. Estimates of potential distribution of selected pest species for the present as well as expected climate conditions are based on the dynamical model CLIMEX. This approach exploits the expression of the overall climate suitability for the species longterm survival in terms of ecoclimatic index. The CLIMEX model was at first validated with observed data of pests' occurrences using CRU 10´ climate data set a source of climate data. All pest models listed were then used to study the effects of climate change on pests by estimating changes in population dynamics and/or infestation pressure during the first half of the 21st century. Outputs of the models were applied within the European scale in the 10´ resolution using digital terrain model. Simulations of the impacts of expected climate on the pests distribution were conducted under three global circulation models (Had

  19. Identification, characterization and phylogenic analysis of conserved genes within the p74 gene region of Choristoneura fumiferana granulovirus genome.

    PubMed

    Rashidan, Kianoush Khajeh; Nassoury, Nasha; Giannopoulos, Paresa N; Mauffette, Yves; Guertin, Claude

    2004-11-30

    The genes located within the p74 gene region of the Choristoneura fumiferana granulovirus (ChfuGV) were identified by sequencing an 8.9 kb BamHI restriction fragment on the ChfuGV genome. The global guanine-cytosine (GC) content of this region of the genome was 33.02%. This paper presents the ORFs within the p74 gene region along with their transcriptional orientations. This region contains a total of 15 open reading frames (ORFs). Among those, 8 ORFs were found to be homologues to the baculoviral ORFs: Cf-i-p , Cf-vi, Cf-vii, Cf-viii (ubiquitin), Cf-xi (pp31), Cf-xii (lef-11), Cf-xiii (sod) and Cf-xv-p (p74). To date, no specific function has been assigned to the ORFs: Cf-i, Cf-ii, Cf-iii, Cf-iv, Cf-v, Cf-vi, Cf-vii, Cf-ix and Cf-x. The most noticeable ORFs located in this region of the ChfuGV genome were ubiquitin, lef-11, sod, fibrillin and p74. The phylogenetic trees (constructed using conceptual products of major conserved ORFs) and gene arrangement in this region were used to further examine the classification of the members of the granulovirus genus. Comparative studies demonstrated that ChfuGV along with the Cydia pomonella granulovirus (CpGV), Phthorimaea operculella granulovirus (PhopGV), Adoxophyes orana granulovirus (AoGV) and Cryptophlebia leucotreta granulovirus (ClGV) share a high degree of amino acids sequence and gene arrangement preservation within the studied region. These results support a previous report, which classified a granuloviruses into 2 distinct groups: Group I: ChfuGV, CpGV, PhopGV and AoGV and Group II: Xestia c-nigrum granulovirus (XcGV) and Plutella xylostella granulovirus (PxGV). The phylogenetic and gene arrangement studies also placed ClGV as a novel member of the Group I granuloviruses.

  20. Identification and characterization of a conserved baculoviral structural protein ODVP-6E/ODV-E56 from Choristoneura fumiferana granulovirus.

    PubMed

    Rashidan, Kianoush Khajeh; Nassoury, Nasha; Giannopoulos, Paresa N; Guertin, Claude

    2002-11-30

    A gene that encodes a homologue to baculoviral ODVP-6E/ODV-E56, a baculoviral envelope-associated viral structural protein, has been identified and sequenced on the genome of Choristoneura fumiferana granulovirus (ChfuGV). The ChfuGV odvp-6e/odv-e56 gene was located on an 11-kb BamHI subgenomic fragment using different sets of degenerated primers, which were designed using the results of the protein sequencing of a major 39 kDa structural protein that is associated with the occlusion-derived virus (ODV). The gene has a 1062 nucleotide (nt) open-reading frame (ORF) that encodes a protein with 353 amino acids with a predicted molecular mass of 38.5 kDa. The amino acid sequence data that was derived from the nucleotide sequence in ChfuGV was compared to those of other baculoviruses. ChfuGV ODVP-6E/ODV-E56, along with other baculoviral ODVP-6E/ODV-E56 proteins, all contained two putative transmembrane domains at their C-terminus. Several putative N- and O-glycosylation, N-myristoylation, and phosphorylation sites were detected in the ChfuGV ODVP-6E/ODV-E56 protein. A similar pattern was detected when a hydrophobicity-plots comparison was performed on ChfuGV ODVP-6E/ODV-E56 with other baculoviral homologue proteins. At the nucleotide level, a late promoter motif (GTAAG) was located at -14 nt upstream to the start codon of the ChfuGV odvp-6e/odv-e56 gene. A slight variant of the polyadenylation signal, AATAAT, was detected at the position +10 nt that is downstream from the termination signal. A phylogenetic tree for baculoviral ODVP-6E/ODV-E56 was constructed using a maximum parsimony analysis. The phylogenetic estimation demonstrated that ChfuGV ODVP-6E/ODV-E56 is most closely related to those of Cydia pomonella granulovirus (CpGV) and Plutella xylostella granulovirus (PxGV).

  1. Potential for Using Acetic Acid Plus Pear Ester Combination Lures to Monitor Codling Moth in an SIT Program.

    PubMed

    Judd, Gary J R

    2016-11-25

    Studies were conducted in commercial apple orchards in British Columbia, Canada, to determine whether lures combining ethyl-(E,Z)-2,4-decadienoate, pear ester (PE), with either acetic acid (AA) or sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone), might improve monitoring of codling moth, Cydia pomonella (L.), in an area-wide programme integrating sterile insect technology (SIT) and mating disruption (MD). Catches of sterile and wild codling moths were compared in apple orchards receiving weekly delivery of sterile moths (1:1 sex ratio) using white delta traps baited with either AA or PE alone, and in combination. Sterile and wild codling moths responded similarly to these kairomone lures. For each moth sex and type (sterile and wild), AA-PE lures were significantly more attractive than AA or PE alone. Bisexual catches with AA-PE lures were compared with those of commercial bisexual lures containing 3 mg of codlemone plus 3 mg of PE (Pherocon CM-DA Combo lure, Trécé Inc., Adair, OK, USA), and to catches of males with standard codlemone-loaded septa used in SIT (1 mg) and MD (10 mg) programmes, respectively. CM-DA lures caught the greatest number of sterile and wild male moths in orchards managed with SIT alone, or combined with MD, whereas AA-PE lures caught 2-3× more females than CM-DA lures under both management systems. Sterile to wild (S:W) ratios for male versus female moths in catches with AA-PE lures were equivalent, whereas in the same orchards, male S:W ratios were significantly greater than female S:W ratios when measured with CM-DA lures. Male S:W ratios measured with CM-DA lures were similar to those with codlemone lures. CM-DA and codlemone lures appear to overestimate S:W ratios as measured by AA-PE lures, probably by attracting relatively more sterile males from long range. Using AA-PE lures to monitor codling moths in an SIT programme removes fewer functional sterile males and reduces the need for trap maintenance compared with using

  2. Effects of temperature and modified atmospheres on diapausing 5th instar codling moth metabolism.

    PubMed

    Neven, Lisa G; Lehrman, Nathan J; Hansen, Lee D

    2014-05-01

    The oxygen and capacity limitation of thermal tolerance (OCLTT) has been established in aquatic insect larvae, but OCLTT has not been shown to generally apply to terrestrial insects. Previous research indicates that heat treatments in combination with high concentrations of carbon dioxide and low concentrations of oxygen may be effective for controlling diapausing codling moth, a quarantine pest in walnuts, but treatment requires long times and the killing mechanism is unknown. In this study, the effects of temperature and modified atmospheres on metabolism in diapausing 5th instar codling moth (Cydia pomonella) was investigated with multi-channel differential scanning calorimeters, one equipped with an oxygen sensor. O2 consumption and metabolic heat rates in air were measured simultaneously at isothermal temperatures from 5 to 50°C at 5°C intervals. Both rates increased with increasing temperatures from 5 to 40°C. The ratio of metabolic heat rate to O2 consumption rate at temperatures ≤40°C shows that a portion of the metabolic heat is from normal anabolic reactions of metabolism. At 45 and 50°C in air, O2 consumption and metabolic heat rates dropped to near zero. These results indicate that treatment of walnuts in air at >45°C for a short period of time (minutes) is effective in killing diapausing 5th instar codling moth larvae. Continuous heating scans at 0.4°C/min were used to measure metabolic heat rates from 10 to 50°C with air and modified atmospheres with lowered oxygen and high carbon dioxide. A rapid increase was observed in heat rates above 40°C in scans with O2≥11%. Taken together with the isothermal results showing no metabolic heat production or oxygen uptake at 45 and 50°C, these results demonstrate that thermal damage to cell membranes and loss of control of oxidation reactions is the lethal mechanism at high temperature when O2≥11%. The data from scans with O2≤2% and high CO2 show the effects of oxygen limitation as postulated by

  3. Apple volatiles synergize the response of codling moth to pear ester.

    PubMed

    El-Sayed, Ashraf M; Cole, Lyn; Revell, John; Manning, Lee-Anne; Twidle, Andrew; Knight, Alan L; Bus, Vincent G M; Suckling, David M

    2013-05-01

    Codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), is a major cosmopolitan pest of apple and other pome fruits. Ethyl (E,Z)-2,4-decadienoate (pear ester) has been identified as a host-derived kairomone for female and male codling moths. However, pear ester has not performed similarly in different fruit production areas in terms of the relative magnitude of moth catch, especially the proportion of females caught. Our work was undertaken to identify host volatiles from apples, and to investigate whether these volatiles can be used to enhance the efficacy of host kairomone pear ester for monitoring female and male codling moths. Volatiles from immature apple trees were collected in the field using dynamic headspace sampling during the active period of codling moth flight. Using gas chromatography-electroantennogram detector (GC/EAD) analysis, six compounds elicited responses from antennae of females. These compounds were identified by GC/mass spectrometry (MS) and comparisons to authentic standards as nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, (Z,E)-α-farnesene, and (E,E)-α-farnesene. When the EAD-active compounds were tested individually in the field, no codling moths were caught except for a single male with decanal. However, addition of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, or (E,E)-α-farnesene to pear ester in a binary mixture enhanced the efficacy of pear ester for attracting female codling moths compared to pear ester alone. Addition of the 6-component blend to the pear ester resulted in a significant increase in the number of males attracted, and enhanced the females captured compared to pear ester alone; the number of males and females caught was similar to that with the pear ester plus acetic acid combination lure. Our results demonstrate that it is possible to synergize the response of codling moth to host kairomone by using other host volatiles. The new apple-pear ester host kairomone blend

  4. Key to the larvae of Castanea-feeding Olethreutinae frequently intercepted at U.S. ports-of-entry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At least six species of olethreutine moths are common pests of chestnut (Castanea spp.) outside of the U.S. Three are native to, or naturalized in the Mediterranean Region of Europe: Pammene fasciana (L.), Cydia splendana (Hübner), and Cydia fagiglandana (Zeller). Three are native to the Far East...

  5. Implications of Rhagoletis zephyria, 1894 (Diptera: Tephritidae), captures for apple maggot surveys and fly ecology in Washington state, U.S.A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot, Rhagoletis pomonella (Walsh), 1867 (Diptera: Tephritidae), is an introduced quarantine pest of apple (Malus domestica Borkhausen) (Rosaceae) in Washington state, U.S.A. A morphologically similar native fly, Rhagoletis zephyria Snow, 1894, infests snowberries (Symphoricarpos spp.) ...

  6. 77 FR 37896 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ...: Manzana Wind LLC. Description: Tariff Revisions to be effective 6/15/2012. Filed Date: 6/14/12. Accession...-000. Applicants: New England Wind, LLC. Description: Tariff Revisions to be effective 6/15/2012. Filed...-2033-000. Applicants: Pebble Springs Wind LLC. Description: Tariff Revisions to be effective...

  7. Bilingual Kindergarten Strategy--Oral English/Spanish Self-Voice.

    ERIC Educational Resources Information Center

    Leisy, Estelle Mendoza

    Very young Spanish-English bilingual children may not perceive sound-clue illustrations presented in the classroom as they are intended to be perceived. For example, when a child is told, "A is for apple," he may also interpret the message as "A is for manzana," confusing the intended message. While the teacher may hear English only, the child's…

  8. 78 FR 79573 - Importation of Fresh Apricots From Continental Spain

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...), Ceratitis capitata Wiedemann, The plum fruit moth, Cydia funebrana (Treitschke), Leaf scorch, Apiognomonia... mitigation options to address the risk potential posed by C. funebrana, the plum fruit moth, which we... outbreaks of C. funebrana only take place occasionally in apricot orchards located near plum orchards....

  9. Genetic identification of an unknown Rhagoletis fruit fly infesting Chinese crabapple (Malus spectabilis): implications for apple pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a serious introduced quarantine pest in the apple-growing regions of central Washington and Oregon. In August 2011, seven fly larvae of unknown origin were discovered infesting fruit of an exotic Chinese crabapple, Malus s...

  10. Alternative fumigants to methyl bromide for killing pupae and preventing emergence of apple maggot fly (Diptera:Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of methyl bromide, ECO2FUME (phosphine gas + CO2), Vapam (sodium methyldithiocarbamate), chloropicrin, Telone II (1, 3 dichloropropene), and chloropicrin + Telone II on killing the pupae and preventing adult emergence of apple maggot fly, Rhagoletis pomonella (Walsh) was determined. In an e...

  11. Seed chemistry of Sophora chrysophylla (mamane) in relation to diet of specialist avian seed predator Loxioides bailleui (palila) in Hawaii

    USGS Publications Warehouse

    Banko, P.C.; Cipollini, M.L.; Breton, G.W.; Paulk, E.; Wink, M.; Izhaki, I.

    2002-01-01

    This study describes the chemical ecology of a tritrophic interaction among species endemic to the island of Hawaii, USA: a tree (Sophora chrysophylla: mamane), an endangered bird (Loxioides bailleui; palila), and moth larvae (Cydia spp.). Palila and Cydia both specialize on the seed embryos of mamane but avoid eating the seed coats. Palila actively seek out and feed mamane embryos and Cydia larvae to their nestlings. Because mamane embryos contain potentially toxic levels of alkaloids, including broadly toxic quinolizidine alkaloids, and because insects often sequester alkaloids from their food plants, we focus on the questions of why palila forage upon mamane embryos and why they supplement their diet with Cydia larvae. Our data show that mamane embryos contain high amounts of potentially toxic alkaloids, but are well balanced nutritionally and contain lipids, carbohydrates, proteins, amino acids, and minerals at levels that are likely to be sufficient for maintenance and breeding. Mamane seed coats contain lower levels of alkaloids and nutrients, somewhat higher levels of phenolics, and much higher levels of nondigestible fiber. Taken together, these results suggest that palila have evolved tolerance to high levels of alkaloids and that they forage upon embryos primarily because of their availability in the habitat and high nutritional reward. Our data also suggest that Cydia are used by palila because they are readily accessible, nontoxic, and nutritious; the larvae apparently do not sequester alkaloids while feeding upon mamane seeds. Our results are interpreted with respect to the likelihood of current and historical coadaptive responses in this ecologically isolated and simplified island setting.

  12. Sex Pheromones: (E,E)-8,10-Dodecadien-1-ol in the Codling Moth.

    PubMed

    Beroza, M; Bierl, B A; Moffitt, H R

    1974-01-11

    Although (E,E)-8,10-Dodecadien-l-ol was reported to be a sex pheromone of the codling moth [Laspeyresia pomonella (L.)], its presence in the moth was questioned, mainly because it has not been isolated. A computerized search of data from gas chromatography-mass spectrometry of a partially purified extract equivalent to 45 abdominal tips of female moths produced a mass spectrum that matched that of the authentic coinpound. Other data also confirmed the presence of the compound.

  13. Behavioral evidence for host fidelity among populations of the parasitic wasp, Diachasma alloeum (Muesebeck)

    NASA Astrophysics Data System (ADS)

    Stelinski, L. L.; Liburd, O. E.

    2005-02-01

    The concept of “host fidelity,” where host-specific mating occurs in close proximity to the oviposition site and location of larval development, is thought to impart a pre-mating isolation mechanism for sympatric speciation (sensu members of the genus Rhagoletis). The apple maggot fly, Rhagoletis pomonella, and the blueberry maggot fly, R. mendax, are morphologically similar sibling species thought to have speciated in sympatry by divergence of host plant association. Both of these fly species are attacked by the specialist braconid parasitoid, Diachasma alloeum. The current study demonstrates that both male and female D. alloeum exhibit a behavioral preference for the odor of the fruit of their larval Rhagoletis host species. Specifically, those D. alloeum emerging from puparia of R. pomonella are preferentially attracted to hawthorn fruit and those emerging from puparia of R. mendax are preferentially attracted to blueberry fruit. However, male D. alloeum reared from either R. pomonella or R. mendax were equally attracted to females originating from both Rhagoletis species. We suggest that the data herein present evidence for “host fidelity,” where populations of D. alloeum exhibit a greater tendency to mate and reproduce among the host plants of their preferred Rhagoletis hosts. Furthermore, host fidelity may have resulted in the evolution of distinct host races of D. alloeum tracking the speciation of their larval Rhagoletis prey.

  14. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis

    PubMed Central

    Feder, Jeffrey L.; Berlocher, Stewart H.; Roethele, Joseph B.; Dambroski, Hattie; Smith, James J.; Perry, William L.; Gavrilovic, Vesna; Filchak, Kenneth E.; Rull, Juan; Aluja, Martin

    2003-01-01

    Tephritid fruit flies belonging to the Rhagoletis pomonella sibling species complex are controversial because they have been proposed to diverge in sympatry (in the absence of geographic isolation) by shifting and adapting to new host plants. Here, we report evidence suggesting a surprising source of genetic variation contributing to sympatric host shifts for these flies. From DNA sequence data for three nuclear loci and mtDNA, we infer that an ancestral, hawthorn-infesting R. pomonella population became geographically subdivided into Mexican and North American isolates ≈1.57 million years ago. Episodes of gene flow from Mexico subsequently infused the North American population with inversion polymorphism affecting key diapause traits, forming adaptive clines. Sometime later (perhaps ±1 million years), diapause variation in the latitudinal clines appears to have aided North American flies in adapting to a variety of plants with differing fruiting times, helping to spawn several new taxa. Thus, important raw genetic material facilitating the adaptive radiation of R. pomonella originated in a different time and place than the proximate ecological host shifts triggering sympatric divergence. PMID:12928500

  15. Genetic identification of an unknown Rhagoletis fruit fly (Diptera: Tephritidae) infesting Chinese crabapple: implications for apple pest management.

    PubMed

    St Jean, Gilbert; Egan, Scott P; Yee, Wee L; Feder, Jeffrey L

    2013-06-01

    The apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a serious introduced quarantine pest in the apple (Malus spp.)-growing regions of central Washington and Oregon. In August 2011, seven fly larvae of unknown origin were discovered infesting fruit of an exotic Chinese crabapple, Malus spectabilis (Aiton) Borkhausen, in Kennewick, Benton County, WA. If confirmed, Chinese crabapple would have represented a new host for R. pomonella in Washington and triggered quarantine measures in a surrounding three-county region of the state. Here, we establish, based on five microsatellite loci, the identity of the crabapple-infesting larvae as the western cherry fruit fly, Rhagoletis indifferens Curran, representing a new host record for the fly. Morphological analysis of six flies reared to adulthood confirmed the genetic identification. The results demonstrate the utility of integrating rapid genetic identification methods with field surveys of economic pests, which decreased detection times by months, and avoided enacting costly quarantine measures that saved local and federal bodies > US$0.5 million in monitoring, inspection, and control costs. We discuss current ongoing efforts to develop rapid, accurate, and inexpensive on site DNA-based detection tools for R. pomonella that would have general applicability for the control of pest insects.

  16. ACCEPTANCE OF FUNCTIONAL FOOD AMONG CHILEAN CONSUMERS: APPLE LEATHER.

    PubMed

    van Vliet, Maya; Adasme-Berrios, Cristian; Schnettler, Berta

    2015-10-01

    Objetivo: el objetivo de este estudio es medir la aceptación de un alimento funcional como la lámina frutal de manzana, en base a características organolépticas. Se identificaron tipos de consumidores y sus preferencias hacia los aditivos naturales que aumentan la funcionalidad del producto y satisfacen las necesidades nutricionales actuales. Materiales y método: una muestra de 800 consumidores permitió la evaluación de la lámina frutal de manzana en términos de aceptación (gusto). se llevó a cabo un panel sensorial utilizando una escala hedónica de nueve puntos. Se utilizó el análisis de conglomerados para establecer diferentes tipos de consumidores, basados en la aceptación del producto. Además, el análisis conjunto permitió determinar la preferencia sobre diferentes aditivos. Resultados: el análisis de conglomerados permitió identificar cuatro grupos con diferencias significativas en los gustos promedios, obtenidos del panel sensorial. Los resultados indican que el dulzor de la lámina frutal de manzana fue mejor evaluada entre todos los grupos y, en promedio, el color fue calificado como el peor atributo. Además, a pesar de que existe una “aceptabilidad global” por el producto, existen diferencias significativas entre los grupos. Los resultados del análisis conjunto indican que, en general, los consumidores prefieren la agregación de aditivos naturales que aumentan la funcionalidad del producto. Conclusiones: en este estudio, la lámina frutal de manzana como alimento funcional se ajusta con el hábito de las personas de consumir alimentos dulces, lo que promueve su aceptación. Además, la agregación de aditivos naturales al producto, tales como anticariogénicos y antioxidantes, permite considerarlo como un alimento funcional sustituto de los snacks, poco saludables y/o de los caramelos.

  17. The effect of winter length on survival and duration of dormancy of four sympatric species of Rhagoletis exploiting plants with different fruiting phenology.

    PubMed

    Rull, J; Tadeo, E; Lasa, R; Aluja, M

    2016-12-01

    Dormancy has been thoroughly studied for several species of economic importance in the genus Rhagoletis in temperate areas of North America and Europe. Much less is known on life history regulation for species inhabiting high-elevation areas in the subtropics at the southern extreme of their geographical range. Host plant phenology has been found to play a key role in generating allochronic isolation among sibling species and host races of Rhagoletis in the course of sympatric speciation, and has important implications for pest management. We compare the effect of winter length on survival to adult eclosion and dormancy duration among four species of Rhagoletis (three of them sympatric) exploiting hosts with different fruiting phenology in subtropical isolated highlands. Survival and duration of dormancy was found to be different among the four species. At 24°C, a very small proportion (<1%) of R. pomonella, R. turpiniae and R. zoqui completed development without becoming dormant, while in the case of R. solanophaga the majority of the population emerged after development within 40 days of pupation. Also, a large proportion of braconid parasitoids infesting Rhagoletis eggs and larvae emerged as adults without becoming dormant. Greatest survival after artificial winter was obtained for R. pomonella (50-60%) and R. zoqui (30%) after only four weeks at 5°C (a third of the time reported for studies on northern R. pomonella), while R. turpiniae, under identical environmental conditions experienced low adult emergence, and highest survival (11%) was recorded for flies exposed to 5°C during 10 and 12 weeks. For R. pomonella, there was a strong positive relationship between winter length and time to post-winter adult eclosion that was not observed for R. zoqui. In sum, for R. pomonella, mild winters in highland subtropical areas appear to select for flies better able to withstand longer periods of warm temperature before winter than flies exploiting late fruiting hosts

  18. Attraction of tortricid moths of subfamily olethreutinae to field traps baited with dodecadienes.

    PubMed

    Chisholm, M D; Reed, D W; Underhill, E W; Palaniswamy, P; Wong, J W

    1985-02-01

    All four geometrical isomers of 7,9- and 8,10-dodecadienes with acetate, alcohol, and aldehyde functional groups were synthesized and field tested. The field survey produced sex attractant lures for 14 insect species. Species in the generaCydia, Grapholita, Eucosma, Pelochrista, Petrova, Phenta, Hedya, and Pseudosciaphila were captured. Defined lures were developed for some of the species captured. Gas chromatographie retention times for all geometrical isomers of 7,9- and 8,10-dodecadienes with acetate, alcohol, and aldehyde functional groups are reported. A study of the isomerization of 8,10-dodecadienyl acetates and aldehydes impregnated in rubber septa is reported.

  19. Sequential divergence and the multiplicative origin of community diversity

    PubMed Central

    Hood, Glen R.; Forbes, Andrew A.; Powell, Thomas H. Q.; Egan, Scott P.; Hamerlinck, Gabriela; Smith, James J.; Feder, Jeffrey L.

    2015-01-01

    Phenotypic and genetic variation in one species can influence the composition of interacting organisms within communities and across ecosystems. As a result, the divergence of one species may not be an isolated process, as the origin of one taxon could create new niche opportunities for other species to exploit, leading to the genesis of many new taxa in a process termed “sequential divergence.” Here, we test for such a multiplicative effect of sequential divergence in a community of host-specific parasitoid wasps, Diachasma alloeum, Utetes canaliculatus, and Diachasmimorpha mellea (Hymenoptera: Braconidae), that attack Rhagoletis pomonella fruit flies (Diptera: Tephritidae). Flies in the R. pomonella species complex radiated by sympatrically shifting and ecologically adapting to new host plants, the most recent example being the apple-infesting host race of R. pomonella formed via a host plant shift from hawthorn-infesting flies within the last 160 y. Using population genetics, field-based behavioral observations, host fruit odor discrimination assays, and analyses of life history timing, we show that the same host-related ecological selection pressures that differentially adapt and reproductively isolate Rhagoletis to their respective host plants (host-associated differences in the timing of adult eclosion, host fruit odor preference and avoidance behaviors, and mating site fidelity) cascade through the ecosystem and induce host-associated genetic divergence for each of the three members of the parasitoid community. Thus, divergent selection at lower trophic levels can potentially multiplicatively and rapidly amplify biodiversity at higher levels on an ecological time scale, which may sequentially contribute to the rich diversity of life. PMID:26499247

  20. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow.

    PubMed

    Egan, Scott P; Ragland, Gregory J; Assour, Lauren; Powell, Thomas H Q; Hood, Glen R; Emrich, Scott; Nosil, Patrik; Feder, Jeffrey L

    2015-08-01

    Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence.

  1. Proof of efficacy of Kamillosan(R) cream in atopic eczema.

    PubMed

    Patzelt-Wenczler, R; Ponce-Pöschl, E

    2000-04-19

    Kamillosan(R) cream contains chamomile extract as active principle manufactured from the chamomile sort Manzana which is rich in active principles and has been proved not to exhibit a chamomile-related allergen potential. For this reason Kamillosan(R) cream is suited for local therapy of atopic eczema. In a partially double-blind, randomized study carried out as a half-side comparison, Kamillosan(R) cream was tested vs. 0.5% hydrocortisone cream and the vehicle cream as placebo in patients suffering from medium-degree atopic eczema. After a 2-week treatment Kamillosan(R) cream showed a mild superiority towards 0.5% hydrocortisone and a marginal difference as compared to placebo.

  2. Olfactory cues from different plant species in host selection by female pea moths.

    PubMed

    Thöming, Gunda; Norli, Hans Ragnar

    2015-03-04

    In herbivorous insects specialized on few plant species, attraction to host odor may be mediated by volatiles common to all host species, by specific compounds, or combinations of both. The pea moth Cydia nigricana is an important pest of the pea. Volatile signatures of four host plant species were studied to identify compounds involved in pea moth host selection and to improve previously reported attractive volatile blends. P. sativum and alternative Fabaceae host species were compared regarding female attraction, oviposition, and larval performance. Pea moth females were strongly attracted to the sweet pea Lathyrus odoratus, but larval performance on that species was moderate. Chemical analyses of sweet pea odor and electrophysiological responses of moth antennae led to identification of seven sweet-pea-specific compounds and ten compounds common to all tested host species. Blends of these specific and common cues were highly attractive to mated pea moth females in wind tunnel and field experiments.

  3. Food specialization and radiation of Hawaiian honeycreepers

    USGS Publications Warehouse

    Banko, Paul C.; Banko, Winston E.

    2006-01-01

    Hawaiian honeycreepers are renowned for adaptive radiation and diet specialization. Specialization arose from competition for the relatively few resources available in this remote archipelago and because arthropod prey sufficient to satisfy nestling protein requirements could only be captured by highly modified bills. Historically, most species fed their nestlings with larvae of the widespread geometrid moth genus, Scotorythra; but other invertebrates were important also. Thus the palila, Loxioides bailleui, a specialist on potentially toxic Sophora chrysophylla seeds, feeds its nestlings on Cydia moth larvae found inside Sophora seeds. Sophora seeds are also fed to the nestlings, and seed availability largely determines the timing and extent of breeding. By this and other means, food specialization contributed to reproductive isolation in Loxioides and possibly other honeycreepers. Alien threats to insect prey affect Loxioides populations and have hastened the extinction or decline of other specialized Hawaiian birds

  4. Dried apples enriched with mandarin juice by vacuum impregnation improve antioxidant capacity and decrease inflammation in obese children.

    PubMed

    Codoñer-Franch, Pilar; Betoret, Ester; Betoret, Noelia; López-Jaén, Ana B; Valls-Bellés, Victoria; Fito, Pedro

    2013-01-01

    Antecedentes: Una adecuada ingesta de vegetales previene el desarrollo de enfermedades degenerativas, principalmente debido a sus compuestos antioxidantes. Objetivo: Evaluamos el efecto in vivo en los niños obesos de un nuevo producto alimenticio hecho de manzanas deshidratadas enriquecidas con zumo de mandarina mediante impregnación a vacío. Métodos: Estudio prospectivo longitudinal de cuatro semanas de duración. Se estudiaron 41 niños obesos que suplementaron su dieta habitual con 40 g/día del producto desarrollado. Se determinaron parámetros antropométricos (índice de masa corporal, circunferencia de la cintura) y estimación de la de grasa corporal con impedancia bioeléctrica. La ingesta dietética se evaluó por cuestionario. Se registraron factores de riesgo metabólico (presión sanguínea, perfil lipídico, glucosa y resistencia insulínica). El estado oxidante se investigó mediante la capacidad antioxidante total del plasma y la 8-hydroxideoxiguanosina (marcador de daño oxidativo al ADN) y como marcadores de inflamación valoramos la proteína C-reactiva ultrasensible, el factor de necrosis tumoral-??y las interleukinas 6 y 1-?. Las mediciones se recogieron al inicio y al final del período de intervención. Resultados: Encontramos una mejoría significativa en la presión arterial sistólica y en el perfil lipídico después del período de intervención. Igualmente demostramos un aumento significativo de la capacidad antioxidante del plasma, una reducción del daño oxidativo del ADN y de los marcadores inflamatorios. Conclusión: La adición a la dieta del producto elaborado con manzana deshidratada, y enriquecido con zumo de mandarina mediante impregnación al vacío, contribuye a mejorar el estado oxidante e inflamatorio en los niños obesos, así como diversos factores de riesgo cardiometabólico.

  5. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-06-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  6. Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy.

    PubMed

    Perez, H D; Vilander, L; Andrews, W H; Holmes, R

    1994-09-09

    Recently, we reported the domain requirements for the binding of formyl peptide to its specific receptor. Based on experiments using receptor chimeras, we also postulated an importance for the amino-terminal domain of the receptor in ligand binding (Perez, H. D., Holmes, R., Vilander, L., Adams, R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295). We have begun to perform a detailed analysis of the regions within the formyl peptide receptor involved in ligand binding. To address the importance of the receptor amino-terminal domain, we substituted (or inserted) hydrophilic sequences within the amino-terminal domain, expressed the receptors, and determined their ability to bind ligand. A stretch of nine amino acids next to the initial methionine was identified as crucial for receptor occupancy. A peptide containing such a sequence specifically completed binding of the ligand to the receptor. Alanine screen mutagenesis of the second extracellular domain also identified amino acids involved in ligand binding as well as a disulfide bond (Cys98 to Cys176) crucial for maintaining the binding pocket. These studies provide evidence for a novel mechanism involved in regulation of receptor occupancy. Binding of the ligand induces conformational changes in the receptor that result in the apposition of the amino-terminal domain over the ligand, providing a lid to the binding pocket.

  7. Resource limitation in natural populations of phytophagous insects. A long-term study case with the chestnut weevil

    NASA Astrophysics Data System (ADS)

    Debouzie, Domitien; Desouhant, Emmanuel; Oberli, Frantz; Menu, Frédéric

    2002-03-01

    The chestnut weevil, Curculio elephas (Gyll.), is a non-outbreaking species whose populations and food resources, the European chestnut, Castanea sativa, can be precisely defined. Thirteen and 17 generations of this insect were studied in two isolated sites. Field observations and experiments allowed us to estimate the absolute abundance, availability and use of chestnuts for weevil oviposition, and the number of weevil females emerging per site. Unavailable chestnuts were defined as the fruits either infested first by the chestnut moth ( Cydia splendana) larvae (because of competition between the two species) or those avoided by chestnut weevil females when selecting their egg-laying sites, independently of chestnut moth presence. From a third to a half of the chestnuts were not available on the average for weevil infestation. Only one-fourth, on the average, of those available for oviposition were actually used by chestnut weevil females. Regardless of year and site, the number of available chestnuts per weevil female was higher than that of weevil-infested fruits per female, considering global food resources independently of their temporal variation in quality. However, realized fecundity of weevil females was positively correlated with the mean number of available chestnuts per female. We concluded that food resources can be limiting without being fully exploited by females because of temporal variation in chestnut quality.

  8. Structured populations of the oriental fruit moth in an agricultural ecosystem.

    PubMed

    Torriani, Marco V G; Mazzi, Dominique; Hein, Silke; Dorn, Silvia

    2010-07-01

    Intercontinental trade has led to multiple introductions of invasive pest species at a global scale. Molecular analyses of the structure of populations support the understanding of ecological strategies and evolutionary patterns that promote successful biological invasions. The oriental fruit moth, Grapholita (= Cydia) molesta, is a cosmopolitan and economically destructive pest of stone and pome fruits, expanding its distribution range concomitantly with global climate warming. We used ten newly developed polymorphic microsatellite markers to examine the genetic structure of G. molesta populations in an agricultural ecosystem in the Emilia-Romagna region of northern Italy. Larvae collected in eight sampling sites were assigned to a mosaic of five populations with significant intra-regional structure. Inferred measures of gene flow within populations implicated both active dispersal, and passive dispersal associated with accidental anthropogenic displacements. Small effective population sizes, coupled with high inbreeding levels, highlighted the effect of orchard management practices on the observed patterns of genetic variation within the sampling sites. Isolation by distance did not appear to play a major role at the spatial scale considered. Our results provide new insights into the population genetics and dynamics of an invasive pest species at a regional scale.

  9. New neotropical species of Opiinae (Hymenoptera, Braconidae) reared from fruit-infesting and leaf-mining Tephritidae (Diptera) with comments on the  Diachasmimorpha mexicana species group and the genera Lorenzopius and Tubiformopius

    PubMed Central

    Wharton, Robert; Ward, Lauren; Miko, Istvan

    2012-01-01

    Abstract Four new species of opiine Braconidae are described from Mexico. These are Diachasmimorpha martinalujai Wharton reared from Rhagoletis infesting fruits of Crataegus spp., Diachasmimorpha norrbomi Wharton reared from Euphranta mexicana infesting fruits of Ribes pringlei, Eurytenes (Stigmatopoea) norrbomi Wharton reared from Trypeta concolor mining leaves of Barkleyanthus salicifolia and Eurytenes (Stigmatopoea) maya Wharton reared from Rhagoletis pomonella infesting apples and fruits of Crataegus spp. Morphological features of the first metasomal segment and occipital carina, useful for placement of these species, are discussed relative to the genera Diachasmimorpha, Eurytenes, Lorenzopius, Tubiformopius, and Opius s.l. Descriptions and diagnoses are referenced to the Hymenoptera Anatomy Ontology. The following represent new combinations: Diachasmimorpha hildagensis, Lorenzopius euryteniformis, and Tubiformopius tubibasis. Revised diagnoses are provided for Diachasmimorpha hildagensis, Diachasmimorpha mexicana, Diachasmimorpha sanguinea, Eurytenes (Stigmatopoea), Lorenzopius, Lorenzopius euryteniformis, Tubiformopius, Tubiformopius tubigaster, Tubiformopius tubibasis, Opius incoligma, and Opius rugicoxis. Two species groups are delineated within Lorenzopius and a key to species of Diachasmimorpha occurring in the New World is provided. PMID:23818811

  10. Susceptibility of fruit from diverse apple and crabapple germplasm to attack from apple maggot (Diptera: Tephritidae).

    PubMed

    Myers, Clayton T; Reissig, W Harvey; Forsline, Phillip L

    2008-02-01

    Apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a pest of major concern to apple, Malus x domestica (Borkh.) production in eastern North America. Host plant resistance to apple maggot among apple germplasm has been previously evaluated among a small number of exotic Malus accessions and domestic hybrid selections. However, a large number of exotic accessions housed in USDA collections have never been evaluated for their susceptibility to apple pests. Additionally, previous reports of resistance need to be confirmed under both field conditions and with more rigorous laboratory evaluations. Thus, studies were conducted to evaluate the susceptibility of a number of Malus accessions housed at the USDA Plant Genetic Resources Unit "core" collection. Contrary to earlier published reports, these results suggest that some selections previously described as "resistant" are in fact susceptible to both oviposition damage and larval feeding damage by apple maggot. One domestic, disease-resistant apple accession, 'E36-7' is resistant to survival of apple maggot larvae except when the fruit is nearly ripe in late fall. This is the first report of an apple cultivar that is confirmed to be resistant to larval feeding of apple maggot. Although adults can successfully oviposit on all accessions examined, larval survival was zero in a number of small-fruited crabapple accessions classified as resistant in previous studies and also in two accessions, Malus tschonoskii (Maxim) C. K. Schneid. and M. spectabilis (Aiton) Borkh., that have not been previously evaluated.

  11. Integration of insecticidal, phagostimulatory, and visual elements of an attract and kill system for apple maggot fly (Diptera: Tephritidae).

    PubMed

    Wright, Starker E; Leskey, Tracy C; Jacome, Isabel; Piñero, Jaime C; Prokopy, Ronald J

    2012-10-01

    The apple maggot fly, Rhagoletis pomonella (Walsh), is a key pest of apple in eastern North America that has been historically controlled with organophosphate insecticide applications. Here we report on progress toward development of an effective and maintenance-free attracticidal sphere system for this pest species. In our studies, we evaluated lethality of spinosad in combination with a feeding stimulant (sucrose) to replace a Tangletrap sticky coating as the killing agent of a sphere-based behavioral control system. Spinosad was incorporated into cylindrical and contoured controlled-release caps that were fixed atop visually stimulating sphere bases. For both cap styles, spinosad at or near 1.0% (a.i.) proved to be a relatively durable fly-killing agent, providing approximately equal to 85% mortality after simulated rainfall exposure reflective of average season-long precipitation levels experienced during the primary period of risk of apple maggot injury to fruit in the northeastern United States. In field trials, we assessed the impact of color degradation of contoured controlled-release caps on visual responsiveness of apple maggot fly and found that it had no significant impact on captures. In commercial orchard trials designed to evaluate the potential of attracticidal spheres with contoured caps for direct control of apple maggot, a perimeter-based deployment provided protection comparable to plots receiving 1-2 whole-plot insecticide applications.

  12. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-03-31

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. {sm_bullet} CAS 01-23-02, Atmospheric Test Site - High Alt{sm_bullet} CAS 02-23-02, Contaminated Areas (2){sm_bullet} CAS 02-23-03, Contaminated Berm{sm_bullet} CAS 02-23-10, Gourd-Amber Contamination Area{sm_bullet} CAS 02-23-11, Sappho Contamination Area{sm_bullet} CAS 02-23-12, Scuttle Contamination Area{sm_bullet} CAS 03-23-24, Seaweed B Contamination Area{sm_bullet} CAS 03-23-27, Adze Contamination Area{sm_bullet} CAS 03-23-28, Manzanas Contamination Area{sm_bullet} CAS 03-23-29, Truchas-Chamisal Contamination Area{sm_bullet} CAS 04-23-02, Atmospheric Test Site T4-a{sm_bullet} CAS 05-23-06, Atmospheric Test Site{sm_bullet} CAS 09-23-06, Mound of Contaminated Soil{sm_bullet} CAS 10-23-04, Atmospheric Test Site M-10{sm_bullet} CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

  13. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-09-30

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

  14. [Detection of antibodies against Trypanosoma cruzi in Somoto, Nicaragua, using indirect ELISA and IFI on blood samples on filter paper].

    PubMed

    Palacios, X; Belli, A; Espino, A M

    2000-12-01

    We standardized a solid-phase enzyme-linked immunosorbent assay (ELISA) in order to study the presence of Trypanosoma cruzi antibodies in asymptomatic persons who live in an area of Nicaragua endemic for Chagas' disease. The test was standardized to analyze filter-paper blood samples, which are easy to transport. In the first phase of our investigation, ELISA was used to study 18 samples of total serum and 18 eluates of blood from patients with chronic Chagas' disease; 30 samples of serum and 30 eluates of blood from healthy people, used as negative controls; and 14 samples of serum and 14 eluates of blood from patients with cutaneous or visceral leishmaniasis, which were used to study cross-reactions. Both with the total-serum and the blood-eluate samples, the ELISA test provided 100% sensitivity and 90% specificity. Cross-reactions in the patient samples were observed only with visceral leishmaniasis. The second phase of our investigation was a population study that included eight rural communities in the area of Somoto, Nicaragua. Through random sampling, filter-paper blood samples were collected from 2,434 people (1,335 men and 1,099 women) from the communities of Aguas Calientes, El Brocal, La Manzana, Las Playas, Los Canales, Santa Isabel, Santa Rosa, and Santa Teresa. Studied by ELISA and by indirect immunofluorescence (IIF), the samples included 260 found seropositive by ELISA (10.7%), of which 207 were positive according to IIF (8.5%). With both techniques, the majority of seropositives were among women, but the difference between men and women was not statistically significant. There was a high level of agreement between the results obtained with the two techniques. There was an upward trend with age, with 5.4% of those found seropositive by ELISA being persons 10 years of age or younger and 42.7% of those found seropositive being older than 50. The vast majority of the individuals analyzed were asymptomatic.

  15. Seasonal and cultivar-associated variation in oviposition preference of Oriental fruit moth (Lepidoptera: Tortricidae) adults and feeding behavior of neonate larvae in apples.

    PubMed

    Myers, Clayton T; Hull, Larry A; Krawczyk, Grzegorz

    2006-04-01

    The Oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) has become a pest of tree fruits since its introduction to the United States in the early twentieth century. Oriental fruit moth has historically been a major pest problem in peach production, and outbreaks in commercial apple (Malus spp.) orchards in the eastern United States were rare until the late 1990s. Recent outbreaks in Mid-Atlantic apple orchards have lead researchers to investigate host-associated effects on oriental fruit moth biology, behavior, and population dynamics. Studies were designed to assess cultivar level effects in apples on oviposition and larval feeding behavior of oriental fruit moth. In a mixed cultivar apple orchard, total oriental fruit moth oviposition and oviposition site preferences varied between cultivars. These preferences also varied over time, when sampling was repeated at various times of the growing season. Although most adult female oriental fruit moth preferentially oviposited in the calyx and stem areas of apple fruit, noticeable numbers of eggs also were laid on the sides of fruit, contradicting some previous reports. Oriental fruit moth females exhibited a strong ovipositional preference for fruit that were previously damaged by oriental fruit moth or codling moth, Cydia ponmonella (L.). The majority of newly hatched oriental fruit moth larvae were observed to spend <24 h on the surface of apple fruit before entry, and this behavior was observed on several apple cultivars. Neonate larvae exhibited a preference for entering fruit at either the stem or calyx ends, regardless of their initial site of placement. Our findings underscore the importance of adequate spray coverage and accurate timing of insecticide applications targeting oriental fruit moth.

  16. Season-long volatile emissions from peach and pear trees in situ, overlapping profiles, and olfactory attraction of an oligophagous fruit moth in the laboratory.

    PubMed

    Najar-Rodriguez, A; Orschel, B; Dorn, S

    2013-03-01

    Insect herbivores that have more than one generation per year and reproduce on different host plants are confronted with substantial seasonal variation in the volatile blends emitted by their hosts. One way to deal with such variation is to respond to a specific set of compounds common to all host plants. The oriental fruit moth Cydia (=Grapholita) molesta is a highly damaging invasive pest. The stone fruit peach (Prunus persica) is its primary host, whereas pome fruits such as pear (Pyrus communis) are considered secondary hosts. In some parts of their geographic range, moth populations switch from stone to pome fruit orchards during the growing season. Here, we tested whether this temporal switch is facilitated by female responses to plant volatiles. We collected volatiles from peach and pear trees in situ and characterized their seasonal dynamics by gas chromatography-mass spectrometry. We also assessed the effects of the natural volatile blends released by the two plant species on female attraction by using Y-tube olfactometry. Finally, we related variations in volatile emissions to female olfactory responses. Our results indicate that the seasonal host switch from peach to pear is facilitated by the changing olfactory effect of the natural volatile blends being emitted. Peach volatiles were only attractive early and mid season, whereas pear volatiles were attractive from mid to late season. Blends from the various attractive stages shared a common set of five aldehydes, which are suggested to play an essential role in female attraction to host plants. Particular attention should be given to these aldehydes when designing candidate attractants for oriental fruit moth females.

  17. Identification of Host Fruit Volatiles from Snowberry (Symphoricarpos albus), Attractive to Rhagoletis zephyria Flies from the Western United States.

    PubMed

    Cha, Dong H; Olsson, Shannon B; Yee, Wee L; Goughnour, Robert B; Hood, Glen R; Mattsson, Monte; Schwarz, Dietmar; Feder, Jeffrey L; Linn, Charles E

    2017-02-01

    A mixture of behaviorally active volatiles was identified from the fruit of snowberry, Symphoricarpos albus laevigatus, for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), dimethyl trisulfide (1%), 1-octen-3-ol (40%), myrcene (8%), nonanal (9%), linalool (13%), (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT, 6%), decanal (15%), and β-caryophyllene (5%) was identified that gave consistent electroantennogram activity and was behaviorally active in flight tunnel tests. In other flight tunnel assays, snowberry flies from two sites in Washington state, USA, displayed significantly greater levels of upwind oriented flight to sources with the snowberry volatile blend compared with previously identified volatile blends from domestic apple (Malus domestica) and downy hawthorn (Crataegus mollis) fruit from the eastern USA, and domestic apple, black hawthorn (C. douglasii) and ornamental hawthorn (C. monogyna) from Washington state. Selected subtraction assays showed that whereas removal of DMNT or 1-octen-3-ol significantly reduced the level of upwind flight, removal of myrcene and β-caryophyllene, or dimethyl trisulfide alone did not significantly affect the proportion of upwind flights. Our findings add to previous studies showing that populations of Rhagoletis flies infesting different host fruit are attracted to unique mixtures of volatile compounds specific to their respective host plants. Taken together, the results support the hypothesis that differences among flies in their behavioral responses to host fruit odors represent key adaptations involved in sympatric host plant shifts, contributing to host specific mating and generating prezygotic reproductive isolation among members of the R. pomonella sibling species complex.

  18. Assessing the Risk of Invasion by Tephritid Fruit Flies: Intraspecific Divergence Matters

    PubMed Central

    Godefroid, Martin; Cruaud, Astrid; Rossi, Jean-Pierre; Rasplus, Jean-Yves

    2015-01-01

    Widely distributed species often show strong phylogeographic structure, with lineages potentially adapted to different biotic and abiotic conditions. The success of an invasion process may thus depend on the intraspecific identity of the introduced propagules. However, pest risk analyses are usually performed without accounting for intraspecific diversity. In this study, we developed bioclimatic models using MaxEnt and boosted regression trees approaches, to predict the potential distribution in Europe of six economically important Tephritid pests (Ceratitis fasciventris (Bezzi), Bactrocera oleae (Rossi), Anastrepha obliqua (Macquart), Anastrepha fraterculus (Wiedemann), Rhagoletis pomonella (Walsh) and Bactrocera cucurbitae (Coquillet)). We considered intraspecific diversity in our risk analyses by independently modeling the distributions of conspecific lineages. The six species displayed different potential distributions in Europe. A strong signal of intraspecific climate envelope divergence was observed in most species. In some cases, conspecific lineages differed strongly in potential distributions suggesting that taxonomic resolution should be accounted for in pest risk analyses. No models (lineage- and species-based approaches) predicted high climatic suitability in the entire invaded range of B. oleae—the only species whose intraspecific identity of invading populations has been elucidated—in California. Host availability appears to play the most important role in shaping the geographic range of this specialist pest. However, climatic suitability values predicted by species-based models are correlated with population densities of B. oleae globally reported in California. Our study highlights how classical taxonomic boundaries may lead to under- or overestimation of the potential pest distributions and encourages accounting for intraspecific diversity when assessing the risk of biological invasion. PMID:26274582

  19. Habitat use in eight populations of Sceloporus grammicus (Squamata: Phrynosomatidae) from the Mexican Plateau.

    PubMed

    Leyte-Manrique, A; Hernández-Salinas, U; Ramírez-Bautista, A; Mata-Silva, V; Marshall, J C

    2016-10-13

    Studies on habitat use have often helped explain observed variation in morphology, behavior, and reproductive characteristics among populations within a single species. Here we analyze morphological and ecological characteristics of individuals from the Sceloporus grammicus species complex from seven different localities (El Cerezo: CER, Pachuca: PAC, Huichapan: HUI, Emiliano Zapata: EZA, San Miguel Regla: SMR, La Mojonera: LMJ, and La Manzana: LMZ) in the state of Hidalgo, and one locality (Cahuacán) in the State of México. A canonical correspondence analysis (CCA) showed that females from PAC, EZA, LMZ, HUI, SMR, and CAH populations use similar microhabitats characterized mostly by bare soil; while females from LMJ and CER use microhabitats characterized primarily by vegetation and rocks. Females were observed through twelve different types of perches. With regard to perch height use, the CCA showed that females from PAC, LMJ, LMZ, SMR, CER, and CAH populations were correlated with height to nearest perch (HNP), while the rest of the females were not related to any perch use variable. On the other hand, the CCA showed that males from PAC, LMJ and CAH were characterized by microhabitats with higher vegetal coverage, while males from LMZ and CER used microhabitats composed of bare soil, but males from HUI and SMR populations used microhabitats composed chiefly of bare soil and rocks. With respect to perch height use, the CCA showed that males from PAC, LMJ, EZA, and LMZ were correlated with DNP, but the rest of the males were not correlated with any perch use variables. Males were observed in nine different perch types. Morphologically the males were larger than the females in all morphological variables analyzed. Moreover, in both sexes the SVL is positively correlated with all morphological variables, and although slopes and ordinate of the origin of all morphological variables were larger in males than females, the ANCOVAs indicated that there is no increase

  20. Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins.

    PubMed

    Amatruda, T T; Dragas-Graonic, S; Holmes, R; Perez, H D

    1995-11-24

    The binding of small peptide ligands to high affinity chemoattractant receptors on the surface of neutrophils and monocytes leads to activation of heterotrimeric G-proteins, stimulation of phosphatidylinositol-phospholipase C (PI-PLC), and subsequently to the inflammatory response. It was recently shown (Amatruda, T. T., Gerard, N. P., Gerard, C., and Simon, M. I. (1993) J. Biol. Chem. 268, 10139-10144) that the receptor for the chemoattractant peptide C5a specifically interacts with G alpha 16, a G-protein alpha subunit of the Gq class, to trigger ligand-dependent stimulation of PI-PLC in transfected cells. In order to further characterize this chemoattractant peptide signal transduction pathway, we transfected cDNAs encoding the formylmethionylleucylphenylalanine receptor (fMLPR) into COS cells and measured the production of inositol phosphates. Ligand-dependent activation of PI-PLC was seen in COS cells transfected with the fMLPR and G alpha 16 and stimulated with fMLP but not in cells transfected with receptor alone or with receptor plus G alpha q. Chimeric receptors in which the N-terminal extracellular domain, the second intracellular domain, or the intracellular C-terminal tail of the fMLP receptor was replaced with C5a receptor domains (Perez, H. D., Holmes, R., Vilander, L. R., Adams, R. R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295) were capable of ligand-dependent activation of PI-PLC when co-transfected with G alpha 16. A chimeric receptor exchanging the first intracellular domain of the fMLPR was constitutively activated, stimulating PI-PLC in the absence of ligand. Constitutive activation of PI-PLC, to a level 233% of that seen in cells transfected with wild-type fMLP receptors, was dependent on G alpha 16. Site-directed mutagenesis of the first intracellular domain of the fMLPR (amino acids 54-62) reveals this to be a domain necessary for ligand-dependent activation of G alpha 16. These results suggest that

  1. Soil types will alter the response of arable agroecosystems to future rainfall patterns

    NASA Astrophysics Data System (ADS)

    Zaller, J. G.; Schwarz, T.; Hall, R.; Ziss, E.; von Hohberg und Buchwald, C.; Hösch, J.; Baumgarten, A.

    2012-04-01

    Regional climate change scenarios for eastern Austria (pannonian region) predict fewer but heavier rains during the vegetation period without substantial changes in the total annual amount of rainfall. While many studies investigated the effects of rainfall patterns on ecosystem properties, very little is known on how different soil types might alter ecosystem responses. In order to test this, we conducted an experiment at the AGES lysimeter station using 18 3 m2 lysimeters where we simultaneously manipulated rainfall patterns according to regional climate scenarios (current vs. prognosticated rain) on the three main soil types of the region (sandy calcaric phaeozem, gleyic phaeozem and calcic chernozem). Lysimeters were cultivated according to good farming practice using crop varieties and crop rotations typically for the region. Here, we present results of the response of field peas (Pisum sativum) on important agricultural parameters. Lysimeters under progn. rain showed lower crop cover than under curr. rain while soil types had no effect. Total aboveground biomass production (comprising crops plus weeds) was significantly lower under progn. rain; sandy calcaric phaeozem showed the lowest plant biomass. Pea yields under progn. rain were substantially lower than under curr. rain; again, yields under sandy soils were lower than under the other two soil types. Root growth was significantly higher in progn. rain than in curr. rain; there was a trend towards less root growth in the gleyic soils. Mycorrhization of roots was not influenced by soil types, however under progn. rain colonization rates were lower than under curr. rain. Weed establishment and growth was increased under progn. rain in gleyic soils but decreased in the other soil types. Weed biomass was not affected by rainfall, however sandy soils had less weed biomass than the other soil types. Abundance of the insect pest pea moth (Cydia nigricana) was almost twice as high under progn. rain than under curr