Science.gov

Sample records for manzana cydia pomonella

  1. The Toxicology and Biochemical Characterization of Cantharidin on Cydia pomonella.

    PubMed

    Wu, Zheng-Wei; Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Cantharidin, a natural toxin produced by beetles in the families Meloidae and Oedemeridae, reported to be toxic to some pests, is being developed as a biopesticide in China. This study evaluates the toxicity and biochemical characterization of cantharidin on the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), an economically important fruit pest, under both laboratory and field conditions. Laboratory dose response bioassays showed that the LC50 value of cantharidin against neonate larvae was 0.057 mg ml(-1). Exposure of the larvae to 0.024 and 0.057 mg ml(-1) of cantharidin resulted in significant reduction in larval body weight. Neonate larvae exposed to LC10 of cantharidin showed increased glutathione S-transferase activity and significantly reduced the carboxylesterase and cytochrome P450-dependent mixed-function oxidase activities. Results also showed 16 and 25% ovicidal activity at concentrations of 0.057 and 0.14 mg ml(-1) of cantharidin, respectively. Field trials demonstrated cantharidin has a significant effect on both the first and second generations of C. pomonella larvae, but it exhibits a lower control efficiency than the chemical reference emamectin benzoate. Cantharidin may be considered a valuable tool for the control of codling moth.

  2. The Toxicology and Biochemical Characterization of Cantharidin on Cydia pomonella.

    PubMed

    Wu, Zheng-Wei; Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Cantharidin, a natural toxin produced by beetles in the families Meloidae and Oedemeridae, reported to be toxic to some pests, is being developed as a biopesticide in China. This study evaluates the toxicity and biochemical characterization of cantharidin on the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), an economically important fruit pest, under both laboratory and field conditions. Laboratory dose response bioassays showed that the LC50 value of cantharidin against neonate larvae was 0.057 mg ml(-1). Exposure of the larvae to 0.024 and 0.057 mg ml(-1) of cantharidin resulted in significant reduction in larval body weight. Neonate larvae exposed to LC10 of cantharidin showed increased glutathione S-transferase activity and significantly reduced the carboxylesterase and cytochrome P450-dependent mixed-function oxidase activities. Results also showed 16 and 25% ovicidal activity at concentrations of 0.057 and 0.14 mg ml(-1) of cantharidin, respectively. Field trials demonstrated cantharidin has a significant effect on both the first and second generations of C. pomonella larvae, but it exhibits a lower control efficiency than the chemical reference emamectin benzoate. Cantharidin may be considered a valuable tool for the control of codling moth. PMID:26470125

  3. Cold hardiness adaptations of codling moth, cydia pomonella

    PubMed

    Neven

    1999-02-01

    The cold hardiness adaptations of natural and laboratory reared populations of the codling moth, Cydia pomonella, were examined. Hemolymph, gut, and whole body supercooling points (SCPs), 24-h LT50s, polyhydroxy alcohol concentrations, hemolymph freezing points, and hemolymph melting points were determined. Nondiapausing codling moth larvae do not have appreciable levels of ice nucleators in the hemolymph or gut. Whole body supercooling points were higher than hemolymph supercooling points. For nondiapausing larvae, LT50s were significantly higher than both the whole body and the hemolymph supercooling points, indicating the presence of chill sensitivity. As the larvae left the food source and spun a cocoon, both hemolymph and whole body SCPs decreased. Diapause destined larvae had significantly lower hemolymph SCPs than nondiapausing larvae, but whole body SCPs were not significantly different from nondiapausing larvae of the same age. The LT50s of diapause destined and diapausing larvae were significantly lower than that of nondiapausing larvae. Codling moths are freezing intolerant, with LT50s close to the average whole body supercooling point in diapause destined and diapausing larvae. The overwintering, diapausing larvae effectively supercool to avoid lethal freezing by removal of ice nucleators from the gut and body without appreciable increase of antifreeze agents such as polyols or antifreeze proteins.

  4. Genetic Transformation of the Codling Moth, Cydia pomonella L., with piggyBac EGFP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation of the codling moth, Cydia pomonella, was accomplished through embryo microinjection with a plasmid-based piggyBac vector containing the enhanced green fluorescent protein (EGFP) gene. Sequencing of the flanking regions around the inserted construct results in identification o...

  5. The chemosensory receptors of codling moth Cydia pomonella – expression in larvae and adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Codling moth, Cydia pomonella, is a worldwide key pest of apple and pear. Behavior-modifying semiochemicals are successfully used and are being further developed for environmentally safe control of codling moth. The chemical senses, olfaction and gustation, play critically important role...

  6. Mastrus ridibundus parasitoids eavesdrop on cocoon-spinning codling moth, Cydia pomonella, larvae

    NASA Astrophysics Data System (ADS)

    Jumean, Zaid; Unruh, Tom; Gries, Regine; Gries, Gerhard

    2005-01-01

    Cocoon-spinning larvae of the codling moth, Cydia pomonella L. (Lepidoptera: Olethreutidae) employ a pheromone that attracts or arrests conspecifics seeking pupation sites. Such intraspecific communication signals are important cues for illicit receivers such as parasitoids to exploit. We tested the hypothesis that the prepupal C. pomonella parasitoid Mastrus ridibundus Gravenhorst (Hymenoptera: Ichneumonidae) exploits the larval aggregation pheromone to locate host prepupae. In laboratory olfactometer experiments, female M. ridibundus were attracted to 3-day-old cocoons containing C. pomonella larvae or prepupae. Older cocoons containing C. pomonella pupae, or larvae and prepupae excised from cocoons, were not attractive. In gas chromatographic-electroantennographic detection (GC-EAD) analyses of bioactive Porapak Q extract of cocoon-derived airborne semiochemicals, ten compounds elicited responses from female M. ridibundus antennae. Comparative GC-mass spectrometry of authentic standards and cocoon-volatiles determined that these compounds were 3-carene, myrcene, heptanal, octanal, nonanal, decanal, (E)-2-octenal, (E)-2-nonenal, sulcatone, and geranylacetone. A synthetic 11-component blend consisting of these ten EAD-active compounds plus EAD-inactive (+)-limonene (the most abundant cocoon-derived volatile) was as effective as Porapak Q cocoon extract in attracting both female M. ridibundus and C. pomonella larvae seeking pupation sites. Only three components could be deleted from the 11-component blend without diminishing its attractiveness to M. ridibundus, which underlines the complexity of information received and processed during foraging for hosts. Mastrus ridibundus obviously “eavesdrop” on the pheromonal communication signals of C. pomonella larvae that reliably indicate host presence.

  7. Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella.

    PubMed

    Khani, Abbas; Moharramipour, Saeid

    2010-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), a worldwide apple pest, is classified as a freeze-intolerant organism and one of the most cold-tolerant pests. The objectives of this study were to examine the supercooling point of overwintering and non-diapausing larvae of C. pomonella as an index of its cold hardiness, and to assess larval mortality following 24 h exposure to extreme low temperatures ranging from -5 to -25 degrees C. The mean (+/-SE) supercooling point for feeding larvae (third through fifth instars) was -12.4 +/- 1.1 degrees C. The mean supercooling point for cocooned, non-diapausing larvae (i.e., non-feeding stages) decreased as the days that the arvae were cocooned increased and changed between -15.1 +/- 1.2 degrees C for one to two day cocooned arvae and -19.2 +/- 1.8 degrees C for less than five day cocooned larvae. The mean (+/-SE) supercooling point for other non-feeding stages containing pupae and overwintering larvae were -19.9 +/- 1.0 degrees C and -20.2 +/- 0.2 degrees C, respectively. Mean supercooling points of C. pomonella larvae were significantly lower during the winter months than the summer months, and sex had no effect on the supercooling point of C. pomonella larvae. The mortality of larvae increased significantly after individuals were exposed to temperatures below the mean supercooling point of the population. The supercooling point was a good predictor of cold hardiness.

  8. Effect of rearing strategy and gamma radiation on fecundity and fertility of codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The codling moth, Cydia pomonella (L.), is a serious pest of pome fruit worldwide. In an effort to reduce the use of pesticides to control this pest, the Sterile Insect Technique (SIT) is being used or considered as an integrated pest control tactic. Rearing codling moths through diapause has been...

  9. Putative nicotinic acetylchloline receptor subunits express differentially through life cycle of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae). The nAChRs mediate the fast actions of the neurotransmitter acetylcholine in synaptic tr...

  10. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    PubMed Central

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-01-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses. PMID:26928635

  11. Modelling the interactions between phenology and insecticide resistance genes in the codling moth Cydia pomonella.

    PubMed

    Boivin, Thomas; Chadoeuf, Joël; Bouvier, Jean-Charles; Beslay, Dominique; Sauphanor, Benoît

    2005-01-01

    In the codling moth Cydia pomonella (L), insecticide resistance genes have been associated with pleiotropic effects affecting phenology. In this paper, we investigated whether an increase in the frequency of insecticide resistance in field populations of C pomonella was likely to entail significant divergences in the temporal occurrence of both susceptible and insecticide-resistant individuals. For this purpose, we built a phenological model that provided suitable predictions of the distinct and diverging seasonal evolutions of populations of a susceptible and two insecticide-resistant (at two and three loci) homozygous genotypes of C pomonella. Model simulations for each genotype were further compared with pheromone trap catches recorded in a field insecticide-treated population over an 8-year period (from 1992 to 2000), which reflected the progressive annual increase in the frequency of resistance in southeastern France. We found a significant delay in field adult emergence relative to those predicted by the homozygous susceptible model, and the magnitude of such a delay was positively correlated with increasing frequencies of insecticide resistance in the sampled field population of C pomonella. Adult emergence predicted in the theoretical population that was homozygous for resistance at two loci converged with those recorded in the field during the investigated 8-year period. This suggested that the pleiotropic effects of resistance were likely to result in a significant phenological segregation of insecticide-resistant alleles in the field. The results of this study emphasized the potential for pest populations exposed to chemical selection to evolve qualitatively with respect to phenology. This may raise critical questions regarding the use of phenological modelling as a forecasting tool for appropriate resistance management strategies that would take into account the diverging seasonal evolutions of both insecticide resistance and susceptibility.

  12. The complete mitochondrial genome of the codling moth Cydia pomonella (Lepidoptera: Tortricidae).

    PubMed

    Shi, Bao-Cai; Liu, Wei; Wei, Shu-Jun

    2013-02-01

    The complete mitochondrial genome of the codling moth Cydia pomonella (Lepidoptera: Tortricidae) was determined. The genome is 15,253 bp long with 37 typical animal mitochondrial genes and an A+T-rich region. All genes are arranged in their conserved positions compared with the pupative ancestral arrangement of insects except for trnM, which was translocated to the upstream of the transfer RNA cluster trnI-trnQ as in all previously reported lepidopteran mitochondiral genomes. Seven portein-coding genes use ATG start codon and five use ATT. However, the cox1 gene uses the CGA start codon as it is found in all previous reported mitochondrial genomes of Lepidoptera. Nine protein-coding genes stop with termination codon TAA. Four protein-coding genes use incomplete stop codons TA or T. The A+T region is located between rrnS and trnM with a length of 331 bp.

  13. Structure-based discovery of potentially active semiochemicals for Cydia pomonella (L.)

    PubMed Central

    Liu, Jiyuan; Tian, Zhen; Zhang, Yalin

    2016-01-01

    The development of physiologically active semiochemicals is largely limited by the labor-consuming searching process. How to screen active semiochemicals efficiently is of significance to the extension of behavior regulation in pest control. Here pharmacophore modeling and shape-based virtual screening were combined to predict candidate ligands for Cydia pomonella pheromone binding protein 1 (CpomPBP1). Out of the predicted compounds, ETrME displayed the highest affinity to CpomPBP1. Further studies on the interaction between CpomPBP1 and ETrME, not only depicted the binding mode, but also revealed residues providing negative and positive contributions to the ETrME binding. Moreover, key residues involved in interacting with ETrME of CpomPBP1 were determined as well. These findings were significant to providing insights for the future searching and optimization of active semiochemicals. PMID:27708370

  14. Identification of biotransformation enzymes in the antennae of codling moth Cydia pomonella.

    PubMed

    Huang, Xinglong; Liu, Lu; Su, Xiaoji; Feng, Jinian

    2016-04-10

    Biotransformation enzymes are found in insect antennae and play a critical role in degrading xenobiotics and odorants. In Cydia pomonella, we identified 26 biotransformation enzymes. Among these enzymes, twelve carboxylesterases (CXEs), two aldehyde oxidases (AOXs) and six alcohol dehydrogenases (ADs) were predominantly expressed in antennae. Each of the CpomCXEs presents a conserved catalytic triad "Ser-His-Glu", which is the structural characteristic of known insect CXEs. CpomAOXs present two redox centers, a FAD-binding domain and a molybdenum cofactor/substrate-binding domain. The antennal CpomADs are from two protein families, short-chain dehydrogenases/reducetases (SDRs) and medium-chain dehydrogenases/reducetases (MDRs). Putative catalytic active domain and cofactor binding domain were found in these CpomADs. Potential functions of these enzymes were determined by phylogenetic analysis. The results showed that these enzymes share close relationship with odorant degrading enzymes (ODEs) and resistance-associated enzymes of other insect species. Because of commonly observed roles of insect antennal biotransformation enzymes, we suggest antennal biotransformation enzymes presented here are candidate that involved in degradation of odorants and xenobiotics within antennae of C. pomonella.

  15. CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella.

    PubMed

    Věchtová, Pavlína; Dalíková, Martina; Sýkorová, Miroslava; Žurovcová, Martina; Füssy, Zoltán; Zrzavá, Magda

    2016-08-01

    Satellite DNA (satDNA) is a non-coding component of eukaryotic genomes, located mainly in heterochromatic regions. Relevance of satDNA began to emerge with accumulating evidence of its potential yet hardly comprehensible role that it can play in the genome of many organisms. We isolated the first satDNA of the codling moth (Cydia pomonella, Tortricidae, Lepidoptera), a species with holokinetic chromosomes and a single large heterochromatic element, the W chromosome in females. The satDNA, called CpSAT-1, is located on all chromosomes of the complement, although in different amounts. Surprisingly, the satellite is almost missing in the heterochromatic W chromosome. Additionally, we isolated mRNA from all developmental stages (1st-5th instar larva, pupa, adult), both sexes (adult male and female) and several tissues (Malpighian tubules, gut, heart, testes, and ovaries) of the codling moth and showed the CpSAT-1 sequence was transcribed in all tested samples. Using CpSAT-1 specific primers we amplified, cloned and sequenced 40 monomers from cDNA and gDNA, respectively. The sequence analysis revealed a high mutation rate and the presence of potentially functional motifs, mainly in non-conserved regions of the monomers. Both the chromosomal distribution and the sequence analysis suggest that CPSAT-1 has no function in the C. pomonella genome.

  16. Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication.

    PubMed

    Asser-Kaiser, Sabine; Radtke, Pit; El-Salamouny, Said; Winstanley, Doreen; Jehle, Johannes A

    2011-02-20

    An up to 10,000-fold resistance against the biocontrol agent Cydia pomonella granulovirus (CpGV) was observed in field populations of codling moth, C. pomonella, in Europe. Following different experimental approaches, a modified peritrophic membrane, a modified midgut receptor, or a change of the innate immune response could be excluded as possible resistance mechanisms. When CpGV replication was traced by quantitative PCR in different tissues of susceptible and resistant insects after oral and intra-hemocoelic infection, no virus replication could be detected in any of the tissues of resistant insects, suggesting a systemic block prior to viral DNA replication. This conclusion was corroborated by fluorescence microscopy using a modified CpGV (bacCpGV(hsp-eGFP)) carrying enhanced green fluorescent gene (eGFP), which showed that infection in resistant insects did not spread. In conclusion, the different lines of evidence indicate that CpGV can enter but not replicate in the cells of resistant codling moth larvae. PMID:21190707

  17. CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella.

    PubMed

    Věchtová, Pavlína; Dalíková, Martina; Sýkorová, Miroslava; Žurovcová, Martina; Füssy, Zoltán; Zrzavá, Magda

    2016-08-01

    Satellite DNA (satDNA) is a non-coding component of eukaryotic genomes, located mainly in heterochromatic regions. Relevance of satDNA began to emerge with accumulating evidence of its potential yet hardly comprehensible role that it can play in the genome of many organisms. We isolated the first satDNA of the codling moth (Cydia pomonella, Tortricidae, Lepidoptera), a species with holokinetic chromosomes and a single large heterochromatic element, the W chromosome in females. The satDNA, called CpSAT-1, is located on all chromosomes of the complement, although in different amounts. Surprisingly, the satellite is almost missing in the heterochromatic W chromosome. Additionally, we isolated mRNA from all developmental stages (1st-5th instar larva, pupa, adult), both sexes (adult male and female) and several tissues (Malpighian tubules, gut, heart, testes, and ovaries) of the codling moth and showed the CpSAT-1 sequence was transcribed in all tested samples. Using CpSAT-1 specific primers we amplified, cloned and sequenced 40 monomers from cDNA and gDNA, respectively. The sequence analysis revealed a high mutation rate and the presence of potentially functional motifs, mainly in non-conserved regions of the monomers. Both the chromosomal distribution and the sequence analysis suggest that CPSAT-1 has no function in the C. pomonella genome. PMID:27236660

  18. [Research advances in the effects of host plant volatiles on Cydia pomonella behaviors and the application of the volatiles in pest control].

    PubMed

    Zhou, Wen; Liu, Wan-xue; Wan, Fang-hao; Shen, Jian-ru

    2010-09-01

    Codling moth (Cydia pomonella) is a worldwide pest of stone fruit trees, and an important quarantine target in China. Its occurrence, damage, and potential expansion in this country should be seriously concerned. Host plant volatiles, the species-specific attractants of C. pomonella, have attracted extensive attention. This paper reviewed the researches on the interactions between host plant source volatiles and C. pomonella, with the focus on the effects of the volatiles on the behaviors of C. pomonella, e.g., host orientation, courting and mating, and spawning, etc., the changes of the volatile components released by the host plants after fed by C. pomonella larvae, and the impacts of the volatiles on the sex pheromone of C. pomonella. The research progress and field application of plant source pear ester were also introduced, aimed to provide a reference for the prevention and control of C. pomonella in China.

  19. Phenotypic screen for RNAi effects in the codling moth Cydia pomonella.

    PubMed

    Wang, Jinda; Gu, Liuqi; Ireland, Stephen; Garczynski, Stephen F; Knipple, Douglas C

    2015-11-10

    RNAi-based technologies have the potential to augment, or replace existing pest management strategies. However, some insect taxa are less susceptible to the induction of the post-transcriptional gene silencing effect than others, such as the Lepidoptera. Here we describe experiments to investigate the induction of RNAi in the codling moth, Cydia pomonella, a major lepidopteran pest of apple, pear, and walnut. Prior to a knockdown screen, fluorescently labeled small interfering RNA (siRNA) and double-stranded RNA (dsRNA) derived from green fluorescent protein (GFP) coding sequence were delivered to the surface of artificial diet to which neonate larvae were introduced and subsequently examined for the distribution of fluorescence in their tissues. Fluorescence was highly concentrated in the midgut but its presence in other tissues was equivocal. Next, dsRNAs were made for C. pomonella genes orthologous to those that have well defined deleterious phenotypes in Drosophila melanogaster. A screen was conducted using dsRNAs encoding cullin-1 (Cpcul1), maleless (Cpmle), musashi (Cpmsi), a homeobox gene (CpHbx), and pumilio (Cppum). The dsRNAs designed from these target genes were administered to neonate larvae by delivery to the surface of the growth medium. None of the dsRNA treatments affected larval viability, however Cpcul1-dsRNA had a significant effect on larval growth, with the average length of larvae about 3mm, compared to about 4mm in the control groups. Measurement of Cpcul1 transcript levels by quantitative real-time PCR (qRT-PCR) revealed a dose-dependent RNAi effect in response to increasing amount of Cpcul1-dsRNA. Despite their reduced size, Cpcul1-dsRNA-treated larvae molted normally and matured to adulthood in a manner similar to controls. In an additional experiment, Cpcul1-siRNA was found to induce similar stunting effect as that induced by Cpcul1-dsRNA. PMID:26162675

  20. Phenotypic screen for RNAi effects in the codling moth Cydia pomonella.

    PubMed

    Wang, Jinda; Gu, Liuqi; Ireland, Stephen; Garczynski, Stephen F; Knipple, Douglas C

    2015-11-10

    RNAi-based technologies have the potential to augment, or replace existing pest management strategies. However, some insect taxa are less susceptible to the induction of the post-transcriptional gene silencing effect than others, such as the Lepidoptera. Here we describe experiments to investigate the induction of RNAi in the codling moth, Cydia pomonella, a major lepidopteran pest of apple, pear, and walnut. Prior to a knockdown screen, fluorescently labeled small interfering RNA (siRNA) and double-stranded RNA (dsRNA) derived from green fluorescent protein (GFP) coding sequence were delivered to the surface of artificial diet to which neonate larvae were introduced and subsequently examined for the distribution of fluorescence in their tissues. Fluorescence was highly concentrated in the midgut but its presence in other tissues was equivocal. Next, dsRNAs were made for C. pomonella genes orthologous to those that have well defined deleterious phenotypes in Drosophila melanogaster. A screen was conducted using dsRNAs encoding cullin-1 (Cpcul1), maleless (Cpmle), musashi (Cpmsi), a homeobox gene (CpHbx), and pumilio (Cppum). The dsRNAs designed from these target genes were administered to neonate larvae by delivery to the surface of the growth medium. None of the dsRNA treatments affected larval viability, however Cpcul1-dsRNA had a significant effect on larval growth, with the average length of larvae about 3mm, compared to about 4mm in the control groups. Measurement of Cpcul1 transcript levels by quantitative real-time PCR (qRT-PCR) revealed a dose-dependent RNAi effect in response to increasing amount of Cpcul1-dsRNA. Despite their reduced size, Cpcul1-dsRNA-treated larvae molted normally and matured to adulthood in a manner similar to controls. In an additional experiment, Cpcul1-siRNA was found to induce similar stunting effect as that induced by Cpcul1-dsRNA.

  1. A female-specific attractant for the codling moth, Cydia pomonella, from apple fruit volatiles

    NASA Astrophysics Data System (ADS)

    Hern, Alan; Dorn, Silvia

    Host plant-derived esters were investigated as potential female-specific attractants for the codling moth (CM), Cydia pomonella (L.), a key pest of apples worldwide. The behavioural effects of single and combined volatile compounds and of a natural odour blend were examined using olfactometry and wind-tunnel bioassays. The apple-derived volatile butyl hexanoate attracted mated females while it was behaviourally ineffective for males over a dosage range of more than three orders of magnitude in olfactometer assays. Female CM preferred this kairomone to the headspace volatiles from ripe apples. Both no-choice and choice trials in the wind-tunnel suggested that female moths might be effectively trapped by means of this compound. In contrast, headspace volatiles collected from ripe apple fruits as well as a blend containing the six dominant esters from ripe apples were behaviourally ineffective. A female-specific repellency was found for the component hexyl acetate in the olfactometer, but this ester had no significant effect in the wind-tunnel. Butyl hexanoate with its sex-specific attraction should be further evaluated for monitoring and controlling CM females in orchards.

  2. Impact of Cultivation and Subsequent Burial on Cydia pomonella (Lepidoptera: Tortricidae) and Conotrachelus nenuphar (Coleoptera: Curculionidae)

    PubMed Central

    Baughman, William B.; Nelson, Peter N.; Grieshop, Matthew J.

    2015-01-01

    We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. PMID:26470248

  3. Impact of Cultivation and Subsequent Burial on Cydia pomonella (Lepidoptera: Tortricidae) and Conotrachelus nenuphar (Coleoptera: Curculionidae).

    PubMed

    Baughman, William B; Nelson, Peter N; Grieshop, Matthew J

    2015-06-01

    We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples.

  4. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella

    PubMed Central

    Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.

    2014-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935

  5. Optimizing Aerosol Dispensers for Mating Disruption of Codling Moth, Cydia pomonella L.

    PubMed

    McGhee, Peter S; Miller, James R; Thomson, Donald R; Gut, Larry J

    2016-07-01

    Experiments were conducted in commercial apple orchards to determine if improved efficiencies in pheromone delivery may be realized by using aerosol pheromone dispensers for codling moth (CM), Cydia pomonella L., mating disruption. Specifically, we tested how reducing: pheromone concentration, period of dispenser operation, and frequency of pheromone emission from aerosol dispensers affected orientational disruption of male CM to pheromone-baited monitoring traps. Isomate® CM MIST formulated with 50 % less codlemone (3.5 mg/ emission) provided orientation disruption equal to the standard commercial formulation (7 mg / emission). Decreased periods of dispenser operation (3 and 6 h) and frequency of pheromone emission (30 and 60 min) provided a level of orientational disruption similar to the current standard protocol of releasing pheromone over a 12 h period on a 15 min cycle, respectively. These three modifications provide a means of substantially reducing the amount of pheromone necessary for CM disruption. The savings accompanying pheromone conservation could lead to increased adoption of CM mating disruption and, moreover, provide an opportunity for achieving higher levels of disruption by increasing dispenser densities. PMID:27369280

  6. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella

    PubMed Central

    2014-01-01

    Background We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Results Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. Conclusions We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms. PMID:25471491

  7. Overwintering Strategy and Mechanisms of Cold Tolerance in the Codling Moth (Cydia pomonella)

    PubMed Central

    Rozsypal, Jan; Koštál, Vladimír; Zahradníčková, Helena; Šimek, Petr

    2013-01-01

    Background The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. Fully grown last instar larvae overwinter in diapause state. Their overwintering strategies and physiological principles of cold tolerance have been insufficiently studied. No elaborate analysis of overwintering physiology is available for European populations. Principal Findings We observed that codling moth larvae of a Central European population prefer to overwinter in the microhabitat of litter layer near the base of trees. Reliance on extensive supercooling, or freeze-avoidance, appears as their major strategy for survival of the winter cold. The supercooling point decreases from approximately −15.3°C during summer to −26.3°C during winter. Seasonal extension of supercooling capacity is assisted by partial dehydration, increasing osmolality of body fluids, and the accumulation of a complex mixture of winter specific metabolites. Glycogen and glutamine reserves are depleted, while fructose, alanine and some other sugars, polyols and free amino acids are accumulated during winter. The concentrations of trehalose and proline remain high and relatively constant throughout the season, and may contribute to the stabilization of proteins and membranes at subzero temperatures. In addition to supercooling, overwintering larvae acquire considerable capacity to survive at subzero temperatures, down to −15°C, even in partially frozen state. Conclusion Our detailed laboratory analysis of cold tolerance, and whole-winter survival assays in semi-natural conditions, suggest that the average winter cold does not represent a major threat for codling moth populations. More than 83% of larvae survived over winter in the field and pupated in spring irrespective of the overwintering microhabitat (cold-exposed tree trunk or temperature-buffered litter layer). PMID:23613923

  8. Cross-Resistance Between Azinphos-methyl and Acetamiprid in Populations of Codling Moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae), from Washington State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult and neonate larval assays were conducted to assess the response of field-collected codling moth, Cydia pomonella (L.), populations from apple. Male codling moth populations exhibited a range of responses to a discriminating concentration of azinphos-methyl in a survey of 20 populations. Popula...

  9. Targeting Cydia pomonella (L.)(Lepidoptera: Tortricidae) Adults with Low Volume Applications of Insecticides Alone and in Combination with Sex Pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies examined the effectiveness of adding insecticides to low volume sprays of a microencapsulated (MEC) sex pheromone to manage codling moth, Cydia pomonella (L). The activities of fifteen insecticides against the adult stage were first evaluated with a plastic cup assay. In general, moth longev...

  10. Determining thermotolerance of fifth-instar Cydia pomonella (L.) (Lepidoptera: Tortricidae) and Amyelois transitella (Walker) (Lepidoptera: Pyralidae) by three different methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermotolerance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), and navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), were studied using two water immersion methods and one dry heat method. The two water immersion methods were: 1) directly immersing in hot w...

  11. Characterization of a lambda-cyhalothrin metabolizing glutathione S-transferase CpGSTd1 from Cydia pomonella (L.).

    PubMed

    Liu, Jiyuan; Yang, Xueqing; Zhang, Yalin

    2014-11-01

    In insects, glutathione S-transferases (GSTs) are enzymes involved in detoxification of insecticides. However, few data are available for the codling moth, Cydia pomonella (L.). In this study, we cloned a delta class GST gene CpGSTd1 from C. pomonella. Real-time quantitative PCR shows that CpGSTd1 was up-regulated with aging, and the mRNA level of CpGSTd1 was higher in the fat body and silk glands than in other tissues. The expression level of CpGSTd1 exposure to insecticide suggests that CpGSTd1 is up-regulated after chlorpyrifos-methyl and lambda-cyhalothrin treatments. Both lambda-cyhalothrin and chlorpyrifos-methyl altered GST activity in vivo. The purified CpGSTd1 protein exhibits a high catalytic efficiency with CDNB and was inhibited by lambda-cyhalothrin and chlorpyrifos-methyl in vitro. Metabolism assays indicate that lambda-cyhalothrin was significantly metabolized while chlorpyrifos-methyl was not metabolized by CpGSTd1. Binding free energy analysis suggests that CpGSTd1 binding is tighter with lambda-cyhalothrin than with chlorpyrifos-methyl. Our study suggests that CpGSTd1 plays a key role in the metabolism of insecticides in C. pomonella. PMID:24827500

  12. Insecticide resistance may enhance the response to a host-plant volatile kairomone for the codling moth, Cydia pomonella (L.)

    NASA Astrophysics Data System (ADS)

    Sauphanor, Benoît; Franck, Pierre; Lasnier, Thérèse; Toubon, Jean-François; Beslay, Dominique; Boivin, Thomas; Bouvier, Jean-Charles; Renou, Michel

    2007-06-01

    The behavioral and electroantennographic responses of Cydia pomonella (L.) to the ripe pear volatile ethyl (2 E,4 Z)-2,4-decadienoate (Et- E, Z-DD), were compared in insecticide-susceptible and -resistant populations originating from southern France. A dose-response relationship to this kairomonal attractant was established for antennal activity and did not reveal differences between susceptible and resistant strains. Conversely, males of the laboratory strains expressing metabolic [cytochrome P450-dependent mixed-function oxidases (mfo)] or physiological (kdr-type mutation of the sodium-channel gene) resistance mechanisms exhibited a significantly higher response to Et- E, Z-DD than those of the susceptible strain in a wind tunnel experiment. No response of the females to this kairomone could be obtained in our wind-tunnel conditions. In apple orchards, mfo-resistant male moths were captured at significantly higher rates in kairomone-baited traps than in traps baited with the sex pheromone of C. pomonella. Such a differential phenomenon was not verified for the kdr-resistant insects, which exhibited a similar response to both the sex pheromone and the kairomonal attractant in apple orchards. Considering the widespread distribution of metabolic resistance in European populations of C. pomonella and the enhanced behavioral response to Et- E, Z-DD in resistant moths, the development of control measures based on this kairomonal compound would be of great interest for the management of insecticide resistance in this species.

  13. Body size phenotypes are heritable and mediate fecundity but not fitness in the lepidopteran frugivore Cydia pomonella

    NASA Astrophysics Data System (ADS)

    Davis, Thomas Seth; Landolt, Peter J.

    2012-06-01

    The inheritance and functional roles of quantitative traits are central concerns of evolutionary ecology. We report two sets of experiments that investigated the heritability and reproductive consequences of body size phenotypes in a globally distributed lepidopteran frugivore, Cydia pomonella (L.). In our first set of experiments, we tested the hypotheses that (1) body size is heritable and (2) parental body size mediates egg production and offspring survival. Midparent-offspring regression analyses revealed that body mass is highly heritable for females and moderately heritable for males. The contribution of fathers to estimates of additive genetic variance was slightly greater than for mothers. Egg production increased with mean parental size, but offspring survival rates were equivalent. Based on this result, we tested two additional hypotheses in a second set of experiments: (3) male size moderates female egg production and egg fertility and (4) egg production, egg fertility, and offspring survival rate are influenced by female mating opportunities. Females paired with large males produced more eggs and a higher proportion of fertile eggs than females paired with small males. Females with multiple mating opportunities produced more fertile eggs than females paired with a single male. However, egg production and offspring survival rates were unaffected by the number of mating opportunities. Our experiments demonstrate that body mass is heritable in C. pomonella and that size phenotypes may mediate fecundity but not fitness. We conclude that male size can influence egg production and fertility, but female mate choice also plays a role in determining egg fertility.

  14. Effects of Ginkgo biloba constituents on fruit-infesting behavior of codling moth (Cydia pomonella) in apples.

    PubMed

    Pszczolkowski, Maciej A; Durden, Kevin; Sellars, Samantha; Cowell, Brian; Brown, John J

    2011-10-26

    Codling moth, Cydia pomonella (L.), is a cosmopolitan pest of apple, potentially causing severe damage to the fruit. Currently used methods of combating this insect do not warrant full success or are harmful to the environment. The use of plant-derived semiochemicals for manipulation with fruit-infesting behavior is one of the new avenues for controlling this pest. Here, we explore the potential of Ginkgo biloba and its synthetic metabolites for preventing apple feeding and infestation by neonate larvae of C. pomonella. Experiments with crude extracts indicated that deterrent constituents of ginkgo are present among alkylphenols, terpene trilactones, and flavonol glycosides. Further experiments with ginkgo synthetic metabolites of medical importance, ginkgolic acids, kaempferol, quercetin, isorhamnetin, ginkgolides, and bilobalide, indicated that three out of these chemicals have feeding deterrent properties. Ginkgolic acid 15:0 prevented fruit infestation at concentrations as low as 1 mg/mL, bilobalide had deterrent effects at 0.1 mg/mL and higher concentrations, and ginkgolide B at 10 mg/mL. On the other hand, kaempferol and quercetin promoted fruit infestation by codling moth neonates. Ginkgolic acids 13:0, 15:1, and 17:1, isorhamnetin, and ginkgolides A and C had no effects on fruit infestation-related behavior. Our research is the first report showing that ginkgo constituents influence fruit infestation behavior and have potential applications in fruit protection.

  15. Effects of Ginkgo biloba constituents on fruit-infesting behavior of codling moth (Cydia pomonella) in apples.

    PubMed

    Pszczolkowski, Maciej A; Durden, Kevin; Sellars, Samantha; Cowell, Brian; Brown, John J

    2011-10-26

    Codling moth, Cydia pomonella (L.), is a cosmopolitan pest of apple, potentially causing severe damage to the fruit. Currently used methods of combating this insect do not warrant full success or are harmful to the environment. The use of plant-derived semiochemicals for manipulation with fruit-infesting behavior is one of the new avenues for controlling this pest. Here, we explore the potential of Ginkgo biloba and its synthetic metabolites for preventing apple feeding and infestation by neonate larvae of C. pomonella. Experiments with crude extracts indicated that deterrent constituents of ginkgo are present among alkylphenols, terpene trilactones, and flavonol glycosides. Further experiments with ginkgo synthetic metabolites of medical importance, ginkgolic acids, kaempferol, quercetin, isorhamnetin, ginkgolides, and bilobalide, indicated that three out of these chemicals have feeding deterrent properties. Ginkgolic acid 15:0 prevented fruit infestation at concentrations as low as 1 mg/mL, bilobalide had deterrent effects at 0.1 mg/mL and higher concentrations, and ginkgolide B at 10 mg/mL. On the other hand, kaempferol and quercetin promoted fruit infestation by codling moth neonates. Ginkgolic acids 13:0, 15:1, and 17:1, isorhamnetin, and ginkgolides A and C had no effects on fruit infestation-related behavior. Our research is the first report showing that ginkgo constituents influence fruit infestation behavior and have potential applications in fruit protection. PMID:21905729

  16. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species.

    PubMed

    Thaler, R; Brandstätter, A; Meraner, A; Chabicovski, M; Parson, W; Zelger, R; Dalla Via, J; Dallinger, R

    2008-09-01

    Originally resident in southeastern Europe, the codling moth (Cydia pomonella L.) (Tortricidae) has achieved a nearly global distribution, being one of the most successful pest insect species known today. As shown in our accompanying study, mitochondrial genetic markers suggest a Pleistocenic splitting of Cydia pomonella into two refugial clades which came into secondary contact after de-glaciation. The actual distribution pattern shows, however, that Central European codling moths have experienced a geographic splitting into many strains and locally adapted populations, which is not reflected by their mitochondrial haplotype distribution. We therefore have applied, in addition to mitochondrial markers, an approach with a higher resolution potential at the population level, based on the analysis of amplification fragment length polymorphisms (AFLPs). As shown in the present study, AFLP markers elucidate the genetic structure of codling moth strains and populations from different Central European apple orchard sites. While individual genetic diversity within codling moth strains and populations was small, a high degree of genetic differentiation was observed between the analyzed strains and populations, even at a small geographic scale. One of the main factors contributing to local differentiation may be limited gene flow among adjacent codling moth populations. In addition, microclimatic, ecological, and geographic constraints also may favour the splitting of Cydia pomonella into many local populations. Lastly, codling moths in Central European fruit orchards may experience considerable selective pressure due to pest control activities. As a consequence of all these selective forces, today in Central Europe we see a patchy distribution of many locally adapted codling moth populations, each of them having its own genetic fingerprint. Because of the complete absence of any correlation between insecticide resistance and geographic or genetic distances among

  17. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin.

    PubMed

    Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs.

  18. The crystal proteins from Bacillus thuringiensis subsp. thompsoni display a synergistic activity against the codling moth, Cydia pomonella.

    PubMed

    Rang, C; Lacey, L A; Frutos, R

    2000-03-01

    Crystal proteins from Bacillus thuringiensis subsp. thompsoni strain HnC are active against the codling moth, Cydia pomonella, a major pest of orchards. Inclusion bodies purified from strain HnC displayed an LC(50) of 3.34 x 10(-3) microgram/microliter. HnC-purified crystals were tenfold more active than Cry2Aa and Cry1Aa toxins, and 100-fold more toxic than Cry1Ab. The 34-kDa and 40-kDa proteins contained in HnC inclusion bodies were shown to act synergistically. The toxicity of crystal proteins produced by the recombinant B. thuringiensis strain BT-OP expressing the full-length native operon was about tenfold higher than that of the 34-kDa protein. When the gene encoding the non-insecticidal 40-kDa protein, which is not active, was introduced into the recombinant strain producing only the 34-kDa protein, the toxicity was raised tenfold and was similar to that of the strain BT-OP.

  19. Application of Cydia pomonella expressed sequence tags: Identification and expression of three general odorant binding proteins in codling moth

    PubMed Central

    Garczynski, Stephen F.; Coates, Brad S.; Unruh, Thomas R.; Schaeffer, Scott; Jiwan, Derick; Koepke, Tyson; Dhingra, Amit

    2014-01-01

    The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8 341 expressed sequence tags was generated from Roche 454 GS-FLX sequencing of eight tissue-specific cDNA libraries. Putative chemosensory proteins (12) and odorant binding proteins (OBPs) (18) were annotated, which included three putative general OBP (GOBP), one more than typically reported for other Lepidoptera. To further characterize CpomGOBPs, we cloned cDNA copies of their transcripts and determined their expression patterns in various tissues. Cloning and sequencing of the 698 nt transcript for CpomGOBP1 resulted in the prediction of a 163 amino acid coding region, and subsequent RT-PCR indicated that the transcripts were mainly expressed in antennae and mouthparts. The 1 289 nt (160 amino acid) CpomGOBP2 and the novel 702 nt (169 amino acid) CpomGOBP3 transcripts are mainly expressed in antennae, mouthparts, and female abdomen tips. These results indicate that next generation sequencing is useful for the identification of novel transcripts of interest, and that codling moth expresses a transcript encoding for a new member of the GOBP subfamily. PMID:23956229

  20. Effectiveness of 12 Insecticides to a Laboratory Population of Cydia pomonella (Lepidoptera: Tortricidae) Newly Established in China.

    PubMed

    Wu, Zheng-Wei; Zhang, Ya-Lin; Shang, Su-Qin

    2015-06-01

    The codling moth Cydia pomonella (L.) is an economically important fruit pest that has spread rapidly from its original site in Xinjiang to other northwestern regions of China. Insecticides are widely used to control this pest but its invasion has never been completely stopped. The aim of this study was to establish a laboratory population of the codling moth occurring in China, to investigate the effectiveness of 12 conventional insecticides to this laboratory population, and to recommend the discriminating doses for use in resistance monitoring. The laboratory population was generally similar to other laboratory strains although parameters such as survival rate and larval duration were low when compared with field populations. Toxicity varied among the insecticides tested with LC50 values ranging from 0.016 mg/l for emamectin benzoate to 55.77 mg/l for chlorbenzuron. Discriminating dose levels were determined from dose-mortality reference curves for the detection of resistance in field populations. Effectiveness of 12 insecticides to a laboratory population of codling moth in China was evaluated for the first time. This can be integrated into resistance management strategies, especially in orchards with a history of frequent insecticides applications, in order to monitor or decrease insecticide resistance in the future.

  1. Evaluation of cytochrome P450 activity in field populations of Cydia pomonella (Lepidoptera: Tortricidae) resistant to azinphosmethyl, acetamiprid, and thiacloprid.

    PubMed

    Cichón, L B; Soleño, J; Anguiano, O L; Garrido, S A S; Montagna, C M

    2013-04-01

    The Río Negro and Neuquén Valley is the most important apple and pear growing region in Argentina. Cydia pomonella L. (Lepidoptera: Tortricidae), the main fruit-tree pest is being controlled by azinphosmethyl (AzMe), acetamiprid (Acet), and thiacloprid (Thia) among other insecticides. The objective of this study was to evaluate the response of neonate larvae of codling moth to these three insecticides and on the role of cytochrome P450 monooxygenase in their toxicity. All field populations presented significantly lower mortality to a discriminating concentration (DC) of Acet and AzMe. In addition, 13 of the 14 populations showed significantly lower mortality to DC of Thia. Most of the field populations (71%) showed significantly higher 7-ethoxycoumarine O-deethylase activity compared with the laboratory-susceptible strain. While positive significant correlation (gamma = 0.59) was found between Thia and AzMe mortalities at the DC level, no significant correlations were detected between Acet and Thia (gamma = 0.35) or Acet and AzMe (gamma = 0.12). However, Acet and Thia mortalities were significantly correlated to the percentage of individuals exhibiting 7-ethoxy-coumarine O-deethylase activity activities higher than the mean upper 95% confidence limit of the susceptible strain (gamma = -0.52 and gamma = -0.63, respectively).

  2. Expression of a Sensory Neuron Membrane Protein SNMP2 in Olfactory Sensilla of Codling Moth Cydia pomonella (Lepidoptera: Tortricidae).

    PubMed

    Huang, Xinglong; Liu, Lu; Fang, Yiqing; Feng, Jinian

    2016-08-01

    In insects, sensory neuron membrane proteins (SNMPs) are critical peripheral olfactory proteins and highly promote the sensitivity of pheromone detection. In this study, we cloned an SNMP transcript (CpomSNMP2, GenBank KU302714) from the antennae of the codling moth Cydia pomonella (L.) Its open reading frame is 1,575 bp and it encodes a protein with 524 amino acids. CpomSNMP2 contains two putative transmembrane domains and has a large extracellular loop. Phylogenetic analysis showed that CpomSNMP2 is clustered into the group of previously characterized lepidopteron SNMP2s. Expression levels of CpomSNMP2 were significantly higher in antennae of both males and females than in tissues from the thoraxes, abdomens, legs, and wings. CpomSNMP2 was distributed in sensilla trichodea of both males and females, but only in sensilla chaetica of males. This study provides evidence for olfactory roles of CpomSNMP2 in this moth. PMID:27329623

  3. A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.)

    NASA Astrophysics Data System (ADS)

    Light, Douglas M.; Knight, Alan L.; Henrick, Clive A.; Rajapaska, Dayananda; Lingren, Bill; Dickens, Joseph C.; Reynolds, Katherine M.; Buttery, Ronald G.; Merrill, Gloria; Roitman, James; Campbell, Bruce C.

    2001-08-01

    Ethyl (2 E, 4 Z)-2,4-decadienoate, a pear-derived volatile, is a species-specific, durable, and highly potent attractant to the codling moth (CM), Cydia pomonella (L.), a serious pest of walnuts, apples, and pears worldwide. This kairomone attracts both CM males and virgin and mated females. It is highly attractive to CM in both walnut and apple orchard contexts, but has shown limited effectiveness in a pear orchard context. Rubber septa lures loaded with ethyl (2 E, 4 Z)-2,4-decadienoate remained attractive for several months under field conditions. At the same low microgram load rates on septa, the combined gender capture of CM in kairomone-baited traps was similar to the capture rate of males in traps baited with codlemone, the major sex pheromone component. The particular attribute of attracting CM females renders this kairomone a novel tool for monitoring population flight and mating-ovipositional status, and potentially a major new weapon for directly controlling CM populations.

  4. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin.

    PubMed

    Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs. PMID:25640718

  5. Putative nicotinic acetylcholine receptor subunits express differentially through the life cycle of codling moth, Cydia pomonella (Lepidoptera: Tortricidae).

    PubMed

    Martin, Jessica A; Garczynski, Stephen F

    2016-04-01

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Orchardists in Washington State are concerned about the possibility of codling moth field populations developing resistance to these two insecticides. In an effort to help mitigate this issue, we initiated a project to identify and characterize codling moth nAChR subunits expressed in heads. This study had two main goals; (i) identify transcripts from a codling moth head transcriptome that encode for nAChR subunits, and (ii) determine nAChR subunit expression profiles in various life stages of codling moth. From a codling moth head transcriptome, 24 transcripts encoding for 12 putative nAChR subunit classes were identified and verified by PCR amplification, cloning, and sequence determination. Characterization of the deduced protein sequences encoded by putative nAChR transcripts revealed that they share the distinguishing features of the cys-loop ligand-gated ion channel superfamily with 9 α-type subunits and 3 β-type subunits identified. Phylogenetic analysis comparing these protein sequences to those of other insect nAChR subunits supports the identification of these proteins as nAChR subunits. Stage expression studies determined that there is clear differential expression of many of these subunits throughout the codling moth life cycle. The information from this study will be used in the future to monitor for potential target-site resistance mechanisms to neonicotinoids and spinosads in tolerant codling moth populations.

  6. Development of a Susceptibility Index of Apple Cultivars for Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) Oviposition

    PubMed Central

    Joshi, Neelendra K.; Rajotte, Edwin G.; Myers, Clayton T.; Krawczyk, Greg; Hull, Larry A.

    2015-01-01

    Codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae) is a major fruit feeding pest of apples. Understanding susceptibility differences of various apple cultivars to CM oviposition is an important step in developing resistant varieties as well as monitoring and management strategies for this pest in apple orchards planted with mixed-cultivars. In this context, oviposition preferences of CM for the fruits of different apple cultivars were studied in laboratory bioassays using a series of no-choice and multiple-choice tests in 2006, 2007, and 2008. In 2006 and 2007, 10 apple cultivars, viz., Arlet, Fuji, Gala, Golden Delicious, Honeycrisp, Pristine, Delicious, Stayman, Sunrise, and York Imperial were evaluated, while in the 2008 tests, Golden Delicious, Honeycrisp, and York Imperial were evaluated. During the 2006 tests, preferred apple cultivars for CM oviposition were Golden Delicious and Fuji, while the least preferred were Arlet, Pristine, Sunrise, and Honeycrisp. Similarly, during the 2007 tests, Golden Delicious, Fuji and Stayman remained the preferred cultivars, while Arlet, Honeycrisp, Pristine, and Sunrise remained the least preferred cultivars. In the 2008 tests, Golden Delicious and Honeycrisp were the most and least preferred cultivars, respectively. Based on the oviposition preferences from these bioassays, a susceptibility index for each cultivar was developed. This index may be used as a standard measure in cultivar evaluations in breeding programs, and may assist fruit growers and crop consultants to select the most appropriate cultivar(s) for monitoring and detecting the initial signs of fruit injury from CM in an apple orchard planted with mixed-cultivars. PMID:26617629

  7. Development of a Susceptibility Index of Apple Cultivars for Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) Oviposition.

    PubMed

    Joshi, Neelendra K; Rajotte, Edwin G; Myers, Clayton T; Krawczyk, Greg; Hull, Larry A

    2015-01-01

    Codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae) is a major fruit feeding pest of apples. Understanding susceptibility differences of various apple cultivars to CM oviposition is an important step in developing resistant varieties as well as monitoring and management strategies for this pest in apple orchards planted with mixed-cultivars. In this context, oviposition preferences of CM for the fruits of different apple cultivars were studied in laboratory bioassays using a series of no-choice and multiple-choice tests in 2006, 2007, and 2008. In 2006 and 2007, 10 apple cultivars, viz., Arlet, Fuji, Gala, Golden Delicious, Honeycrisp, Pristine, Delicious, Stayman, Sunrise, and York Imperial were evaluated, while in the 2008 tests, Golden Delicious, Honeycrisp, and York Imperial were evaluated. During the 2006 tests, preferred apple cultivars for CM oviposition were Golden Delicious and Fuji, while the least preferred were Arlet, Pristine, Sunrise, and Honeycrisp. Similarly, during the 2007 tests, Golden Delicious, Fuji and Stayman remained the preferred cultivars, while Arlet, Honeycrisp, Pristine, and Sunrise remained the least preferred cultivars. In the 2008 tests, Golden Delicious and Honeycrisp were the most and least preferred cultivars, respectively. Based on the oviposition preferences from these bioassays, a susceptibility index for each cultivar was developed. This index may be used as a standard measure in cultivar evaluations in breeding programs, and may assist fruit growers and crop consultants to select the most appropriate cultivar(s) for monitoring and detecting the initial signs of fruit injury from CM in an apple orchard planted with mixed-cultivars.

  8. Captures of MFO-resistant Cydia pomonella adults as affected by lure, crop management system and flight.

    PubMed

    Bosch, D; Rodríguez, M A; Avilla, J

    2016-02-01

    The main resistance mechanism of codling moth (Cydia pomonella) in the tree fruit area of Lleida (NE Spain) is multifunction oxidases (MFO). We studied the frequency of MFO-resistant adults captured by different lures, with and without pear ester, and flights in orchards under different crop management systems. The factor year affected codling moth MFO-resistance level, particularly in the untreated orchards, highlighting the great influence of codling moth migration on the spread of resistance in field populations. Chemical treatments and adult flight were also very important but mating disruption technique showed no influence. The second adult flight showed the highest frequency, followed by the first flight and the third flight. In untreated orchards, there were no significant differences in the frequency of MFO-resistant individuals attracted by Combo and BioLure. Red septa lures baited with pear ester (DA) captured sufficient insects only in the first generation of 2010, obtaining a significantly lower proportion of MFO-resistant adults than Combo and BioLure. In the chemically treated orchards, in 2009 BioLure caught a significantly lower proportion of MFO-resistant adults than Combo during the first and third flight, and also than DA during the first flight. No significant differences were found between the lures or flights in 2010. These results cannot support the idea of a higher attractiveness of the pear ester for MFO-resistant adults in the field but do suggest a high influence of the response to the attractant depending on the management of the orchard, particularly with regard to the use of chemical insecticides.

  9. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L.).

    PubMed

    Stoeckli, Sibylle; Hirschi, Martin; Spirig, Christoph; Calanca, Pierluigi; Rotach, Mathias W; Samietz, Jörg

    2012-01-01

    Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature--the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045-2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70-100%. The risk of an additional third generation will increase from presently 0-2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of plant

  10. Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.)

    PubMed Central

    Stoeckli, Sibylle; Hirschi, Martin; Spirig, Christoph; Calanca, Pierluigi; Rotach, Mathias W.; Samietz, Jörg

    2012-01-01

    Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature – the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045–2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70–100%. The risk of an additional third generation will increase from presently 0–2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of

  11. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers.

    PubMed

    Meraner, A; Brandstätter, A; Thaler, R; Aray, B; Unterlechner, M; Niederstätter, H; Parson, W; Zelger, R; Dalla Via, J; Dallinger, R

    2008-09-01

    The codling moth (Cydia pomonella L., Tortricidae, Lepidoptera) is an important pest of pome fruit with global distribution. It has adapted successfully to different habitats by forming various ecotypes and populations, often termed strains, which differ among each other in several morphological, developmental, and physiological features. Many strains of Cydia pomonella have developed resistance against a broad range of chemically different pesticides. Obviously, pesticide-resistant strains must have a genetic basis inherent to the gene pool of codling moth populations, and this deserves our particular attention. The primary intention of the present study was to contribute novel information regarding the evolutionary phylogeny and phylogeography of codling moth populations in Central Europe. In addition, we aimed at testing the hypothesis that differential biological traits and response patterns towards pesticides in codling moth populations may be reflected at a mitochondrial DNA level. In particular, we wanted to test if pesticide resistance in codling moths is associated repeatedly and independently with more than one mitochondrial haplotype. To this end, we analyzed mitochondrial DNA and constructed phylogenetic trees based on three mitochondrial genes: cytochrome oxidase I (COI), the A+T-rich region of the control region (CR), and the nicotinamide adenine dinucleotide dehydrogenase subunit 5 (ND5). The results indicate that Central European populations of Cydia pomonella are clearly divided in two ancient clades. As shown by means of a molecular clock approach, the splitting of the two clades can be dated to a time period between the lower and middle Pleistocene, about 1.29-0.20 million years ago. It is assumed that the cyclic changes of warm and cold periods during Pleistocene may have lead to the geographic separation of codling moth populations due to glaciation, giving rise to the formation of the two separate refugial clades, as already shown for many

  12. Effect of temperature and sorbitol in improving the solubility of carboxylesterases protein CpCE-1 from Cydia pomonella and biochemical characterization.

    PubMed

    Yang, Xueqing; Zhang, Yalin

    2013-12-01

    Carboxylesterases (CEs) are enzymes responsible for the detoxification of insecticides in insects. In the Cydia pomonella, CEs are involved in synthetic pyrethroid, neonicotinoid, carbamate, and organophosphate detoxification. However, functional overexpression of CEs proteins in Escherichia coli systems often results in insoluble proteins. In this study, we expressed the fusion protein CpCE-1 in E. coli BL21 (DE3). This recombinant protein was overexpressed as inclusion bodies at 37 °C whereas it produced a higher percentage of soluble protein at lower growth temperatures. Production of soluble proteins and enzyme activity increased in the presence of sorbitol in the growth medium. The fusion protein was purified from the lysate supernatant using a Ni(2+)-NTA agarose gel column. The enzyme exhibited a higher affinity and substrate specificity for α-naphthyl acetate (α-NA), with k cat/K m of 100 s(-1) μM(-1) for α-NA, and the value is 29.78 s(-1) μM(-1) for β-naphthyl acetate. The V max and K m were also determined to be 12.9 μmol/min/mg protein and 13.4 μM using substrate α-NA. The optimum pH was 7.0 and temperature was 25 °C. An enzyme inhibition assay shows that PMSF and DEPC strongly inhibit the enzyme activity, while the metal ions Cu(2+) and Mg(2+) significantly activated the activity. More importantly, cypermethrin, methomyl, and acephate were found to suppress enzyme activity. The data demonstrated here provide information for heterologous expression of soluble protein and further study on insecticide metabolism in C. pomonella in vitro. This is the first report of the characterization of CEs protein from C. pomonella.

  13. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations.

    PubMed

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-05-21

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized-among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides.

  14. TRPA5, an Ankyrin Subfamily Insect TRP Channel, is Expressed in Antennae of Cydia pomonella (Lepidoptera: Tortricidae) in Multiple Splice Variants

    PubMed Central

    Cattaneo, Alberto Maria; Bengtsson, Jonas Martin; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Rota-Stabelli, Omar; Salvagnin, Umberto; Bassoli, Angela; Witzgall, Peter; Anfora, Gianfranco

    2016-01-01

    Transient receptor potential (TRP) channels are an ancient family of cation channels, working as metabotropic triggers, which respond to physical and chemical environmental cues. Perception of chemical signals mediate reproductive behaviors and is therefore an important target for sustainable management tactics against the codling moth Cydia pomonella L. (Lepidoptera: Tortricidae). However, olfactory behavior strongly depends on diel periodicity and correlation of chemical with physical cues, like temperature, and physical cues thus essentially contribute to the generation of behavioral response. From an antennal transcriptome generated by next generation sequencing, we characterized five candidate TRPs in the codling moth. The coding DNA sequence of one of these was extended to full length, and phylogenetic investigation revealed it to be orthologous of the TRPA5 genes, reported in several insect genomes as members of the insect TRPA group with unknown function but closely related to the thermal sensor pyrexia. Reverse transcription PCR revealed the existence of five alternate splice forms of CpTRPA5. Identification of a novel TRPA and its splice forms in codling moth antennae open for investigation of their possible sensory roles and implications in behavioral responses related to olfaction. PMID:27638948

  15. TRPA5, an Ankyrin Subfamily Insect TRP Channel, is Expressed in Antennae of Cydia pomonella (Lepidoptera: Tortricidae) in Multiple Splice Variants.

    PubMed

    Cattaneo, Alberto Maria; Bengtsson, Jonas Martin; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Rota-Stabelli, Omar; Salvagnin, Umberto; Bassoli, Angela; Witzgall, Peter; Anfora, Gianfranco

    2016-01-01

    Transient receptor potential (TRP) channels are an ancient family of cation channels, working as metabotropic triggers, which respond to physical and chemical environmental cues. Perception of chemical signals mediate reproductive behaviors and is therefore an important target for sustainable management tactics against the codling moth Cydia pomonella L. (Lepidoptera: Tortricidae). However, olfactory behavior strongly depends on diel periodicity and correlation of chemical with physical cues, like temperature, and physical cues thus essentially contribute to the generation of behavioral response. From an antennal transcriptome generated by next generation sequencing, we characterized five candidate TRPs in the codling moth. The coding DNA sequence of one of these was extended to full length, and phylogenetic investigation revealed it to be orthologous of the TRPA5 genes, reported in several insect genomes as members of the insect TRPA group with unknown function but closely related to the thermal sensor pyrexia Reverse transcription PCR revealed the existence of five alternate splice forms of CpTRPA5. Identification of a novel TRPA and its splice forms in codling moth antennae open for investigation of their possible sensory roles and implications in behavioral responses related to olfaction. PMID:27638948

  16. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations

    PubMed Central

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-01-01

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized—among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides. PMID:27213431

  17. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations.

    PubMed

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-01-01

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized-among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides. PMID:27213431

  18. Comparing the genetic structure of codling moth Cydia pomonella (L.) from Greece and France: long distance gene-flow in a sedentary pest species.

    PubMed

    Voudouris, C Ch; Franck, P; Olivares, J; Sauphanor, B; Mamuris, Z; Tsitsipis, J A; Margaritopoulos, J T

    2012-04-01

    Codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) is the most important insect pest of apple production in Europe. Despite the economic importance of this pest, there is not information about the genetic structure of its population in Greece and the patterns of gene-flow which might affect the success of control programs. In this study, we analysed nine samples from apple, pear and walnut from various regions of mainland Greece using 11 microsatellite loci. Six samples from the aforementioned hosts from southern France were also examined for comparison. Bayesian clustering and genetic distance analyses separated the codling moth samples in two genetic clusters. The first cluster consisted mainly of the individuals from Greece, and the second of those from France, although admixture and miss-classified individuals were also observed. The low genetic differentiation among samples within each country was also revealed by F(ST) statistics (0.009 among Greek samples and 0.0150 among French samples compared to 0.050 global value among all samples and 0.032 the mean of the pair-wise values between the two countries). These F(ST) values suggest little structuring at large geographical scales in agreement with previous published studies. The host species and local factors (climatic conditions, topography, pest control programs) did not affect the genetic structure of codling moth populations within each country. The results are discussed in relation to human-made activities that promote gene-flow even at large geographic distances. Possible factors for the genetic differentiation between the two genetic clusters are also discussed.

  19. Comparing the genetic structure of codling moth Cydia pomonella (L.) from Greece and France: long distance gene-flow in a sedentary pest species.

    PubMed

    Voudouris, C Ch; Franck, P; Olivares, J; Sauphanor, B; Mamuris, Z; Tsitsipis, J A; Margaritopoulos, J T

    2012-04-01

    Codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) is the most important insect pest of apple production in Europe. Despite the economic importance of this pest, there is not information about the genetic structure of its population in Greece and the patterns of gene-flow which might affect the success of control programs. In this study, we analysed nine samples from apple, pear and walnut from various regions of mainland Greece using 11 microsatellite loci. Six samples from the aforementioned hosts from southern France were also examined for comparison. Bayesian clustering and genetic distance analyses separated the codling moth samples in two genetic clusters. The first cluster consisted mainly of the individuals from Greece, and the second of those from France, although admixture and miss-classified individuals were also observed. The low genetic differentiation among samples within each country was also revealed by F(ST) statistics (0.009 among Greek samples and 0.0150 among French samples compared to 0.050 global value among all samples and 0.032 the mean of the pair-wise values between the two countries). These F(ST) values suggest little structuring at large geographical scales in agreement with previous published studies. The host species and local factors (climatic conditions, topography, pest control programs) did not affect the genetic structure of codling moth populations within each country. The results are discussed in relation to human-made activities that promote gene-flow even at large geographic distances. Possible factors for the genetic differentiation between the two genetic clusters are also discussed. PMID:22032419

  20. Evaluation of spray-dried lignin-based formulations and adjuvants as solar protectants for the granulovirus of the codling moth, Cydia pomonella (L).

    PubMed

    Arthurs, S P; Lacey, L A; Behle, R W

    2006-10-01

    Commercial formulations of the codling moth, Cydia pomonella L., granulovirus (CpGV) are limited by their short residual activity under orchard conditions in the Pacific Northwest. We evaluated spray-dried lignin-encapsulated formulations of CpGV for improved solar stability based on laboratory bioassays with a solar simulator and in field tests in an infested apple orchard. In laboratory tests, aqueous lignin formulations containing a high dosage of 3 x 10(10) occlusion bodies (OB)/L, with and without the additives titanium dioxide (TiO(2)) and sugar, provided significant solar protection of virus, i.e., mortality of codling moth exposed to lignin formulations that had been irradiated with 9.36 x 10(6) joules/m(2) was 92-94%, compared with 66-67% from a glycerin-stabilized product (Cyd-X) or suspension of pure unformulated virus at the same rates. By comparison, a lower dosage of the lignin formulation (3 x 10(8)OB/L) did not provide significant solar protection. Equivalent dosage-dependent patterns in solar protection were observed in further tests with the lignin formulation, when an intermediate (3 x 10(9)OB/L) as well as the low dosage provided no solar protection. Equivalent rates of a blank lignin formulation (containing no virus) did not affect larval mortality, suggesting a protective effect of the lignin on the virus at the high rate. The use of several spray adjuvants, 'NuFilm-17' and 'Organic Biolink' (sticker-spreaders at 0.06% v/v), 'Raynox' (sunburn protectant at 5% v/v), and 'Trilogy'(neem oil at 1% v/v) did not provide solar protection of a commercial CpGV preparation in laboratory tests. In season long orchard tests (Golden Delicious), the lignin formulation of CpGV applied at 6.57 x 10(12)OB/ha did not significantly improve control of codling moth or protection of fruit compared with Cyd-X at equivalent rates. Our studies show that lignin-based CpGV formulations provided solar protection at relatively high virus dosages. The testing of lignin

  1. Mitochondrial DNA revealed the extent of genetic diversity and invasion origin of populations from two separate invaded areas of a newly invasive pest, Cydia pomonella (L.) (Lepidoptera: Tortricidae) in China.

    PubMed

    Li, Y; Duan, X; Qiao, X; Li, X; Wang, K; Men, Q; Chen, M

    2015-08-01

    Cydia pomonella is a serious invasive insect pest in China, and has caused severe damage to the production of apple and pear in its invaded areas. This species is distributing in the northwest and northeast of China, but no occurrence of it has been recorded in the large areas (about 3000-5000 km away) between the invaded northwestern and northeastern regions despite continuous monitoring. As yet the genetic diversity and invasion origin of the C. pomonella populations in Northwestern and Northeastern China is obscure. In this study, we investigate the genetic diversity of 14 populations of C. pomonella sampled throughout the main distribution regions in Northwestern (Xinjiang and Gansu Provinces) and Northeastern (Heilongjiang Province) China and compared them with nine populations from Europe and other continents using the mitochondrial COI, COII and Cytb genes. Both the populations from Northeastern and Northwestern China shared some haplotypes with populations from other countries. Haplotypes of the three mitochondrial genes had a different distribution in Northeastern and Northwestern China. The northeastern populations had more private haplotypes than the northwestern populations. A large number of the individuals from northwestern populations shared a few haplotypes of each of the three genes. The haplotype numbers and haplotype diversities of the northeastern populations were similar to those of field populations in other countries, but were higher than those of the northwestern populations. Populations from the Northwestern China showed similar haplotype number and haplotype diversity. We conclude that the population genetic background of C. pomonella populations in Northeastern and Northwestern China varies due to different invasion sources and that this should be considered before the application of new pest control tactics.

  2. Mitochondrial DNA revealed the extent of genetic diversity and invasion origin of populations from two separate invaded areas of a newly invasive pest, Cydia pomonella (L.) (Lepidoptera: Tortricidae) in China.

    PubMed

    Li, Y; Duan, X; Qiao, X; Li, X; Wang, K; Men, Q; Chen, M

    2015-08-01

    Cydia pomonella is a serious invasive insect pest in China, and has caused severe damage to the production of apple and pear in its invaded areas. This species is distributing in the northwest and northeast of China, but no occurrence of it has been recorded in the large areas (about 3000-5000 km away) between the invaded northwestern and northeastern regions despite continuous monitoring. As yet the genetic diversity and invasion origin of the C. pomonella populations in Northwestern and Northeastern China is obscure. In this study, we investigate the genetic diversity of 14 populations of C. pomonella sampled throughout the main distribution regions in Northwestern (Xinjiang and Gansu Provinces) and Northeastern (Heilongjiang Province) China and compared them with nine populations from Europe and other continents using the mitochondrial COI, COII and Cytb genes. Both the populations from Northeastern and Northwestern China shared some haplotypes with populations from other countries. Haplotypes of the three mitochondrial genes had a different distribution in Northeastern and Northwestern China. The northeastern populations had more private haplotypes than the northwestern populations. A large number of the individuals from northwestern populations shared a few haplotypes of each of the three genes. The haplotype numbers and haplotype diversities of the northeastern populations were similar to those of field populations in other countries, but were higher than those of the northwestern populations. Populations from the Northwestern China showed similar haplotype number and haplotype diversity. We conclude that the population genetic background of C. pomonella populations in Northeastern and Northwestern China varies due to different invasion sources and that this should be considered before the application of new pest control tactics. PMID:25895900

  3. Distribution Characteristics of Eggs and Neonate Larvae of Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae)

    PubMed Central

    Wearing, Christopher H.

    2016-01-01

    Literature is reviewed on the spatial distribution of the eggs and neonate larvae of codling moth on apple trees in relation to research conducted in Nelson, New Zealand. At Nelson, oviposition increased with height and was greater in the north and east of the trees and in those with greater fruit load in some seasons, which matches published reports. All publications and the research recorded high percentages of eggs laid singly within 10–15 cm of the fruit, with most eggs on leaves even within fruit clusters; oviposition on fruit clusters of different sizes was nonrandom because more eggs were laid on those with more fruit, but the aggregation of both per cluster and within clusters was even greater than that caused by the fruit number alone. Oviposition at random with respect to the fruit occurred only at very low population density. The choice of oviposition site between fruit and the adaxial leaf surface and abaxial leaf surface (AbLS) was variable and cultivar related. Cultivars on which eggs predominated on the AbLS were less frequent and characterized by low trichome density. In the literature, neonate larvae from eggs on the AbLS suffered greater mortality, as did those in Nelson that hatched more distant from the fruit. This review discusses the interaction between these distribution characteristics and species-specific host–plant volatiles, egg adhesion to plant surfaces, oviposition deterrents, predation, and their relevance to pest management. PMID:27429560

  4. Distribution Characteristics of Eggs and Neonate Larvae of Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae).

    PubMed

    Wearing, Christopher H

    2016-01-01

    Literature is reviewed on the spatial distribution of the eggs and neonate larvae of codling moth on apple trees in relation to research conducted in Nelson, New Zealand. At Nelson, oviposition increased with height and was greater in the north and east of the trees and in those with greater fruit load in some seasons, which matches published reports. All publications and the research recorded high percentages of eggs laid singly within 10-15 cm of the fruit, with most eggs on leaves even within fruit clusters; oviposition on fruit clusters of different sizes was nonrandom because more eggs were laid on those with more fruit, but the aggregation of both per cluster and within clusters was even greater than that caused by the fruit number alone. Oviposition at random with respect to the fruit occurred only at very low population density. The choice of oviposition site between fruit and the adaxial leaf surface and abaxial leaf surface (AbLS) was variable and cultivar related. Cultivars on which eggs predominated on the AbLS were less frequent and characterized by low trichome density. In the literature, neonate larvae from eggs on the AbLS suffered greater mortality, as did those in Nelson that hatched more distant from the fruit. This review discusses the interaction between these distribution characteristics and species-specific host-plant volatiles, egg adhesion to plant surfaces, oviposition deterrents, predation, and their relevance to pest management. PMID:27429560

  5. The chemosensory receptors of codling moth Cydia pomonella–expression in larvae and adults

    PubMed Central

    Walker, William B.; Gonzalez, Francisco; Garczynski, Stephen F.; Witzgall, Peter

    2016-01-01

    Olfaction and gustation play critical roles in the life history of insects, mediating vital behaviors such as food, mate and host seeking. Chemosensory receptor proteins, including odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) function to interface the insect with its chemical environment. Codling moth, Cydia pomonella, is a worldwide pest of apple, pear and walnut, and behavior-modifying semiochemicals are used for environmentally safe control. We produced an Illumina-based transcriptome from antennae of males and females as well as neonate head tissue, affording a qualitative and quantitative analysis of the codling moth chemosensory receptor repertoire. We identified 58 ORs, 20 GRs and 21 IRs, and provide a revised nomenclature that is consistent with homologous sequences in related species. Importantly, we have identified several OR transcripts displaying sex-biased expression in adults, as well as larval-enriched transcripts. Our analyses have expanded annotations of the chemosensory receptor gene families, and provide first-time transcript abundance estimates for codling moth. The results presented here provide a strong foundation for future work on codling moth behavioral physiology and ecology at the molecular level, and may lead to the development of more precise biorational control strategies. PMID:27006164

  6. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  7. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  8. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  9. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Virus of Cydia pomenella; tolerance exemption. 180.1148 Section 180.1148 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  10. Climate change impact on development rates of the codling moth ( Cydia pomonella L.) in the Wielkopolska region, Poland

    NASA Astrophysics Data System (ADS)

    Juszczak, Radosław; Kuchar, Leszek; Leśny, Jacek; Olejnik, Janusz

    2013-01-01

    The main goal of this paper is to estimate how the observed and predicted climate changes may affect the development rates and emergence of the codling moth in the southern part of the Wielkopolska region in Poland. In order to simulate the future climate conditions one of the most frequently used A1B SRES scenarios and two different IPCC climate models (HadCM3 and GISS modelE) are considered. A daily weather generator (WGENK) was used to generate temperature values for present and future climate conditions (time horizons 2020-2040 and 2040-2060). Based on the generated data set, the degree-days values were then calculated and the emergence dates of the codling moth at key stages were estimated basing on the defined thresholds. Our analyses showed that the average air surface temperature in the Wielkopolska region may increase from 2.8°C (according to GISS modelE) even up to 3.3°C (HadCM3) in the period of 2040-2060. With the warming climate conditions the cumulated degree-days values may increase at a rate of about 142 DD per decade when the low temperature threshold ( T low ) of 0°C is considered and 91 DD per decade when T low = 10°C. The key developmental stages of the codling moth may occur much earlier in the future climate conditions than currently, at a rate of about 3.8-6.8 days per decade, depending on the considered GCM model and the pest developmental stage. The fastest changes may be observed in the emergence dates of 95% of larvae of the second codling moth generation. This could increase the emergence probability of the pest third generation that has not currently occurred in Poland.

  11. The optimal sex pheromone release rate for trapping the codling moth Cydia pomonella (Lepidoptera: Tortricidae) in the field

    PubMed Central

    Liu, Wei; Xu, Jing; Zhang, Runzhi

    2016-01-01

    For successful pest management, codlemone (E, E-8,10-dodecadien-1-ol) is widely used to monitor codling moth. The pheromone release rate is essential for the lure’s attractiveness. The optimal sex pheromone release rate (V0) for trapping codling moth was evaluated during 2013–2014. The overwinter generation V0 was 6.7–33.4 μg wk−1, and moth catches (MCs) were 0.82 ± 0.11 adults/trap/week; MCs for lower (V1) and higher (V2) release rates were 52.4% and 46.3%, respectively, of that for V0. The first generation V0 was 18.4–29.6 μg wk−1, with MCs of 1.45 ± 0.29 adults/week/trap. V1 and V2 MCs were 34.5% and 31.7%, respectively, of those for V0. Combining across generations, the final V0 was 18.4–29.6 μg wk−1, with MCs of 1.07 ± 0.06 adults/week/trap. V1 and V2 MCs were 51.4% and 41.1%, respectively, of that for V0. Overwinter generation emergence was relatively concentrated, requiring a wider V0. Maintaining the release rate at 18.4–29.6 μg wk−1 could optimize the lure’s efficacy; this resulted in the capture of nearly 1.9 and 2.4 times more moths than V1 and V2, respectively. The results also indicate that a dispenser pheromone release rate of 200–300 times that of the female moth can perfectly outcompetes females in the field. PMID:26879373

  12. Characterization of three transcripts encoding small heat shock proteins expressed in the codling moth, Cydia pomonella (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth is a major pest of apples and pears worldwide. Increasing knowledge of how this insect responds to environmental stress will improve field and postharvest control measures used against it. The small heat shock proteins (sHsps) play a major role in cellular responses to environmental st...

  13. Climate change impact on development rates of the codling moth (Cydia pomonella L.) in the Wielkopolska region, Poland.

    PubMed

    Juszczak, Radosław; Kuchar, Leszek; Leśny, Jacek; Olejnik, Janusz

    2013-01-01

    The main goal of this paper is to estimate how the observed and predicted climate changes may affect the development rates and emergence of the codling moth in the southern part of the Wielkopolska region in Poland. In order to simulate the future climate conditions one of the most frequently used A1B SRES scenarios and two different IPCC climate models (HadCM3 and GISS modelE) are considered. A daily weather generator (WGENK) was used to generate temperature values for present and future climate conditions (time horizons 2020-2040 and 2040-2060). Based on the generated data set, the degree-days values were then calculated and the emergence dates of the codling moth at key stages were estimated basing on the defined thresholds. Our analyses showed that the average air surface temperature in the Wielkopolska region may increase from 2.8°C (according to GISS modelE) even up to 3.3°C (HadCM3) in the period of 2040-2060. With the warming climate conditions the cumulated degree-days values may increase at a rate of about 142 DD per decade when the low temperature threshold (T(low)) of 0°C is considered and 91 DD per decade when T(low) = 10°C. The key developmental stages of the codling moth may occur much earlier in the future climate conditions than currently, at a rate of about 3.8-6.8 days per decade, depending on the considered GCM model and the pest developmental stage. The fastest changes may be observed in the emergence dates of 95% of larvae of the second codling moth generation. This could increase the emergence probability of the pest third generation that has not currently occurred in Poland.

  14. 40 CFR 180.1148 - Occlusion Bodies of the Granulosis Virus of Cydia pomenella; tolerance exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Occlusion Bodies of the Granulosis... RESIDUES IN FOOD Exemptions From Tolerances § 180.1148 Occlusion Bodies of the Granulosis Virus of Cydia... of the microbial pest control agent Occlusion Bodies of the Granulosis Virus of Cydia...

  15. Analysis of Surstylus and Aculeus Shape and Size Using Geometric Morphometrics to Discriminate Rhagoletis pomonella and Rhagoletis zephyria (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow both occur in the Pacific Northwest of the U. S. and are frequently confused with one another due to their morphological similarity. The apple maggot, R. pomonella, is a threat to commercial apples in the Pacific Northwest, whereas R. zephyr...

  16. Attraction of pea moth Cydia nigricana to pea flower volatiles.

    PubMed

    Thöming, Gunda; Knudsen, Geir K

    2014-04-01

    The pea moth Cydia nigricana causes major crop losses in pea (Pisum sativum) production. We investigated attraction of C. nigricana females to synthetic pea flower volatiles in a wind tunnel and in the field. We performed electroantennogram analysis on 27 previously identified pea plant volatiles, which confirmed antennal responses to nine of the compounds identified in pea flowers. A dose-dependent response was found to eight of the compounds. Various blends of the nine pea flower volatiles eliciting antennal responses were subsequently studied in a wind tunnel. A four-compound blend comprising hexan-1-ol, (E)-2-hexen-1-ol, (Z)-β-ocimene and (E)-β-ocimene was equally attractive to mated C. nigricana females as the full pea flower mimic blend. We conducted wind-tunnel tests on different blends of these four pea flower compounds mixed with a headspace sample of non-flowering pea plants. By considering the effects of such green leaf background odour, we were able to identify (Z)- and (E)-β-ocimene as fundamental for host location by the pea moths, and hexan-1-ol and (E)-2-hexen-1-ol as being of secondary importance in that context. In the field, the two isomers of β-ocimene resulted in trap catches similar to those obtained with the full pea flower mimic and the four-compound blend, which clearly demonstrated the prime significance of the β-ocimenes as attractants of C. nigricana. The high level of the trap catches of female C. nigricana noted in this first field experiment gives a first indication of the potential use of such artificial kairomones in pea moth control.

  17. Wolbachia infections and mitochondrial diversity of two chestnut feeding Cydia species.

    PubMed

    Avtzis, Dimitrios N; Doudoumis, Vangelis; Bourtzis, Kostas

    2014-01-01

    Cydia splendana and C. fagiglandana are two closely related chestnut feeding lepidopteran moth species. In this study, we surveyed the bacterial endosymbiont Wolbachia in these two species. Infection rates were 31% in C. splendana and 77% in C. fagiglandana. MLST analysis showed that these two species are infected with two quite diverse Wolbachia strains. C. splendana with Sequence Type (ST) 409 from the A-supergroup and C. fagiglandana with ST 150 from the B-supergroup. One individual of C. splendana was infected with ST 150, indicating horizontal transfer between these sister species. The mitochondrial DNA of the two Cydia species showed a significantly different mtDNA diversity, which was inversely proportional to their infection rates. PMID:25405506

  18. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the northwestern United States.

    PubMed

    Arcella, Tracy; Hood, Glen R; Powell, Thomas H Q; Sim, Sheina B; Yee, Wee L; Schwarz, Dietmar; Egan, Scott P; Goughnour, Robert B; Smith, James J; Feder, Jeffrey L

    2015-09-01

    Hybridization may be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine pest R. pomonella (Walsh) is occurring and may aid the spread of the latter into more arid commercial apple-growing regions of central Washington state, USA. Results for 19 microsatellites implied hybridization occurring at a rate of 1.44% per generation between the species. However, there was no evidence for increased hybridization in central Washington. Allele frequencies for seven microsatellites in R. pomonella were more 'R. zephyria-like' in central Washington, suggesting that genes conferring resistance to desiccation may be adaptively introgressing from R. zephyria. However, in only one case was the putatively introgressing allele from R. zephyria not found in R. pomonella in the eastern USA. Thus, many of the alleles changing in frequency may have been prestanding in the introduced R. pomonella population. The dynamics of hybridization are therefore complex and nuanced for R. pomonella, with various causes and factors, including introgression for a portion, but not all of the genome, potentially contributing to the pest insect's spread.

  19. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the northwestern United States

    PubMed Central

    Arcella, Tracy; Hood, Glen R; Powell, Thomas H Q; Sim, Sheina B; Yee, Wee L; Schwarz, Dietmar; Egan, Scott P; Goughnour, Robert B; Smith, James J; Feder, Jeffrey L

    2015-01-01

    Hybridization may be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine pest R. pomonella (Walsh) is occurring and may aid the spread of the latter into more arid commercial apple-growing regions of central Washington state, USA. Results for 19 microsatellites implied hybridization occurring at a rate of 1.44% per generation between the species. However, there was no evidence for increased hybridization in central Washington. Allele frequencies for seven microsatellites in R. pomonella were more ‘R. zephyria-like’ in central Washington, suggesting that genes conferring resistance to desiccation may be adaptively introgressing from R. zephyria. However, in only one case was the putatively introgressing allele from R. zephyria not found in R. pomonella in the eastern USA. Thus, many of the alleles changing in frequency may have been prestanding in the introduced R. pomonella population. The dynamics of hybridization are therefore complex and nuanced for R. pomonella, with various causes and factors, including introgression for a portion, but not all of the genome, potentially contributing to the pest insect's spread. PMID:26366200

  20. Behavior of Over-wintering Filbertworm (Cydia latiferreana) (Lepidoptera: Tortricidae) Larvae and Their Control with Steinernema carpocapsae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filbertworm, Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae) is a key insect pest associated with hazelnuts in North America. The effect of nematode rate, water volume, and orchard floor cover on nematode efficacy was determined in field trials in fall and spring (October 2007 and May 200...

  1. Hawthorn-infesting populations of Rhagoletis pomonella in Mexico and speciation mode plurality.

    PubMed

    Xie, Xianfa; Rull, Juan; Michel, Andrew P; Velez, Sebastian; Forbes, Andrew A; Lobo, Neil F; Aluja, Martin; Feder, Jeffrey L

    2007-05-01

    Categorizing speciation into dichotomous allopatric versus nonallopatric modes may not always adequately describe the geographic context of divergence for taxa. If some of the genetic changes generating inherent barriers to gene flow between populations evolved in geographic isolation, whereas others arose in sympatry, then the mode of divergence would be mixed. The apple maggot fly, Rhagoletis pomonella, has contributed to this emerging concept of a mixed speciation mode "plurality." Genetic studies have implied that a source of diapause life-history variation associated with inversions and contributing to sympatric host race formation and speciation for R. pomonella in the United States may have introgressed from the Eje Volcanico Trans Mexicano (EVTM; a.k.a. the Altiplano) in the past. A critical unresolved issue concerning the introgression hypothesis is how past gene flow occurred given the current 1200-km disjunction in the ranges of hawthorn-infesting flies in the EVTM region of Mexico and the southern extreme of the U.S. population in Texas. Here, we report the discovery of a hawthorn-infesting population of R. pomonella in the Sierra Madre Oriental Mountains (SMO) of Mexico. Sequence data from 15 nuclear loci and mitochondrial DNA imply that the SMO flies are related to, but still different from, U.S. and EVTM flies. The host affiliations, diapause characteristics, and phylogeography of the SMO population are consistent with it having served as a conduit for gene flow between Mexico and the United States. We also present evidence suggesting greater permeability of collinear versus rearranged regions of the genome to introgression, in accord with recent models of chromosomal speciation. We discuss the implications of the results in the context of speciation mode plurality. We do not argue for abandoning the terms sympatry or allopatry, but caution that categorizing divergence into either/or geographic modes may not describe the genetic origins of all

  2. Detection of an apple-infesting popoulation of Rhagoletis pomonella (Walsh) 1867 (Diptera: Tephritidae) in the state of Colorado, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh) 1867 (Tephritidae), is an economically important pest of apples (Malus domesica Borkh.) (Rosaceae) throughout much of the United States. The fly is endemic to the eastern U.S., where its primary host plants are several species of native hawthorns (C...

  3. Are apple and hawthorn fruit volatiles more attractive than ammonium carbonate to Rhagoletis pomonella (Diptera: Tephritidae) in Washington state?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the U.S. In the eastern U.S. where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonel...

  4. The geographic distribution of Rhagoletis pomonella (Diptera:Tephritidae) in the western United States: Introduced species or native population?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella Walsh (Diptera: Tephritidae), is a major pest of commercially grown domesticated apple (Malus domestica) in North America. The shift of the fly from its native host hawthorn (Crataegus mollis) to apple in the eastern U.S. is often cited as an example of inc...

  5. On the scent of standing variation for speciation: behavioral evidence for native sympatric host races of Rhagoletis pomonella (Diptera: Tephritidae) in the southern United States.

    PubMed

    Powell, Thomas H Q; Cha, Dong H; Linn, Charles E; Feder, Jeffrey L

    2012-09-01

    Standing variation can be critical for speciation. Here, we investigate the origins of fruit odor discrimination for Rhagoletis pomonella underlying the fly's sympatric shift in the northeastern United States from downy hawthorn (Crataegus mollis) to apple (Malus domestica). Because R. pomonella mate on host fruit, preferences for natal fruit volatiles generate prezygotic isolation. Apples emit volatiles that appear to be missing from gas chromatography/electroantennographic detection profiles for flies infesting downy hawthorns, raising the question of how R. pomonella evolved a preference for apple. In the southern United States, R. pomonella attacks several native hawthorns. Behaviorally active volatile blends for R. pomonella infesting southern hawthorns contain the missing apple volatiles, potentially explaining why downy hawthorn flies could have evolved to be sensitive to a blend of apple volatiles. Flight tunnel assays imply that southern hawthorn populations were not the antecedent of a preassembled apple race, as southern flies were not attracted to the apple volatile blend. Instead, behavioral evidence was found for southern host races on native hawthorns, complementing the story of the historical sympatric shift to introduced apple in the North and illustrating how R. pomonella may evolve novel combinations of agonist and antagonist responses to volatiles to use new fruit resources.

  6. Abundance of Apple Maggot, Rhagoletis pomonella, Across Different Areas in Central Washington, with Special Reference to Black-Fruited Hawthorns

    PubMed Central

    Yee, Wee L.; Klaus, Michael W.; Cha, Dong H.; Linn, Charles E.; Goughnour, Robert B.

    2012-01-01

    The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), infests non-commercial apple (Malus domestica (Borkh.) Borkh.) and native black-fruited hawthorns (mostly Crataegus douglasii Lindl.) in central Washington, but little has been published on the abundance of the fly in this region. In this paper, the abundance of R. pomonella across different sites near apple-growing areas in central Washington is documented in order to assess the threat of the fly to commercial apple orchards. The fly was first detected on traps in Klickitat, Yakima, and Kittitas Counties in 1981, 1995, and 1997, respectively. From 1981–2010 in Kittitas and Yakima Counties, only 0 to 4.7% of traps on apple, crabapple, and hawthorn trees were positive for flies, whereas in Klickitat County, located farther from commercial apple orchards, 0 to 41.9% of traps were positive. In 2008, in Yakima County and Goldendale in Klickitat County, 7.8% of black-fruited hawthorn trees were infested, with 0 to 0.00054 larvae per fruit. In 2010, in Kittitas and Yakima Counties and Goldendale in Klickitat County, 25.0% of C. douglasii trees were infested, with 0.00042 to 0.00248 larvae per fruit. In 2010, in a remote forested area of Klickitat County far from commercial apple orchards, 94.7% of C. douglasii trees were infested, with 0.20813 larvae per fruit. Overall results suggest R. pomonella is unlikely to develop high populations rapidly near major commercial apple-growing areas in central Washington, including in black-fruited hawthorns, increasing chances it can be kept out of commercial orchards. PMID:23451979

  7. The genetic structure of hawthorn-infesting Rhagoletis pomonella populations in Mexico: implications for sympatric host race formation.

    PubMed

    Michel, Andrew P; Rull, Juan; Aluja, Martin; Feder, Jeffrey L

    2007-07-01

    The genetic origins of species may not all trace to the same time and place as the proximate cause(s) for population divergence. Moreover, inherent gene-flow barriers separating populations may not all have evolved under the same geographical circumstances. These considerations have lead to a greater appreciation of the plurality of speciation: that one geographical mode for divergence may not always be sufficient to describe a speciation event. The apple maggot fly, Rhagoletis pomonella, a model system for sympatric speciation via host-plant shifting, has been a surprising contributor to the concept of speciation mode plurality. Previous studies have suggested that past introgression of inversion polymorphism from a hawthorn-fly population in the trans-Mexican volcanic belt (EVTM) introduced diapause life-history variation into a more northern fly population that subsequently contributed to sympatric host race formation and speciation in the United States (US). Here, we report results from a microsatellite survey implying (i) that volcanic activity in the eastern EVTM may have been responsible for the initial geographical isolation of the Mexican and northern hawthorn-fly populations c. 1.57 mya; and (ii) that flies in the Sierra Madre Oriental Mountains (SMO) likely served as a conduit for past gene flow from the EVTM into the US. Indeed, the microsatellite data suggest that the current US population may represent a range expansion from the northern SMO. We discuss the implications of these findings for sympatric race formation in Rhagoletis and speciation theory.

  8. Potential for hypobaric storage as a phytosanitary treatment: mortality of Rhagoletis pomonella (Diptera: Tephritidae) in apples and effects on fruit quality.

    PubMed

    Hulasare, Rajshekhar; Payton, Mark E; Hallman, Guy J; Phillips, Thomas W

    2013-06-01

    The efficacy of low-oxygen atmospheres using low pressure, referred to as hypobaric conditions, to kill egg and third-instar Rhagoletis pomonella (Walsh) in apples was investigated. Infested apples were exposed to 3.33 and 6.67 kPa in glass jars at 25 and 30 degrees C for times ranging from 3 to 120 h. Probit analyses and lethal dose ratio tests were performed to determine differences in lethal time values. Eggs were more tolerant of low pressure compared with third-instar R. pomonella. Mortality of eggs and larvae increased with increase in time of exposure to low pressure and temperature. Lower pressures increased percent mortality of eggs, but these values were not significantly different at the pressures tested in this investigation. The LT99 for R. pomonella eggs at 3.33 kPa was 105.98 and 51.46 h, respectively, at 25 and 30 degrees C, which was a significant effect of the higher temperature on egg mortality. Investigation into consumer acceptance of low-pressure-treated apples was done with 'Red Delicious' and 'Golden Delicious'. Apples exposed to 3.33 kPa at 25 and 30 degrees C for 3 and 5 d were stored at 1 degrees C for 2 wk and presented to a sensory panel for evaluation. The panelists rated treated apples with untreated controls for external and internal appearance and taste. Golden Delicious apples were unaffected for all three sensory factors across both temperatures and exposure times. Although taste was unaffected for Red Delicious, the internal and external appearances deteriorated. Use of low pressure for disinfestation and preservation of apples is a potential nonchemical alternative to chemical fumigants such as methyl bromide and phosphine.

  9. Potential for hypobaric storage as a phytosanitary treatment: mortality of Rhagoletis pomonella (Diptera: Tephritidae) in apples and effects on fruit quality.

    PubMed

    Hulasare, Rajshekhar; Payton, Mark E; Hallman, Guy J; Phillips, Thomas W

    2013-06-01

    The efficacy of low-oxygen atmospheres using low pressure, referred to as hypobaric conditions, to kill egg and third-instar Rhagoletis pomonella (Walsh) in apples was investigated. Infested apples were exposed to 3.33 and 6.67 kPa in glass jars at 25 and 30 degrees C for times ranging from 3 to 120 h. Probit analyses and lethal dose ratio tests were performed to determine differences in lethal time values. Eggs were more tolerant of low pressure compared with third-instar R. pomonella. Mortality of eggs and larvae increased with increase in time of exposure to low pressure and temperature. Lower pressures increased percent mortality of eggs, but these values were not significantly different at the pressures tested in this investigation. The LT99 for R. pomonella eggs at 3.33 kPa was 105.98 and 51.46 h, respectively, at 25 and 30 degrees C, which was a significant effect of the higher temperature on egg mortality. Investigation into consumer acceptance of low-pressure-treated apples was done with 'Red Delicious' and 'Golden Delicious'. Apples exposed to 3.33 kPa at 25 and 30 degrees C for 3 and 5 d were stored at 1 degrees C for 2 wk and presented to a sensory panel for evaluation. The panelists rated treated apples with untreated controls for external and internal appearance and taste. Golden Delicious apples were unaffected for all three sensory factors across both temperatures and exposure times. Although taste was unaffected for Red Delicious, the internal and external appearances deteriorated. Use of low pressure for disinfestation and preservation of apples is a potential nonchemical alternative to chemical fumigants such as methyl bromide and phosphine. PMID:23865181

  10. Differential parasitism of seed-feeding Cydia (Lepidoptera: Tortricidae) by native and alien wasp species relative to elevation in subalpine Sophora (Fabaceae) forests on Mauna Kea, Hawaii

    USGS Publications Warehouse

    Oboyski, P.T.; Slotterback, J.W.; Banko, P.C.

    2004-01-01

    Alien parasitic wasps, including accidental introductions and purposefully released biological control agents, have been implicated in the decline of native Hawaiian Lepidoptera. Understanding the potential impacts of alien wasps requires knowledge of ecological parameters that influence parasitism rates for species in their new environment. Sophora seed-feeding Cydia spp. (Lepidoptera: Tortricidae) were surveyed for larval parasitoids to determine how native and alien wasps are partitioned over an elevation gradient (2200-2800 m) on Hawaii Island, Hawaii. Parasitism rate of native Euderus metallicus (Eulophidae) increased with increased elevation, while parasitism rate by immigrant Calliephialtes grapholithae (Ichneumonidae) decreased. Parasitism by Pristomerus hawaiiensis (Ichneumonidae), origins uncertain, also decreased with increased elevation. Two other species, Diadegma blackburni (Ichneumonidae), origins uncertain, and Brasema cushmani (Eupelmidae), a purposefully introduced biological control agent for pepper weevil, did not vary significantly with elevation. Results are contrasted with a previous study of this system with implications for the conservation of an endangered bird species that feed on Cydia larvae. Interpretation of results is hindered by lack of knowledge of autecology of moths and wasps, origins, phylogeny, systematics, competitive ability, and physiological limitations of each wasp species. These factors should be incorporated into risk analysis for biological control introductions and invasive species programs. ?? 2004 Kluwer Academic Publishers.

  11. FRUIT SUSCEPTIBILITY OF MALUS GERMPLASM TO ATTACK FROM FRUIT FEEDING PESTS: SEARCHING FOR POTENTIAL HOST-PLANT RESISTANCE MECHANISMS IN APPLE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth (CM), Cydia pomonella L., oriental fruit moth (OFM), Grapholita molesta (Busck), plum curculio (PC), Conotrachelus nenuphar (Herbst), and apple maggot, Rhagoletis pomonella (Walsh) continue to pose significant threats to sustainable apple production in the United States. Research is on...

  12. Identification of host fruit volatiles from three mayhaw species (Crataegus series Aestivales) attractive to mayhaw-origin Rhagoletis pomonella flies in the southern United States.

    PubMed

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula

  13. Identification of host fruit volatiles from three mayhaw species (Crataegus series Aestivales) attractive to mayhaw-origin Rhagoletis pomonella flies in the southern United States.

    PubMed

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula

  14. Evaluating dispensers loaded with codlemone and pear ester for disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyvinyl chloride polymer (pvc) dispensers loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), were compared with similar dispensers and a commercial dispenser (Isomate®-C Plus) loaded with codle...

  15. Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of polyvinyl chloride polymer (pvc) dispensers loaded with two rates of ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), was compared with similar dispensers and two commercial dispensers l...

  16. Effect of Sex Pheromone and Kairomone Lures on Catches of Codling Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in apple orchards treated with sex pheromone evaluated the performance of a clear vertical interception trap coated with oil and baited with either sex pheromone, pear ester, or both attractants (combo) for adult codling moth, Cydia pomonella (L.). Baited interception traps caught significan...

  17. “This is not an apple”–yeast mutualism in codling moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. The larva of codling moth Cydia pomonella (Tortricidae, Lepidoptera) is known as the worm in the apple, mining the fruit for food. We show that codling moth larvae are closely associated with yeasts of the genus Metschnikowia. Yeast is an essential part of the larval diet and further promotes lar...

  18. Post-Application of Anti-Desiccant Agents Improves Efficacy of Entomopathogenic Nematodes in Formulated Host Cadavers or Aqueous Suspension Against Diapausing Codling Moth Larvae (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth (CM), Cydia pomonella L. is the most serious pest of apple and other pome fruit worldwide. In temperate climate, diapausing cocooned larvae make up 100% of the population. Control of this stage would reduce or eliminate damage by first generation CM in late spring and early summer. Ento...

  19. Accumulation of lead and arsenic by lettuce grown on lead-arsenate contaminated orchard soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lead-arsenate was one of the preferred insecticides used as foliar spray to control codling moth (Cydia pomonella) in apple (Malus sylvestris Mill) orchards from the 1900's to the 1960’s. Lead and arsenic are generally immobile and remain in the surface soil. Some of these contaminated lands are now...

  20. Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomoness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted in North and South America during 2012-2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPV), and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck) and codling moth, Cydia pomonella (L.) in pome an...

  1. Before harvest survival of codling moth (Lepidoptera: Tortricidae) in artificially infested sweet cherries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to the 2009 season, sweet cherries, Prunus avium (L.) L., from North America were required to be fumigated with methyl bromide before being exported to Japan to eliminate possible infestation by codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). However, based on recent biological...

  2. Comparison of ex-situ volatile emissions from intact and mechanically damaged walnuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The codling moth (Cydia pomonella) and navel orangeworm (Amyelois transitella) are insect pests that inflict serious economic damage to California walnuts. Feeding by these larvae causes physical damage, resulting in lower kernel quality, and can lead to fungal contamination by the aflatoxigenic fun...

  3. Improving the performance of the Granulosis virus of Codling moth (Lepidoptera: Tortricideae) by adding the yeast Saccharomyces cerevisiae with sugar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies evaluated the effectiveness of adding Saccharomyces cerevisiae with brown cane sugar (sugar) to the codling moth granulosis virus, CpGV, to improve larval control of Cydia pomonella (L.), on apple. Neither the use of the yeast or sugar alone caused larval mortality greater than the water con...

  4. Landscape Analysis of Adult Codling Moth (Lepidoptera: Tortricidae) Distribution and Dispersal within Typical Agroecosystems Dominated by Apple Production in Central Chile

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed the spatial distribution and dispersal of codling moth, Cydia pomonella (L.), adults within two heterogeneous agro-ecosystems typical of central Chile; commercial apple, Malus domestica Borkhausen, orchards surrounded by various unmanaged host plants. Both a geostatistical analysis of ca...

  5. Evaluation of traps and lures for codling moth (Lepidoptera: Tortricidae) in apple orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to evaluate the use of several trap – lure combinations to improve monitoring of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in apple, Malus domestica Bordk. Treatments included the use of clear, orange and white traps baited with one or more of the followin...

  6. Comparing mating disruption of codling moth with standard and meso dispensers loaded with pear ester and codlemone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted with hand-applied combo dispensers loaded with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone), and the pear volatile, (E,Z)-2,4-decadienoate (pear ester) for control of codling moth, Cydia pomonella (L.) in apple, Malus domestica Bordkhausen during 2012. Two types of...

  7. Measuring local genetic variability in populations of codling moth (Lepidoptera: Tortricidae) across an unmanaged / commercial orchard interface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic structure of adult codling moth Cydia pomonella L., populations was characterized both inside a managed apple, Malus domestica Borkdhausen, orchard and in surrounding unmanaged hosts and non-host trees in central Chile during 2006-2007. Adult males were collected using an array of sex ph...

  8. Control and monitoring of codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with novel high-load, low-density “meso” dispensers of sex pheromone and pear ester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel low-density per ha “meso” dispensers loaded with both pear ester, ethyl (E,Z)-2,4-decadienoate, kairomone and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., were evaluated versus meso dispensers loaded with pheromone-alone for their mating disru...

  9. Combined approaches using sex pheromone and pear ester for behavioral disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies utilized the attractive properties of pear ester, ethyl (E,Z)-2,4-decadienoate, and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., for behavioural disruption. Standard dispensers loaded with codlemone alone or in combination with pear ester (c...

  10. Effects of temperature and modified atmospheres on diapausing 5th instar codling moth metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diapausing 5th instars of codling moth, Cydia pomonella, are serious quarantine pests of in-shell walnuts. Previous research indicates that heat treatments in combination with high concentrations of carbon dioxide and low concentrations of oxygen may be effective for controlling this pest in walnuts...

  11. Effects of short photoperiod on codling moth diapause and survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential presence of codling moth, Cydia pomonella L., in apples shipped to countries within the 30th latitudes has raised concerns that this pest could establish and spread in these countries. Previous research demonstrated that codling moth in apples handled under simulated commercial cold st...

  12. Creating Point Sources for Codling Moth (Lepidoptera: Tortricidae) with Low-Volume Sprays of a Microencapsulated Sex Pheromone Formulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to examine the depositioin of microcapsules and the attractiveness of treated apple leaves for codling moth, Cydia pomonella (L.), following low volume concentrated sprays of a microencapsulated (MEC) sex pheromone formulation (CheckMate CM-F). Nearly 30% of leaves collected f...

  13. Identification of fruit volatiles from green hawthorn (Crataegus viridis) and blueberry hawthorn (Crataegus brachyacantha) host plants attractive to different phenotypes of Rhagoletis pomonella flies in the southern United States.

    PubMed

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. In a companion paper, we showed that R. pomonella flies infesting two different mayhaw species (Crataegus opaca and C. aestivalis) can discriminate between volatile blends developed for each host fruit, and that these blends are different from previously constructed blends for northern fly populations that infest domestic apple (Malus domestica), downy hawthorn (Crataegus mollis), and flowering dogwood (Cornus florida). Here, we show by using coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays, that two additional southern hawthorn fly populations infesting C. viridis (green hawthorn) and C. brachyacantha (blueberry hawthorn) also can discriminate between volatile blends for each host fruit type. A 9-component blend was developed for C. viridis (3-methylbutan-1-ol [5%], butyl butanoate [19.5%], propyl hexanoate [1.5%], butyl hexanoate [24%], hexyl butanoate [24%], pentyl hexanoate [2.5%], 1-octen-3-ol [0.5%], pentyl butanoate [2.5%], and (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) [20.5%]) and an 8-component blend for C. brachyacantha (3-methylbutan-1-ol [0.6%], butyl acetate [50%], pentyl acetate [3.5%], butyl butanoate [9%], butyl hexanoate [16.8%], hexyl butanoate [16.8%], 1-octen-3-ol [0.3%], and pentyl butanoate [3%]). Crataegus viridis and C. brachyacantha-origin flies showed significantly higher levels of upwind oriented flight to their natal blend in flight tunnel assays compared to the alternate, non-natal blend and previously developed northern host plant blends. The presence of DMNT in C. viridis and butyl acetate in C. brachyacantha appeared to be largely responsible for driving the differential response. This sharp behavioral distinction underscores the diversity of odor response phenotypes in the southern USA, points to possible host race formation in these

  14. Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae

    SciTech Connect

    Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.

    1985-03-01

    Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.

  15. Sex pheromone of Argyrotaenia pomililiana (Lepidoptera: Tortricidae), a leafroller pest of apples in Argentina.

    PubMed

    Cichón, L I; Trematerra, P; Coracini, M D A; Fernandez, D; Bengtsson, M; Witzgall, P

    2004-06-01

    Sex pheromone gland extracts of Argyrotaenia pomililiana Trematerra & Brown females contained seven 14-chain compounds, the Z and E isomers of 11-tetradecenyl acetate, 11-tetradecen-1-ol, and 11-tetradecenal, respectively, together with tetradecyl acetate. In field trapping tests, a 100:5 blend of Z11-14:Ac and Z11-14:Al was shown to be suitable for detection and monitoring of A. pomililiana. This species-specific lure will facilitate the use of mating disruption against codling moth, Cydia pomonella (L.), in Argentine fruit orchards.

  16. Real-time PCR assay for detection of a new simulant for poxvirus biothreat agents.

    PubMed

    Garnier, Laurence; Gaudin, Jean-Christophe; Bensadoun, Paul; Rebillat, Isabelle; Morel, Yannick

    2009-03-01

    Research and financial efforts spent on biodefense technologies highlight the current concern for biothreat event preparedness. Nonhazardous but relevant "simulant" microorganisms are typically used to simplify technological developments, testing, and staff training. The bacteriophage MS2, a small RNA virus, is classically used as the reference simulant for biothreat viruses within the biodefense community. However, variola virus, considered a major threat, displays very different features (size, envelope, and double-stranded DNA genome). The size parameter is critical for aerosol sampling, detection, and protection/filtration technologies. Therefore, a panel of relevant simulants should be used to cover the diversity of biothreat agents. Thus, we investigated a new virus model, the Cydia pomonella granulovirus (baculovirus), which is currently used as a biopesticide. It displays a size similar to that of poxviruses, is enveloped, and contains double-stranded DNA. To provide a molecular tool to detect and quantify this model virus, we developed an assay based on real-time PCR, with a limit of detection ranging from roughly 10 to a few tens of target copies per microl according to the sample matrix. The specificity of the assay against a large panel of potential cross-reactive microorganisms was checked, and the suitability of the assay for environmental samples, especially aerosol studies, was determined. In conclusion, we suggest that our PCR assay allows Cydia pomonella granulovirus to be used as a simulant for poxviruses. This assay may also be useful for environmental or crop treatment studies. PMID:19168659

  17. Dominicanas entre La Gran Manzana y Quisqueya: Family, Schooling, and Language Learning in a Transnational Context

    ERIC Educational Resources Information Center

    Rodriguez, Tracy

    2009-01-01

    Drawing from a one-year qualitative research study, this article explores the transnational lives and experiences of three young women and their little sisters in New York with close ties to the Dominican Republic. Using ethnographic research methods--life history interviews, focus groups, participant observation, and document analysis, I examine…

  18. Evaluation of azinphos-methyl resistance and activity of detoxifying enzymes in codling moth (Lepidoptera: Tortricidae) from central Chile.

    PubMed

    Fuentes-Contreras, Eduardo; Reyes, Maritza; Barros, Wilson; Sauphanor, Benoît

    2007-04-01

    Regular applications of insecticides have been the main management practice against codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) in Chile. Organophosphates are the most widely used insecticides, and azinphos-methyl is an important element in spray programs. In particular, we evaluated diagnostic doses of azinphos-methyl on neonate and postdiapausing larvae from seven apple (Malus spp.) orchards. We also evaluated the activity of detoxifying enzymes, such as glutathione S-transferases (GSTs), cytochrome P450 polysubstrate monooxygenases (PSMOs), and esterases, which are likely to be involved in resistance to insecticides. Such responses were compared with an insecticide-susceptible strain that has been maintained in the laboratory for several years. Neonate larval mortality of field populations to azinphos-methyl was not significantly different from of the susceptible strain. In contrast, postdiapause larval mortality was significantly lower in the six analyzed populations than in the susceptible strain. The C. pomonella populations with reduced postdiapause mortality to azinphos-methyl also showed statistically higher GST activity. Finally, no significant differences were found in total esterase or PSMO activity between C. pomonella populations. Therefore, the observed reduction in postdiapause larval mortality to azinphos-methyl seems to be associated with an increase in GST activity. PMID:17461082

  19. An attempt to increase efficacy of moth mating disruption by co-releasing pheromones with kairomones and to understand possible underlying mechanisms of this technique.

    PubMed

    Stelinski, Lukasz L; Gut, Larry J; Miller, James R

    2013-02-01

    Pheromone-based mating disruption is used worldwide for management of the internal fruit feeding codling moth, Cydia pomonella (L.). There has been recent interest in the potential of improving mating disruption of C. pomonella, and potentially other insect species in general, by broadcasting combinations of pheromone and attractive host-plant kairomones. Given that such kairomones are attractive by themselves (often to both sexes), and also enhance male moth response to their pheromone, it is possible that the effects of competitive attraction and potentially other mechanisms of disruption might be increased. Herein, we tested the hypothesis that mating disruption of C. pomonella could be enhanced by co-deploying pheromone with either of two kairomones: (2E, 4Z)-2, 4-decadienoate (pear ester), or (E)-β-farnesene, as compared with various pheromone blend components alone. When deployed individually, each kairomone caused a low level of synthetic lure trap disruption and (E)-β-farnesene also caused disruption of mating as measured by tethering virgin females. However, combined release of either pear ester or (E)-β-farnesene with pheromone within the same dispenser or as a co-deployed dispenser treatment, respectively, did not increase the level of mating disruption as compared with deploying pheromone alone. Disruption efficacy did not decline when reducing the amount of (E,E)-8,10-dodecadien-1-ol (codlemone) in dispensers by fourfold, when combined with pear ester. C. pomonella readily were observed briefly approaching all dispenser types (with and without pheromone) in the field. Exposure of male C. pomonella to pear ester alone in a manner mimicking observed field exposures did not reduce the number of males able to contact a female-mimic pheromone lure in flight tunnel assays. Also, reduction of male moth behavioral response to pheromone was similar after exposure to codlemone alone, and codlemone and pear ester after exposures that mimicked those observed in

  20. Pharmacological analysis of feeding in a caterpillar: different transduction pathways for umami and saccharin?

    NASA Astrophysics Data System (ADS)

    Pszczolkowski, Maciej A.; Durden, Kevin; Marquis, Juleah; Ramaswamy, Sonny B.; Brown, John J.

    2009-05-01

    Neonate larvae of codling moth, Cydia pomonella (L.), modify their behavior in the presence of saccharin, monosodium glutamate (MSG), or L(+)-2-amino-4-phosphonobutyric acid (L-AP4) by commencing their feeding earlier. Previously published pharmacological analysis demonstrated that phagostimulatory effects of MSG and L-AP4 (which elicit umami taste sensation in humans) are reversed by adenylate cyclase activator and phosphodiesterase inhibitor. In this study, by measuring the time needed to start ingestion of foliage treated with mixtures of phagostimulants and signal transduction modulators, we show that phagostimulatory effects of l-aspartate (the third hallmark umami substance) are also abolished by both adenylate cyclase activator and phosphodiesterase inhibitor, but not by phospholipase C inhibitor. However, stimulatory effects of hemicalcium saccharin were affected only by phospholipase C inhibitor. The results suggest that codling moth neonates use different transduction pathways for perception of hemicalcium saccharin and umami.

  1. Neo-sex chromosomes and adaptive potential in tortricid pests

    PubMed Central

    Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Čapková Frydrychová, Radmila; Neven, Lisa G.; Sahara, Ken; Marec, František

    2013-01-01

    Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z–autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation. PMID:23569222

  2. Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile.

    PubMed

    Fuentes-Contreras, Eduardo; Espinoza, Juan L; Lavandero, Blas; Ramírez, Claudio C

    2008-02-01

    Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is the main pest of pome fruits worldwide. Despite its economic importance, little is known about the genetic structure and patterns of dispersal at the local and regional scale, which are important aspects for establishing a control strategy for this pest. An analysis of genetic variability using microsatellites was performed for 11 codling moth populations in the two major apple (Malus domestica Borkh) cropping regions in central Chile. Despite the geographical distances between some populations (approximately 185 km), there was low genetic differentiation among populations (F(ST) = 0.002176), with only slight isolation by distance. Only approximately 0.2% of the genetic variability was found among the populations. Geographically structured genetic variation was independent of apple orchard management (production or abandoned). These results suggest a high genetic exchange of codling moth between orchards, possibly mediated by human activities related to fruit production. PMID:18330135

  3. Paraffin wax emulsion for increased rainfastness of insecticidal bait to control Rhagoletis pomonella (Diptera: Tephritidae).

    PubMed

    Teixeira, Luís A F; Wise, John C; Gut, Larry J; Isaacs, Rufus

    2009-06-01

    In regions with a humid summer climate, the use of water-soluble bait to control apple maggot is often limited by rainfall. We studied increasing the rainfastness of GF-120 fruit fly bait by adding paraffin wax emulsion. First, we verified that adding 10% wax to a mixture containing 16.7% GF-120 did not reduce the mortality of female apple maggot compared with GF-120 without wax. In addition, we determined that fly mortality caused by GF-120 plus wax subjected to simulated rain was similar to that caused by GF-120 without wax not subjected to rain. Other assays showed that higher fly mortality resulted from increasing the proportion of wax from 10 to 15%, and lower mortality resulted from decreasing GF-120 from 16.7 to 10 or 5%. The availability of spinosad on or near droplets of a mixture consisting of 5, 10, or 15% GF-120 and 15% wax was determined before and after the droplets were subjected to three 15-min periods of simulated rain. We found an initial steep decline in dislodgeable spinosad and smaller decreases after subsequent periods of rain. In a small-plot field trial, fruit infestation by apple maggot in plots treated with a mixture consisting of 16.7% GF-120 and 19.2% wax was less than in plots treated with 16.7% GF-120 without wax but not less than in control plots. Overall, we found that adding paraffin wax emulsion to GF-120 increased rainfastness in laboratory bioassays, and specifically that it retained the active ingredient spinosad. However, our field data suggest that optimal rainfastness requires the development of mixtures with > 19.2% wax, which may preclude application using standard spray equipment.

  4. Reference gene selection for quantitative real-time PCR normalization in larvae of three species of Grapholitini (Lepidoptera: Tortricidae).

    PubMed

    Ridgeway, Jaryd A; Timm, Alicia E

    2015-01-01

    Despite the agricultural importance of species in the Grapholitini (Lepidoptera: Tortricidae), and the value of gene expression analysis for improved population management, few gene expression studies based on quantitative real-time PCR (qPCR) have been conducted for this tribe. Part of the reason for this lack of information is that suitable reference genes, which are fundamental for accurate normalization of qPCR studies, have not been identified for the tribe. Thus, the expression stability of six potential reference genes (ACT, AK, COI, EF1, ENO and TUB) was assessed in three different tissues (whole body, midgut and cuticle) of Cryptophlebia peltastica (Meyrick), Cydia pomonella (L.) and Thaumatotibia leucotreta (Meyrick). Additionally, these reference genes were tested using T. leucotreta at different temperatures (15°C, 25°C and 35°C) with and without baculovirus infection. Suitable reference genes were identified for the whole body and midgut tissue of all three species, and for cuticle tissue of Cy. pomonella and T. leucotreta. When T. leucotreta was infected with the virus at all temperature conditions ACT, AK and EF1 were found to be the most suitable reference genes for experimental normalization. In general, for all tissue types, species and stress conditions, AK and EF1 were the best-performing reference genes. However, even though the three species analysed were closely related and within the same tribe, each species required varying gene combinations for suitable normalization. This study provides the first reference gene evaluation for the Tortricidae, and paves the way for future qPCR analysis in Tortricidae.

  5. Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae).

    PubMed

    Saber, Moosa

    2011-08-01

    One focus of integrated pest management (IPM) is the use of biological and chemical control in an optimal way. The availability of selective pesticides is important as is information about both lethal and sublethal effects of pesticides on biocontrol agents. Acute and sublethal effects of imidacloprid and fenpyroximate exposure were studied on adult stage of egg parasitoid Trichogramma cacoeciae Marchal and the emergence rate and life table parameters were determined. The adult wasps were exposed to field recommended concentration (FRC) of the pesticides on glass plates. Field rates of imidacloprid and fenpyroximate caused 100 and 32% adult mortality, respectively. Based on concentration-response experiments, the LC(50) values of imidacloprid and fenpyroximate were 6.25 and 1,949 ppm, respectively. The effect of imidacloprid and fenpyroximate on larvae, prepupae and pupae of the parasitoid was tested by exposing parasitized eggs of Sitotroga cerealella Olivier or Cydia pomonella L. to the FRC. Imidacloprid and fenpyroximate reduced adult emergence by 10.7 and 29%, respectively, when S. cerealella eggs were used as the host and 10.9 and 24.9%, respectively, when C. pomonella eggs were used as the host. Population parameters of emerged adults from treated pre-imaginal stages by FRC of the pesticides were also studied. The parameters were longevity and progeny production of emergent adults and also intrinsic rate of increase (r ( m )), generation time (T) and doubling time (DT). Longevity and progeny production of the emergent adults was not affected by pesticide exposure in comparison to the control. In addition, none of population parameters such as r ( m ), T and DT were affected by pesticide exposure. The intrinsic rate of increase for the control, fenpyroximate and imidacloprid exposed populations were 0.388, 0.374, and 0.372 female offspring per female per day, respectively. Overall, results of this study suggest a relative compatibility between fenpyroximate

  6. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    PubMed

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC.

  7. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    PubMed

    Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C

    2015-01-01

    The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.

  8. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    PubMed Central

    Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.

    2015-01-01

    The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088

  9. Reference Gene Selection for Quantitative Real-Time PCR Normalization in Larvae of Three Species of Grapholitini (Lepidoptera: Tortricidae)

    PubMed Central

    Ridgeway, Jaryd A.; Timm, Alicia E.

    2015-01-01

    Despite the agricultural importance of species in the Grapholitini (Lepidoptera: Tortricidae), and the value of gene expression analysis for improved population management, few gene expression studies based on quantitative real-time PCR (qPCR) have been conducted for this tribe. Part of the reason for this lack of information is that suitable reference genes, which are fundamental for accurate normalization of qPCR studies, have not been identified for the tribe. Thus, the expression stability of six potential reference genes (ACT, AK, COI, EF1, ENO and TUB) was assessed in three different tissues (whole body, midgut and cuticle) of Cryptophlebia peltastica (Meyrick), Cydia pomonella (L.) and Thaumatotibia leucotreta (Meyrick). Additionally, these reference genes were tested using T. leucotreta at different temperatures (15°C, 25°C and 35°C) with and without baculovirus infection. Suitable reference genes were identified for the whole body and midgut tissue of all three species, and for cuticle tissue of Cy. pomonella and T. leucotreta. When T. leucotreta was infected with the virus at all temperature conditions ACT, AK and EF1 were found to be the most suitable reference genes for experimental normalization. In general, for all tissue types, species and stress conditions, AK and EF1 were the best-performing reference genes. However, even though the three species analysed were closely related and within the same tribe, each species required varying gene combinations for suitable normalization. This study provides the first reference gene evaluation for the Tortricidae, and paves the way for future qPCR analysis in Tortricidae. PMID:26030743

  10. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.

    PubMed

    Baranek, Jakub; Kaznowski, Adam; Konecka, Edyta; Naimov, Samir

    2015-09-01

    Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests. PMID:26146224

  11. Quantitative relationships between different injury factors and development of brown rot caused by Monilinia fructigena in integrated and organic apple orchards.

    PubMed

    Holb, I J; Scherm, H

    2008-01-01

    In a 4-year study, the incidence of various types of injuries (caused by insects, birds, growth cracks, mechanical wounding, and other, unidentified factors) was assessed in relation to brown rot development (caused by Monilinia fructigena) on fruit of three apple cultivars (Prima, Jonathan, and Mutsu) in integrated and organic blocks of two apple orchards in Hungary. In addition, populations of male codling moths (Cydia pomonella) were monitored with pheromone traps season-long in both management systems. On average, injury incidence on fruit at harvest was 6.1 and 19.2% in the integrated and organic treatments, respectively. Insect injury, which was caused primarily by C. pomonella, had the highest incidence among the five injury types, accounting for 79.4% of the total injury by harvest in the organic blocks and 36.6% in the integrated blocks. Levels of all other injury types remained close to zero during most of the season, but the incidence of bird injury and growth cracks increased markedly in the final 3 to 5 weeks before harvest in both production systems. Brown rot developed more slowly and reached a lower incidence in the integrated (6.4% final incidence on average) compared with the organic blocks (20.1% average incidence). In addition, the disease developed later but attained higher levels as the cultivar ripening season increased from early-maturing Prima to late-maturing Mutsu. Overall, 94.3 to 98.7% of all injured fruit were also infected by M. fructigena, whereas the incidence of brown-rotted fruit without visible injury was very low (0.8 to 1.6%). Correlation coefficients (on a per plot basis) and association indices (on a per-fruit basis) were calculated between brown rot and the various injury types for two selected assessment dates 4 weeks preharvest and at harvest. At both dates, the strongest significant (P < 0.05) relationships were observed between brown rot and insect injury and between brown rot and the cumulative number of trapped C

  12. Susceptibility of the Filbertworm (Cydia latiferreana, Lepidoptera: Tortricidae) And Filbert Weevil (Curculio occidentalis, Coleoptera: Curculionidae) to Entomopathogenic Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazelnut (Corylus avellana L.) is an important nut crop produced around the world including the United States. Oregon’s Willamette Valley accounts for about 99% of hazelnuts grown in the United States. The objective of this study was to determine the susceptibility of the two primary direct insect...

  13. Gamma irradiation as a phytosanitary treatment for fresh pome fruits produced in Patagonia

    NASA Astrophysics Data System (ADS)

    Pérez, J.; Lires, C.; Horak, C.; Pawlak, E.; Docters, A.; Kairiyama, E.

    2009-07-01

    Argentina produces 1.8 million tons/year of apples ( Malus domestica L.) and pears ( Pyrus communis L.) in the Patagonia region. Cydia pomonella, codling moth, and Grapholita molesta, Oriental fruit moth, ( Lepidoptera: Tortricidae) are quarantine pests in pome fruits. Irradiation is a promising phytosanitary treatment because a dose of 200 Gy completely prevents pest adult emergence. A pilot irradiation process of commercially packaged 'Red Delicious' apples and 'Packham's Triumph' pears was performed in an irradiation facility with a Cobalt 60 source. Quality analyses were carried out at 0, 2, 4, 6 and 8 months of storage (1 °C, RH 99%) to evaluate fruit tolerance at 200, 400 and 800 Gy. Irradiation at 200 and 400 Gy had no undesirable effects on fruit quality (pulp firmness, external colour, soluble solids content (SSC), titratable acidity (TA) and sensory evaluations). Irradiation of 'Red Delicious' apples and 'Packham's Triumph' pears can be applied as a commercial quarantine treatment with a minimum absorbed dose of 200 Gy (to control codling moth and Oriental fruit moth) and <800 Gy (according to quality results).

  14. Cost-benefit trade-offs of bird activity in apple orchards.

    PubMed

    Peisley, Rebecca K; Saunders, Manu E; Luck, Gary W

    2016-01-01

    Birds active in apple orchards in south-eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south-eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems. PMID:27413639

  15. Water fluxes and encapsulation efficiency in double emulsions: impact of emulsification and osmotic pressure unbalance.

    PubMed

    Nollet, Maxime; Mercé, Manuel; Laurichesse, Eric; Pezon, Annaïck; Soubabère, Olivier; Besse, Samantha; Schmitt, Véronique

    2016-04-14

    We study the influence of the emulsification process on encapsulation efficiency of drugs in double water-in-oil-in-water emulsions. Two drugs were used, first vitamin B12 which can be considered as a model drug and secondly a suspension of Cydia pomonella Granulovirus (CpGV), a virus used in organic agriculture to protect fruits against the Carpocapse insect. Encapsulation is measured by classical UV-Vis spectroscopy method. Additionally we show that rheology is a useful tool to determine water exchanges during emulsification. In a two-step emulsification process, using rotor-stator mixers, encapsulation reaches high levels, close to 100% whatever the flowing regime. This encapsulation decreases only if two conditions are fulfilled simultaneously: (i) during the second emulsification step the flow is turbulent and (ii) it leads to excessive fragmentation inducing formation of too small drops. We also investigate the effect of a deliberate loss of osmotic pressure balance on the encapsulation and characterize the induced water fluxes. We show that encapsulation of vitamin B12 is not affected by the osmotic pressure unbalance, while water exchanges, if they exist, are very fast and aim at restoring equilibrium. As a consequence, the emulsification efficiency is not very sensitive to osmotic stresses provided that the interfaces resist mechanically. PMID:26936127

  16. Toxicity of Six Insecticides on Codling Moth (Lepidoptera: Tortricidae) and Effect on Expression of Detoxification Genes.

    PubMed

    Yang, Xue-Qing; Wu, Zheng-Wei; Zhang, Ya-Lin; Barros-Parada, Wilson

    2016-02-01

    The codling moth, Cydia pomonella (L.), is a key worldwide fruit pest that has evolved high levels of resistance to almost all classes of conventional insecticides. Neonicotinoids, a new reduced-risk biorational insecticide class, have remained an effective control approach. In this study, the toxicity and sublethal effect of conventional and reduced-risk biorational insecticides on transcripts abundance of three detoxification genes in codling moth were determined. Bioassays on a codling moth laboratory strain suggested that acetamiprid had the highest oral toxicity against the third-instar larvae compared with the other five pesticides. Results also indicated that acetamiprid exhibits long-term efficacy against codling moth even at 120 h post feeding. Real-time quantitative polymerase chain reaction showed that the detoxification genes CYP9A61, CpGST1, and CpCE-1 were differentially induced or suppressed by deltamethrin, cypermethrin, methomyl, carbaryl, and imidacloprid, depending on the type of insecticides; in contrast, no significant difference in CYP9A61, CpGST1, and CpCE-1 expressions were observed after acetamiprid exposure, when compared with the control. These results suggest that the reduced-risk biorational insecticide acetamiprid is an effective insecticide with no induction of detoxification genes and can be integrated into the management of codling moth. PMID:26487743

  17. Population genetic structure of economically important Tortricidae (Lepidoptera) in South Africa: a comparative analysis.

    PubMed

    Timm, A E; Geertsema, H; Warnich, L

    2010-08-01

    Comparative studies of the population genetic structures of agricultural pests can elucidate the factors by which their population levels are affected, which is useful for designing pest management programs. This approach was used to provide insight into the six Tortricidae of major economic importance in South Africa. The population genetic structure of the carnation worm E. acerbella and the false codling moth T. leucotreta, analyzed using amplified fragment length polymorphism (AFLP) analysis, is presented here for the first time. These results were compared with those obtained previously for the codling moth Cydia pomonella, the oriental fruit moth Grapholita molesta, the litchi moth Cryptophlebia peltastica and the macadamia nut borer T. batrachopa. Locally adapted populations were detected over local geographic areas for all species. No significant differences were found among population genetic structures as result of population history (whether native or introduced) although host range (whether oligophagous or polyphagous) had a small but significant effect. It is concluded that factors such as dispersal ability and agricultural practices have the most important effects on genetically structuring populations of the economically important Tortricidae in South Africa.

  18. Cost-benefit trade-offs of bird activity in apple orchards

    PubMed Central

    Saunders, Manu E.; Luck, Gary W.

    2016-01-01

    Birds active in apple orchards in south–eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south–eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems. PMID:27413639

  19. N-Butyl sulfide as an attractant and coattractant for male and female codling moth (Lepidoptera: Tortricidae).

    PubMed

    Landolt, Peter J; Ohler, Bonnie; Lo, Peter; Cha, Dong; Davis, Thomas S; Suckling, David M; Brunner, Jay

    2014-04-01

    Research to discover and develop attractants for the codling moth, Cydia pomonella L., has involved identification of the chemicals eliciting moth orientation to conspecific female moths, host fruits, fermented baits, and species of microbes. Pear ester, acetic acid, and N-butyl sulfide are among those chemicals reported to attract or enhance attractiveness to codling moth. We evaluated the trapping of codling moth with N-butyl sulfide alone and in combination with acetic acid and pear ester in apple orchards. Acetic acid was attractive in two tests and N-butyl sulfide was attractive in one of two tests. N-Butyl sulfide increased catches of codling moth when used with acetic acid to bait traps. N-Butyl sulfide also increased catches of codling moth when added to traps baited with the combination of acetic acid and pear ester. Male and female codling moth both responded to these chemicals and chemical combinations. These results provide a new three-component lure comprising N-butyl sulfide, acetic acid, and pear ester that is stronger for luring codling moth females than other attractants tested.

  20. Quality of mass-reared codling moth (Lepidoptera: Tortricidae) after long-distance transportation: 1. Logistics of shipping procedures and quality parameters as measured in the laboratory.

    PubMed

    Blomefield, T; Carpenter, J E; Vreysen, M J B

    2011-06-01

    The sterile insect technique (SIT) is a proven effective control tactic against lepidopteran pests when applied in an areawide integrated pest management program. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of sterile insects could be made more cost-effective through the importation of sterile moths produced in other production centers. For codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), this is an attractive option because mating studies have confirmed the absence of mating barriers between codling moth populations from geographically different areas. To assess the feasibility of long-distance transportation of codling moths, pupae and adult moths were transported in 2004 from Canada to South Africa in four shipments by using normal commercial transport routes. The total transport time remained below 67 h in three of the consignments, but it was 89 h in the fourth consignment. Temperature in the shipping boxes was fairly constant and remained between -0.61 and 0.16 degrees C for 76.8-85.7% of the time. The data presented indicate that transporting codling moths as adults and pupae from Canada to South Africa had little effect on moth emergence, longevity, and ability to mate, as assessed in the laboratory. These results provide support to the suggestion that the STT for codling moth in pome fruit production areas might be evaluated and implemented by the importation of irradiated moths from rearing facilities in a different country or hemisphere.

  1. Recapture of codling moth (Lepidoptera: Tortricidae) males: influence of lure type and pheromone background.

    PubMed

    Grieshop, Matthew J; Brunner, Jay F; Jones, Vincent P; Bello, Nora M

    2010-08-01

    Recapture of marked male codling moths, Cydia pomonella (L.) (Lepidoptera: Tortricidae), released four distances from traps was measured in experiments comparing either lure type or mating disruption. Experiment 1 assessed recapture by 0.1, 1, and 10 mg of codlemone lures. Experiments 2 and 3 assessed moth recapture in orchard plots with 0, 500, or 1,000 Isomate C Plus dispensers per ha. Moths were released 1, 3, 10, and 30 m downwind of the trap in experiments 1 and 2, and 3, 10, 30, and 45 m in experiment 3. Lure type did not affect recapture, however, significantly more moths were recaptured at 3 m compared with 10 or 30 m. Most moths recaptured < or = 10 m of the trap were recaptured by day 3, whereas most of the moths recaptured > or = 10 m were recaptured after day 3. Thus, 0.1-, 1-, and 10-mg lures, have an attractive range of between 10 and 30 m in orchards lacking mating disruption. Both mating disruption rates greatly reduced moth recapture, and moths recaptured under a 1,000 dispenser per ha rate were recaptured from < or = 10 m and within the first 2 d after release. Similar results were observed when release points were expanded to 45 m. Thus, results suggest that pheromone dispenser technologies and placement strategies that maximize disruption of males that arise within 10 m of a female are needed to markedly improve mating disruption.

  2. Effects of short photoperiod on codling moth diapause and survival.

    PubMed

    Neven, Lisa G

    2013-02-01

    The potential presence of codling moth, Cydia pomonella L., in apples shipped to countries within the 30th latitudes has raised concerns that this pest could establish and spread in these countries. Previous research demonstrated that codling moth in apples handled under simulated commercial cold storage conditions and held under short day lengths could not break diapause and emerge in sufficient numbers to establish a minimum viable population. This study expands the in-fruit work by examining the ability of codling moth to establish a laboratory population under a short photoperiod of 12:12 (L:D) h, as compared with a long photoperiod of 16:8 (L:D) h. Codling moth larvae were collected from field infested fruits in 2010 and 2011. Moths were collected from the infested fruits and separated into two groups representing the two daylength conditions. In total, 1,004 larvae were monitored for adult emergence and ability to generate a subsequent population. Larvae held under the photoperiod of 12:12 (L:D) h generated only one moth in the 2 yr period, whereas larvae held under the photoperiod of 16:8 (L:D) h generated 186 females and 179 males, that sustained subsequent generations on artificial diet under laboratory conditions. These results indicate that under controlled environmental conditions, codling moth cannot complete diapause and emerge in sufficient numbers to sustain a viable population when held under a short photoperiod.

  3. Toxicity of Six Insecticides on Codling Moth (Lepidoptera: Tortricidae) and Effect on Expression of Detoxification Genes.

    PubMed

    Yang, Xue-Qing; Wu, Zheng-Wei; Zhang, Ya-Lin; Barros-Parada, Wilson

    2016-02-01

    The codling moth, Cydia pomonella (L.), is a key worldwide fruit pest that has evolved high levels of resistance to almost all classes of conventional insecticides. Neonicotinoids, a new reduced-risk biorational insecticide class, have remained an effective control approach. In this study, the toxicity and sublethal effect of conventional and reduced-risk biorational insecticides on transcripts abundance of three detoxification genes in codling moth were determined. Bioassays on a codling moth laboratory strain suggested that acetamiprid had the highest oral toxicity against the third-instar larvae compared with the other five pesticides. Results also indicated that acetamiprid exhibits long-term efficacy against codling moth even at 120 h post feeding. Real-time quantitative polymerase chain reaction showed that the detoxification genes CYP9A61, CpGST1, and CpCE-1 were differentially induced or suppressed by deltamethrin, cypermethrin, methomyl, carbaryl, and imidacloprid, depending on the type of insecticides; in contrast, no significant difference in CYP9A61, CpGST1, and CpCE-1 expressions were observed after acetamiprid exposure, when compared with the control. These results suggest that the reduced-risk biorational insecticide acetamiprid is an effective insecticide with no induction of detoxification genes and can be integrated into the management of codling moth.

  4. "This is not an apple"-yeast mutualism in codling moth.

    PubMed

    Witzgall, Peter; Proffit, Magali; Rozpedowska, Elzbieta; Becher, Paul G; Andreadis, Stefanos; Coracini, Miryan; Lindblom, Tobias U T; Ream, Lee J; Hagman, Arne; Bengtsson, Marie; Kurtzman, Cletus P; Piskur, Jure; Knight, Alan

    2012-08-01

    The larva of codling moth Cydia pomonella (Tortricidae, Lepidoptera) is known as the worm in the apple, mining the fruit for food. We here show that codling moth larvae are closely associated with yeasts of the genus Metschnikowia. Yeast is an essential part of the larval diet and further promotes larval survival by reducing the incidence of fungal infestations in the apple. Larval feeding, on the other hand, enables yeast proliferation on unripe fruit. Chemical, physiological and behavioral analyses demonstrate that codling moth senses and responds to yeast aroma. Female moths are attracted to fermenting yeast and lay more eggs on yeast-inoculated than on yeast-free apples. An olfactory response to yeast volatiles strongly suggests a contributing role of yeast in host finding, in addition to plant volatiles. Codling moth is a widely studied insect of worldwide economic importance, and it is noteworthy that its association with yeasts has gone unnoticed. Tripartite relationships between moths, plants, and microorganisms may, accordingly, be more widespread than previously thought. It, therefore, is important to study the impact of microorganisms on host plant ecology and their contribution to the signals that mediate host plant finding and recognition. A better comprehension of host volatile signatures also will facilitate further development of semiochemicals for sustainable insect control.

  5. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  6. Microencapsulated pear ester enhances insecticide efficacy in walnuts for codling moth (Lepidoptera: Tortricidae) and navel orangeworm (Lepidoptera: Pyralidae).

    PubMed

    Light, Douglas M; Knight, Alan L

    2011-08-01

    The efficacy of combining insecticides with a microencapsulated formulation of ethyl (2E,4Z) -2,4-decadienoate (pear ester, PE-MEC) was evaluated in walnuts, Juglans regia L., for codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), and navel orangeworm, Amyelois transitella Walker (Lepidoptera, Pyralidae). Two types of studies were conducted to compare the use of insecticides with and without PE-MEC. In the first study, PE-MEC in combination with reduced rates of insecticides, including chlorpyrifos, phosmet, methoxyfenozide, and codling moth granulovirus were evaluated in single tree replicates. PE-MEC was tested at one to three rates (0.6, 1.8, and 4.4 g active ingredient ha(-1)) with each insecticide. In the second study, seasonal programs including sprays of esfenvalerate, chlorpyrifos, and ethyl parathion at full rates were evaluated in replicated two ha blocks. Significant reductions in nut injury occurred in the single-tree trial with treatments of PE-MEC plus insecticide compared with the insecticides used alone against both pest species; except with methoxyfenozide for navel orangeworm. Similarly, nut injury in the large plots was significantly reduced with the addition of PE-MEC, except for navel orangeworm in one of the two studies. These results suggest that adding pear ester as a microencapsulated spray can improve the efficacy of a range of insecticides for two key pests and foster the development of integrated pest management tactics with reduced insecticide use in walnut.

  7. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies. PMID:26314018

  8. General principles of attraction and competitive attraction as revealed by large-cage studies of moths responding to sex pheromone

    PubMed Central

    Miller, J. R.; McGhee, P. S.; Siegert, P. Y.; Adams, C. G.; Huang, J.; Grieshop, M. J.; Gut, L. J.

    2009-01-01

    Knowledge of how insects are actually affected by sex pheromones deployed throughout a crop so as to disrupt mating has lacked a mechanistic framework sufficient for guiding optimization of this environmentally friendly pest-control tactic. Major hypotheses are competitive attraction, desensitization, and camouflage. Working with codling moths, Cydia pomonella, in field cages millions of times larger than laboratory test tubes and at substrate concentrations trillions of times less than those typical for enzymes, we nevertheless demonstrate that mating disruption sufficiently parallels enzyme (ligand) –substrate interactions so as to justify adoption of conceptual and analytical tools of biochemical kinetics. By doing so, we prove that commercial dispensers of codling moth pheromone first competitively attract and then deactivate males probably for the remainder of a night. No evidence was found for camouflage. We generated and now validate simple algebraic equations for attraction and competitive attraction that will guide optimization and broaden implementation of behavioral manipulations of pests. This analysis system also offers a unique approach to quantifying animal foraging behaviors and could find applications across the natural and social sciences. PMID:20018720

  9. Combining mutualistic yeast and pathogenic virus--a novel method for codling moth control.

    PubMed

    Knight, Alan L; Witzgall, Peter

    2013-07-01

    The combination of a pathogenic virus and mutualistic yeasts isolated from larvae of codling moth Cydia pomonella is proposed as a novel insect control technique. Apples were treated with codling moth granulovirus (CpGV) and either one of three yeasts, Metschnikowia pulcherrima, Cryptococcus tephrensis, or Aureobasidium pullulans. The combination of yeasts with CpGV significantly increased mortality of neonate codling moth larvae, compared with CpGV alone. The three yeasts were equally efficient in enhancing the activity of CpGV. The addition of brown cane sugar to yeast further increased larval mortality and the protection of fruit against larvae. In comparison, without yeast, the addition of sugar to CpGV did not produce a significant effect. A field trial confirmed that fruit injury and larval survival were significantly reduced when apple trees were sprayed with CpGV, M. pulcherrima, and sugar. We have shown earlier that mutualistic yeasts are an essential part of codling moth larval diet. The finding that yeast also enhances larval ingestion of an insect-pathogenic virus is an opportunity for the development of a novel plant protection technique. We expect the combination of yeasts and insect pathogens to essentially contribute to future insect management.

  10. Identification of irradiated apples for phytosanitary purposes

    NASA Astrophysics Data System (ADS)

    Horak, Celina I.; Di Giorgio, Marina; Kairiyama, Eulogia

    2009-07-01

    The irradiation treatment of fresh fruits and vegetables for phytosanitary purposes is a satisfactory alternative method to others like fumigation and cold and hot treatments. Its use is increasing in several countries, and at present its approval is under revision by the National Regulatory Authorities. To verify the control process, apart from irradiation and dosimetry certificates, National Authorities require complementary evidence to show the efficacy of this treatment, especially when the documentation is not clear. The irradiation of fresh fruits produces single and double fragmentation in the DNA molecule, which can be measured using the microgel electrophoresis of individual cell (comet assay). The purpose of this work was to evaluate if it is possible to identify the irradiated apples for phytosanitary purposes from the others that were not treated. The possibility to estimate the absorbed dose was also evaluated. The methodology was carried out on the cell suspension obtained from irradiated seed cells with incremental doses (100, 200 and 300 Gy). The irradiation treatment for phytosanitary purposes to avoid emergency of codling moth ( Cydia pomonella) is 200 Gy. The fragmentation produced in the irradiated samples was proportional with the incremental doses applied. These results show that with this methodology it can be determined if the apple was irradiated or not. This comet assay is a simple, economical and interesting method that can be used, in case of necessity, by the National Authorities.

  11. Effects of the insecticide phosmet on solitary bee foraging and nesting in orchards of Capitol Reef National Park, Utah.

    PubMed

    Alston, Diane G; Tepedino, Vincent J; Bradley, Brosi A; Toler, Trent R; Griswold, Terry L; Messinger, Susanna M

    2007-08-01

    Capitol Reef National Park, in southcentral Utah, contains 22 small orchards planted with antique fruit varieties by Mormon pioneers beginning over a century ago. The orchards continue to be managed in a pick-and-pay program, which includes spraying with phosmet to suppress codling moth (Cydia pomonella L.). The park is also home to a rich diversity of flowering plants, many of which are rare, bee-pollinated, and have populations within 1 km of the orchards. Over 3 yr, we studied the short-term effects of phosmet spraying on bee populations: (1) foraging on plants within the orchard understory and adjacent to it; and (2) nesting in, and at several distances from, the orchards. We recorded a rich bee fauna (47 taxa) in the orchards and on plants nearby. In 2 yr (2002 and 2004), we found no difference in the number of native bee visits to several species of plants flowering in and near to orchards immediately before and 1 d after spraying. Conversely, our nesting studies using the semidomesticated alfalfa leafcutting bee, Megachile rotundata (F.), showed strong significant declines in the number of adult males, nesting females, and progeny production subsequent to spraying at distances up to 160 m from sprayed orchards where the bees were presumably foraging. We showed that M. rotundata is negatively affected by phosmet spraying and suggest that caution should be exercised in its use in areas where bees are apt to forage. PMID:17716471

  12. Studies on the codling moth (Lepidoptera: Tortricidae) response to different codlemone release rates.

    PubMed

    Vacas, S; Miñarro, M; Bosch, M D; Primo, J; Navarro-Llopis, V

    2013-12-01

    The response of the codling moth (Cydia pomonella L. (Lepidoptera: Tortricidae)) to different emission values of its main pheromone component, 8E,10E-dodecadien-1-ol (codlemone), was investigated in three field trials conducted in plots without mating disruption treatments. Moth catches obtained in traps baited with pheromone dispensers were correlated with the corresponding codlemone release rates by multiple regression analysis. In a preliminary trial conducted in Lleida (NE Spain), a decreasing trend of captures was observed based on increasing pheromone levels. After this, the pheromone release profiles of the pheromone dispensers were studied, in parallel with the field trials, by residual codlemone extraction and gas chromatography quantification. In the trials carried out in Asturias (NW Spain), a correlation between trap catches and emission levels (within the range from 11 to 1,078 μg/d) was found and fitted a logarithmic model. Captures followed a decreasing linear trend in the range of emission rates from 11 to 134 μg/d. Given that release values comprised between 11 and 67 μg/d did not lead to significantly different catches in traps, this emission range could be considered to develop effective formulations for attraction purposes when mating disruption is not acting in the environment.

  13. Measuring local genetic variability in populations of codling moth (Lepidoptera: Tortricidae) across an unmanaged and commercial orchard interface.

    PubMed

    Fuentes-Contreras, Eduardo; Basoalto, Esteban; Franck, Pierre; Lavandero, Blas; Knight, Alan L; Ramírez, Claudio C

    2014-04-01

    The genetic structure of adult codling moth, Cydia pomonella (L.), populations was characterized both inside a managed apple, Malus domestica Borkdhausen, orchard and in surrounding unmanaged hosts and nonhost trees in central Chile during 2006-2007. Adult males were collected using an array of sex pheromone-baited traps. Five microsatellite genetic markers were used to study the population genetic structure across both spatial (1-100 ha) and temporal (generations within a season) gradients. Analysis of molecular variance (AMOVA) found a significant, but weak, association in both the spatial and temporal genetic structures. Discriminant analysis also found significant differentiation between the first and second generation for traps located either inside or outside the managed orchard. The Bayesian assignment test detected three genetic clusters during each of the two generations, which corresponded to different areas within the unmanaged and managed apple orchard interface. The lack of a strong spatial structure at a local scale was hypothesized to be because of active adult movement between the managed and unmanaged hosts and the asymmetry in the insecticide selection pressure inside and outside the managed habitats. These data highlight the importance of developing area-wide management programs that incorporate management tactics effective at the landscape level for successful codling moth control. PMID:24763103

  14. Landscape analysis of adult codling moth (Lepidoptera: Tortricidae) distribution and dispersal within typical agroecosystems dominated by apple production in central Chile.

    PubMed

    Basoalto, E; Miranda, M; Knight, A L; Fuentes-Contreras, E

    2010-10-01

    We analyzed the spatial distribution and dispersal of codling moth, Cydia pomonella (L.), adults within two heterogeneous agroecosystems typical of central Chile: commercial apple, Malus domestica Borkhausen, orchards surrounded by various unmanaged host plants. Both a geostatistical analysis of catches of adult males with a grid of sex pheromone-baited traps and an immunological self-marking technique combined with traps baited with a male and female attractant were used. The spatial analyses identified the key sources of moths within these diverse landscapes. Codling moth catches in traps were spatially associated within distances of ≈ 150-300 m. Similarly, the mean distance from the immunological self-marking plots within the commercial apple orchard to the traps that captured marked adults was 282 m. In contrast, the mean distance in the capture of marked moths from unmanaged self-marking plots to a commercial orchard was 828 m. These data suggest that the success of any future area-wide management programs for codling moth in Chilean pome fruit must include a component for managing or removing noncommercial hosts that surround orchards. This analysis also suggests that the selection pressure for resistance imposed by insecticide sprays within managed orchards is likely dampened by the influx of susceptible moths from unmanaged sites common in central Chile. PMID:22546434

  15. Organophosphate Resistance and its Main Mechanism in Populations of Codling Moth (Lepidoptera: Tortricidae) from Central Chile.

    PubMed

    Reyes, Maritza; Barros-Parada, Wilson; Ramírez, Claudio C; Fuentes-Contreras, Eduardo

    2015-02-01

    The codling moth, Cydia pomonella (L.), is the key pest of apple production worldwide. Insecticide resistance has been reported in all producing countries, based on five different mechanisms. Codling moth in Chile has resistance to azinphos-methyl and tebufenozide in post-diapausing larvae. However, there are no studies about the susceptibility of these populations to insecticides from other chemical groups. Therefore, the efficacy of azinphos-methyl, chlorpyrifos-ethyl, esfenvalerate, methoxyfenozide, tebufenozide, and thiacloprid on neonate and post-diapausing larvae from six field populations was investigated, and identified resistance mechanisms in this species were evaluated. Neonate larvae were susceptible to all insecticides studied, but post-diapausing larvae from four populations were resistant to chlorpyrifos, one of them was also resistant to azinphos-methyl, and another one was resistant to tebufenozide. The acetylcholinesterase insensitivity mutation was not detected, and the sodium channel knockdown resistance mutation was present in a low frequency in one population. Detoxifying enzymatic activity of glutathione S-transferases, esterases, and cytochrome P-450 monooxygenases in adults differed among populations, but chlorpyrifos resistance was associated only with a decreased esterase activity as shown by a significant negative correlation between chlorpyrifos mortality and esterase activity. PMID:26470131

  16. DNA diagnostics to identify internal feeders (Lepidoptera: Tortricidae) of pome fruits of quarantine importance.

    PubMed

    Barcenas, N M; Unruh, T R; Neven, L G

    2005-04-01

    A diagnostic polymerase chain reaction (PCR) method is presented for differentiating among the North American internal apple-feeding pests codling moth, Cydia pomonella (L.); oriental fruit moth, Grapholita molesta (Busck); lesser appleworm, Grapholita prunivora (Walsh); and cherry fruitworm, Grapholita packardi Zeller. An approximately 470-bp fragment of mitochondrial cytochrome oxidase subunit I (COI) was sequenced in three to six specimens of each species. Consistent and diagnostic differences were observed among the species in two regions of COI from which forward and reverse primers were designed to amplify a 112-116-bp segment of the gene. The primer sets were used to selectively amplify DNA from specimens of diverse geographic origin for each corresponding target species. Protocols were adapted for conventional and quantitative PCR, the latter being substantially faster. The method was validated as a decision-making tool for quarantine identifications for Mexico by representatives of their phytosanitary agency (Sanidad Vegetal). The method can facilitate identification of intercepted internal feeding Lepidoptera in apple and pear for many other importing nations.

  17. Organophosphate Resistance and its Main Mechanism in Populations of Codling Moth (Lepidoptera: Tortricidae) from Central Chile.

    PubMed

    Reyes, Maritza; Barros-Parada, Wilson; Ramírez, Claudio C; Fuentes-Contreras, Eduardo

    2015-02-01

    The codling moth, Cydia pomonella (L.), is the key pest of apple production worldwide. Insecticide resistance has been reported in all producing countries, based on five different mechanisms. Codling moth in Chile has resistance to azinphos-methyl and tebufenozide in post-diapausing larvae. However, there are no studies about the susceptibility of these populations to insecticides from other chemical groups. Therefore, the efficacy of azinphos-methyl, chlorpyrifos-ethyl, esfenvalerate, methoxyfenozide, tebufenozide, and thiacloprid on neonate and post-diapausing larvae from six field populations was investigated, and identified resistance mechanisms in this species were evaluated. Neonate larvae were susceptible to all insecticides studied, but post-diapausing larvae from four populations were resistant to chlorpyrifos, one of them was also resistant to azinphos-methyl, and another one was resistant to tebufenozide. The acetylcholinesterase insensitivity mutation was not detected, and the sodium channel knockdown resistance mutation was present in a low frequency in one population. Detoxifying enzymatic activity of glutathione S-transferases, esterases, and cytochrome P-450 monooxygenases in adults differed among populations, but chlorpyrifos resistance was associated only with a decreased esterase activity as shown by a significant negative correlation between chlorpyrifos mortality and esterase activity.

  18. Cost-benefit trade-offs of bird activity in apple orchards.

    PubMed

    Peisley, Rebecca K; Saunders, Manu E; Luck, Gary W

    2016-01-01

    Birds active in apple orchards in south-eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south-eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems.

  19. Measuring local genetic variability in populations of codling moth (Lepidoptera: Tortricidae) across an unmanaged and commercial orchard interface.

    PubMed

    Fuentes-Contreras, Eduardo; Basoalto, Esteban; Franck, Pierre; Lavandero, Blas; Knight, Alan L; Ramírez, Claudio C

    2014-04-01

    The genetic structure of adult codling moth, Cydia pomonella (L.), populations was characterized both inside a managed apple, Malus domestica Borkdhausen, orchard and in surrounding unmanaged hosts and nonhost trees in central Chile during 2006-2007. Adult males were collected using an array of sex pheromone-baited traps. Five microsatellite genetic markers were used to study the population genetic structure across both spatial (1-100 ha) and temporal (generations within a season) gradients. Analysis of molecular variance (AMOVA) found a significant, but weak, association in both the spatial and temporal genetic structures. Discriminant analysis also found significant differentiation between the first and second generation for traps located either inside or outside the managed orchard. The Bayesian assignment test detected three genetic clusters during each of the two generations, which corresponded to different areas within the unmanaged and managed apple orchard interface. The lack of a strong spatial structure at a local scale was hypothesized to be because of active adult movement between the managed and unmanaged hosts and the asymmetry in the insecticide selection pressure inside and outside the managed habitats. These data highlight the importance of developing area-wide management programs that incorporate management tactics effective at the landscape level for successful codling moth control.

  20. Effects of the insecticide phosmet on solitary bee foraging and nesting in orchards of Capitol Reef National Park, Utah.

    PubMed

    Alston, Diane G; Tepedino, Vincent J; Bradley, Brosi A; Toler, Trent R; Griswold, Terry L; Messinger, Susanna M

    2007-08-01

    Capitol Reef National Park, in southcentral Utah, contains 22 small orchards planted with antique fruit varieties by Mormon pioneers beginning over a century ago. The orchards continue to be managed in a pick-and-pay program, which includes spraying with phosmet to suppress codling moth (Cydia pomonella L.). The park is also home to a rich diversity of flowering plants, many of which are rare, bee-pollinated, and have populations within 1 km of the orchards. Over 3 yr, we studied the short-term effects of phosmet spraying on bee populations: (1) foraging on plants within the orchard understory and adjacent to it; and (2) nesting in, and at several distances from, the orchards. We recorded a rich bee fauna (47 taxa) in the orchards and on plants nearby. In 2 yr (2002 and 2004), we found no difference in the number of native bee visits to several species of plants flowering in and near to orchards immediately before and 1 d after spraying. Conversely, our nesting studies using the semidomesticated alfalfa leafcutting bee, Megachile rotundata (F.), showed strong significant declines in the number of adult males, nesting females, and progeny production subsequent to spraying at distances up to 160 m from sprayed orchards where the bees were presumably foraging. We showed that M. rotundata is negatively affected by phosmet spraying and suggest that caution should be exercised in its use in areas where bees are apt to forage.

  1. Neural coding merges sex and habitat chemosensory signals in an insect herbivore

    PubMed Central

    Trona, Federica; Anfora, Gianfranco; Balkenius, Anna; Bengtsson, Marie; Tasin, Marco; Knight, Alan; Janz, Niklas; Witzgall, Peter; Ignell, Rickard

    2013-01-01

    Understanding the processing of odour mixtures is a focus in olfaction research. Through a neuroethological approach, we demonstrate that different odour types, sex and habitat cues are coded together in an insect herbivore. Stronger flight attraction of codling moth males, Cydia pomonella, to blends of female sex pheromone and plant odour, compared with single compounds, was corroborated by functional imaging of the olfactory centres in the insect brain, the antennal lobes (ALs). The macroglomerular complex (MGC) in the AL, which is dedicated to pheromone perception, showed an enhanced response to blends of pheromone and plant signals, whereas the response in glomeruli surrounding the MGC was suppressed. Intracellular recordings from AL projection neurons that transmit odour information to higher brain centres, confirmed this synergistic interaction in the MGC. These findings underscore that, in nature, sex pheromone and plant odours are perceived as an ensemble. That mating and habitat cues are coded as blends in the MGC of the AL highlights the dual role of plant signals in habitat selection and in premating sexual communication. It suggests that the MGC is a common target for sexual and natural selection in moths, facilitating ecological speciation. PMID:23595270

  2. Regulatory Innovation, Mating Disruption and 4-Play(TM) in New Zealand.

    PubMed

    Suckling, David Maxwell; El-Sayed, Ashraf M; Walker, James T S

    2016-07-01

    Straight-chained lepidopteran pheromones are now regulated under a group standard in New Zealand, which is generic for moth pheromone products of similar low risk, under the Hazardous Substances and New Organisms Act (1996). This means that compliant new pheromone products can be developed and commercialized with low regulatory requirements. This encourages innovation and supports fruit industries interested in meeting export phytosanitary standards, while targeting low or nil residues of pesticides. Changes to pheromone blends for reasons such as technical improvements or variations in pest species composition in different crops can be made with minimal regulatory involvement. We illustrate how this system now operates with a four species mating disruption product commercialized in 2012. The odors involved in "4-Play™" consist of a range of components used by codling moth (Cydia pomonella), lightbrown apple moth (Epiphyas postvittana), green-headed leafroller (Planotortrix octo), and brown-headed leafroller (Ctenopseustis obliquana). The development of 4-Play™ illustrates how mating disruption of insects can support industry goals. PMID:27394720

  3. Potential of mass trapping for long-term pest management and eradication of invasive species.

    PubMed

    El-Sayed, A M; Suckling, D M; Wearing, C H; Byers, J A

    2006-10-01

    Semiochemical-based pest management programs comprise three major approaches that are being used to provide environmentally friendly control methods of insect pests: mass trapping, "lure and kill," and mating disruption. In this article, we review the potential of mass trapping in long-term pest management as well as in the eradication of invasive species. We discuss similarities and differences between mass trapping and other two main approaches of semiochemical-based pest management programs. We highlight several study cases where mass trapping has been used either in long-term pest management [e.g., codling moth, Cydia pomonella (L.); pink bollworm, Pectinophora gossypiella (Saunders); bark beetles, palm weevils, corn rootworms (Diabrotica spp.); and fruit flies] or in eradication of invasive species [e.g., gypsy moth, Lymantria dispar (L.); and boll weevil, Anthonomus grandis grandis Boheman). We list the critical issues that affect the efficacy of mass trapping and compare these with previously published models developed to investigate mass trapping efficacy in pest control. We conclude that mass trapping has good potential to suppress or eradicate low-density, isolated pest populations; however, its full potential in pest management has not been adequately realized and therefore encourages further research and development of this technology. PMID:17066782

  4. Population genetic structure of economically important Tortricidae (Lepidoptera) in South Africa: a comparative analysis.

    PubMed

    Timm, A E; Geertsema, H; Warnich, L

    2010-08-01

    Comparative studies of the population genetic structures of agricultural pests can elucidate the factors by which their population levels are affected, which is useful for designing pest management programs. This approach was used to provide insight into the six Tortricidae of major economic importance in South Africa. The population genetic structure of the carnation worm E. acerbella and the false codling moth T. leucotreta, analyzed using amplified fragment length polymorphism (AFLP) analysis, is presented here for the first time. These results were compared with those obtained previously for the codling moth Cydia pomonella, the oriental fruit moth Grapholita molesta, the litchi moth Cryptophlebia peltastica and the macadamia nut borer T. batrachopa. Locally adapted populations were detected over local geographic areas for all species. No significant differences were found among population genetic structures as result of population history (whether native or introduced) although host range (whether oligophagous or polyphagous) had a small but significant effect. It is concluded that factors such as dispersal ability and agricultural practices have the most important effects on genetically structuring populations of the economically important Tortricidae in South Africa. PMID:19941674

  5. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the Northwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization could be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine...

  6. Effect of temperature on long-term storage of codling moth granulovirus formulations.

    PubMed

    Lacey, Lawrence A; Headrick, Heather L; Arthurs, Steven P

    2008-04-01

    Codling moth, Cydia pomonella (L.), is the major pest of apple (Malus spp.) in the western United States and many other regions of the world. The codling moth granulovirus (CpGV) provides a selective and safe means of its control. We assessed the long-term stability and storage potential of two commercial formulations of CpGV, Cyd-X, and Virosoft. All assays were performed with individual C. pomonella neonate larvae in 2-ml vials on 1 ml of artificial larval diet that was surface inoculated with 10 microl of the test virus suspension. Baseline quantitative assays for the two formulations revealed that the LC50 and LC95 values (occlusion bodies per vial) did not differ significantly between the formulations. For year-long studies on Cyd-X stability, the product was stored at -20, 2, 25, and 35 degrees C, and quantitative bioassays were conducted after 0, 3, 6, and 12 mo of storage. Cyd-X retained good larvicidal activity from -20 to 25 degrees C, and it was the least negatively affected at the lowest temperature. Storage of Cyd-X at 35 degrees C was detrimental to its larvicidal activity within 3 mo of storage. For longer term storage studies, Cyd-X and Virosoft formulations were stored at 2, 25, and 35 degrees C, and assayed for larvicidal activity over a 3-yr period. For recently produced product, a 10-microl sample of a 10(-5) dilution of both formulations resulted in 95-100% mortality in neonate larvae. Larvicidal activity for the Cyd-X formulation remained essentially unaffected for 156 wk when stored at 2 and 25 degrees C, but it began to decline significantly after 20 wk of storage at 35 degrees C. The Virosoft formulation stored at 2 degrees C also remained active throughout the 3-yr study, but it began to decline in larvicidal activity after 144 wk at 25 degrees C and 40 wk at 35 degrees C. The information reported in this study should be useful to growers and commercial suppliers for avoiding decreases in CpGV potency due to improper storage conditions.

  7. Decriptions of new Tortricidae (Lepidoptera) reared from native fruit in Kenya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new genera (Concinocordis and Crotalaria) and 13 new species (Eugnosta kenyana, Eugnosta kereitana, Crotalaria crotalariae, Concinocordis wilsonarum, Anthozela psychotriae, Cosmetra podocarpivora, Cosmetra taitana, Gypsonoma scolopiae, Thaumatotibia salaciae, Cydia connara, Cydia sennae, Stenent...

  8. Improving the Performance of the Granulosis Virus of Codling Moth (Lepidoptera: Tortricidae) by Adding the Yeast Saccharomyces cerevisiae with Sugar.

    PubMed

    Knight, Alan L; Basoalto, Esteban; Witzgall, Peter

    2015-04-01

    Studies were conducted with the codling moth granulosis virus (CpGV) to evaluate whether adding the yeast Saccharomyces cerevisiae Meyen ex E. C. Hansen with brown cane sugar could improve larval control of Cydia pomonella (L.). Larval mortalities in dipped-apple bioassays with S. cerevisiae or sugar alone were not significantly different from the water control. The addition of S. cerevisiae but not sugar with CpGV significantly increased larval mortality compared with CpGV alone. The combination of S. cerevisiae and sugar with CpGV significantly increased larval mortality compared with CpGV plus either additive alone. The addition of S. cerevisiae improved the efficacy of CpGV similarly to the use of the yeast Metschnikowia pulcherrima (isolated from field-collected larvae). The proportion of uninjured fruit in field trials was significantly increased with the addition of S. cerevisiae and sugar to CpGV compared with CpGV alone only in year 1, and from the controls in both years. In comparison, larval mortality was significantly increased in both years with the addition of S. cerevisiae and sugar with CpGV compared with CpGV alone or from the controls. The numbers of overwintering larvae on trees was significantly reduced from the control following a seasonal program of CpGV plus S. cerevisiae and sugar. The addition of a microencapsulated formulation of pear ester did not improve the performance of CpGV or CpGV plus S. cerevisiae and sugar. These data suggest that yeasts can enhance the effectiveness of the biological control agent CpGV, in managing and maintaining codling moth at low densities.

  9. Population Dynamics and Flight Phenology Model of Codling Moth Differ between Commercial and Abandoned Apple Orchard Ecosystems

    PubMed Central

    Joshi, Neelendra K.; Rajotte, Edwin G.; Naithani, Kusum J.; Krawczyk, Greg; Hull, Larry A.

    2016-01-01

    Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae), which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight, and egg-hatch) allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator) that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth) models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e., PETE model). In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology. PMID:27713702

  10. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38.

    PubMed

    Gebhardt, Manuela M; Eberle, Karolin E; Radtke, Pit; Jehle, Johannes A

    2014-11-01

    The baculovirus Cydia pomonella granulovirus (CpGV) is widely applied as a biocontrol agent of codling moth. After field resistance of codling moth populations had been observed against the commercially used Mexican (M) isolate of CpGV, infection experiments of larvae of the resistant codling moth strain CpRR1 showed that several other naturally occurring CpGV isolates (I12, S, E2, and I07) from different geographic origins are still infectious to resistant CpRR1. Whole-genome sequencing and phylogenetic analyses of these geographic CpGV variants revealed that their genomes share only a single common difference from that of CpGV-M, which is a mutation coding for a repeat of 24 nucleotides within the gene pe38; this mutation results in an additional repeat of eight amino acids that appears to be inserted to PE38 of CpGV-M only. Deletion of pe38 from CpGV-M totally abolished virus infection in codling moth cells and larvae, demonstrating that it is an essential gene. When the CpGV-M deletion mutant was repaired with pe38 from isolate CpGV-S, which originated from the commercial product Virosoft and is infectious for the resistant codling moth strain CpRR1, the repaired CpGV-M mutant was found to be fully infectious for CpRR1. Repair using pe38 from CpGV-M restored infectivity for the virus in sensitive codling moth strains, but not in CpRR1. Therefore, we conclude that CpGV resistance of codling moth is directed to CpGV-M but not to other virus isolates. The viral gene pe38 is not only essential for the infectivity of CpGV but it is also the key factor in overcoming CpGV resistance in codling moth.

  11. Life stage toxicity and residual activity of insecticides to codling moth and oriental fruit moth (Lepidoptera: Tortricidae).

    PubMed

    Magalhaes, Leonardo C; Walgenbach, James F

    2011-12-01

    The codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are two key pests of apple (Malus domestica Borkh.) in North Carolina. Growers extensively relied on organophosphate insecticides, primarily azinphosmethyl, for > 40 yr to manage these pests. Because of organophosphate resistance development and regulatory actions, growers are transitioning to management programs that use new, reduced-risk, and OP-replacement insecticides. This study evaluated the toxicity of a diversity of replacement insecticides to eggs, larvae, and adults, as well as an assessment of their residual activity, to codling moth and oriental fruit moth. Laboratory-susceptible strains of both species were used for all bioassays. Fresh field-harvested apples were used as a media for assessing the ovicidal activity of insecticides. For larval studies, insecticides were topically applied to the surface of lima bean-based diet, onto which neonates were placed. Toxicity was based on two measures of mortality; 5-d mortality and development to adult stage. Ovicidal bioassays showed that oriental fruit moth eggs were generally more tolerant than codling moth eggs to insecticides, with novaluron, acetamiprid, and azinphoshmethyl having the highest levels of toxicity to eggs of both species. In contrast, codling moth larvae generally were more tolerant than oriental fruit moth to most insecticides. Methoxyfenozide and pyriproxyfen were the only insecticides with lower LC50 values against codling moth than oriental fruit moth neonates. Moreover, a number of insecticides, particularly the IGRs methoxyfenozide and novaluron, the anthranilic diamide chlorantriliprole, and the spinosyn spinetoram, provided equal or longer residual activity against codling moth compared with azinphosmethyl in field studies. Results are discussed in relation to their use in devising field use patterns of insecticides and for insecticide resistance monitoring programs.

  12. Oviposition Site Selection of the Codling Moth (Lepidoptera: Tortricidae) and its Consequences for Egg and Neonate Performance.

    PubMed

    Wei, Jing; Xu, Jing; Zhang, Runzhi

    2015-08-01

    The codling moth Cydia pomonella (L.) is a worldwide pest of pome fruit. A better understanding of oviposition site selection by this insect would help management of this pest in orchards. Oviposition site selection of codling moth was assessed by manipulative experiments and field survey. In addition, the temperatures of different sites were recorded. Neonate infestation and egg hatching were tested to evaluate the consequences of oviposition site selection. The percentage of eggs laid on the shady side of apple clusters was significantly higher than on the sunny side. How.ever, this was not influenced by leaf surface turning. Percentage of eggs on upper and lower leaf surfaces was significantly influenced by leaf surface turning. Percentage of eggs on the lower leaf surface was significantly higher than turned lower leaf surface (∼41.1% higher) and significantly higher (∼35.5%) on the turned upper leaf surface on than upper leaf surfaces. There was no significant difference in neonate infestation between leaves and fruit, as well as between the upper and lower leaf surfaces. Number of eggs hatching on the shady side of clusters was significantly higher than on the sunny side (56.3% higher). In both the manipulative experiment and field survey, codling moths did not choose the sites with the highest mean temperature, but chose sites suitable for egg development and hatching. This indicates that in the field codling moth, oviposition site selection is not strictly thermophilous, but they look for the lower leaf surface on the shady side, which benefits the offspring.

  13. Behavior of codling moth (Lepidoptera: Tortricidae) neonate larvae on surfaces treated with microencapsulated pear ester.

    PubMed

    Light, Douglas M; Beck, John J

    2012-06-01

    Codling moth, Cydia pomonella (L.), larvae cause severe internal feeding damage to apples, pears, and walnuts worldwide. Research has demonstrated that codling moth neonate first instar larvae are attracted to a pear-derived kairomone, ethyl (2E,4Z)-2,4-decadienoate, the pear ester (PE). Reported here are the behavioral activities of neonate codling moth larvae to microencapsulated pear ester (MEC-PE) applied in aqueous solutions to both filter paper and apple leaf surfaces that were evaluated over a period of up to 20 d of aging. In dual-choice tests the MEC-PE treatment elicited attraction to and longer time spent on treated zones of filter papers relative to water-treated control zones for up to 14 d of aging. A higher concentration of MEC-PE caused no preferential response to the treated zone for the first 5 d of aging followed by significant responses through day 20 of aging, suggesting sensory adaptation as an initial concentration factor. Estimated emission levels of PE from treated filter papers were experimentally calculated for the observed behavioral thresholds evident over the aging period. When applied to apple leaves, MEC-PE changed neonate walking behavior by eliciting more frequent and longer time periods of arrestment and affected their ability to find the leaf base and stem or petiole. Effects of MEC-PE on extended walking time and arrestment by codling moth larvae would increase temporal and spatial exposure of neonates while on leaves; thereby potentially disrupting fruit or nut finding and enhancing mortality by increasing the exposure to insecticides, predation, and abiotic factors.

  14. Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy.

    PubMed

    Ioriatti, Claudio; Lucchi, Andrea

    2016-07-01

    - This review summarizes work done in Italy in taking semiochemical-based management of orchard and vineyard pests from the research and development stage to successful commercial deployment. Mating disruption (MD) of codling moth Cydia pomonella (CM) was originally introduced into the Trentino-South Tyrol areas to address the development of CM resistance to insecticides, particularly insect growth regulators (IGRs), and to mitigate the conflict at the rural/urban interface related to the extensive use of insecticides. Although the mountainous terrain of the area was not optimal for the efficacy of MD, commitment and determination led to the rapid adoption of MD technology throughout the region. Grower cooperatives and their field consultants were strongly influential in convincing growers to accept MD technology. Public research institutions conducted extensive research and education, and provided credible assessments of various MD technologies. By 2016, the deployment of MD in effective area-wide strategies in apple (22,100 ha) and grapes (10,450 ha), has resulted in better control of tortricid moth pests and a substantial decrease in insecticide use. Collaboration between the research community and the pheromone industry has resulted in the development of increasingly effective single-species dispensers, as well as multi-species dispensers for the control of both target and secondary pests. Over the last 20 years, hand-applied reservoir dispensers have shown excellent efficacy in both apple and grapes. Recently, aerosol dispensing systems have been shown to be effective in apple orchards. Further research is needed on the efficacy of aerosols in vineyards before the technology can be widely adopted. The successful implementation of MD in apple and grape production in Trentino-South Tyrol is expediting adoption of the technology in other Italian fruit production regions. PMID:27417503

  15. Improving the Performance of the Granulosis Virus of Codling Moth (Lepidoptera: Tortricidae) by Adding the Yeast Saccharomyces cerevisiae with Sugar.

    PubMed

    Knight, Alan L; Basoalto, Esteban; Witzgall, Peter

    2015-04-01

    Studies were conducted with the codling moth granulosis virus (CpGV) to evaluate whether adding the yeast Saccharomyces cerevisiae Meyen ex E. C. Hansen with brown cane sugar could improve larval control of Cydia pomonella (L.). Larval mortalities in dipped-apple bioassays with S. cerevisiae or sugar alone were not significantly different from the water control. The addition of S. cerevisiae but not sugar with CpGV significantly increased larval mortality compared with CpGV alone. The combination of S. cerevisiae and sugar with CpGV significantly increased larval mortality compared with CpGV plus either additive alone. The addition of S. cerevisiae improved the efficacy of CpGV similarly to the use of the yeast Metschnikowia pulcherrima (isolated from field-collected larvae). The proportion of uninjured fruit in field trials was significantly increased with the addition of S. cerevisiae and sugar to CpGV compared with CpGV alone only in year 1, and from the controls in both years. In comparison, larval mortality was significantly increased in both years with the addition of S. cerevisiae and sugar with CpGV compared with CpGV alone or from the controls. The numbers of overwintering larvae on trees was significantly reduced from the control following a seasonal program of CpGV plus S. cerevisiae and sugar. The addition of a microencapsulated formulation of pear ester did not improve the performance of CpGV or CpGV plus S. cerevisiae and sugar. These data suggest that yeasts can enhance the effectiveness of the biological control agent CpGV, in managing and maintaining codling moth at low densities. PMID:26313179

  16. Use of glacial acetic acid to enhance bisexual monitoring of tortricid pests with kairomone lures in pome fruits.

    PubMed

    Knight, A L; Hilton, R; Basoalto, E; Stelinski, L L

    2014-12-01

    Studies were conducted to assess glacial acetic acid (GAA) with various host plant volatiles (HPVs) and the sex pheromone, (E,E)-8, 10-dodecadien-1-ol, of codling moth, Cydia pomonella (L), as lures in traps for tortricid pests that often co-occur in tree fruits in the western United States. In addition to codling moth, field trapping studies were conducted with oriental fruit moth, Grapholita molesta (Busck), obliquebanded leafroller Choristoneura rosaceana (Harris), the leafroller Pandemis pyrusana Kearfott, and the eyespotted budmoth, Spilonota ocellana (Denis and Schiffermüller). HPVs included ethyl (E,Z)-2,4-decadienoate (pear ester), (E)-4,8-dimethyl-1,3,7-nonatriene, butyl hexanoate, (E)-β-ocimene, (E)-β-farnesene, and farnesol. Three types of GAA co-lures differing in a 10-fold range in weekly evaporation rates were tested. The evaporation rate of GAA co-lures was an important factor affecting moth catches. The highest rate tested captured fewer codling moth but more leafrollers and eyespotted budmoth. GAA co-lures caught both sexes of each species. The field life of butyl hexanoate and (E)-β-ocimene lures were much shorter than pear ester or sex pheromone lures. Adding GAA to pear ester or to (E)-β-ocimene significantly increased the catches of only codling moth or oriental fruit moth, respectively. Combining pear ester or (E)-β-ocimene with GAA did not affect the catch of either species compared with the single more attractive HPV. Adding HPVs to GAA did not increase the catches of either leafroller species or eyespotted budmoth. Traps baited with pear ester, sex pheromone, and GAA for monitoring codling moth were also effective in classifying pest pressure of both leafroller species within orchards.

  17. Genetic inferences about the population dynamics of codling moth females at a local scale.

    PubMed

    Franck, P; Ricci, B; Klein, E K; Olivares, J; Simon, S; Cornuet, J-M; Lavigne, C

    2011-07-01

    Estimation of demographic parameters is important for understanding the functioning of natural populations and the underlying ecological and evolutionary processes that may impact their dynamics. Here, we used sibship assignment methods to shed light on the local dynamics of codling moth females in eight orchards in a 90-ha domain near Valence, France. Based on full-sib inference among 1,063 genotyped moths, we estimated (1) the effective number of females that had offspring, (2) their fertility and (3) the distribution of their oviposition sites within and among orchards. The average number of females in all the orchards increased between the first (~130) and the second (~235) annual generations. The average fertilities of the females were similar at each generation according to the host plant considered (apple, pear, or walnut), but differed between commercial (~10) and non-treated (~25) apple orchards. Females mainly clustered their eggs on contiguous trees along orchard borders, but they also occasionally dispersed their eggs among different orchards independently of the cultivated host plants or the inter-orchard distances (up to 698 m) during the second annual generation. The mean distance between two oviposition sites was 30 m. Sibship estimates of both the effective number of females and the inter-orchard migration rates (~5%) were in agreement with the observed genetic differentiation among the eight orchards (0.006 < F ( st ) < 0.013). These results confirm and extend previous field and laboratory observations in Cydia pomonella, and they demonstrate that sibship assignments based on genetic data are an interesting alternative to mark-release-recapture methods for inferring insect population dynamics.

  18. Chromosomal Evolution in Tortricid Moths: Conserved Karyotypes with Diverged Features

    PubMed Central

    Šíchová, Jindra; Nguyen, Petr; Dalíková, Martina; Marec, František

    2013-01-01

    Moths of the family Tortricidae constitute one of the major microlepidopteran groups in terms of species richness and economic importance. Yet, despite their overall significance, our knowledge of their genome organization is very limited. In order to understand karyotype evolution in the family Tortricidae, we performed detailed cytogenetic analysis of Grapholita molesta, G. funebrana, Lobesia botrana, and Eupoecilia ambiguella, representatives of two main tortricid subfamilies, Olethreutinae and Tortricinae. Besides standard cytogenetic methods, we used fluorescence in situ hybridization for mapping of major rRNA and histone gene clusters and comparative genomic hybridization to determine the level of molecular differentiation of the W and Z sex chromosomes. Our results in combination with available data in the codling moth, Cydia pomonella, and other tortricids allow us a comprehensive reconstruction of chromosomal evolution across the family Tortricidae. The emerging picture is that the karyotype of a common ancestor of Tortricinae and Olethreutinae differentiated from the ancestral lepidopteran chromosome print of n = 31 by a sex chromosome-autosome fusion. This rearrangement resulted in a large neo-sex chromosome pair and a karyotype with n = 30 conserved in most Tortricinae species, which was further reduced to n = 28 observed in Olethreutinae. Comparison of the tortricid neo-W chromosomes showed differences in their structure and composition presumably reflecting stochasticity of molecular degeneration of the autosomal part of the neo-W chromosome. Our analysis also revealed conservative pattern of the histone distribution, which is in contrast with high rDNA mobility. Despite the dynamic evolution of rDNA, we can infer a single NOR-chromosome pair as an ancestral state not only in tortricids but probably in all Lepidoptera. The results greatly expand our knowledge of the genome architecture in tortricids, but also contribute to the

  19. Effect of Over-Tree Evaporative Cooling in Orchards on Microclimate and Accuracy of Insect Model Predictions.

    PubMed

    Chambers, Ute; Jones, Vincent P

    2015-12-01

    Orchard design and management practices can alter microclimate and, thus, potentially affect insect development. If sufficiently large, these deviations in microclimate can compromise the accuracy of phenology model predictions used in integrated pest management (IPM) programs. Sunburn causes considerable damage in the Pacific Northwest, United States, apple-producing region. Common prevention strategies include the use of fruit surface protectants, evaporative cooling (EC), or both. This study focused on the effect of EC on ambient temperatures and model predictions for four insects (codling moth, Cydia pomonella L.; Lacanobia fruitworm, Lacanobia subjuncta Grote and Robinson; oblique-banded leafroller, Choristoneura rosaceana Harris; and Pandemis leafroller, Pandemis pyrusana Kearfott). Over-tree EC was applied in July and August when daily maximum temperatures were predicted to be ≥30°C between 1200-1700 hours (15/15 min on/off interval) in 2011 and between 1200-1800 hours (15/10 min on/off interval, or continuous on) in 2012. Control plots were sprayed once with kaolin clay in early July. During interval and continuous cooling, over-tree cooling reduced average afternoon temperatures compared with the kaolin treatment by 2.1-3.2°C. Compared with kaolin-treated controls, codling moth and Lacanobia fruitworm egg hatch in EC plots was predicted to occur up to 2 d and 1 d late, respectively. The presence of fourth-instar oblique-banded leafroller and Pandemis leafroller was predicted to occur up to 2 d and 1 d earlier in EC plots, respectively. These differences in model predictions were negligible, suggesting that no adjustments in pest management timing are needed when using EC in high-density apple orchards. PMID:26331306

  20. Effect of Over-Tree Evaporative Cooling in Orchards on Microclimate and Accuracy of Insect Model Predictions.

    PubMed

    Chambers, Ute; Jones, Vincent P

    2015-12-01

    Orchard design and management practices can alter microclimate and, thus, potentially affect insect development. If sufficiently large, these deviations in microclimate can compromise the accuracy of phenology model predictions used in integrated pest management (IPM) programs. Sunburn causes considerable damage in the Pacific Northwest, United States, apple-producing region. Common prevention strategies include the use of fruit surface protectants, evaporative cooling (EC), or both. This study focused on the effect of EC on ambient temperatures and model predictions for four insects (codling moth, Cydia pomonella L.; Lacanobia fruitworm, Lacanobia subjuncta Grote and Robinson; oblique-banded leafroller, Choristoneura rosaceana Harris; and Pandemis leafroller, Pandemis pyrusana Kearfott). Over-tree EC was applied in July and August when daily maximum temperatures were predicted to be ≥30°C between 1200-1700 hours (15/15 min on/off interval) in 2011 and between 1200-1800 hours (15/10 min on/off interval, or continuous on) in 2012. Control plots were sprayed once with kaolin clay in early July. During interval and continuous cooling, over-tree cooling reduced average afternoon temperatures compared with the kaolin treatment by 2.1-3.2°C. Compared with kaolin-treated controls, codling moth and Lacanobia fruitworm egg hatch in EC plots was predicted to occur up to 2 d and 1 d late, respectively. The presence of fourth-instar oblique-banded leafroller and Pandemis leafroller was predicted to occur up to 2 d and 1 d earlier in EC plots, respectively. These differences in model predictions were negligible, suggesting that no adjustments in pest management timing are needed when using EC in high-density apple orchards.

  1. Genetic inferences about the population dynamics of codling moth females at a local scale.

    PubMed

    Franck, P; Ricci, B; Klein, E K; Olivares, J; Simon, S; Cornuet, J-M; Lavigne, C

    2011-07-01

    Estimation of demographic parameters is important for understanding the functioning of natural populations and the underlying ecological and evolutionary processes that may impact their dynamics. Here, we used sibship assignment methods to shed light on the local dynamics of codling moth females in eight orchards in a 90-ha domain near Valence, France. Based on full-sib inference among 1,063 genotyped moths, we estimated (1) the effective number of females that had offspring, (2) their fertility and (3) the distribution of their oviposition sites within and among orchards. The average number of females in all the orchards increased between the first (~130) and the second (~235) annual generations. The average fertilities of the females were similar at each generation according to the host plant considered (apple, pear, or walnut), but differed between commercial (~10) and non-treated (~25) apple orchards. Females mainly clustered their eggs on contiguous trees along orchard borders, but they also occasionally dispersed their eggs among different orchards independently of the cultivated host plants or the inter-orchard distances (up to 698 m) during the second annual generation. The mean distance between two oviposition sites was 30 m. Sibship estimates of both the effective number of females and the inter-orchard migration rates (~5%) were in agreement with the observed genetic differentiation among the eight orchards (0.006 < F ( st ) < 0.013). These results confirm and extend previous field and laboratory observations in Cydia pomonella, and they demonstrate that sibship assignments based on genetic data are an interesting alternative to mark-release-recapture methods for inferring insect population dynamics. PMID:21786027

  2. Influence of within-orchard trap placement on catch of codling moth (Lepidoptera: Tortricidae) in sex pheromone-treated orchards.

    PubMed

    Knight, A L

    2007-04-01

    The influence of trap placement on catches of codling moth, Cydia pomonella L., was examined in a series of studies conducted in orchards treated with Isomate-C Plus sex pheromone dispensers. Mark-recapture tests with sterilized moths released along the interface of pairs of treated and untreated apple and pear plots found that significantly more male but not female moths were recaptured on interception traps placed in the treated plots. In a second test, significantly higher numbers of wild male and female moths were caught on interception traps placed in treated versus untreated plots within a heavily infested orchard. The highest numbers of male moths were caught on traps placed along the interior edge of the treated plots. Trap position had no influence on the captures of female moths. In a third test, north-south transects of sex pheromone-baited traps were placed through adjacent treated and untreated plots that received a uniform release of sterilized moths. Traps on the upwind edge of the treated plots caught similar numbers of moths as traps upwind from the treated plots. Moth catch was significantly reduced at all other locations inside versus outside of the treated plots, including traps placed on the downwind edge of the treated plot. In a fourth test, five apple orchards were monitored with groups of sex pheromone-baited traps placed either on the border or at three distances inside the orchards. The highest moth counts were in traps placed at the border, and the lowest moth counts were in traps placed 30 and 50 m from the border. In a fifth test, the proportion of traps failing to catch any moths despite the occurrence of local fruit injury was significantly higher in traps placed 50 versus 25 m from the border. The implications provided by these data for designing an effective monitoring program for codling moth in sex pheromone-treated orchards are discussed.

  3. Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy.

    PubMed

    Ioriatti, Claudio; Lucchi, Andrea

    2016-07-01

    - This review summarizes work done in Italy in taking semiochemical-based management of orchard and vineyard pests from the research and development stage to successful commercial deployment. Mating disruption (MD) of codling moth Cydia pomonella (CM) was originally introduced into the Trentino-South Tyrol areas to address the development of CM resistance to insecticides, particularly insect growth regulators (IGRs), and to mitigate the conflict at the rural/urban interface related to the extensive use of insecticides. Although the mountainous terrain of the area was not optimal for the efficacy of MD, commitment and determination led to the rapid adoption of MD technology throughout the region. Grower cooperatives and their field consultants were strongly influential in convincing growers to accept MD technology. Public research institutions conducted extensive research and education, and provided credible assessments of various MD technologies. By 2016, the deployment of MD in effective area-wide strategies in apple (22,100 ha) and grapes (10,450 ha), has resulted in better control of tortricid moth pests and a substantial decrease in insecticide use. Collaboration between the research community and the pheromone industry has resulted in the development of increasingly effective single-species dispensers, as well as multi-species dispensers for the control of both target and secondary pests. Over the last 20 years, hand-applied reservoir dispensers have shown excellent efficacy in both apple and grapes. Recently, aerosol dispensing systems have been shown to be effective in apple orchards. Further research is needed on the efficacy of aerosols in vineyards before the technology can be widely adopted. The successful implementation of MD in apple and grape production in Trentino-South Tyrol is expediting adoption of the technology in other Italian fruit production regions.

  4. Baculovirus resistance in codling moth is virus isolate-dependent and the consequence of a mutation in viral gene pe38

    PubMed Central

    Gebhardt, Manuela M.; Eberle, Karolin E.; Radtke, Pit; Jehle, Johannes A.

    2014-01-01

    The baculovirus Cydia pomonella granulovirus (CpGV) is widely applied as a biocontrol agent of codling moth. After field resistance of codling moth populations had been observed against the commercially used Mexican (M) isolate of CpGV, infection experiments of larvae of the resistant codling moth strain CpRR1 showed that several other naturally occurring CpGV isolates (I12, S, E2, and I07) from different geographic origins are still infectious to resistant CpRR1. Whole-genome sequencing and phylogenetic analyses of these geographic CpGV variants revealed that their genomes share only a single common difference from that of CpGV-M, which is a mutation coding for a repeat of 24 nucleotides within the gene pe38; this mutation results in an additional repeat of eight amino acids that appears to be inserted to PE38 of CpGV-M only. Deletion of pe38 from CpGV-M totally abolished virus infection in codling moth cells and larvae, demonstrating that it is an essential gene. When the CpGV-M deletion mutant was repaired with pe38 from isolate CpGV-S, which originated from the commercial product Virosoft and is infectious for the resistant codling moth strain CpRR1, the repaired CpGV-M mutant was found to be fully infectious for CpRR1. Repair using pe38 from CpGV-M restored infectivity for the virus in sensitive codling moth strains, but not in CpRR1. Therefore, we conclude that CpGV resistance of codling moth is directed to CpGV-M but not to other virus isolates. The viral gene pe38 is not only essential for the infectivity of CpGV but it is also the key factor in overcoming CpGV resistance in codling moth. PMID:25331863

  5. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  6. 7 CFR 319.56-22 - Apples and pears from certain countries in Europe.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... leaf blister moth (Leucoptera malifoliella (O.G. Costa) (Lyonetiidae)), the plum fruit moth (Cydia funebrana (Treitschke) (Tortricidae)), the summer fruit tortrix moth (Adoxophyes orana (Fischer...

  7. 7 CFR 319.56-22 - Apples and pears from certain countries in Europe.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... leaf blister moth (Leucoptera malifoliella (O.G. Costa) (Lyonetiidae)), the plum fruit moth (Cydia funebrana (Treitschke) (Tortricidae)), the summer fruit tortrix moth (Adoxophyes orana (Fischer...

  8. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  9. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  10. 7 CFR 319.56-22 - Apples and pears from certain countries in Europe.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... leaf blister moth (Leucoptera malifoliella (O.G. Costa) (Lyonetiidae)), the plum fruit moth (Cydia funebrana (Treitschke) (Tortricidae)), the summer fruit tortrix moth (Adoxophyes orana (Fischer...

  11. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  12. 7 CFR 319.56-22 - Apples and pears from certain countries in Europe.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... leaf blister moth (Leucoptera malifoliella (O.G. Costa) (Lyonetiidae)), the plum fruit moth (Cydia funebrana (Treitschke) (Tortricidae)), the summer fruit tortrix moth (Adoxophyes orana (Fischer...

  13. 7 CFR 319.56-22 - Apples and pears from certain countries in Europe.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... leaf blister moth (Leucoptera malifoliella (O.G. Costa) (Lyonetiidae)), the plum fruit moth (Cydia funebrana (Treitschke) (Tortricidae)), the summer fruit tortrix moth (Adoxophyes orana (Fischer...

  14. 7 CFR 319.56-39 - Fragrant pears from China.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (ii) Upon detection of peach fruit borer (Carposina sasaki), yellow peach moth (Conogethes punctiferalis), apple fruit moth (Cydia inopinata), Hawthorn spider mite (Tetranychus viennensis), red...

  15. Estimation of the change in the harmfulness of selected pests in expected climate - European area

    NASA Astrophysics Data System (ADS)

    Svobodova, E.; Trnka, M.; Zalud, Z.; Semeradova, D.; Dubrovsky, M.; Sefrova, H.

    2010-09-01

    Climate change is likely to be a dominant factor affecting the lifecycle and overall occurrence of pest's species whose development is directly linked with climate conditions. This study is focused on the estimation of the potential occurrence and generation growth of selected pests causing the significant damages on the yield of crops over western part of Europe in changing climate. Modelled species involved the main pest of potato Colorado potato beetle (Leptinotarsa decemlineata, Say 1824), the pest of maize European corn borer (Ostrinia nubilalis, Hubner 1796), the pest which causes the damages in orchards and decreases the yield of apples, Codling moth (Cydia pomonella, Linnaeus 1758) and Cereal leaf beetle (Oulema melanopus, Linnaeus 1758) seriously affecting wheat production. The development of these pests' is driven mainly by temperature of the environment, which is in turn function of air temperature. The climate change is likely to lead to an earlier once and prolongation of the growing season and in the same time accelerate pests' developmental rate and will increase number of generations. Estimates of potential distribution of selected pest species for the present as well as expected climate conditions are based on the dynamical model CLIMEX. This approach exploits the expression of the overall climate suitability for the species longterm survival in terms of ecoclimatic index. The CLIMEX model was at first validated with observed data of pests' occurrences using CRU 10´ climate data set a source of climate data. All pest models listed were then used to study the effects of climate change on pests by estimating changes in population dynamics and/or infestation pressure during the first half of the 21st century. Outputs of the models were applied within the European scale in the 10´ resolution using digital terrain model. Simulations of the impacts of expected climate on the pests distribution were conducted under three global circulation models (Had

  16. Direct sampling of resting codling moth (Lepidoptera: Tortricidae) adults in apple tree canopies and surrounding habitats.

    PubMed

    Epstein, David L; Miller, James R; Grieshop, Matthew J; Stelinski, Lukasz L; Gut, Larry J

    2011-06-01

    Field investigations were conducted to determine the resting locations of codling moth (Cydia pomonella [L.]) (Lepidoptera: Tortricidae) males and females in mating disrupted and nondisrupted apple (Malus domestica Borkh.) orchard plots. A custom-made sampling device, consisting of a leaf blower converted into a powerful vacuum, yielded 20-24% success in recovering marked moths, released in the tree canopy in orchards. Four collections each were made between 0900 and 1800 hours and 1800 and 2200 hours in 2005. Ninety-four moths were collected during the 1800-2200 hours samples. In mating disruption plots, 42% of females and 22% of males were found in the top third of the tree canopy (3.0-4.5m), 46% females and 43% males in the middle third (1.5-3.0m), and 12% female and 35% male in the lower third (0-1.5m). In nondisrupted plots 36.4% of females and 40% of males were in the top third of the canopy, 36.4% females and 52% males in the middle third, and 27.2% females and 8% males in the lower third of the tree canopy. Daylight vacuum sampling recovered only one female and two male moths from the top, four males from the middle and one male from the lower third of the tree canopy. Release-recapture studies of marked adult codling moths were conducted in 2006-2007 in screened tents to determine within orchard habitats for adult moths during 0900-1800 hours. Of moths recaptured, 14.6% of females and 13.5% of males were from the ground (herbicide strip and drive-row grass) and 32.9% of females and 24.6% of males were captured in the tree canopy 16-h post release, 17.4% of females and 3.4% of males from the ground and 26.5% of females and 38.2% of males in the tree 40-h post release, and 15.1% of females and 18.6% of males from the ground and 15.7 of females and 25.5% of males in the tree 64-h post release. Application of pyrethrum + PBO by using an orchard blast sprayer in 2007 resulted in the recapture of 28% and 37% of laboratory reared male and female moths

  17. Effects of temperature and modified atmospheres on diapausing 5th instar codling moth metabolism.

    PubMed

    Neven, Lisa G; Lehrman, Nathan J; Hansen, Lee D

    2014-05-01

    The oxygen and capacity limitation of thermal tolerance (OCLTT) has been established in aquatic insect larvae, but OCLTT has not been shown to generally apply to terrestrial insects. Previous research indicates that heat treatments in combination with high concentrations of carbon dioxide and low concentrations of oxygen may be effective for controlling diapausing codling moth, a quarantine pest in walnuts, but treatment requires long times and the killing mechanism is unknown. In this study, the effects of temperature and modified atmospheres on metabolism in diapausing 5th instar codling moth (Cydia pomonella) was investigated with multi-channel differential scanning calorimeters, one equipped with an oxygen sensor. O2 consumption and metabolic heat rates in air were measured simultaneously at isothermal temperatures from 5 to 50°C at 5°C intervals. Both rates increased with increasing temperatures from 5 to 40°C. The ratio of metabolic heat rate to O2 consumption rate at temperatures ≤40°C shows that a portion of the metabolic heat is from normal anabolic reactions of metabolism. At 45 and 50°C in air, O2 consumption and metabolic heat rates dropped to near zero. These results indicate that treatment of walnuts in air at >45°C for a short period of time (minutes) is effective in killing diapausing 5th instar codling moth larvae. Continuous heating scans at 0.4°C/min were used to measure metabolic heat rates from 10 to 50°C with air and modified atmospheres with lowered oxygen and high carbon dioxide. A rapid increase was observed in heat rates above 40°C in scans with O2≥11%. Taken together with the isothermal results showing no metabolic heat production or oxygen uptake at 45 and 50°C, these results demonstrate that thermal damage to cell membranes and loss of control of oxidation reactions is the lethal mechanism at high temperature when O2≥11%. The data from scans with O2≤2% and high CO2 show the effects of oxygen limitation as postulated by

  18. Apple volatiles synergize the response of codling moth to pear ester.

    PubMed

    El-Sayed, Ashraf M; Cole, Lyn; Revell, John; Manning, Lee-Anne; Twidle, Andrew; Knight, Alan L; Bus, Vincent G M; Suckling, David M

    2013-05-01

    Codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), is a major cosmopolitan pest of apple and other pome fruits. Ethyl (E,Z)-2,4-decadienoate (pear ester) has been identified as a host-derived kairomone for female and male codling moths. However, pear ester has not performed similarly in different fruit production areas in terms of the relative magnitude of moth catch, especially the proportion of females caught. Our work was undertaken to identify host volatiles from apples, and to investigate whether these volatiles can be used to enhance the efficacy of host kairomone pear ester for monitoring female and male codling moths. Volatiles from immature apple trees were collected in the field using dynamic headspace sampling during the active period of codling moth flight. Using gas chromatography-electroantennogram detector (GC/EAD) analysis, six compounds elicited responses from antennae of females. These compounds were identified by GC/mass spectrometry (MS) and comparisons to authentic standards as nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, (Z,E)-α-farnesene, and (E,E)-α-farnesene. When the EAD-active compounds were tested individually in the field, no codling moths were caught except for a single male with decanal. However, addition of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, or (E,E)-α-farnesene to pear ester in a binary mixture enhanced the efficacy of pear ester for attracting female codling moths compared to pear ester alone. Addition of the 6-component blend to the pear ester resulted in a significant increase in the number of males attracted, and enhanced the females captured compared to pear ester alone; the number of males and females caught was similar to that with the pear ester plus acetic acid combination lure. Our results demonstrate that it is possible to synergize the response of codling moth to host kairomone by using other host volatiles. The new apple-pear ester host kairomone blend

  19. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae).

    PubMed

    Zhang, Sufang; Zhang, Zhen; Wang, Hongbin; Kong, Xiangbo

    2014-09-01

    The Yunnan pine and Simao pine caterpillar moths, Dendrolimus houi Lajonquière and Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae), are two closely related and sympatric pests of coniferous forests in southwestern China, and olfactory communication systems of these two insects have received considerable attention because of their economic importance. However, there is little information on the molecular aspect of odor detection about these insects. Furthermore, although lepidopteran species have been widely used in studies of insect olfaction, few work made comparison between sister moths on the olfactory recognition mechanisms. In this study, next-generation sequencing of the antennal transcriptome of these two moths were performed to identify the major olfactory genes. After comparing the antennal transcriptome of these two moths, we found that they exhibit highly similar transcripts-associated GO terms. Chemosensory gene families were further analyzed in both species. We identified 23 putative odorant binding proteins (OBP), 17 chemosensory proteins (CSP), two sensory neuron membrane proteins (SNMP), 33 odorant receptors (OR), and 10 ionotropic receptors (IR) in D. houi; and 27 putative OBPs, 17 CSPs, two SNMPs, 33 ORs, and nine IRs in D. kikuchii. All these transcripts were full-length or almost full-length. The predicted protein sequences were compared with orthologs in other species of Lepidoptera and model insects, including Bombyx mori, Manduca sexta, Heliothis virescens, Danaus plexippus, Sesamia inferens, Cydia pomonella, and Drosophila melanogaster. The sequence homologies of the orthologous genes in D. houi and D. kikuchii are very high. Furthermore, the olfactory genes were classed according to their expression level, and the highly expressed genes are our target for further function investigation. Interestingly, many highly expressed genes are ortholog gene of D. houi and D. kikuchii. We also found that the Classic OBPs were

  20. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae).

    PubMed

    Zhang, Sufang; Zhang, Zhen; Wang, Hongbin; Kong, Xiangbo

    2014-09-01

    The Yunnan pine and Simao pine caterpillar moths, Dendrolimus houi Lajonquière and Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae), are two closely related and sympatric pests of coniferous forests in southwestern China, and olfactory communication systems of these two insects have received considerable attention because of their economic importance. However, there is little information on the molecular aspect of odor detection about these insects. Furthermore, although lepidopteran species have been widely used in studies of insect olfaction, few work made comparison between sister moths on the olfactory recognition mechanisms. In this study, next-generation sequencing of the antennal transcriptome of these two moths were performed to identify the major olfactory genes. After comparing the antennal transcriptome of these two moths, we found that they exhibit highly similar transcripts-associated GO terms. Chemosensory gene families were further analyzed in both species. We identified 23 putative odorant binding proteins (OBP), 17 chemosensory proteins (CSP), two sensory neuron membrane proteins (SNMP), 33 odorant receptors (OR), and 10 ionotropic receptors (IR) in D. houi; and 27 putative OBPs, 17 CSPs, two SNMPs, 33 ORs, and nine IRs in D. kikuchii. All these transcripts were full-length or almost full-length. The predicted protein sequences were compared with orthologs in other species of Lepidoptera and model insects, including Bombyx mori, Manduca sexta, Heliothis virescens, Danaus plexippus, Sesamia inferens, Cydia pomonella, and Drosophila melanogaster. The sequence homologies of the orthologous genes in D. houi and D. kikuchii are very high. Furthermore, the olfactory genes were classed according to their expression level, and the highly expressed genes are our target for further function investigation. Interestingly, many highly expressed genes are ortholog gene of D. houi and D. kikuchii. We also found that the Classic OBPs were

  1. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2011-08-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  2. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  3. Key to the larvae of Castanea-feeding Olethreutinae frequently intercepted at U.S. ports-of-entry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At least six species of olethreutine moths are common pests of chestnut (Castanea spp.) outside of the U.S. Three are native to, or naturalized in the Mediterranean Region of Europe: Pammene fasciana (L.), Cydia splendana (Hübner), and Cydia fagiglandana (Zeller). Three are native to the Far East...

  4. Molecular species identification of cryptic apple and snowberry maggots (Diptera: Tephritidae) in Western and Central Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Washington state, identification of the quarantine apple pest Rhagoletis pomonella (Walsh) is complicated by the presence of the cryptic species R. zephyria Snow (Diptera: Tephritidae). Distinguishing the two flies is important because there is a zero tolerance policy for R. pomonella in apple p...

  5. Implications of Rhagoletis zephyria, 1894 (Diptera: Tephritidae), captures for apple maggot surveys and fly ecology in Washington state, U.S.A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot, Rhagoletis pomonella (Walsh), 1867 (Diptera: Tephritidae), is an introduced quarantine pest of apple (Malus domestica Borkhausen) (Rosaceae) in Washington state, U.S.A. A morphologically similar native fly, Rhagoletis zephyria Snow, 1894, infests snowberries (Symphoricarpos spp.) ...

  6. 77 FR 61051 - Additional Designations, Foreign Narcotics Kingpin Designation Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ..., Delegacion Benito Juarez, Distrito Federal Codigo Postal 03300, Mexico; Circuito de las Flores Norte 2252... Juarez, Distrito Federal Codigo Postal 03100, Mexico; Castillo de Kent 38, Manzana 26 Lote 37, Condado de.... 366, Planta Alta, Colonia Narvarte, Delegacion Benito Juarez, Distrito Federal Codigo Postal...

  7. 77 FR 5007 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... LLC, Twin Buttes Wind LLC, Manzana Wind LLC, Blue Creek Wind Farm LLC, San Luis Solar LLC, Elk River.... Applicants: Klondike Wind Power III LLC, Northern Iowa Windpower II LLC, Big Horn Wind Project LLC, Colorado Green Holdings LLC, Dillon Wind LLC, Flat Rock Windpower LLC, Flying Cloud Power Partners, LLC,...

  8. Molecular species identification of cryptic apple and snowberry maggots (Diptera: Tephritidae) in western and central Washington.

    PubMed

    Green, Emily; Almskaar, Kristin; Sim, Sheina B; Arcella, Tracy; Yee, Wee L; Feder, Jeffrey L; Schwarz, Dietmar

    2013-10-01

    In Washington state, identification of the quarantine apple pest Rhagoletis pomonella (Walsh) is complicated by the presence of the cryptic species Rhagoletis zephyria Snow (Diptera: Tephritidae). Distinguishing the two flies is important because there is a zero tolerance policy for R. pomonella in apple production for export. Here, we attempt to distinguish the two species by scoring R. pomonella and R. zephyria populations from western and south-central Washington for a set of 11 nuclear markers, including four single nucleotide polymorphisms (SNPs) developed for rapid and inexpensive genotyping using Taqman real-time quantitative-polymerase chain reaction. We show that the four SNPs may be adequate in most cases for distinguishing whether a fly originated from apple or black hawthorn (the two major host plants for R. pomonella representing an economic risk) versus snowberry (the major host for R. zephyria, and not a commercial threat). However, directional introgression of R. zephyria alleles into R. pomonella can complicate the identification of flies of mixed ancestry based only on the four SNPs. Moreover, this problem is more acute in the sensitive apple-growing regions of central Washington where our results imply hybridization is common. Consequently, application of the four SNP quantitative-polymerase chain reaction assay can immediately assist ongoing apple maggot monitoring, while the development of additional genetic markers through next-generation sequencing would be valuable for increasing confidence in species identification and for assessing the threat posed by hybridization as R. pomonella further spreads into the more arid apple-growing regions of central Washington.

  9. 76 FR 44907 - Cancellation of Pesticides for Non-Payment of Year 2011 Registration Maintenance Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Gypsy Moth and Japanese Beetle Spray. 010937-00001 Austin's Moth Control. 011435-00007 Copper Hydroxide 50 WP. 027586-00001 TM Biocontrol-1. 027586-00002 Gypchek Biological Insecticide for the Gypsy Moth...-00002 Poolrx Unit & Booster. 080286-00003 Splat Cydia. 080305-00003 I-Ching Naphthalene Moth...

  10. 78 FR 79573 - Importation of Fresh Apricots From Continental Spain

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... the Federal Register (78 FR 6227-6232, Docket No. APHIS-2011-0132) a proposal \\1\\ to amend the... published in the Federal Register on May 29, 2013 (78 FR 32184, Docket No. APHIS-2011-0132). We received...), Ceratitis capitata Wiedemann, The plum fruit moth, Cydia funebrana (Treitschke), Leaf scorch,...

  11. 7 CFR 319.56-63 - Fresh apricots from continental Spain.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the NPPO of Spain that states that the fruit has been treated for C. capitata in accordance with 7 CFR...; Ceratitis capitata Wiedemann, the Mediterranean fruit fly; Cydia funebrana (Treitschke), the plum fruit moth... production have fruit fly and moth trapping programs and follow control guidelines, when necessary, to...

  12. 78 FR 6227 - Importation of Fresh Apricots From Continental Spain

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... fly (Medfly), Ceratitis capitata Wiedemann, The plum fruit moth, Cydia funebrana (Treitschke), Leaf.... The PRA determined that three of these four quarantine pests--brown rot, Medfly, and plum fruit moth... exporting places of production have fruit fly and moth trapping programs and follow control guidelines,...

  13. Genetic identification of an unknown Rhagoletis fruit fly infesting Chinese crabapple (Malus spectabilis): implications for apple pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a serious introduced quarantine pest in the apple-growing regions of central Washington and Oregon. In August 2011, seven fly larvae of unknown origin were discovered infesting fruit of an exotic Chinese crabapple, Malus s...

  14. Effect of surround WP on behavior and mortality of the apple maggot (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a key pest in apple production areas located in the northeastern and midwestern United States and the eastern provinces of Canada. The development of Surround WP has offered a new approach for controlling apple maggot fly...

  15. Seed chemistry of Sophora chrysophylla (mamane) in relation to diet of specialist avian seed predator Loxioides bailleui (palila) in Hawaii

    USGS Publications Warehouse

    Banko, P.C.; Cipollini, M.L.; Breton, G.W.; Paulk, E.; Wink, M.; Izhaki, I.

    2002-01-01

    This study describes the chemical ecology of a tritrophic interaction among species endemic to the island of Hawaii, USA: a tree (Sophora chrysophylla: mamane), an endangered bird (Loxioides bailleui; palila), and moth larvae (Cydia spp.). Palila and Cydia both specialize on the seed embryos of mamane but avoid eating the seed coats. Palila actively seek out and feed mamane embryos and Cydia larvae to their nestlings. Because mamane embryos contain potentially toxic levels of alkaloids, including broadly toxic quinolizidine alkaloids, and because insects often sequester alkaloids from their food plants, we focus on the questions of why palila forage upon mamane embryos and why they supplement their diet with Cydia larvae. Our data show that mamane embryos contain high amounts of potentially toxic alkaloids, but are well balanced nutritionally and contain lipids, carbohydrates, proteins, amino acids, and minerals at levels that are likely to be sufficient for maintenance and breeding. Mamane seed coats contain lower levels of alkaloids and nutrients, somewhat higher levels of phenolics, and much higher levels of nondigestible fiber. Taken together, these results suggest that palila have evolved tolerance to high levels of alkaloids and that they forage upon embryos primarily because of their availability in the habitat and high nutritional reward. Our data also suggest that Cydia are used by palila because they are readily accessible, nontoxic, and nutritious; the larvae apparently do not sequester alkaloids while feeding upon mamane seeds. Our results are interpreted with respect to the likelihood of current and historical coadaptive responses in this ecologically isolated and simplified island setting.

  16. ACCEPTANCE OF FUNCTIONAL FOOD AMONG CHILEAN CONSUMERS: APPLE LEATHER.

    PubMed

    van Vliet, Maya; Adasme-Berrios, Cristian; Schnettler, Berta

    2015-10-01

    Objetivo: el objetivo de este estudio es medir la aceptación de un alimento funcional como la lámina frutal de manzana, en base a características organolépticas. Se identificaron tipos de consumidores y sus preferencias hacia los aditivos naturales que aumentan la funcionalidad del producto y satisfacen las necesidades nutricionales actuales. Materiales y método: una muestra de 800 consumidores permitió la evaluación de la lámina frutal de manzana en términos de aceptación (gusto). se llevó a cabo un panel sensorial utilizando una escala hedónica de nueve puntos. Se utilizó el análisis de conglomerados para establecer diferentes tipos de consumidores, basados en la aceptación del producto. Además, el análisis conjunto permitió determinar la preferencia sobre diferentes aditivos. Resultados: el análisis de conglomerados permitió identificar cuatro grupos con diferencias significativas en los gustos promedios, obtenidos del panel sensorial. Los resultados indican que el dulzor de la lámina frutal de manzana fue mejor evaluada entre todos los grupos y, en promedio, el color fue calificado como el peor atributo. Además, a pesar de que existe una “aceptabilidad global” por el producto, existen diferencias significativas entre los grupos. Los resultados del análisis conjunto indican que, en general, los consumidores prefieren la agregación de aditivos naturales que aumentan la funcionalidad del producto. Conclusiones: en este estudio, la lámina frutal de manzana como alimento funcional se ajusta con el hábito de las personas de consumir alimentos dulces, lo que promueve su aceptación. Además, la agregación de aditivos naturales al producto, tales como anticariogénicos y antioxidantes, permite considerarlo como un alimento funcional sustituto de los snacks, poco saludables y/o de los caramelos.

  17. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis.

    PubMed

    Feder, Jeffrey L; Berlocher, Stewart H; Roethele, Joseph B; Dambroski, Hattie; Smith, James J; Perry, William L; Gavrilovic, Vesna; Filchak, Kenneth E; Rull, Juan; Aluja, Martin

    2003-09-01

    Tephritid fruit flies belonging to the Rhagoletis pomonella sibling species complex are controversial because they have been proposed to diverge in sympatry (in the absence of geographic isolation) by shifting and adapting to new host plants. Here, we report evidence suggesting a surprising source of genetic variation contributing to sympatric host shifts for these flies. From DNA sequence data for three nuclear loci and mtDNA, we infer that an ancestral, hawthorn-infesting R. pomonella population became geographically subdivided into Mexican and North American isolates approximately 1.57 million years ago. Episodes of gene flow from Mexico subsequently infused the North American population with inversion polymorphism affecting key diapause traits, forming adaptive clines. Sometime later (perhaps +/-1 million years), diapause variation in the latitudinal clines appears to have aided North American flies in adapting to a variety of plants with differing fruiting times, helping to spawn several new taxa. Thus, important raw genetic material facilitating the adaptive radiation of R. pomonella originated in a different time and place than the proximate ecological host shifts triggering sympatric divergence.

  18. Behavioral evidence for host fidelity among populations of the parasitic wasp, Diachasma alloeum (Muesebeck)

    NASA Astrophysics Data System (ADS)

    Stelinski, L. L.; Liburd, O. E.

    2005-02-01

    The concept of “host fidelity,” where host-specific mating occurs in close proximity to the oviposition site and location of larval development, is thought to impart a pre-mating isolation mechanism for sympatric speciation (sensu members of the genus Rhagoletis). The apple maggot fly, Rhagoletis pomonella, and the blueberry maggot fly, R. mendax, are morphologically similar sibling species thought to have speciated in sympatry by divergence of host plant association. Both of these fly species are attacked by the specialist braconid parasitoid, Diachasma alloeum. The current study demonstrates that both male and female D. alloeum exhibit a behavioral preference for the odor of the fruit of their larval Rhagoletis host species. Specifically, those D. alloeum emerging from puparia of R. pomonella are preferentially attracted to hawthorn fruit and those emerging from puparia of R. mendax are preferentially attracted to blueberry fruit. However, male D. alloeum reared from either R. pomonella or R. mendax were equally attracted to females originating from both Rhagoletis species. We suggest that the data herein present evidence for “host fidelity,” where populations of D. alloeum exhibit a greater tendency to mate and reproduce among the host plants of their preferred Rhagoletis hosts. Furthermore, host fidelity may have resulted in the evolution of distinct host races of D. alloeum tracking the speciation of their larval Rhagoletis prey.

  19. Sequential divergence and the multiplicative origin of community diversity

    PubMed Central

    Hood, Glen R.; Forbes, Andrew A.; Powell, Thomas H. Q.; Egan, Scott P.; Hamerlinck, Gabriela; Smith, James J.; Feder, Jeffrey L.

    2015-01-01

    Phenotypic and genetic variation in one species can influence the composition of interacting organisms within communities and across ecosystems. As a result, the divergence of one species may not be an isolated process, as the origin of one taxon could create new niche opportunities for other species to exploit, leading to the genesis of many new taxa in a process termed “sequential divergence.” Here, we test for such a multiplicative effect of sequential divergence in a community of host-specific parasitoid wasps, Diachasma alloeum, Utetes canaliculatus, and Diachasmimorpha mellea (Hymenoptera: Braconidae), that attack Rhagoletis pomonella fruit flies (Diptera: Tephritidae). Flies in the R. pomonella species complex radiated by sympatrically shifting and ecologically adapting to new host plants, the most recent example being the apple-infesting host race of R. pomonella formed via a host plant shift from hawthorn-infesting flies within the last 160 y. Using population genetics, field-based behavioral observations, host fruit odor discrimination assays, and analyses of life history timing, we show that the same host-related ecological selection pressures that differentially adapt and reproductively isolate Rhagoletis to their respective host plants (host-associated differences in the timing of adult eclosion, host fruit odor preference and avoidance behaviors, and mating site fidelity) cascade through the ecosystem and induce host-associated genetic divergence for each of the three members of the parasitoid community. Thus, divergent selection at lower trophic levels can potentially multiplicatively and rapidly amplify biodiversity at higher levels on an ecological time scale, which may sequentially contribute to the rich diversity of life. PMID:26499247

  20. Olfactory cues from different plant species in host selection by female pea moths.

    PubMed

    Thöming, Gunda; Norli, Hans Ragnar

    2015-03-01

    In herbivorous insects specialized on few plant species, attraction to host odor may be mediated by volatiles common to all host species, by specific compounds, or combinations of both. The pea moth Cydia nigricana is an important pest of the pea. Volatile signatures of four host plant species were studied to identify compounds involved in pea moth host selection and to improve previously reported attractive volatile blends. P. sativum and alternative Fabaceae host species were compared regarding female attraction, oviposition, and larval performance. Pea moth females were strongly attracted to the sweet pea Lathyrus odoratus, but larval performance on that species was moderate. Chemical analyses of sweet pea odor and electrophysiological responses of moth antennae led to identification of seven sweet-pea-specific compounds and ten compounds common to all tested host species. Blends of these specific and common cues were highly attractive to mated pea moth females in wind tunnel and field experiments.

  1. Dried apples enriched with mandarin juice by vacuum impregnation improve antioxidant capacity and decrease inflammation in obese children.

    PubMed

    Codoñer-Franch, Pilar; Betoret, Ester; Betoret, Noelia; López-Jaén, Ana B; Valls-Bellés, Victoria; Fito, Pedro

    2013-01-01

    Antecedentes: Una adecuada ingesta de vegetales previene el desarrollo de enfermedades degenerativas, principalmente debido a sus compuestos antioxidantes. Objetivo: Evaluamos el efecto in vivo en los niños obesos de un nuevo producto alimenticio hecho de manzanas deshidratadas enriquecidas con zumo de mandarina mediante impregnación a vacío. Métodos: Estudio prospectivo longitudinal de cuatro semanas de duración. Se estudiaron 41 niños obesos que suplementaron su dieta habitual con 40 g/día del producto desarrollado. Se determinaron parámetros antropométricos (índice de masa corporal, circunferencia de la cintura) y estimación de la de grasa corporal con impedancia bioeléctrica. La ingesta dietética se evaluó por cuestionario. Se registraron factores de riesgo metabólico (presión sanguínea, perfil lipídico, glucosa y resistencia insulínica). El estado oxidante se investigó mediante la capacidad antioxidante total del plasma y la 8-hydroxideoxiguanosina (marcador de daño oxidativo al ADN) y como marcadores de inflamación valoramos la proteína C-reactiva ultrasensible, el factor de necrosis tumoral-??y las interleukinas 6 y 1-?. Las mediciones se recogieron al inicio y al final del período de intervención. Resultados: Encontramos una mejoría significativa en la presión arterial sistólica y en el perfil lipídico después del período de intervención. Igualmente demostramos un aumento significativo de la capacidad antioxidante del plasma, una reducción del daño oxidativo del ADN y de los marcadores inflamatorios. Conclusión: La adición a la dieta del producto elaborado con manzana deshidratada, y enriquecido con zumo de mandarina mediante impregnación al vacío, contribuye a mejorar el estado oxidante e inflamatorio en los niños obesos, así como diversos factores de riesgo cardiometabólico.

  2. Differences in performance and transcriptome-wide gene expression associated with Rhagoletis (Diptera: Tephritidae) larvae feeding in alternate host fruit environments.

    PubMed

    Ragland, Gregory J; Almskaar, Kristin; Vertacnik, Kim L; Gough, Harlan M; Feder, Jeffrey L; Hahn, Daniel A; Schwarz, Dietmar

    2015-06-01

    Host race formation, the establishment of new populations using novel resources, is a major hypothesized mechanism of ecological speciation, especially in plant-feeding insects. The initial stages of host race formation will often involve phenotypic plasticity on the novel resource, with subsequent genetically based adaptations enhancing host-associated fitness differences. Several studies have explored the physiology of the plastic responses of insects to novel host environments. However, the mechanisms underlying evolved differences among host races and species remain poorly understood. Here, we demonstrate a reciprocal larval performance difference between two closely related species of Rhagoletis flies, R. pomonella and R. zephyria, specialized for feeding in apple and snowberry fruit, respectively. Microarray analysis of fly larvae feeding in apples versus snowberries revealed patterns of transcriptome-wide differential gene expression consistent with both plastic and evolved responses to the different fruit resources, most notably for detoxification-related genes such as cytochrome p450s. Transcripts exhibiting evolved expression differences between species tended to also demonstrate plastic responses to fruit environment. The observed pattern suggests that Rhagoletis larvae exhibit extensive plasticity in gene expression in response to novel fruit that may potentiate shifts to new hosts. Subsequent selection, particularly selection to suppress initially costly plastic responses, could account for the evolved expression differences observed between R. pomonella and R. zephyria, creating specialized races and new fly species. Thus, genetically based ecological adaptations generating new biodiversity may often evolve from initial plastic responses in gene expression to the challenges posed by novel environments.

  3. Differences in performance and transcriptome-wide gene expression associated with Rhagoletis (Diptera: Tephritidae) larvae feeding in alternate host fruit environments.

    PubMed

    Ragland, Gregory J; Almskaar, Kristin; Vertacnik, Kim L; Gough, Harlan M; Feder, Jeffrey L; Hahn, Daniel A; Schwarz, Dietmar

    2015-06-01

    Host race formation, the establishment of new populations using novel resources, is a major hypothesized mechanism of ecological speciation, especially in plant-feeding insects. The initial stages of host race formation will often involve phenotypic plasticity on the novel resource, with subsequent genetically based adaptations enhancing host-associated fitness differences. Several studies have explored the physiology of the plastic responses of insects to novel host environments. However, the mechanisms underlying evolved differences among host races and species remain poorly understood. Here, we demonstrate a reciprocal larval performance difference between two closely related species of Rhagoletis flies, R. pomonella and R. zephyria, specialized for feeding in apple and snowberry fruit, respectively. Microarray analysis of fly larvae feeding in apples versus snowberries revealed patterns of transcriptome-wide differential gene expression consistent with both plastic and evolved responses to the different fruit resources, most notably for detoxification-related genes such as cytochrome p450s. Transcripts exhibiting evolved expression differences between species tended to also demonstrate plastic responses to fruit environment. The observed pattern suggests that Rhagoletis larvae exhibit extensive plasticity in gene expression in response to novel fruit that may potentiate shifts to new hosts. Subsequent selection, particularly selection to suppress initially costly plastic responses, could account for the evolved expression differences observed between R. pomonella and R. zephyria, creating specialized races and new fly species. Thus, genetically based ecological adaptations generating new biodiversity may often evolve from initial plastic responses in gene expression to the challenges posed by novel environments. PMID:25851077

  4. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-06-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  5. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-09-30

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

  6. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-03-31

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. {sm_bullet} CAS 01-23-02, Atmospheric Test Site - High Alt{sm_bullet} CAS 02-23-02, Contaminated Areas (2){sm_bullet} CAS 02-23-03, Contaminated Berm{sm_bullet} CAS 02-23-10, Gourd-Amber Contamination Area{sm_bullet} CAS 02-23-11, Sappho Contamination Area{sm_bullet} CAS 02-23-12, Scuttle Contamination Area{sm_bullet} CAS 03-23-24, Seaweed B Contamination Area{sm_bullet} CAS 03-23-27, Adze Contamination Area{sm_bullet} CAS 03-23-28, Manzanas Contamination Area{sm_bullet} CAS 03-23-29, Truchas-Chamisal Contamination Area{sm_bullet} CAS 04-23-02, Atmospheric Test Site T4-a{sm_bullet} CAS 05-23-06, Atmospheric Test Site{sm_bullet} CAS 09-23-06, Mound of Contaminated Soil{sm_bullet} CAS 10-23-04, Atmospheric Test Site M-10{sm_bullet} CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

  7. Structured populations of the oriental fruit moth in an agricultural ecosystem.

    PubMed

    Torriani, Marco V G; Mazzi, Dominique; Hein, Silke; Dorn, Silvia

    2010-07-01

    Intercontinental trade has led to multiple introductions of invasive pest species at a global scale. Molecular analyses of the structure of populations support the understanding of ecological strategies and evolutionary patterns that promote successful biological invasions. The oriental fruit moth, Grapholita (= Cydia) molesta, is a cosmopolitan and economically destructive pest of stone and pome fruits, expanding its distribution range concomitantly with global climate warming. We used ten newly developed polymorphic microsatellite markers to examine the genetic structure of G. molesta populations in an agricultural ecosystem in the Emilia-Romagna region of northern Italy. Larvae collected in eight sampling sites were assigned to a mosaic of five populations with significant intra-regional structure. Inferred measures of gene flow within populations implicated both active dispersal, and passive dispersal associated with accidental anthropogenic displacements. Small effective population sizes, coupled with high inbreeding levels, highlighted the effect of orchard management practices on the observed patterns of genetic variation within the sampling sites. Isolation by distance did not appear to play a major role at the spatial scale considered. Our results provide new insights into the population genetics and dynamics of an invasive pest species at a regional scale.

  8. Habitat avoidance: overlooking an important aspect of host-specific mating and sympatric speciation?

    PubMed

    Forbes, Andrew A; Fisher, Joan; Feder, Jeffrey L

    2005-07-01

    Understanding speciation requires discerning how reproductive barriers to gene flow evolve between previously interbreeding populations. Models of sympatric speciation for phytophagous insects posit that reproductive isolation can evolve in the absence of geographic isolation as a consequence of an insect shifting and ecologically adapting to a new host plant. One important adaptation contributing to sympatric differentiation is host-specific mating. When organisms mate in preferred habitats, a system of positive assortative mating is established that facilitates sympatric divergence. Models of host fidelity generally assume that host choice is determined by the aggregate effect of alleles imparting positive preferences for different plant species. But negative effect genes for avoiding nonnatal plants may also influence host use. Previous studies have shown that apple and hawthorn-infesting races of Rhagoletis pomonella flies use volatile compounds emitted from the surface of fruit as key chemosensory cues to recognize and distinguish between their host plants. Here, we report results from field trials indicating that in addition to preferring the odor of their natal fruit, apple and hawthorn flies, and their undescribed sister species infesting flowering dogwood (Cornus florida), also avoid the odors of nonnatal fruit. We discuss the implications of nonnatal fruit avoidance for the evolutionary dynamics and genetics of sympatric speciation. Our findings reveal an underappreciated role for habitat avoidance as a potential postmating, as well as prezygotic, barrier to gene flow.

  9. New neotropical species of Opiinae (Hymenoptera, Braconidae) reared from fruit-infesting and leaf-mining Tephritidae (Diptera) with comments on the  Diachasmimorpha mexicana species group and the genera Lorenzopius and Tubiformopius

    PubMed Central

    Wharton, Robert; Ward, Lauren; Miko, Istvan

    2012-01-01

    Abstract Four new species of opiine Braconidae are described from Mexico. These are Diachasmimorpha martinalujai Wharton reared from Rhagoletis infesting fruits of Crataegus spp., Diachasmimorpha norrbomi Wharton reared from Euphranta mexicana infesting fruits of Ribes pringlei, Eurytenes (Stigmatopoea) norrbomi Wharton reared from Trypeta concolor mining leaves of Barkleyanthus salicifolia and Eurytenes (Stigmatopoea) maya Wharton reared from Rhagoletis pomonella infesting apples and fruits of Crataegus spp. Morphological features of the first metasomal segment and occipital carina, useful for placement of these species, are discussed relative to the genera Diachasmimorpha, Eurytenes, Lorenzopius, Tubiformopius, and Opius s.l. Descriptions and diagnoses are referenced to the Hymenoptera Anatomy Ontology. The following represent new combinations: Diachasmimorpha hildagensis, Lorenzopius euryteniformis, and Tubiformopius tubibasis. Revised diagnoses are provided for Diachasmimorpha hildagensis, Diachasmimorpha mexicana, Diachasmimorpha sanguinea, Eurytenes (Stigmatopoea), Lorenzopius, Lorenzopius euryteniformis, Tubiformopius, Tubiformopius tubigaster, Tubiformopius tubibasis, Opius incoligma, and Opius rugicoxis. Two species groups are delineated within Lorenzopius and a key to species of Diachasmimorpha occurring in the New World is provided. PMID:23818811

  10. Integration of insecticidal, phagostimulatory, and visual elements of an attract and kill system for apple maggot fly (Diptera: Tephritidae).

    PubMed

    Wright, Starker E; Leskey, Tracy C; Jacome, Isabel; Piñero, Jaime C; Prokopy, Ronald J

    2012-10-01

    The apple maggot fly, Rhagoletis pomonella (Walsh), is a key pest of apple in eastern North America that has been historically controlled with organophosphate insecticide applications. Here we report on progress toward development of an effective and maintenance-free attracticidal sphere system for this pest species. In our studies, we evaluated lethality of spinosad in combination with a feeding stimulant (sucrose) to replace a Tangletrap sticky coating as the killing agent of a sphere-based behavioral control system. Spinosad was incorporated into cylindrical and contoured controlled-release caps that were fixed atop visually stimulating sphere bases. For both cap styles, spinosad at or near 1.0% (a.i.) proved to be a relatively durable fly-killing agent, providing approximately equal to 85% mortality after simulated rainfall exposure reflective of average season-long precipitation levels experienced during the primary period of risk of apple maggot injury to fruit in the northeastern United States. In field trials, we assessed the impact of color degradation of contoured controlled-release caps on visual responsiveness of apple maggot fly and found that it had no significant impact on captures. In commercial orchard trials designed to evaluate the potential of attracticidal spheres with contoured caps for direct control of apple maggot, a perimeter-based deployment provided protection comparable to plots receiving 1-2 whole-plot insecticide applications.

  11. Season-long volatile emissions from peach and pear trees in situ, overlapping profiles, and olfactory attraction of an oligophagous fruit moth in the laboratory.

    PubMed

    Najar-Rodriguez, A; Orschel, B; Dorn, S

    2013-03-01

    Insect herbivores that have more than one generation per year and reproduce on different host plants are confronted with substantial seasonal variation in the volatile blends emitted by their hosts. One way to deal with such variation is to respond to a specific set of compounds common to all host plants. The oriental fruit moth Cydia (=Grapholita) molesta is a highly damaging invasive pest. The stone fruit peach (Prunus persica) is its primary host, whereas pome fruits such as pear (Pyrus communis) are considered secondary hosts. In some parts of their geographic range, moth populations switch from stone to pome fruit orchards during the growing season. Here, we tested whether this temporal switch is facilitated by female responses to plant volatiles. We collected volatiles from peach and pear trees in situ and characterized their seasonal dynamics by gas chromatography-mass spectrometry. We also assessed the effects of the natural volatile blends released by the two plant species on female attraction by using Y-tube olfactometry. Finally, we related variations in volatile emissions to female olfactory responses. Our results indicate that the seasonal host switch from peach to pear is facilitated by the changing olfactory effect of the natural volatile blends being emitted. Peach volatiles were only attractive early and mid season, whereas pear volatiles were attractive from mid to late season. Blends from the various attractive stages shared a common set of five aldehydes, which are suggested to play an essential role in female attraction to host plants. Particular attention should be given to these aldehydes when designing candidate attractants for oriental fruit moth females.

  12. High genetic diversity and structured populations of the oriental fruit moth in its range of origin.

    PubMed

    Zheng, Yan; Peng, Xiong; Liu, Gaoming; Pan, Hongyan; Dorn, Silvia; Chen, Maohua

    2013-01-01

    The oriental fruit moth Grapholita ( = Cydia) molesta is a key fruit pest globally. Despite its economic importance, little is known about its population genetics in its putative native range that includes China. We used five polymorphic microsatellite loci and two mitochondrial gene sequences to characterize the population genetic diversity and genetic structure of G. molesta from nine sublocations in three regions of a major fruit growing area of China. Larval samples were collected throughout the season from peach, and in late season, after host switch by the moth to pome fruit, also from apple and pear. We found high numbers of microsatellite alleles and mitochondrial DNA haplotypes in all regions, together with a high number of private alleles and of haplotypes at all sublocations, providing strong evidence that the sampled area belongs to the origin of this species. Samples collected from peach at all sublocations were geographically structured, and a significant albeit weak pattern of isolation-by-distance was found among populations, likely reflecting the low flight capacity of this moth. Interestingly, populations sampled from apple and pear in the late season showed a structure differing from that of populations sampled from peach throughout the season, indicating a selective host switch of a certain part of the population only. The recently detected various olfactory genotypes in G. molesta may underly this selective host switch. These genetic data yield, for the first time, an understanding of population dynamics of G. molesta in its native range, and of a selective host switch from peach to pome fruit, which may have a broad applicability to other global fruit production areas for designing suitable pest management strategies. PMID:24265692

  13. High Genetic Diversity and Structured Populations of the Oriental Fruit Moth in Its Range of Origin

    PubMed Central

    Zheng, Yan; Peng, Xiong; Liu, Gaoming; Pan, Hongyan; Dorn, Silvia; Chen, Maohua

    2013-01-01

    The oriental fruit moth Grapholita ( = Cydia) molesta is a key fruit pest globally. Despite its economic importance, little is known about its population genetics in its putative native range that includes China. We used five polymorphic microsatellite loci and two mitochondrial gene sequences to characterize the population genetic diversity and genetic structure of G. molesta from nine sublocations in three regions of a major fruit growing area of China. Larval samples were collected throughout the season from peach, and in late season, after host switch by the moth to pome fruit, also from apple and pear. We found high numbers of microsatellite alleles and mitochondrial DNA haplotypes in all regions, together with a high number of private alleles and of haplotypes at all sublocations, providing strong evidence that the sampled area belongs to the origin of this species. Samples collected from peach at all sublocations were geographically structured, and a significant albeit weak pattern of isolation-by-distance was found among populations, likely reflecting the low flight capacity of this moth. Interestingly, populations sampled from apple and pear in the late season showed a structure differing from that of populations sampled from peach throughout the season, indicating a selective host switch of a certain part of the population only. The recently detected various olfactory genotypes in G. molesta may underly this selective host switch. These genetic data yield, for the first time, an understanding of population dynamics of G. molesta in its native range, and of a selective host switch from peach to pome fruit, which may have a broad applicability to other global fruit production areas for designing suitable pest management strategies. PMID:24265692

  14. Selective maintenance of allozyme differences among sympatric host races of the apple maggot fly.

    PubMed

    Feder, J L; Roethele, J B; Wlazlo, B; Berlocher, S H

    1997-10-14

    Whether phytophagous insects can speciate in sympatry when they shift and adapt to new host plants is a controversial question. One essential requirement for sympatric speciation is that disruptive selection outweighs gene flow between insect populations using different host plants. Empirical support for host-related selection (i.e., fitness trade-offs) is scant, however. Here, we test for host-dependent selection acting on apple (Malus pumila)- and hawthorn (Crataegus spp.)-infesting races of Rhagoletis pomonella (Diptera: Tephritidae). In particular, we examine whether the earlier fruiting phenology of apple trees favors pupae in deeper states of diapause (or with slower metabolisms/development rates) in the apple fly race. By experimentally lengthening the time period preceding winter, we exposed hawthorn race pupae to environmental conditions typically faced by apple flies. This exposure induced a significant genetic response at six allozyme loci in surviving hawthorn fly adults toward allele frequencies found in the apple race. The sensitivity of hawthorn fly pupae to extended periods of warm weather therefore selects against hawthorn flies that infest apples and helps to maintain the genetic integrity of the apple race by counteracting gene flow from sympatric hawthorn populations. Our findings confirm that postzygotic reproductive isolation can evolve as a pleiotropic consequence of host-associated adaptation, a central tenet of nonallopatric speciation. They also suggest that one reason for the paucity of reported fitness trade-offs is a failure to consider adequately costs associated with coordinating an insect's life cycle with the phenology of its host plant.

  15. Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression.

    PubMed

    Meyers, Peter J; Powell, Thomas H Q; Walden, Kimberly K O; Schieferecke, Adam J; Feder, Jeffrey L; Hahn, Daniel A; Robertson, Hugh M; Berlocher, Stewart H; Ragland, Gregory J

    2016-09-01

    The duration of dormancy regulates seasonal timing in many organisms and may be modulated by day length and temperature. Though photoperiodic modulation has been well studied, temperature modulation of dormancy has received less attention. Here, we leverage genetic variation in diapause in the apple maggot fly, Rhagoletis pomonella, to test whether gene expression during winter or following spring warming regulates diapause duration. We used RNAseq to compare transcript abundance during and after simulated winter between an apple-infesting population and a hawthorn-infesting population where the apple population ends pupal diapause earlier than the hawthorn-infesting population. Marked differences in transcription between the two populations during winter suggests that the 'early' apple population is developmentally advanced compared with the 'late' hawthorn population prior to spring warming, with transcripts participating in growth and developmental processes relatively up-regulated in apple pupae during the winter cold period. Thus, regulatory differences during winter ultimately drive phenological differences that manifest themselves in the following summer. Expression and polymorphism analysis identify candidate genes in the Wnt and insulin signaling pathways that contribute to population differences in seasonality. Both populations remained in diapause and displayed a pattern of up- and then down-regulation (or vice versa) of growth-related transcripts following warming, consistent with transcriptional repression. The ability to repress growth stimulated by permissive temperatures is likely critical to avoid mismatched phenology and excessive metabolic demand. Compared with diapause studies in other insects, our results suggest some overlap in candidate genes/pathways, though the timing and direction of changes in transcription are likely species specific. PMID:27312473

  16. Assessing the Risk of Invasion by Tephritid Fruit Flies: Intraspecific Divergence Matters

    PubMed Central

    Godefroid, Martin; Cruaud, Astrid; Rossi, Jean-Pierre; Rasplus, Jean-Yves

    2015-01-01

    Widely distributed species often show strong phylogeographic structure, with lineages potentially adapted to different biotic and abiotic conditions. The success of an invasion process may thus depend on the intraspecific identity of the introduced propagules. However, pest risk analyses are usually performed without accounting for intraspecific diversity. In this study, we developed bioclimatic models using MaxEnt and boosted regression trees approaches, to predict the potential distribution in Europe of six economically important Tephritid pests (Ceratitis fasciventris (Bezzi), Bactrocera oleae (Rossi), Anastrepha obliqua (Macquart), Anastrepha fraterculus (Wiedemann), Rhagoletis pomonella (Walsh) and Bactrocera cucurbitae (Coquillet)). We considered intraspecific diversity in our risk analyses by independently modeling the distributions of conspecific lineages. The six species displayed different potential distributions in Europe. A strong signal of intraspecific climate envelope divergence was observed in most species. In some cases, conspecific lineages differed strongly in potential distributions suggesting that taxonomic resolution should be accounted for in pest risk analyses. No models (lineage- and species-based approaches) predicted high climatic suitability in the entire invaded range of B. oleae—the only species whose intraspecific identity of invading populations has been elucidated—in California. Host availability appears to play the most important role in shaping the geographic range of this specialist pest. However, climatic suitability values predicted by species-based models are correlated with population densities of B. oleae globally reported in California. Our study highlights how classical taxonomic boundaries may lead to under- or overestimation of the potential pest distributions and encourages accounting for intraspecific diversity when assessing the risk of biological invasion. PMID:26274582

  17. Assessing the Risk of Invasion by Tephritid Fruit Flies: Intraspecific Divergence Matters.

    PubMed

    Godefroid, Martin; Cruaud, Astrid; Rossi, Jean-Pierre; Rasplus, Jean-Yves

    2015-01-01

    Widely distributed species often show strong phylogeographic structure, with lineages potentially adapted to different biotic and abiotic conditions. The success of an invasion process may thus depend on the intraspecific identity of the introduced propagules. However, pest risk analyses are usually performed without accounting for intraspecific diversity. In this study, we developed bioclimatic models using MaxEnt and boosted regression trees approaches, to predict the potential distribution in Europe of six economically important Tephritid pests (Ceratitis fasciventris (Bezzi), Bactrocera oleae (Rossi), Anastrepha obliqua (Macquart), Anastrepha fraterculus (Wiedemann), Rhagoletis pomonella (Walsh) and Bactrocera cucurbitae (Coquillet)). We considered intraspecific diversity in our risk analyses by independently modeling the distributions of conspecific lineages. The six species displayed different potential distributions in Europe. A strong signal of intraspecific climate envelope divergence was observed in most species. In some cases, conspecific lineages differed strongly in potential distributions suggesting that taxonomic resolution should be accounted for in pest risk analyses. No models (lineage- and species-based approaches) predicted high climatic suitability in the entire invaded range of B. oleae-the only species whose intraspecific identity of invading populations has been elucidated-in California. Host availability appears to play the most important role in shaping the geographic range of this specialist pest. However, climatic suitability values predicted by species-based models are correlated with population densities of B. oleae globally reported in California. Our study highlights how classical taxonomic boundaries may lead to under- or overestimation of the potential pest distributions and encourages accounting for intraspecific diversity when assessing the risk of biological invasion. PMID:26274582

  18. Soil types will alter the response of arable agroecosystems to future rainfall patterns

    NASA Astrophysics Data System (ADS)

    Zaller, J. G.; Schwarz, T.; Hall, R.; Ziss, E.; von Hohberg und Buchwald, C.; Hösch, J.; Baumgarten, A.

    2012-04-01

    Regional climate change scenarios for eastern Austria (pannonian region) predict fewer but heavier rains during the vegetation period without substantial changes in the total annual amount of rainfall. While many studies investigated the effects of rainfall patterns on ecosystem properties, very little is known on how different soil types might alter ecosystem responses. In order to test this, we conducted an experiment at the AGES lysimeter station using 18 3 m2 lysimeters where we simultaneously manipulated rainfall patterns according to regional climate scenarios (current vs. prognosticated rain) on the three main soil types of the region (sandy calcaric phaeozem, gleyic phaeozem and calcic chernozem). Lysimeters were cultivated according to good farming practice using crop varieties and crop rotations typically for the region. Here, we present results of the response of field peas (Pisum sativum) on important agricultural parameters. Lysimeters under progn. rain showed lower crop cover than under curr. rain while soil types had no effect. Total aboveground biomass production (comprising crops plus weeds) was significantly lower under progn. rain; sandy calcaric phaeozem showed the lowest plant biomass. Pea yields under progn. rain were substantially lower than under curr. rain; again, yields under sandy soils were lower than under the other two soil types. Root growth was significantly higher in progn. rain than in curr. rain; there was a trend towards less root growth in the gleyic soils. Mycorrhization of roots was not influenced by soil types, however under progn. rain colonization rates were lower than under curr. rain. Weed establishment and growth was increased under progn. rain in gleyic soils but decreased in the other soil types. Weed biomass was not affected by rainfall, however sandy soils had less weed biomass than the other soil types. Abundance of the insect pest pea moth (Cydia nigricana) was almost twice as high under progn. rain than under curr