Environmental Inventory Upper Cumberland River, Harlan, Kentucky.
1981-12-01
presents a vicini- ty map for the area. The nearest major city is Knoxville, Tennessee, approxi- mately 140 miles southwest of the study area. Corbin...Harlan study area lies within the Cumberland Mountains section of the Ap- palachian Plateau Physiographic Province. This section has a topography typi...or unpublished mapping was available, instead a specific soils survey of the study area was implemented by the Soil Conser- vation Service (SCS) office
Geologic Map of the Poverty Bay 7.5' quadrangle, King and Pierce counties, Washington
Booth, Derek B.; Waldron, H.H.; Troost, K.G.
2004-01-01
The Poverty Bay quadrangle lies near the center of the region?s intensively developing urban core. Less than 20 km north lies the city of Seattle; downtown Tacoma lies just southwest of the quadrangle. The map area expresses much of the tremendous range of Quaternary environments and deposits found throughout the central Puget Lowland. Much of the ground surface is mantled by a rolling surface of glacial till deposited during the last occupation of the Puget Lowland by a great continental ice sheet about 14,000 years ago. A complex sequence of older unconsolidated sediments extends far below sea level across most of the quadrangle, with no bedrock exposures at all.
Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon
Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.
2010-01-01
The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.
California State Waters Map Series: offshore of San Gregorio, California
Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.
2014-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in the northern and southern parts of the map area are the result of right-lateral motion on strands of the San Gregorio Fault system. In the south, headlands near Pescadero Point have been uplifted by motion along the west strand of the San Gregorio Fault (also called the Frijoles Fault), which separates rocks of the Pigeon Point Formation south of the fault from rocks of the Purisima Formation north of the fault. The regional uplift in this map area has caused relatively shallow water depths within California's State Waters and, thus, little accommodation space for sediment accumulation. Sediment is observed offshore in the central part of the map area, in the shelter of the headlands north of the east strand of the San Gregorio Fault (also called the Coastways Fault) around Miramontes Point (about 5 km north of the map area) and also on the outer half of the California's State Waters shelf in the south where depths exceed 40 m. Sediment in the outer shelf of California's State Waters is rippled, indicating some mobility. The Offshore of San Gregorio map area lies within the cold-temperate biogeographic zone that is called either the "Oregonian province" or the "northern California ecoregion." This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, an eastern limb of the North Pacific subtropical gyre that flows from Oregon to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 350 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off of central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment. Seafloor habitats in the Offshore of San Gregorio map area, which lies within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deep water. Biological productivity resulting from coastal upwelling supports diverse populations of sea birds such as Sooty Shearwater, Western Gull, Common Murre, Cassin's Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of "bull kelp," which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
California State Waters Map Series: offshore of Santa Barbara, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Greene, H. Gary; Krigsman, Lisa M.; Kvitek, Rikk G.; Dieter, Bryan E.; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Conrad, James E.; Cochran, Susan A.; Johnson, Samuel Y.; Cochran, Susan A.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Santa Barbara map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.2 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The city of Santa Barbara, the main coastal population center in the map area, is part of a contiguous urban area that extends from Carpinteria to Goleta. This urban area was developed on the coalescing alluvial surfaces, uplifted marine terraces, and low hills that lie south of the east-west-trending Santa Ynez Mountains. Several beaches line the actively utilized Santa Barbara coastal zone, including Arroyo Burro Beach Park, Leadbetter Beach, East Beach, and “Butterfly Beach.” There are ongoing coastal erosion problems associated with both development and natural processes; between 1933–1934 and 1998, cliff erosion in the map area occurred at rates of about 0.1 to 1 m/yr, the largest amount (63 m) occurring at Arroyo Burro in the western part of the map area. In addition, development of the Santa Barbara Harbor, which began in 1928, lead to shoaling west of the harbor as the initial breakwater trapped sand, as well as to coastal erosion east of the harbor. Since 1959, annual harbor dredging has mitigated at least some of the downcoast erosion problems. The Offshore of Santa Barbara map area lies in the central part of the Santa Barbara littoral cell, which is characterized by littoral drift to the east-southeast. Drift rates have been estimated to be about 400,000 tons/yr at Santa Barbara Harbor. Sediment supply to the western and central parts of the littoral cell, including the map area, is largely from relatively small transverse coastal watersheds. Within the map area, these coastal watersheds include (from east to west) San Ysidro Creek, Oak Creek, Montecito Creek, Sycamore Creek, Mission Creek, Arroyo Burro, and Atascadero Creek. The Ventura and Santa Clara Rivers, the mouths of which are about 40 to 50 km southeast of Santa Barbara, are much larger sediment sources. Still farther east, eastward-moving sediment in the littoral cell is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips gently seaward (about 0.4° to 0.8°) so that water depths at the 3-nautical-mile limit of California’s State Waters are about 45 m in the east and about 75 m in the west. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. The shelf is underlain by variable amounts of upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Santa Barbara map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie within the Shelf (continental shelf) megahabitat, range from soft, unconsolidated sediment to hard sedimentary bedrock. This heterogeneous seafloor provides promising habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms.
California State Waters Map Series—Offshore of Gaviota, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.
2018-04-20
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south flank of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 760 m in the map area, lies about 4 km north of the shoreline.Gaviota is an unincorporated community that has a sparse population (less than 100), and the coastal zone is largely open space that is locally used for cattle grazing. The Union Pacific railroad tracks extend westward along the coast through the entire map area, within a few hundred meters of the shoreline. Highway 101 crosses the eastern part of the map area, also along the coast, then turns north (inland) and travels through Cañada de la Gaviota and Gaviota Pass en route to Buellton. Gaviota State Park lies at the mouth of Cañada de la Gaviota. West of Gaviota, the onland coastal zone is occupied by the Hollister Ranch, a privately owned, gated community that has no public access.The map area has a long history of petroleum exploration and development. Several offshore gas fields were discovered and were developed by onshore directional drilling in the 1950s and 1960s. Three offshore petroleum platforms were installed in adjacent federal waters in 1976 (platform “Honda”) and 1989 (platforms “Heritage” and “Harmony”). Local offshore and onshore operations were serviced for more than a century by the Gaviota marine terminal, which is currently being decommissioned and will be abandoned in an intended transition to public open space. The Offshore of Gaviota map area lies within the western Santa Barbara Channel region of the Southern California Bight, and it is somewhat protected from large Pacific swells from the north and northwest by Point Conception and from south and southwest swells by offshore islands and banks. Much of the shoreline in the map area is characterized by narrow beaches that have thin sediment cover, backed by low (10- to 20-m-high) cliffs that are capped by a narrow coastal terrace. Beaches are subject to wave erosion during winter storms, followed by gradual sediment recovery or accretion in the late spring, summer, and fall months during the gentler wave climate.The map area lies in the western-central part of the Santa Barbara littoral cell, which is characterized by west-to-east transport of sediment from Point Arguello on the northwest to Hueneme and Mugu Canyons on the southeast. Sediment supply to the western and central part of the littoral cell is mainly from relatively small coastal watersheds. In the map area, sediment sources include Cañada de la Gaviota (52 km2), as well as Cañada de la Llegua, Arroyo el Bulito, Cañada de Santa Anita, Cañada de Alegria, Cañada del Agua Caliente, Cañada del Barro, Cañada del Leon, Cañada San Onofre, and many others. Coastal-watershed discharge and sediment load are highly variable, characterized by brief large events during major winter storms and long periods of low (or no) flow and minimal sediment load between storms. In recent (recorded) history, the majority of high-discharge, high-sediment-flux events have been associated with El Niño phases of the El Niño–Southern Oscillation climatic pattern.Shelf width in the Offshore of Gaviota map area ranges from about 4.3 to 4.7 km, and shelf slopes average about 1.0° to 1.2° but are highly variable because of the presence of the large Gaviota sediment bar. This bar extends southwestward for about 9 km from the mouth of Cañada de la Gaviota to the shelf break, is as wide as 2 km, and is by far the largest shore-attached sediment bar in the Santa Barbara Channel. The shelf is underlain by bedrock and variable amounts (0 to as much as 36 m in the Gaviota bar) of upper Quaternary sediments deposited as sea level fluctuated in the late Pleistocene. The trend of the shelf break changes from about 276° to 236° azimuth over a distance of about 12 km, and it ranges in depth from about 91 m to as shallow as 62 to 73 m where significant shelf-break and upper-slope failure and landsliding has apparently occurred. The shelf break in the western part of the map area is notably embayed by the heads of three large (150- to 300-m-wide) channels that have been referred to as “the Gaviota Canyons” or as “Drake Canyon,” “Sacate Canyon,” and “Alegria Canyon.”Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft, unconsolidated sediment interspersed with isolated areas of rocky habitat that support kelp-forest communities in the nearshore and rocky-reef communities in deeper water. The potential marine benthic habitat types mapped in the Offshore of Gaviota map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats. The fairly homogeneous seafloor of sediment and low-relief bedrock provides characteristic habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms. Several areas of smooth sediment form nearshore terraces that have relatively steep, smooth fronts, which may be attractive to groundfish. Below the steep shelf break, soft, unconsolidated sediment is interrupted by the heads of several submarine canyons and rills, some bedrock exposures, and small carbonate mounds associated with asphalt mounds and pockmarks, also good potential habitat for rockfish. The map area includes the relatively small (5.2 km2) Kashtayit State Marine Conservation Area, which largely occupies the inner part of the Gaviota sediment bar.
California State Waters Map Series — Offshore of Point Conception, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.
2018-04-20
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Point Conception map area is in the westernmost part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and this region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south and west flanks of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 340 m in the map area, lies about 5 km north and east of the arcuate shoreline.The onland part of the coastal zone is remote and sparsely populated. The road to Jalama Beach County Park provides the only public coastal access in the entire map area. North of this county park, the coastal zone is part of Vandenberg Air Force Base. South of Jalama Beach County Park, most of the coastal zone is part of the Cojo-Jalama Ranch, purchased by the Nature Conservancy in December 2017. A relatively small part of the coastal zone in the eastern part of the map area lies within the privately owned Hollister Ranch. The nearest significant commercial centers are Lompoc (population, about 42,000), about 10 km north of the map area, and Goleta (population, about 30,000), about 50 km east of the map area. The Union Pacific railroad tracks run west and northwest along the coast through the entire map area, within a few hundred meters of the shoreline. The map area has a long history of petroleum exploration, and the seafloor notably includes large asphalt mounds and pockmarks that result from petroleum seepage. Several offshore gas and oil fields were discovered, and some were developed, in and on the margin of California’s State Waters.Much of the shoreline in the Offshore of Point Conception map area is characterized by narrow beaches that have thin sediment cover above bedrock platforms, backed by low (10- to 20-m-high) cliffs that are capped by a coastal terrace. Beaches are subject to wave erosion during winter storms, followed by gradual sediment recovery or accretion in the late spring, summer, and fall months during the gentler wave climate. The map area lies in the west-central part of the Santa Barbara littoral cell, which is characterized by west-to-east transport of sediment from Point Arguello on the northwest to Hueneme and Mugu Canyons on the southeast. Sediment supply to the map area is mainly from relatively small coastal watersheds, including the Jalama Creek–Espada Creek drainage basin (about 63 km2), as well as Cañada del Jolloru, Black Canyon, Wood Canyon, Cañada del Cojo, and Barranca Honda. Coastal-watershed discharge and sediment load are highly variable, characterized by brief large events during major winter storms and long periods of low (or no) flow and minimal sediment load between storms. In recent (recorded) history, the majority of high-discharge, high-sediment-flux events have been associated with El Niño phases of the El Niño–Southern Oscillation climatic pattern.Following the coastline, the shelf bends to the north and northwest around Point Conception, and the trend of the shelf break changes from about 298° to 241° azimuth. Shelf width ranges from about 5 km south of Point Conception to about 11 km northwest of it; the slope ranges from about 1.0° to 1.2° to about 0.7° south and northwest of Point Conception, respectively. Southwest of Point Conception, the shelf break and upper slope are incised by a 600-m-wide, 20- to 30-m-deep, south-facing trough, one of five heads of the informally named Arguello submarine canyon.The map area is located at a major biogeographic transition zone between the east-west-trending Santa Barbara Channel region of the Southern California Bight and the northwest-trending central California coast. North of Point Conception, the coast is subjected to high wave exposure from the north, west, and south, as well as consistently strong upwelling that brings cold, nutrient-rich waters to the surface. Southeast of Point Conception, the Santa Barbara Channel is largely protected from strong north swells by Point Conception and from south swells by the Channel Islands; surface waters are warmer, and upwelling is weak and seasonal.Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft, unconsolidated sediment interspersed with isolated areas of rocky habitat that support kelp-forest communities in the nearshore and rocky-reef communities in deeper water. The potential marine benthic habitat types mapped in the Offshore of Point Conception map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats. The fairly homogeneous seafloor of sediment and low-relief bedrock provides characteristic habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms. Several areas of smooth sediment form nearshore terraces that have relatively steep, smooth fronts, which are attractive to groundfish. Below the steep shelf break, soft, unconsolidated sediment is interrupted by the heads of several submarine canyons, gullies, and rills, also good potential habitat for rockfish. The map area includes the large (58.3 km2) Point Conception State Marine Reserve.
Geologic map of the northern White Hills, Mohave County, Arizona
Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.
2017-07-10
IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located, northward-sagged Temple Basin. Pliocene fluvial and piedmont alluvial fan deposits record postextensional basin incision, refilling, and reincision driven by the inception and evolution of the westward-flowing Colorado River, centered north of the map area.
The Dixmier Map for Nilpotent Super Lie Algebras
NASA Astrophysics Data System (ADS)
Herscovich, Estanislao
2012-07-01
In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by {Prim({U}({g}))} the set of (graded) primitive ideals of the enveloping algebra {{U}({g})} of a nilpotent Lie superalgebra {{g}} and {{A}d0} the adjoint group of {{g}0}, we prove that the usual Dixmier map for nilpotent Lie algebras can be naturally extended to the context of nilpotent super Lie algebras, i.e. there exists a bijective map I : {g}0^{*}/{A}d0 rightarrow Prim({U}({g})) defined by sending the equivalence class [ λ] of a functional λ to a primitive ideal I( λ) of {{U}({g})}, and which coincides with the Dixmier map in the case of nilpotent Lie algebras. Moreover, the construction of the previous map is explicit, and more or less parallel to the one for Lie algebras, a major difference with a previous approach ( cf. [18]). One key fact in the construction is the existence of polarizations for super Lie algebras, generalizing the concept defined for Lie algebras. As a corollary of the previous description, we obtain the isomorphism {{U}({g})/I(λ) ˜eq Cliffq(k) ⊗ Ap(k)}, where {(p,q) = (dim({g}0/{g}0^{λ})/2,dim({g}1/{g}1^{λ}))}, we get a direct construction of the maximal ideals of the underlying algebra of {{U}({g})} and also some properties of the stabilizers of the primitive ideals of {{U}({g})}.
Body Topography Parcellates Human Sensory and Motor Cortex.
Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S
2017-07-01
The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.
California State Waters Map Series: offshore of Carpinteria, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Gutierrez, Carlos I.; Krigsman, Lisa M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Carpinteria map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The small city of Carpinteria is the most significant onshore cultural center in the map area; the smaller town of Summerland lies west of Carpinteria. These communities rest on a relatively flat coastal piedmont that is surrounded on the north, east, and west by hilly relief on the flanks of the Santa Ynez Mountains. El Estero, a salt marsh on the coast west of Carpinteria, is an ecologically important coastal estuary. Southeast of Carpinteria, the coastal zone is narrow strip containing highway and railway transportation corridors and a few small residential clusters. Rincon Point is a well-known world-class surf break, and Rincon Island, constructed for oil and gas production, lies offshore of Punta Gorda. The steep bluffs backing the coastal strip are geologically unstable, and coastal erosion problems are ongoing in the map area; most notably, landslides in 2005 struck the small coastal community of La Conchita, engulfing houses and killing ten people. The Offshore of Carpinteria map area lies in the central part of the Santa Barbara littoral cell, whose littoral drift is to the east-southeast. Drift rates have been estimated to be about 400,000 tons/yr at Santa Barbara Harbor (about 15 km west of Carpinteria). At the east end of the littoral cell, eastward-moving sediment is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. Sediment supply to the western and central part of the littoral cell is largely from relatively small transverse coastal watersheds, which have an estimated cumulative annual sediment flux of 640,000 tons/yr. The much larger Ventura and Santa Clara Rivers, the mouths of which are about 25 to 30 km southeast of Carpinteria, yield an estimated 3.4 million tons of sediment annually, the coarser sediment load generally moving southeast, down the coast, and the finer sediment load moving both upcoast and offshore. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips so gently (about 0.4° to 0.5°) that water depths at the 3-nautical-mile limit of California’s State Waters are 40 to 45 m. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. Fair-weather wave base is typically shallower than 20-m water depth, but winter storms are capable of resuspending fine-grained sediments in 30 m of water, and so shelf sediments in the map area probably are remobilized on an annual basis. The shelf is underlain by variable amounts of upper Quaternary shelf, estuarine, and fluvial sediments that thicken to the south. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Carpinteria map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie within the Shelf (continental shelf) megahabitat, dominated by a flat seafloor and substrates formed from deposition of fluvial and marine sediment during sea-level rise. This fairly homogeneous seafloor provides promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. The only significant interruptions to this homogeneous habitat type are the exposures of hard, irregular, and hummocky sedimentary bedrock and coarse-grained sediment where potential habitats for rockfish and related species exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busby, C
2009-11-24
The area subject to this investigation is the existing Lawrence Livermore Laboratory Site 300, located in the region north of Corral Hollow; approximately eight and one half miles southwest of Tracy, San Joaquin County, California. Cartographic location can be determined from the Tracy and Midway USGS 7.5 minute topographic quadrangles, the appropriate portions of which are herein reproduced as Maps 1 and 2. The majority of the approximate 7000 acres of the location lies within San Joaquin County. This includes all of the area arbitrarily designated the 'Eastern Portion' on Map 2 and the majority of the area designated themore » 'Western Portion' on Map 1. The remaining acreage, along the western boundary of the location, lies within Alameda County. The area is located in the region of open rolling hills immediately north of Corral Hollow, and ranges in elevation from approximately 600 feet, on the flood plain of Corral Hollow Creek, to approximately 1700 feet in the northwest portion of the project location. Proposed for the area under investigation are various, unspecified improvements or modifications to the existing Site 300 facilities. Present facilities consist of scattered buildings, bunkers and magazines, utilized for testing and research purposes, including the necessary water, power, and transportation improvements to support them. The vast majority of the 7000 acres location is presently open space, utilized as buffer zones between test locations and as firing ranges.« less
Biological assessment: TCEF research project for Lewis and Clark National Forest [Appendix A
Donald Godtel
1998-01-01
An environmental analysis has been prepared which describes and evaluates the management alternatives for the timber harvest and burning within the Tenderfoot Creek Experimental Forest (TCEF) project area. The project area lies within the headwaters of the Tenderfoot drainage of the Lewis and Clark National Forest (Map 1-1 of EA). The purpose of this biological...
NASA Technical Reports Server (NTRS)
Fitzpatrick, K. A.; Lins, H. F., Jr.
1972-01-01
The author has identified the following significant results. A preliminary study on the capabilities of ERTS data in land use mapping and change detection was carried out in the area around Frederick County, Maryland, which lies in the northwest corner of the Central Atlantic Regional Ecological Test Site. The investigation has revealed that Level 1 (of the Anderson classification system) land use mapping can be performed and that, in some cases, land undergoing change can be identified. Results to date suggest that more work should be done in areas where land use changes are known to exist, in order to establish some form of base for recognizing the spectral signature indicative of change areas.
California State Waters Map Series—Monterey Canyon and vicinity, California
Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.
2016-06-10
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Monterey Canyon and Vicinity map area lies within Monterey Bay in central California. Monterey Bay is one of the largest embayments along the west coast of the United States, spanning 36 km from its northern to southern tips (in Santa Cruz and Monterey, respectively) and 20 km along its central axis. Not only does it contain one of the broadest sections of continental shelf along California’s coast, it also contains Monterey Canyon, one of the largest and deepest submarine canyons in the world. Note that the California’s State Waters limit extends farther offshore between Santa Cruz and Monterey so that it encompasses all of Monterey Bay.The coastal area within the map area is lightly populated. The community of Moss Landing (population, 204) hosts the largest commercial fishing fleet in Monterey Bay in its harbor. The map area also includes parts of the cities of Marina (population, about 20,000) and Castroville (population, about 6,500). Fertile lowlands of the Salinas River and Pajaro River valleys largely occupy the inland part of the map area, and land use is primarily agricultural.The offshore part of the map area lies completely within the Monterey Bay National Marine Sanctuary. The map area also includes Portuguese Ledge and Soquel Canyon State Marine Conservation Areas. Designated conservation and (or) recreation areas in the onshore part of the map area include Salinas River National Wildlife Refuge, Elkhorn Slough State Marine Conservation Area, Elkhorn Slough State Marine Reserve, Moss Landing Wildlife Area, Zmudowski and Salinas River State Beaches, and Marina Dunes Preserve.Monterey Bay, a geologically complex area within a tectonically active continental margin, lies between two major, converging strike-slip faults. The northwest-striking San Andreas Fault lies about 34 km east of Monterey Bay; this section of the fault ruptured in both the 1989 M6.9 Loma Prieta earthquake and the 1906 M7.8 great California earthquake. The northwest-striking San Gregorio Fault crosses Monterey Canyon west of Monterey Bay. Between these two regional faults, strain is accommodated by the northwest-striking Monterey Bay Fault Zone. Deformation associated with these major regional faults and related structures has resulted in uplift of the Santa Cruz Mountains, as well as the granitic highlands of the Monterey peninsula.Monterey Canyon begins in the nearshore area directly offshore of Moss Landing and Elkhorn Slough, and it can be traced for more than 400 km seaward, out to water depths of more than 4,000 m. Within the map area, the canyon can be traced for about 42 km to a water depth of about 1,520 m. The head of the canyon consists of three branches that begin about 150 m offshore of Moss Landing Harbor. At 500 m offshore, the canyon is already 70 m deep and 750 m wide. Large sand waves, which have heights from 1 to 3 m and wavelengths of about 50 m, are present along the channel axis in the upper 4 km of the canyon.Soquel Canyon is the most prominent tributary of Monterey Canyon within the map area. The head of Soquel Canyon is isolated from coastal watersheds and, thus, is considered inactive as a conduit for coarse sediment transport.North and south of Monterey and Soquel Canyons, the relatively flat continental shelf contains only a few rocky outcrop exposures. Bedrock is covered largely by sediment derived from the Salinas and Pajaro Rivers. North of Monterey Canyon, the broad and flat continental shelf dips gently seaward, to water depths of about 95 m. To the south, the shelf also dips slightly, to water depths of as much as 150 m along the canyon edge.In the map area, Monterey Canyon splits the Santa Cruz littoral cell (north of the canyon) and the southern Monterey littoral cell (south of the canyon). It is estimated that about 400,000 m3/yr of sand on average enters Monterey Canyon from both of these littoral cells.In the Santa Cruz littoral cell, sand generally travels east and south. Sand is supplied through sea cliff erosion, as well as from the San Lorenzo River, the Pajaro River, and several other smaller coastal watersheds. About 152,911 m3/yr of sand is dredged from the entrance channel of the Santa Cruz Small Craft Harbor north of the map area and then placed on beaches to the east (downdrift) of it. This sand feeds the beaches in the southeastern reach of the Santa Cruz littoral cell and (or) is eventually trapped and lost by Monterey Canyon.The southern Monterey Bay littoral cell in the map area consists of two subcells. From the head of Monterey Canyon to the Salinas River, littoral drift is dominantly to the north; sand entering the ocean from the Salinas River either is deposited offshore or travels north in the littoral zone, nourishing the beaches until it is transported down Monterey Canyon. From south of the Salinas River to the southern extent of the map area, coastal sediment is moved mainly to the south; dune erosion is the only significant source of sand in this subcell.
Wheeler, George Montague; Stevenson, John J.
1881-01-01
The region examined during the seasons of 1878 and 1879 extends north to north latitude 37° 20, and embraces parts of North Central New Mexico, and South Central Colorado. It lies wholly east from the canon of the Rio Grande, includes the mountain area of the Spanish ranges to their southern termination, and takes in the eastern plains to west longitude 104° 7' 30". But of this region a strip between the Rio Grande and the mountains, lying south from north latitude 36° 40" was not visited; and the total area colored on the maps is not far from 10,000 square miles.
California State Waters Map Series: offshore of Refugio Beach, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Krigsman, Lisa M.; Dieter, Bryan E.; Conrad, James E.; Greene, H. Gary; Seitz, Gordon G.; Endris, Charles A.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Yoklavich, Mary M.; East, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft, unconsolidated sediment interspersed with isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Refugio Beach map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats, primarily are composed of soft sediment interrupted by a few carbonate mounds. This homogeneous seafloor of sediment and low-relief bedrock provides promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms.
Torregrosa, Alicia
2016-01-01
Within the world of mapping, clouds are a pesky interference to be removed from satellite remote sensed imagery. However, to many of us, that is a waste of pixels. Cloud maps are becoming increasingly valuable in the quest to understand land cover change and surface processes. In coastal California, the dynamic summertime interactions between air masses, the ocean, and topography result in blankets of fog and low clouds flowing into low lying areas of the San Francisco Bay Area. The low clouds and fog advected from the Pacific bring moisture and shade to coastal ecosystems. This acts to reduce temperatures and evapotranspiration stress during the otherwise arid Mediterranean climate season, in turn impacting vegetation distribution, irrigation needs, and urban energy consumption.
Yau, Stephen S.-T.
1983-01-01
A natural mapping from the set of complex analytic isolated hypersurface singularities to the set of finite dimensional Lie algebras is first defined. It is proven that the image under this natural mapping is contained in the set of solvable Lie algebras. This approach gives rise to a continuous inequivalent family of finite dimensional representations of a solvable Lie algebra. PMID:16593401
California State Waters Map Series--Offshore of Ventura, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Seitz, Gordon G.; Gutierrez, Carlos I.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Ventura map area lies within the Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. The city of Ventura is the major cultural center in the map area. The Ventura River cuts through Ventura, draining the Santa Ynez Mountains and the coastal hills north of Ventura. Northwest of Ventura, the coastal zone is a narrow strip containing highway and railway transportation corridors and a few small residential clusters. Rincon Island, an island constructed for oil and gas production, lies offshore of Punta Gorda. Southeast of Ventura, the coastal zone consists of the mouth and broad, alluvial plains of the Santa Clara River, and the region is characterized by urban and agricultural development. Ventura Harbor sits just north of the mouth of the Santa Clara River, in an area formerly occupied by lagoons and marshes. The Offshore of Ventura map area lies in the eastern part of the Santa Barbara littoral cell, whose littoral drift is to the east-southeast. Drift rates of about 700,000 to 1,150,000 tons/yr have been reported at Ventura Harbor. At the east end of the littoral cell, eastward-moving sediment is trapped by Hueneme and Mugu Canyons and then transported into the deep-water Santa Monica Basin. The largest sediment source to this littoral cell (and the largest in all of southern California) is the Santa Clara River, which has an estimated annual sediment flux of 3.1 million tons. In addition, the Ventura River yields about 270,000 tons of sediment annually. Despite the large local sediment supply, coastal erosion problems are ongoing in the map area. Riprap, revetments, and seawalls variably protect the coast within and north of Ventura. The offshore part of the map area mainly consists of relatively flat, shallow continental shelf, which dips so gently (about 0.2° to 0.4°) that water depths at the 3-nautical-mile limit of California’s State Waters are just 20 to 40 m. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and west by Point Conception and the Channel Islands; long-period swells affecting the area are mainly from the south-southwest. Fair-weather wave base is typically shallower than 20-m water depth, but winter storms are capable of resuspending fine-grained sediments in 30 m of water, and so shelf sediments in the map area probably are remobilized on an annual basis. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated up and down in the last several hundred thousand years. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Ventura map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie within the Shelf (continental shelf) megahabitat, dominated by a flat seafloor and substrates formed from deposition of fluvial and marine sediment during sea-level rise. This flat, fairly homogeneous seafloor, composed primarily of unconsolidated sand and mud and local deposits of gravel, cobbles, and pebbles, provides promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. The only significant interruptions to this homogeneous habitat type are exposures of hard, irregular sedimentary bedrock and coarse-grained sediment where potential habitats for rockfish and related species exist.
California State Waters Map Series: offshore of Half Moon Bay, California
Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.
2014-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by compression related to right-lateral strike-slip movement along the San Gregorio Fault Zone. The lowest elevation coincides with the deepest part of Half Moon Bay; the terrace surface rises both to the north and to the south. Uplift in this map area has resulted in relatively shallow water depths within California’s State Waters and, thus, little accommodation space for sediment accumulation. Sediment is observed in the shelter of Half Moon Bay and on the outer half of the California’s State Waters shelf. Sediment in the area is mobile, often forming dunes and sand waves. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the Seal Cove Fault, which comes ashore in Pillar Point Harbor, has resulted in the folding and uplifting of sedimentary rocks of the Purisima Formation in the offshore. Differential erosion of these folded and faulted layers of the Purisima Formation has exposed the parallel curved-rock ridges that are visible on the seafloor from the headland at Pillar Point. During the winter, strong North Pacific storms generate large, long-period waves that shoal and break over this bedrock reef at the world-famous surfing location known as Mavericks. The Offshore of Half Moon Bay map area lies within the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, an eastern limb of the North Pacific subtropical gyre that flows from Oregon to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 365 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment. Seafloor habitats in the Offshore of Half Moon Bay map area, which lies within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deep water. Biological productivity resulting from coastal upwelling supports populations of sea birds such as Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
The Geometric Nature of the Flaschka Transformation
NASA Astrophysics Data System (ADS)
Bloch, Anthony M.; Gay-Balmaz, François; Ratiu, Tudor S.
2017-06-01
We show that the Flaschka map, originally introduced to analyze the dynamics of the integrable Toda lattice system, is the inverse of a momentum map. We discuss the geometrical setting of the map and apply it to the generalized Toda lattice systems on semisimple Lie algebras, the rigid body system on Toda orbits, and to coadjoint orbits of semidirect products groups. In addition, we develop an infinite-dimensional generalization for the group of area preserving diffeomorphisms of the annulus and apply it to the analysis of the dispersionless Toda lattice PDE and the solvable rigid body PDE.
Finn, C A; Sisson, T W; Deszcz-Pan, M
2001-02-01
Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows and future collapses could threaten areas that are now densely populated. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.
Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano
Finn, C.A.; Sisson, T.W.; Deszcz-Pan, M.
2001-01-01
Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows1. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes1-4 and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows5,6 and future collapses could threaten areas that are now densely populated7. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit3-5,8. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.
Pampeyan, Earl H.
1993-01-01
The Palo Alto and southern part of the Redwood Point 7-1/2' quadrangles cover an area on the San Francisco peninsula between San Francisco Bay and the Santa Cruz Mountains. San Francisquito and Los Trancos Creeks, in the southeastern part of the map area, form the boundary between San Mateo and Santa Clara Counties. The area covered by the geologic map extends from tidal and marsh lands at the edge of the bay southward across a gently sloping alluvial plain to the foothills of the northern Santa Cruz Mountains. The foothills are separated from the main mass of the mountains by two northwest-striking faults, the San Andreas and Pilarcitos, that cross the southwest corner of the map area (fig. 1). The map and adjoining areas are here divided into three structural blocks juxtaposed along these faults, adopting the scheme of Nilsen and Brabb (1979): (1) the San Francisco Bay block lying east of the San Andreas Fault Zone; (2) the Pilarcitos block lying between the San Andreas and Pilarcitos Faults; and (3) the La Honda block that includes the main mass of the Santa Cruz Mountains lying west of the Pilarcitos Fault. The west boundary of the La Honda block is the Seal Cove-San Gregorio Fault. Pre-late Pleistocene Cenozoic rocks of the foothills have been compressed into northwest-striking folds, which have been overridden by Mesozoic rocks along southwest-dipping low-angle faults. Coarse- to fine-grained upper Pleistocene and Holocene alluvial and estuarine deposits, eroded from the foothills and composing the alluvial plain, are essentially undeformed. Most of the alluvial plain, including some parts of the marsh land that borders the bay, has been covered by residential and commercial developments, and virtually all of the remaining marsh land has been diked off and used as salt evaporating ponds. The map area includes parts of the municipalities of San Carlos, Redwood City, Atherton, Woodside, Portola Valley, Menlo Park, and East Palo Alto in San Mateo County; and Palo Alto, Stanford University, Los Altos, and Los Altos Hills in Santa Clara County (fig. 2). Much of the university land remains as undeveloped open space surrounded by densely urbanized lands. Geologic maps of all or part of the present map area have been prepared previously by Branner and others (1909), Thomas (1949), Dobbs and Forbes (1960), Dibblee (1966), Page and Tabor (1967), Pampeyan (1970a, 1970b), Beaulieu (1970), Helley and others (1979), and by numerous Stanford University students working on topical earth science problems. In addition, numerous engineering geologic studies have been conducted for site investigations relating to residential and commercial developments and, in particular, for construction of the Stanford Linear Accelerator Center (SLAC). The reports pertaining to SLAC are summarized in Skjei and others (1965) and more recently in a report by Earth Sciences Associates (1983). The interested reader is referred to Brabb and Pampeyan (1983), Brabb and others (1982), Wentworth and others (1985), Wieczorek and others (1985), Thomson and Evernden (1986), Brabb and Olson (1986), Youd and Perkins (1987), Perkins (1987), and Mark and Newman (1988) for information pertaining to geology, history, slope stability, seismic shaking, liquifaction potential, and faulting and seismicity in San Mateo County, some of which can be applied directly to northern Santa Clara County. Field work for the present geologic map was done in 1962-1964 and 1966 when SLAC and Interstate 280 were in early stages of construction. Only minor additions and revisions have been made since this mapping was first released (Pampeyan, 1970a; 1970b) as it was impractical to keep pace with accelerating urban development of the area. Geologic units of the flatlands area are largely adapted from Helley and Lajoie (1979).
Mapping the District: An Accreditation Survey.
ERIC Educational Resources Information Center
Los Rios Community Coll. District, Sacramento, CA. Office of Institutional Research.
This document is a survey designed to assess the opinions of campus and district office employees in the Los Rios Community College District, California, about where the responsibility for different functions lies and how well the functions are being performed. Respondents are asked to identify the area performing each function, and then rate how…
Talbot, S. S.; Shasby, M.B.; Bailey, T.N.
1985-01-01
A Landsat-based vegetation map was prepared for Kenai National Wildlife Refuge and adjacent lands, 2 million and 2.5 million acres respectively. The refuge lies within the middle boreal sub zone of south central Alaska. Seven major classes and sixteen subclasses were recognized: forest (closed needleleaf, needleleaf woodland, mixed); deciduous scrub (lowland and montane, subalpine); dwarf scrub (dwarf shrub tundra, lichen tundra, dwarf shrub and lichen tundra, dwarf shrub peatland, string bog/wetlands); herbaceous (graminoid meadows and marshes); scarcely vegetated areas ; water (clear, moderately turbid, highly turbid); and glaciers. The methodology employed a cluster-block technique. Sample areas were described based on a combination of helicopter-ground survey, aerial photo interpretation, and digital Landsat data. Major steps in the Landsat analysis involved: preprocessing (geometric connection), spectral class labeling of sample areas, derivation of statistical parameters for spectral classes, preliminary classification of the entree study area using a maximum-likelihood algorithm, and final classification through ancillary information such as digital elevation data. The vegetation map (scale 1:250,000) was a pioneering effort since there were no intermediate-sclae maps of the area. Representative of distinctive regional patterns, the map was suitable for use in comprehensive conservation planning and wildlife management.
California State Waters Map Series: offshore of Coal Oil Point, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Dieter, Bryan E.; Conrad, James E.; Lorenson, T.D.; Krigsman, Lisa M.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Finlayson, David P.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Leifer, Ira; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Hostettler, Frances D.; Peters, Kenneth E.; Kvenvolden, Keith A.; Rosenbauer, Robert J.; Fong, Grace; Johnson, Samuel Y.; Cochran, Susan A.
2014-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Coal Oil Point map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.0 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The cities of Goleta and Isla Vista, the main population centers in the map area, are in the western part of a contiguous urban area that extends eastward through Santa Barbara to Carpinteria. This urban area is on the south flank of the east-west-trending Santa Ynez Mountains, on coalescing alluvial fans and uplifted marine terraces underlain by folded and faulted Miocene bedrock. In the map area, the relatively low-relief, elevated coastal bajada narrows from about 2.5 km wide in the east to less than 500 m wide in the west. Several beaches line the actively utilized coastal zone, including Isla Vista County Park beach, Coal Oil Point Reserve, and Goleta Beach County Park. The beaches are subject to erosion each winter during storm-wave attack, and then they undergo gradual recovery or accretion during the more gentle wave climate of the late spring, summer, and fall months. The Offshore of Coal Oil Point map area lies in the central part of the Santa Barbara littoral cell, which is characterized by littoral drift to the east-southeast. Longshore drift rates have been reported to range from about 160,000 to 800,000 tons/yr, averaging 400,000 tons/yr. Sediment supply to the western and central parts of the littoral cell, including the map area, is largely from relatively small transverse coastal watersheds. Within the map area, these coastal watersheds include (from east to west) Las Llagas Canyon, Gato Canyon, Las Varas Canyon, Dos Pueblos Canyon, Eagle Canyon, Tecolote Canyon, Winchester Canyon, Ellwood Canyon, Glen Annie Canyon, and San Jose Creek. The Santa Ynez and Santa Maria Rivers, the mouths of which are about 100 to 140 km northwest of the map area, are not significant sediment sources because Point Conception and Point Arguello provide obstacles to downcoast sediment transport and also because much of their sediment load is trapped in dams. The Ventura and Santa Clara Rivers, the mouths of which are about 45 to 55 km southeast of the map area, are much larger sediment sources. Still farther east, eastward-moving sediment in the littoral cell is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips gently seaward (about 0.8° to 1.0°) so that water depths at the shelf break, roughly coincident with the California’s State Waters limit, are about 90 m. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. The shelf is underlain by variable amounts of upper Quaternary marine and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. The large (130 km2) Goleta landslide complex lies along the shelf break in the southern part of the map area. This compound slump complex may have been initiated more than 200,000 years ago, but it also includes three recent failures that may have been generated between 8,000 to 10,000 years ago. A local, 5- to 10-m-high tsunami may have been generated from these failure events. The map area has had a long history of hydrocarbon development, which began in 1928 with discovery of the Ellwood oil field. Subsequent discoveries in the offshore include South Ellwood offshore oil field, Coal Oil Point oil field, and Naples oil and gas field. Development of South Ellwood offshore field began in 1966 from platform “Holly,” the last platform to be installed in California’s State Waters. The area also is known for “the world’s most spectacular marine hydrocarbon seeps,” and large tar seeps are exposed on beaches east of the mouth of Goleta Slough. Offshore seeps adjacent to South Ellwood oil field release about 40 tons per day of methane and about 19 tons per day of ethane, propane, butane, and higher hydrocarbons. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Coal Oil Point map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats, range from soft, unconsolidated sediment to hard sedimentary bedrock. This heterogeneous seafloor provides promising habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms.
Miller, David M.; Bedford, David R.
2000-01-01
This geologic map database for the El Mirage Lake area describes geologic materials for the dry lake, parts of the adjacent Shadow Mountains and Adobe Mountain, and much of the piedmont extending south from the lake upward toward the San Gabriel Mountains. This area lies within the western Mojave Desert of San Bernardino and Los Angeles Counties, southeastern California. The area is traversed by a few paved highways that service the community of El Mirage, and by numerous dirt roads that lead to outlying properties. An off-highway vehicle area established by the Bureau of Land Management encompasses the dry lake and much of the land north and east of the lake. The physiography of the area consists of the dry lake, flanking mud and sand flats and alluvial piedmonts, and a few sharp craggy mountains. This digital geologic map database, intended for use at 1:24,000-scale, describes and portrays the rock units and surficial deposits of the El Mirage Lake area. The map database was prepared to aid in a water-resource assessment of the area by providing surface geologic information with which deepergroundwater-bearing units may be understood. The area mapped covers the Shadow Mountains SE and parts of the Shadow Mountains, Adobe Mountain, and El Mirage 7.5-minute quadrangles. The map includes detailed geology of surface and bedrock deposits, which represent a significant update from previous bedrock geologic maps by Dibblee (1960) and Troxel and Gunderson (1970), and the surficial geologic map of Ponti and Burke (1980); it incorporates a fringe of the detailed bedrock mapping in the Shadow Mountains by Martin (1992). The map data were assembled as a digital database using ARC/INFO to enable wider applications than traditional paper-product geologic maps and to provide for efficient meshing with other digital data bases prepared by the U.S. Geological Survey's Southern California Areal Mapping Project.
Amoroso, Lee; Priest, Susan S.; Hiza-Redsteer, Margaret
2014-01-01
The bedrock and surficial geologic map of the west half of the Sanders 30' x 60' quadrangle was completed in a cooperative effort of the U.S. Geological Survey (USGS) and the Navajo Nation to provide regional geologic information for management and planning officials. This report provides baseline geologic information that will be useful in future studies of groundwater and surface water resources, geologic hazards, and the distribution of soils and plants. The west half of the Sanders quadrangle encompasses approximately 2,509 km2 (980 mi2) within Navajo and Apache Counties of northern Arizona and is bounded by lat 35°30' to 35° N., long 109°30' to 110° W. The majority of the land within the map area lies within the Navajo Nation. South of the Navajo Nation, private and State lands form a checkerboard pattern east and west of Petrified Forest National Park. In the west half of the Sanders quadrangle, Mesozoic bedrock is nearly flat lying except near folds. A shallow Cenozoic erosional basin that developed about 20 Ma in the western part of the map area cut across late Paleozoic and Mesozoic rocks that were subsequently filled with flat-lying Miocene and Pliocene mudstone and argillaceous sandstone and fluvial sediments of the Bidahochi Formation and associated volcanic rocks of the Hopi Buttes volcanic field. The Bidahochi rocks are capped by Pliocene(?) and Pleistocene fluvial sediments and Quaternary eolian and alluvial deposits. Erosion along northeast-southwest-oriented drainages have exposed elongated ridges of Bidahochi Formation and basin-fill deposits that are exposed through shallow eolian cover of similarly oriented longitudinal dunes. Stokes (1964) concluded that the accumulation of longitudinal sand bodies and the development of confined parallel drainages are simultaneous processes resulting in parallel sets of drainages and ridges oriented along the prevailing southwest wind direction on the southern Colorado Plateau.
Differential Geometry and Lie Groups for Physicists
NASA Astrophysics Data System (ADS)
Fecko, Marián.
2006-10-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
Differential Geometry and Lie Groups for Physicists
NASA Astrophysics Data System (ADS)
Fecko, Marián.
2011-03-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
Geologic map of the Seldovia quadrangle, south-central Alaska
Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Karl, Susan M.; Donley, D. Thomas
1999-01-01
This is a 1:250,000-scale map of the bedrock geology of the Seldovia quadrangle, south-central Alaska. The map area covers the southwestern end of the Kenai Peninsula, including the Kenai Lowlands and Kenai Mountains, on either side of Kachemak Bay. The waters of Cook Inlet cover roughly half of the map area, and a part of the Alaska Peninsula near Iliamna Volcano lies in the extreme northwest corner of the map. The bedrock geology is based on new reconnaissance field work by the U.S. Geological Survey during parts of the 1988-1993 field seasons, and on previous mapping from a number of sources. The new mapping focused on the previously little-known Chugach accretionary complex in the Kenai Mountains. Important new findings include the recognition of mappable subdivisions of the McHugh Complex (a subduction melange of mostly Mesozoic protoliths), more accurate placement of the thrust contact between the McHugh Complex and Valdez Group (Upper Cretaceous trench turbidites), and the recognition of several new near-trench plutons of early Tertiary age.
Geologic Map of the Wilderness and Handy Quadrangles, Oregon, Carter, and Ripley Counties, Missouri
Harrison, Richard W.; McDowell, Robert C.
2003-01-01
The bedrock exposed in the Wilderness and Handy Quadrangles, Missouri, comprises Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonate rocks are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. These quadrangles contain significant areas of the Mark Twain National Forest, including part of the Eleven Point National Scenic Riverway and the Irish Wilderness Roadless Area. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html
Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska
Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.
2017-03-03
The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.
Forest resources of west central Alabama
A.R. Spillers
1940-01-01
Lying west of Birmingham and north of Demopolis, West Central Alabama (Forest survey Unit Alabama No. 4) includes almost 4.5 million acres within the following 9 counties: Bibb, Fayette, Greene, Hale, Lamar, Marion, Perry, Pickens, and Tuscaloosa (map, fig. 1). This distinctly rural area includes only one incorporated city or town with a population of 2,500 people or...
Getting out of harm's way - evacuation from tsunamis
Jones, Jeanne M.; Wood, Nathan J.; Gordon, Leslie C.
2015-01-01
Maps of travel time can be used by emergency managers and community planners to identify where to focus evacuation training and tsunami education. The tool can also be used to examine the potential benefits of vertical-evacuation structures, which are buildings or berms designed to provide a local high ground in low-lying areas of the hazard zone.
NASA Technical Reports Server (NTRS)
Joiner, T. J.; Copeland, C. W., Jr.; Russell, D. D.; Evans, F. E., Jr.; Sapp, C. D.; Boone, P. A.
1978-01-01
Methods by which estimates of the remaining reserves of strippable coal in Alabama could be made were developed. Information acquired from NASA's Earth Resources Office was used to analyze and map existing surface mines in a four-quadrangle area in west central Alabama. Using this information and traditional methods for mapping coal reserves, an estimate of remaining strippable reserves was derived. Techniques for the computer analysis of remotely sensed data and other types of available coal data were developed to produce an estimate of strippable coal reserves for a second four-quadrangle area. Both areas lie in the Warrior coal field, the most prolific and active of Alabama's coal fields. They were chosen because of the amount and type of coal mining in the area, their location relative to urban areas, and the amount and availability of base data necessary for this type of study.
Harwood, David S.; Fisher, G. Reid; Waugh, Barbara J.
1995-01-01
This map covers an area of 123 km2 on the west slope of the Sierra Nevada, an uplifted and west-tilted range in eastern California (fig. 1). The area is located 20 km west of Donner Pass, which lies on the east escarpment of the range, and about 80 km east of the Great Valley Province. Interstate Highway 80 is the major route over the range at this latitude and secondary roads, which spur off from this highway, provide access to the northern part of the area. None of the secondary roads crosses the deep canyon cut by the North Fork of the American River, however, and access to the southern part of the area is provided by logging roads that spur off from the Foresthill Divide Road that extends east from Auburn to the Donner Pass area (fig. 1).
Project CONVERGE: Impacts of local oceanographic processes on Adélie penguin foraging ecology
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Bernard, K. S.; Fraser, W.; Oliver, M. J.; Statscewich, H.; Patterson-Fraser, D.; Winsor, P.; Cimino, M. A.; Miles, T. N.
2016-02-01
During the austral summer of 2014-2015, project CONVERGE deployed a multi-platform network to sample the Adélie penguin foraging hotspot associated with Palmer Deep Canyon along the Western Antarctic Peninsula. The focus of CONVERGE was to assess the impact of prey-concentrating ocean circulation dynamics on Adélie penguin foraging behavior. Food web links between phytoplankton and zooplankton abundance and penguin behavior were examined to better understand the within-season variability in Adélie foraging ecology. Since the High Frequency Radar (HFR) network installation in November 2014, the radial component current data from each of the three sites were combined to provide a high resolution (0.5 km) surface velocity maps. These hourly maps have revealed an incredibly dynamic system with strong fronts and frequent eddies extending across the Palmer Deep foraging area. A coordinated fleet of underwater gliders were used in concert with the HFR fields to sample the hydrography and phytoplankton distributions associated with convergent and divergent features. Three gliders mapped the along and across canyon variability of the hydrography, chlorophyll fluorescence and acoustic backscatter in the context of the observed surface currents and simultaneous penguin tracks. This presentation will highlight these synchronized measures of the food web in the context of the observed HFR fronts and eddies. The location and persistence of these features coupled with ecological sampling through the food web offer an unprecedented view of the Palmer Deep ecosystem. Specific examples will highlight how the vertical structure of the water column beneath the surface features stack the primary and secondary producers relative to observed penguin foraging behavior. The coupling from the physics through the food web as observed by our multi-platform network gives strong evidence for the critical role that distribution patterns of lower trophic levels have on Adélie foraging.
Day, Warren C.; O’Neill, J. Michael; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Siron, Christopher R.
2014-01-01
This map was developed by the U.S. Geological Survey Mineral Resources Program to depict the fundamental geologic features for the western part of the Fortymile mining district of east-central Alaska, and to delineate the location of known bedrock mineral prospects and their relationship to rock types and structural features. This geospatial map database presents a 1:63,360-scale geologic map for the Kechumstuk fault zone and surrounding area, which lies 55 km northwest of Chicken, Alaska. The Kechumstuk fault zone is a northeast-trending zone of faults that transects the crystalline basement rocks of the Yukon-Tanana Upland of the western part of the Fortymile mining district. The crystalline basement rocks include Paleozoic metasedimentary and metaigneous rocks as well as granitoid intrusions of Triassic, Jurassic, and Cretaceous age. The geologic units represented by polygons in this dataset are based on new geologic mapping and geochronological data coupled with an interpretation of regional and new geophysical data collected by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. The geochronological data are reported in the accompanying geologic map text and represent new U-Pb dates on zircons collected from the igneous and metaigneous units within the map area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, D.
1970-01-01
Recent studies of oil accumulations in the Ste. Genevieve Limestone Formation in Illinois demonstrate the usefulness of fitting third-order trend surfaces to structural data and analyzing the residuals calculated by subtracting the trend surface from the structure surface. Known oil pools are located in areas having positive residual values. This type of investigation, supplemented by conventional structural and stratigraphic studies, was performed on a 9-township (approx. 324 sq miles) area in Effingham and Shelby counties, Illinois. The known oil pools in the oolite and sandstone lenses of the Ste. Genevieve Formation lie within positive residuals resulting from the difference betweenmore » a third-order trend surface and the structural surface on top of the Ste. Genevieve. A composite map outlining areas where present anticlinal noses, sandstone lenses, and positive residuals lie in close proximity to each other is included in this report to indicate places where future exploration for Ste. Genevieve oil would have the greatest chance for success.« less
Vegetation mapping of Nowitna National Wildlife Reguge, Alaska using Landsat MSS digital data
Talbot, S. S.; Markon, Carl J.
1986-01-01
A Landsat-derived vegetation map was prepared for Nowitna National Wildlife Refuge. The refuge lies within the middle boreal subzone of north central Alaska. Seven major vegetation classes and sixteen subclasses were recognized: forest (closed needleleaf, open needleleaf, needleleaf woodland, mixed, and broadleaf); broadleaf scrub (lowland, alluvial, subalpine); dwarf scrub (prostrate dwarf shrub tundra, dwarf shrub-graminoid tussock peatland); herbaceous (graminoid bog, marsh and meadow); scarcely vegetated areas (scarcely vegetated scree and floodplain); water (clear, turbid); and other areas (mountain shadow). The methodology employed a cluster-block technique. Sample areas were described based on a combination of helicopter-ground survey, aerial photointerpretation, and digital Landsat data. Major steps in the Landsat analysis involved preprocessing (geometric correction), derivation of statistical parameters for spectral classes, spectral class labeling of sample areas, preliminary classification of the entire study area using a maximum-likelihood algorithm, and final classification utilizing ancillary information such as digital elevation data. The final product is a 1:250,000-scale vegetation map representative of distinctive regional patterns and suitable for use in comprehensive conservation planning.
Crumpler, L.S.; Craddock, R.A.; Aubele, J.C.
2001-01-01
This map uses Viking Orbiter image data and Viking 1 Lander image data to evaluate the geologic history of a part of Chryse Planitia, Mars. The map area lies at the termini of the Maja and Kasei Valles outwash channels and includes the site of the Viking 1 Lander. The photomosaic base for these quadrangles was assembled from 98 Viking Orbiter frames comprising 1204 pixels per line and 1056 lines and ranging in resolution from 20 to 200 m/pixel. These orbital image data were supplemented with images of the surface as seen from the Viking 1 Lander, one of only three sites on the martian surface where planetary geologic mapping is assisted by ground truth.
Geologic map of the Fremont quadrangle, Shannon, Carter, and Oregon Counties, Missouri
Orndorff, Randall C.
2003-01-01
The bedrock exposed in the Fremont Quadrangle, Missouri, comprises Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonate rocks are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. National Park in this region (Ozark National Scenic Riverways, Missouri) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html
Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, R.P.; Drake, R.M. II
This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less
Fridrich, Christopher J.; Shroba, Ralph R.; Hudson, Adam M.
2012-01-01
This map covers the Big Costilla Peak, New Mex.&nash;Colo. quadrangle and adjacent parts of three other 7.5 minute quadrangles: Amalia, New Mex.–Colo., Latir Peak, New Mex., and Comanche Point, New Mex. The study area is in the southwesternmost part of that segment of the Sangre de Cristo Mountains known as the Culebra Range; the Taos Range segment lies to the southwest of Costilla Creek and its tributary, Comanche Creek. The map area extends over all but the northernmost part of the Big Costilla horst, a late Cenozoic uplift of Proterozoic (1.7-Ga and less than 1.4-Ga) rocks that is largely surrounded by down-faulted middle to late Cenozoic (about 40 Ma to about 1 Ma) rocks exposed at significantly lower elevations. This horst is bounded on the northwest side by the San Pedro horst and Culebra graben, on the northeast and east sides by the Devils Park graben, and on the southwest side by the (about 30 Ma to about 25 Ma) Latir volcanic field. The area of this volcanic field, at the north end of the Taos Range, has undergone significantly greater extension than the area to the north of Costilla Creek. The horsts and grabens discussed above are all peripheral structures on the eastern flank of the San Luis basin, which is the axial part of the (about 26 Ma to present) Rio Grande rift at the latitude of the map. The Raton Basin lies to the east of the Culebra segment of the Sangre de Cristo Mountains. This foreland basin formed during, and is related to, the original uplift of the Sangre de Cristo Mountains which was driven by tectonic contraction of the Laramide (about 70 Ma to about 40 Ma) orogeny. Renewed uplift and structural modification of these mountains has occurred during formation of the Rio Grande rift. Surficial deposits in the study area include alluvial, mass-movement, and glacial deposits of middle Pleistocene to Holocene age.
Geologic map of the Mead quadrangle (V-21), Venus
Campbell, Bruce A.; Clark, David A.
2006-01-01
The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Mead quadrangle (V-21) of Venus is bounded by lat 0 deg and 25 deg N., long 30 deg and 60 deg E. This quadrangle is one of 62 covering Venus at 1:5,000,000 scale. Named for the largest crater on Venus, the quadrangle is dominated by effusive volcanic deposits associated with five major coronae in eastern Eistla Regio (Didilia, Pavlova, Calakomana, Isong, and Ninmah), corona-like tectonic features, and Disani Corona. The southern extremity of Bell Regio, marked by lava flows from Nyx Mons, north of the map area, forms the north-central part of the quadrangle. The shield volcanoes Kali, Dzalarhons, and Ptesanwi Montes lie south and southwest of the large corona-related flow field. Lava flows from sources east of Mead crater flood low-lying areas along the east edge of the quadrangle.
Algebra and topology for applications to physics
NASA Technical Reports Server (NTRS)
Rozhkov, S. S.
1987-01-01
The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.
Coastal habitat mapping in the Aegean Sea using high resolution orthophoto maps
NASA Astrophysics Data System (ADS)
Topouzelis, Konstantinos; Papakonstantinou, Apostolos; Doukari, Michaela; Stamatis, Panagiotis; Makri, Despina; Katsanevakis, Stelios
2017-09-01
The significance of coastal habitat mapping lies in the need to prevent from anthropogenic interventions and other factors. Until 2015, Landsat-8 (30m) imagery were used as medium spatial resolution satellite imagery. So far, Sentinel-2 satellite imagery is very useful for more detailed regional scale mapping. However, the use of high resolution orthophoto maps, which are determined from UAV data, is expected to improve the mapping accuracy. This is due to small spatial resolution of the orthophoto maps (30 cm). This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. Additionally, the produced orthophoto maps analyzed through an object-based image analysis (OBIA) and nearest-neighbor classification for mapping the coastal habitats. Classification classes included the main general habitat types, i.e. seagrass, soft bottom, and hard bottom The developed methodology applied at the Koumbara beach (Ios Island - Greece). Results showed that UAS's data revealed the sub-bottom complexity in large shallow areas since they provide such information in the spatial resolution that permits the mapping of seagrass meadows with extreme detail. The produced habitat vectors are ideal as reference data for studies with satellite data of lower spatial resolution.
Geologic Map of the Niobe Planitia Quadrangle (V-23), Venus
Hansen, Vicki L.
2009-01-01
The Niobe Planitia quadrangle (V-23) encompasses approximately 8,000,000 km2 of the Venusian equatorial region extending from lat 0 deg to 25 deg N. and from long 90 deg to 120 deg E. (approximately 9,500 15-minute quadrangles on Earth). The map area lies along the north margin of the equatorial highland, Aphrodite Terra (V-35), and extends into the lowland region to the north, preserving a transition from southern highlands to northern lowlands (figs. 1, 2, map sheet). The northern parts of the crustal plateau, Ovda Regio and Haasttse-baad Tessera, mark the south margin of the map area; Niobe and Sogolon Planitiae make up the lowland region. The division between Niobe and Sogolon Planitiae is generally topographic, and Sogolon Planitia forms a relatively small elongate basin. Mesolands, the intermediate topographic level of Venus, are essentially absent or represented only by Gegute Tessera, which forms a slightly elevated region that separates Niobe Planitia from Llorona Planitia to the east (V-24). Lowlands within the map area host five features currently classified as coronae: Maya Corona (lat 23 deg N., long 97 deg E.) resides to the northwest and Dhisana, Allatu, Omeciuatl, and Bhumiya Coronae cluster loosely in the east-central area. Lowlands extend north, east, and west of the map area. Mapping the Niobe Planitia quadrangle (V-23) provides an excellent opportunity to examine a large tract of lowlands and the adjacent highlands with the express goal of clarifying the processes responsible for resurfacing this part of Venus and the resulting implications for Venus evolution. Although Venus lowlands are widely considered to have a volcanic origin, lowlands in the map area lack adjacent coronae or other obvious volcanic sources.
McCoy, Kurt J.; Podwysocki, Melvin H.; Crider, E. Allen; Weary, David J.
2005-01-01
These data contain information on the results of single-well aquifer tests, lineament analysis, and a bedrock geologic map compilation for the low-lying carbonate and shale areas of eastern Berkeley County, West Virginia. Efforts have been initiated by management agencies of Berkeley County in cooperation with the U.S. Geological Survey to further the understanding of the spatial distribution of fractures in the carbonate regions and their correlation with aquifer properties. This report presents transmissivity values from about 200 single-well aquifer tests and a map of fracture-traces determined from aerial photos and field investigations. Transmissivity values were compared to geologic factors possibly affecting its magnitude.
EnviroAtlas -Tampa, FL- One Meter Resolution Urban Land Cover (2010)
The EnviroAtlas Tampa, FL land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from April-May 2010 at 1 m spatial resolution. Eight land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, water, agriculture, woody wetland, and emergent wetland. The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Tampa, and includes the cities of Clearwater and St. Petersburg, as well as additional out-lying areas. An accuracy assessment using a stratified random sampling of 600 samples (100 per class) yielded an overall accuracy of 70.67 percent and an area weighted accuracy of 81.87 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona
Billingsley, George H.; Priest, Susan S.
2010-01-01
This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch. Other lands include about 13 sections of Arizona State land, about ? of a section of private land along House Rock Wash, and about 1? sections of private land at Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. Landmark features within the map area include the Vermilion Cliffs, Paria Plateau, Marble Canyon, and House Rock Valley. Surface drainage in House Rock Valley is to the east toward the Colorado River in Marble Canyon. Large tributaries of Marble Canyon from north to south include Badger Canyon, Soap Creek, Rider Canyon, North Canyon, Bedrock Canyon, and South Canyon. Elevations range from about 2,875 ft (876 m) at the Colorado River in the southeast corner of the map to approximately 7,355 ft (2,224 m) on the east rim of Paria Plateau along the north-central edge of the map area. Three small settlements are in the map area along U.S. Highway 89A, Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. The community of Jacob Lake is about 9 mi (14.5 km) west of House Rock Valley on the Kaibab Plateau. Lees Ferry is 5 mi (8 km) north of Marble Canyon and marks the confluence of the Paria and Colorado Rivers and the beginning of Marble Canyon. U.S. Highway 89A provides access to the northern part of the map area. Dirt roads lead south into House Rock Valley from U.S. Highway 89A and are collectively maintained by the Bureau of Land Management, the U.S. National Forest Service, and the Grand Canyon Trust. House Rock Valley is one of the few remaining areas where uniform geologic mapping is needed for connectivity to the regional Grand Canyon geologic framework. This information is useful to Federal and State resource managers who direct environmental and land management programs that encompass such issues as range management, biological studies, flood control, water, and mineral-resource investigations. The geologic information will support future and ongoing geologic investigations and scientific studies
Geologic map of the Wildcat Lake 7.5' quadrangle: Kitsap and Mason counties, Washington
Haeussler, Peter J.; Clark, Kenneth P.
2000-01-01
The Wildcat Lake quadrangle lies in the forearc of the Cascadia subduction zone, about 20-km east of the Cascadia accretionary complex exposed in the Olympic Mountains (Tabor and Cady, 1978),and about 100-km west of the axis of the Cascades volcanic arc. The quadrangle lies near the middle of the Puget Lowland, which typically has elevations less than 600 feet (183 m), but on Gold Mountain, in the center of the quadrangle, the elevation rises to 1761 feet (537 m). This anomalously high topography also provides a glimpse of the deeper crust beneath the Lowland. Exposed on Green and Gold Mountains are rocks related to the Coast Range basalt terrane. This terrane consists of Eocene submarine and subaerial tholeiitic basalt of the Crescent Formation, which probably accreted to the continental margin in Eocene time (Snavely and others, 1968). The Coast Range basalt terrane may have originated as an oceanic plateau or by oblique marginal rifting (Babcock and others, 1992), but its subsequent emplacement history is complex (Wells and others, 1984). In southern Oregon, onlapping strata constrain the suturing to have occured by 50 Ma; but on southern Vancouver Island where the terrane-bounding Leech River fault is exposed, Brandon and Vance (1992) concluded suturing to North America occurred in the broad interval between 42 and 24 Ma. After emplacement of the Coast Range basalt terrane, the Cascadia accretionary complex,exposed in the Olympic Mountains west of the quadrangle,developed by frontal accretion and underplating (e.g., Clowes and others, 1987). The Seattle basin, part of which lies to the north of Green Mountain, also began to develop in late Eocene time due to forced flexural subsidence along the Seattle fault zone (Johnson and others, 1994). Domal uplift of the accretionary complex beneath the Olympic Mountains occurred after approximately 18 million years ago (Brandon and others, 1998). Ice-sheet glaciation during Quaternary time reshaped the topography of the quadrangle, and approximately two-thirds of the map area is covered with Quaternary deposits related to the last glaciation. Geophysical studies and regional mapping indicate the Seattle fault lies north of Green Mountain. This fault produced a large earthquake about 1000 years ago and may pose a significant earthquake hazard (Bucknam and others, 1992; Atwater and Moore, 1992; Karlin and Abella,1992; Schuster and others, 1992; Jacoby and others, 1992). We found no evidence of Holocene faulting in the Wildcat Lake quadrangle. Geologic mapping within and marginal to the quadrangle began with Willis (1898), who described glacial deposits in Puget Sound. Weaver (1937) correlated volcanic rocks in the quadrangle to the Eocene Metchosin Volcanics on Vancouver Island. Sceva (1957), Garling and Moleenar (1965), and Deeter (1978) all focused on mapping and understanding the Quaternary stratigraphy of the Kitsap Peninsula, but they also examined bedrock in the quadrangle. Reeve (1979) was the first to examine the igneous rocks on Green and Gold Mountains in some detail, and Clark (1989) significantly improved Reeve's (1979) mapping. Clark's (1989) mapping was conducted soon after extensive logging on the mountains. A surficial geologic map of the Seattle 1:100,000-scale quadrangle, which includes the Wildcat Lake 1:24,000-scale quadrangle, was published by Yount and others (1993). Yount and Gower (1991) also published a bedrock geologic map of the Seattle quadrangle. Geologic mapping for this report was conducted by Haeussler in the spring and summer of 1998 and in the winter of 1999. We could not substantially improve upon the bedrock mapping of Clark (1989) and thus it is incorporated into this map. Well data in the southeastern corner of the map area also helped to constrain the surficial mapping (Geomatrix Consultants, 1997). In addition, 1995 vintage 1:12,000-scale aerial photographs were used in mapping Quaternary deposits. Geologic time scale is that of Berggeren and others (1995).
Geographic names of the Antarctic
,; ,; ,; ,; Alberts, Fred G.
1995-01-01
This gazetteer contains 12,710 names approved by the United States Board on Geographic Names and the Secretary of the Interior for features in Antarctica and the area extending northward to the Antarctic Convergence. Included in this geographic area, the Antarctic region, are the off-lying South Shetland Islands, the South Orkney Islands, the South Sandwich Islands, South Georgia, Bouvetøya, Heard Island, and the Balleny Islands. These names have been approved for use by U.S. Government agencies. Their use by the Antarctic specialist and the public is highly recommended for the sake of accuracy and uniformity. This publication, which supersedes previous Board gazetteers or lists for the area, contains names approved as recently as December 1994. The basic name coverage of this gazetteer corresponds to that of maps at the scale of 1:250,000 or larger for coastal Antarctica, the off-lying islands, and isolated mountains and ranges of the continent. Much of the interior of Antarctica is a featureless ice plateau. That area has been mapped at a smaller scale and is nearly devoid of toponyms. All of the names are for natural features, such as mountains, glaciers, peninsulas, capes, bays, islands, and subglacial entities. The names of scientific stations have not been listed alphabetically, but they may appear in the texts of some decisions. For the names of submarine features, reference should be made to the Gazetteer of Undersea Features, 4th edition, U.S. Board on Geographic Names, 1990.
Global organization of tectonic deformation on Venus
NASA Astrophysics Data System (ADS)
Bilotti, Frank; Connors, Chris; Suppe, John
1993-03-01
The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.
Global organization of tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Bilotti, Frank; Connors, Chris; Suppe, John
1993-01-01
The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.
Lemke, Richard Walter; Yehle, Lynn A.
1972-01-01
The Alaska earthquake of March 27, 1964, brought into sharp focus the need for engineering geologic studies in urban areas. Study of the Haines area constitutes an integral part of an overall program to evaluate earthquake and other geologic hazards in most of the larger Alaska coastal communities. The evaluations of geologic hazards that follow, although based only upon reconnaissance studies and, therefore, subject to revision, will provide broad guidelines useful in city and land-use planning. It is hoped that the knowledge gained will result in new facilities being built in the best possible geologic environments and being designed so as to minimize future loss of life and property damage. Haines, which is in the northern part of southeastern Alaska approximately 75 miles northwest of Juneau, had a population, of about 700 people in 1970. It is built at the northern end of the Chilkat Peninsula and lies within the Coast Mountains of the Pacific Mountain system. The climate is predominantly marine and is characterized by mild winters and cool summers. The mapped area described in this report comprises about 17 square miles of land; deep fiords constitute most of the remaining mapped area that is evaluated in this study. The Haines area was covered by glacier ice at least once and probably several times during the Pleistocene Epoch. The presence of emergent marine deposits, several hundred feet above sea level, demonstrates that the land has been uplifted relative to sea level since the last major deglaciation of the region about 10,000 years ago. The rate of relative uplift of the land at Haines during the past 39 years is 2.26 cm per year. Most or all of this uplift appears to be due to rebound as a result of deglaciation. Both bedrock and surficial deposits are present in the area. Metamorphic and igneous rocks constitute the exposed bedrock. The metamorphic rocks consist of metabasalt of Mesozoic age and pyroxenite of probable early middle Cretaceous age. The igneous rocks consist of diorite and quartz diorite (tonalite) of Cretaceous age. Sedimentary rocks of Tertiary age may be present in the mapped area but are not exposed. The surficial deposits of Quaternary age,-have been divided into the following map units on the basis of time Of deposition, mode of origin, and grain size: (1) undifferentiated drift deposits, (2) outwash and Ice-contact deposits; (3) elevated fine-grained marine deposits, (4) elevated shore and delta deposits, (5) alluvial fan deposits, (6) colluvial deposits, (7) modern beach deposits, (8) Chilkat River flood-plain and delta deposits, and (9) manmade fill. Offshore deposits are described but are not mapped. Southeastern Alaska lies within the tectonically active belt that rims the northern Pacific Basin and has been active since at least early Paleozoic time. The outcrop pattern is the result of late Mesozoic and Tertiary deformational, metamorphic, and intrusive events. Large-scale faulting has been common. The two most prominent inferred fault systems in southeastern Alaska and surrounding regions are: (1) The Denali fault system and (2) the Fairweather-Queen Charlotte Islands fault system. In the general area of Haines, rocks of Mesozoic age northeast of Chilkat River have a simple monoclinal structure. Paleozoic-Mesozoic rocks southwest of Chilkat River are gently to rather complexly folded. Several major and numerous minor faults probably transect the general area of Haines but their exact location and character can only be inferred because their traces are coincident to the long axes of fiords and river valleys, where they are concealed by water or by valley-floor deposits. Inferred faults in or near the Haines mapped area are: (1) Chilkat River fault, (2) Chilkoot fault, (3) Takhin fault, and (4) faults in the saddle area at Haines. Southeastern Alaska lies in one of the two most seismically active zones in Alaska, a State where 6 percent of the world's shallow earthqua
Tertiary stratigraphy and basin evolution, southern Sabah (Malaysian Borneo)
NASA Astrophysics Data System (ADS)
Balaguru, Allagu; Nichols, Gary
2004-08-01
New mapping and dating of strata in the southern part of the Central Sabah Basin in northern Borneo has made it possible to revise the lithostratigraphy and chronostratigraphy of the area. The recognition in the field of an Early Miocene regional unconformity, which may be equivalent to the Deep Regional Unconformity recognised offshore, has allowed the development of a stratigraphic framework of groups and formations, which correspond to stages in the sedimentary basin development of the area. Below the Early Miocene unconformity lies ophiolitic basement, which is overlain by an accretionary complex of Eocene age and a late Paleogene deep water succession which formed in a fore-arc basin. The late Paleogene deposits underwent syn-depositional deformation, including the development of extensive melanges, all of which can be demonstrated to lie below the unconformity in this area. Some localised limestone deposition occurred during a period of uplift and erosion in the Early Miocene, following which there was an influx of clastic sediments deposited in delta and pro-deltaic environments in the Middle Miocene. These deltaic to shallow marine deposits are now recognised as forming two coarsening-upward successions, mapped as the Tanjong and Kapilit Formations. The total thickness of these two formations in the Central Sabah Basin amounts to 6000 m, only half of the previous estimates, although the total stratigraphic thickness of Cenozoic clastic strata in Sabah may be more than 20,000 m.
Geologic map of the Mohave Mountains area, Mohave County, western Arizona
Howard, K.A.; Nielson, J.E.; Wilshire, W.G.; Nakata, J.K.; Goodge, J.W.; Reneau, Steven L.; John, Barbara E.; Hansen, V.L.
1999-01-01
Introduction The Mohave Mountains area surrounds Lake Havasu City, Arizona, in the Basin and Range physiographic province. The Mohave Mountains and the Aubrey Hills form two northwest-trending ranges adjacent to Lake Havasu (elevation 132 m; 448 ft) on the Colorado River. The low Buck Mountains lie northeast of the Mohave Mountains in the alluviated valley of Dutch Flat. Lowlands at Standard Wash separate the Mohave Mountains from the Bill Williams Mountains to the southeast. The highest point in the area is Crossman Peak in the Mohave Mountains, at an elevation of 1519 m (5148 ft). Arizona Highway 95 is now rerouted in the northwestern part of the map area from its position portrayed on the base map; it now also passes through the southern edge of the map area. Geologic mapping was begun in 1980 as part of a program to assess the mineral resource potential of Federal lands under the jurisdiction of the U.S. Bureau of Land Management (Light and others, 1983). Mapping responsibilities were as follows: Proterozoic and Mesozoic rocks, K.A. Howard; dikes, J.K. Nakata; Miocene section, J.E. Nielson; and surficial deposits, H.G. Wilshire. Earlier geologic mapping includes reconnaissance mapping by Wilson and Moore (1959). The present series of investigations has resulted in reports on the crystalline rocks and structure (Howard and others, 1982a), dikes (Nakata, 1982), Tertiary stratigraphy (Pike and Hansen, 1982; Nielson, 1986; Nielson and Beratan, 1990), surficial deposits (Wilshire and Reneau, 1992), tectonics (Howard and John, 1987; Beratan and others, 1990), geophysics (Simpson and others, 1986), mineralization (Light and McDonnell, 1983; Light and others, 1983), field guides (Nielson, 1986; Howard and others, 1987), and geochronology (Nakata and others, 1990; Foster and others, 1990).
Sherrod, David R.; Scott, William E.
1995-01-01
This map shows the geology of the central and eastern parts of the Cascade Range in northern Oregon. The Quaternary andesitic stratovolcano of Mount Hood dominates the northwest quarter of the quadrangle, but nearly the entire area is underlain by arc-related volcanic and volcaniclastic rocks of the Cascade Range. Most stratigraphic units were emplaced since middle Miocene time, and all are Oligocene or younger. Despite the proximity of the map area to the Portland metropolitan area, large parts remained virtually unstudied or known only from limited reconnaissance until the late 1970s. A notable exception is the area surrounding Mount Hood, where mapping and chemical analyses by Wise (1969) provided a framework for geologic interpretation. Mapping since 1975 was conducted first to understand the stratigraphy and structure of the Columbia River Basalt Group (Anderson, 1978; Vogt, 1981; J.L. Anderson, in Swanson and others, 1981; Vandiver-Powell, 1978; Burck, 1986) and later to examine the geothermal potential of Mount Hood (Priest and others, 1982). Additional mapping was completed in 1985 for a geologic map of the Cascade Range in Oregon (Sherrod and Smith, 1989). From 1987 to 1990, detailed mapping was conducted in three 15-minute quadrangles on a limited basis (D.R. Sherrod, unpublished mapping) (see fig. 1 for index to mapping). An ongoing volcanic hazards study of Mount Hood by the U.S. Geological Survey (Scott and others, 1994) has provided the catalyst for completing the geologic map of the Mount Hood 30-minute by 60-minute quadrangle. As of June 1994, only two broad areas still remain largely unmapped. One of these areas, labeled 'unmapped' on the geologic map, lies in the Salmon River valley south of Zigzag along the west margin of the quadrangle. Although strata of the Columbia River Basalt Group in the Salmon River valley were mapped in detail by Burck (1986), the overlying middle and upper(?) Miocene lava flows, volcaniclastic strata, and intrusions have never been studied. The other poorly known area, the Mutton Mountains in the southeastern part of the map area, consists of Oligocene and lower Miocene volcanic and volcaniclastic rocks. Overlying lava flows of the Columbia River Basalt Group were mapped in some detail by Anderson (in Swanson and others, 1981).
Geologic Map of the Big Spring Quadrangle, Carter County, Missouri
Weary, David J.; McDowell, Robert C.
2006-01-01
The bedrock exposed in the Big Spring quadrangle of Missouri comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat lying except where they are adjacent to faults. The carbonate rocks are karstified, and the area contains numerous sinkholes, springs, caves, and losing streams. This map is one of several being produced under the U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A national park in this region (Ozark National Scenic Riverways, Missouri) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the park to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for park management. For more information, see: http://geology.er.usgs.gov/eespteam/Karst/index.html
Geologic map of the Van Buren South quadrangle, Carter County, Missouri
Weary, D.J.; Schindler, J.S.
2004-01-01
The bedrock exposed in the Van Buren South quadrangle, Missouri, comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonate rocks are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html
Geologic map of the Low Wassie Quadrangle, Oregon and Shannon counties, Missouri
Weems, Robert E.
2002-01-01
The bedrock exposed in the Low Wassie Quadrangle, Missouri, comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonates are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html.
Geologic map of the Winona Quadrangle, Shannon County, Missouri
Orndorff, R.C.; Harrison, R.W.
2001-01-01
The bedrock exposed in the Winona Quadrangle, Missouri, comprises Mesoproterozoic aged volcanic rocks overlain by Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they drape around knobs of the volcanic rocks or where they are adjacent to faults. The carbonates are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html
California State Waters Map Series--Hueneme Canyon and vicinity, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.
2012-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts of three smaller, unnamed headless canyons incised into the shelf southeast of Hueneme Canyon. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial deposits that formed as sea level fluctuated in the last several hundred thousand years. Hueneme Canyon extends about 15 km offshore from its canyon head near the dredged navigation channel of the Port of Hueneme. The canyon is relatively deep (about 150 m at the California's State Waters limit) and steep (canyon flanks as steep as 25° to 30°). Historically, Hueneme Canyon functioned as the eastern termination of the Santa Barbara littoral cell by trapping all eastward littoral drift, not only feeding the large Hueneme submarine fan but acting as the major conduit of sediment to the deep Santa Monica Basin; however, recent dredging programs needed to maintain Channel Islands Harbor and the Port of Hueneme have moved the nearshore sediment trapped by jetties and breakwaters to an area southeast of the Hueneme Canyon head. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Hueneme Canyon and vicinity map area are related directly to the geomorphology and sedimentary processes that are the result of its Quaternary geologic history. The two basic megahabitats in the map area are Shelf (continental shelf) and Flank (continental slope). The flat seafloor of the continental shelf in the Hueneme Canyon and vicinity map area is dynamic, as indicated by mobile sand sheets and coarser grained scour depressions. The active Hueneme Canyon provides considerable relief to the continental shelf in the map area, and its irregular morphology of eroded walls, landslide scarps, and deposits and gullies provide promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. Most invertebrates observed in the map area during camera ground-truth field operations are found on the edge of Hueneme Canyon, which may be an important area of recruitment and retention to other invertebrates and fishes. The smaller, more subtle, nonactive headless canyons located primarily on the continental slope also offer relief that provides habitat for groundfish and other organisms.
Reconnaissance electrical surveys in the Coso Range, California
NASA Astrophysics Data System (ADS)
Jackson, Dallas B.; O'Donnell, James E.
1980-05-01
Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs-Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5-30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a heat flow anomaly where all values are greater than 10 heat flow units.
Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas
Hudson, Mark R.; Turner, Kenzie J.
2009-01-01
This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less than 2 degrees are shown as horizontal. Structure contours constructed on the base of the Boone Formation were hand drawn based on elevations of control points on both lower and upper contacts of the Boone Formation as well as other limiting information on their maximum or minimum elevations.
California State Waters Map Series—Offshore of Monterey, California
Johnson, Samuel Y.; Dartnell, Peter; Hartwell, Stephen R.; Cochrane, Guy R.; Golden, Nadine E.; Watt, Janet T.; Davenport, Clifton W.; Kvitek, Rikk G.; Erdey, Mercedes D.; Krigsman, Lisa M.; Sliter, Ray W.; Maier, Katherine L.; Johnson, Samuel Y.; Cochran, Susan A.
2016-08-18
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Monterey map area in central California is located on the Pacific Coast, about 120 km south of San Francisco. Incorporated cities in the map area include Seaside, Monterey, Marina, Pacific Grove, Carmel-by-the-Sea, and Sand City. The local economy receives significant resources from tourism, as well as from the Federal Government. Tourist attractions include the Monterey Bay Aquarium, Cannery Row, Fisherman’s Wharf, and the many golf courses near Pebble Beach, and the area serves as a gateway to the spectacular scenery and outdoor activities along the Big Sur coast to the south. Federal facilities include the Army’s Defense Language Institute, the Naval Postgraduate School, and the Fleet Numerical Meteorology and Oceanography Center (operated by the Navy). In 1994, Fort Ord army base, located between Seaside and Marina, was closed; much of former army base land now makes up the Fort Ord National Monument, managed by the U.S. Bureau of Land Management as part of the National Landscape Conservation System. In addition, part of the old Fort Ord is now occupied by California State University, Monterey Bay.The offshore part of the map area lies entirely within the Monterey Bay National Marine Sanctuary, one of the nation’s largest marine sanctuaries. State beaches and parks within the map area include Fort Ord Dunes State Park and the Marina, Monterey, and Asilomar State Beaches, as well as Carmel River State Beach, which includes the Carmel River Lagoon and Wetland Natural Preserve. The map area also includes all or part of several State Marine Protected Areas, including the Carmel Pinnacles, Asilomar, and Lovers Point–Julia Platt State Marine Reserves, as well as the Carmel Bay, Pacific Grove Marine Gardens, Edward F. Ricketts, and Portuguese Ledge State Marine Conservation Areas.The coastal zone in the map area is characterized by two distinct physiographies. From Marina to Monterey, sandy beaches are backed by a belt of sand dunes, as much as 30 to 40 m high and as wide as 8 km. The Salinas River supplies the sand for the beaches and dunes. Nearshore sediment transport is primarily to the south, in the southern Monterey littoral cell.Along the Monterey peninsula, which lies at the north end of the rugged Santa Lucia Range, coastal relief is very different. The peninsula is characterized largely by low marine terraces that formed mostly on hard and relatively stable granitic bedrock. Carmel Beach in Carmel-by-the-Sea is the longest continuous beach in this area; bedrock points and small pocket beaches characterize most of the rest of the peninsula. The Carmel River littoral cell extends along the coast from Point Pinos to Point Lobos (just south of the map area), including Carmel Beach; sediment transport is primarily to the south.The granitic rocks that crop out so prominently along the Monterey peninsula make up part of the Salinian block, a crustal terrane that in this area lies west of the San Andreas Fault and east of the San Gregorio Fault. The strike-slip San Andreas Fault Zone, which lies just 26 km east of the map area, is the most important structure within the Pacific–North American transform plate boundary. The San Gregorio Fault, a secondary fault within the distributed plate boundary, cuts through (and is roughly aligned with) Carmel Canyon, a submarine canyon in the southwest corner of the map area that is part of the Monterey Canyon system. The San Gregorio Fault Zone is part of a fault system that is present predominantly in the offshore for about 400 km, from Point Conception in the south (where it is known as the Hosgri Fault) to Bolinas and Point Reyes in the north.The offshore part of the map area primarily consists of relatively flat continental shelf, bounded on the west by the steep flanks of Carmel Canyon. Shelf width varies from 2 to 3 km in the southern part of the map area, near the mouth of Carmel Canyon, to 14 km in Monterey Bay. Bedrock beneath the shelf is overlain in many areas by variable amounts (0 to 16 m) of upper Quaternary shelf and nearshore sediments deposited as sea level fluctuated in the late Pleistocene. “Soft-induration,” unconsolidated sediment is the dominant (about 63 percent) habitat type on the continental shelf, followed by “hard-induration” rock and boulders (about 34 percent) and “mixed-induration” substrate (about 3 percent). At water depths of about 100 to 130 m, the shelf break approximates the shoreline during the sea-level lowstand of the Last Glacial Maximum, about 21,000 years ago.Carmel Canyon and other parts of the Monterey Canyon system in the map area extend from the shelf break to water depths that reach 1,600 m. Most of the extensive incision of the shelf break and canyon flanks probably occurred during repeated Quaternary sea-level lowstands. The relatively straight floor of Carmel Canyon notably is aligned with the San Gregorio Fault Zone. Mixed hard-soft substrate is the most common (about 51 percent) habitat type in Carmel Canyon; hard bedrock and soft, unconsolidated sediment cover about 40 percent and 9 percent of canyon habitat, respectively.This part of the central California coast is exposed to large North Pacific swells from the northwest throughout the year. Wave heights range from 2 to 10 m, the larger swells occurring from October to May. During El Niño–Southern Oscillation (ENSO) events, winter storms track farther south than they do in normal (non-ENSO) years, thereby impacting the map area more frequently and with waves of larger heights.Benthic species observed in the map area are natives of the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, the eastern limb of the North Pacific subtropical gyre that flows from southern British Columbia to Baja California.Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. An observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are well-known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
Amoroso, Lee; Priest, Susan S.; Hiza-Redsteer, Margaret
2013-01-01
The geologic map of the Satan Butte and Greasewood 7.5’ quadrangles is the result of a cooperative effort of the U.S. Geological Survey (USGS) and the Navajo Nation to provide regional geologic information for management and planning officials. This map provides geologic information useful for range management, plant and animal studies, flood control, water resource investigations, and natural hazards associated with sand-dune mobility. The map provides connectivity to the regional geologic framework of the Grand Canyon area of northern Arizona. The map area encompasses approximately 314 km2 (123 mi2) within Navajo and Apache Counties of northern Arizona and is bounded by lat 35°37'30" to 35°30' N., long 109°45' to 110° W. The quadrangles lie within the southern Colorado Plateau geologic province and within the northeastern portion of the Hopi Buttes (Tsézhin Bií). Large ephemeral drainages, Pueblo Colorado Wash and Steamboat Wash, originate north of the map area on the Defiance Plateau and Balakai Mesa respectively. Elevations range from 1,930 m (6,330 ft) at the top of Satan Butte to about 1,787 m (5,860 ft) at Pueblo Colorado Wash where it exits the southwest corner of the Greasewood quadrangle. The only settlement within the map area is Greasewood, Arizona, on the north side of Pueblo Colorado Wash. Navajo Highway 15 crosses both quadrangles and joins State Highway 264 northwest of Ganado. Unimproved dirt roads provide access to remote parts of the Navajo Reservation.
Flooding Hazard Maps of Different Land Uses in Subsidence Area
NASA Astrophysics Data System (ADS)
Lin, Yongjun; Chang, Hsiangkuan; Tan, Yihchi
2017-04-01
This study aims on flooding hazard maps of different land uses in the subsidence area of southern Taiwan. Those areas are low-lying due to subsidence resulting from over pumping ground water for aquaculture. As a result, the flooding due to storm surges and extreme rainfall are frequent in this area and are expected more frequently in the future. The main land uses there include: residence, fruit trees, and aquaculture. The hazard maps of the three land uses are investigated. The factors affecting hazards of different land uses are listed below. As for residence, flooding depth, duration of flooding, and rising rate of water surface level are factors affecting its degree of hazard. High flooding depth, long duration of flooding, and fast rising rate of water surface make residents harder to evacuate. As for fruit trees, flooding depth and duration of flooding affects its hazard most due to the root hypoxia. As for aquaculture, flooding depth affects its hazard most because the high flooding depth may cause the fish flush out the fishing ponds. An overland flow model is used for simulations of hydraulic parameters for factors such as flooding depth, rising rate of water surface level and duration of flooding. As above-mentioned factors, the hazard maps of different land uses can be made and high hazardous are can also be delineated in the subsidence areas.
Depth-to-Ice Map of a Southern Mars Site Near Melea Planum
NASA Technical Reports Server (NTRS)
2007-01-01
Color coding in this map of a far-southern site on Mars indicates the change in nighttime ground-surface temperature between summer and fall. This site, like most of high-latitude Mars, has water ice mixed with soil near the surface. The ice is probably in a rock-hard frozen layer beneath a few centimeters or inches of looser, dry soil. The amount of temperature change at the surface likely corresponds to how close to the surface the icy material lies. The dense, icy layer retains heat better than the looser soil above it, so where the icy layer is closer to the surface, the surface temperature changes more slowly than where the icy layer is buried deeper. On the map, areas of the surface that cooled more slowly between summer and autumn (interpreted as having the ice closer to the surface) are coded blue and green. Areas that cooled more quickly (interpreted as having more distance to the ice) are coded red and yellow. The depth to the top of the icy layer estimated from these observations suggests that in some areas, but not others, water is being exchanged by diffusion between atmospheric water vapor and subsurface water ice. Differences in what type of material lies above the ice appear to affect the depth to the ice. The area in this image with the greatest seasonal change in surface temperature corresponds to an area of sand dunes. This map and its interpretation are in a May 3, 2007, report in the journal Nature by Joshua Bandfield of Arizona State University, Tempe. The Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter collected the data presented in the map. The site is centered near 67 degrees south latitude, 36.5 degrees east longitude, near a plain named Melea Planum. This site is within the portion of the planet where, in 2002, the Gamma Ray Spectrometer suite of instruments on Mars Odyssey found evidence for water ice lying just below the surface. The information from the Gamma Ray Spectrometer is averaged over patches of ground hundreds of kilometers or miles wide. The information from the Thermal Emission Imaging System allows more than 100-fold higher resolution in mapping variations in the depth to ice. The Thermal Emission Imaging System observed the site in infrared wavelengths during night time, providing surface-temperature information. It did so once on Dec. 27, 2005, during late summer in Mars' southern hemisphere, and again on Jan. 22, 2006, the first day of autumn there. The colors on this map signify relative differences in how much the surface temperature changed between those two observations. Blue indicates the locations with the least change. Red indicates areas with most change. Modeling provides estimates that the range of temperature changes shown in this map corresponds to a range in depth-to-ice of less than 1 centimeter (0.4 inch) to more than 19 centimeters (more than 7.5 inches). The sensitivity of this method for estimating the depth is not good for depths greater than about 20 centimeters (8 inches). The temperature-change data are overlaid on a mosaic of black-and-white, daytime images taken in infrared wavelengths by the same camera, providing information about shapes in the landscape. The 20-kilometer scale bar is 12.4 miles long. NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Science Mission Directorate, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Space Systems, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Talbot, Stephen S.; Markon, Carl J.
1988-01-01
A Landsat-derived vegetation map was prepared for lnnoko National Wildlife Refuge. The refuge lies within the northern boreal subzone of northwestern central Alaska. Six major vegetation classes and 21 subclasses were recognized: forest (closed needleleaf, open needleleaf, needleleaf woodland, mixed, and broadleaf); broadleaf scrub (lowland, upland burn regeneration, subalpine); dwarf scrub (prostrate dwarf shrub tundra, erect dwarf shrub heath, dwarf shrub-graminoid peatland, dwarf shrub-graminoid tussock peatland, dwarf shrub raised bog with scattered trees, dwarf shrub-graminoid marsh); herbaceous (graminoid bog, graminoid marsh, graminoid tussock-dwarf shrub peatland); scarcely vegetated areas (scarcely vegetated scree and floodplain); and water (clear, sedimented). The methodology employed a cluster-block technique. Sample areas were described based on a combination of helicopter-ground survey, aerial photo-interpretation, and digital Landsat data. Major steps in the Landsat analysis involved preprocessing (geometric correction), derivation of statistical parameters for spectral classes, spectral class labeling of sample areas, preliminary classification of the entire study area using a maximum-likelihood algorithm, and final classification utilizing ancillary information such as digital elevation data. The final product is 1:250,000-scale vegetation map representative of distinctive regional patterns and suitable for use in comprehensive conservation planning.
Preliminary structural model for the southwestern part of the Michipicoten greenstone belt, Ontario
NASA Technical Reports Server (NTRS)
Mcgill, G. E.; Shrady, C. H.
1986-01-01
The southwestern part of the Michipicoten Greenstone Belt includes a 100 sq km fume kill extending northeastwards from the twon of Wawa, Ontario. Except for a strip along the Magpie River that is covered by Pleistocene gravels, outcrop in the fume kill averages about 30-50%. Within this area are all the major lithologic belts characteristic of the southwestern fourth of the Michipicoten Greenstone Belt. All of the area mapped to date lies within Chabenel Township, recently mapped at 4" = 1 mile. Following a brief reconnaissance in 1983, mapping at a scale of 1" = 400' was begun within and adjacent to the fume kill in 1984. Two objectives are sought (1) determinaion of the geometry and sequence of folding, faulting, cleavage development, and intrusion; and (2) defining and tracing lithologic packages, and evaluating the nature of the contacts between these packages. Results for objective (1) are discussed in a companion abstract; this abstract will present tentative results for objective.
NASA Astrophysics Data System (ADS)
Song, X. P.; Potapov, P.; Adusei, B.; King, L.; Khan, A.; Krylov, A.; Di Bella, C. M.; Pickens, A. H.; Stehman, S. V.; Hansen, M.
2016-12-01
Reliable and timely information on agricultural production is essential for ensuring world food security. Freely available medium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agriculture monitoring. Here we develop and test a method for estimating in-season crop acreage using a probability sample of field visits and producing wall-to-wall crop type maps at national scales. The method is first illustrated for soybean cultivated area in the US for 2015. A stratified, two-stage cluster sampling design was used to collect field data to estimate national soybean area. The field-based estimate employed historical soybean extent maps from the U.S. Department of Agriculture (USDA) Cropland Data Layer to delineate and stratify U.S. soybean growing regions. The estimated 2015 U.S. soybean cultivated area based on the field sample was 341,000 km2 with a standard error of 23,000 km2. This result is 1.0% lower than USDA's 2015 June survey estimate and 1.9% higher than USDA's 2016 January estimate. Our area estimate was derived in early September, about 2 months ahead of harvest. To map soybean cover, the Landsat image archive for the year 2015 growing season was processed using an active learning approach. Overall accuracy of the soybean map was 84%. The field-based sample estimated area was then used to calibrate the map such that the soybean acreage of the map derived through pixel counting matched the sample-based area estimate. The strength of the sample-based area estimation lies in the stratified design that takes advantage of the spatially explicit cropland layers to construct the strata. The success of the mapping was built upon an automated system which transforms Landsat images into standardized time-series metrics. The developed method produces reliable and timely information on soybean area in a cost-effective way and could be implemented in an operational mode. The approach has also been applied for other crops in other regions, such as winter wheat in Pakistan, soybean in Argentina and soybean in the entire South America. Similar levels of accuracy and timeliness were achieved as in the US.
NASA Astrophysics Data System (ADS)
Oo, Tin Ko
2011-07-01
The Mogok Stone Tract area has long been known for world famous finest ruby since 1597. The Mogok area lies in northern Myanmar and is located at about 205.99km northeast from Mandalay, the second largest city of Myanmar. The Mogok Group of metasedimentary rocks is divided into four units: (1) Wabyudaung Marble, (2) Ayenyeinchantha Calc-silicate, (3) Gwebin Quartzite, and (4) Kabe Gneiss. Igneous rocks in the Mogok area are classified into two units: (1) Kabaing Granite and (2) Pingutaung Leucogranite. The Mogok area has a complex structure involving several folds and faults. Using marbles and calc-silicates as marker horizons, a series of anticline and syncline can be identified such as Mogok syncline, Ongaing anticline, Bawpadan syncline, and Kyatpyin anticline. All the foldings show a low-angle plunge to the south. The main precious stones of the Mogok area are ruby and sapphire; and the other important semi-precious stones are spinel, topaz, peridot, garnet, apatite, beryl, tourmaline (rubellite), quartz, diopside, fluorite, and enstatite. Geological and remote sensing data are processed to extract the indicative features of gem mineralized areas: lithology, structure, and hydrothermal alteration. Density slice version of Landsat ETM band ratios 5/7 is used to map clay alterations. Filtering Landsat ETM band 5 by using edge detection filter is applied for lineament mapping. Spatial integration of various geoscience and remote sensing data sets such as geological maps, Landsat ETM images, and the location map of gem mines show the distribution of alteration zones associated with the gem mineralization in the study area. Geographic Information System (GIS) model has been designed and implemented by ARCVIEW software package based on the overlay of lithologic, lineament, and alteration vector maps. This process has resulted in delineation of most promising areas of probable gem mineralized zones as on the output map.
Landsat-Assisted Environmental Mapping in the Arctic National Wildlife Refuge, Alaska,
1982-11-01
during storm surges, support saline -tolerant plant communities and haline soils. Mountainous terrain occurs only in a small portion of the study area...line, even the saline fibrous Histic Pergelic Crya- understood (Mackay 1963). Probably the biggest quepts and Cryohemists along the coast. questions...which due to the very unstable substrate. A few species, Cantion (1961) termed "littoral tundra," lies such as sea purslane (Honcken’a peploides), north
Color-coded topography and shaded relief map of the lunar near side and far side hemispheres
,
2003-01-01
This publication is a set of three sheets of topographic maps that presents color-coded topographic data digitally merged with shaded relief data. Adopted figure: The figure for the Moon, used for the computation of the map projection, is a sphere with a radius of 1737.4 km. Because the Moon has no surface water, and hence no sea level, the datum (the 0 km contour) for elevations is defined as the radius of 1737.4 km. Coordinates are based on the mean Earth/polar axis (M.E.) coordinates system, the z axis is the axis of the Moon's rotation, and the x axis is the mean Earth direction. The center of mass is the origin of the coordinate system. The equator lies in the x-y plane and the prime meridian lies in the x-z plane with east longitude values being positive. Projection: The projection is Lambert Azimuthal Equal Area Projection. The scale factor at the central latitude and central longitude point is 1:10,000,000. For the near side hemisphere the central latitude and central longitude point is at 0° and 0°. For the far side hemisphere the central latitude and central longitude point is at 0° and 180°.
California State Waters Map Series—Offshore of Pigeon Point, California
Cochrane, Guy R.; Watt, Janet T.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.
2015-12-15
Seafloor habitats in the Offshore of Pigeon Point map area lie within the Shelf (continental shelf) megahabitat. Significant rocky outcrops, which support kelp-forest communities in the nearshore and rocky-reef communities in deeper water, dominate the inner shelf waters. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.
1985-01-01
The Medford quadrangle is located in mountainous southwestern Oregon adjacent to the California border and a short distance east of the Pacific coast. Various parts of this area lie in different geologic provinces. Most of the western half of the quadrangle is underlain by pre-Tertiary rocks of the Klamath Mountains province. However, the Coast Range province is represented by the Tertiary sedimentary rocks in the northwest corner. Much of the eastern half of the quadrangle lies in the Cascade Range. In Oregon, because of differences in physiographic expression and age of rocks, this province is commonly divided into the more rugged High Cascade Range on the east and the more subdued Western Cascade Range on the west. This division is approximated on the map by the contact between the Quaternary and Tertiary volcanic rocks of the High Cascade Range and the Tertiary volcanic rocks of the Western Cascade Range. The geology shown is generalized from a more detailed compilation by Smith and others (1982).
Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.
1985-01-01
The Medford quadrangle is located in mountainous southwestern Oregon adjacent to the California border and a short distance east of the Pacific coast. Various parts of this area lie in different geologic provinces. Most of the western half of the quadrangle is underlain by pre-Tertiary rocks of the Klamath Mountains province. However, the Coast Range province is represented by the Tertiary sedimentary rocks in the northwest corner. Much of the eastern half of the quadrangle lies in the Cascade Range. In Oregon, because of differences in physiographic expression and age of rocks, this province is commonly divided into the more rugged High Cascade Range on the east and the more subdued Western Cascade Range on the west. This division is approximated on the map by the contact between the Quaternary and Tertiary volcanic rocks of the High Cascade Range and the Tertiary volcanic rocks of the Western Cascade Range. The geology shown is generalized from a more detailed compilation by Smith and others (1982).
Perfusion CT in acute stroke: effectiveness of automatically-generated colour maps.
Ukmar, Maja; Degrassi, Ferruccio; Pozzi Mucelli, Roberta Antea; Neri, Francesca; Mucelli, Fabio Pozzi; Cova, Maria Assunta
2017-04-01
To evaluate the accuracy of perfusion CT (pCT) in the definition of the infarcted core and the penumbra, comparing the data obtained from the evaluation of parametric maps [cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT)] with software-generated colour maps. A retrospective analysis was performed to identify patients with suspected acute ischaemic strokes and who had undergone unenhanced CT and pCT carried out within 4.5 h from the onset of the symptoms. A qualitative evaluation of the CBV, CBF and MTT maps was performed, followed by an analysis of the colour maps automatically generated by the software. 26 patients were identified, but a direct CT follow-up was performed only on 19 patients after 24-48 h. In the qualitative analysis, 14 patients showed perfusion abnormalities. Specifically, 29 perfusion deficit areas were detected, of which 15 areas suggested the penumbra and the remaining 14 areas suggested the infarct. As for automatically software-generated maps, 12 patients showed perfusion abnormalities. 25 perfusion deficit areas were identified, 15 areas of which suggested the penumbra and the other 10 areas the infarct. The McNemar's test showed no statistically significant difference between the two methods of evaluation in highlighting infarcted areas proved later at CT follow-up. We demonstrated how pCT provides good diagnostic accuracy in the identification of acute ischaemic lesions. The limits of identification of the lesions mainly lie at the pons level and in the basal ganglia area. Qualitative analysis has proven to be more efficient in identification of perfusion lesions in comparison with software-generated maps. However, software-generated maps have proven to be very useful in the emergency setting. Advances in knowledge: The use of CT perfusion is requested in increasingly more patients in order to optimize the treatment, thanks also to the technological evolution of CT, which now allows a whole-brain study. The need for performing CT perfusion study also in the emergency setting could represent a problem for physicians who are not used to interpreting the parametric maps (CBV, MTT etc.). The software-generated maps could be of value in these settings, helping the less expert physician in the differentiation between different areas.
Surficial Geologic Map of the Roanoke Rapids 30' x 60' Quadrangle, North Carolina
Weems, Robert E.; Lewis, William C.; Aleman-Gonzalez, Wilma
2009-01-01
The Roanoke Rapids 1:100,000 map sheet is located in northeastern North Carolina. Most of the area is flat to gently rolling, though steep slopes occur occasionally along some of the larger streams. Total relief in the area is slightly less than 400 feet (ft), with elevations ranging from sea level east of Murfreesboro in the far northeastern corner of the map to 384 ft near the northwestern map border near Littleton. The principal streams are the Roanoke River and Fishing Creek, which on average flow from northwest to southeast in the map area. The principal north-south roads are Interstate Route 95, U.S. Route 258, and U.S. Route 301. Two lines of the CSX railroad also cross the area in a north-south and northeast-southwest direction. This part of North Carolina is primarily rural and agricultural. The only large community in the area is Roanoke Rapids. The map lies astride the Tidewater Fall Line, a prominent physiographic feature marked by rapids and waterfalls that separate the rocky streams of the eastern Piedmont physiographic province from the sandy and alluviated streams of the western Atlantic Coastal Plain physiographic province. The energy from the Roanoke River descending the Tidewater Fall Line has been harnessed by dams to produce hydroelectric power, and this source of energy was a major factor in the growth and development of Roanoke Rapids. The Piedmont in the western part of the map area is underlain by Neoproterozoic to Cambrian metavolcanic and metasedimentary rocks that are intruded by granite in some areas. In the central and eastern part of the map area, the folded and faulted igneous and metamorphic rocks of the Piedmont, as well as tilted sedimentary rocks in a buried Triassic basin, are all overlain with profound unconformity by generally unlithified and only slightly eastward-tilted Cretaceous, Paleogene, and Neogene sediments of the Atlantic Coastal Plain. The Coastal Plain sediments lap westward onto the eastern Piedmont along the high divides between streams and locally along the valley walls of major streams, thereby creating a complex erosional and depositional map pattern across the western and central map area. The Coastal Plain sedimentary deposits described here are mostly allostratigraphic units, bounded above and below by mappable unconformities.
Todd, B.J.; Valentine, Page C.
2015-01-01
Georges Bank is a shallow submarine bank that lies south of Nova Scotia and east of Cape Cod and bounds the seaward side of the Gulf of Maine. The international boundary between Canada and the United States transects the bank, and the eastern part of the bank (~7500 square kilometres) lies in Canadian territory. This map shows the surficial geology of a part of Georges Bank at a scale of 1:50 000. This map has companion topographic and backscatter strength maps. These companion maps provide a basis for interpreting the origin of seafloor features and the nature of materials that form the seafloor. The maps are based on multibeam-sonar surveys conducted in 1999 and 2000 to map 11,965 square kilometres of the seafloor.
Estimation of Surface Deformation due to Pasni Earthquake Using SAR Interferometry
NASA Astrophysics Data System (ADS)
Ali, M.; Shahzad, M. I.; Nazeer, M.; Kazmi, J. H.
2018-04-01
Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.
Digital mapping in extreme and remote environments
NASA Astrophysics Data System (ADS)
Andersson, Joel; Bauer, Tobias; Sarlus, Zimer; Zainy, Maher; Brethes, Anais
2017-04-01
During the last few years, Luleå University of Technology has performed a series of research projects in remote areas with extreme climatic conditions using digital mapping technologies. The majority of past and ongoing research projects focus on the arctic regions of the Fennoscandian Shield and Greenland but also on the Zagros fold-and-thrust belt in northern Iraq. Currently, we use the Midland Valley application FieldMove on iPad mini devices with ruggedized casings. As all projects have a strong focus on geological field work, harsh climatic conditions are a challenge not only for the geologists but also for the digital mapping hardware. In the arctic regions especially cold temperatures affect battery lifetime and performance of the screens. But also high temperatures are restricting digital mapping. From experience, a typical temperature range where digital mapping, using iPad tablets, is possible lies between -20 and +40 degrees. Furthermore, the remote character of field areas complicates access but also availability of electricity. By a combination of robust solar chargers and ruggedized batteries we are able to work entirely autarkical. Additionally, we are currently installing a drone system that allows us to map outcrops normally inaccessible because of safety reasons or time deficiency. The produced data will subsequently be taken into our Virtual Reality studio for interpretation and processing. There we will be able to work also with high resolution DEM data from Lidar scanning allowing us to interpret structural features such as post-glacial faults in areas that are otherwise only accessible by helicopter. By combining digital field mapping with drone technique and a Virtual Reality studio we are able to work in hardly accessible areas, improve safety during field work and increase efficiency substantially.
Performance comparison of LUR and OK in PM2.5 concentration mapping: a multidimensional perspective
Zou, Bin; Luo, Yanqing; Wan, Neng; Zheng, Zhong; Sternberg, Troy; Liao, Yilan
2015-01-01
Methods of Land Use Regression (LUR) modeling and Ordinary Kriging (OK) interpolation have been widely used to offset the shortcomings of PM2.5 data observed at sparse monitoring sites. However, traditional point-based performance evaluation strategy for these methods remains stagnant, which could cause unreasonable mapping results. To address this challenge, this study employs ‘information entropy’, an area-based statistic, along with traditional point-based statistics (e.g. error rate, RMSE) to evaluate the performance of LUR model and OK interpolation in mapping PM2.5 concentrations in Houston from a multidimensional perspective. The point-based validation reveals significant differences between LUR and OK at different test sites despite the similar end-result accuracy (e.g. error rate 6.13% vs. 7.01%). Meanwhile, the area-based validation demonstrates that the PM2.5 concentrations simulated by the LUR model exhibits more detailed variations than those interpolated by the OK method (i.e. information entropy, 7.79 vs. 3.63). Results suggest that LUR modeling could better refine the spatial distribution scenario of PM2.5 concentrations compared to OK interpolation. The significance of this study primarily lies in promoting the integration of point- and area-based statistics for model performance evaluation in air pollution mapping. PMID:25731103
LANDSAT demonstration/application and GIS integration in south central Alaska
NASA Technical Reports Server (NTRS)
Burns, A. W.; Derrenbacher, W.
1981-01-01
Automated geographic information systems were developed for two sites in Southcentral Alaska to serve as tests for both the process of integrating classified LANDSAT data into a comprehensive environmental data base and the process of using automated information in land capability/suitability analysis and environmental planning. The Big Lake test site, located approximately 20 miles north of the City of Anchorage, comprises an area of approximately 150 square miles. The Anchorage Hillside test site, lying approximately 5 miles southeast of the central part of the city, extends over an area of some 25 square miles. Map construction and content is described.
Beard, L.S.; Anderson, R.E.; Block, D.L.; Bohannon, R.G.; Brady, R.J.; Castor, S.B.; Duebendorfer, E.M.; Faulds, J.E.; Felger, T.J.; Howard, K.A.; Kuntz, M.A.; Williams, V.S.
2007-01-01
Introduction The geologic map of the Lake Mead 30' x 60' quadrangle was completed for the U.S. Geological Survey's Las Vegas Urban Corridor Project and the National Parks Project, National Cooperative Geologic Mapping Program. Lake Mead, which occupies the northern part of the Lake Mead National Recreation Area (LAME), mostly lies within the Lake Mead quadrangle and provides recreation for about nine million visitors annually. The lake was formed by damming of the Colorado River by Hoover Dam in 1939. The recreation area and surrounding Bureau of Land Management lands face increasing public pressure from rapid urban growth in the Las Vegas area to the west. This report provides baseline earth science information that can be used in future studies of hazards, groundwater resources, mineral and aggregate resources, and of soils and vegetation distribution. The preliminary report presents a geologic map and GIS database of the Lake Mead quadrangle and a description and correlation of map units. The final report will include cross-sections and interpretive text. The geology was compiled from many sources, both published and unpublished, including significant new mapping that was conducted specifically for this compilation. Geochronologic data from published sources, as well as preliminary unpublished 40Ar/39Ar ages that were obtained for this report, have been used to refine the ages of formal Tertiary stratigraphic units and define new informal Tertiary sedimentary and volcanic units.
Gulf of Mexico region - Highlighting low-lying areas derived from USGS Digital Elevation Data
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of the area surrounding the Gulf of Mexico. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s data) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of 10-meter contour-derived DEM data or higher-resolution LIDAR data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2005.
Geologic map of the Valle 30' x 60' quadrangle, Coconino County, northern Arizona
Billingsley, George H.; Felger, Tracey J.; Priest, Susan S.
2006-01-01
The geologic map of the Valle 30' x 60' quadrangle is the result of a cooperative effort between the U.S. Geological Survey and the National Park Service to provide geologic information for regional resource management and visitor information services for Grand Canyon National Park, Arizona. The map area encompasses approximately 1,960 sq.mi. within Coconino County, northern Arizona and is bounded by long 112 deg to 113 deg W. and lat 35 deg 30 min to 36 deg N. and lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into four physiographic parts; (1) the Grand Canyon (Cataract Canyon and extreme northeast corner of the map area), (2) the Coconino Plateau, (3) the Mount Floyd Volcanic Field, and (4) the San Francisco Volcanic Field as defined by Billingsley and others, 1997. Elevations range from 7,460 ft (2,274 m) on the Coconino Plateau along State Highway 64 northeast corner of the map area, to about 4,200 ft (1,280 m) at the bottom of Cataract Canyon. Settlements within the map area include Tusayan and Valle, Arizona. State Highway 64 and U.S. Highway 180 provide access to the Tusayan and Valle areas. Indian Route 18 is a paved highway in the northwest corner of the map area that is maintained by the Hualapai and Havasupai Indian Tribes and leads from State Route 66 about 7 mi (11 km) east of Peach Springs, Arizona to Hualapai Hilltop, a parking lot just north of the map area at the rim of Cataract Canyon where visitors begin an 8 mi (13 km) hike into Havasupai, Arizona. Other remote parts of the map are accessed by two dirt roads, which are maintained by Coconino County, and by several unmaintained local ranch roads. Weather conditions restrict travel within the area and visitors must obtain permission to access a few local ranch lands in the south-central edge of the map area. Extra water and food are highly recommended when traveling in this remote region. Access into Cataract Canyon is restricted to horse or foot travel and visitors must obtain permission from the Havasupai Tribe to hike within the Havasupai Indian Reservation. In the central part of the map area, most of the land is privately owned and managed by the Babbitt Ranches Inc. in conjunction with the Nature Conservancy and the Navajo Tribe. In the southern half of the map, land alternates between privately owned land and State land forming a checkerboard pattern. The National Park Service manages land in Grand Canyon National Park (extreme northeast edge of map area), the U.S. Forest Service manages lands in the Kaibab National Forest, the Hualapai Tribe manages lands in the northwest quarter of the map area, and the Havasupai Tribe manages lands within Cataract Canyon and adjacent parts of the Coconino Plateau.
The use of historical topographic maps in the study of forest-cover changes in Southern Romania
NASA Astrophysics Data System (ADS)
Imecs, Zoltán; Bartos-Elekes, Zsombor; Timár, Gábor; Magyari-Sáska, Zsolt
2014-05-01
In the post-communist period the term "deforestation" becomes well known in Romania. By the middle of 19th-century more than 27% of the country was covered by forests, but since then certain changes took place in this respect. The study of the phenomena can be done by the help of maps. In this regard it is very important to have old maps which can emphasize the situation from the past. As the map of Southern Romania, made about Walachia in 1864, called Charta României Meridionale is now georeferenced and accessible on the web, it can be used as a basis for such studies. Researchers are now able to make quantitative studies. In our poster we made a study of two different regions from Southern Romania: one from a mountain region and one from a plain region. Both are in the basin of Argeş river, tributary of Danube. The mountain region lies in the upper basin of Argeş river which is now occupied Vidraru artificial lake. The plain region lies on wetland and today is a natural reserve. The study regions have almost the same size (about 400 km2). In order to follow the evolution in time of the forest cover we used four data sources which covers a period of more than 150 years: Charta României Meridionale (the survey was made between 1855 and 1859); Lambert-Cholesky maps (the survey was made at the end of the 19th century); Gauss-Krüger maps (from the 1960s) and orthophotographs made in 2005. All these materials are georeferenced. With the help of GIS software we digitized the areas covered by forests in both regions. The areas were determined and compared. Using GIS techniques we can overlap the areas covered by forests, the illustrations were made this way. As a conclusion we can say that the plain region suffered important changes as the natural landscape turns into an agricultural-human landscape in the first part of the 20th century. We can say that the actual forest is preserved only because now it is a protected area. In the mountain region the territory was partially transformed into artificial lake, the forests are preserved to reduce the flow of wash materials into the lake. But in the mountain regions more and more clearings appear. The study demonstrates that with the help of historic maps landscape changes can be studied with good results. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-RU-TE-2011-3-0125.
A Lie based 4-dimensional higher Chern-Simons theory
NASA Astrophysics Data System (ADS)
Zucchini, Roberto
2016-05-01
We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.
1974-01-01
Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.
VizieR Online Data Catalog: VLT Survey Telescope ATLAS (Shanks+, 2015)
NASA Astrophysics Data System (ADS)
Shanks, T.; Metcalfe, N.; Chehade, B.; Findlay, J. R.; Irwin, M. J.; Gonzalez-Solares, E.; Lewis, J. R.; Yoldas, A. K.; Mann, R. G.; Read, M. A.; Sutorius, E. T. W.; Voutsinas, S.
2017-11-01
The ATLAS sky coverage consists of two contiguous blocks in the North and South galactic caps. The ATLAS South Galactic Cap (SGC) area lies between 21h30m
Vs30 mapping at selected sites within the Greater Accra Metropolitan Area
NASA Astrophysics Data System (ADS)
Nortey, Grace; Armah, Thomas K.; Amponsah, Paulina
2018-06-01
A large part of Accra is underlain by a complex distribution of shallow soft soils. Within seismically active zones, these soils hold the most potential to significantly amplify seismic waves and cause severe damage, especially to structures sited on soils lacking sufficient stiffness. This paper presents preliminary site classification for the Greater Accra Metropolitan Area of Ghana (GAMA), using experimental data from two-dimensional (2-D) Multichannel Analysis of Surface Wave (MASW) technique. The dispersive characteristics of fundamental mode Rayleigh type surface waves were utilized for imaging the shallow subsurface layers (approx. up to 30 m depth) by estimating the 1D (depth) and 2D (depth and surface location) shear wave velocities at 5 selected sites. The average shear wave velocity for 30 m depth (Vs30), which is critical in evaluating the site response of the upper 30 m, was estimated and used for the preliminary site classification of the GAM area, as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs30 values obtained in the study, two common site types C, and D corresponding to shallow (>6 m < 30 m) weathered rock and deep (up 30 m thick) stiff soils respectively, have been identified within the study area. Lower velocity profiles are inferred for the residual soils (sandy to silty clays), derived from the Accraian Formation that lies mainly within Accra central. Stiffer soil sites lie to the north of Accra, and to the west near Nyanyano. The seismic response characteristics over the residual soils in the GAMA have become apparent using the MASW technique. An extensive site effect map and a more robust probabilistic seismic hazard analysis can now be efficiently built for the metropolis, by considering the site classes and design parameters obtained from this study.
Generalized vegetation map of north Merrit Island based on a simplified multispectral analysis
NASA Technical Reports Server (NTRS)
Poonai, P.; Floyd, W. J.; Rahmani, M. A.
1977-01-01
A simplified system for classification of multispectral data was used for making a generalized map of ground features of North Merritt Island. Subclassification of vegetation within broad categories yielded promising results which led to a completely automatic method and to the production of satisfactory detailed maps. Changes in an area north of Happy Hammocks are evidently related to water relations of the soil and are not associated with the last winter freeze-damage which affected mainly the mangrove species, likely to reestablish themselves by natural processes. A supplementary investigation involving reflectance studies in the laboratory has shown that the reflectance by detached citrus leaves, of wavelengths lying between 400 microns and 700 microns, showed some variation over a period of seven days during which the leaves were kept in a laboratory atmosphere.
McLean, Hugh
1988-01-01
The Loreto area of Baja California Sur, Mexico, contains a diverse association of igneous, sedimentary, and metasedimentary rocks exposed in the foothills and arroyos between the Sierra La Giganta and Gulf of California. The Loreto area was selected for this study to examine the possible relation of the marine rocks to the opening of the Gulf of California, and to determine the stratigraphic and structural relations between basement rocks composed of granitic and prebatholithic rocks and overlying Tertiary (mainly Miocene) sedimentary and volcanic rocks, and by a sequence of Pliocene marine and nonmarine sedimentary rocks. The Pliocene marine rocks lie in a structural depression informally called here, the Loreto embayment. This geologic map and report stem from a cooperative agreement between the U.S. Geological Survey and the Consejo de Recursos Minerales of Mexico that was initiated in 1982.
California State Waters map series—Offshore of Scott Creek, California
Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Watt, Janet T.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.
2015-11-16
Seafloor habitats in the Offshore of Scott Creek map area, which lie within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deeper water. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are the northernmost known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
California State Waters Map Series: offshore of Bolinas, California
Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Manson, Michael W.; Sliter, Ray W.; Endris, Charles A.; Watt, Janet T.; Ross, Stephanie L.; Kvitek, Rikk G.; Phillips, Eleyne L.; Bruns, Terry R.; Chin, John L.; Cochrane, Guy R.; Cochran, Susan A.
2015-08-05
Seafloor habitats in the Offshore of Bolinas map area, which lies within the Shelf (continental shelf) megahabitat, range from, in the nearshore, sandy seafloor in the southeast and significant rocky outcrops that support kelp-forest communities in the northwest to, in deeper water, rocky-reef communities. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock in the northeast supports large forests of “bull kelp,” which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of greenling and rockfish.
Geologic Map of the San Luis Quadrangle, Costilla County, Colorado
Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.
2008-01-01
The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.
NASA Astrophysics Data System (ADS)
Thakre, Deepak
2010-05-01
Analysis and Mapping of Flood Line within the Godavari River in Nasik(Municipal Corporation Area) Dr.Deepak N.Thakre Lecturer in Geography L.V.H.College, Nasik-3, Maharashtra, India A flood is an overflow or accumulation of an expanse of water that submerges land when the discharge of a river can not be accommodated within the margins of its normal channel so that water spreads over adjoining area and creates havoc. Problem: Since last few years there has been a sudden increase in rainfall,quite intense during a certain period in monsoon,as a result of which the discharge in river Godavari increases and creates problems in low lying areas on the banks of river Godavari like: submergence of houses,major loss of lives,management failure(due to unexpected dimension of floods)and the disruption of normal life. This paper attempts to analyse and draw an averege flood zone and sudden flood zone on the basis of : 1) Actual field work and survey with the help of Dumpy level and GPS 2) Field interviews of affected people 3) Data available from Meteorological and Irrigation department Among several districts that have flourished in the soils of Indian subcontinent the name of Nashik has drawn the attention of people all over the world. Geographical location of Nashik is 20° 01' to 20° 02' North and 73° 30' to 73° 50'East. Nashik city is situated on the banks of river Godavari and tributaries namely Nasardi, Waghadi, Darna and Walvadi.The total area of Nasik is 264.23 Sq.km (102 Sq.mt) and height from M.S.L is 3284 feet (1001 Mt). River Godavari originates in Western mountain range and flows towards East up to Bay of Bengal. On the upstream of Nasik city dams like Gangapur, Darna, Alandi, Kasyapi and Gautami-Godavari are constructed on river Godavari and its tributaries. Gangapur dam is the nearest storage dam constructed 15km away from Nasik city at source area in the year 1965. Due to moderation of floods and construction of dam there is encroachment in low lying areas of the river. If the discharge from Gangapur dam crosses 25000 cusecs then the flow affects low lying areas during recurring floods causing difficulty in rescue and evacuation operations. Heavy rains in 2005, 2006, 2007, 2008 and 2009 have created problems in the Municipal area of Nasik city due to large discharge which was around 35000, 18000,29000,42000,33000 cusecs respectively. Though the discharge is low than the discharge of 1976 which was around 48000 cusecs, thousands of people living in low lying area of the river are shifted each year as many houses are under water at least once in a year. In this paper an attempt has been made to trace the factors responsible for creating sudden flood situation in the areas of Nasik Municipal Corporation and to divide the river channel into two zones namely: a) Average Flood Zone b) Sudden Flood Zone
Benthic habitat and geologic mapping of the outer continental shelf of north-central California
Anima, Roberto J.; Chin, John L.; Conrad, James E.; Golden, Nadine E.
2006-01-01
The Fanny Shoal area is located between North Farallon Island and Cordell Bank approximately 40 miles west of San Francisco, California. The area lies within the Gulf of the Farallones National Marine Sanctuary (GFNMS) which is located just a few miles from San Francisco. The waters within the GFNMS are part of a nationally significant marine ecosystem encompassing a diversity of highly productive marine habitats. Protection of the living and cultural resources at the sites are administered by the National Oceanic and Atmospheric Administration (NOAA). The U.S. Geological Survey (USGS) in cooperation with the Golden Gate National Recreation Area (GGNRA) and NOAA, including the GFNMS, and Monterey Bay National Marine Sanctuary (MBNMS), collected side-scanning sonar, and underwater video data over three cruises in July of 2003, and April of 2004. The data are consolidated into a geographic information system (GIS) to produce benthic habitat and geologic maps that provide researchers and those involved in decision making with crucial, georeferenced geologic information that will aid in preserving the area's environment.
Wich, Serge A.; Gaveau, David; Abram, Nicola; Ancrenaz, Marc; Baccini, Alessandro; Brend, Stephen; Curran, Lisa; Delgado, Roberto A.; Erman, Andi; Fredriksson, Gabriella M.; Goossens, Benoit; Husson, Simon J.; Lackman, Isabelle; Marshall, Andrew J.; Naomi, Anita; Molidena, Elis; Nardiyono; Nurcahyo, Anton; Odom, Kisar; Panda, Adventus; Purnomo; Rafiastanto, Andjar; Ratnasari, Dessy; Santana, Adi H.; Sapari, Imam; van Schaik, Carel P.; Sihite, Jamartin; Spehar, Stephanie; Santoso, Eddy; Suyoko, Amat; Tiju, Albertus; Usher, Graham; Atmoko, Sri Suci Utami; Willems, Erik P.; Meijaard, Erik
2012-01-01
The geographic distribution of Bornean orang-utans and its overlap with existing land-use categories (protected areas, logging and plantation concessions) is a necessary foundation to prioritize conservation planning. Based on an extensive orang-utan survey dataset and a number of environmental variables, we modelled an orang-utan distribution map. The modelled orang-utan distribution map covers 155,106 km2 (21% of Borneo's landmass) and reveals four distinct distribution areas. The most important environmental predictors are annual rainfall and land cover. The overlap of the orang-utan distribution with land-use categories reveals that only 22% of the distribution lies in protected areas, but that 29% lies in natural forest concessions. A further 19% and 6% occurs in largely undeveloped oil palm and tree plantation concessions, respectively. The remaining 24% of the orang-utan distribution range occurs outside of protected areas and outside of concessions. An estimated 49% of the orang-utan distribution will be lost if all forest outside of protected areas and logging concessions is lost. To avoid this potential decline plantation development in orang-utan habitats must be halted because it infringes on national laws of species protection. Further growth of the plantation sector should be achieved through increasing yields in existing plantations and expansion of new plantations into areas that have already been deforested. To reach this goal a large scale island-wide land-use masterplan is needed that clarifies which possible land uses and managements are allowed in the landscape and provides new standardized strategic conservation policies. Such a process should make much better use of non-market values of ecosystem services of forests such as water provision, flood control, carbon sequestration, and sources of livelihood for rural communities. Presently land use planning is more driven by vested interests and direct and immediate economic gains, rather than by approaches that take into consideration social equity and environmental sustainability. PMID:23145100
Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus
NASA Technical Reports Server (NTRS)
Ivanov, M. A.; Head, J. W.
2009-01-01
The Fortuna Tessera quadrangle (50-75 N, 0-60 E) is a large region of tessera [1] that includes the major portion of Fortuna and Laima Tesserae [2]. Near the western edge of the map area, Fortuna Tessera is in contact with the highest moun-tain belt on Venus, Maxwell Montes. Deformational belts of Sigrun-Manto Fossae (extensional structures) and Au ra Dorsa (contractional structures) separate the tessera regions. Highly deformed terrains correspond to elevated regions and mildly deformed units are with low-lying areas. The sets of features within the V-2 quadrangle permit us to address the following important questions: (1) the timing and processes of crustal thickening/thinning, (2) the nature and origin of tesserae and deformation belts and their relation to crustal thickening processes, (3) the existence or absence of major evolutionary trends of volcanism and tectonics. The key feature in all of these problems is the regional sequence of events. Here we present description of units that occur in the V-2 quadrangle, their regional correlation chart (Fig. 1), and preliminary geological map of the region (Fig. 2).
NASA Astrophysics Data System (ADS)
Patel, Dhruvesh; Ramirez, Jorge; Srivastava, Prashant; Bray, Michaela; Han, Dawei
2017-04-01
Surat, known as the diamond city of Gujart is situated 100 km downstream of Ukai dam and near the mouth of river Tapi and affected by the flood at every alternate year. The city experienced catastrophic floods in 1933, 1959, 1968, 1970, 1994, 1998 and 2006. It is estimated that a single flood event during August 6-12, 2006 in Surat and Hazira twin-city, caused heavy damages, resulted in the death of 300 people and property damage worth € 289 million. The peak discharge of 25768 m3 s-1 release from Ukai dam was responsible for the disastrous flood in Surat city. To identifylow lying areas prone to inundation and reduce the uncertainty in flood mitigation measures, HEC-RAS based 1D/2D Couple hydrodynamic modeling is carried out for Surat city. Release from the Ukai dam and tidal level of the sea are considered for upstream and downstream boundary condition. 299 surveyed cross-sections have been considered for 1D modeling, whereas a topographic map at 0.5 m contour interval was used to produce a 5 m grid and SRTM (30 & 90 m) grid has been considered for Suart and Lower Tapi Basin (LTB). Flow is simulated under unsteady conditions, calibrated for the year 1998 and validated for the year 2006. The simulated result shows that the 9th August 18.00 hr was the worst day for Surat city and maximum 75-77 % area was under inundation. Most of the flooded area experienced 0.25 m/s water velocity with the duration of 90 hr. Due to low velocity and high duration of the flood, a low lying area within the west zone and south-west zone of the city was badly affected by the flood, whereas the south zone and south-east zone was least. Simulated results show good correlation when compared with an observed flood level map. The simulated results will be helpful to improve the flood resilience strategy at Surat city and reduce the uncertainty for flood inundation mapping for future dam releases. The present case study shows the applicability of 1D/2D coupled hydrodynamic modeling for flood inundation mapping and can be applied for flood assessment at locations with similar geographical conditions.
NASA Astrophysics Data System (ADS)
Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A.
2015-03-01
The aim of this paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1, Ronco et al., 2014), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying on the Sihl River valley including Zurich, which represents a typical case of river flooding in an urban area, by calibrating the methodology to the site-specific context and features. Risk maps and statistics have been developed using a 300-year return period scenario for six relevant targets exposed to flood risk: people; economic activities: buildings, infrastructure and agriculture; natural and semi-natural systems; and cultural heritage. Finally, the total risk index map has been produced to visualize the spatial pattern of flood risk within the target area and, therefore, to identify and rank areas and hotspots at risk by means of multi-criteria decision analysis (MCDA) tools. Through a tailored participatory approach, risk maps supplement the consideration of technical experts with the (essential) point of view of relevant stakeholders for the appraisal of the specific scores weighting for the different receptor-relative risks. The total risk maps obtained for the Sihl River case study are associated with the lower classes of risk. In general, higher (relative) risk scores are spatially concentrated in the deeply urbanized city centre and areas that lie just above to river course. Here, predicted injuries and potential fatalities are mainly due to high population density and to the presence of vulnerable people; flooded buildings are mainly classified as continuous and discontinuous urban fabric; flooded roads, pathways and railways, most of them in regards to the Zurich central station (Hauptbahnhof) are at high risk of inundation, causing severe indirect damage. Moreover, the risk pattern for agriculture, natural and semi-natural systems and cultural heritage is relatively less important mainly because the scattered presence of these assets. Finally, the application of the KR-RRA methodology to the Sihl River case study, as well as to several other sites across Europe (not presented here), has demonstrated its flexibility and the possible adaptation of it to different geographical and socioeconomic contexts, depending on data availability and particulars of the sites, and for other (hazard) scenarios.
State of Louisiana - Highlighting low-lying areas derived from USGS Digital Elevation Data
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation highlighting the State of Louisiana and depicts the surrounding areas using muted elevation colors. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data are a mixture of data and were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of mostly 10-meter contour-derived DEM data and some small areas of higher-resolution LIght Detection And Ranging (LIDAR) data along parts of the coastline. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and parish boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2007.
Preliminary Surficial Geologic Map of the Mesquite Lake 30' X 60' Quadrangle, California and Nevada
Schmidt, Kevin M.; McMackin, Matthew
2006-01-01
The Quaternary surficial geologic map of the Mesquite Lake, California-Nevada 30'X60' quadrangle depicts deposit age and geomorphic processes of erosion and deposition, as identified by a composite of remote sensing investigations, laboratory analyses, and field work, in the arid to semi-arid Mojave Desert area, straddling the California-Nevada border. Mapping was motivated by the need to address pressing scientific and social issues such as understanding and predicting the effects of climate and associated hydrologic changes, human impacts on landscapes, ecosystem function, and natural hazards at a regional scale. As the map area lies just to the south of Las Vegas, Nevada, a rapidly expanding urban center, land use pressures and the need for additional construction materials are forecasted for the region. The map contains information on the temporal and spatial patterns of surface processes and hazards that can be used to model specific landscape applications. Key features of the geologic map include: (1) spatially extensive Holocene alluvial deposits that compose the bulk of Quaternary units (~25%), (2) remote sensing and field studies that identified fault scarps or queried faults in the Kingston Wash area, Shadow Mountains, southern Pahrump Valley, Bird Spring Range, Lucy Gray Mountains and Piute Valley, (3) a lineament indicative of potential fault offset is located in Mesquite Valley, (4) active eolian dunes and sand ramps located on the east side of Mesquite, Ivanpah, and Hidden Valleys adjacent to playas, (4) groundwater discharge deposits in southern Pahrump Valley, Spring Mountains, and Lucy Gray Mountains and (5) debris-flow deposits spanning almost the entire Quaternary period in age.
Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon
NASA Astrophysics Data System (ADS)
Wiley, T. J.; McClaughry, J. D.
2012-12-01
Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure. Intrusive bodies were locally delimited by linear mounds where contact metamorphism hardened soft, fractured country rock. Bedrock faults were revealed where fault traces formed topographic anomalies or where topography associated with stratigraphic horizons or bedding-parallel textural fabrics was offset. This was important for identification of young faults and associated earthquake hazards. Previously unknown Holocene faults southwest of Hood River appear as subtle lineaments redirecting modern drainages or offsetting glacial moraines or glaciated bedrock. West of Medford, the presence young faulting was confirmed by elevation data that showed bedrock in the channel of the Rogue River at higher elevations below Gold Ray dam than in boreholes upstream. Such obscure structural features would have gone unrecognized using traditional topographic analysis or field reconnaissance. Fieldwork verified that lidar techniques improved our early geologic models, resolution of geologic features, and mapping of surficial and bedrock geology between traverses.
State of Texas - Highlighting low-lying areas derived from USGS Digital Elevation Data
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of Texas and a grayscale relief of the surrounding areas. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2002. Shaded relief over Mexico was obtained from the USGS National Atlas.
Detailed sections from auger holes in the Elizabethtown 1:100,000-scale map sheet, North Carolina
Weems, Robert E.; Lewis, William C.; Murray, Joseph H.; Queen, David B.; Grey, Jeffrey B.; DeJong, Benjamin D.
2011-01-01
The Elizabethtown 1:100,000 quadrangle is in the west-central part of the Coastal Plain of southeastern North Carolina. The Coastal Plain, in this region, consists mostly of unlithified sediments that range in age from Late Cretaceous to Holocene. These sediments lie with profound unconformity on complexly deformed metamorphic and igneous rocks similar to rocks found immediately to the west in the Piedmont province. Coastal Plain sediments generally dip gently to the southeast or south and reach a maximum thickness of about 850 feet (ft) in the extreme southeast part of the map area. The gentle southerly and southeasterly dip is disrupted in several areas by faulting. The U.S. Geological Survey recovered one core and augered 196 research test holes in the Elizabethtown 1:100,000 quadrangle to supplement sparse outcrop data in the map area. The recovered sediments were studied and data from these sediments recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented Coastal Plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries. The detailed descriptions of the subsurface data can be used by geologists, hydrologists, engineers, and community planners to provide a detailed shallow-subsurface stratigraphic framework for the Elizabethtown map region.
Harrison, Richard W.; Orndorff, Randall C.; Weary, David J.
2002-01-01
The bedrock exposed in the Stegall Mountain Quadrangle, Missouri, comprises Mesoproterozoic aged volcanic rocks overlain by Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they drape around knobs of the volcanic rocks or where they are adjacent to faults. The carbonates are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html
California State Waters Map Series—Offshore of Santa Cruz, California
Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Erdey, Mercedes D.; Golden, Nadine E.; Greene, H. Gary; Dieter, Bryan E.; Hartwell, Stephen R.; Ritchie, Andrew C.; Finlayson, David P.; Endris, Charles A.; Watt, Janet T.; Davenport, Clifton W.; Sliter, Ray W.; Maier, Katherine L.; Krigsman, Lisa M.; Cochrane, Guy R.; Cochran, Susan A.
2016-03-24
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Santa Cruz map area is located in central California, on the Pacific Coast about 98 km south of San Francisco. The city of Santa Cruz (population, about 63,000), the largest incorporated city in the map area and the county seat of Santa Cruz County, lies on uplifted marine terraces between the shoreline and the northwest-trending Santa Cruz Mountains, part of California’s Coast Ranges. All of California’s State Waters in the map area is part of the Monterey Bay National Marine Sanctuary.The map area is cut by an offshore section of the San Gregorio Fault Zone, and it lies about 20 kilometers southwest of the San Andreas Fault Zone. Regional folding and uplift along the coast has been attributed to a westward bend in the San Andreas Fault Zone and to right-lateral movement along the San Gregorio Fault Zone. Most of the coastal zone is characterized by low, rocky cliffs and sparse, small pocket beaches backed by low, terraced hills. Point Santa Cruz, which forms the north edge of Monterey Bay, provides protection for the beaches in the easternmost part of the map area by sheltering them from the predominantly northwesterly waves.The shelf in the map area is underlain by variable amounts (0 to 25 m) of upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. The inner shelf is characterized by bedrock outcrops that have local thin sediment cover, the result of regional uplift, high wave energy, and limited sediment supply. The midshelf occupies part of an extensive, shore-parallel mud belt. The thickest sediment deposits, inferred to consist mainly of lowstand nearshore deposits, are found in the southeastern and northwestern parts of the map area.Coastal sediment transport in the map area is characterized by northwest-to-southeast littoral transport of sediment that is derived mainly from ephemeral streams in the Santa Cruz Mountains and also from local coastal-bluff erosion. During the last approximately 300 years, as much as 18 million cubic yards (14 million cubic meters) of sand-sized sediment has been eroded from the area between Año Nuevo Island and Point Año Nuevo and transported south; this mass of eroded sand is now enriching beaches in the map area. Sediment transport is within the Santa Cruz littoral cell, which terminates in the submarine Monterey Canyon.Benthic species observed in the Offshore of Santa Cruz map area are natives of the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, the eastern limb of the North Pacific subtropical gyre that flows from southern British Columbia to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 300 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off of central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment.Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are the northernmost known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
Landslides Mapped from LIDAR Imagery, Kitsap County, Washington
McKenna, Jonathan P.; Lidke, David J.; Coe, Jeffrey A.
2008-01-01
Landslides are a recurring problem on hillslopes throughout the Puget Lowland, Washington, but can be difficult to identify in the densely forested terrain. However, digital terrain models of the bare-earth surface derived from LIght Detection And Ranging (LIDAR) data express topographic details sufficiently well to identify landslides. Landslides and escarpments were mapped using LIDAR imagery and field checked (when permissible and accessible) throughout Kitsap County. We relied almost entirely on derivatives of LIDAR data for our mapping, including topographic-contour, slope, and hill-shaded relief maps. Each mapped landslide was assigned a level of 'high' or 'moderate' confidence based on the LIDAR characteristics and on field observations. A total of 231 landslides were identified representing 0.8 percent of the land area of Kitsap County. Shallow debris topples along the coastal bluffs and large (>10,000 m2) landslide complexes are the most common types of landslides. The smallest deposit mapped covers an area of 252 m2, while the largest covers 0.5 km2. Previous mapping efforts that relied solely on field and photogrammetric methods identified only 57 percent of the landslides mapped by LIDAR (61 percent high confidence and 39 percent moderate confidence), although nine landslides previously identified were not mapped during this study. The remaining 43 percent identified using LIDAR have 13 percent high confidence and 87 percent moderate confidence. Coastal areas are especially susceptible to landsliding; 67 percent of the landslide area that we mapped lies within 500 meters of the present coastline. The remaining 33 percent are located along drainages farther inland. The LIDAR data we used for mapping have some limitations including (1) rounding of the interface area between low slope surfaces and vertical faces (that is, along the edges of steep escarpments) which results in scarps being mapped too far headward (one or two meters), (2) incorrect laser-distance measurements resulting in inaccurate elevation values, (3) removal of valid ground elevations, (4) false ground roughness, and (5) faceted surface texture. Several of these limitations are introduced by algorithms in the processing software that are designed to remove non-ground elevations from LIDAR data. Despite these limitations, the algorithm-enhanced LIDAR imagery does effectively 'remove' vegetation that obscures many landslides, and is therefore a valuable tool for landslide inventories and investigations in heavily vegetated regions such as the Puget Lowland.
Map showing scenic features and recreation facilities of the Salina quadrangle, Utah
Williams, Paul L.; Covington, Harry R.
1973-01-01
This map is intended as a guide for those who enjoy outdoor recreation in magnificent scenic settings.The Salina quadrangle lies in the heart of the Colorado Plateau, a sparsely populated land of unique and outstanding scenic beauty. The eastern half of the quadrangle is a great desert, partly blanketed by sand dunes, but mostly an area of badlands multicolored cliffs and benches of virtually barren rock, and deeply incised canyons. In the west half of the quadrangle, rugged tree-covered foothills flank high forested plateaus rimmed by cliffs. On these High Plateaus, dense coniferous forest is interspersed with wide grassy parks, grazed in summer by sheep and cattle. Valleys between the plateaus contain irrigated crop lands.
Walsh, Gregory J.
2014-01-01
The bedrock geology of the 7.5-minute Uxbridge quadrangle consists of Neoproterozoic metamorphic and igneous rocks of the Avalon zone. In this area, rocks of the Avalon zone lie within the core of the Milford antiform, south and east of the terrane-bounding Bloody Bluff fault zone. Permian pegmatite dikes and quartz veins occur throughout the quadrangle. The oldest metasedimentary rocks include the Blackstone Group, which represents a Neoproterozoic peri-Gondwanan marginal shelf sequence. The metasedimentary rocks are intruded by Neoproterozoic arc-related plutonic rocks of the Rhode Island batholith. This report presents mapping by G.J. Walsh. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are available only as downloadable files (see frame at right). The GIS database is available for download in ESRI™ shapefile and Google Earth™ formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, geochemical data, and photographs.
Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R. F.; Schwab, W.C.
2004-01-01
Naturally occurring hard bottom areas provide the geological substrate that can support diverse assemblages of sessile benthic organisms, which in turn, attract many reef-dwelling fish species. Alternatively, defining the location and extent of bottom sand bodies is relevant for potential nourishment projects as well as to ensure that transient sediment does not affect reef habitats, particularly in sediment-starved continental margins. Furthermore, defining sediment transport pathways documents the effects these mobile bedforms have on proximal reef habitats. Thematic mapping of these substrates is therefore crucial in safeguarding critical habitats and offshore resources of coastal nations. This study presents the results of a spatially quantitative mapping approach based on classification of sidescan-sonar imagery. By using bottom video for image-to-ground control, digital image textural features for pattern recognition, and an artificial neural network for rapid, quantitative, multivariable decision-making, this approach resulted in recognition rates of hard bottom as high as 87%. The recognition of sand bottom was less successful (31%). This approach was applied to a large (686 km2), high-quality, 2-m resolution sidescan-sonar mosaic of the northern South Carolina inner continental shelf. Results of this analysis indicate that both surficial sand and hard bottoms of variable extent are present over the study area. In total, 59% of the imaged area was covered by hard bottom, while 41% was covered by sand. Qualitative spatial correlation between bottom type and bathymetry appears possible from comparison of our interpretive map and available bathymetry. Hard bottom areas tend to be located on flat, low-lying areas, and sandy bottoms tend to reside on areas of positive relief. Published bio-erosion rates were used to calculate the potential sediment input from the mapped hard bottom areas rendering sediment volumes that may be as high as 0.8 million m3/yr for this portion of the South Carolina coast. ?? 2003 Elsevier Ltd. All rights reserved.
Blakely, R.J.; John, D.A.; Box, S.E.; Berger, B.R.; Fleck, R.J.; Ashley, R.P.; Newport, G.R.; Heinemeyer, G.R.
2007-01-01
The White River altered area, Washington, and the Goldfield mining district, Nevada, are nearly contemporaneous Tertiary (ca.20 Ma) calc-alkaline igneous centers with large exposures of shallow (<1 km depth) magmatic-hydrothermal, acid-sulfate alteration. Goldfield is the largest known high-sulfidation gold deposit in North America. At White River, silica is the only commodity exploited to date, but, based on its similarities with Goldfield, White River may have potential for concealed precious and/or base metal deposits at shallow depth. Both areas are products of the ancestral Cascade arc Goldfield lies within the Great Basin physiographic province in an area of middle Miocene and younger Basin and Range and Walker Lane faulting, whereas White River is largely unaffected by young faults. However, west-northwest-striking magnetic anomalies at White River do correspond with mapped faults synchronous with magmatism, and other linear anomalies may reflect contemporaneous concealed faults. The White River altered area lies immediately south of the west-northwest-striking White River fault zone and north of a postulated fault with similar orientation. Structural data from the White River altered area indicate that alteration developed synchronously with an anomalous stress field conducive to left-lateral, strike-slip displacement on west-north-west-striking faults. Thus, the White River alteration may have developed in a transient transtensional region between the two strike-slip faults, analogous to models proposed for Goldfield and other mineral deposits in transverse deformational zones. Gravity and magnetic anomalies provide evidence for a pluton beneath the White River altered area that may have provided heat and fluids to overlying volcanic rocks. East- to east- northeast-striking extensional faults and/or fracture zones in the step-over region, also expressed in magnetic anomalies, may have tapped this intrusion and provided vertical and lateral transport of fluids to now silicified areas. By analogy to Goldfield, geophysical anomalies at the White River altered area may serve as proxies for geologic mapping in identifying faults, fractures, and intrusions relevant to hydrothermal alteration and ore formation in areas of poor exposure. ?? 2006 Geological Society of America.
Thompson, Ren A.; Machette, Michael N.; Drenth, Benjamin J.
2007-01-01
This geologic map is based entirely on new mapping by Thompson and Machette, whereas the geophysical data and interpretations were supplied by Drenth. The map area includes most of San Pedro Mesa, a basalt covered mesa that is uplifted as a horst between the Southern Sangre de Cristo fault zone (on the west) and the San Luis fault zone on the east. The map also includes most of the Sanchez graben, a deep structural basin that lies between the San Luis fault zone (on the west) and the Central Sangre de Cristo fault zone on the east. The oldest rocks in the map area are Proterozoic granites and Paleozoic sedimentary rocks, which are only exposed in a small hill on the west-central part of the mesa. The low hills that rise above San Pedro mesa are comprised of middle(?) Miocene volcanic rocks that are undated, but possibly correlative with mapped rocks to the east of Sanchez Reservoir. The bulk of the map area is comprised of the Servilleta Basalt, a regional series of flood basalts of Pliocene age. The west, north, and northeast margins of the mesa are covered by extensive landslide deposits that rest on poorly exposed sediment of the Santa Fe Group. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesa is covered by surficial deposits of Quaternary age. The piedmont alluvium is subdivided into three Pleistocene units, and three Holocene units. The oldest Pleistocene gravel (unit Qao) forms an extensive coalesced alluvial fan and piedmont surface that is known as the Costilla Plains. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map are are from earthquakes and landslides. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. Two generations of landslides are mapped (younger and older), and both may have seismogenic origins.
Surficial geologic map of the Elizabethtown 30' x 60' quadrangle, North Carolina
Weems, Robert E.; Lewis, William C.; Crider, E. Allen
2011-01-01
The Elizabethtown 30' x 60' quadrangle is located in southeastern North Carolina between Fayetteville and Wilmington. Most of the area is flat to gently rolling, although steep slopes occur locally along some of the larger streams. Total relief in the area is slightly over 210 feet (ft), with elevations ranging from slightly less than 10 ft above sea level along the Black River (east of Rowan in the southeastern corner of the map) to slightly over 220 ft in the northwestern corner northeast of Hope Mills. The principal streams in the area are the Cape Fear, Black, South, and Lumber Rivers, which on average flow from northwest to southeast across the map area. The principal north-south roads are Interstate Route 95, Interstate Route 40, U.S. Route 117, U.S. Route 301, U.S. Route 421, and U.S. Route 701, and the principal east-west roads are N.C. State Route 241 and N.C. State Route 41. This part of North Carolina is primarily rural and agricultural. The largest communities in and adjacent to the area are Elizabethtown, Hope Mills, Clinton, Warsaw, and Lumberton. The map lies entirely within the Atlantic Coastal Plain physiographic province. Outstanding features of this area are the large number of sand-rimmed Carolina bays, five of which contain enough water to constitute natural lakes: Bay Tree Lake, Salter Lake, Little Singletary Lake, Singletary Lake, and White Lake. These are associated with widespread windblown sand deposits on which are grown abundant crops of blueberries. The extent and distribution of these deposits have been estimated based on a combination of augerhole, outcrop, and light-detection and ranging (LIDAR) data. The geology of the Elizabethtown 30' x 60' quadrangle was originally mapped on 32 7.5-minute quadrangles at 1:24,000 scale and then compiled on this 1:100,000-scale base. The base-map topographic contours on this compilation are shown in meters; the cross sections, structure contours, and well and corehole basement elevations have been carried over unconverted from the 1:24,000-scale maps and are shown in feet.
Tysdal, Russell G.
2000-01-01
The Yellowjacket Formation is restricted to the strata originally assigned to it by Ross (1934). The Yellowjacket, the conformably overlying Hoodoo Quartzite, and succeeding unnamed argillaceous quartzite unit form a genetically related sequence that lies in a structural block delimited on the northeast by the Iron Lake fault. Directly northeast of the fault, strata currently assigned by others to the lower subunit of the Yellowjacket are correlated with the Apple Creek Formation in the Lemhi Range. Mapping in the western part of the Lemhi Range shows that the Apple Creek Formation lies depositionally above the Big Creek Formation and that no rocks of the Yellowjacket-Hoodoo unnamed unit stratigraphic sequence are present. In contrast, in the area of the Yellowjacket mapped by Ross (1934) and the area directly northeast of the Iron Lake Fault, the Big Creek Formation is absent, even though it is 2,700 m thick in the Lemhi Range. These data indicate that the Iron Lake Fault juxtaposed the Yellowjacket-Hoodoo-unnamed unit sequence against non-Yellowjacket strata to the northeast. The Upper Cretaceous Slim Sam Formation of the Elkhorn Mountains area is revised. Strata of the lower part are correlated with the regionally recognized marine Telegraph Creek Formation and the overlying marine to marginal marine Eagle Sandstone. Only lower strata of the Eagle are present in the study area and they are preserved discontinously. The nonmarine volcanic and volcaniclastic rocks of the upper part of the Slim Sam as originally defined retain the name Slim Sam Formation. These rocks, mainly of sedimentary origin, are genetically related to the Elkhorn Mountains Volcanics. The lower contact of the Slim Sam (restricted) is unconformable above the Eagle Sandstone or more commonly above the Telegraph Creek Formation. The upper contact is conformable with the Elkhorn Mountains Volcanics.
Yang-Baxter maps, discrete integrable equations and quantum groups
NASA Astrophysics Data System (ADS)
Bazhanov, Vladimir V.; Sergeev, Sergey M.
2018-01-01
For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang-Baxter equation. This map allows one to define an integrable discrete quantum evolution system on quadrilateral lattices, where local degrees of freedom (dynamical variables) take values in a tensor power of the quantized Lie algebra. The corresponding equations of motion admit the zero curvature representation. The commuting Integrals of Motion are defined in the standard way via the Quantum Inverse Problem Method, utilizing Baxter's famous commuting transfer matrix approach. All elements of the above construction have a meaningful quasi-classical limit. As a result one obtains an integrable discrete Hamiltonian evolution system, where the local equation of motion are determined by a classical Yang-Baxter map and the action functional is determined by the quasi-classical asymptotics of the universal R-matrix of the underlying quantum algebra. In this paper we present detailed considerations of the above scheme on the example of the algebra Uq (sl (2)) leading to discrete Liouville equations, however the approach is rather general and can be applied to any quantized Lie algebra.
Pressure load on specific body areas of gestating sows lying on rubber mats with different softness.
Schubbert, A; Hartung, E; Schrader, L
2014-08-01
Rubber mats offer a possibility to increase lying comfort for sows with positive effects on sow lying behavior and health. However, until now, no information has been reported about the relationship between the softness of rubber mats and the pressure load on certain body areas of sows. We used a total of 68 (40 multiparous, 28 primiparous) German Landrace × German Landrace sows with a BW within the range of 90 to 330 kg (divided in 3 weight classes) to measure peak force and distribution of pressure during lying in the sternal and half recumbent position. Measures were done in an experimental pen that was equipped with a pressure sensor map system (5400 NTL; Tekscan Inc., Boston, MA). Three rubber mats differing in softness (penetration depth: hard mat, 4.0 mm [HM]; soft mat, 14.6 mm [SM]; very soft mat, 43.0 mm [VSM]) were tested and compared to concrete floor (CF) as a reference. Pressure load was analyzed in the sternal position for the sternum, belly, and ham body regions and also in the half recumbent position for the shoulder. For each lying position we determined the body region with the highest pressure load and analyzed the peak force (PF) and the contact area (CA) using a mixed model ANOVA (MIXED procedure of SAS Enterprise, version 4.3., SAS Inst. Inc., Cary, NC) with floor type, weight class of sows, and their interaction as fixed factors. Overall, the highest values for PF in the sternal position were found on the sternum (median: 1.62 N/cm(2)) and in the half recumbent position on the shoulder (median: 2.72 N/cm(2)). In the sternal position PF on the sternum was lower on VSM compared to CF (P = 0.001). In the half-recumbent position PF on the shoulder was lower on VSM compared to CF (P = 0.013) and compared to HM (P = 0.011). The weight of the sows affected PF on the sternum in the sternal position, with lower values in weight class 1 compared to weight class 2 (P = 0.001) and weight class 3 (P = 0.002). Contact area under the sternum was larger on SM (P = 0.016) and VSM (P = 0.008) compared to CF in the sternal position, and this was affected by weight class (P = 0.0002). In the half-recumbent position floor type did not affect CA under the shoulder, but CA was larger in weight classes 2 and 3 compared to weight class 1 (all P < 0.05). Assuming that a reduced PF in combination with pressure distributed over a larger area will increase lying comfort, hard rubber mats do not seem to offer a high lying comfort with regard to pressure load on debited body regions such as the sternum or shoulder.
Avtar, Ram; Singh, Chander Kumar; Shashtri, Satayanarayan; Mukherjee, Saumitra
2011-11-01
Ken-Betwa river link is one of the pilot projects of the Inter Linking of Rivers program of Government of India in Bundelkhand Region. It will connect the Ken and Betwa rivers through a system of dams, reservoirs, and canals to provide storage for excess rainfall during the monsoon season and avoid floods. The main objective of this study is to identify erosional and inundation prone zones of Ken-Betwa river linking site in India using remote sensing and geographic information system tools. In this study, Landsat Thematic Mapper data of year 2005, digital elevation model from the Shuttle Radar Topographic Mission, and other ancillary data were analyzed to create various thematic maps viz. geomorphology, land use/land cover, NDVI, geology, soil, drainage density, elevation, slope, and rainfall. The integrated thematic maps were used for hazard zonation. This is based on categorizing the different hydrological and geomorphological processes influencing the inundation and erosion intensity. Result shows that the southern part of the study area which lies in Panna district of Madhya Pradesh, India, is more vulnerable than the other areas.
NASA Astrophysics Data System (ADS)
Gazi, M. Y.; Rahman, M.; Islam, M. A.; Kabir, S. M. M.
2016-12-01
Techniques of remote sensing and geographic information systems (GIS) have been applied for the analysis and interpretation of the Geo-environmental assessment to Sitakund area, located within the administrative boundaries of the Chittagong district, Bangladesh. Landsat ETM+ image with a ground resolution of 30-meter and Digital Elevation Model (DEM) has been adopted in this study in order to produce a set of thematic maps. The diversity of the terrain characteristics had a major role in the diversity of recipes and types of soils that are based on the geological structure, also helped to diversity in land cover and use in the region. The geological situation has affected on the general landscape of the study area. The problem of research lies in the possibility of the estimating the techniques of remote sensing and geographic information systems in the evaluation of the natural data for the study area spatially as well as determine the appropriate in grades for the appearance of the ground and in line with the reality of the region. Software for remote sensing and geographic information systems were adopted in the analysis, classification and interpretation of the prepared thematic maps in order to get to the building of the Geo-environmental assessment map of the study area. Low risk geo-environmental land mostly covered area of Quaternary deposits especially with area of slope wash deposits carried by streams. Medium and high risk geo-environmental land distributed with area of other formation with the study area, mostly the high risk shows area of folds and faults. The study has assessed the suitability of lands for agricultural purpose and settlements in less vulnerable areas within this region.
Bedford, David R.
2003-01-01
This geologic map database describes geologic materials for the Kelso 7.5 Minute Quadrangle, San Bernardino County, California. The area lies in eastern Mojave Desert of California, within the Mojave National Preserve (a unit of the National Parks system). Geologic deposits in the area consist of Proterozoic metamorphic rocks, Cambrian-Neoproterozoic sedimentary rocks, Mesozoic plutonic and hypabyssal rocks, Tertiary basin fill, and Quaternary surficial deposits. Bedrock deposits are described by composition, texture, and stratigraphic relationships. Quaternary surficial deposits are classified into soil-geomorphic surfaces based on soil characteristics, inset relationships, and geomorphic expression. The surficial geology presented in this report is especially useful to understand, and extrapolate, physical properties that influence surface conditions, and surface- and soil-water dynamics. Physical characteristics such as pavement development, soil horizonation, and hydraulic characteristics have shown to be some of the primary drivers of ecologic dynamics, including recovery of those ecosystems to anthropogenic disturbance, in the eastern Mojave Desert and other arid and semi-arid environments.
Chaffee, M.A.; Hill, R.H.; Sutley, S.J.
1984-01-01
The Hoover Wilderness and the adjacent Hoover Extension (East), Hoover Extension (West), and Cherry Creek A Roadless Areas (the adjacent study area) encompass approximately 153,900 acres (241 mi2; 623 km2) in the Inyo, Stanislaus, and Toiyabe Naitonal Forests, Mono and Tuolumne Counties, Calif. These two areas lie along and mostly east of the crest of the Sierra Nevada, along the north and east sides of Yosemite National Park. Elevations vary from a high of 12,446 ft (3,793 m) on the crest of the Sierra Nevada to a low of about 6,500 ft (1,981 m) near the Bridgeport Ranger Station. Access to the Hoover Wilderness and adjacent study area is by U.S. Highway 395, California State Highways 108 (Sonora Pass) and 120 (Tioga Pass), and by other paved and graded roads that lead off of these U.S. and State highways.
Geologic Map of the Boxley Quadrangle, Newton and Madison Counties, Arkansas
Hudson, Mark R.; Turner, Kenzie J.
2007-01-01
This map summarizes the geology of the Boxley 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the Boxley quadrangle lies within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and its tributaries expose an approximately 1,600-ft-(490-m-)thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Part of Buffalo National River, a park encompassing the Buffalo River and adjacent land that is administered by the National Park Service, extends through the eastern part of the quadrangle. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as orthophotos were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours were constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation based on elevations of control points as well as other limiting information on their maximum or minimum elevations.
Surficial geologic map along the Castle Mountain Fault between Houston and Hatcher Pass Road, Alaska
Haeussler, Peter J.
1998-01-01
The surficial geology of the map area is dominated by sedimentary deposits laid down during and after the Naptowne glaciation (Karlstrom, 1964) of late Pleistocene age. During this episode, a large valley glacier flowed westward down the Matanuska Valley along the southern flank of the Talkeetna Mountains. The youngest of two documented advances has been referred to as the Elmendorf stade, which reached its maximum extent about 12,000 radiocarbon years ago (Schmoll and others, 1972; Reger and Updike, 1983). Deposits from this stade in the map area include: glacial till (Qg), lateral moraine (Qml) and kame terrace (Qk) deposits. Older episodes of glaciation have been inferred by a number of workers (e.g., Karlstrom, 1964; Reger and Updike, 1983; Reger and Updike, 1989; Schmoll and Yehle, 1986). The ridge above and north of the map area, Bald Mountain Ridge, is rounded in contrast to higher areas of the Talkeetna Mountains to the east. Therefore, within the map area older glacial deposits (Qg2) are inferred to lie above the highest Naptowne deposits. After reaching its maximum extent the valley glacier stagnated (Reger and Updike, 1983), as indicated by a crevasse-fill-ridge complex south of Houston in the map area, perched drainages along the sides of the Talkeetna Mountains, and an esker (unit Qe in the middle of the western map area). The ancient stream deposits (unit Qad) are perched on the southern flanks of the Talkeetna Mountains and were deposited by westward flowing streams as the valley glacier stagnated. These sinuous ancient drainages commonly incised up to 20 m into the underlying glacial till. Because stream flow is not as high today as when the drainages formed, the modern streams flowing within these drainages are underfit, and the ancient drainage courses are commonly filled with peat deposits (Qp). After ice of the Elmendorf stade melted, modern stream courses were established. These include the southward flowing streams on the flank of the Talkeetna Mountains as well as the west-southwestward flowing Little Susitna River. The Little Susitna River cut down through older river terrace deposits (Qat) to form the active alluvial plain (Qaa). Alluvium from the southward flowing streams (Qas) forms alluvial fans on top of, and presumably interfingering with, active alluvium along the Little Susitna River.
Stochastic Evolution of Augmented Born-Infeld Equations
NASA Astrophysics Data System (ADS)
Holm, Darryl D.
2018-06-01
This paper compares the results of applying a recently developed method of stochastic uncertainty quantification designed for fluid dynamics to the Born-Infeld model of nonlinear electromagnetism. The similarities in the results are striking. Namely, the introduction of Stratonovich cylindrical noise into each of their Hamiltonian formulations introduces stochastic Lie transport into their dynamics in the same form for both theories. Moreover, the resulting stochastic partial differential equations retain their unperturbed form, except for an additional term representing induced Lie transport by the set of divergence-free vector fields associated with the spatial correlations of the cylindrical noise. The explanation for this remarkable similarity lies in the method of construction of the Hamiltonian for the Stratonovich stochastic contribution to the motion in both cases, which is done via pairing spatial correlation eigenvectors for cylindrical noise with the momentum map for the deterministic motion. This momentum map is responsible for the well-known analogy between hydrodynamics and electromagnetism. The momentum map for the Maxwell and Born-Infeld theories of electromagnetism treated here is the 1-form density known as the Poynting vector. Two appendices treat the Hamiltonian structures underlying these results.
Narayan, Sanjiv M.; Shivkumar, Kalyanam; Krummen, David E.; Miller, John M.; Rappel, Wouter-Jan
2013-01-01
Background The foundation for successful arrhythmia ablation is the mapping of electric propagation to identify underlying mechanisms. In atrial fibrillation (AF), however, mapping is difficult so that ablation has often targeted electrogram features, with mixed results. We hypothesized that wide field-of-view (panoramic) mapping of both atria would identify causal mechanisms for AF and allow interpretation of local electrogram features, including complex fractionated atrial electrograms (CFAE). Methods and Results Contact mapping was performed using biatrial multipolar catheters in 36 AF subjects (29 persistent). Stable AF rotors (spiral waves) or focal sources were seen in 35 of 36 cases and targeted for ablation (focal impulse and rotor modulation) before pulmonary vein isolation. In 31 of 36 subjects (86.1%), AF acutely terminated (n=20; 16 to sinus rhythm) or organized (n=11; 19±8% slowing) with 2.5 minutes focal impulse and rotor modulation (interquartile range, 1.0–3.1) at one source, defined as the primary source. Subjects exhibited 2.1±1.0 concurrent AF sources of which the primary, by phase mapping, precessed in limited areas (persistent 2.5±1.7 versus paroxysmal 1.7±0.5 cm2; P=0.30). Notably, source regions showed mixed electrogram amplitudes and CFAE grades that did not differ from surrounding atrium (P=NS). AF sources were not consistently surrounded by CFAE (P=0.67). Conclusions Stable rotors and focal sources for human AF were revealed by contact panoramic mapping (focal impulse and rotor modulation mapping), but not by electrogram footprints. AF sources precessed within areas of ≈2 cm2, with diverse voltage characteristics poorly correlated with CFAE. Most CFAE sites lie remote from AF sources and are not suitable targets for catheter ablation of AF. PMID:23392583
Trends in the breeding population and driving factors of Adélie penguin in the Ross Sea
NASA Astrophysics Data System (ADS)
He, H.; Li, X.; Cheng, X.
2017-12-01
Ross Sea regions have been characterized by high penguin-chick-rearing habitat suitability in the recent past. Many studies have been done to study the Adélie penguins in the Ross Sea. However, the data they used both had advantages and drawbacks. Besides, little quantitative analysis were carried out to study the impact factors on the penguin population change. In this study, penguin population data from MAPPPD (Mapping application for penguin populations and projected dynamics) and IBA (Important bird areas in Antarctica) were integrated and analyzed to study the distribution and trends in the breeding population of Adélie penguin over time in the Ross Sea. In addition, linear fitting method for spatial data in time series were used to study the driving factors such as 2m-temperature, sea ice cover and chlorophyll-a concentration which can quantify phytoplankton blooms. Results indicated that there were 45 Adélie penguin colonies in the Ross Sea. Cape Adare and Cape Crozier were two biggest colonies on which current Adélie penguin abundance were 428516 and 280787 breeding pairs, respectively. Among these colonies, penguin population on 28 colonies increased, on 5 colonies decreased and on 5 colonies remained no change over time, and there were also 5 new colonies and one colony which were extinct. It was found that Adélie penguin population in most of colonies in the Ross Sea increased, which meant that Adélie penguins in the Ross Sea were "climate change winners". The main reasons for the increase in Adélie penguin population in the Ross Sea might be the rise in 2m-temperature and the increase in sea ice cover and phytoplankton. Higher temperatures have resulted in glacial retreat and snow melting, which leads to an increase in available habitat for penguins. The increased sea ice and phytoplankton might positively affect the abundance of Antarctic krill that was the major prey item for Adélie penguins in Antarctic.
A pilot study on the improvement of the lying area of finishing pigs by a soft lying mat.
Savary, Pascal; Gygax, Lorenz; Jungbluth, Thomas; Wechsler, Beat; Hauser, Rudolf
2011-01-01
In this pilot study, we tested whether a soft mat (foam covered with a heat-sealed thermoplastic) reduces alterations and injuries at the skin and the leg joints.The soft mat in the lying area of partly slatted pens was compared to a lying area consisting of either bare or slightly littered (100 g straw per pig and day) concrete flooring. In this study we focused on skin lesions on the legs of finishing pigs as indicators of impaired welfare. Pigs were kept in 19 groups of 8-10 individuals and were examined for skin lesions around the carpal and tarsal joints either at a weight of <35 kg, or at close to 100 kg. The likelihood of hairless patches and wounds at the tarsal joints was significantly lower in pens with the soft lying mat than in pens with a bare concrete floor. Pens with a littered concrete floor did not differ compared to pens with a bare concrete floor. The soft lying mat thus improved floor quality in the lying area in terms of preventing skin lesions compared to bare and slightly littered concrete flooring. Such soft lying mats have thus the potential to improve lying comfort and welfare of finishing pigs.
Comparison between flood prone areas' geomorphic features in the Abruzzo region
NASA Astrophysics Data System (ADS)
Orlando, D.; Giglioni, M.; Magnaldi, S.
2017-07-01
Flood risk maps are one of the main non-structural measures for risk mitigation, but, as the risk knowledge degree is directly proportional to the community interest and financial capability, many sites are devoid of flood inundation areas studies. Recently many authors have investigated the capability of flood prone areas individuation with geomorphological DIGITAL ELEVATION MODEL(DEM) based approaches. These approaches highlight the role of geomorphic features derived from DEM, in this case slope, curvature, elevation, and topographic wetness index, to preliminary inundated areas' identification, without using hydraulic simulations. The present studies aim to analyze the geomorphic features of different hazard levels that lie under the identified inundated areas that have been carried out by the Abruzzo Region Basin Authority. The Aterno-Pescara and Foro river basins have been investigated. The results show that the characteristics of the flooded areas can be clearly distinguished from those of the entire basin,however, the difficultly of geomorphic features in individuatingthe areas of different hazard classifications is obvious.
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts 1:24,000- and 1:100,000-scale quadrangle footprints over a color shaded relief representation of the State of Florida. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Figure 1 shows a similar representation for the entire U.S. Gulf Coast, using coarsened 30-meter NED data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. Quadrangle names, dated April, 2006, were obtained from the Federal Geographic Names Information System. The NED data were downloaded in 2004.
Physiographic rim of the Grand Canyon, Arizona: a digital database
Billingsley, George H.; Hampton, Haydee M.
1999-01-01
This Open-File report is a digital physiographic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, PostScript and PDF format plot files, each containing an image of the map. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled "For Those Who Don't Use Digital Geologic Map Databases" below. This physiographic map of the Grand Canyon is modified from previous versions by Billingsley and Hendricks (1989), and Billingsley and others (1997). The boundary is drawn approximately along the topographic rim of the Grand Canyon and its tributary canyons between Lees Ferry and Lake Mead (shown in red). Several isolated small mesas, buttes, and plateaus are within this area, which overall encompasses about 2,600 square miles. The Grand Canyon lies within the southwestern part of the Colorado Plateaus of northern Arizona between Lees Ferry, Colorado River Mile 0, and Lake Mead, Colorado River Mile 277. The Colorado River is the corridor for raft trips through the Grand Canyon. Limestone rocks of the Kaibab Formation form most of the north and south rims of the Grand Canyon, and a few volcanic rocks form the north rim of parts of the Uinkaret and Shivwits Plateaus. Limestones of the Redwall Limestone and lower Supai Group form the rim of the Hualapai Plateau area, and Limestones of Devonian and Cambrian age form the boundary rim near the mouth of Grand Canyon at the Lake Mead. The natural physiographic boundary of the Grand Canyon is roughly the area a visitor would first view any part of the Grand Canyon and its tributaries.
Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada
Day, Warren C.; Dickerson, Robert P.; Potter, Christopher J.; Sweetkind, Donald S.; San Juan, Carma A.; Drake, Ronald M.; Fridrich, Christopher J.
1998-01-01
Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin.Excluding Quaternary surficial deposits, the map area is underlain by Miocene volcanic rocks, principally ash-flow tuffs with lesser amounts of lava flows. These volcanic units include the Crater Flat Group, the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group, as well as minor basaltic dikes. The tuffs and lava flows are predominantly rhyolite with lesser amounts of latite and range in age from 13.4 to 11.6 Ma. The 10-Ma basaltic dikes intruded along a few fault traces in the north-central part of the study area. Fault types in the area can be classified as block bounding, relay structures, strike slip, and intrablock. The block-bounding faults separate the 1- to 4-km-wide, east-dipping structural blocks and exhibit hundreds of meters of displacement. The relay structures are northwest-striking normal fault zones that kinematically link the block-bounding faults. The strike-slip faults are steep, northwest-striking dextral faults located in the northern part of Yucca Mountain. The intrablock faults are modest faults of limited offset (tens of meters) and trace length (less than 7 km) that accommodated intrablock deformation.The concept of structural domains provides a useful tool in delineating and describing variations in structural style. Domains are defined across the study area on the basis of the relative amount of internal faulting, style of deformation, and stratal dips. In general, there is a systematic north to south increase in extensional deformation as recorded in the amount of offset along the block-bounding faults as well as an increase in the intrablock faulting.The rocks in the map area had a protracted history of Tertiary extension. Rocks of the Paintbrush Group cover much of the area and obscure evidence for older tectonism. An earlier history of Tertiary extension can be inferred, however, because the Timber Mountain-Oasis Valley caldera complex lies within and cuts an older north-trending rift (the Kawich-Greenwater rift}. Evidence for deformation during eruption of the Paintbrush Group is locally present as growth structures. Post-Paintbrush Group, pre-Timber Mountain Group extension occurred along the block-bounding faults. The basal contact of the 11.6-Ma Rainier Mesa Tuff of the Timber Mountain Group provides a key time horizon throughout the area. Other workers have shown that west of the study area in northern Crater Flat the basal angular unconformity is as much as 20° between the Rainier Mesa and underlying Paintbrush Group rocks. In the westernmost part of the study area the unconformity is smaller (less than 10°), whereas in the central and eastern parts of the map area the contact is essentially conformable. In the central part of the map the Rainier Mesa Tuff laps over fault splays within the Solitario Canyon fault zone. However, displacement did occur on the block-bounding faults after deposition of the Rainier Mesa Tuff inasmuch as it is locally caught up in the hanging-wall deformation of the block-bounding faults. Therefore, the regional Tertiary to Recent extension was protracted, occurring prior to and after the eruption of the tuffs exposed at Yucca Mountain.
Geochemical survey of the Lusk Creek Roadless Area, Pope County, Illinois
Klasner, John S.; Day, Gordon W.
1984-01-01
The Lusk Creek Roadless Area (Index map) lies along the western edge of the Illinois-Kentucky fluorspar district in which flourite deposits occur as lenticular-type veins emplaced along fult zones or as tratiform-shaped bedding-replacement deposits that occur along fault zones (Grogan and Bradbury, 1967; Trace, 1974). Although mineralogy varies between deposits, Trace (1974) points out that the principal minerals are fluorite (CaF) and calcite (CaCO3), and associated with these minerals are lesser amounts of sphalerite (ZnS), galena (PbS), and barite (BaSO4). Minor quantites of iron-rich dolomite (CaMg(CO3)2), pyrite (FeS2), and alteration products of zinc, lead, and copper minerals also are found.
Chapman, Benjamin P.; Weiss, Alexander; Barrett, Paul; Duberstein, Paul
2014-01-01
The structure of the Eysenck Personality Inventory (EPI) is poorly understood, and applications have mostly been confined to the broad Neuroticism, Extraversion, and Lie scales. Using a hierarchical factoring procedure, we mapped the sequential differentiation of EPI scales from broad, molar factors to more specific, molecular factors, in a UK population sample of over 6500 persons. Replicable facets at the lowest tier of Neuroticism included emotional fragility, mood lability, nervous tension, and rumination. The lowest order set of replicable Extraversion facets consisted of social dynamism, sociotropy, decisiveness, jocularity, social information seeking, and impulsivity. The Lie scale consisted of an interpersonal virtue and a behavioral diligence facet. Users of the EPI may be well served in some circumstances by considering its broad Neuroticism, Extraversion, and Lie scales as multifactorial, a feature that was explicitly incorporated into subsequent Eysenck inventories and is consistent with other hierarchical trait structures. PMID:25983361
NASA Technical Reports Server (NTRS)
Williamson, D. T.; Gilbertson, B.
1974-01-01
In the coastal areas north-east and south-west of Knysna, South Africa lie natural forests, lakes and lagoons highly regarded by many for their aesthetic and ecological richness. A freeway construction project has given rise to fears of the degradation or destruction of these natural features. The possibility was investigated of using ERTS imagery to estimate the environmental impact of the freeway and found that: (1) All threatened features could readily be identified on the imagery. (2) It was possible within a short time to provide an area estimate of damage to indigenous forest. (3) In several important respects the imagery has advantages over maps and aerial photos for this type of work. (4) The imagery will enable monitoring of the actual environmental impact of the freeway when completed.
Nielsen, Martha G.; Dudley, Robert W.
2013-01-01
Salt marshes are ecosystems that provide many important ecological functions in the Gulf of Maine. The U.S. Geological Survey investigated salt marshes in and around Acadia National Park from Penobscot Bay to the Schoodic Peninsula to map the potential for landward migration of marshes using a static inundation model of a sea-level rise scenario of 60 centimeters (cm; 2 feet). The resulting inundation contours can be used by resource managers to proactively adapt to sea-level rise by identifying and targeting low-lying coastal areas adjacent to salt marshes for conservation or further investigation, and to identify risks to infrastructure in the coastal zone. For this study, the mapping of static inundation was based on digital elevation models derived from light detection and ranging (LiDAR) topographic data collected in October 2010. Land-surveyed control points were used to evaluate the accuracy of the LiDAR data in the study area, yielding a root mean square error of 11.3 cm. An independent accuracy assessment of the LiDAR data specific to salt-marsh land surfaces indicated a root mean square error of 13.3 cm and 95-percent confidence interval of ± 26.0 cm. LiDAR-derived digital elevation models and digital color aerial photography, taken during low tide conditions in 2008, with a pixel resolution of 0.5 meters, were used to identify the highest elevation of the land surface at each salt marsh in the study area. Inundation contours for 60-cm of sea-level rise were delineated above the highest marsh elevation for each marsh. Confidence interval contours (95-percent,± 26.0 cm) were delineated above and below the 60-cm inundation contours, and artificial structures, such as roads and bridges, that may present barriers to salt-marsh migration were mapped. This study delineated 114 salt marshes totaling 340 hectares (ha), ranging in size from 0.11 ha (marshes less than 0.2 ha were mapped only if they were on Acadia National Park property) to 52 ha, with a median size of 1.0 ha. Inundation contours were mapped at 110 salt marshes. Approximately 350 ha of low-lying upland areas adjacent to these marshes will be inundated with 60 cm of sea-level rise. Many of these areas are currently freshwater wetlands. There are potential barriers to marsh migration at 27 of the 114 marshes. Although only 23 percent of the salt marshes in the study are on ANP property, about half of the upland areas that will be inundated are within ANP; most of the predicted inundated uplands (approximately 170 ha) include freshwater wetlands in the Northeast Creek and Bass Harbor Marsh areas. Most of the salt marshes analyzed do not have a significant amount of upland area available for migration. Seventy-five percent of the salt marshes have 20 meters or less of adjacent upland that would be inundated along most of their edges. All inundation contours, salt marsh locations, potential barriers, and survey data are stored in geospatial files for use in a geographic information system and are a part of this report.
Geologic Map of Part of the Uinkaret Volcanic Field, Mohave County, Northwestern Arizona
Billingsley, George H.; Hamblin, W. Kenneth; Wellmeyer, Jessica L.; Dudash, Stephanie L.
2001-01-01
The geologic map of part of the Uinkaret Volcanic Field is one product of a cooperative project between the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management to provide geologic information about this part of the Grand Canyon-Parashant Canyon National Monument of Arizona. The Uinkaret Volcanic Field is a unique part of western Grand Canyon where volcanic rocks have preserved the geomorphic development of the landscape. Most of the Grand Canyon, and parts of adjacent plateaus have already been mapped. This map completes one of the remaining areas where uniform quality geologic mapping was needed. A few dozen volcanoes and lava flows within the Grand Canyon are not included in the map area, but their geologic significance to Grand Canyon development is documented by Hamblin (1994) and mapped by Billingsley and Huntoon (1983) and Wenrich and others (1997). The geologic information in this report may be useful to resource managers of the Bureau of Land Management for range management, biological, archaeological, and flood control programs. The map area lies within the Shivwits, Uinkaret, and Kanab Plateaus, which are subplateaus of the Colorado Plateaus physiographic province (Billingsley and others, 1997), and is part of the Arizona Strip north of the Colorado River. The nearest settlement is Colorado City, Arizona, about 58 km (36 mi) north of the map area (fig. 1). Elevations range from about 2,447 m (8,029 ft) at Mount Trumbull, in the northwest quarter of the map area, to about 732 m (2,400 ft) in Cove Canyon, in the southeast quarter of the map area. Vehicle access is via the Toroweap and Mount Trumbull dirt roads (fig. 1). Unimproved dirt roads traverse other parts of the area except in designated wilderness. Extra fuel, two spare tires, and extra food and water are highly recommended for travelers in this remote area. The U.S. Bureau of Land Management, Arizona Strip Field Office, St. George, Utah manages most of the area. In addition, there are 12 sections belonging to the State of Arizona, about 12 sections are private land, and several sections are within the Grand Canyon National Park and Lake Mead National Recreational Area (U.S. Department of the Interior, 1993). The private land is in Potato Valley and Lake Valley, southwest and west of Mount Trumbull, and in Whitmore Canyon and Toroweap (Tuweap) Valley. Portions of the Sawmill Mountains, Mount Logan, and Mount Trumbull areas were originally established as part of the Dixie National Forest in 1904. In 1924, Dixie National Forest land became part of the Kaibab National Forest. Then on February 13, 1974, management of this part of the Kaibab National Forest was transferred to the Bureau of Land Management, Arizona Strip Field Office (personal commun. Becky Hammond, Bureau of Land Management, 1997). Mount Logan and part of the Sawmill Mountains are now designated as the Mount Logan Wilderness Area, and Mount Trumbull is designated as the Mount Trumbull Wilderness Area. Most of the map area is now part of the new Grand Canyon-Parashant Canyon National Monument established January 11, 2000. Lower elevations within Hells Hollow, Whitmore Canyon, Toroweap Valley, and Cove Canyon support a sparse growth of sagebrush, cactus, grass, and a variety of desert shrubs. Sagebrush, grass, cactus, cliffrose bush, pinion pine, and juniper trees thrive at elevations above 1,830 m (6,000 ft). Ponderosa pine and oak forests thrive at higher elevations in the Mount Trumbull and Mount Logan areas. Surface runoff within the map area drains south towards the Colorado River through Hells Hole, Hollow, Whitmore Canyon, Toroweap Valley, and Cove Canyon. Upper Toroweap Valley, upper Hells Hollow, and Whitmore Canyon are part of the physiographic area of Grand Canyon, but are not within Grand Canyon National Park (Billingsley and others, 1997). As of January 11, 2000, these areas are now part of the new Grand Canyon-Parashant
NASA Technical Reports Server (NTRS)
Meier, M. F. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Snowlines on a small drainage basin were accurately identified on bulk ERTS-1 images without use of digital processing, and results checked with high altitude and ground-based photography. The area and approximate shape of snow patches as small as 20,000 sq m could be correctly identified with a magnifying scanning densitometer. The resolution of ERTS is more than ample for most snow mapping needs. Mount Baker, Washington, has a large crater south of the summit and an area north of the summit which emit considerable geothermal heat in the form of fumaroles and hot ground. Temperatures are being monitored using an ERTS DCS. Debris flows are occassionally released from the crater due to water saturation at the base of a heavy snowpack lying on hydrothermally altered hot ground. These debris flows present a possible hazard to life and property, as they are discharged down the Boulder Glacier toward Baker Lake, the upper of two major hydroelectric power reservoirs which are situated above the populated Skagit River Valley. ERTS-1 images show that the most recent debris flow (20-21 August 1973) can be clearly discerned and mapped. ERTS images provide another important tool for monitoring this potential hazard.
Geologic Map of the Pahranagat Range 30' x 60' Quadrangle, Lincoln and Nye Counties, Nevada
Jayko, A.S.
2007-01-01
Introduction The Pahranagat Range 30' x 60' quadrangle lies within an arid, sparsely populated part of Lincoln and Nye Counties, southeastern Nevada. Much of the area is public land that includes the Desert National Wildlife Range, the Pahranagat National Wildlife Refuge, and the Nellis Air Force Base. The topography, typical of much of the Basin and Range Province, consists of north-south-trending ranges and intervening broad alluvial valleys. Elevations range from about 1,000 to 2,900 m. At the regional scale, the Pahranagat Range quadrangle lies within the Mesozoic and early Tertiary Sevier Fold-and-Thrust Belt and the Cenozoic Basin and Range Province. The quadrangle is underlain by a Proterozoic to Permian miogeoclinal section, a nonmarine clastic and volcanic section of middle Oligocene or older to late Miocene age, and alluvial deposits of late Cenozoic age. The structural features that are exposed reflect relatively shallow crustal deformation. Mesozoic deformation is dominated by thrust faults and asymmetric or open folds. Cenozoic deformation is dominated by faults that dip more than 45i and dominostyle tilted blocks. At least three major tectonic events have affected the area: Mesozoic (Sevier) folding and thrust faulting, pre-middle Oligocene extensional deformation, and late Cenozoic (mainly late Miocene to Holocene) extensional deformation. Continued tectonic activity is expressed in the Pahranagat Range area by seismicity and faults having scarps that cut alluvial deposits.
Symplecticity in Beam Dynamics: An Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rees, John R
2003-06-10
A particle in a particle accelerator can often be considered a Hamiltonian system, and when that is the case, its motion obeys the constraints of the Symplectic Condition. This tutorial monograph derives the condition from the requirement that a canonical transformation must yield a new Hamiltonian system from an old one. It then explains some of the consequences of symplecticity and discusses examples of its applications, touching on symplectic matrices, phase space and Liouville's Theorem, Lagrange and Poisson brackets, Lie algebra, Lie operators and Lie transformations, symplectic maps and symplectic integrators.
Tolan, Terry L.; Beeson, Marvin H.; Digital Database by DuRoss, Christopher B.
2000-01-01
The Salem East and Turner 7.5-minute quadrangles are situated in the center of the Willamette Valley near the western margin of the Columbia River Basalt Group (CRBG) distribution. The terrain within the area is of low to moderate relief, ranging from about 150 to almost 1,100-ft elevation. Mill Creek flows northward from the Stayton basin (Turner quadrangle) to the northern Willamette Valley (Salem East quadrangle) through a low that dissects the Columbia River basalt that forms the Salem Hills on the west and the Waldo Hills to the east. Approximately eight flows of CRBG form a thickness of up to 700� in these two quadrangles. The Ginkgo intracanyon flow that extends from east to west through the south half of the Turner quadrangle is exposed in the hills along the southeast part of the quadrangle. Previous geologic mapping by Thayer (1939) and Bela (1981) while providing the general geologic framework did not subdivide the CRBG which limited their ability to delineate structural elements. Reconnaissance mapping of the CRBG units in the Willamette Valley indicated that these stratigraphic units could serve as a series of unique reference horizons for identifying post-Miocene folding and faulting (Beeson and others, 1985,1989; Beeson and Tolan, 1990). Crenna, et al. (1994) compiled previous mapping in the Willamette Valley in a study of the tectonics of the Salem area. The major emphasis of this study was to identify and map CRBG units within the Salem East and Turner Quadrangles and to utilize this detailed CRBG stratigraphy to identify and characterize structural features. Water well logs were used to provide better subsurface stratigraphic control. Three other quadrangles (Scotts Mills, Silverton, and Stayton NE) in the Willamette Valley have been mapped in this way (Tolan and Beeson, 1999). This area was a lowland area of weathered and eroded marine sedimentary when the Columbia River basalts encroached on this area approximately 15-16 m.y. ago. An incipient Coast Range apparently stopped or diverted the fluid lava flows from moving much farther westward toward the coast at this latitude. It is assumed also that an ancestral Willamette River flowed northward through this low-lying area so that water was present as streams and ponds along the flood plain.
Flood of May 5 and 6, 1981, Mobile, Alabama
Ming, C.O.; Nelson, G.H.
1981-01-01
Heavy and intense rainfall in the late evening and early morning hours, May 5 and 6, 1981, caused widespread flooding along streams and low-lying areas in the port city of Mobile, Ala. More than 12 inches of rain fell between 6 p.m. May 5, and 3 a.m. May 6. Damage caused by flooding was estimated by the Mobile Department of Public Works to be millions of dollars. Maximum water surface elevations on streams in the area were 2 to 3 feet higher than those that occurred during a similar flood in April 1980. The approximate extent of flooding delineated on maps using flood profiles obtained by field surveys will provide a basis for formulating effective flood plain zoning that could minimize existing and future flood problems. (USGS)
NASA Astrophysics Data System (ADS)
Farrand, W. H.
2017-12-01
An investigation has begun into effects on water quality in waters coming from a pair of mines, and their surrounding drainage basins, in western India. The study areas are the Ambaji and Zawar mines in the Indian states of, respectively, Gujurat and Rajasthan. The Ambaji mine is situated in Precambrian-aged metasediments and metavolcanics of the Delhi Supergroup. Sulfide mineralization at Ambaji is hosted by hydrothermally altered felsic metavolcanics rocks with ferric oxide and oxyhydroxide as well as copper carbonate surface indicator minerals. The Zawar zinc mine is part of the Precambrian Aravalli Supergroup and lies amidst surface exposures of dolomites and quartzites. Hyperspectral visible through short-wave infrared (VSWIR) data from the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) was collected in February 2016 over these sites as part of a joint campaign between NASA and the Indian Space Research Organization (ISRO). The AVIRIS-NG data is being used to detect, map, and characterize surface mineralogy in the area. Data discovery is being carried out using a self-organizing map (SOM) methodology with mineral endmembers being mapped initially with a support vector machine (SVM) classifier and a planned more comprehensive mapping using the USGS Material Identification and Characterization Algorithm (MICA). Results of the mineral mapping will be field checked and rock, soil, and water samples will be collected and examined for heavy and trace metal contamination. Past studies have shown changes in the shape of the 2.2 mm Al-OH vibrational overtone feature as well as in blue-red spectral ratios that were directly correlated with the concentration of heavy and trace metals that had been adsorbed into the structure of the affected minerals. Early analysis of the Zawar area scenes indicates the presence of Al-OH clay minerals which might have been affected by the adsorption of trace metals. Scenes from the Ambaji area have more extensive surface exposures of carbonate minerals. Future work will focus more closely on detailed spectral feature mapping of absorption features that have been affected by heavy and trace metal adsorption.
Ecoregions and ecoregionalization: geographical and ecological perspectives
Loveland, Thomas R.; Merchant, James W.
2005-01-01
Ecoregions, i.e., areas exhibiting relative homogeneity of ecosystems, are units of analysis that are increasingly important in environmental assessment and management. Ecoregions provide a holistic framework for flexible, comparative analysis of complex environmental problems. Ecoregions mapping has intellectual foundations in both geography and ecology. However, a hallmark of ecoregions mapping is that it is a truly interdisciplinary endeavor that demands the integration of knowledge from a multitude of sciences. Geographers emphasize the role of place, scale, and both natural and social elements when delineating and characterizing regions. Ecologists tend to focus on environmental processes with special attention given to energy flows and nutrient cycling. Integration of disparate knowledge from the many key sciences has been one of the great challenges of ecoregions mapping, and may lie at the heart of the lack of consensus on the “optimal” approach and methods to use in such work. Through a review of the principal existing US ecoregion maps, issues that should be addressed in order to advance the state of the art are identified. Research related to needs, methods, data sources, data delivery, and validation is needed. It is also important that the academic system foster education so that there is an infusion of new expertise in ecoregion mapping and use.
Identifying Populace Susceptible to Flooding Using ArcGIS and Remote Sensing Datasets
NASA Astrophysics Data System (ADS)
Fernandez, Sim Joseph; Milano, Alan
2016-07-01
Remote sensing technologies are growing vastly as with its various applications. The Department of Science and Technology (DOST), Republic of the Philippines, has made projects exploiting LiDAR datasets from remote sensing technologies. The Phil-LiDAR 1 project of DOST is a flood hazard mapping project. Among the project's objectives is the identification of building features which can be associated to the flood-exposed population. The extraction of building features from the LiDAR dataset is arduous as it requires manual identification of building features on an elevation map. The mapping of building footprints is made meticulous in order to compensate the accuracy between building floor area and building height both of which are crucial in flood decision making. A building identification method was developed to generate a LiDAR derivative which will serve as a guide in mapping building footprints. The method utilizes several tools of a Geographic Information System (GIS) software called ArcGIS which can operate on physical attributes of buildings such as roofing curvature, slope and blueprint area in order to obtain the LiDAR derivative from LiDAR dataset. The method also uses an intermediary process called building removal process wherein buildings and other features lying below the defined minimum building height - 2 meters in the case of Phil-LiDAR 1 project - are removed. The building identification method was developed in the hope to hasten the identification of building features especially when orthophotographs and/or satellite imageries are not made available.
Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom
2004-01-01
The Blackwater National Wildlife Refuge (BNWR), on the Eastern Shore of Chesapeake Bay (figure 1), occupies an area less than 1 meter above sea level. The Refuge has been featured prominently in studies of the impact of sea level rise on coastal wetlands. Most notably, the refuge has been sited by the Intergovernmental Panel on Climate Change (IPCC) as a key example of 'wetland loss' attributable to rising sea level due to global temperature increase. Comparative studies of aerial photos taken since 1938 show an expanding area of open water in the central area of the refuge. The expanding area of open water can be shown to parallel the record of sea level rise over the past 60 years. The U.S. Fish and Wildlife Service (FWS) manages the refuge to support migratory waterfowl and to preserve endangered upland species. High marsh vegetation is critical to FWS waterfowl management strategies. A broad area once occupied by high marsh has decreased with rising sea level. The FWS needs a planning tool to help predict current and future areas of high marsh available for waterfowl. 'Wetland loss' is a relative term. It is dependant on the boundaries chosen for measurement. Wetland vegetation, zoned by elevation and salinity (figure 3), respond to rising sea level. Wetlands migrate inland and upslope and may vary in areas depending on the adjacent land slopes. Refuge managers need a geospatial tool that allows them to predict future areas that will be converted to high and intertidal marsh. Shifts in location and area of coverage must be anticipated. Viability of a current marsh area is also important. When will sea level rise make short-term management strategies to maintain an area impractical? The USGS has developed an inundation model for the BNWR centered on the refuge and surrounding areas. Such models are simple in concept, but they require a detailed topographic map upon which to superimpose future sea level positions. The new system of LIDAR mapping of land and shallow water surfaces has solved this problem. Our team has developed a detailed LIDAR map of the BNWR area at a 30 centimeter (ca. 1 ft) contour interval (figure 2). The new map allows us to identify the present marsh vegetation zones and to predict the location and area of future zones on a decade-by- decade basis over the next century at increments of sea level rise on the order of 3 cm/decade (ca. 1 inch). We have developed two scenarios for the model. The first is a steady-state model that uses the historic rate of sea level rise of 3.1 mm/yr to predict marsh areas. The second is a 'global warming' scenario utilizing a conservative IPCC model with an exponentially-increasing rate of sea level rise. Under either scenario, the BNWR is progressively inundated with an expanding core of open water. Although their positions change in the future, the areas of intertidal marsh as well as those of the critical high marsh remain fairly constant until the year 2050. Beyond that time, the low-lying land surface is overtopped by rising sea level and the area is dominated by open water. Our model suggests that wetland habitat in the Blackwater area might be maintained and sustained through a combination of public and private preservation efforts through easements in combination with judicious Federal land acquisition into the predicted areas of suitable marsh formation - but for only the next 50 years. Beyond that time much of this area will become open water.
Geologic map and map database of the Spreckels 7.5-minute Quadrangle, Monterey County, California
Clark, Joseph C.; Brabb, Earl E.; Rosenberg, Lewis I.; Goss, Heather V.; Watkins, Sarah E.
2001-01-01
Introduction The Spreckels quadrangle lies at the north end of the Sierra de Salinas and extends from the Salinas Valley on the northeast across Los Laurelles Ridge south to Carmel Valley, an intermontane valley that separates the Santa Lucia Range from the Sierra de Salinas (fig. 1). The Toro Regional Park occupies the east-central part of the quadrangle, whereas the former Fort Ord Military Reservation covers the northwestern part of the area and is the probable locus of future development. Subdivisions largely occupy the older floodplain of Toro Creek and the adjacent foothills, with less dense development along the narrower canyons of Corral de Tierra and San Benancio Gulch to the south. The foothills southwest of the Salinas River are the site of active residential development. Geologically, the study area has a crystalline basement of Upper Cretaceous granitic rocks of the Salinian block and older metasedimentary rocks of the schist of the Sierra de Salinas of probable Cretaceous age. Resting nonconformably upon these basement rocks is a sedimentary section that ranges in age from middle Miocene to Holocene and has a composite thickness of as much as 1,200 m. One of the purposes of the present study was to investigate the apparent lateral variation of the middle to upper Miocene sections from the typical porcelaneous and diatomaceous Monterey Formation of the Monterey and Seaside quadrangles to the west (Clark and others, 1997) to a thick marine sandstone section in the eastern part of the Spreckels quadrangle. Liquefaction, which seriously affected the Spreckels area in the 1906 San Francisco earthquake (Lawson, 1908), and landsliding are the two major geological hazards of the area. The landslides consist mainly of older large slides in the southern and younger debris flows in the northern part of the quadrangle. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (skmf.txt, skmf.pdf, or skmf.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller.
Geologic Map of the Frederick 30' x 60' Quadrangle, Maryland, Virginia, and West Virginia
Southworth, Scott; Brezinski, David K.; Drake, Avery Ala; Burton, William C.; Orndorff, Randall C.; Froelich, Albert J.; Reddy, James E.; Denenny, Danielle; Daniels, David L.
2007-01-01
The Frederick 30? ? 60? quadrangle lies within the Potomac River watershed of the Chesapeake Bay drainage basin. The map area covers parts of Montgomery, Howard, Carroll, Frederick, and Washington Counties in Maryland; Loudoun, Clarke, and Fairfax Counties in Virginia; and Jefferson and Berkeley Counties in West Virginia. Many geologic features (such as faults and folds) are named for geographic features that may or may not be shown on the 1:100,000-scale base map. The geology of the Frederick 30? ? 60? quadrangle, Maryland, Virginia, and West Virginia, was first mapped on the 32 1:24,000-scale 7.5-minute quadrangle base maps between 1989 and 1994. The geologic data were compiled manually at 1:100,000 scale in 1997 and were digitized between 1998 and 1999. The geologic map and database may be used to support activities such as land-use planning, soil mapping, groundwater availability and quality studies, identifying aggregate resources, and conducting engineering and environmental studies. The map area covers distinct geologic provinces and sections of the central Appalachian region that are defined by unique bedrock and resulting landforms. From west to east, the provinces include the Great Valley section of the Valley and Ridge province, the Blue Ridge province, and the Piedmont province; in the extreme southeastern corner, a small part of the Coastal Plain province is present. The Piedmont province is divided into several sections; from west to east, hey are the Frederick Valley synclinorium, the Culpeper and Gettysburg basins, the Sugarloaf Mountain anticlinorium, the Westminster terrane, and the Potomac terrane. The geology of the Frederick quadrangle is discussed by geologic province and sections; the geologic units within each province are discussed from oldest to youngest. Where applicable, the discussion includes information on tectonic origins. For more information concerning the report, please contact the author.
Ohlin, Henry N.; McLaughlin, Robert J.; Moring, Barry C.; Sawyer, Thomas L.
2010-01-01
The Lake Pillsbury area lies in the eastern part of the northern California Coast Ranges, along the east side of the transform boundary between the Pacific and North American plates (fig. 1). The Bartlett Springs Fault Zone is a northwest-trending zone of faulting associated with this eastern part of the transform boundary. It is presently active, based on surface creep (Svarc and others, 2008), geomorphic expression, offset of Holocene units (Lienkaemper and Brown, 2009), and microseismicity (Bolt and Oakeshott, 1982; Dehlinger and Bolt, 1984; DePolo and Ohlin, 1984). Faults associated with the Bartlett Springs Fault Zone at Lake Pillsbury are steeply dipping and offset older low to steeply dipping faults separating folded and imbricated Mesozoic terranes of the Franciscan Complex and interleaved rocks of the Coast Range Ophiolite and Great Valley Sequence. Parts of this area were mapped in the late 1970s and 1980s by several investigators who were focused on structural relations in the Franciscan Complex (Lehman, 1978; Jordan, 1975; Layman, 1977; Etter, 1979). In the 1980s the U.S. Geological Survey (USGS) mapped a large part of the area as part of a mineral resource appraisal of two U.S. Forest Service Roadless areas. For evaluating mineral resource potential, the USGS mapping was published at a scale of 1:62,500 as a generalized geologic summary map without a topographic base (Ohlin and others, 1983; Ohlin and Spear, 1984). The previously unpublished mapping with topographic base is presented here at a scale of 1:30,000, compiled with other mapping in the vicinity of Lake Pillsbury. The mapping provides a geologic framework for ongoing investigations to evaluate potential earthquake hazards and structure of the Bartlett Springs Fault Zone. This geologic map includes part of Mendocino National Forest (the Elk Creek Roadless Area) in Mendocino, Glenn, and Lake Counties and is traversed by several U.S. Forest Service Routes, including M1 and M6 (fig. 2). The study area is characterized by northwest-trending ridges separated by steep-sided valleys. Elevations in this part of the Coast Ranges vary from 1,500 ft (457 m) to 6,600 ft (2,012 m), commonly with gradients of 1,000 ft per mile (90 m per km). The steep slopes are covered by brush, grass, oak, and conifer forests. Access to most of the area is by county roads and Forest Service Route M6 from Potter Valley to Lake Pillsbury and by county road and Forest Service Route M6 and M1 from Upper Lake and State Highway 20. From the north, State Highway 261 provides access from Covelo. Forest Service Route M1 trends roughly north from its intersection with Route M6 south of Hull Mountain and through the Elk Creek and Black Butte Roadless areas to State Highway 261. Side roads used for logging and jeep trails provide additional access in parts of the area.
California State Waters Map Series-Offshore of Point Reyes, California
Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.
2015-01-01
This publication about the Offshore of Point Reyes map area includes ten map sheets that contain explanatory text, in addition to this descriptive pamphlet and a data catalog of geographic information system (GIS) files. Sheets 1, 2, and 3 combine data from four different sonar surveys to generate comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic features (highlighted in the perspective views on sheet 4) such as the flat, sediment-covered seafloor in Drakes Bay, as well as abundant “scour depressions” on the Bodega Head–Tomales Point shelf (see sheet 9) and local, tectonically controlled bedrock uplifts. To validate geological and biological interpretations of the sonar data shown in sheets 1, 2, and 3, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are summarized on sheet 6. Sheet 5 is a “seafloor character” map, which classifies the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. Sheet 7 is a map of “potential habitats,” which are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Sheet 8 compiles representative seismic-reflection profiles from the map area, providing information on the subsurface stratigraphy and structure of the map area. Sheet 9 shows the distribution and thickness of young sediment (deposited over the last about 21,000 years, during the most recent sea-level rise) in both the map area and the larger Salt Point to Drakes Bay region, interpreted on the basis of the seismic-reflection data, and it identifies the Offshore of Point Reyes map area as lying within the Bodega Head–Tomales Point shelf, Point Reyes bar, and Bolinas shelf domains. Sheet 10 is a geologic map that merges onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery (sheets 1, 2, 3), seafloor-sediment and rock samples (Reid and others, 2006), digital camera and video imagery (sheet 6), and high-resolution seismic-reflection profiles (sheet 8), as well as aerial-photographic interpretation of nearshore areas. The information provided by the map sheets, pamphlet, and data catalog have a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues.
Detection of short-term changes in vegetation cover by use of LANDSAT imagery. [Arizona
NASA Technical Reports Server (NTRS)
Turner, R. M. (Principal Investigator); Wiseman, F. M.
1975-01-01
The author has identified the following significant results. By using a constant band 6 to band 5 radiance ratio of 1.25, the changing pattern of areas of relatively dense vegetation cover was detected for the semiarid region in the vicinity of Tucson, Arizona. Electronically produced binary thematic masks were used to map areas with dense vegetation. The foliar cover threshold represented by the ratio was not accurately determined but field measurements show that the threshold lies in the range of 10 to 25 percent foliage cover. Montana evergreen forests with constant dense cover were correctly shown to exceed the threshold on all dates. The summer active grassland exceeded the threshold in the summer unless rainfall was insufficient. Desert areas exceeded the threshold during the spring of 1973 following heavy rains; the same areas during the rainless spring of 1974 did not exceed threshold. Irrigated fields, parks, golf courses, and riparian communities were among the habitats most frequently surpassing the threshold.
NASA Astrophysics Data System (ADS)
Mest, S. C.; Williams, D. A.; Crown, D. A.; Yingst, R. A.; Buczkowski, D.; Schenk, P.; Scully, J. E. C.; Jaumann, R.; Roatsch, T.; Preusker, F.; Platz, T.; Nathues, A.; Hoffmann, M.; Schäfer, M.; Marchi, S.; De Sanctis, M. C.; Russell, C. T.; Raymond, C. A.
2015-12-01
We are using recent data from the Dawn spacecraft to map the geology of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E) of the dwarf planet Ceres in order to examine its surface geology and understand its geologic history. At the time of this writing, mapping was performed on Framing Camera (FC) mosaics from late Approach (1.3 km/px) and Survey (415 m/px) orbits, including clear filter and color images and digital terrain models derived from stereo images. Images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the map in Fall 2015, followed by the Low Altitude Mapping Orbit (35 m/px) starting in December 2015. The quad is named after crater Toharu (87 km diameter; 49°S, 155°E). The southern rim of Kerwan basin (284 km diameter) is visible along the northern edge of the quad, which is preserved as a low-relief scarp. The quad exhibits smooth terrain in the north, and more heavily cratered terrain in the south. The smooth terrain forms nearly flat-lying plains in some areas, such as on the floor and to the southeast of Kerwan, and overlies hummocky materials in other areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Impact craters exhibit a range of coinciding sizes and preservation styles. Smaller craters (<40 km) generally appear morphologically "fresh", and their rims are nearly circular and raised above the surrounding terrain. Larger craters, such as Toharu, appear more degraded, exhibiting irregularly shaped, sometimes scalloped, rim structures, and debris lobes on their floors. Numerous craters (> 20 km) contain central mounds; at current FC resolution, it is difficult to discern if these are primary structures (i.e., central peaks) or secondary features. Support of the Dawn Instrument, Operations, & Science Teams is acknowledged. This work is supported by grants from NASA, DLR and MPG.
Geospatial Assessment of Cholera in a Rapidly Urbanizing Environment.
Olanrewaju, Olajumoke Esther; Adepoju, Kayode Adewale
2017-01-01
This study mapped out and investigated the spatial relationship between cholera incidences and environmental risk factors in the study area. The study area was stratified into eight zones. Water samples from each zone were collected and analyzed to determine the colony forming units. GIS layers including housing density, digitized roads, rivers, buildings, and cholera incidence data from hospital archives were also collected and analyzed using ArcGIS 10.1. It was observed that there was an association between the ERFs ( p < 0.001). Similarly, 18 out of the 44 waste dump sites, seven out of 18 markets, and two out of 36 abattoirs were found near the historical cholera cases. Similarly, 4 (21.1%) locations were traced to be predominantly close to rivers and waste dump site. All the historical cholera cases were found adjoining to roads and buildings. Highest CFU count was found in the wells and streams of areas with a cluster of all the environmental risk factors and high housing density. This study revealed that waste dump sites and market had the highest predisposing attribute while the least was abattoir. The uniqueness of the study lies in the combination of mapping and microbial analyses to identify and assess the pattern of cholera risk and also to provide clear information for development of strategies for environmental supervision.
Object-based Landslide Mapping: Examples, Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Hölbling, Daniel; Eisank, Clemens; Friedl, Barbara; Chang, Kang-Tsung; Tsai, Tsai-Tsung; Birkefeldt Møller Pedersen, Gro; Betts, Harley; Cigna, Francesca; Chiang, Shou-Hao; Aubrey Robson, Benjamin; Bianchini, Silvia; Füreder, Petra; Albrecht, Florian; Spiekermann, Raphael; Weinke, Elisabeth; Blaschke, Thomas; Phillips, Chris
2016-04-01
Over the last decade, object-based image analysis (OBIA) has been increasingly used for mapping landslides that occur after triggering events such as heavy rainfall. The increasing availability and quality of Earth Observation (EO) data in terms of temporal, spatial and spectral resolution allows for comprehensive mapping of landslides at multiple scales. Most often very high resolution (VHR) or high resolution (HR) optical satellite images are used in combination with a digital elevation model (DEM) and its products such as slope and curvature. Semi-automated object-based mapping makes use of various characteristics of image objects that are derived through segmentation. OBIA enables numerous spectral, spatial, contextual and textural image object properties to be applied during an analysis. This is especially useful when mapping complex natural features such as landslides and constitutes an advantage over pixel-based image analysis. However, several drawbacks in the process of object-based landslide mapping have not been overcome yet. The developed classification routines are often rather complex and limited regarding their transferability across areas and sensors. There is still more research needed to further improve present approaches and to fully exploit the capabilities of OBIA for landslide mapping. In this study several examples of object-based landslide mapping from various geographical regions with different characteristics are presented. Examples from the Austrian and Italian Alps are shown, whereby one challenge lies in the detection of small-scale landslides on steep slopes while preventing the classification of false positives with similar spectral properties (construction areas, utilized land, etc.). Further examples feature landslides mapped in Iceland, where the differentiation of landslides from other landscape-altering processes in a highly dynamic volcanic landscape poses a very distinct challenge, and in Norway, which is exposed to multiple types of landslides. Unlike in these northern European countries, landslides in Taiwan can be effectively delineated based on spectral differences as the surrounding is most often densely vegetated. In this tropical/subtropical region the fast information provision after Typhoon events is important. This need can be addressed in OBIA by automatically calculating thresholds based on vegetation indices and using them for a first rough identification of areas affected by landslides. Moreover, the differentiation in landslide source and transportation area is of high relevance in Taiwan. Finally, an example from New Zealand, where landslide inventory mapping is important for estimating surface erosion, will demonstrate the performance of OBIA compared to visual expert interpretation and on-screen mapping. The associated challenges and opportunities related to case studies in each of these regions are discussed and reviewed. In doing so, open research issues in object-based landslide mapping based on EO data are identified and highlighted.
Geologic map of the Fredonia 30' x 60' quadrangle, Mohave and Coconino counties, northern Arizona
Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.
2008-01-01
This geologic map is the result of a cooperative effort of the U.S. Geological Survey, the National Park Service, the U.S. Forest Service, and the Bureau of Land Management (BLM) and the Kaibab-Paiute Tribe to provide a regional geologic database for resource management officials of all government and agencies, city municipalities, private enterprises, and individuals of this part of the Arizona Strip. The Arizona Strip is part of northwestern Arizona north of the Colorado River and bounded by the States of Nevada and Utah. Field work on the Kaibab-Paiute Indian Reservation was conducted from 2002 to 2005 with permission from the Kaibab-Paiute Tribal Government of that administration and permission was granted to publish a geologic map of 4 quadrangles online (Billingsley and others, 2004). The Kaibab-Paiute Tribal government of 2006 to 2008 requested that all geologic information within the Kaibab-Paiute Indian Reservation not be published as part of the Fredonia 30' x 60' quadrangle (this publication). For further information, contact the Kaibab-Paiute Tribal government at HC 65 Box 2, Fredonia, Arizona, 86022, telephone # (928) 643-7245. Visitors to the Kaibab-Paiute Indian Reservation are required to obtain a permit and permission for access from the Tribal Offices at the junction of State Highway 389 and the paved road leading to Pipe Spring National Monument. The Fredonia 30' x 60' quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Mohave and Coconino Counties, northern Arizona and is bounded by longitude 112 deg to 113 deg W., and latitude 36 deg 30' to 37 deg N. The map area lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into seven physiographic parts: the Grand Canyon (Kanab Canyon and its tributaries), Kanab Plateau, Uinkaret Plateau, Kaibab Plateau, Paria Plateau, House Rock Valley, and Moccasin Mountains as defined by Billingsley and others, 1997, (fig. 1). Elevations range from 2,737 m (8,980 ft) just west of State Highway 67 on the Kaibab Plateau, southeast corner of the map area to about 927 m (3,040 ft) in Kanab Canyon, south-central edge of the map area.
Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon
NASA Astrophysics Data System (ADS)
Edwards, J. H.; Faulds, J. E.
2012-12-01
Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks, show various dip directions and gentle tilting. Extensive alluvial fan cover hinders collection of fault kinematic data, which coupled with limited regional seismicity, precludes careful calculation of local stress field orientations. However, the proximity of Neal (4 km) to the active, N- to NW-striking, oblique-normal slip Cottonwood Mountain fault and active hot springs (~90°C), opaline sinter mounds, and geothermal fluid flow at Neal suggest that the geothermal field lies within a reactived (Quaternary), southward-terminating, left-stepping, fault zone, which probably accommodates oblique-slip with a dominant normal component. Sugarloaf Butte (completely silicified and replaced) lies within a left step of this fault zone, ~5 km of Neal Hot Springs and is possibly related to the evolution of the geothermal system. Epithermal deposits and argillic to propylitic alteration in other nearby areas (e.g., Hope Butte, ~3 Ma, 5 km N) indicate previous geothermal activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitten, C.B.; Miller, S.P.; Derryberry, N.A.
1992-12-01
In 1986, the US Environmental Protection Agency (EPA) issued a Hazardous Waste Management Permit to Aberdeen Proving Ground (APG), Maryland. The permit required a Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA) of sites in the Aberdeen Area (AA) of APG. Recommendations from a draft RFA report suggested further investigations at the Fire Training Area (FTA). This study is in response to the recommendations. Three soil borings and twelve groundwater monitor wells were installed. Three rounds of groundwater sampling and analyses were conducted. APG lies in the Coastal Plain Physiographic Province which is underlain by sediments consisting of threemore » major units, the Potomac Group, the Talbot Formation, and Recent (Holocene) sediments. The Lower Cretaceous sediments of the Potomac Group lie unconformably on the older Precambrian rocks. In the early 1960's fire training was initiated and training has been conducted as often as once a week. Trenches were ignited after being filled with oil and water. The exercises concluded in 1989. During the RFA shallow boring soil gas surveys were conducted for volatile organic compound (VOC) contamination at the FTA. Deeper borings were conducted for monitor wells and geologic mapping. Sampling and monitoring of groundwater, surface water, and soils was conducted. Analyses of groundwater from the monitor wells and two supply wells indicate the AFTA is contributing chemical contaminants to the upper aquifer, which is at a depth of approximately 30 feet below ground surface. ....Aberdeen Proving Ground, Maryland, Hydrogeology, Groundwater, Site characterization, Groundwater contamination.« less
Wong, Terry T-Y; Ho, Connie S-H; Tang, Joey
2017-01-01
Developmental dyscalculia (DD) is a specific learning disability in mathematics that affects around 6% of the population. Currently, the core deficit of DD remains unknown. While the number sense deficit hypothesis suggests that the core deficit of DD lies in the inability to represent nonsymbolic numerosity, the access deficit hypothesis suggests that the origin of this disability lies in the inability to associate numbers with the underlying magnitude representation. The present study compared the performance of DDs with their low-achieving (LA) and normally achieving peers in nonsymbolic numerosity processing and number-magnitude mapping over 1 year (from kindergarten to 1st grade). The results demonstrated differential impairments in different subgroups of children with mathematics difficulties. While DDs showed deficits in both nonsymbolic numerosity processing and number-magnitude mapping, LAs showed deficit only in the number-magnitude mapping. Furthermore, the deficit in number-magnitude mapping among the DD group was partially explained by their number sense deficit. The number sense deficit hypothesis is supported. Theoretical and practical implications are discussed. © Hammill Institute on Disabilities 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guedes, Carlos; Oriti, Daniele; Raasakka, Matti
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-productmore » carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.« less
NASA Astrophysics Data System (ADS)
Olichwer, Tomasz; Wcisło, Marek; Staśko, Stanisław; Buczyński, Sebastian; Modelska, Magdalena; Tarka, Robert
2012-10-01
The article presents a numerical model designed for determining groundwater dynamics and water balance of the catchments of the Oziąbel (Czarna Woda) river and the Wołczyński Strumień river in Wołczyn region. Hydrogeological mapping and modelling research covered the area of 238.9 km2. As a result of measurements performed in 2008-2009, flows were determined in major rivers and water table positions were measured at 26 points. In the major part of the area described, the water table, lying at the depth of 1.5-18.7 m, has unconfined character, and the aquifer is built of Neogene (Quaternary) sands and gravels. In the area under study, groundwaters are drawn from 6 wells with total withdrawal of 6133 m3/d. The numerical modelling was performed with the use of Visual Modflow 3.1.0 software. The area was partitioned by a discretization grid with a step size
Water resources of the Waccasassa River Basin and adjacent areas, Florida
Taylor, G.F.; Snell, L.J.
1978-01-01
This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)
Calculation of Latitude and Longitude for Points on Perimeter of a Circle on a Sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Heidi E.
2015-08-14
This document describes the calculation of the Earth-Centered Earth Fixed (ECEF) coordinates for points lying on the perimeter of a circle. Here, the perimeter of the circle lies on the surface of the sphere and the center of the planar circle is below the surface. These coordinates are converted to latitude and longitude for mapping fields on the surface of the earth.
Lawson, Andrew Cowper
1914-01-01
The five sheets of the San Francisco folio the Tamalpais, Ban Francisco, Concord, Ban Mateo, and Haywards sheets map a territory lying between latitude 37° 30' and 38° and longitude 122° and 122° 45'. Large parts of four of these sheets cover the waters of the Bay of San Francisco or of the adjacent Pacific Ocean. (See fig. 1.) Within the area mapped are the cities of San Francisco, Oakland, Berkeley, Alameda, Ban Rafael, and San Mateo, and many smaller towns and villages. These cities, which have a population aggregating about 750,000, together form the largest and most important center of commercial and industrial activity on the west coast of the United States. The natural advantages afforded by a great harbor, where the railways from the east meet the ships from all ports of the world, have determined the site of a flourishing cosmopolitan, commercial city on the shores of San Francisco Bay. The bay is encircled by hilly and mountainous country diversified by fertile valley lands and divides the territory mapped into two rather contrasted parts, the western part being again divided by the Golden Gate. It will therefore be convenient to sketch the geographic features under four headings (1) the area east of San Francisco Bay; (2) the San Francisco Peninsula; (3) the Marin Peninsula; (4) San Francisco Bay. (See fig. 2.)
Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.
2008-01-01
The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of nine 7.5-minute quadrangles (417 mi2 total) in south-central Massachusetts (fig. 1). Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and in resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, or organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. The mapped distribution of surficial materials that lie between the land surface and the bedrock surface is based on detailed geologic mapping of 7.5-minute topographic quadrangles, produced as part of an earlier (1938-1982) cooperative statewide mapping program between the U.S. Geological Survey and the Massachusetts Department of Public Works (now Massachusetts Highway Department) (Page, 1967; Stone, 1982). Each published geologic map presents a detailed description of local geologic map units, the genesis of the deposits, and age correlations among units. Previously unpublished field compilation maps exist on paper or mylar sheets and these have been digitally rendered for the present map compilation. Regional summaries based on the Massachusetts surficial geologic mapping studies discuss the ages of multiple glaciations, the nature of glaciofluvial, glaciolacustrine, and glaciomarine deposits, and the processes of ice advance and retreat across Massachusetts (Koteff and Pessl, 1981; papers in Larson and Stone, 1982; Oldale and Barlow, 1986; Stone and Borns, 1986; Warren and Stone, 1986). This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This surficial geologic map layer covering nine quadrangles revises previous digital surficial geologic maps (Stone and others, 1993; MassGIS, 1999) that were compiled on base maps at regional scales of 1:125,000 and 1:250,000. The purpose of this study is to provide fundamental geologic data for the evaluation of natural resources, hazards, and land information within the Commonwealth of Massachusetts.
Geological reconnaissance of some Uruguayan iron and manganese deposits in 1962
Wallace, Roberts Manning
1976-01-01
Three mineralized areas lie in an area near the town of Minas de Corrales in the Departamento de Rivera; they are the Cerro Amelia, the Cerro de Papagayo, and the Cerro Iman. The Cerro Amelia is composed of small bands of iron-rich rock separated by an amphibolitic or mafic rock. Selective mining would be necessary to extract the 31,000 tons per meter of depth of iron-rich rock that ranges from 15 to 40 percent metallic iron. The Cerro de Papagayo district contains many small, rich deposits of ferruginous manganese ore. The ratio of Mn to Fe varies widely within each small deposit as well as from deposit to deposit. Some ferruginous manganese ore contains 50-55 percent manganese dioxide. Although there are many thousands of tons of ore in the district, small-scale mining operations are imperative. One deposit, the Cerro Avestuz manganese mine, was visited. The manganese ore body lies within contorted highly metamorphosed itabirite that contains both hard low grade and soft high grade ferruginous manganese ores estimated to average 40 percent Mn. About 38,000 tons of manganese ore is present in this deposit. The Cerro Iman is a large block of itabirite that contains about 40 percent Fe. The grade is variable and probably runs from less than 35 percent Fe to more than 50 percent Fe. No exploration has been done on this deposit. It is recommended that the Cerro de Iman area be geologically mapped in detail, and that a geological reconnaissance be made of the area that is between the Cuchilla de Corrales and the Cuchilla de Areycua/Cuchilla del Cerro Pelado area.
NASA: First Map Of Thawed Areas Under Greenland Ice Sheet
2017-12-08
NASA researchers have helped produce the first map showing what parts of the bottom of the massive Greenland Ice Sheet are thawed – key information in better predicting how the ice sheet will react to a warming climate. Greenland’s thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth’s depths. Knowing whether Greenland’s ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future, But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Now, a new study synthesizes several methods to infer the Greenland Ice Sheet’s basal thermal state –whether the bottom of the ice is melted or not– leading to the first map that identifies frozen and thawed areas across the whole ice sheet. Map caption: This first-of-a-kind map, showing which parts of the bottom of the Greenland Ice Sheet are likely thawed (red), frozen (blue) or still uncertain (gray), will help scientists better predict how the ice will flow in a warming climate. Credit: NASA Earth Observatory/Jesse Allen Read more: go.nasa.gov/2avKgl2 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Grauch, V.J.S.; Drenth, Benjamin J.
2009-01-01
High-resolution aeromagnetic data were acquired over the town of Poncha Springs and areas to the northwest to image faults, especially where they are concealed. Because this area has known hot springs, faults or fault intersections at depth can provide pathways for upward migration of geothermal fluids or concentrate fracturing that enhances permeability. Thus, mapping concealed faults provides a focus for follow-up geothermal studies. Fault interpretation was accomplished by synthesizing interpretative maps derived from several different analytical methods, along with preliminary depth estimates. Faults were interpreted along linear aeromagnetic anomalies and breaks in anomaly patterns. Many linear features correspond to topographic features, such as drainages. A few of these are inferred to be fault-related. The interpreted faults show an overall pattern of criss-crossing fault zones, some of which appear to step over where they cross. Faults mapped by geologists suggest similar crossing patterns in exposed rocks along the mountain front. In low-lying areas, interpreted faults show zones of west-northwest-, north-, and northwest-striking faults that cross ~3 km (~2 mi) west-northwest of the town of Poncha Springs. More easterly striking faults extend east from this juncture. The associated aeromagnetic anomalies are likely caused by magnetic contrasts associated with faulted sediments that are concealed less than 200 m (656 ft) below the valley floor. The faults may involve basement rocks at greater depth as well. A relatively shallow (<300 m or <984 ft), faulted basement block is indicated under basin-fill sediments just north of the hot springs and south of the town of Poncha Springs.
Erickson, M.S.; Marsh, S.P.; Roemer, T.A.
1984-01-01
The Crater mercury-su l fur-gypsum ~ineral ized area is located in east-central California along the crest of the Last Chance Range, west of the north end of Death Valley (fig. 1). The area is in the northwest quarter of the Last Chance Range 15-minute quadrangle and occupies the area between 117 39 and 117 45 longitude and 37 10 and 37 15 latitudP.. The area studied lies between 5000 ( 1525 m) and 6000 ( 1830 m) feet above sea level. Relief isgenerally moderate but can be extreme in some places, as at Hanging Rock Canyon (plate 1). The climate is arid, and there are no active streams in the area. The range fronts east and west of the area are precipitous and incised by many steep canyons, whereas the range crest has relatively low relief. The old abandoned town and mine site of Crater 1 ie in this area of low relief. Access to the Crater area is by paved and dirt roads from Big Pine to the west or from the north end of the Death Valley National Monument to the southeast.
Poeppel, David
2012-01-01
Research on the brain basis of speech and language faces theoretical and empirical challenges. The majority of current research, dominated by imaging, deficit-lesion, and electrophysiological techniques, seeks to identify regions that underpin aspects of language processing such as phonology, syntax, or semantics. The emphasis lies on localization and spatial characterization of function. The first part of the paper deals with a practical challenge that arises in the context of such a research program. This maps problem concerns the extent to which spatial information and localization can satisfy the explanatory needs for perception and cognition. Several areas of investigation exemplify how the neural basis of speech and language is discussed in those terms (regions, streams, hemispheres, networks). The second part of the paper turns to a more troublesome challenge, namely how to formulate the formal links between neurobiology and cognition. This principled problem thus addresses the relation between the primitives of cognition (here speech, language) and neurobiology. Dealing with this mapping problem invites the development of linking hypotheses between the domains. The cognitive sciences provide granular, theoretically motivated claims about the structure of various domains (the ‘cognome’); neurobiology, similarly, provides a list of the available neural structures. However, explanatory connections will require crafting computationally explicit linking hypotheses at the right level of abstraction. For both the practical maps problem and the principled mapping problem, developmental approaches and evidence can play a central role in the resolution. PMID:23017085
Geologic map of the Barrymore Quadrangle (V-59), Venus
Johnson, Jeffrey R.; Komatsu, Goro; Baker, Victor R.
1999-01-01
The Barrymore quadrangle (V–59) is a predominantly ridged plains region south of Imdr Regio, incorporating portions of Helen, Nuptadi, and Nsomeka Planitiae. The map area extends from lat 50°–75° S. and long 180°–240°, with nearly 70% coverage by cycle 1 synthetic aperture radar (SAR) images (left-look, incidence angles 16°–23°) and complete coverage by cycle 2 images (right-look, incidence angles 20°–25°) (fig. 1). The majority of the map area is covered by regional plains material that may either be smooth or deformed by wrinkle ridges or ridge belts of variable spacing. The difference in elevation between highest and lowest points in the map area is about 2.3 km. A north-south-oriented, 1,375-km linear ridge belt named “Saule Dorsa” is in the center of the region. The southern tip of this belt is intersected by a stratigraphically complicated, east-west-trending intermittent series of disrupted material, arcuate depressions and rises, regional plains, and volcanic centers. This region (hereafter referred to as the “east-west disrupted zone”) lies within a belt between 63°–67° S. extending from Kadlu Dorsa to Moombi Corona. A high concentration of canali-type channels (long sinuous lava channels that may contain subsidiary channels that branch off from the main channel [Baker and others, 1992; Komatsu and others, 1992]) occurs in Nsomeka Planitia. This includes Xulab Vallis and Citlalpul Valles, which form the eastern extent of a 3,000-km-long canali system (Komatsu and others, 1993). Three instances of canali bifurcation from north-south to east-west orientations occur in this region (fig. 2). Several large impact craters with fluidized ejecta blanket (FEB) outflows occur in the map area, along with some impact crater extended deposits (parabolas). The latter are mapped as surficial material using stipple patterns over the plains materials. These surficial deposits show variations in radar backscatter properties between cycle 1 and cycle 2 images related to orientation of aeolian dune or ripple faces (for example, Weitz and others, 1994; table 1). This region provides an interesting geologic setting for interpreting the history of regional and local plains formation and evolution, mainly due to development and subsequent deformation of the areally extensive plains units and accompanying canali (Komatsu and Baker, 1994).
IRAS surface brightness maps of reflection nebulae in the Pleiades
NASA Technical Reports Server (NTRS)
Castelaz, Michael W.; Werner, M. W.; Sellgren, K.
1987-01-01
Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.
Map of Martian Potassium at Mid-Latitudes
2003-03-13
This gamma ray spectrometer map of the mid-latitude region of Mars is based on gamma-rays from the element potassium. Potassium, having the chemical symbol K, is a naturally radioactive element and is a minor constituent of rocks on the surface of both Mars and Earth. The region of highest potassium content, shown in red, is concentrated in the northern part of Acidalia Planitia (centered near 55 degrees N, -30 degrees). Several areas of low potassium content, shown in blue, are distributed across the mid-latitudes, with two significant low concentrations, one associated with the Hellas Basin (centered near 35 degrees S, 70 degrees) and the other lying southeast of Elysium Mons (centered near 10 degrees N, 160 degrees). Contours of constant surface elevation are also shown. The long continuous line running from east to west marks the approximate separation of the younger lowlands in the north from the older highlands in the south. http://photojournal.jpl.nasa.gov/catalog/PIA04255
Geologic Map of the Round Spring Quadrangle, Shannon County, Missouri
Orndorff, Randall C.; Weary, David J.
2009-01-01
The Round Spring 7.5-minute quadrangle is located in Shannon County, south-central Missouri on the Salem Plateau of the Ozark Plateaus physiographic province. As much as 1,350 feet (ft) of flat-lying to gently dipping Upper Cambrian and Lower Ordovician rocks, mostly dolomite, overlie Mesoproterozoic volcanic rocks. The bedrock is overlain by unconsolidated residuum, colluvium, terrace deposits, and alluvium. Karst features, such as small sinkholes and caves, have formed in the carbonate rocks, and many streams are spring fed. The topography is a dissected karst plain with elevation ranging from 650 ft along the Current River on the eastern edge of the quadrangle to almost 1,200 ft at various places on the ridge tops. The area is mostly forested but contains some farmlands and includes sections of the Ozark National Scenic Riverways of the National Park Service along the Current River. Geologic mapping for this investigation began in the spring of 2001 and was completed in the spring of 2002.
Dudash, Stephanie L.
2006-01-01
This 1:24,000 scale detailed surficial geologic map and digital database of a Calico Mountains piedmont and part of Coyote Lake in south-central California depicts surficial deposits and generalized bedrock units. The mapping is part of a USGS project to investigate the spatial distribution of deposits linked to changes in climate, to provide framework geology for land use management (http://deserts.wr.usgs.gov), to understand the Quaternary tectonic history of the Mojave Desert, and to provide additional information on the history of Lake Manix, of which Coyote Lake is a sub-basin. Mapping is displayed on parts of four USGS 7.5 minute series topographic maps. The map area lies in the central Mojave Desert of California, northeast of Barstow, Calif. and south of Fort Irwin, Calif. and covers 258 sq.km. (99.5 sq.mi.). Geologic deposits in the area consist of Paleozoic metamorphic rocks, Mesozoic plutonic rocks, Miocene volcanic rocks, Pliocene-Pleistocene basin fill, and Quaternary surficial deposits. McCulloh (1960, 1965) conducted bedrock mapping and a generalized version of his maps are compiled into this map. McCulloh's maps contain many bedrock structures within the Calico Mountains that are not shown on the present map. This study resulted in several new findings, including the discovery of previously unrecognized faults, one of which is the Tin Can Alley fault. The north-striking Tin Can Alley fault is part of the Paradise fault zone (Miller and others, 2005), a potentially important feature for studying neo-tectonic strain in the Mojave Desert. Additionally, many Anodonta shells were collected in Coyote Lake lacustrine sediments for radiocarbon dating. Preliminary results support some of Meek's (1999) conclusions on the timing of Mojave River inflow into the Coyote Basin. The database includes information on geologic deposits, samples, and geochronology. The database is distributed in three parts: spatial map-based data, documentation, and printable map graphics of the database. Spatial data are distributed as an ArcInfo personal geodatabase, or as tabular data in the form of Microsoft Access Database (MDB) or dBase Format (DBF) file formats. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, and Federal Geographic Data Committee (FGDC) metadata for the spatial map information. Map graphics files are distributed as Postscript and Adobe Acrobat Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.
USDA-ARS?s Scientific Manuscript database
Sorghum is the second cereal crop to have a full genome completely sequenced (Nature (2009), 457:551). This achievement is widely recognized as a scientific milestone for grass genetics and genomics in general. However, the true worth of genetic information lies in translating the sequence informa...
Stratigraphy of the Martian northern plains
NASA Technical Reports Server (NTRS)
Tanaka, K. L.
1993-01-01
The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 10(exp 6) km(sup 2) or 35 percent of the planet's surface. The age and origin of the lowlands continue to be debated by proponents of impact and tectonic explanations. Geologic mapping and topical studies indicate that volcanic, fluvial, and eolian deposition have played major roles in the infilling of this vast depression. Periglacial, glacial, fluvial, eolian, tectonic, and impact processes have locally modified the surface. Because of the northern plains' complex history of sedimentation and modification, much of their stratigraphy was obscured. Thus the stratigraphy developed is necessarily vague and provisional: it is based on various clues from within the lowlands as well as from highland areas within and bordering the plains. The results are summarized.
NASA Astrophysics Data System (ADS)
Huber, C.; Studer, M.; Giraud, H.; Durand, A.; Fruteau, L.; Lai, X.; Maxant, J.; Li, F.; Cao, L.; Tinel, C.; Yesou, H.
2014-11-01
Water resource monitoring and preservation are some of the biggest issues at global scale, and space technologies are playing a key role in various applications related to water topics the recently launched Sentinel-1, the future Sentinel-2 and 2020 altimetric mission SWOT, will be powerful for an accurate mapping of continental water resources but would be even more powerful and useful in association with high quality Digital Surface Models (DSM). Within the Thematic User Commissioning phase intending to valorize Pleiades imagery, 6 tri-stereo sets of Pleiades-HR images were acquired over test sites located within the Yangtze low-intermediate watershed reaches. At the same time, TanDEM-X InSAR pairs were acquired over the same area in order to get a wider coverage.
Search for the 700,000-year-old source crater of the Australasian tektite strewn field
NASA Technical Reports Server (NTRS)
Schnetzler, C. C.; Garvin, J. B.
1992-01-01
Many tektite investigations have hypothesized that the impact crater that was the source of the extensive Australasian strewn field lies somewhere in or near Indochina. This is due to variations in abundance and size of tektites across the strewn field, variation of thickness of microtektite layers in ocean cores, nature and ablation characteristics across the field, and, above all, the occurrence of the large, blocky, layered Muong Nong-type tektites in Indochina. A recent study of the location and chemistry of Muong Nong-type and splash-form tektites suggests that the source region can be further narrowed to a limited area in eastern Thailand and southern Loas. Satellite multispectral imagery, a digital elevation dataset, and maps showing drainage patterns were used to search within this area for possible anomalous features that may be large degraded impact craters. Four interesting structures were identified from these datasets, and they are presented.
Evidence for pitch chroma mapping in human auditory cortex.
Briley, Paul M; Breakey, Charlotte; Krumbholz, Katrin
2013-11-01
Some areas in auditory cortex respond preferentially to sounds that elicit pitch, such as musical sounds or voiced speech. This study used human electroencephalography (EEG) with an adaptation paradigm to investigate how pitch is represented within these areas and, in particular, whether the representation reflects the physical or perceptual dimensions of pitch. Physically, pitch corresponds to a single monotonic dimension: the repetition rate of the stimulus waveform. Perceptually, however, pitch has to be described with 2 dimensions, a monotonic, "pitch height," and a cyclical, "pitch chroma," dimension, to account for the similarity of the cycle of notes (c, d, e, etc.) across different octaves. The EEG adaptation effect mirrored the cyclicality of the pitch chroma dimension, suggesting that auditory cortex contains a representation of pitch chroma. Source analysis indicated that the centroid of this pitch chroma representation lies somewhat anterior and lateral to primary auditory cortex.
Evidence for Pitch Chroma Mapping in Human Auditory Cortex
Briley, Paul M.; Breakey, Charlotte; Krumbholz, Katrin
2013-01-01
Some areas in auditory cortex respond preferentially to sounds that elicit pitch, such as musical sounds or voiced speech. This study used human electroencephalography (EEG) with an adaptation paradigm to investigate how pitch is represented within these areas and, in particular, whether the representation reflects the physical or perceptual dimensions of pitch. Physically, pitch corresponds to a single monotonic dimension: the repetition rate of the stimulus waveform. Perceptually, however, pitch has to be described with 2 dimensions, a monotonic, “pitch height,” and a cyclical, “pitch chroma,” dimension, to account for the similarity of the cycle of notes (c, d, e, etc.) across different octaves. The EEG adaptation effect mirrored the cyclicality of the pitch chroma dimension, suggesting that auditory cortex contains a representation of pitch chroma. Source analysis indicated that the centroid of this pitch chroma representation lies somewhat anterior and lateral to primary auditory cortex. PMID:22918980
Buono, A.; Rutledge, A.T.
1978-01-01
This map depicts the approximate top of the rock that composes the Floridan aquifer. The contours represent the elevation of the top of the Floridan aquifer to mean sea level. Rock units recognized to be part of the Floridan aquifer are limestone and dolomite ranging from middle Eocene to early Miocene. They are Lake City Limestone, Avon Park Limestone, Ocala Limestone, Suwannee Limestone, and Tampa Limestone. In this report, the top of the Floridan aquifer is a limestone defined as the first consistent rock of early Miocene age or older below which occur no clay confining beds. Although the Hawthorn formation of middle Miocene is considered part of the Floridan aquifer when it is in direct hydrologic contact with lower lying rock units, it is not considered here because of a lack of detailed delineation of areas where contact exists. (Woodard-USGS)
Modeling the Ecological Niche of Bacillus anthracis to Map Anthrax Risk in Kyrgyzstan
Blackburn, Jason K.; Matakarimov, Saitbek; Kozhokeeva, Sabira; Tagaeva, Zhyldyz; Bell, Lindsay K.; Kracalik, Ian T.; Zhunushov, Asankadyr
2017-01-01
Anthrax, caused by the environmental bacterium Bacillus anthracis, is an important zoonosis nearly worldwide. In Central Asia, anthrax represents a major veterinary and public health concern. In the Republic of Kyrgyzstan, ongoing anthrax outbreaks have been reported in humans associated with handling infected livestock and contaminated animal by-products such as meat or hides. The current anthrax situation has prompted calls for improved insights into the epidemiology, ecology, and spatial distribution of the disease in Kyrgyzstan to better inform control and surveillance. Disease control for both humans and livestock relies on annual livestock vaccination ahead of outbreaks. Toward this, we used a historic database of livestock anthrax reported from 1932 to 2006 mapped at high resolution to develop an ecological niche model–based prediction of B. anthracis across Kyrgyzstan and identified spatial clusters of livestock anthrax using a cluster morphology statistic. We also defined the seasonality of outbreaks in livestock. Cattle were the most frequently reported across the time period, with the greatest number of cases in late summer months. Our niche models defined four areas as suitable to support pathogen persistence, the plateaus near Talas and Bishkek, the valleys of western Kyrgyzstan along the Fergana Valley, and the low-lying areas along the shore of Lake Isyk-Kul. These areas should be considered “at risk” for livestock anthrax and subsequent human cases. Areas defined by the niche models can be used to prioritize anthrax surveillance and inform efforts to target livestock vaccination campaigns. PMID:28115677
Modeling the Ecological Niche of Bacillus anthracis to Map Anthrax Risk in Kyrgyzstan.
Blackburn, Jason K; Matakarimov, Saitbek; Kozhokeeva, Sabira; Tagaeva, Zhyldyz; Bell, Lindsay K; Kracalik, Ian T; Zhunushov, Asankadyr
2017-03-01
AbstractAnthrax, caused by the environmental bacterium Bacillus anthracis , is an important zoonosis nearly worldwide. In Central Asia, anthrax represents a major veterinary and public health concern. In the Republic of Kyrgyzstan, ongoing anthrax outbreaks have been reported in humans associated with handling infected livestock and contaminated animal by-products such as meat or hides. The current anthrax situation has prompted calls for improved insights into the epidemiology, ecology, and spatial distribution of the disease in Kyrgyzstan to better inform control and surveillance. Disease control for both humans and livestock relies on annual livestock vaccination ahead of outbreaks. Toward this, we used a historic database of livestock anthrax reported from 1932 to 2006 mapped at high resolution to develop an ecological niche model-based prediction of B. anthracis across Kyrgyzstan and identified spatial clusters of livestock anthrax using a cluster morphology statistic. We also defined the seasonality of outbreaks in livestock. Cattle were the most frequently reported across the time period, with the greatest number of cases in late summer months. Our niche models defined four areas as suitable to support pathogen persistence, the plateaus near Talas and Bishkek, the valleys of western Kyrgyzstan along the Fergana Valley, and the low-lying areas along the shore of Lake Isyk-Kul. These areas should be considered "at risk" for livestock anthrax and subsequent human cases. Areas defined by the niche models can be used to prioritize anthrax surveillance and inform efforts to target livestock vaccination campaigns.
Macromolecular target prediction by self-organizing feature maps.
Schneider, Gisbert; Schneider, Petra
2017-03-01
Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.
Chern-Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map.
Sahlmann, Hanno; Thiemann, Thomas
2012-03-16
We report on a new approach to the calculation of Chern-Simons theory expectation values, using the mathematical underpinnings of loop quantum gravity, as well as the Duflo map, a quantization map for functions on Lie algebras. These new developments can be used in the quantum theory for certain types of black hole horizons, and they may offer new insights for loop quantum gravity, Chern-Simons theory and the theory of quantum groups.
Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps
NASA Astrophysics Data System (ADS)
Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.
2016-07-01
The analysis of 34 cloudless fragments of Landsat 5, 7, and 8 images (1985-2014) on the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast has been performed. It is shown that bare soil surface on the RED-NIR plots derived from the images cannot be described in the form of a sector of spectral plane as it can be done for the NDVI values. The notion of spectral neighborhood of soil line (SNSL) is suggested. It is defined as the sum of points of the RED-NIR spectral space, which are characterized by spectral characteristics of the bare soil applied for constructing soil lines. The way of the SNSL separation along the line of the lowest concentration density of points on the RED-NIR spectral space is suggested. This line separates bare soil surface from vegetating plants. The SNSL has been applied to construct soil line (SL) for each of the 34 images and to delineate bare soil surface on them. Distances from the points with averaged RED-NIR coordinates to the SL have been calculated using the method of moving window. These distances can be referred to as averaged spectral deviations (ASDs). The calculations have been performed strictly for the SNSL areas. As a result, 34 maps of ASDs have been created. These maps contain ASD values for 6036 points of a grid used in the study. Then, the integral map of normalized ASD values has been built with due account for the number of points participating in the calculation (i.e., lying in the SNSL) within the moving window. The integral map of ASD values has been compared with four traditional soil maps on the studied territory. It is shown that this integral map can be interpreted in terms of soil taxa: the areas of seven soil subtypes (soddy moderately podzolic, soddy slightly podzolic, light gray forest. gray forest, dark gray forest, podzolized chernozems, and leached chernozems) belonging to three soil types (soddy-podzolic, gray forest, and chernozemic soils) can be delineated on it.
Geologic map of the Silt Quadrangle, Garfield County, Colorado
Shroba, R.R.; Scott, R.B.
2001-01-01
New 1:24,000-scale geologic mapping in the Silt 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift, the Grand Hogback, and the eastern Piceance Basin. The Wasatch Formation was subdivided into three formal members, the Shire, Molina, and Atwell Gulch Members. Also a sandstone unit within the Shire Member was broken out. The Mesaverde Group consists of the upper Williams Fork Formation and the lower Iles Formation. Members for the Iles Formation consist of the Rollins Sandstone, the Cozzette Sandstone, and the Corcoran Sandstone Members. The Cozzette and Corcoran Sandstone Members were mapped as a combined unit. Only the upper part of the Upper Member of the Mancos Shale is exposed in the quadrangle. From the southwestern corner of the map area toward the northwest, the unfaulted early Eocene to Paleocene Wasatch Formation and underlying Mesaverde Group gradually increase in dip to form the Grand Hogback monocline that reaches 45-75 degree dips to the southwest (section A-A'). The shallow west-northwest-trending Rifle syncline separates the northern part of the quadrangle from the southern part along the Colorado River. Geologic hazards in the map area include erosion, expansive soils, and flooding. Erosion includes mass wasting, gullying, and piping. Mass wasting involves any rock or surficial material that moves downslope under the influence of gravity, such as landslides, debris flows, or rock falls, and is generally more prevalent on steeper slopes. Locally, where the Grand Hogback is dipping greater than 60 degrees and the Wasatch Formation has been eroded, leaving sandstone slabs of the Mesa Verde Group unsupported over vertical distances as great as 500 m, the upper part of the unit has collapsed in landslides, probably by a process of beam-buckle failure. In the source area of these landslides strata are overturned and dip shallowly to the northeast. Landslide deposits now armor Pleistocene pediment surfaces and extend at least 1 km into Cactus Valley. Gullying and piping generally occur on more gentle slopes. Expansive soils and expansive bedrock are those unconsolidated materials or rocks that swell when wet and shrink when dry. Most floods are restricted to low-lying areas. Several gas-producing wells extract methane from coals from the upper part of the Iles Formation.
Cox, Caitriona L; Fritz, Zoe
2016-01-01
In modern practice, doctors who outright lie to their patients are often condemned, yet those who employ non-lying deceptions tend to be judged less critically. Some areas of non-disclosure have recently been challenged: not telling patients about resuscitation decisions; inadequately informing patients about risks of alternative procedures and withholding information about medical errors. Despite this, there remain many areas of clinical practice where non-disclosures of information are accepted, where lies about such information would not be. Using illustrative hypothetical situations, all based on common clinical practice, we explore the extent to which we should consider other deceptive practices in medicine to be morally equivalent to lying. We suggest that there is no significant moral difference between lying to a patient and intentionally withholding relevant information: non-disclosures could be subjected to Bok's ‘Test of Publicity’ to assess permissibility in the same way that lies are. The moral equivalence of lying and relevant non-disclosure is particularly compelling when the agent's motivations, and the consequences of the actions (from the patient's perspectives), are the same. We conclude that it is arbitrary to claim that there is anything inherently worse about lying to a patient to mislead them than intentionally deceiving them using other methods, such as euphemism or non-disclosure. We should question our intuition that non-lying deceptive practices in clinical practice are more permissible and should thus subject non-disclosures to the same scrutiny we afford to lies. PMID:27451425
NASA Astrophysics Data System (ADS)
Koppad, A. G.; Janagoudar, B. S.
2017-05-01
The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non-vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.
Geologic Map of the Summit Region of Kilauea Volcano, Hawaii
Neal, Christina A.; Lockwood, John P.
2003-01-01
This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.
Nelson, Steven W.; Miller, Marti L.; Dumoulin, Julie A.
1987-01-01
The Resurrection Peninsula forms the east side of Resurrection Bay (Fig. 1). The city of Seward is located at the head of the bay and can be reached from Anchorage by highway (127 mi;204 km). Relief ranges from 1,434 ft (437 m) at the southern end of the peninsula to more than 4,800 ft (1,463 m) 17 mi (28 km) to the north. All rock units composing the informally named Resurrection Peninsula ophiolite are visible and (or) accessible by boat.The eastern half of the peninsula is located within the Chugach National Forest; the western half is mainly state land, but there is some private land with recreational cabins. The Seward A6 and A7 and Blying Sound D6 and D7 maps at 1:63,360 scale (mile-to-the-inch) cover the entire Resurrection Peninsula.Knight Island is located 53 mi (85 km) east of Seward (Fig. 1). Numerous fiords indent the 31-mi-long (50 km) by 7.4-mi-wide (12 km) island and offer excellent bedrock exposures. The island is rugged and has a maximum elevation of 3,000 ft (914 m). It has numerous mineral prospects (Tysdal, 1978; Nelson and others, 1984; Jansons and others, 1984; Koski and others, 1985), and several abandoned canneries are located on the island. Knight Island lies entirely within the Chugach National Forest—state and private inholdings constitute less than five percent of its total land area. The Seward A2, A3, B2, B3, and C2, 1:63,360-scale U.S. Geological Survey topographic maps cover the entire island.Montague Island, 50 mi (80 km) long and up to 11 mi (18 km) wide, lies 10.6 mi (17 km) southeast of Knight Island. It belongs to an island group that forms the southern margin of Prince William Sound (Fig. 1). Montague Island is less rugged and less heavily vegetated than either the Resurrection Peninsula or Knight Island. Rock exposures are excellent along the beaches, and ground disruption due to recent fault movements is clearly visible. The Seward Al and A2 and Blying Sound Dl, D2, and D3 maps cover the areas of interest on Montague Island.In all areas, access is by float-equipped aircraft, helicopter, or boat. Wheel-equipped aircraft can land on the beaches or at several landing strips on Montague Island.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampson, G.J.; Howell, J.A.; Flint, S.S.
1996-01-01
The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ([open quotes]Mancos B[close quotes]) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these [open quotes]stray[close quotes] sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discretemore » stratigraphic levels, thereby defining incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface [open quotes]Mancos B[close quotes] gas reservoir sandstones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampson, G.J.; Howell, J.A.; Flint, S.S.
1996-12-31
The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ({open_quotes}Mancos B{close_quotes}) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these {open_quotes}stray{close_quotes} sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discrete stratigraphic levels, thereby definingmore » incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface {open_quotes}Mancos B{close_quotes} gas reservoir sandstones.« less
1989-03-03
address global parameter space mapping issues for first order differential equations. The rigorous criteria for the existence of exact lumping by linear projective transformations was also established.
Ash Shutbah: A possible impact structure in Saudi Arabia
NASA Astrophysics Data System (ADS)
Gnos, Edwin; Hofmann, Beda A.; Schmieder, Martin; Al-Wagdani, Khalid; Mahjoub, Ayman; Al-Solami, Abdulaziz A.; Habibullah, Siddiq N.; Matter, Albert; Alwmark, Carl
2014-10-01
We have investigated the Ash Shutbah circular structure in central Saudi Arabia (21°37'N 45°39'E) using satellite imagery, field mapping, thin-section petrography, and X-ray diffraction of collected samples. The approximately 2.1 km sized structure located in flat-lying Jurassic Tuwaiq Mountain Limestone has been nearly peneplained by erosional processes. Satellite and structural data show a central area consisting of Dhruma Formation sandstones with steep bedding and tight folds plunging radially outward. Open folding occurs in displaced, younger Tuwaiq Mountain Limestone Formation blocks surrounding the central area, but is absent outside the circular structure. An approximately 60 cm thick, unique folded and disrupted orthoquartzitic sandstone marker bed occurring in the central area of the structure is found 140 m deeper in undisturbed escarpment outcrops located a few hundred meters west of the structure. With exception of a possible concave shatter cone found in the orthoquartzite of the central area, other diagnostic shock features are lacking. Some quartz-rich sandstones from the central area show pervasive fracturing of quartz grains with common concussion fractures. This deformation was followed by an event of quartz dissolution and calcite precipitation consistent with local sea- or groundwater heating. The combination of central stratigraphic uplift of 140 m, concussion features in discolored sandstone, outward-dipping concentric folds in the central area, deformation restricted to the rocks of the ring structure, a complex circular structure of 2.1 km diameter that appears broadly consistent with what one would expect from an impact structure in sedimentary targets, and a possible shatter cone all point to an impact origin of the Ash Shutbah structure. In fact, the Ash Shutbah structure appears to be a textbook example of an eroded, complex impact crater located in flat-lying sedimentary rocks, where the undisturbed stratigraphic section can be studied in escarpment outcrops in the vicinity of the structure.
Minson, A C; Darby, G K; Wildy, P
1979-11-01
Two independently derived cell lines which carry the herpes simplex type 2 thymidine kinase gene have been examined for the presence of HSV-2-specific DNA sequences. Both cell lines contained 1 to 3 copies per cell of a sequence lying within map co-ordinates 0.2 to 0.4 of the HSV-2 genome. Revertant cells, which contained no detectable thymidine kinase, did not contain this DNA sequence. The failure of EcoR1-restricted HSV-2 DNA to act as a donor of the thymidine kinase gene in transformation experiments suggests that the gene lies close to the EcoR1 restriction site within this sequence at a map position of approx. 0.3. The HSV-2 kinase gene is therefore approximately co-linear with the HSV-1 gene.
Geology of the central and northern parts of the Western Cascade Range in Oregon
Peck, Dallas L.; Griggs, Allan B.; Schlicker, Herbert G.; Wells, Francis G.; Dole, Hollis M.
1964-01-01
This report pt·esents a description of the stratigraphy, structure, and petrology of the volcanic rocks of the central and northern parts of the Western Cascade Range of Oregon. The study is a part of a long-range cooperative program between the U.S. Geological Survey and the Oregon State Department of Geology and Mineral Industries to prepare a geologic map of Oregon. The map area, about 7,500 square miles, lies in the densely forested western slope of the Cascade Range. It is bounded approximately by lat 43° N. and lat 45°30' N. on the south and north, the crest of the range on the east, and long 123° W. and the edge of the Willamette Valley on the west. The geology, which was mapped by reconnaissance methods, is chiefly based on examination of rock exposures along roads. The Cascade Range in Oregon comprises two physiographic divisions: the Western Cascade Range, which includes a wide, deeply dissected belt of volcanic formations making up the western slope of the range, and the High Cascade Range, which includes chiefly younger cones and lava flows forming the nearly undissected crest of the range. The volcanic rocks of the Western Cascade Range are deformed and partially altered flows and pyroclastic rocks that range in age from late Eocene t·o lute Miocene, as determined chiefly from fossil plants from more than 50 localities. These volcanic rocks overlie or interfinger westward with marine sedimentary rocks, and in the southwestern part of the map area they overlie pre-Tertiary plutonic and metamorphic rocks of the Klamath Mountains.
Soil erosion risk mapping: how to explain the stakeholders what lies behind?
NASA Astrophysics Data System (ADS)
Cerdan, Olivier; Degan, Francesca; Salvador-Blanes, Sebastien
2014-05-01
Recent demographic projections of the impact of global changes point to the need of increasing food and biomass production to meet expected global demand. This issue is particularly complex as it must comply with an increasing awareness that environmental quality must be preserved. Increased production can be achieved through either an intensification of agricultural practices or an increase of cultivated areas. In both cases, significant adverse effects are expected in terms of land degradation and its ability to maintain sustainable agricultural productivity. In this context, soil degradation vulnerability assessment is becoming more and more integrated in land management planning. Soil erosion being one of the major causes of soil degradation, the demand for soil erosion risk maps is increasing. However, the 2D representation of a process that shows strong non-linear dynamics in space and time is far from trivial. Important assumptions on the way to integrate these heterogeneities in time and space have to be made. How to integrate the crop rotation calendar and the climatic seasonal variability at the yearly scale? Or, how to characterise the erosion vulnerability of a geographical space that combines areas having different erosion risks? Moreover, other important questions arise with the resolution and the uncertainties associated with the available input data. And, last but not least, the final map needs, not only to integrate all these issues, but, more importantly, to be understandable by public managers. In this paper we illustrate the different difficulties inherent to soil erosion mapping, taking an example in different catchments of the Loire valley in France and present possible options to the spatial integration of both temporal and spatial variations in erosion risk.
Scott, Glenn R.
1972-01-01
Lake Minnequa lies in a poorly drained broad upland buried valley west of the valley of Salt Creek. Immediately north of Lake Minnequa the buried valley is sharply constricted in sees. 11 and 12, T. 21 S., R. 65 W., where it is entrenched in a buried ridge of bedrock (see geologic map). The bedrock throughout the buried valley is composed of calcareous shale, limestone, and chalk of the Smoky Hill Shale Member of the Niobrara Formation. These beds are relatively impermeable to the flow of ground water, but contribute large quantities of sodium sulfate to both the surface and ground water.
Omura, Yoshiaki; Nihrane, Abdallah; Lu, Dominic; Jones, Marilyn K; Shimotsuura, Yasuhiro; Ohki, Motomu
2015-01-01
Frequently, we cannot find any significant visible changes when somebody lies, but we found there are significant invisible changes appearing in specific areas of the face when somebody lies and their location often depends on whether the lie is serious with or without physical violence involvement. These abnormalities were detected non-invasively at areas: 1) lobules and c) a small round area of each upper lateral side of forehead; 2) the skin between the base of the 2 orifices of the nose and the upper end of upper lip and 3) Alae of both sides of nose. These invisible significant changes usually last less than 15 seconds after telling a lie. In these areas, Bi-Digital O-Ring Test (BDORT), which received a U.S. Patent in 1993, became significantly weak with an abnormal value of (-)7 and TXB2, measured non-invasively, was increased from 0.125-0.5ng to 12.5-15ng (within the first 5 seconds) and then went back down to less than 1ng (after 15 seconds). These unique changes can be documented semi-permanently by taking photographs of the face of people who tell a lie, within as short as 10 seconds after saying a lying statement. These abnormal responses appear in one or more of the above-mentioned 3 areas 1), 2) & 3). At least one abnormal pupil with BDORT of (-)8-(-)12 & marked reduction in Acetylcholine and abnormal increase in any of 3 Alzheimer's disease associated factors Apolipoprotein (Apo) E4, β-Amyloid (1-42), Tau protein, viral and bacterial infections were detected in both pupils and forehead of murderers and people who often have problems with others. Analysis of well-known typical examples of recent mass murderers was presented as examples. Using these findings, potential murderers and people who are very likely to develop problems with others can be screened within 5-10 minutes by examining their facial photographs and signatures before school admission or employment.
NASA Astrophysics Data System (ADS)
Stormoen, Martin Austin; Slagstad, Trond; Henderson, Iain
2014-05-01
The Knaben area, known for its molybdenite mining, defines a N-S striking (~30 degrees dip towards the east) belt, consisting of porphyry granite with a varying density of amphibolite and varieties of deformed granite, lying within the Sirdal Magmatic Belt, is important for understanding the emplacement- and deformation mechanisms of the batholith. Detailed geological mapping combined with geochronology, geochemistry, and structural geology will be the focus areas. Last autumn's fieldwork indicated that several of the formerly mapped enclaves of amphibolite and deformed granite are more coherent then previously indicated, and some have been followed for a few kilometres. Several varieties of granite make up the area, mainly a dominating red porphyry granite, and a grey molybdenite-bearing finer grained granite. Structural investigations revealed consistent "top to the west" compressional kinematics on mappable shear zone networks often displaying west-directed duplex geometries. The Knaben area could possibly comprise a boundary between two individual plutons in the Sirdal Magmatic Belt, or a zone with remaining host rock. Geochronology of the eastern and western plutons will be done. Currently, largely different paleomagnetic vectors of the eastern and western porphyry granites indicate that they are separate plutons. Exploring how the emplacement- and deformation mechanisms have acted and are related, will be one of the main objectives. If the deformed granite is host rock, or syn- to post-magmatic deformed porphyry granite has been one of the major questions. A better understanding of the formation of the Knaben area, also regarding the emplacement of molybdenite, will prove useful for understanding the regional batholith, and possibly the possibility for molybdenite to occur elsewhere. The Sirdal Magmatic Belt, and also Knaben, seem to be of great value for studying magmatic processes.
Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.
2014-01-01
The Weka Dur gold deposit lies in a cluster of other gold deposits in Badakhshan Province (Ragh district), such as the Kadar, Nesheb Dur, and Rishaw gold occurrences. These gold occurrences lie within a zone of late Hercynian folding and are most likely related to fluids that originated from orogenic processes. The Weka Dur deposit is the largest recorded gold occurrence in Afghanistan and is hosted in Proterozoic mica schist and amphibolite that is intruded by diabase dikes and other intrusive rocks. The tabular orebody is 350 meters (m) long and 2 m wide and can be traced downdip for 110 m. Mineralization consists of ochreous, brecciated schists containing high gold concentrations along gently and steeply dipping fissures. The brecciated rocks grade to 46.7 grams per ton (g/t) silver and contain arsenopyrite, galena, chalcopyrite, and scheelite. Trenches and adits were constructed, mapped, and sampled during the 1960s. Calculated resources are 958.3 kilograms of gold, averaging 4.1 g/t gold.
Singh, S; Modi, S; Bagga, D; Kaur, P; Shankar, L R; Khushu, S
2013-03-01
The present study aimed to investigate whether brain morphological differences exist between adult hypothyroid subjects and age-matched controls using voxel-based morphometry (VBM) with diffeomorphic anatomic registration via an exponentiated lie algebra algorithm (DARTEL) approach. High-resolution structural magnetic resonance images were taken in ten healthy controls and ten hypothyroid subjects. The analysis was conducted using statistical parametric mapping. The VBM study revealed a reduction in grey matter volume in the left postcentral gyrus and cerebellum of hypothyroid subjects compared to controls. A significant reduction in white matter volume was also found in the cerebellum, right inferior and middle frontal gyrus, right precentral gyrus, right inferior occipital gyrus and right temporal gyrus of hypothyroid patients compared to healthy controls. Moreover, no meaningful cluster for greater grey or white matter volume was obtained in hypothyroid subjects compared to controls. Our study is the first VBM study of hypothyroidism in an adult population and suggests that, compared to controls, this disorder is associated with differences in brain morphology in areas corresponding to known functional deficits in attention, language, motor speed, visuospatial processing and memory in hypothyroidism. © 2012 British Society for Neuroendocrinology.
1990-12-08
Range : 50,000 miles This multispectral map of Australia, and surrounding seas was obtained by the Galileo spacecraft's Near Infrared Mapping Spectrometer shortly after closest approach. The image shows various ocean, land and atmospheric cloud features as they appear in three of the 408 infrared colors or wavelengths sensed by the instrument. The wavelength of 0.873 micron, represented as blue in the photo, shows regions of enhanced liquid water absorption, i.e. the Pacific and Indian oceans. The 0.984-micron band, represented as red, shows areas of enhanced ground reflection as on the Australian continent. This wavelength is also s ensitive to the reflectivity of relatively thick clouds. The 0.939-micron wavelength, shown as green, is a strong water-vapor-absorbing band, and is used to accentuate clouds lying above the strongly absorbing lower atmosphere. When mixed with the red indicator of cloud reflection, the green produces a yellowish hue; this indicates thick clouds. The distinctive purplish color off the northeast coast marks the unusually shallow waters of the Great Barrier Reef and the Coral Sea. Here the blue denoting water absorption combines with the red denoting reflection from coral and surface marine organisms to produce thiss unusual color. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft is a combines mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 micron (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopically analyze atmospheres and surfaces and construct thermal and chemical maps.
Weems, Robert E.; Lewis, William C.; Lemon, Earl M.
2014-01-01
This map portrays the surface and shallow subsurface geology of the greater Charleston, S.C. region east of 80°30′ west and south of 33°15′ north. The region covers the entirety of Charleston County and portions of Berkeley, Colleton, Dorchester, and Georgetown Counties. Units locally exposed at the surface range in age from middle Eocene to Holocene, but most of the area is covered by Quaternary interglacial deposits. These are, from oldest to youngest, the Okefenokee, Waccamaw(?), Penholoway, Ladson, Ten Mile Hill, and Wando Formations and the Silver Bluff beds. Two cross sections, one running southeast from Harleyville to the coastline on James Island and the other running along the coastal barrier islands from the town of Edisto Beach to the northeast end of Bull Island at the southwest edge of Bull Bay, portray the complex geometry of the Paleogene and Neogene marine units that directly lie beneath the Quaternary units. These older units include the Santee Limestone, Tupelo Bay, Parkers Ferry, Ashley, Chandler Bridge, Edisto, Parachucla, and Marks Head Formations, the Goose Creek Limestone, and the Raysor Formation. The estimated locations of deeply buried active basement faults are shown which are responsible for ongoing modern seismicity in the Charleston, S.C. area.
Planning Assistance for the Town of Hamburg, County of Erie, New York, Hoover Beach.
1979-12-01
area, creating swale areas which restrict overland flow into the storm drainage system . This low-lying area of the Mid Shore section also experiences...attack. The flood problems in the Mid Shore area are primarily caused by an inade- quate storm drainage system and ill-advised filling of low-lying arehs...by residents. These problems can be significantly reduced and possibly elimi- nated by improvements to the storm drainage system . Providing adequate
Geologic Map of Wupatki National Monument and Vicinity, Coconino County, Northern Arizona
Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.
2007-01-01
Introduction The geologic map of Wupatki National Monument is a cooperative effort between the U.S. Geological Survey, the National Park Service, and the Navajo Nation to provide geologic information for resource management officials of the National Park Service, U.S. Forest Service, Navajo Indian Reservation (herein the Navajo Nation), and visitor information services at Wupatki National Monument, Arizona. Funding for the map was provided in part by the Water Rights Branch of the Water Resources Division of the National Park Service. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928)-871-6587. Wupatki National Monument lies within the USGS 1:24,000-scale Wupatki NE, Wupatki SE, Wupatki SW, Gray Mountain, East of SP Mountain, and Campbell Francis Wash quadrangles in northern Arizona. The map is bounded approximately by longitudes 111? 16' to 111? 32' 30' W. and latitudes 35? 30' to 35? 37' 40' N. The map area is in Coconino County on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into three physiographic parts, the Coconino Plateau, the Little Colorado River Valley, and the San Francisco Volcanic Field as defined by Billingsley and others (1997) [fig. 1]. Elevations range from 4,220 ft (1,286 m) at the Little Colorado River near the northeast corner of the map area to about 6,100 ft (1,859 m) at the southwest corner of the map area. The small community of Gray Mountain is about 16 mi (26 km) northwest of Wupatki National Monument Visitor Center, and Flagstaff, Arizona, the nearest metropolitan area, is about 24 mi (38 km) southwest of the Visitor Center (fig. 1). U.S. Highway 89 provides access to the west entrance of Wupatki National Monument. A paved Coconino County road provides a loop from Wupatki National Monument south to Sunset Crater National Monument and back to U.S. Highway 89 about 10 mi (16 km) north of Flagstaff, Arizona. Access to Coconino National Forest is via dirt roads maintained by the National Forest Service. Several unimproved dirt roads on Babbitt Ranch lands provide limited access to remote areas north of Wupatki National Monument. Travel is mostly restricted to paved roads within Wupatki National Monument, and a dirt road that crosses the Little Colorado River provides access to the Navajo Nation area east and northeast of the Little Colorado River. The Little Colorado River crossing is not bridged and can be impassable when the river is flowing. Four-wheel-drive vehicles are recommended but not necessary for travel in remote parts of the Navajo Nation. Extra food and water are highly recommended for travel in this sandy area. Land ownership north of Wupatki National Monument forms a checkerboard pattern between private and State land. Coconino National Forest manages lands south of Wupatki National Monument and the National Park Service manages Wupatki National Monument. The Leupp and Tolani Lake Chapters of the Navajo Nation manage the area northeast and east of the Little Colorado River (see land management boundaries on map). The geologic map of Wupatki National Monument provides updated geologic framework information for this part of the Colorado Plateau. The geologic information supports Federal, State, and private land managers when conducting geologic, biologic, and hydrologic investigations and will support future and ongoing geologic and associated scientific investigations of all disciplines within the Wupatki National Monument area.
Assessments on landslide susceptibility in the Tseng-wen reservoir watershed, Taiwan
NASA Astrophysics Data System (ADS)
Chen, Yu-Chin; Chen, Yung-Chau; Chen, Wen-Fu
2014-05-01
Typhoon Morakot under the strong influence of southwestern monsoon wind struck Taiwan on 8 August 2009, and dumped record-breaking rains in southern Taiwan. It triggered enormous landslides in mountains and severe flooding in low-lying areas. In addition, it destroyed or damaged houses, agricultural fields, roads, bridges, and other infrastructure facilities, causing massive economic loss and, more tragically, human casualties. In order to evaluate landslide hazard and risk assessment, it is important to understand the potential sites of landslide and their spatial distribution. Multi-temporal satellite images and geo-spatial data are used to build landslide susceptibility map for the post-disaster in the Tseng-wen reservoir watershed in this research. Elevation, slope, aspect, NDVI (normalized differential vegetation index), relief, roughness, distance to river, and distance to road are the considered factors for estimating landslide susceptibility. Maximum hourly rainfall and total rainfall, accompanied with typhoon event, are selected as the trigger factors of landslide events. Logistic regression analysis is adopted as the statistical method to model landslide susceptibility. The assessed susceptibility is represented in 4 levels which are high, high-intermediate, intermediate, and low level, respectively. Landslide spatial distribution can be depicted as a landslide susceptibility map with respect to each considered influence factors for a specified susceptible level. The landslide areas are about 358 ha and 1,485 ha before and after typhoon Morakot. The new landslide area, induced by typhoon Morakot, is as almost 4 times as the landslide area before typhoon Morakot. In addition, there is about 44.56% landslide area elevation ranging from 500m to 1000m and about 57.22% average slope ranging from 30° to 45° of landslide area. Furthermore, the devastating landslides were happened at those sites close to rivers, exposed area, and area with big land cover change (high human development). Among considered factors, slope, distance to river, NDVI, and maximum hourly rainfall are the major influence factors for landslide susceptibility. The results show that the accuracy of predicted landslide area is 74.74% and AUC is 0.82 corresponding to typhoon Morakot. Comparing model predicted with actual landslide areas, it shows that the predicted accuracy is 93% for high or high-intermediate level landslide area. It suggests that a landslide susceptibility map, depicted by this assessment model, is applicable on landslide prediction.
Molecular Mapping of the ROSY Locus in DROSOPHILA MELANOGASTER
Coté, Babette; Bender, Welcome; Curtis, Daniel; Chovnick, Arthur
1986-01-01
The DNA from the chromosomal region of the Drosophila rosy locus has been examined in 83 rosy mutant strains. Several spontaneous and radiation-induced alleles were associated with insertions and deletions, respectively. The lesions are clustered in a 4-kb region. Some of the alleles identified on the DNA map have been located on the genetic map by fine-structure recombination experiments. The genetic and molecular maps are collinear, and the alignment identifies the DNA location of the rosy control region. A rosy RNA of 4.5 kb has been identified; its 5' end lies in or near the control region. PMID:2420682
2016-04-19
A sky map taken by NASA Wide-field Infrared Survey Explorer, or WISE, shows the location of the TW Hydrae family, or association, of stars, which lies about 175 light-years from Earth and is centered in the Hydra constellation.
Hypersurface-deformation algebroids and effective spacetime models
NASA Astrophysics Data System (ADS)
Bojowald, Martin; Büyükçam, Umut; Brahma, Suddhasattwa; D'Ambrosio, Fabio
2016-11-01
In canonical gravity, covariance is implemented by brackets of hypersurface-deformation generators forming a Lie algebroid. Lie-algebroid morphisms, therefore, allow one to relate different versions of the brackets that correspond to the same spacetime structure. An application to examples of modified brackets found mainly in models of loop quantum gravity can, in some cases, map the spacetime structure back to the classical Riemannian form after a field redefinition. For one type of quantum corrections (holonomies), signature change appears to be a generic feature of effective spacetime, and it is shown here to be a new quantum spacetime phenomenon which cannot be mapped to an equivalent classical structure. In low-curvature regimes, our constructions not only prove the existence of classical spacetime structures assumed elsewhere in models of loop quantum cosmology, they also show the existence of additional quantum corrections that have not always been included.
Potential inundated coastal area estimation in Shanghai with multi-platform SAR and altimetry data
NASA Astrophysics Data System (ADS)
Ma, Guanyu; Yang, Tianliang; Zhao, Qing; Kubanek, Julia; Pepe, Antonio; Dong, Hongbin; Sun, Zhibin
2017-09-01
As global warming problem is becoming serious in recent decades, the global sea level is continuously rising. This will cause damages to the coastal deltas with the characteristics of low-lying land, dense population, and developed economy. Continuously reclamation costal intertidal and wetland areas are making Shanghai, the mega city of Yangtze River Delta, more vulnerable to sea level rise. In this paper, we investigate the land subsidence temporal evolution of patterns and processes on a stretch of muddy coast located between the Yangtze River Estuary and Hangzou Bay with differential synthetic aperture radar interferometry (DInSAR) analyses. By exploiting a set of 31 SAR images acquired by the ENVISAT/ASAR from February 2007 to May 2010 and a set of 48 SAR images acquired by the COSMO-SkyMed (CSK) sensors from December 2013 to March 2016, coherent point targets as long as land subsidence velocity maps and time series are identified by using the Small Baseline Subset (SBAS) algorithm. With the DInSAR constrained land subsidence model, we predict the land subsidence trend and the expected cumulative subsidence in 2020, 2025 and 2030. Meanwhile, we used altimetrydata and densely distributed in the coastal region are identified (EEMD) algorithm to obtain the average sea level rise rate in the East China Sea. With the land subsidence predictions, sea level rise predictions, and high-precision digital elevation model (DEM), we analyze the combined risk of land subsidence and sea level rise on the coastal areas of Shanghai. The potential inundated areas are mapped under different scenarios.
Felger, Tracey J.; Miller, David; Langenheim, Victoria; Fleck, Robert J.
2016-01-01
The Kelton Pass SE and Monument Peak SW 7.5' quadrangles are located in Box Elder County, northwestern Utah (figure 1; plate 1). The northern boundary of the map area is 8.5 miles (13.7 km) south of the Utah-Idaho border, and the southern boundary reaches the edge of mud flats at the north end of Great Salt Lake. Elevations range from 4218 feet (1286 m) along the mud flats to 5078 feet (1548 m) in the Wildcat Hills. Deep Creek forms a prominent drainage between the Wildcat Hills and Cedar Hill. The closest towns are the ranching communities of Snowville, Utah (10 miles [16 km] to the northeast) (figure 1), and Park Valley, Utah (10 miles [16 km] to the west).The Kelton Pass SE and Monument Peak SW 7.5' quadrangles are located entirely within southern Curlew Valley, which drains south into Great Salt Lake, and extends north of the area shown on figure 1 into Idaho. Curlew Valley is bounded on the west by the Raft River Mountains and on the east by the Hansel Mountains (figure 1). Sedimentary and volcanic bedrock exposures within the quadrangles form the Wildcat Hills, Cedar Hill, and informally named Middle Shield (figure 1). Exposed rocks and deposits are Permian to Holocene in age, and include the Permian quartz sandstone and orthoquartzite of the Oquirrh Formation (Pos), tuffaceous sedimentary rocks of the Miocene Salt Lake Formation (Ts), Pliocene basaltic lava flows (Tb) and dacite (Tdw), Pleistocene rhyolite (Qrw) and basalt (Qb), and Pleistocene and Holocene surficial deposits of alluvial, lacustrine, and eolian origin. Structurally, the map area is situated in the northeastern Basin and Range Province, and is inferred to lie within the hanging wall of the late Miocene detachment faults exposed in the Raft River Mountains to the northwest (e.g., Wells, 1992, 2009; figure 1).This mapping project was undertaken to produce a comprehensive, large-scale geologic map of the Wildcat Hills, as well as to improve understanding of the volcanic and tectonic evolution of southern Curlew Valley. The resultant publication includes a geologic map of the Kelton Pass SE and Monument Peak SW quadrangles (plate 1), two interpretive geologic cross sections (plate 2), new geophysical data and interpretations, and new geochronology data for volcanic units within and near the quadrangles.
Depth-to-Ice Map of an Arctic Site on Mars
NASA Technical Reports Server (NTRS)
2007-01-01
Color coding in this map of a far-northern site on Mars indicates the change in nighttime ground-surface temperature between summer and fall. This site, like most of high-latitude Mars, has water ice mixed with soil near the surface. The ice is probably in a rock-hard frozen layer beneath a few centimeters or inches of looser, dry soil. The amount of temperature change at the surface likely corresponds to how close to the surface the icy material lies. The dense, icy layer retains heat better than the looser soil above it, so where the icy layer is closer to the surface, the surface temperature changes more slowly than where the icy layer is buried deeper. On the map, areas of the surface that cooled more slowly between summer and autumn (interpreted as having the ice closer to the surface) are coded blue and green. Areas that cooled more quickly (interpreted as having more distance to the ice) are coded red and yellow. The depth to the top of the icy layer estimated from these observations, as little as 5 centimeters (2 inches), matches modeling of where it would be if Mars has an active cycle of water being exchanged by diffusion between atmospheric water vapor and subsurface water ice. This map and its interpretation are in a May 3, 2007, report in the journal Nature by Joshua Bandfield of Arizona State University, Tempe. The Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter collected the data presented in the map. The site is centered near 67.5 degrees north latitude, 132 degrees east longitude, in the Martian arctic plains called Vastitas Borealis. It was formerly a candidate landing site for NASA's Phoenix Mars Lander mission. This site is within the portion of the planet where, in 2002, the Gamma Ray Spectrometer suite of instruments on Mars Odyssey found evidence for water ice lying just below the surface. The information from the Gamma Ray Spectrometer is averaged over patches of ground hundreds of kilometers or miles wide. The information from the Thermal Emission Imaging System allows more than 100-fold higher resolution in mapping variations in the depth to ice. The Thermal Emission Imaging System observed the site in infrared wavelengths during night time, providing surface-temperature information, once on March 13, 2005, during summer in Mars' northern hemisphere, and again on April 8, 2005, during autumn there. The colors on this map signify relative differences in how much the surface temperature changed between those two observations. Blue indicates the locations with the least change. Red indicates areas with most change. Modeling provides estimates that the range of temperature changes shown in this map corresponds to a range in depth-to-ice of 5 centimeters (2 inches) to more than 18 centimeters (more than 7 inches). The sensitivity of this method for estimating the depth is not good for depths greater than about 20 centimeters (8 inches). The temperature-change data are overlaid on a mosaic of black-and-white, daytime images taken in visible-light wavelengths by the same camera, providing information about shapes in the landscape. The 10-kilometer scale bar is 6.2 miles long. NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Science Mission Directorate, Washington, D.C. The Thermal Emission Imaging System was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Space Systems, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Relationship Between Topography and the Eastern Equatorial Hydrogen Signal on Mars
NASA Astrophysics Data System (ADS)
Clevy, J. R.; Elphic, R. C.; Feldman, W. C.; Kattenhorn, S. A.
2005-12-01
Epithermal neutron flux data received from the Neutron Spectrometer, part of the Gamma Ray Spectrometer suite on board NASA's Mars Odyssey, indicates elevated equatorial hydrogen deposits partially encircle the Schiaparelli Basin. Deconvolution of the hydrogen signal statistically increased the resolution over the spectrometer's original 600 km footprint. The resulting map of hydrogen concentrations was further refined by ignoring all data <8.9% Water Equivalent Hydrogen (WEH). In so doing, this study provides the most detailed map to date of the hydrogen concentration maxima in this region and serves as a guide for future exploration. Projecting the Eastern Equatorial Hydrogen map onto the digital elevation model for the Schiaparelli Basin reveals several areas of interest. For simplification, these areas are identified by clock position relative to Schiaparelli. At the twelve o'clock position, a maximum exceeding 10% WEH occupies the upper, northern slope of a saddle between Henry Crater and unnamed craters west of Henry. Viking images of the nameless craters demonstrate wind streaks from the north veer to the southwest here, following topography. Surface drainage channels are apparent on the slope below the local WEH maximum. The 2:30 maximum lies over Tuscaloosa Crater and Verde Vallis. This >10% WEH maximum has the greatest aerial extent, roughly 200 km in diameter. At 5 o'clock, the fringing range adjacent to Brazos Valles lies within the surficially dark region called Sinus Sabaeus. It should be noted that projection of the albedo map over the terrain reveals dark grains concentrating in low areas, presumably having moved short distances by wind and gravity. The absence or presence of these grains does not seem to affect the measured WEH concentration as the signal's local maximum, about 10.2%, crosses areas of high and low albedo without an increase or decrease in signal strength. At 6 o'clock, two 10.4% WEH maxima line the north-facing slope of another mountain range. Both maxima are elongated, east to west. The maximum at the top of the peak overlaps the cirque-like bowl of an unnamed, degraded crater. Below the collapsed north wall of this crater sits another maximum, 100 km long by 50 km wide. The eastern end of this lower maximum contains a crater with a 6 km wide, 40 km long drainage channel leading out of the crater and down the slope toward Schiaparelli. The final WEH maximum, at 6:30, is 150 km wide by 180 km long and is centered over Evros Vallis. The maximum extends beyond Sabaeus into Noachis Terra without visibly increasing or decreasing at the albedo boundary. From this study it is clear that albedo features do not control the hydrogen signal. WEH concentrations were found both within and outside Sabaeus. It is also apparent that drainage channels are present near each maximum. This proximity may implicate areas of high WEH as the source of channel-carving fluids. Finally, WEH is not tied to a specific stratigraphic layer. The locations of the maxima can be grouped into north-facing slopes, both peaks and saddles, and broad plains containing well-developed drainage systems flowing away from the WEH maxima. The former could indicate up-slope orographic deposition of hydrogen in the form of water ice as air masses rise and cool, preferentially coating north-facing slopes. High signals in low plains may be related to subsequent drainage when temperatures were warm enough to permit flow without immediate sublimation.
Cox, Caitriona L; Fritz, Zoe
2016-10-01
In modern practice, doctors who outright lie to their patients are often condemned, yet those who employ non-lying deceptions tend to be judged less critically. Some areas of non-disclosure have recently been challenged: not telling patients about resuscitation decisions; inadequately informing patients about risks of alternative procedures and withholding information about medical errors. Despite this, there remain many areas of clinical practice where non-disclosures of information are accepted, where lies about such information would not be. Using illustrative hypothetical situations, all based on common clinical practice, we explore the extent to which we should consider other deceptive practices in medicine to be morally equivalent to lying. We suggest that there is no significant moral difference between lying to a patient and intentionally withholding relevant information: non-disclosures could be subjected to Bok's 'Test of Publicity' to assess permissibility in the same way that lies are. The moral equivalence of lying and relevant non-disclosure is particularly compelling when the agent's motivations, and the consequences of the actions (from the patient's perspectives), are the same. We conclude that it is arbitrary to claim that there is anything inherently worse about lying to a patient to mislead them than intentionally deceiving them using other methods, such as euphemism or non-disclosure. We should question our intuition that non-lying deceptive practices in clinical practice are more permissible and should thus subject non-disclosures to the same scrutiny we afford to lies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Life on the Edge of Chaos: Orbital Mechanics and Symplectic Integration
NASA Astrophysics Data System (ADS)
Newman, William I.; Hyman, James M.
1998-09-01
Symplectic mapping techniques have become very popular among celestial mechanicians and molecular dynamicists. The word "symplectic" was coined by Hermann Weyl (1939), exploiting the Greek root for a word meaning "complex," to describe a Lie group with special geometric properties. A symplectic integration method is one whose time-derivative satisfies Hamilton's equations of motion (Goldstein, 1980). When due care is paid to the standard computational triad of consistency, accuracy, and stability, a numerical method that is also symplectic offers some potential advantages. Varadarajan (1974) at UCLA was the first to formally explore, for a very restrictive class of problems, the geometric implications of symplectic splittings through the use of Lie series and group representations. Over the years, however, a "mythology" has emerged regarding the nature of symplectic mappings and what features are preserved. Some of these myths have already been shattered by the computational mathematics community. These results, together with new ones we present here for the first time, show where important pitfalls and misconceptions reside. These misconceptions include that: (a) symplectic maps preserve conserved quantities like the energy; (b) symplectic maps are equivalent to the exact computation of the trajectory of a nearby, time-independent Hamiltonian; (c) complicated splitting methods (i.e., "maps in composition") are not symplectic; (d) symplectic maps preserve the geometry associated with separatrices and homoclinic points; and (e) symplectic maps possess artificial resonances at triple and quadruple frequencies. We verify, nevertheless, that using symplectic methods together with traditional safeguards, e.g. convergence and scaling checks using reduced step sizes for integration schemes of sufficient order, can provide an important exploratory and development tool for Solar System applications.
NASA Astrophysics Data System (ADS)
Loye, A.; Jaboyedoff, M.; Pedrazzini, A.
2009-10-01
The availability of high resolution Digital Elevation Models (DEM) at a regional scale enables the analysis of topography with high levels of detail. Hence, a DEM-based geomorphometric approach becomes more accurate for detecting potential rockfall sources. Potential rockfall source areas are identified according to the slope angle distribution deduced from high resolution DEM crossed with other information extracted from geological and topographic maps in GIS format. The slope angle distribution can be decomposed in several Gaussian distributions that can be considered as characteristic of morphological units: rock cliffs, steep slopes, footslopes and plains. A terrain is considered as potential rockfall sources when their slope angles lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit "Rock cliffs" become dominant over the one of "Steep slopes". In addition to this analysis, the cliff outcrops indicated by the topographic maps were added. They contain however "flat areas", so that only the slope angles values above the mode of the Gaussian distribution of the morphological unit "Steep slopes" were considered. An application of this method is presented over the entire Canton of Vaud (3200 km2), Switzerland. The results were compared with rockfall sources observed on the field and orthophotos analysis in order to validate the method. Finally, the influence of the cell size of the DEM is inspected by applying the methodology over six different DEM resolutions.
Towards a Global Land Subsidence Map
NASA Astrophysics Data System (ADS)
Erkens, G.; Kooi, H.; Sutanudjaja, E.
2017-12-01
Land subsidence is a global problem, but a global land subsidence map is not available yet. Such map is crucial to raise global awareness of land subsidence, as land subsidence causes extensive damage (probably in the order of billions of dollars annually). Insights in the rates of subsidence are particularly relevant for low lying deltas and coastal zones, for which any further loss in elevation is unwanted. With the global land subsidence map relative sea level rise predictions may be improved, contributing to global flood risk calculations. In this contribution, we discuss the approach and progress we have made so far in making a global land subsidence map. The first results will be presented and discussed, and we give an outlook on the work needed to derive a global land subsidence map.
Geology of the Cane Branch and Helton Branch watershed areas, McCreary County, Kentucky
Lyons, Erwin J.
1957-01-01
Cane Branch and Helton Branch in McCreary County, Kentucky, are about 1.4 miles apart (fig. 1). Can Branch, which is about 2.1 miles long, emptied into Hughes Fork of Beaver Creek. Its watershed area of about 1.5 square miles lies largely in the Wiborf 7 1/2-minute quadrangle (SW/4 Cumberland Falls 15-minute quadrangle), but the downstream part of the area extends northward into the Hail 7 1/2-minute quadrangle (NW/4 Cumberland Falls 15-minute quadrangle). Helton Branch, which is about 1.1 miles long, has two tributaries and empties into Little Hurricane Fork of Beaver Creek. It drains an area of about 0.8 square mile of while about 0.5 square mile is in the Hail quadrangle and the remainder in the Wilborg quadrangle. The total relief in the Can Branch area is about 500 feet and in the Helton Branch area about 400 feet. Narrow, steep-sided to canyon-like valley and winding ridges, typical of the Pottsville escarpment region, are characteristic of both areas. Thick woods and dense undergrowth cover much of the two areas. Field mapping was done on U.S. Geological Survey 7 1/2-minute maps having a scale of 1:24,000 and a contour interval of 20 feet. Elevations of lithologic contacts were determined with a barometer and a hand level. Aerial photographs were used principally to trace the cliffs formed by sandstone and conglomerate ledges. Exposures, except for those of the cliff- and ledge-forming sandstone and conglomerates, are not abundant. The most complete stratigraphic sections (secs. 3 and 4, fig. 2) in the two areas are exposed in cuts of newly completed Forest Service roads, but the rick in the upper parts of the exposures is weathered. To supplement these sections, additional sections were measured in cuts along the railroad and main highways in nor near the watersheds.
Dam failure analysis for the Lago de Matrullas Dam, Orocovis, Puerto Rico
Torres-Sierra, Heriberto; Gómez-Fragoso, Julieta
2015-01-01
Results from the simulated dam failure of the Lago de Matrullas Dam using the HEC–RAS model for the 6- and 24-hour PMP events showed peak discharges at the dam of 3,149.33 and 3,604.70 m3/s, respectively. Dam failure during the 100-year-recurrence, 24-hour rainfall event resulted in a peak discharge of 2,103.12 m3/s directly downstream from the dam. Dam failure under sunny day conditions produced a peak discharge of 1,695.91 m3/s at the dam assuming the antecedent lake level was at the morning-glory spillway invert elevation. Flood-inundation maps prepared as part of the study depict the flood extent and provide valuable information for preparing an Emergency Action Plan. Results of the failure analysis indicate that a failure of the Lago de Matrullas Dam could cause flooding to many of the inhabited areas along stream banks from the Lago de Matrullas Dam to the mouth of the Río Grande de Manatí. Among the areas most affected are the low-lying regions in the vicinity of the towns of Ciales, Manatí, and Barceloneta. The delineation of the flood boundaries near the town of Barceloneta considered the effects of a levee constructed during 2000 at Barceloneta in the flood plain of the Río Grande de Manatí to provide protection against flooding to the near-by low-lying populated areas. The results showed overtopping can be expected in the aforementioned levee during 6- and 24-hour probable-maximum-precipitation dam failure scenarios. No overtopping of the levee was simulated, however, during dam failure scenarios under the 100-year recurrence, 24-hour rainfall event or sunny day conditions.
NASA Astrophysics Data System (ADS)
Koppad, A. G.; Janagoudar, B. S.
2017-10-01
The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.
Spatial variation of radon and helium in soil gas vis-à-vis geology of area, NW Himalayas, India
NASA Astrophysics Data System (ADS)
Mahajan, S.; Bajwa, B.; Kumar, A.; Singh, S.; Walia, V.; Yang, T. F.
2009-12-01
In an effort to quantify the geological/lithological control on radon, helium soil gas potential and appraise the use of soil gas technique as a geological mapping tool, soil gas measurements were made, in some parts of Himachal Himalayas of NW Himalayan range, using soil gas grab sampling technique. More than 360 soil gas samples were collected from four different geological/lithologic rock units of the area under consideration. The collected soil gas samples were analyzed for radon and helium using RTM-2100 (SARAD) and Helium leak detector (ALCATEL) respectively. The observed values were then correlated with the geology/lithology of the study area. The study area is broadly divided into four different units on the basis of geology/lithology i.e. (A) Upper Shiwaliks (B) Middle & Lower Shiwaliks (C) Lesser Himalayan rocks (D) Higher Himalayan rocks. Significant differences in the soil gas concentrations among the geologic units were observed, where Lesser Himalayan rocks showing maximum concentrations of both radon (254 KBq/m3) and helium (5.46 ppm). Lesser Himalayan zone lies mainly between two major thrusts MBT and MCT running along the Himalayan trend, which still are tectonically active. It can be concluded from the present study that soil gases (radon and helium) can be used as a productive tool for geological mapping. These findings may have very important connation for health risk assessment of the area, since it has been shown that radon soil gas found in soils overlying basement rocks are the main source for indoor radon concentrations. Radioactive isotopes attach rapidly to atmospheric aerosols and can enter into a human body thus constitute significant hazard to human health.
An Ontology-Based Reasoning Framework for Querying Satellite Images for Disaster Monitoring.
Alirezaie, Marjan; Kiselev, Andrey; Längkvist, Martin; Klügl, Franziska; Loutfi, Amy
2017-11-05
This paper presents a framework in which satellite images are classified and augmented with additional semantic information to enable queries about what can be found on the map at a particular location, but also about paths that can be taken. This is achieved by a reasoning framework based on qualitative spatial reasoning that is able to find answers to high level queries that may vary on the current situation. This framework called SemCityMap, provides the full pipeline from enriching the raw image data with rudimentary labels to the integration of a knowledge representation and reasoning methods to user interfaces for high level querying. To illustrate the utility of SemCityMap in a disaster scenario, we use an urban environment-central Stockholm-in combination with a flood simulation. We show that the system provides useful answers to high-level queries also with respect to the current flood status. Examples of such queries concern path planning for vehicles or retrieval of safe regions such as "find all regions close to schools and far from the flooded area". The particular advantage of our approach lies in the fact that ontological information and reasoning is explicitly integrated so that queries can be formulated in a natural way using concepts on appropriate level of abstraction, including additional constraints.
Ablating Atrial Fibrillation: Customizing Lesion Sets Guided by Rotor Mapping
Zaman, Junaid A. B.; Narayan, Sanjiv M.
2015-01-01
Ablation occupies an increasing role in the contemporary management of atrial fibrillation (AF), but results are suboptimal, particularly for persistent AF. While an anatomic approach to ablation is a highly efficacious and safe method to isolate pulmonary vein (PV) triggers, recurrence of AF is not always associated with PV reconnection, and there is compelling evidence that non-PV sites sustain AF after it is triggered. Recent developments in wide-area mapping and signal processing now identify rotors in the vast majority of AF patients that sustain AF and whose elimination improves long-term freedom from AF in multicenter studies. Investigators have now demonstrated rotor and focal sources for AF that show many analogous properties between approaches: they lie in spatially reproducible regions temporally over hours to days, and they are amenable to targeted ablation. This review outlines the rationale and technical developments supporting this mechanistic paradigm for human AF, and discusses how rotor mapping may be implemented for individual patient customization of lesion sets. Mechanistic studies are required to explain why rotor elimination (or other ablation approaches) producing long-term elimination of AF may not always terminate AF acutely, how AF correlates with structural changes on magnetic resonance imaging, and how these findings can be integrated clinically with current ablation strategies to improve patient outcomes. PMID:26306123
Ablating Atrial Fibrillation: Customizing Lesion Sets Guided by Rotor Mapping.
Zaman, Junaid A B; Narayan, Sanjiv M
2015-01-01
Ablation occupies an increasing role in the contemporary management of atrial fibrillation (AF), but results are suboptimal, particularly for persistent AF. While an anatomic approach to ablation is a highly efficacious and safe method to isolate pulmonary vein (PV) triggers, recurrence of AF is not always associated with PV reconnection, and there is compelling evidence that non-PV sites sustain AF after it is triggered. Recent developments in wide-area mapping and signal processing now identify rotors in the vast majority of AF patients that sustain AF and whose elimination improves long-term freedom from AF in multicenter studies. Investigators have now demonstrated rotor and focal sources for AF that show many analogous properties between approaches: they lie in spatially reproducible regions temporally over hours to days, and they are amenable to targeted ablation. This review outlines the rationale and technical developments supporting this mechanistic paradigm for human AF, and discusses how rotor mapping may be implemented for individual patient customization of lesion sets. Mechanistic studies are required to explain why rotor elimination (or other ablation approaches) producing long-term elimination of AF may not always terminate AF acutely, how AF correlates with structural changes on magnetic resonance imaging, and how these findings can be integrated clinically with current ablation strategies to improve patient outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang Beom; Dsilva, Carmeline J.; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu
Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration, provide structural information but fail to capture the underlying dynamics of the protein folding process. It is therefore advantageous to adopt a method that can systematically analyze simulation data to extract relevant structural as well as dynamical information. The nonlinear dimensionality reduction technique known as diffusion maps automatically embeds the high-dimensional folding trajectories inmore » a lower-dimensional space from which one can more easily visualize folding pathways, assuming the data lie approximately on a lower-dimensional manifold. The eigenvectors that parametrize the low-dimensional space, furthermore, are determined systematically, rather than chosen heuristically, as is done with phenomenological order parameters. We demonstrate that diffusion maps can effectively characterize the folding process of a Trp-cage miniprotein. By embedding molecular dynamics simulation trajectories of Trp-cage folding in diffusion maps space, we identify two folding pathways and intermediate structures that are consistent with the previous studies, demonstrating that this technique can be employed as an effective way of analyzing and constructing protein folding pathways from molecular simulations.« less
Radon Risk Communication Strategies: A Regional Story.
Cheng, Winnie
2016-01-01
Risk communication on the health effects of radon encounters many challenges and requires a variety of risk communication strategies and approaches. The concern over radon exposure and its health effects may vary according to people's level of knowledge and receptivity. Homeowners in radon-prone areas are usually more informed and have greater concern over those not living in radon-prone areas. The latter group is often found to be resistant to testing. In British Columbia as well as many other parts of the country, some homes have been lying outside of the radon-prone areas have radon levels above the Canadian guideline, which is the reason Health Canada recommends that all homes should be tested. Over the last five years, the Environment Health Program (EHP) of Health Canada in the British Columbia region has been using a variety of different approaches in their radon risk communications through social media, workshops, webinars, public forums, poster contests, radon distribution maps, public inquiries, tradeshows and conference events, and partnership with different jurisdictions and nongovernmental organizations. The valuable lessons learned from these approaches are discussed in this special report.
Developing a GIS based integrated approach to flood management in Trinidad, West Indies.
Ramlal, Bheshem; Baban, Serwan M J
2008-09-01
Trinidad and Tobago is plagued with a perennial flooding problem. The higher levels of rainfall in the wet season often lead to extensive flooding in the low-lying areas of the country. This has lead to significant damage to livestock, agricultural produce, homes and businesses particularly in the Caparo River Basin. Clearly, there is a need for developing flood mitigation and management strategies to manage flooding in the areas most affected. This paper utilizes geographic information systems to map the extent of the flooding, estimate soil loss due to erosion and estimate sediment loading in the rivers in the Caparo River Basin. In addition, the project required the development of a watershed management plan and a flood control plan. The results indicate that flooding was caused by several factors including clear cutting of vegetative cover, especially in areas of steep slopes that lead to sediment filled rivers and narrow waterways. Other factors include poor agricultural practices, and uncontrolled development in floodplains. Recommendations to manage floods in the Caparo River Basin have been provided.
Glaciers' 2D and 3D Area Changes in the Central Tianshan during 1989-2015
NASA Astrophysics Data System (ADS)
Chen, H.; Wang, X.
2017-12-01
Most glaciers in China lie in rugged mountainous environments and steep terrains. Common studies investigate glacier's projected area (2D Area) in a two-dimensional plane, which is much smaller than glacier's topographic surface area (3D Area). This study maps glacier outlines in the Central Tianshan Mountains from Landsat images in four periods of 1989, 2002, 2007 and 2015 by an object-based classification approach, compares the glaciers area differences from several resources and analyzes the 2D and 3D area changes in the four periods. This approach shows an accuracy of 86% when it validates by comparison of glaciers outline derived from Landsat and high spatial resolution GeoEye image. Our derived glaciers' clean ice outlines are comparable to those of the 2nd Chinese Glacier Inventory (CGI2), Global Land Ice Measurements from Space (GLIMS), and the European Space Agency GlobCover product (ESA2.3). The ASTER GDEM data are utilized to establish a 3D model and examine glaciers' variations in different aspects, slope zones and elevation bands. Glaciers' 3D surface extents are 30% larger than their 2D planar areas in Central Tianshan. Glaciers' 3D area reduced by 481 km² from 1989 to 2015, being 27.3% larger than their 2D area reduction (378 km²), and most reductions occurred in the elevation bands of 4000-5000 m.
Long-lived structural control of Mt. Shasta's plumbing system illuminated by 40Ar/39Ar geochronology
NASA Astrophysics Data System (ADS)
Calvert, A. T.; Christiansen, R. L.
2013-12-01
Mt. Shasta is the largest stratovolcano in the Cascade Arc, surpassed in volume only by the large rear-arc Medicine Lake and Newberry composite volcanoes. Including the material in the ~350 ka debris avalanche, it has produced more than 500 km3 of andesite and dacite from several superimposed central vents over its 700-850 kyr history. Earlier, between at least 970 to 1170 ka, the Rainbow Mountain volcano of similar composition and size occupied this latitude of the arc ~20 km further east. This shift of magmatic focus from within the arc axis (as defined by 6 Ma and younger calc-alkaline centers) to the arc front is poorly understood, but the current center's location appears structurally controlled. Most identifiable volcanic vents on Mt. Shasta lie within 1 km of a N-S line through the active summit cone. 40Ar/39Ar ages of map units occupying the vent alignment range from the Holocene (5×1 ka) current summit dome to at least the Middle Pleistocene (464×9 ka McKenzie Butte). The vast majority of eruptions have issued from central vents (Sargents Ridge, 300-135 ka; Misery Hill, 100-15 ka; and Hotlum, <10 ka), each 500 to 1000m north of its predecessor. A central vent for the pre-avalanche edifice is impossible to locate precisely, but was possibly on the same N-S trend and certainly no more than 4 km to the west, likely south of the Sargents Ridge central vent. ~15 of ~25 mapped flank vents lie on the alignment and the other ten lie west of the line. No identified volcanic vents lie east of the line until >12 km from Mt. Shasta (Ash Creek Butte, 227 ka; Basalt of McCloud River, 38 ka; The Whaleback, 102 ka), and monogenetic and polygenetic centers further east and northeast. From these observations we infer that: (1) magmas are localized along a ~20 km, long-lived, N-S trending structure running through the summit; (2) the upper crustal structure appears impermeable to magmas and resistant to dikes on its eastern side; (3) the western half of the area beneath the volcano appears substantially weaker, as dikes have fed flank vents 10-20 km from the summit over the history of the volcano; and (4) the orientation of the WNW-directed debris avalanche, coincident with the greatest concentration of flank vents, may indicate either structural weakness or failure following emplacement of a cryptodome similar to the 1980 events at Mt. St. Helens.
Citizen observations contributing to flood modelling: opportunities and challenges
NASA Astrophysics Data System (ADS)
Assumpção, Thaine H.; Popescu, Ioana; Jonoski, Andreja; Solomatine, Dimitri P.
2018-02-01
Citizen contributions to science have been successfully implemented in many fields, and water resources is one of them. Through citizens, it is possible to collect data and obtain a more integrated decision-making process. Specifically, data scarcity has always been an issue in flood modelling, which has been addressed in the last decades by remote sensing and is already being discussed in the citizen science context. With this in mind, this article aims to review the literature on the topic and analyse the opportunities and challenges that lie ahead. The literature on monitoring, mapping and modelling, was evaluated according to the flood-related variable citizens contributed to. Pros and cons of the collection/analysis methods were summarised. Then, pertinent publications were mapped into the flood modelling cycle, considering how citizen data properties (spatial and temporal coverage, uncertainty and volume) are related to its integration into modelling. It was clear that the number of studies in the area is rising. There are positive experiences reported in collection and analysis methods, for instance with velocity and land cover, and also when modelling is concerned, for example by using social media mining. However, matching the data properties necessary for each part of the modelling cycle with citizen-generated data is still challenging. Nevertheless, the concept that citizen contributions can be used for simulation and forecasting is proved and further work lies in continuing to develop and improve not only methods for collection and analysis, but certainly for integration into models as well. Finally, in view of recent automated sensors and satellite technologies, it is through studies as the ones analysed in this article that the value of citizen contributions, complementing such technologies, is demonstrated.
Nakatsuka, Tomoya; Imabayashi, Etsuko; Matsuda, Hiroshi; Sakakibara, Ryuji; Inaoka, Tsutomu; Terada, Hitoshi
2013-05-01
The purpose of this study was to identify brain atrophy specific for dementia with Lewy bodies (DLB) and to evaluate the discriminatory performance of this specific atrophy between DLB and Alzheimer's disease (AD). We retrospectively reviewed 60 DLB and 30 AD patients who had undergone 3D T1-weighted MRI. We randomly divided the DLB patients into two equal groups (A and B). First, we obtained a target volume of interest (VOI) for DLB-specific atrophy using correlation analysis of the percentage rate of significant whole white matter (WM) atrophy calculated using the Voxel-based Specific Regional Analysis System for Alzheimer's Disease (VSRAD) based on statistical parametric mapping 8 (SPM8) plus diffeomorphic anatomic registration through exponentiated Lie algebra, with segmented WM images in group A. We then evaluated the usefulness of this target VOI for discriminating the remaining 30 DLB patients in group B from the 30 AD patients. Z score values in this target VOI obtained from VSRAD were used as the determinant in receiver operating characteristic (ROC) analysis. Specific target VOIs for DLB were determined in the right-side dominant dorsal midbrain, right-side dominant dorsal pons, and bilateral cerebellum. ROC analysis revealed that the target VOI limited to the midbrain exhibited the highest area under the ROC curves of 0.75. DLB patients showed specific atrophy in the midbrain, pons, and cerebellum. Midbrain atrophy demonstrated the highest power for discriminating DLB and AD. This approach may be useful for determining the contributions of DLB and AD pathologies to the dementia syndrome.
Geologic map of the Camas Quadrangle, Clark County, Washington, and Multnomah County, Oregon
Evarts, Russell C.; O'Connor, Jim E.
2008-01-01
The Camas 7.5' quadrangle is in southwestern Washington and northwestern Oregon approximately 20 km east of Portland. The map area, bisected by the Columbia River, lies on the eastern margin of the Portland Basin, which is part of the Puget-Willamette Lowland that separates the Cascade Range from the Oregon Coast Range. Since late Eocene time, the Cascade Range has been the locus of an episodically active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Bedrock consists largely of basalt and basaltic andesite flows that erupted during late Oligocene time from one or more vents located outside the map area. These rocks crop out only north of the Columbia River: at the base of Prune Hill in Camas, where they dip southward at about 5°; and east of Lacamas Creek, where they dip to the southeast at 15 to 30°. The volcanic bedrock is unconformably overlain by Neogene sediments that accumulated as the Portland Basin subsided. In the Camas quadrangle, most of these sediments consist of basaltic hyaloclastic debris generated in the volcanic arc to the east and carried into the Portland Basin by the ancestral Columbia River. The dominant structures in the map area are northwest-striking dextral strike-slip faults that offset the Paleogene basin floor as well as the lower part of the basin fill. The Oligocene rocks at Prune Hill and to the east were uplifted in late Pliocene to early Pleistocene time within a restraining bend along one of these dextral faults. In Pleistocene time, basaltic andesite flows issued from a volcano centered on the west side of Prune Hill; another flow entered the map area from the east. These flows are part of the Boring volcanic field, which comprises several dozen late Pliocene and younger monogenetic volcanoes scattered throughout the greater Portland region. In latest Pleistocene time, the Missoula floods of glacial-outburst origin inundated the Portland Basin. The floods deposited huge bars of poorly sorted gravel in the lee of Prune Hill and west of the Sandy River. Volcanic debris from Mount Hood form a prominent delta at the mouth of the Sandy River.This map is a contribution to a program designed to improve geologic knowledge of the Portland Basin region of the Pacific Northwest urban corridor, the densely populated Cascadia forearc region of western Washington and Oregon. More detailed information on the bedrock and surficial geology of the basin and its surrounding area is necessary to refine assessments of seismic risk, ground-failure hazards and resource availability in this rapidly growing region.
Debris flow hazard mapping, Hobart, Tasmania, Australia
NASA Astrophysics Data System (ADS)
Mazengarb, Colin; Rigby, Ted; Stevenson, Michael
2015-04-01
Our mapping on the many dolerite capped mountains in Tasmania indicates that debris flows are a significant geomorphic process operating there. Hobart, the largest city in the State, lies at the foot of one of these mountains and our work is focussed on identifying areas that are susceptible to these events and estimating hazard in the valley systems where residential developments have been established. Geomorphic mapping with the benefit of recent LiDAR and GIS enabled stereo-imagery has allowed us to add to and refine a landslide inventory in our study area. In addition, a dominant geomorphic model has been recognised involving headward gully retreat in colluvial materials associated with rainstorms explains why many past events have occurred and where they may occur in future. In this paper we will review the landslide inventory including a large event (~200 000m3) in 1872 that affected a lightly populated area but since heavily urbanised. From this inventory we have attempted volume-mobility relationships, magnitude-frequency curves and likelihood estimates. The estimation of volume has been challenging to determine given that the area of depletion for each debris flow feature is typically difficult to distinguish from the total affected area. However, where LiDAR data exists, this uncertainty is substantially reduced and we develop width-length relationships (area of depletion) and area-volume relationships to estimate volume for the whole dataset exceeding 300 features. The volume-mobility relationship determined is comparable to international studies and in the absence of reliable eye-witness accounts, suggests that most of the features can be explained as single event debris flows, without requiring more complex mechanisms (such as those that form temporary debris dams that subsequently fail) as proposed by others previously. Likelihood estimates have also been challenging to derive given that almost all of the events have not been witnessed, some are constrained by aerial photographs to decade precision and many predate regional photography (pre 1940's). We have performed runout modelling, using 2D hydraulic modelling software (RiverFlow2D with Mud and Debris module), in order to calibrate our model against real events and gain confidence in the choice of parameters. Runout modelling was undertaken in valley systems with volumes calibrated to existing flood model likelihoods for each catchment. The hazard outputs from our models require developing a translation to hazard models used in Australia. By linking to flood mapping we aim to demonstrate to emergency managers where existing mitigation measures may be inadequate and how they can be adapted to address multiple hazards.
Automated mapping of the ocean floor using the theory of intrinsic random functions of order k
David, M.; Crozel, D.; Robb, James M.
1986-01-01
High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.
Mid-Shelf Hardground Fish Habitats off the Georgia Coast
NASA Astrophysics Data System (ADS)
Platt, M.; Sautter, L.
2016-02-01
Multibeam sonar data were collected off the Georgia coast aboard the R/V Savannah by the College of Charleston BEAMS Program in May 2015. Kongsberg EM2040C data were post-processed in CARIS HIPS and SIPS 9.0 to create bathymetric maps overlain with backscatter intensity. The mid-shelf focus sites lie at depths between 25 and 40 m, and include the northern edge of Gray's Reef National Marine Sanctuary. The study sites are known areas of abundant fish congregations, identified by the South Carolina Department of Natural Resources' Marine Resources Monitoring, Assessment, & Prediction (MARMAP) program. The regional mid-shelf seafloor morphology consists of sand ridges, rock outcrops, and incised meandering channels 1 to 3 m deep. Backscatter analysis was used to identify hardground structures that might provide habitat for a high diversity of vertebrates and invertebrates. Multiple hardground structures were found and characterized at these locations and will be targeted for further research and possible inclusion in the Georgia and South Carolina continental shelf Marine Protected Areas.
MOUNT SHASTA WILDERNESS STUDY AREA, CALIFORNIA.
Christiansen, Robert L.; Tuchek, Ernest T.
1984-01-01
The Mount Shasta Wilderness lies wholly on the slopes and summit area of Mount Shasta and consists almost entirely of the products of geologically young volcanism. Small deposits of volcanic cinders and pumice are present. The volcanic system of Mount Shasta is judged to have probable resource potential for geothermal energy but that potential is least within the wilderness study area boundaries. Because any geothermal energy resource beneath the volcano would lie at considerable depths, exploration or development would be most likely at lower altitudes on the gentler slopes outside the study area.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Sader, Steve; Smoot, James
2012-01-01
This presentation discusses a collaborative project to develop, test, and demonstrate baldcypress forest mapping and monitoring products for aiding forest conservation and restoration in coastal Louisiana. Low lying coastal forests in the region are being negatively impacted by multiple factors, including subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, annual insect-induced forest defoliation, timber harvesting, and conversion to urban land uses. Coastal baldcypress forests provide invaluable ecological services in terms of wildlife habitat, forest products, storm buffers, and water quality benefits. Before this project, current maps of baldcypress forest concentrations and change did not exist or were out of date. In response, this project was initiated to produce: 1) current maps showing the extent and location of baldcypress dominated forests; and 2) wetland forest change maps showing temporary and persistent disturbance and loss since the early 1970s. Project products are being developed collaboratively with multiple state and federal agencies. Products are being validated using available reference data from aerial, satellite, and field survey data. Results include Landsat TM- based classifications of baldcypress in terms of cover type and percent canopy cover. Landsat MSS data was employed to compute a circa 1972 classification of swamp and bottomland hardwood forest types. Landsat data for 1972-2010 was used to compute wetland forest change products. MODIS-based change products were applied to view and assess insect-induced swamp forest defoliation. MODIS, Landsat, and ASTER satellite data products were used to help assess hurricane and flood impacts to coastal wetland forests in the region.
Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics
NASA Astrophysics Data System (ADS)
Yadav, Pramod Kumar; Adhikari, P. K.; Srivastava, Shalivahan; Maurya, Ved P.; Tripathi, Anurag; Singh, Shailendra; Singh, Roshan K.; Bage, Ashish K.
2018-03-01
Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringe of the DVs over an area of ˜ 0.70 km2 along 13 parallel lines at 50 m spacing. The data was acquired at ˜ 25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident high gravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying within a depth range of 25-40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of ˜ 15, ˜ 25 and ˜ 40 m, respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological succession from the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.
Brabb, Earl E.; Roberts, Sebastian; Cotton, William R.; Kropp, Alan L.; Wright, Robert H.; Zinn, Erik N.; Digital database by Roberts, Sebastian; Mills, Suzanne K.; Barnes, Jason B.; Marsolek, Joanna E.
2000-01-01
This publication consists of a digital map database on a geohazards web site, http://kaibab.wr.usgs.gov/geohazweb/intro.htm, this text, and 43 digital map images available for downloading at this site. The report is stored as several digital files, in ARC export (uncompressed) format for the database, and Postscript and PDF formats for the map images. Several of the source data layers for the images have already been released in other publications by the USGS and are available for downloading on the Internet. These source layers are not included in this digital database, but rather a reference is given for the web site where the data can be found in digital format. The exported ARC coverages and grids lie in UTM zone 10 projection. The pamphlet, which only describes the content and character of the digital map database, is included as Postscript, PDF, and ASCII text files and is also available on paper as USGS Open-File Report 00-127. The full versatility of the spatial database is realized by importing the ARC export files into ARC/INFO or an equivalent GIS. Other GIS packages, including MapInfo and ARCVIEW, can also use the ARC export files. The Postscript map image can be used for viewing or plotting in computer systems with sufficient capacity, and the considerably smaller PDF image files can be viewed or plotted in full or in part from Adobe ACROBAT software running on Macintosh, PC, or UNIX platforms.
Large Scale Geomorphic Mapping of Cryoplanation Terraces in Central and Eastern Alaska
NASA Astrophysics Data System (ADS)
Queen, C.; Nyland, K. E.; Nelson, F. E.
2017-12-01
Cryoplanation terraces (CTs) are large periglacial landforms characterized by alternating treads and risers, giving the appearance of giant staircases ascending ridgecrests and hillsides. The risers (scarps) are typically covered with coarse clastic material, while the surfaces of the nearly planar treads are a mosaic of vegetation, rock debris, and surficial periglacial landforms. CTs are best developed in areas of moderate relief across Beringia, the largely unglaciated region between the Lena and Mackenzie rivers, including Bering Sea islands that were formerly highlands on the Bering Land Bridge. CTs are generally thought to develop through locally intensified weathering at the base of scarps by processes associated with late lying bodies of snow. This hypothesis has been the subject of much speculative literature, but until recently there have been few process-oriented field studies performed on them. The work reported here builds on foundational work by R. D. Reger, who inventoried and investigated a large number of CTs in central and western Alaska. The resultant large-scale (1:2000) maps of cryoplanation terraces at Eagle Summit and Mount Fairplay in east-central Alaska were created using traditional and GPS-based mapping methodologies. Pits were excavated at representative locations across treads to obtain information about subsurface characteristics. The resulting maps show the location and morphology of surficial geomorphic features on CT scarps, treads, and sideslopes, superimposed on high-resolution topographic maps and perspective diagrams. GIS-based analysis of the assembled map layers promotes three-dimensional understanding of the spatial relationships between CT morphology, material properties, and erosional processes, and provides key insights into intra- and inter- terrace relationships. In concert with relative and absolute dating of material on the landforms, this research is generally supportive of the "nivation hypothesis of CT development."
NASA Astrophysics Data System (ADS)
Flint, L. E.; Curtis, J. A.; Flint, A. L.
2006-12-01
The Laguna de Santa Rosa (Laguna), the largest tributary to the Russian River located in Sonoma County, California, occupies a relatively flat low-lying area west of the Santa Rosa Plain. From December 12, 2005 to January 6, 2006 the Laguna experienced heavy flooding, with peak flows on New Year's Day of over 185 m3/s, at a location that experiences median flows of less than 14 m3/s. The objectives of this study were to (1) analyze precipitation intensities and amounts for the region to establish the conditions under which flooding occurred, (2) measure and map inundation areas and floodplain sediment deposition, and (3) compare field data with a GIS sediment deposition potential map. Spatial variations in intensities and total volumes of precipitation correlate well with evidence of local flooding throughout the region, particularly in the mountains to the east and southeast of Santa Rosa. Total precipitation for the month of December was 200 percent of normal, and maximum hourly intensities reached 20 mm/hour during the storm. High water marks and floodplain deposition sites were mapped using kinematic GPS surveying with post-processed differential correction, and sediment deposition was measured. The surveyed data were superimposed on an available two-foot-interval contour map to create an inundation map and a GIS point coverage of sediment deposition. Landscape attributes relevant to floodplain sedimentation were assessed and a sediment deposition potential map was created at the 30-m scale using a matrix of landscape characteristics that included: land use; roughness (influenced by vegetation type and density); channel and hillslope sediment sources (influenced by soils, geology, and cutbank erosion); slope and topography; and geomorphic terrain type. A calculation of sediment deposition potential was developed within a GIS that accounts for all contributing factors and illustrates that floodplain deposition is dominated by localized sedimentation, reflecting the importance of sediment point sources, rather than extensive sedimentation throughout the floodplain. The data collected in this study will be used to constrain model simulations of recurrence-interval floods and provide information on patterns of hydrology and sedimentation for extreme events that will help refine conceptual models of floodplain processes.
Geology of the State of Morelos and contiguous areas in south-central Mexico
Fries, Carl F.
1959-01-01
The area described lies in south-central Mexico and embraces all but the southeastern corner and easternmost border of the State of Moreles, the second smallest State in the Mexican Republic. It includes small contiguous parts of the State of Mexico, in the northeastern corner, and of the State of Guerrero in the southwestern corner. Limiting geographic coordinates are 98 45 to 99 39 west longitude and 18 18 to 19 08 north latitude, the northern boundary being only 35 km south of Mexico City, capital of the Republic. The geological map does not cover the entire rectangle outlined, but is irregular in form and measures roughly 4150 sq. km, three-quarters of it representing two0thirds of the State of Moreles and the rest lying outside the State. The region ranges in altitude from 730 m above sea level at Iguala near the south edge of the map, to a general level of about 3000 m at the north edge, although individual peaks rise to 3900 m and Popocatepetl Volcano, a few kilometers east of the northeastern border of the map, rises to 5452 m above sea level. Annual rainfall ranges from a minimum of about 640 mm in the low country, to 1200 mm and more at altitudes above 2000 m. Most of it falls in summer between June and September. Winter frosts are rare below 1800 m. The climate is of savanna to steppe type; soils are thin and may be classified as belonging to the tachernoses group, with strong development of calcareous evaporates (caliche) at altitudes below 1800 m. The northern border of the area forms the southern half of the late Pliocene to Recent Neo-volcanic Belt of basic volcanism that crosses Mexico in the direction N. 80 W., and thus has constructional topography. The rest of the area belongs to the Balsas Basin physiographic province, which is characterized by maturely dissected terrain tributary to the large Balsas River. All but the southwestern corner of the area drains southward via the Amacuzac River into the Mexcala-Balsas River, and thence westward into the Pacific Ocean. The southwestern corner drains directly into the Balsas River via the Iguala River. Local relief is of the order of 300 to 600 m. The mature topography was partly buried by late Pliocene alluvium in the central part of the area, owing largely to local volcanism. Dissolution of limestone, dolomite, and anhydrite of the Cretaceous formations has produced sinks and poljes, some of which contain small lakes. Other karst features are also common, such as caves, caverns, underground rivers, and surficial lapies or karren. Drainage blocking by lava and polje development in late Pleistocene and Recent time produced new alluvial flats in this otherwise dissected region. The oldest rock unit in the region is the Texco schist series of late Paleozoic (?) age. It was folded, metamorphosed, foliated, intruded by dikes, and strongly eroded before the next unit, the Texco Viejo green volcanic series of Late Triassic (?) age, was deposited. Another period of metamorphism and erosion followed before the calcareous clastic sediments of the Upper Jurassic (?) Acahuizotla formation were laid down. The next unit consists of the partly phyllitic calcareous shale of the Acuitlapan formation, which is of Neocenian (?) age and rests with at least disconformity on the Acahuizotla formation. The overlying Aptian-Barresian Kochicalco formation of thin-bedded limestone appears to grade upward from the Acuitlapan formation, locally, but it seems to be unconformable elsewhere. All these units have small outcrops in the area mapped and were not studied in detail. Warping and erosion occurred before the overlying Morelos formation began to accumulate in early Albian time. The basal member is anhydrite in the eastern part of the area mapped, but limestone and dolomite were deposited elsewhere. The formation consists largely of shallow-water calcareous bank deposits, with a maximum thickness of about 900 m. Deposition ceased in early Cenomanian time and further warpi
NASA Astrophysics Data System (ADS)
Rolstad Libach, Lars; Wolden, Knut; Dagestad, Atle; Eskil Larsen, Bjørn
2017-04-01
The Norwegian aggregate industry produces approximately 14 million tons of sand and gravel aggregates annually to a value of approximately 100 million Euros. Utilization of aggregates are often linked to land-use conflicts and complex environmental impacts at the extraction site. These topics are managed on a local municipal level in Norway. The Geological Survey of Norway has a database and a web map service with information about sand and gravel deposits with considerable volumes and an importance evaluation. Some of the deposits covers large areas where the land-use conflicts are high. To ease and improve land-use planning, safeguard other important resources like groundwater and sustainable utilization of sand and gravel resources - there is a need for more detailed information of already mapped important resources. Detailed 3D-models of gravel deposits is a tool for a better land-use- and resource management. By combining seismic, GPR and resistivity geophysical profile data, borehole data, quaternary maps and lidar surface data, it has been possible to make 3D-models of deposits and to further research the possibilities for distinguishing different qualities and volumes. Good datasets and a detailed resource map is a prerequisite to assess geological resources for planners, extractors and neighbours. Future challenges lies in use of, often old, geophysical data, and combining these. What kind of information is it possible to grasp from depth-data that actually argues for a more detailed delineation of resources?
Fan cooling of the resting area in a free stalls dairy barn
NASA Astrophysics Data System (ADS)
Calegari, Ferdinando; Calamari, Luigi; Frazzi, Ermes
2014-08-01
This summer study evaluated the effect of providing additional fans (cooling) in the resting area within a free-stall dairy barn that had fans and sprinklers in the feeding area and paddock availability. Thirty cows were divided into two homogenous groups and kept in two pens: one had the resting area equipped with two fans (FAN) while no fans were added to the other resting area (CON). Microclimatic parameters, rectal temperature (RT), breathing rate (BR), milk yield, and milk pH traits were recorded. Time budgeting and the behaviour of the cows (time spent in the feeding area, standing and lying in other areas) were also recorded using digital video technology. Two slight-to-moderate heat waves were observed. During the hottest period the daily maximum temperature recorded was 33.5 °C and the daily maximum THI was 81.6. During this period, the BR and RT increased only slightly in both groups, with lower BR (n.s.) in FAN compared with CON. Milk yield was better maintained (n.s.) in FAN compared with CON during the hottest period. The FAN cows showed a greater ( P < 0.05) lying time in the free stalls (9.5 and 8.6 h/day in FAN and CON, respectively), whereas CON cows made greater ( P < 0.05) use of the paddock during evening and late evening hours. Consequently, the total daily lying time was 13.5 h/day in both groups. In conclusion, the results suggest that using fans in the resting area improves cow comfort, which increases use of the resting area. The lying time results also suggest that the benefits of providing ventilation in the resting area might be more evident in barns where there is no paddock.
NASA Astrophysics Data System (ADS)
Wang, C. H.
2015-08-01
In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape's spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape's character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system's conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanakoglou, K.; School of Physics, Nuclear and Elementary Particle Physics Department, Aristotle University of Thessaloniki; Daskaloyannis, C.
The mathematical structure of a mixed paraparticle system (combining both parabosonic and parafermionic degrees of freedom) commonly known as the Relative Parabose Set, will be investigated and a braided group structure will be described for it. A new family of realizations of an arbitrary Lie superalgebra will be presented and it will be shown that these realizations possess the valuable representation-theoretic property of transferring invariably the super-Hopf structure. Finally two classes of virtual applications will be outlined: The first is of interest for both mathematics and mathematical physics and deals with the representation theory of infinite dimensional Lie superalgebras, whilemore » the second is of interest in theoretical physics and has to do with attempts to determine specific classes of solutions of the Skyrme model.« less
Geologic map of the Big Delta B-2 quadrangle, east-central Alaska
Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.
2003-01-01
New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic gneiss sample yields an age of 112 +/- 2 Ma; the monazite presumably grew during the waning stages of the intense regional Cretaceous ductile deformation. The Cretaceous ductile deformation was followed closely by granite plutonism and gold mineralization. The main pulse of gold mineralization is temporally and spatially associated with the Cretaceous granitic dikes and plutons and occurred during regional uplift and extension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chin Yik, E-mail: cy_lin_ars@hotmail.com; Abdullah, Mohd. Harun; Musta, Baba
2011-03-15
A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and themore » lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH){sub 3} and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn{sup 2+} and Fe{sup 2+} under suboxic condition and very close to the FeS/Fe{sup 2+} stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.« less
Babcock, H.M.; Visher, F.N.; Durum, W.H.
1951-01-01
The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of land irrigated for agriculture, has been identified as being susceptible. Biological data were used to evaluate the reliability of the map. In 12 of DOI's 26 study areas, concentrations of selenium measured in bird eggs were elevated sufficiently to significantly reduce hatchability of the eggs. The GIS map identifies 9 of those 12 areas. Deformed bird embryos having classic symptoms of selenium toxicosis were found in four of the study areas, and the map identifies all four as susceptible to irrigation-induced selenium contamination. The report describes the geography, geology, and ground-water resources of the Dutch Flats area in Scotts Bluff and Sioux Counties, Nebr. The area comprises about 60 square miles and consists predominantly of relatively flat-lying terraces. Farming is the principal occupation in the area. The farm lands are irrigated largely from surface water; ground water is used only as a supplementary supply during drought periods. The climate in the area is semiarid, and the mean annual precipitation is about 16 inches. The rocks exposed in the Dutch Flats area are of Tertiary sad Quaternary age. A map showing the areas of outcrop of the rock formations is included in the report. Sufficient unconfined ground water for irrigation supplies is contained in the deposits of the .third terrace, and wells that yield 1,000 to 2,000 gallons a minute probably could be developed. The depth to water in the area ranges from a few feet to about 80 feet sad averages about 30 feet. The depth to water varies throughout the year; it is least in the late summer when the recharge from irrigation is greatest, sad it is greatest in the early spring before irrigation is begun. A map showing the depth to water in September 1949 is included in the report. The ground-water reservoir is recharged by seepage from irrigation canals and laterals, by seepage from irrigation water applied to the farms, and, to a much lesser extent, by precipitation. In the area b
Geologic map of Colorado National Monument and adjacent areas, Mesa County, Colorado
Scott, Robert B.; Harding, Anne E.; Hood, William C.; Cole, Rex D.; Livaccari, Richard F.; Johnson, James B.; Shroba, Ralph R.; Dickerson, Robert P.
2001-01-01
New 1:24,000-scale geologic mapping in the Colorado National Monument Quadrangle and adjacent areas, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of and data for the stratigraphy, structure, geologic hazards in the area from the Colorado River in Grand Valley onto the Uncompahgre Plateau. The plateau drops abruptly along northwest-trending structures toward the northeast 800 m to the Redlands area and the Colorado River in Grand Valley. In addition to common alluvial and colluvial deposits, surficial deposits include Holocene and late Pleistocene charcoal-bearing valley-fill deposits, late to middle Pleistocene river-gravel terrace deposits, Holocene to middle Pleistocene younger, intermediate, and old fan-alluvium deposits, late to middle Pleistocene local gravel deposits, Holocene to late Pleistocene rock-fall deposits, Holocene to middle Pleistocene young and old landslide deposits, Holocene to late Pleistocene sheetwash deposits and eolian deposits, and Holocene Cienga-type deposits. Only the lowest part of the Upper Cretaceous Mancos Shale is exposed in the map area near the Colorado River. The Upper and Lower? Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation form resistant dipslopes in the Grand Valley and a prominent ridge on the plateau. Less resistant strata of the Upper Jurassic Morrison Formation consisting of the Brushy Basin, Salt Wash, and Tidwell Members form slopes on the plateau and low areas below the mountain front of the plateau. The Middle Jurassic Wanakah Formation nomenclature replaces the previously used Summerville Formation. Because an upper part of the Middle Jurassic Entrada Formation is not obviously correlated with strata found elsewhere, it is therefore not formally named; however, the lower rounded cliff former Slickrock Member is clearly present. The Lower Jurassic silica-cemented Kayenta Formation forms the cap rock for the Lower Jurassic carbonate-cemented Wingate Sandstone, which forms the impressive cliffs of the monument. The Upper Triassic Chinle Formation was deposited on the eroded and weathered Middle Proterozoic meta-igneous gneiss, pegmatite dikes, and migmatitic gneiss. Structurally the area is deceptively challenging. Nearly flat-lying strata on the plateau are folded by northwest-trending fault-propagation folds into at least two S-shaped folds along the mountain front of the plateau. Strata under Grand Valley dip at about 6 degrees to the northeast. In the absence of local evidence, the uplifted plateau is attributed to Laramide deformation by dated analogous structures elsewhere in the Colorado Plateau. The major exposed fault records high-angle reverse relationships in the basement rocks but dissipates strain as a triangular zone of distributed microfractures and cataclastic flow into overlying Mesozoic strata that absorb the fault strain, leaving only folds. Evidence for younger, probably late Pliocene or early Pleistocene, uplift does exist at the antecedent Unaweep Canyon south and east of the map area. To what degree this younger deformation affected the map area is unknown. Several geologic hazards affect the area. Middle and late Pleistocene landslides involving the smectite-bearing Brushy Basin Member of the Morrison Formation are extensive on the plateau and common in the Redlands below the plateau. Expansive clay in the Brushy Basin and other strata create foundation stability problems for roads and homes. Flash floods create a serious hazard to people on foot in narrow canyons in the monument and to homes close to water courses downstream from narrow restrictions close to the monument boundary.
Mapping Vineyard Areas Using WORLDVIEW-2 Satellite Images
NASA Astrophysics Data System (ADS)
Sertel, E.; Ozelkan, E.; Yay, I.; Seker, D. Z.; Ormeci, C.
2011-12-01
The observation of Earth surface from the space has lead to new research possibilities in many fields like agriculture, hydrology, geology, geodesy etc. Different satellite image data have been used for agricultural monitoring for different scales namely local, regional and global. It is important to monitor agricultural field in local scale to determine the crop yield, diseases, and to provide Farmer Registries. Worldview-2 is a new satellite system that could be used for agricultural applications especially in local scale. It is the first high resolution 8-band multispectral commercial satellite launched in October 2009. The satellite has an altitude of 770 kilometers and its spatial resolution for panchromatic mode and multispectral mode are 46 cm and 1.85 meter, respectively. In addition to red (630 - 690 nm), blue (450 - 510 nm), Green (510 - 580 nm) and Near Infrared (770 - 895 nm) bands, Worldview-2 has four new spectral bands lying on beginning of blue (400 - 450 nm), yellow (585 - 625 nm), red edge (705 - 745 nm) and Near Infrared (860 - 1040 nm) regions of the electromagnetic spectrum. Since Worldview-2 data are comparatively new, there have not been many studies in the literature about the usage of these new data for different applications. In this research, Worldview-2 data were used to delineate the vineyard areas and identify different grape types in Sarkoy, Turkey. Phenological observations of grape fields have been conducted for the last three years over a huge test area owned by the Government Viniculture Institute. Based on the phenological observations, it was found that July and August period is the best data acquisition time for satellite data since leaf area index is really higher. In August 2011, Worldview-2 data of the region were acquired and spectral measurements were collected in the field for different grape types using a spectroradiometer. Satellite image data and spectral measurements were correlated and satellite image data were classified to determine the location, extent and type of vineyards within the study region. A Digital Elevation Model generated from 1/25.000 scaled topographic maps was used to create slope and aspect map of the research area. These maps and vineyard parcels obtained from remote sensing techniques were integrated into a Geographic Information System. Spatial analyses were conducted in GIS to evaluate the appropriateness of vineyard areas for grape growth. Possible suitable vineyard sites for new plantation were selected through spatial queries to provide useful information to governmental authorities and farmers.
Geologic Map of the Aino Planitia (V46) Quadrangle, Venus 1:5,000,000
Stofan, Ellen R.; Guest, John E.
2003-01-01
The Aino Planitia quadrangle (V-46) extends from 25?-50? S. latitude, 60?-90? E. longitude. The quadrangle was mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. Aino Planitia is a lowland region in the southern hemisphere of Venus and is southwest of Thetis Regio in western Aphrodite Terra. It is dominated by low-lying plains units that are characterized by northeast-trending wrinkle ridges and numerous small volcanic edifices, including shields, domes, and cones. The quadrangle contains a major volcano, Kunapipi Mons, and portions of Juno Chasma. A northern extension of the Lada Terra highland is in the southwestern portion of the map. Eight coronae are mapped in the quadrangle, the largest of which is the 500-km-diameter Copia Corona. The region is dominated by plains that are interpreted to be of volcanic origin. Most of the plains units are composites of flow units of differing ages. The overall topography of V-46 consists of low-lying plains slightly below Mean Planetary Radius (MPR, 6051.84 km). The summit of Kunapipi Mons is the highest point in the quadrangle, at about 2.2 km above MPR; the lowest points in rifts and troughs are at about 1.7 km below MPR. The regions that are the roughest at Magellan radar wavelengths in the quadrangle occur along the rim of Copia Corona, with most regions being relatively smooth (roughness comparable to the average Venus surface. Emissivity values in the quadrangle vary from 0.82-0.90.
Photogeologic maps of the Iris SE and Doyleville SW quadrangles, Saguache County, Colorado
McQueen, Kathleen
1957-01-01
The Iris SE and Doyleville SW quadrangles, Saguache County, Colorado include part ot the Cochetopa mining district. Photogeologic maps of these quadrangles show the distribution of sedimentary rocks of Jurassic and Cretaceous age; precambrian granite, schist, and gneiss; and igneous rocks of Tertiary age. Sedimentary rocks lie on an essentially flat erosion surface on Precambrian rocks. Folds appear to be absent but faults present an extremely complex structural terrane. Uraniferous deposits occur at fault intersections in Precambriam and Mesozoic rocks.
Lying about facial recognition: an fMRI study.
Bhatt, S; Mbwana, J; Adeyemo, A; Sawyer, A; Hailu, A; Vanmeter, J
2009-03-01
Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study, 18 subjects were instructed during an fMRI "line-up" task to either conceal (lie) or reveal (truth) the identities of individuals seen in study sets in order to determine the neural correlates of intentionally misidentifying previously known faces (lying about recognition). A repeated measures ANOVA (lie vs. truth and familiar vs. unfamiliar) and two paired t-tests (familiar vs. unfamiliar and familiar lie vs. familiar truth) revealed areas of activation associated with deception in the right MGF, red nucleus, IFG, SMG, SFG (with ACC), DLPFC, and bilateral precuneus. The areas activated in the present study may be involved in the suppression of truth, working and visuospatial memories, and imagery when providing misleading (deceptive) responses to facial identification prompts in the form of a "line-up".
Booth, Derek B.; Troost, Kathy Goetz; Shimel, Scott A.
2009-01-01
This geologic map, approximately coincident with the east half of the Seattle North 7.5 x 15' quadrangle (herein, informally called the 'Seattle NE map'), covers nearly half of the City of Seattle and reaches from Lake Washington across to the Puget Sound shoreline. Land uses are mainly residential, but extensive commercial districts are located in the Northgate neighborhood, adjacent to the University of Washington, and along the corridors of Aurora Avenue North and Lake City Way. Industrial activity is concentrated along the Lake Washington Ship Canal and around Lake Union. One small piece of land outside of the quadrangle boundaries, at the west edge of the Bellevue North quadrangle, is included on this map for geographic continuity. Conversely, a small area in the northeast corner of the Seattle North quadrangle, on the eastside of Lake Washington, is excluded from this map. Within the boundaries of the map area are two large urban lakes, including the most heavily visited park in the State of Washington (Green Lake Park); a stream (Thornton Creek) that still hosts anadromous salmon despite having its headwaters in a golfcourse and a shopping center; parts of three cities, with a combined residential population of about 300,000 people; and the region's premier research institution, the University of Washington. The north boundary of the map is roughly NE 168th Street in the cities of Shoreline and Lake Forest Park, and the south boundary corresponds to Mercer Street in Seattle. The west boundary is 15th Avenue W (and NW), and the east boundary is formed by Lake Washington. Elevations range from sea level to a maximum of 165 m (541 ft), the latter on a broad till-covered knob in the city of Shoreline near the northwest corner of the map. Previous geologic maps of this area include those of Waldron and others (1962), Galster and Laprade (1991), and Yount and others (1993). Seattle lies within the Puget Lowland, an elongate structural and topographic basin between the Cascade Range and Olympic Mountains. The Seattle area has been glaciated repeatedly during the past two million years by coalescing glaciers that advanced southward from British Columbia. The landscape we see today was molded by cyclic glacial scouring and deposition and later modified by landsliding and stream erosion. The last ice sheet reached the central Puget Sound region about 14,500 years ago, as measured by 14C dating, and it had retreated from this area by 13,650 14C yr B.P. (equivalent calendar years are about 17,600 and 16,600 years ago; Porter and Swanson, 1998). Seattle now sits atop a complex and incomplete succession of interleaved glacial and nonglacial deposits that overlie an irregular bedrock surface. These glacial and nonglacial deposits vary laterally in both texture and thickness, and they contain many local unconformities. In addition, they have been deformed by faults and folds, at least as recently as 1,100 years ago, and this deformation further complicates the geologic record. The landforms and near-surface deposits that cover much of the Seattle NE map area record a relatively brief, recent interval of the region's geologic history. The topography is dominated in the north by a broad, fluted, and south-sloping upland plateau, which gives way to a more complex set of elongated hills in the map's southern half. The valleys of Pipers Creek, Green Lake, and Thornton Creek mark the transition between these two topographic areas. Most of the uplands are mantled by a rolling surface of sand (unit Qva) and till (unit Qvt) deposited during the last occupation of the Puget Lowland by a continental ice sheet. Beneath these ice sheet deposits is a complex succession of older sediments that extends far below sea level across most of the map area. These older sediments are now locally exposed where modern erosion and landslides have sliced through the edge of the upland, and where subglacial processes apparently left these older sedimen
Geologic map of the Storm King Mountain quadrangle, Garfield County, Colorado
Bryant, Bruce; Shroba, Ralph R.; Harding, Anne E.; Murray, Kyle E.
2002-01-01
New 1:24,000-scale geologic mapping in the Storm King Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new data on the structure on the south margin of the White River uplift and the Grand Hogback and on the nature, history, and distribution of surficial geologic units. Rocks ranging from Holocene to Proterozoic in age are shown on the map. The Canyon Creek Conglomerate, a unit presently known to only occur in this quadrangle, is interpreted to have been deposited in a very steep sided local basin formed by dissolution of Pennsylvanian evaporite late in Tertiary time. At the top of the Late Cretaceous Williams Fork Formation is a unit of sandstone, siltstone, and claystone from which Late Cretaceous palynomorphs were obtained in one locality. This interval has been mapped previously as Ohio Creek Conglomerate, but it does not fit the current interpretation of the origin of the Ohio Creek. Rocks previously mapped as Frontier Sandstone and Mowry Shale are here mapped as the lower member of the Mancos Shale and contain beds equivalent to the Juana Lopez Member of the Mancos Shale in northwestern New Mexico. The Pennsylvanian Eagle Valley Formation in this quadrangle grades into Eagle Valley Evaporite as mapped by Kirkham and others (1997) in the Glenwood Springs area. The Storm King Mountain quadrangle spans the south margin of the White River uplift and crosses the Grand Hogback monocline into the Piceance basin. Nearly flat lying Mississippian through Cambrian sedimentary rocks capping the White River uplift are bent into gentle south dips and broken by faults at the edge of the uplift. South of these faults the beds dip moderately to steeply to the south and are locally overturned. These dips are interrupted by a structural terrace on which are superposed numerous gentle minor folds and faults. This terrace has an east-west extent similar to that of the Canyon Creek Conglomerate to the north. We interpret that the terrace formed by movement of Eagle Evaporite from below in response to dissolution and diapirism in the area underlain by the conglomerate. A low-angle normal fault dipping gently north near the north margin of the quadrangle may have formed also in response to diapirism and dissolution in the area of the Canyon Creek Conglomerate. Along the east edge of the quadrangle Miocene basalt flows are offset by faults along bedding planes in underlying south-dipping Cretaceous rocks, probably because of diapiric movement of evaporite into the Cattle Creek anticline (Kirkham and Widmann, 1997). Steep topography and weak rocks combine to produce a variety of geologic hazards in the quadrangle.
Summary of hydrologic data for the East Everglades, Dade County, Florida
Schneider, James J.; Waller, Bradley G.
1980-01-01
The East Everglades area in south-central Dade County, Fla., occupies approximately 240 square miles. The area is flat and low lying with elevations ranging from sea level in the southeast part to 10 feet at Chekika Hammock with an average elevation of about 6 feet. Rainfall in the area averages 57.9 inches a year with about 80% of the total falling during the May to October wet season. There is some residential development and farming in the east-central part of the area where land elevations are slightly higher. Pressure by agricultural, commerical, and housing interests to develop the area is increasing. Historically, most of the area was flooded for extended periods of time. The construction of canals, levees, and controls has lowered the average water levels of the area. This has reduced the extent and decreased the time of flooding. Long-term hydrographs show graphically the effects that the water control works have had on the hydrologic system. The change in discharge into the north end of the East Everglades through the Tamiami Canal outlets, Levees 30 to 67A, due to construction is very pronounced. Maps showing the altitude of the water table for wet and dry periods indicate that Levee 67 Extended Canal greatly influences the water levels and shape of the water-table contours in the northwestern part of the East Everglades. (USGS)
The Biggest Tuya or Table Mountain in the North Atlantic?
NASA Astrophysics Data System (ADS)
Helgadottir, G.; Reynisson, P.
2012-12-01
Multibeam mapping in cruise A201206 of the Marine Research Institute in June 2012 revealed a huge submarine mountain with a striking look of a tuya. Tuya is by defenition a subrectangular or circular, constructional, flat-topped mountain, made up of hyaloclastites and/or pillow lava, usually with cap lava (Mathews 1947). The mountain lies at 950-1.400 waterdepth some 120 nautical miles west of the Snaefellsnes peninsula and the mapped part of it is around 300 km2. For comparison, the largest tuya in Iceland is Eiriksjokull with a basal area of 77 km2 (Jakobsson and Gudmundsson 2008). Above the mountains edge at 1.100 m waterdepth the hight increases gradually towards the top of the mountain were some craters are exposed. The mountain has a a youthful apperance. Analysing of rock samples are needed to find out if that is the case or if it is connected with an old rifting zone. The goal of the survey was to map fishing areas (f. ex. of the Greenland halibut); to explore the environment of the strong ocean currents coming from north through the Greenland Strait (also called Denmark Strait) but also to gain additional bathymetrical data in the vicinity of what we believe are mud volcanoes, discovered in a fairly recent MRI's mapping cruise. Now, like erlier on, several mud volcanoes appeared, some of them up to 350 m high. If this proves to be right, this is the first finding of these features in Icelandic waters. The research area coincides largely with sediments of the Snorri drift. Seismic lines through this sediment show possible diapir formation (Egloff and Johnson 1978) which strengthens the idea of those features beeing mud volcanoes. The current 9.000 km2 mapping with EM 300 has added significantly to our knowledge of the morphology of the seafloor around Iceland. References: Mathews, W. H. 1947: "Tuyas": Flat-topped volcanoes in northern Brithish Columbia. Amer. J. Sci. 245, 560-570. Jakobsson, S. P. and Gudmundsson, M. T. 2008: Subglacial and intraglacial volcanic formations in Iceland. Jokull no. 58, 179-196. Egloff, J. and Johnson, G. L. 1978: Erosional and Depositional Structures of the Southwest Iceland Insular Margin: Thirteen Geophysical Profiles. AAPG Mem. Vol. 29, 43-63.
Mapping the northern plains of Mars: origins, evolution and response to climate change
NASA Astrophysics Data System (ADS)
Balme, Matthew; Conway, Susan; Costard, François; Gallagher, Colman; van Gasselt, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Séjourné, Antoine; Skinner, James; Swirad, Zuzanna
2014-05-01
An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material near, beneath, or at the surface. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The northern plains comprise three linked zones: Acidalia Planitia, Utopia Planitia and Arcadia Planitia. Each region consists of a shallow basin, with the three areas are separated by low topographic divides. Our aim is to study the ice-related geomorphology of each region in order to understand the origins, evolution and response to climate change of ice on Mars. In particular, by comparing and contrasting the three separate basins we hope to determine if the processes that created the ice-related terrains are regional (perhaps basin limited) or global in scope, and whether the differing geology of each basin has an effect on the ice-related features observed there. The ISSI team is using planetary geomorphological mapping to meet this aim. Three long strips, each about 250 km wide and spanning the ~30N to ~80N latitude range have been defined and sub-teams are each mapping a single area. The group contains experts in mapping, GIS and crater counting (details in the size-frequency distribution of impact craters on a planetary surface can reveal information about when terrains were emplaced, modified, eroded or exhumed). The first meeting of this group was held in December 2013. Here, we give an overview of the science aims of the project, describe the main difference between the three strips and report on mapping work done so far.
Chern-Simons, Wess-Zumino and other cocycles from Kashiwara-Vergne and associators
NASA Astrophysics Data System (ADS)
Alekseev, Anton; Naef, Florian; Xu, Xiaomeng; Zhu, Chenchang
2018-03-01
Descent equations play an important role in the theory of characteristic classes and find applications in theoretical physics, e.g., in the Chern-Simons field theory and in the theory of anomalies. The second Chern class (the first Pontrjagin class) is defined as p= < F, F> where F is the curvature 2-form and < \\cdot , \\cdot > is an invariant scalar product on the corresponding Lie algebra g. The descent for p gives rise to an element ω =ω _3+ω _2+ω _1+ω _0 of mixed degree. The 3-form part ω _3 is the Chern-Simons form. The 2-form part ω _2 is known as the Wess-Zumino action in physics. The 1-form component ω _1 is related to the canonical central extension of the loop group LG. In this paper, we give a new interpretation of the low degree components ω _1 and ω _0. Our main tool is the universal differential calculus on free Lie algebras due to Kontsevich. We establish a correspondence between solutions of the first Kashiwara-Vergne equation in Lie theory and universal solutions of the descent equation for the second Chern class p. In more detail, we define a 1-cocycle C which maps automorphisms of the free Lie algebra to one forms. A solution of the Kashiwara-Vergne equation F is mapped to ω _1=C(F). Furthermore, the component ω _0 is related to the associator Φ corresponding to F. It is surprising that while F and Φ satisfy the highly nonlinear twist and pentagon equations, the elements ω _1 and ω _0 solve the linear descent equation.
Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S
2008-04-11
A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.
Landsat Time-Series Analysis Opens New Approaches for Regional Glacier Mapping
NASA Astrophysics Data System (ADS)
Winsvold, S. H.; Kääb, A.; Nuth, C.; Altena, B.
2016-12-01
The archive of Landsat satellite scenes is important for mapping of glaciers, especially as it represents the longest running and continuous satellite record of sufficient resolution to track glacier changes over time. Contributing optical sensors newly launched (Landsat 8 and Sentinel-2A) or upcoming in the near future (Sentinel-2B), will promote very high temporal resolution of optical satellite images especially in high-latitude regions. Because of the potential that lies within such near-future dense time series, methods for mapping glaciers from space should be revisited. We present application scenarios that utilize and explore dense time series of optical data for automatic mapping of glacier outlines and glacier facies. Throughout the season, glaciers display a temporal sequence of properties in optical reflection as the seasonal snow melts away, and glacier ice appears in the ablation area and firn in the accumulation area. In one application scenario presented we simulated potential future seasonal resolution using several years of Landsat 5TM/7ETM+ data, and found a sinusoidal evolution of the spectral reflectance for on-glacier pixels throughout a year. We believe this is because of the short wave infrared band and its sensitivity to snow grain size. The parameters retrieved from the fitting sinus curve can be used for glacier mapping purposes, thus we also found similar results using e.g. the mean of summer band ratio images. In individual optical mapping scenes, conditions will vary (e.g., snow, ice, and clouds) and will not be equally optimal over the entire scene. Using robust statistics on stacked pixels reveals a potential for synthesizing optimal mapping scenes from a temporal stack, as we present in a further application scenario. The dense time series available from satellite imagery will also promote multi-temporal and multi-sensor based analyses. The seasonal pattern of snow and ice on a glacier seen in the optical time series can in the summer season also be observed using radar backscatter series. Optical sensors reveal the reflective properties at the surface, while radar sensors may penetrate the surface revealing properties from a certain volume.In an outlook to this contribution we have explored how we can combine information from SAR and optical sensor systems for different purposes.
A study of coronal bright points at 20 cm wavelength
NASA Technical Reports Server (NTRS)
Nitta, N.; Kundu, M. R.
1988-01-01
The paper presents the results of a study of coronal bright points observed at 20 cm with the VLA on a day when the sun was exceptionally quiet. Microwave maps of bright points were obtained using data for the entire observing period of 5 hours, as well as for shorter periods of a few minutes. Most bright points, especially those appearing in the full-period maps, appear to be associated with small bipolar structures on the photospheric magnetogram. Overlays of bright point (BP) maps on the Ca(+) K picture, show that the brightest part of BP tends to lie on the boundary of a supergranulation network.
Weber, Bernd
2016-01-01
Can beneficial ends justify morally questionable means? To investigate how monetary outcomes influence the neural responses to lying, we used a modified, cheap talk sender–receiver game in which participants were the direct recipients of lies and truthful statements resulting in either beneficial or harmful monetary outcomes. Both truth-telling (vs lying) as well as beneficial (vs harmful) outcomes elicited higher activity in the nucleus accumbens. Lying (vs truth-telling) elicited higher activity in the supplementary motor area, right inferior frontal gyrus, superior temporal sulcus and left anterior insula. Moreover, the significant interaction effect was found in the left amygdala, which showed that the monetary outcomes modulated the neural activity in the left amygdala only when truth-telling rather than lying. Our study identified a neural network associated with the reception of lies and truth, including the regions linked to the reward process, recognition and emotional experiences of being treated (dis)honestly. PMID:26454816
Momentum Maps and Stochastic Clebsch Action Principles
NASA Astrophysics Data System (ADS)
Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.
2018-01-01
We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.
NASA Astrophysics Data System (ADS)
Holbrook, W. S.; Carr, B.; Pasquet, S.; Sims, K. W. W.; Dickey, K.
2016-12-01
Despite the prominence of Yellowstone as the world's most active hydrothermal province, relatively little is known about the plumbing systems that link deeper hydrothermal fluids to the charismatic hot springs, geysers and mud pots at the surface. We present the results of a multi-method, multi-scale geophysical investigation of the Obsidian Pool Thermal Area (OPTA) in Yellowstone National Park. OPTA hosts acid-sulfate hot springs and mud pots with relatively low pH. We present the results of seismic refraction, electrical resistivity, time-domain EM (TEM), soil conductivity meter (EMI), and GPR data acquired in July 2016. There is a strong contrast in physical properties in the upper 50 m of the subsurface between the low-lying hydrothermal area and surrounding hills: the hydrothermal area has much lower seismic velocities ( 1 km/s vs 3 km/s) and electrical resistivity ( 20 ohm-m vs 300 ohm-m). A prominent zone of very low resistivity (<10 ohm-m) exists at about 20 m depth beneath all hydrothermal features. Poisson's ratio, calculated from P-wave refraction tomography and surface wave inversions, shows low values beneath the "frying pan," where gas is emerging in small fumaroles, suggesting that Poisson's ratio is an effective "gas detector" in hydrothermal areas. Near-surface resistivity mapped from EMI shows a strong correlation with hydrothermal areas previously mapped by heat flow, with areas of high heat flow generally having low resistivity near the surface. Two exceptions are (1) the "frying pan," which shows a central area of high resistivity (corresponding to escaping gas) surrounding by a halo of low resistivity, and (2) a broad area of low resistivity connecting the hydrothermal centers to the lake, which may be clay deposits. TEM data penetrate up to 200 m in depth and suggest that a reservoir of hydrothermal fluids may underlie the entire area, including beneath the forested hills, at depths greater than 100 m, but that they rise toward the surface in a 100-m-wide area just west of the frying pan. Our results show that synoptic, multi-scale geophysical measurements can place important constraints on the subsurface pathways of hydrothermal waters and gas.
Revised preliminary geologic map of the Rifle Quadrangle, Garfield County, Colorado
Shroba, R.R.; Scott, R.B.
1997-01-01
The Rifle quadrangle extends from the Grand Hogback monocline into the southeastern part of the Piceance basin. In the northeastern part of the map area, the Wasatch Formation is nearly vertical, and over a distance of about 1 km, the dip decreases sharply from about 70-85o to about 15-30o toward the southwest. No evidence of a fault in this zone of sharp change in dip is observed but exposures in the Shire Member of the Wasatch Formation are poor, and few marker horizons that might demonstrate offset are distinct. In the central part of the map area, the Shire Member is essentially flat lying. In the south and southwest part of the map area, the dominant dip is slightly to the north, forming an open syncline that plunges gently to the northwest. Evidence for this fold also exists in the subsurface from drill-hole data. According to Tweto (1975), folding of the early Eocene to Paleocene Wasatch Formation along the Grand Hogback reqired an early Eocene age for the last phase of Laramide compression. We find the attitude of the Wasatch Formation to be nearly horizontal, essentially parallel to the overlying Anvil Points Member of the Eocene Green River Formation; therefore, we have no information that either confirms or disputes that early Eocene was the time of the last Laramide event. Near Rifle Gap in the northeast part of the map area, the Mesaverde Group locally dips about 10o less steeply than the overlying Wasatch Formation, indicating that not only had the formation of the Hogback monocline not begun by the time the Wasatch was deposited at this locality, but the underlying Mesaverde Group was locally tilted slightly toward the present White River uplift. Also the basal part of the Atwell Gulch Member of the Wasatch Formation consists of fine-grained mudstones and siltstones containing sparse sandstone and rare conglomerates, indicating that the source of sediment was not from erosion of the adjacent Upper Cretaceous Mesaverde Group. The most likely source of andesitic conglomerate clasts abundant in the upper part of the Atwell Gulch Member was Late Cretaceous-Early Tertiary andesitic igneous rocks, remnants of which are present southeast of the Piceance Basin (Tweto, 1979). Thinning of the Atwell Gulch and Molina Members to the northwest also suggests a southeastern source of sediments, ruling out a northeastern source related to earlier deformation of the Upper Cretaceous Mesa Verde Group.
Factors that influence the hydrologic recovery of wetlands in the Northern Tampa Bay area, Florida
Metz, P.A.
2011-01-01
Although of less importance than the other three factors, a low-lying topographical position benefited the hydrologic condition of several of the study wetlands (S-68 Cypress and W-12 Cypress) both before and after the reductions in groundwater withdrawals. Compared to wetlands in a higher topographical position, those in a lower position had longer hydroperiods because of their greater ability to receive more runoff from higher elevation wetlands and to establish surface-water connections to other isolated wetlands and surface-water bodies through low-lying surface-water channels during wet conditions. In addition, wetlands in low-lying areas benefited from groundwater inflow when groundwater levels were higher than wetland water levels.
Mapping Electrical Structures in the Jarud Basin, Northeast China through Magnetotelluric Sounding
NASA Astrophysics Data System (ADS)
Zhao, W.
2015-12-01
In recent years, China Geological Survey (CGS) has launched 3D geological mapping programs from regional to local scales. The project Deep geological survey at the periphery of the Songliao Basin funded by CGS was implemented from 2012 to 2014. Its main goals are to reveal the tectonic framework of the Jarud Basin (JB) as well as to identify the strata distribution of Permian Linxi Formation by integrating new electromagnetic data with existing geophysical and geological data since black mudstones in the Linxi Formation have shown the potential of shale gas. The study area covered dominantly with Cretaceous-Jurassic igneous rocks with exception of the southeast part is situated in Jarud Banner and Ar Horqin Banner, Inner Mongolia, China. It tectonically lies in the southern Great Khingan Range, western margin of the Songliao Basin, and north of Xar Moron Fault. Over the period of 2012 to 2014, a magnetotelluric survey was carried out at the JB. A total of 926 MT sites with nominal spacing 1 km was acquired in the effective frequency range of 0.01 Hz ~ 300 Hz on six NW and five NE profiles, covering area that exceeds 10, 000 km2. After dimensionality analysis and static shift removal, the nonlinear conjugate algorithm was used to conduct 2D inversion for TM and TE modes. The resistivity models underwent examination using sensitivity tests. The optimal resistivity models revealed numerous large faults, some of which constitute the boundaries of the JB, and modified the tectonic framework. Integrated with well logging and geological mapping data, the strata of Linxi Formation were identified and classified into three depressions: Depressions Arituguri, Gadasu and Wufen. Attention should be paid to Depression Gadasu with area of around 500 km2 since it contains reasonably thick conductive sediments exceeding 4 km in depth which are inferred to be black mudstones pertaining to shale gas.
Relation of the lunar volcano complexes lying on the identical linear gravity anomaly
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Haruyama, J.; Ohtake, M.; Iwata, T.; Ishihara, Y.
2015-12-01
There are several large-scale volcanic complexes, e.g., Marius Hills, Aristarchus Plateau, Rumker Hills, and Flamsteed area in western Oceanus Procellarum of the lunar nearside. For better understanding of the lunar thermal history, it is important to study these areas intensively. The magmatisms and volcanic eruption mechanisms of these volcanic complexes have been discussed from geophysical and geochemical perspectives using data sets acquired by lunar explorers. In these data sets, precise gravity field data obtained by Gravity Recovery and Interior Laboratory (GRAIL) gives information on mass anomalies below the lunar surface, and useful to estimate location and mass of the embedded magmas. Using GRAIL data, Andrews-Hanna et al. (2014) prepared gravity gradient map of the Moon. They discussed the origin of the quasi-rectangular pattern of narrow linear gravity gradient anomalies located along the border of Oceanus Procellarum and suggested that the underlying dikes played important roles in magma plumbing system. In the gravity gradient map, we found that there are also several small linear gravity gradient anomaly patterns in the inside of the large quasi-rectangular pattern, and that one of the linear anomalies runs through multiple gravity anomalies in the vicinity of Aristarchus, Marius and Flamstead volcano complexes. Our concern is whether the volcanisms of these complexes are caused by common factors or not. To clarify this, we firstly estimated the mass and depth of the embedded magmas as well as the directions of the linear gravity anomalies. The results were interpreted by comparing with the chronological and KREEP distribution maps on the lunar surface. We suggested providing mechanisms of the magma to these regions and finally discussed whether the volcanisms of these multiple volcano complex regions are related with each other or not.
NASA Astrophysics Data System (ADS)
Heim, B.; Beamish, A. L.; Walker, D. A.; Epstein, H. E.; Sachs, T.; Chabrillat, S.; Buchhorn, M.; Prakash, A.
2016-12-01
Ground data for the validation of satellite-derived terrestrial Essential Climate Variables (ECVs) at high latitudes are sparse. Also for regional model evaluation (e.g. climate models, land surface models, permafrost models), we lack accurate ranges of terrestrial ground data and face the problem of a large mismatch in scale. Within the German research programs `Regional Climate Change' (REKLIM) and the Environmental Mapping and Analysis Program (EnMAP), we conducted a study on ground data representativeness for vegetation-related variables within a monitoring grid at the Toolik Lake Long-Term Ecological Research station; the Toolik Lake station lies in the Kuparuk River watershed on the North Slope of the Brooks Mountain Range in Alaska. The Toolik Lake grid covers an area of 1 km2 containing Eight five grid points spaced 100 meters apart. Moist acidic tussock tundra is the most dominant vegetation type within the grid. Eight five permanent 1 m2 plots were also established to be representative of the individual gridpoints. Researchers from the University of Alaska Fairbanks have undertaken assessments at these plots, including Leaf Area Index (LAI) and field spectrometry to derive the Normalized Difference Vegetation Index (NDVI). During summer 2016, we conducted field spectrometry and LAI measurements at selected plots during early, peak and late summer. We experimentally measured LAI on more spatially extensive Elementary Sampling Units (ESUs) to investigate the spatial representativeness of the permanent 1 m2 plots and to map ESUs for various tundra types. LAI measurements are potentially influenced by landscape-inherent microtopography, sparse vascular plant cover, and dead woody matter. From field spectrometer measurements, we derived a clear-sky mid-day Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). We will present the first data analyses comparing FAPAR and LAI, and maps of biophysically-focused ESUs for evaluation of the use of remote sensing data to estimate these ecosystem properties.
Western Newfoundland's oil; Gas hopes lie with carbonate platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, N.R.
1991-12-30
This paper reports on the presence of hydrocarbons onshore western Newfoundland that was known through numerous occurrences of oil and gas seeps and bituminous residues since early 1800s, when local residents first used it as a treatment for rheumatism. The first exploratory well was drilled in 1867, and since then a total of 60 wells have been drilled in the area. Despite the fact that most of these wells were relatively shallow, average 300--500 m, and have been drilled with limited geological control and no seismic mapping, more than half the wells encountered minor amounts of hydrocarbons with a totalmore » cumulative production of about 6,000 bbl in the early 1900s. Issuance and administration of petroleum exploration rights off Newfoundland is the responsibility of the Canada- Newfoundland Offshore Petroleum Board.« less
Abraham, Jared D.; Bedrosian, Paul A.; Asch, Theodore H.; Ball, Lyndsay B.; Cannia, James C.; Phillips, Jeffery D.; Lackey, Susan
2012-01-01
Surface audio-magnetotelluric and time-domain electromagnetic methods achieved sufficient depth of penetration and indicated that the paleochannel was much more complex than the original geological model. Simulated and observed gravity anomalies indicate that imaging sand and gravel aquifers near Oakland, Nebraska, would be difficult due to the complex basement density contrasts. Interpretation of the magnetic data indicates no magnetic sources from geologic units above the bedrock surface. Based upon the analysis and interpretation of the four methods evaluated, we suggest a large-scale survey using a high-powered time-domain airborne system. This is the most efficient and cost-effective path forward for the Eastern Nebraska Water Assessment group to map paleochannels that lie beneath thick clay-rich glacial tills.
Orbital science's 'Bermuda Triangle'
NASA Astrophysics Data System (ADS)
Sherrill, Thomas J.
1991-02-01
The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.
Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission
NASA Astrophysics Data System (ADS)
Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher
2016-04-01
The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact crater chains - have been mapped. The Toharu Quadrangle predominantly displays impact craters that exhibit a range of sizes - from the limits of resolution to part of the Kerwan basin (280 km diameter) - and preservation styles. The quad also contains a number large (>20 km across) depressions that are only observable in the topographic data. Smaller craters (<40 km) generally appear morphologically "fresh", and their rims are nearly circular and raised above the surrounding terrain. Larger craters, such as Toharu, appear more degraded, exhibiting irregularly shaped, sometimes scalloped, rim structures, and debris lobes on their floors. Numerous craters (> 20 km) contain central mounds; at current FC resolution, it is difficult to discern if these are primary structures (i.e., central peaks) or secondary features. Support of the Dawn Instrument, Operations, & Science Teams is acknowledged. This work is supported by grants from NASA, DLR and MPG. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23.
NASA Astrophysics Data System (ADS)
Murdi Hartanto, Isnaeni; Alexandridis, Thomas K.; van Andel, Schalk Jan; Solomatine, Dimitri
2014-05-01
Using satellite data in a hydrological model has long been occurring in modelling of hydrological processes, as a source of low cost regular data. The methods range from using satellite products as direct input, model validation, and data assimilation. However, the satellite data frequently face the missing value problem, whether due to the cloud cover or the limited temporal coverage. The problem could seriously affect its usefulness in hydrological model, especially if the model uses it as direct input, so data infilling becomes one of the important parts in the whole modelling exercise. In this research, actual evapotranspiration product from satellite is directly used as input into a spatially distributed hydrological model, and validated by comparing the catchment's end discharge with measured data. The instantaneous actual evapotranspiration is estimated from MODIS satellite images using a variation of the energy balance model for land (SEBAL). The eight-day cumulative actual evapotranspiration is then obtained by a temporal integration that uses the reference evapotranspiration calculated from meteorological data [1]. However, the above method cannot fill in a cell if the cell is constantly having no-data value during the eight-day periods. The hydrological model requires full set of data without no-data cells, hence, the no-data cells in the satellite's evapotranspiration map need to be filled in. In order to fills the no-data cells, an output of hydrological model is used. The hydrological model is firstly run with reference evapotranspiration as input to calculate discharge and actual evapotranspiration. The no-data cells in the eight-day cumulative map from the satellite are then filled in with the output of the first run of hydrological model. The final data is then used as input in a hydrological model to calculate discharge, thus creating a loop. The method is applied in the case study of Rijnland, the Netherlands where in the winter, cloud cover is persistent and leads to many no-data cells in the satellite products. The Rijnland area is a low-lying area with tight water system control. The satellite data is used as input in a SIMGRO model, a spatially distributed hydrological model that is able to handle the controlled water system and that is suitable for the low-lying areas in the Netherlands. The application in the Rijnland area gives overall a good result of total discharge. By using the method, the hydrological model is improved in term of spatial hydrological state, where the original model is only calibrated to discharge in one location. [1] Alexandridis, T.K., Cherif, I., Chemin, Y., Silleos, G.N., Stavrinos, E. & Zalidis, G.C. (2009). Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas. Remote Sensing. 1
Probable Mid-Miocene Caldera in the Modoc Plateau, Northeast California
NASA Astrophysics Data System (ADS)
Bowens, T. E.; Grose, T. L.
2001-12-01
Regional geologic mapping within the Modoc Plateau has resulted in the discovery of a large volcanotectonic anomaly some 21-km in diameter approximately 50-km WSW of the city of Alturas in Modoc County, California. Centrally located within this anomaly lies a structural depression some 11-km in diameter which, based on structural, lithologic, and geophysical characteristics, is believed to represent a deeply eroded mid-Miocene caldera. The region extending outward some 5-km from the proposed caldera displays a sharp, localized structural deflection from a NNW to a WNW structural grain. Lying inboard of this deflection, a series of regionally discordant E-W to NE trending, generally down to the north, normal faults were discovered which are believed to represent rim faults to an ancient caldera. Bedding within the hanging wall of these discordant structures displays highly contorted and regionally anomalous dips. By stereographic removal of the regional northeast dip overprinting the area, the anomalous dips were found to display a radial, steeply inward dipping pattern in close proximity to the proposed rim structures while dips located further inboard are generally flat-lying. Lithologies within the proposed caldera are regionally anomalous and include abundant tuffaceous and flow dominated breccias, closed basin organic sedimentary facies, and an anomalous concentration of volcanic centers of both mafic and felsic compositions. One of these intrusives was age dated at 12.9 Ma indicating the anomaly formed during mid-Miocene time. The location of the proposed caldera is associated with a +20 mgal gravity high, which stands in contrast to a lesser high of +10 mgal associated with the Medicine Lake Caldera some 50-km to the northwest. This combination of structural, lithologic, and geophysical evidence leads to the interpretation of a caldera at this location, herein termed the Stone Coal Valley Caldera.
Charlton, G L; Haley, D B; Rushen, J; de Passillé, A M
2014-05-01
Lying time is an important measure of cow comfort, and the lying behavior of dairy cattle can now be recorded automatically with the use of accelerometers. To assess the effect that stall stocking density and the time that cows spend away from the home pen being milked has on the lying behavior of Holstein cattle, a total of 111 commercial freestall dairy farms were visited in Canada. Accelerometers were used to automatically record the lying behavior of 40 focal cows per farm. Total duration of lying, lying bout frequency, and the mean duration of lying bouts were calculated. Pen population was the total number of cows in the pen. To calculate stall stocking density (%) the number of cows in the pen and the number of useable stalls were counted and multiplied by 100, and the length × width of the pen was divided by the number of cows in the pen to calculate area/cow (m(2)). Time away from the pen per day was recorded from when the first cow in each pen was taken out of the home pen for milking until the last cow returned to the home pen after milking, and this time was multiplied by daily milking frequency. The median value for lying duration at the farm level was 10.6h/d, with 10.5 lying bouts/d, and a median lying bout duration of 1.2h. Stall stocking density ranged from 52.2 to 160.0%, with very few farms (7%) stocking at greater than 120%. Although stall stocking density was not significantly correlated with lying behavior, the results showed that no farm with stocking density greater that 100% achieved an average herd lying duration of 12h/d or higher, whereas 21.6% of farms with a stocking density of 100% or less did achieve the target lying time of ≥ 12 h/d, as recommended by the Canadian Code of Practice (χ(2)=4.86, degrees of freedom = 1). Area/cow (m(2)) was not correlated with any aspect of lying behavior, but regardless of space per cow, pen population was correlated with daily frequency and duration of lying bouts. As the number of cows in the pen increased, lying daily bout frequency increased (correlation coefficient = 0.24) and lying bout duration decreased (correlation coefficient = -0.30). Lying behavior was affected by the time the cows were away from the pen being milked. When cows were away from the pen for longer than 3.7h/d, no farm achieved the recommended herd median lying time of 12h/d or longer. These results suggest that providing 1 stall for each cow in the pen and minimizing time away from the pen are important factors if cattle are to achieve the recommended daily lying duration of 12h/d. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals
NASA Astrophysics Data System (ADS)
Frejlich, Pedro; Mărcuț, Ioan
2018-03-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.
Frejlich, Pedro; Mărcuț, Ioan
2018-01-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Quantum spaces, central extensions of Lie groups and related quantum field theories
NASA Astrophysics Data System (ADS)
Poulain, Timothé; Wallet, Jean-Christophe
2018-02-01
Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.
Dynamic reduction with applications to mathematical biology and other areas.
Sacker, Robert J; Von Bremen, Hubertus F
2007-10-01
In a difference or differential equation one is usually interested in finding solutions having certain properties, either intrinsic properties (e.g. bounded, periodic, almost periodic) or extrinsic properties (e.g. stable, asymptotically stable, globally asymptotically stable). In certain instances it may happen that the dependence of these equations on the state variable is such that one may (1) alter that dependency by replacing part of the state variable by a function from a class having some of the above properties and (2) solve the 'reduced' equation for a solution having the remaining properties and lying in the same class. This then sets up a mapping Τ of the class into itself, thus reducing the original problem to one of finding a fixed point of the mapping. The procedure is applied to obtain a globally asymptotically stable periodic solution for a system of difference equations modeling the interaction of wild and genetically altered mosquitoes in an environment yielding periodic parameters. It is also shown that certain coupled periodic systems of difference equations may be completely decoupled so that the mapping Τ is established by solving a set of scalar equations. Periodic difference equations of extended Ricker type and also rational difference equations with a finite number of delays are also considered by reducing them to equations without delays but with a larger period. Conditions are given guaranteeing the existence and global asymptotic stability of periodic solutions.
Rea, Alan; Cederstrand, Joel R.
1994-01-01
The data sets on this compact disc are a compilation of several geographic reference data sets of interest to the global-change research community. The data sets were chosen with input from the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) Data Committee and the GCIP Hydrometeorology and Atmospheric Subpanels. The data sets include: locations and periods of record for stream gages, reservoir gages, and meteorological stations; a 500-meter-resolution digital elevation model; grid-node locations for the Eta numerical weather-prediction model; and digital map data sets of geology, land use, streams, large reservoirs, average annual runoff, average annual precipitation, average annual temperature, average annual heating and cooling degree days, hydrologic units, and state and county boundaries. Also included are digital index maps for LANDSAT scenes, and for the U.S. Geological Survey 1:250,000, 1:100,000, and 1:24,000-scale map series. Most of the data sets cover the conterminous United States; the digital elevation model also includes part of southern Canada. The stream and reservoir gage and meteorological station files cover all states having area within the Mississippi River Basin plus that part of the Mississippi River Basin lying within Canada. Several data-base retrievals were processed by state, therefore many sites outside the Mississippi River Basin are included.
Alt, Mary
2011-01-01
The purpose of this study was to determine which factors contribute to the lexical learning deficits of children with specific language impairment (SLI). Participants included 40 7-8-year old participants, half of whom were diagnosed with SLI and half of whom had normal language skills. We tested hypotheses about the contributions to word learning of the initial encoding of phonological information and the link to long-term memory. Children took part in a computer-based fast-mapping task which manipulated word length and phonotactic probability to address the hypotheses. The task had a recognition and a production component. Data were analyzed using mixed ANOVAs with post-hoc testing. Results indicate that the main problem for children with SLI is with initial encoding, with implications for limited capacity. There was not strong evidence for specific deficits in the link to long-term memory. We were able to ascertain which aspects of lexical learning are most problematic for children with SLI in terms of fast-mapping. These findings may allow clinicians to focus intervention on known areas of weakness. Future directions include extending these findings to slow mapping scenarios. The reader will understand how different components of phonological working memory contribute to the word learning problems of children with specific language impairment. Copyright © 2010 Elsevier Inc. All rights reserved.
Geologic map of the northern plains of Mars
Tanaka, Kenneth L.; Skinner, James A.; Hare, Trent M.
2005-01-01
The northern plains of Mars cover nearly a third of the planet and constitute the planet's broadest region of lowlands. Apparently formed early in Mars' history, the northern lowlands served as a repository both for sediments shed from the adjacent ancient highlands and for volcanic flows and deposits from sources within and near the lowlands. Geomorphic evidence for extensive tectonic deformation and reworking of surface materials through release of volatiles occurs throughout the northern plains. In the polar region, Planum Boreum contains evidence for the accumulation of ice and dust, and surrounding dune fields suggest widespread aeolian transport and erosion. The most recent regional- and global-scale maps describing the geology of the northern plains are largely based on Viking Orbiter image data (Dial, 1984; Witbeck and Underwood, 1984; Scott and Tanaka, 1986; Greeley and Guest, 1987; Tanaka and Scott, 1987; Tanaka and others, 1992a; Rotto and Tanaka, 1995; Crumpler and others, 2001; McGill, 2002). These maps reveal highland, plains, volcanic, and polar units based on morphologic character, albedo, and relative ages using local stratigraphic relations and crater counts. This geologic map of the northern plains is the first published map that covers a significant part of Mars using topography and image data from both the Mars Global Surveyor and Mars Odyssey missions. The new data provide a fresh perspective on the geology of the region that reveals many previously unrecognizable units, features, and temporal relations. In addition, we adapted and instituted terrestrial mapping methods and stratigraphic conventions that we think result in a clearer and more objective map. We focus on mapping with the intent of reconstructing the history of geologic activity within the northern plains, including deposition, volcanism, erosion, tectonism, impact cratering, and other processes with the aid of comprehensive crater-density determinations. Mapped areas include all plains regions within the northern hemisphere of Mars, as well as an approximately 300-km-wide strip of cratered highland and volcanic regions, which border the plains. Note that not all of the contiguous northern plains are mapped, because some minor parts of Elysium and Amazonis Planitiae lie south of the equator.
The Simple Map for a Single-null Divertor Tokamak: How to Look for Self-Similarity in Chaos
NASA Astrophysics Data System (ADS)
Nguyen, Christina; Ali, Halima; Punjabi, Alkesh
2000-10-01
The movement of magnetic field lines inside a single-null divertor tokamak can be described by the Simple Map^1. The Simple Map in the Poincaré Surface of Section is given by the equations: X_1=X_0-KY_0(1-Y_0) and Y_1=Y_0+KX_1. In these equations, K remains constant at 0.60. However, the values for X0 and Y0 are changed. These values are changed so that we can zoom into chaos. Chaos lies between the region (0,0.997) and (0,1). In chaos, there lies order. As we zoom into chaos, we again find chaos and order that looks like the original good surfaces and chaos. This phenomenon is called self-similarity. Self-similarity can occur for an infinite number of times if one magnifies into the chaotic region. For this work, we write a program in a computer language called Fortran 77 and Gnuplot. This work is supported by US DOE OFES. Ms. Christina Nguyen is a HU CFRT Summer Fusion High School Workshop Scholar from Andrew Hill High School in California. She is supported by NASA SHARP Plus Program. 1. Punjabi A, Verma A and Boozer A, Phys Rev Lett 69 3322 (1992) and J Plasma Phys 52 91 (1994)
Lineaments and Mineral Occurrences in Pennsylvania
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Kowalik, W. S.; Gold, D. P.
1975-01-01
The author has identified the following significant results. A conservative lineament map of Pennsylvania interpreted from ERTS-1 channel 7 (infrared) imagery and Skylab photography was compared with the distribution of known metallic mines and mineral occurrences. Of 383 known mineral occurrences, 116 show a geographical association to 1 km wide lineaments, another 24 lie at the intersection of two lineaments, and one lies at the intersection of three lineaments. The Perkiomen Creek lineament in the Triassic Basin is associated with 9 Cu-Fe occurrences. Six Pb-Zn occurrences are associated with the Tyrone-Mount Union lineament. Thirteen other lineaments are associated with 3, 4, or 5 mineral occurrences each.
Workplace Commitment: A Conceptual Model Developed from Integrative Review of the Research
ERIC Educational Resources Information Center
Fornes, Sandra L.; Rocco, Tonette S.; Wollard, Karen K.
2008-01-01
This article investigates the previous research and theories of workplace commitment using content analysis and concept mapping. It provides a conceptual model of workplace commitment, integrating the literature on organizational commitment, occupational/career commitment, and individual commitment. The significance of this article lies in the…
Digital Maps, Matrices and Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2005-01-01
The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…
1. VIEW SOUTHWEST FROM CORNER OF EAST MAIN AND SHELL ...
1. VIEW SOUTHWEST FROM CORNER OF EAST MAIN AND SHELL STREETS, LOOKING TOWARD BUILDINGS BEHIND WHICH M/V 'FOX' LIES. SEE FIGURE 4 ON PAGE 6 OF DATA PAGES FOR MAP. - Motorized Sailing Vessel "Fox", Beached on East Bank ofBayou Lafourche, Larose, Lafourche Parish, LA
NASA Astrophysics Data System (ADS)
Blakely, R. J.; Sherrod, B. L.; Glen, J. M. G.; Ritzinger, B. T.; Staisch, L.
2017-12-01
High-resolution aeromagnetic surveys of Washington and Oregon, acquired over the past two decades by the U.S. Geological Survey, serve as proxies for geologic mapping in a terrain modified by glacial and catastrophic flood processes and covered by vegetation and urban development. In concert with geologic mapping and ancillary geophysical measurements, these data show possible kinematic links between forearc and backarc regions and have improved understanding of Cascadia crustal framework. Here we investigate a possible link between the NW-striking Wallula fault zone (WFZ), a segment of the Olympic-Wallowa lineament (OWL), and the N-striking Hite fault in Cascadia's backarc. Strike-slip displacement on the WFZ is indicated by offset of NW-striking Ice Harbor dikes (8.5 Ma), as displayed in magnetic anomalies. An exposed dike immediately south of the Walla Walla River has been used by others to argue against strike-slip displacement; i.e., the exposure lies south of one strand of the WFZ but is not displaced with respect to its linear magnetic anomaly north of the fault. However, high-resolution magnetic anomalies and a recently discovered, 25-km-long LiDAR scarp show that the dike exposure actually lies north of the fault and thus is irrelevant in determining strike-slip displacement on the fault. Our most recent magnetic survey illuminates with unprecedented detail strands of the N-striking Hite fault system and structural links to the WFZ. The survey lies over an area underlain by strongly magnetic Miocene Columbia River flood basalts (CRB) and older intrusive and volcanic rocks. NW-striking magnetic anomalies associated with the WFZ do not extend eastward beyond the Hite fault, suggesting that this is the region at which strain is transferred from the OWL. Magnetic anomalies originating from CRB across the Hite fault serve as piercing points and indicate 1.5 to 2 km of sinistral slip since middle Miocene. Vertical offsets in depth to magnetic basement across the fault suggest that vertical displacement also was important. We conclude that the WFZ and Hite fault are kinematically linked and that both exhibit oblique-slip displacement. Faults north and south of the WFZ are dominantly compressional and extensional, respectively, suggesting that the Hite fault serves as a backstop to dextral slip on the OWL.
Derivation of an observation-based map of North African dust emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun
Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visiblemore » and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.« less
A Synthesis of the Basal Thermal State of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Macgregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Aschwanden, A.; Clow, G. D.; Colgan, W. T.; Gogineni, S. P.; Morlighem, M.; Nowicki, S. M. J.; Paden, J. D.;
2016-01-01
Greenland's thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth's depths. Knowing whether Greenland's ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future. But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Our study synthesizes several independent methods to infer the Greenland Ice Sheet's basal thermal state -whether the bottom of the ice is melted or not-leading to the first map that identifies frozen and thawed areas across the whole ice sheet. This map will guide targets for future investigations of the Greenland Ice Sheet toward the most vulnerable and poorly understood regions, ultimately improving our understanding of its dynamics and contribution to future sea-level rise. It is of particular relevance to ongoing Operation IceBridge activities and future large-scale airborne missions over Greenland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1/sup 0/ x 2/sup 0/ NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin andmore » the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures.« less
Forced folding in a salty basin: Gada'-Ale in the Afar
NASA Astrophysics Data System (ADS)
Rafflin, Victoria; Hetherington, Rachel; Hagos, Miruts; van Wyk de Vries, Benjamin
2017-04-01
The Gada'-Ale Volcano in the Danakil Depression of Ethiopia is a curious shield-like, or flat dome-like volcanic centre in the Afar Rift. It has several fissure eruptions seen on its mid and lower flanks. It has an even more curious ring structure on its western side that has been interpreted as a salt diapir. The complex lies the central part of the basin where there are 1-2 km thick salt deposits. The area was active in 1990's (Amelung et al 2000) with no eruptive activity, but a possible intrusion. There was also an intrusion north of Gada'-Ale at Dallol in 2005 (Nobile et al 2012). Using Google Earth imagery, we have mapped the volcano, and note that: a) the main edifice has a thin skin of lava lying light coloured rock; b) that these thin deposits are sliding down the flank of volcano, and thrusting at the base. In doing so, they are breaking into detached plates. The light colour of the deposits, and the ability of the rock to slide on them suggest that are salt; Fractures on and around the volcano form curved patterns, around raised areas with several km diameter. These could be surface expressions of shallow sills. Putting the observations together with the known geology of adjacent centres like Dallol and Alu, we suggest that Gada'-Ale is a forced fold, created over a sill that has either bulged into a laccolith, or risen as a saucer-shaped sill. The upraised salt has caused the thin veneer of volcanics to slide off. That there are eruptive fissures on Gada'-Ale, and possible sill intrusions around the base suggests that the centre lies over a complex of sills that have gradually intruded and bulged the structure to its present level. Eruptions have contribute only a small amount to the whole topography of the edifice. We hope to visit the volcano in March and will being hot-off-the press details back to the EGU!
Map showing lava inundation zones for Mauna Loa, Hawai'i
Trusdell, F.A.; Graves, P.; Tincher, C.R.
2002-01-01
The Island of Hawai‘i is composed of five coalesced basaltic volcanoes. Lava flows constitute the greatest volcanic hazard from these volcanoes. This report is concerned with lava flow hazards on Mauna Loa, the largest of the island shield volcanoes. Hilo lies 58 km from the summit of Mauna Loa, the Kona coast 33 km, and the southernmost point of the island 61 km.Hawaiian volcanoes erupt two morphologically distinct types of lava, aa and pahoehoe. The surfaces of pahoehoe flows are rather smooth and undulating. Pahoehoe flows are commonly fed by lava tubes, which are well insulated, lava-filled conduits contained within the flows. The surfaces of aa flows are extremely rough and composed of lava fragments. Aa flows usually form lava channels rather than lava tubes.In Hawai‘i, lava flows are known to reach distances of 50 km or more. The flows usually advance slowly enough that people can escape from their paths. Anything overwhelmed by a flow will be damaged or destroyed by burial, crushing, or ignition. Mauna Loa makes up 51 percent of the surface area of the Island of Hawai‘i. Geologic mapping shows that lava flows have covered more than 40 percent of the surface every 1,000 years. Since written descriptions of its activity began in A.D. 1832, Mauna Loa has erupted 33 times. Some eruptions begin with only brief seismic unrest, whereas others start several months to a year following increased seismic activity. Once underway, the eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities. For example, the 1950 flows from the southwest rift zone reached the ocean in approximately three hours. The two longest flows of Mauna Loa are pahoehoe flows from the 50-kilometer-long 1859 and the 48-kilometer-long 1880-81 eruptions.Mauna Loa will undoubtedly erupt again. When it does, the first critical question that must be answered is: Which areas are threatened with inundation? Once the threatened areas are established, we can address the second critical question: What people, property, and facilities are at risk? These questions can be answered by estimating the areas most likely to be affected by eruptions originating on various parts of the volcano. This report contains such estimates, based on the known source vents and areas affected by past eruptions. We have divided the volcano into potential lava inundation zones and prepared maps of these zones, which are presented here on the accompanying map sheets.
NASA Astrophysics Data System (ADS)
Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A.
2014-07-01
The main objective of the paper is the application of the KULTURisk Regional Risk Assessment (KR-RRA) methodology, presented in the companion paper (Part 1, Ronco et al., 2014), to the Sihl River valley, in Switzerland. Through a tuning process of the methodology to the site-specific context and features, flood related risks have been assessed for different receptors lying on the Sihl River valley including the city of Zurich, which represents a typical case of river flooding in urban area. After characterizing the peculiarities of the specific case study, risk maps have been developed under a 300 years return period scenario (selected as baseline) for six identified relevant targets, exposed to flood risk in the Sihl valley, namely: people, economic activities (including buildings, infrastructures and agriculture), natural and semi-natural systems and cultural heritage. Finally, the total risk index map, which allows to identify and rank areas and hotspots at risk by means of Multi Criteria Decision Analysis tools, has been produced to visualize the spatial pattern of flood risk within the area of study. By means of a tailored participative approach, the total risk maps supplement the consideration of technical experts with the (essential) point of view of the relevant stakeholders for the appraisal of the specific scores and weights related to the receptor-relative risks. The total risk maps obtained for the Sihl River case study are associated with the lower classes of risk. In general, higher relative risks are concentrated in the deeply urbanized area within and around the Zurich city centre and areas that rely just behind to the Sihl River course. Here, forecasted injuries and potential fatalities are mainly due to high population density and high presence of old (vulnerable) people; inundated buildings are mainly classified as continuous and discontinuous urban fabric; flooded roads, pathways and railways, the majority of them referring to the Zurich main train station (Hauptbahnhof), are at high risk of inundation, causing huge indirect damages. The analysis of flood risk to agriculture, natural and semi-natural systems and cultural heritage have pointed out that these receptors could be relatively less impacted by the selected flood scenario mainly because their scattered presence. Finally, the application of the KR-RRA methodology to the Sihl River case study as well as to several other sites across Europe (not presented here), has demonstrated its flexibility and possible adaptation to different geographical and socio-economic contexts, depending on data availability and peculiarities of the sites, as well as for other hazard scenarios.
Preliminary geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California
Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Stone, Paul; Powell, Charles L.; Gurrola, Larry D.; Selting, Amy J.; Brandt, Theodore R.
2002-01-01
This report presents a new geologic digital map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. This preliminary map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Santa Barbara and Goleta 7.5' quadrangles. A planned second version will extend the mapping westward into the adjoining Dos Pueblos Canyon quadrangle and eastward into the Carpinteria quadrangle. The mapping presented here results from the collaborative efforts of geologists with the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) (Minor, Kellogg, Stanley, Stone, and Powell) and the tectonic geomorphology research group at the University of California at Santa Barbara (Gurrola and Selting). C.L. Powell, II, performed all new fossil identifications and interpretations reported herein. T.R. Brandt designed and edited the GIS database,performed GIS database integration and created the digital cartography for the map layout. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along a west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain region, which extends from the Santa Ynez Mountains on the north to the Santa Barbara Channel on the south, is underlain by numerous active and potentially active folds and partly buried thrust faults of the Santa Barbara fold and fault belt. Strong earthquakes that occurred in the region in 1925 (6.8 magnitude) and 1978 (5.1 magnitude) are evidence that such structures pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. Also, young landslide deposits along the steep lower flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements that may threaten urbanized parts of the coastal plain. Deformed sedimentary rocks in the subsurface of the coastal plain and the adjacent Santa Barbara Channel contain deposits of oil and gas, some of which are currently being extracted. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and prediction of these and other geologic hazards and resources in the coastal plain region. In the map area the oldest stratigraphic units consist of resistant Eocene to Oligocene marine and terrestrial sedimentary rocks that form a mostly southward-dipping and laterally continuous sequence along the south flank of the Santa Ynez Mountains. Less resistant, but more variably deformed, Miocene, Pliocene, and Pleistocene marine sedimentary rocks and deposits are exposed in the lower Santa Ynez foothills and in the coastal hills and sea cliffs farther south. Pleistocene and Holocene surficial alluvial, colluvial, estuarine, and marine-terrace deposits directly underlie much of the low-lying coastal plain area, and similar-aged alluvial and landslide deposits locally mantle the lower flanks of the Santa Ynez Mountains. Structurally, the Santa Barbara coastal plain area is dominated by the Santa Barbara fold and fault belt, an east-west-trending zone of Quaternary, partly active folds and blind and exposed reverse and thrust faults. The dominant trend of individual structures within the belt is west-northwest -- slightly oblique to the overall trend of the fold and fault belt. A conspicuous exception, however, is the More Ranch fault system, which strikes east-northeast across the fold and f
Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins
NASA Astrophysics Data System (ADS)
Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.
2016-02-01
Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.
Oswald, William E.; Stewart, Aisha E. P.; Flanders, W. Dana; Kramer, Michael R.; Endeshaw, Tekola; Zerihun, Mulat; Melaku, Birhanu; Sata, Eshetu; Gessesse, Demelash; Teferi, Tesfaye; Tadesse, Zerihun; Guadie, Birhan; King, Jonathan D.; Emerson, Paul M.; Callahan, Elizabeth K.; Moe, Christine L.; Clasen, Thomas F.
2016-01-01
This study developed and validated a model for predicting the probability that communities in Amhara Region, Ethiopia, have low sanitation coverage, based on environmental and sociodemographic conditions. Community sanitation coverage was measured between 2011 and 2014 through trachoma control program evaluation surveys. Information on environmental and sociodemographic conditions was obtained from available data sources and linked with community data using a geographic information system. Logistic regression was used to identify predictors of low community sanitation coverage (< 20% versus ≥ 20%). The selected model was geographically and temporally validated. Model-predicted probabilities of low community sanitation coverage were mapped. Among 1,502 communities, 344 (22.90%) had coverage below 20%. The selected model included measures for high topsoil gravel content, an indicator for low-lying land, population density, altitude, and rainfall and had reasonable predictive discrimination (area under the curve = 0.75, 95% confidence interval = 0.72, 0.78). Measures of soil stability were strongly associated with low community sanitation coverage, controlling for community wealth, and other factors. A model using available environmental and sociodemographic data predicted low community sanitation coverage for areas across Amhara Region with fair discrimination. This approach could assist sanitation programs and trachoma control programs, scaling up or in hyperendemic areas, to target vulnerable areas with additional activities or alternate technologies. PMID:27430547
Morin, Robert L.; Wheeler, Karen L.; McPhee, Darcy K.; Dinterman, Philip A.; Watt, Janet T.
2007-01-01
Gravity data were collected from 2004 through 2006 to assist in mapping subsurface geology in the northern Willamette Valley and vicinity, northwestern Oregon and southwestern Washington. Prior to this effort to improve the gravity data coverage in the study area, very little regional data were available. This report gives the principle facts for 2710 new gravity stations and 1446 preexisting gravity stations. Much of the study area is now covered with data of sufficient density to define basin boundaries and correlate with many of the larger fault systems. ,p> The study area lies between 44? 52.5 and 46? N latitude and between 122? 15 and 123? 37.5 W longitude. Although this is a continuing project and more gravity data is expected to be collected, this report is being published to show the progress of the data collection. The majority of these data are spaced at about 1.6 km (1 mile), but three closely spaced profiles were measured in the Portland area across several faults. To obtain a 1.6 km grid of data points would require about 5120 gravity stations. To date we have collected 2710 stations. Including the preexisting data points, the total number of stations is 4156, and complete regional coverage is about 80 percent at this time.
Bedrock geology of the Mount Carmel and Southington quadrangles, Connecticut
Fritts, Crawford Ellswroth
1962-01-01
New data concerning the geologic structure, stratigraphy, petrography, origin, and ages of bedrock formations in an area of approximately 111 square miles in south-central Connecticut were obtained in the course of detailed geologic mapping from 1957 to 1960. Mapping was done at a scale of 1:24,000 on topographic base maps having a 10-foot contour interval. Bedrock formations are classified in two principal categories. The first includes metasedimentary, meta-igneous, and igneous rocks of Precambrian to Devonian age, which crop out in the western parts of both quadrangles. The second includes sedimentary and igneous rocks of the Newark Group of Late Triassic age, which crop out in the eastern parts of the quadrangles. Diabase dikes, which are Late Triassic or younger in age, intruded rocks in both the western and eastern parts of the map area. Rocks in the western part of the area underwent progressive regional metamorphism in Middle to Late Devonian time. The arrangement of the chlorite, garnet, biotite, staurolite, and kyanite zones here is approximately the mirror-image of metamorphic zones in Dutchess County, New York. However, garnet appeared before biotite in politic rocks in the map area, because the ration MgO/FeO is low. Waterbury Gneiss and the intrusive Woodtick Gneiss are parts of a basement complex of Precambrian age, which forms the core of the Waterbury dome. This structure is near the southern end of a line of similar domes that lie along the crest of a geanticline east of the Green Mountain anticlinorium. The Waterbury Gneiss is believed to have been metamorphosed in Precambrian time as well as in Paleozoic time. The Woodtick Gneiss also may have been metamorphosed more than once. In Paleozoic time, sediments were deposited in geosynclines during two main cycles of sedimentation. The Straits, Southington Mountain, and Derby Hill Schists, which range in age from Cambrian to Ordovician, reflect a transition from relatively clean politic sediments to thinly layered sediments that contained rather high percentages of fine-grained volcanic debris. Metadiabase and metabasalt extrusives above Derby Hill Schist south of the map area represent more intense volcanic activity before or during the early stages of the Taconic disturbance in Late Ordovician time. Impure argillaceous, siliceous, and minor calcareous sediments of the Wepawaug Schist, which is Silurian and Devonian in age, were deposited unconformably on older rocks during renewed subsidence of a geosyncline. The Wepawaug now occupies the trough of a tight syncline, which formed before and during progressive regional metamorphism at the time of the Acadian orogeny in middle to Late Devonian time. Felsic igneous rocks were intruded into the metasedimentary formations of Paleozoic age before the climax of the latest progressive regional metamorphism. Intrusives that gave rise to the Prospect and Ansonia Gneisses were emplaced mainly in the Southington Mountain Schist, and the igneous rocks as well as the host rocks were metamorphosed in the staurolite zone. Although it is possible that these two intrusives were emplaced during the Taconic disturbance, the writer believes it more likely that the igneous rocks from which the Prospect and Ansonia Gneisses formed were emplaced during the Acadian orogeny. Woodbridge Granite, which intruded the Wepawaug Schist, is Devonian in age and undoubtedly was emplaced during the Acadian orogeny. In this area the granite is essentially unmetamorphosed, because it is in the chlorite, garnet, and biotite zones. Southwest of the map area, however, metamorphic equivalents of the Woodbridge are found in Wepawaug Schist in the staurolite zone. The Ansonia Gneiss, therefore, may be a metamorphic equivalent of the Woodbridge Granite. Rocks of Late Triassic age formerly covered the entire map area, but were eroded from the western part after tilting and faulting in Late Triassic time. The New Haven Arkose of the Newark
Development of Generation System of Simplified Digital Maps
NASA Astrophysics Data System (ADS)
Uchimura, Keiichi; Kawano, Masato; Tokitsu, Hiroki; Hu, Zhencheng
In recent years, digital maps have been used in a variety of scenarios, including car navigation systems and map information services over the Internet. These digital maps are formed by multiple layers of maps of different scales; the map data most suitable for the specific situation are used. Currently, the production of map data of different scales is done by hand due to constraints related to processing time and accuracy. We conducted research concerning technologies for automatic generation of simplified map data from detailed map data. In the present paper, the authors propose the following: (1) a method to transform data related to streets, rivers, etc. containing widths into line data, (2) a method to eliminate the component points of the data, and (3) a method to eliminate data that lie below a certain threshold. In addition, in order to evaluate the proposed method, a user survey was conducted; in this survey we compared maps generated using the proposed method with the commercially available maps. From the viewpoint of the amount of data reduction and processing time, and on the basis of the results of the survey, we confirmed the effectiveness of the automatic generation of simplified maps using the proposed methods.
Air Photo Analysis, Photo Interpretation Logic, and Feature Extraction,
1984-06-01
and at times predict their composi- tion and texture. Such events as deposition, sedimentation , and volcanism constantly add new materials to the...established by depositing sediments in low areas, by large lava flows, by exposure of flat-lying intrusive masses, and * by grinding or eroding an irregular...lying area of sediments can be called a plain only so long. There comes a time when the forces of erosion have so ex- tended and deepened the valleys
Yin, Lijun; Weber, Bernd
2016-03-01
Can beneficial ends justify morally questionable means? To investigate how monetary outcomes influence the neural responses to lying, we used a modified, cheap talk sender-receiver game in which participants were the direct recipients of lies and truthful statements resulting in either beneficial or harmful monetary outcomes. Both truth-telling (vs lying) as well as beneficial (vs harmful) outcomes elicited higher activity in the nucleus accumbens. Lying (vs truth-telling) elicited higher activity in the supplementary motor area, right inferior frontal gyrus, superior temporal sulcus and left anterior insula. Moreover, the significant interaction effect was found in the left amygdala, which showed that the monetary outcomes modulated the neural activity in the left amygdala only when truth-telling rather than lying. Our study identified a neural network associated with the reception of lies and truth, including the regions linked to the reward process, recognition and emotional experiences of being treated (dis)honestly. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Method of producing strained-layer semiconductor devices via subsurface-patterning
Dodson, Brian W.
1993-01-01
A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.
Revision of the Beckwith and Bear River formations of southeastern Idaho
Mansfield, G.R.; Roundy, P.V.
1917-01-01
In the detailed geologic mapping of the Wayan and Montpelier quadrangles, in south-eastern Idaho and adjacent territory, it has been found necessary to apply new names to strata hitherto referred to the Beckwith and Bear River formations or to portions of the Laramie as mapped by the Hayden Survey. The two quadrangles are contiguous, and the Montpelier quadrangle lies south of the Wayan. They occupy the corner of the State and include a very narrow strip in northeastern Utah and a somewhat broader strip in western Wyoming.
Coronal bright points in microwaves
NASA Technical Reports Server (NTRS)
Kundu, M. R.; Nitta, N.
1988-01-01
An excellent map of the quiet sun showing coronal bright points at 20-cm wavelength was produced using the VLA on February 13, 1987. The locations of bright points (BPs) were studied relative to features on the photospheric magnetogram and Ca K spectroheliogram. Most bright points appearing in the full 5-hour synthesized map are associated with small bipolar structures on the photospheric magnetogram; and the brightest part of a BP tends to lie on the boundary of a supergranulation network. The bright points exhibit rapid variations in intensity superposed on an apparently slow variation.
On the ⋆-PRODUCT Quantization and the Duflo Map in Three Dimensions
NASA Astrophysics Data System (ADS)
Rosa, Luigi; Vitale, Patrizia
2012-11-01
We analyze the ⋆-product induced on ℱ(ℝ3) by a suitable reduction of the Moyal product defined on ℱ(ℝ4). This is obtained through the identification ℝ3≃𝔤*, with 𝔤 a three-dimensional Lie algebra. We consider the 𝔰𝔲(2) case, exhibit a matrix basis and realize the algebra of functions on 𝔰𝔲(2)* in such a basis. The relation to the Duflo map is discussed. As an application to quantum mechanics we compute the spectrum of the hydrogen atom.
Wynn, Jeff
2006-01-01
This report summarizes the results of two airborne geophysical surveys conducted in the upper San Pedro Valley of southeastern Arizona in 1997 and 1999. The combined surveys cover about 1,000 square kilometers and extend from the Huachuca Mountains on the west to the Mule Mountains and Tombstone Hills on the east and from north of the Babocomari River to near the Mexican border on the south. The surveys included the acquisition of high-resolution magnetic data, which were used to map depth to the crystalline basement rocks underlying the sediments filling the basin. The magnetic inversion results show a complex basement morphology, with sediment thickness in the center of the valley ranging from ~237 meters beneath the city of Sierra Vista to ~1,500 meters beneath Huachuca City and the Palominas area near the Mexican border. The surveys also included acquisition of 60-channel time-domain electromagnetic (EM) data. Extensive quality analyses of these data, including inversion to conductivity vs. depth (conductivity-depth-transform or CDT) profiles and comparisons with electrical well logs, show that the electrical conductor mapped represents the subsurface water-bearing sediments throughout most of the basin. In a few places (notably the mouth of Huachuca Canyon), the reported water table lies above where the electrical conductor places it. These exceptions appear to be due to a combination of outdated water-table information, significant horizontal displacement between the wells and the CDT profiles, and a subtle calibration issue with the CDT algorithm apparent only in areas of highly resistive (very dry) overburden. These occasional disparities appear in less than 5 percent of the surveyed area. Observations show, however, that wells drilled in the thick unsaturated zone along the Huachuca Mountain front eventually intersect water, at which point the water rapidly rises high into the unsaturated zone within the wellbore. This rising of water in a wellbore implies some sort of confinement below the thick unsaturated zone, a confinement that is not identified in the available literature. Occasional disparities notwithstanding, maps of the electrical conductor derived from the airborne EM system provide a synoptic view of the presence of water underlying the upper San Pedro Valley, including its three-dimensional distribution. The EM data even show faults previously only inferred from geologic mapping. The magnetic and electromagnetic data together appear to show the thickness of the sediments, the water in the saturated sediments down to a maximum of about 400 meters depth, and even places where the main ground-water body is not in direct contact with the San Pedro River. However, the geophysical data cannot reveal anything directly about hydraulic conductivity or ground-water flow. Estimating these characteristics requires new hydraulic modeling based in part on this report. One concern to reviewers of this report is the effect that clays may have on the electrical conductor mapped with the airborne geophysical system. Although the water in the basin is unusually conductive, averaging 338 microsiemens per centimeter, reasoning cited below suggests that the contribution of clays to the overall conductivity would be relatively small. Basic principles of sedimentary geology suggest that silts and clays should dominate the center of the basin, while sands and gravels would tend to dominate the margins. Although clay content may increase the amplitude of the observed electrical conductors somewhat, it will not affect the depths to the conductor derived from depth inversions. Further, fine-grained sediments generally have higher porosity and tend to lie toward a basin center, a fact in general agreement with the observed geophysical data.
Mapping Gnss Restricted Environments with a Drone Tandem and Indirect Position Control
NASA Astrophysics Data System (ADS)
Cledat, E.; Cucci, D. A.
2017-08-01
The problem of autonomously mapping highly cluttered environments, such as urban and natural canyons, is intractable with the current UAV technology. The reason lies in the absence or unreliability of GNSS signals due to partial sky occlusion or multi-path effects. High quality carrier-phase observations are also required in efficient mapping paradigms, such as Assisted Aerial Triangulation, to achieve high ground accuracy without the need of dense networks of ground control points. In this work we consider a drone tandem in which the first drone flies outside the canyon, where GNSS constellation is ideal, visually tracks the second drone and provides an indirect position control for it. This enables both autonomous guidance and accurate mapping of GNSS restricted environments without the need of ground control points. We address the technical feasibility of this concept considering preliminary real-world experiments in comparable conditions and we perform a mapping accuracy prediction based on a simulation scenario.
Wheeler, George Montague
1878-01-01
I [George M. Wheeler] have the honor to submit the following report for the fiscal year ending June 30, 1878: At the close of the present field season parties of the survey will have been engaged in fourteen of the fifteen States and Territories, a part or all of which lie west of the 100th meridian of longitude; the remaining political division (Dakota) alone having been unvisited. The progress of the work since its commencement has been directed over connected areas, and in such manner that, at a minimum of time and expense, as large areas as practicable, pursuant to required methods, shall be topographically surveyed in detail, to the end that the War Department shall have, at as early a date as possible, a complete map of the entire region.
Analysis of the Gulf of Mexico's Veracruz-Havana Route of La Flota de la Nueva España
NASA Astrophysics Data System (ADS)
Lugo-Fernández, A.; Ball, D. A.; Gravois, M.; Horrell, C.; Irion, J. B.
2007-06-01
During colonial times, an active maritime trade existed between Spain and the New World, with convoys sailing annually to and from Mexico and returning via Havana, Cuba, after wintering in America. A database constructed from secondary and open sources revealed that Spanish vessels were sailing over open waters along a northern path near Louisiana and a southern path across the central Gulf of Mexico. These routes were traversed in about one month and scheduling for the convoy was based on an understanding of the Americas’ meteorological and oceanographic climate. However, other factors may also have been involved in the directional layout of the routes. Today these ancient routes crisscross planning areas for oil and gas lease sales in the US Exclusive Economic Zone and the information presented in this article may aid in identifying areas where historic shipwrecks may lie. Maps and documents found during this study helped piece together the evolution of our understanding of the Gulf of Mexico surface circulation and how this knowledge influenced sailing during colonial times.
Correlation between topological structure and its properties in dynamic singular vector fields.
Vasilev, Vasyl; Soskin, Marat
2016-04-20
A new technique for establishment of topology measurements for static and dynamic singular vector fields is elaborated. It is based on precise measurement of the 3D landscape of ellipticity distribution for a checked singular optical field with C points on the tops of ellipticity hills. Vector fields possess three-component topology: areas with right-hand (RH) and left-hand (LH) ellipses, and delimiting those L lines as the singularities of handedness. The azimuth map of polarization ellipses is common for both RH and LH ellipses of vector fields and do not feel L lines. The strict rules were confirmed experimentally, which define the connection between the sign of underlying optical vortices and morphological parameters of upper-lying C points. Percolation phenomena explain their realization in-between singular vector fields and long duration of their chains of 103 s order.
High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle
NASA Astrophysics Data System (ADS)
Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas
2017-03-01
Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.
NASA Astrophysics Data System (ADS)
Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.
2000-11-01
An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.
Symmetries of the Space of Linear Symplectic Connections
NASA Astrophysics Data System (ADS)
Fox, Daniel J. F.
2017-01-01
There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.
Geology of the Terre Adélie Craton (135 – 146˚ E)
Ménot, R.P.; Duclaux, G.; Peucat, J.J.; Rolland, Y.; Guillot, S.; Fanning, M.; Bascou, J.; Gapais, D.; Pêcher, A.
2007-01-01
More than 15 years of field and laboratory investigations on samples from Terre Adélie to the western part of George Vth Land (135 to 146°E) during the GEOLETA program allow a reassessment of the Terre Adélie Craton (TAC) geology. The TAC represents the largest exposed fragment of the East Antarctic Shield preserved from both Grenville and Ross tectono-metamorphic events. Therefore it corresponds to a well-preserved continental segment that developed from the Neoarchean to the Paleoproterozoic. Together with the Gawler Craton in South Australia, the TAC is considered as part of the Mawson continent, i.e. a striking piece of the Rodinia Supercontinent. However, this craton represents one of the less studied parts of the East Antarctic Shield. The three maps presented here clearly point out the extent of two distinct domains within the Terre Adélie Craton and suggest that the TAC was built up through a polyphased evolution during the Neoarchean-Siderian (c.a. 2.5Ga) and the Statherian (c.a. 1.7Ga) periods. These data support a complete re-assessment of the TAC geology and represent a valuable base for the understanding of global geodynamics changes during Paleoproterozoic times.
Geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado
Shroba, Ralph R.; Kellogg, Karl S.; Brandt, Theodore R.
2014-01-01
The geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado, portrays the geology in the upper Arkansas valley and along the lower flanks of the Sawatch Range and Mosquito Range near the town of Granite. The oldest rocks, exposed in the southern and eastern parts of the quadrangle, include gneiss and plutonic rocks of Paleoproterozoic age. These rocks are intruded by younger plutonic rocks of Mesoproterozoic age. Felsic hypabyssal dikes, plugs, and plutons, ranging in age from Late Cretaceous or Paleocene to late Oligocene, locally intruded Proterozoic rocks. A small andesite lava flow of upper Oligocene age overlies Paleoproterozoic rock, just south of the Twin Lakes Reservoir. Gravelly fluvial and fan deposits of the Miocene and lower Pliocene(?) Dry Union Formation are preserved in the post-30 Ma upper Arkansas valley graben, a northern extension of the Rio Grande rift. Mostly north-northwest-trending faults displace deposits of the Dry Union Formation and older rock units. Light detection and ranging (lidar) imagery suggests that two short faults, near the Arkansas River, may displace surficial deposits as young as middle Pleistocene. Surficial deposits of middle Pleistocene to Holocene age are widespread in the Granite quadrangle, particularly in the major valleys and on slopes underlain by the Dry Union Formation. The main deposits are glacial outwash and post-glacial alluvium; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; till deposited during the Pinedale, Bull Lake, and pre-Bull Lake glaciations; rock-glacier deposits; and placer-tailings deposits formed by hydraulic mining and other mining methods used to concentrate native gold. Hydrologic and geologic processes locally affect use of the land and locally may be of concern regarding the stability of buildings and infrastructure, chiefly in low-lying areas along and near stream channels and locally in areas of moderate to steep slopes. Low-lying areas along major and minor streams are subject to periodic stream flooding. Mass-movement deposits and deposits of the Dry Union Formation that underlie moderate to steep slopes are locally subject to creep, debris-flow deposition, and landsliding. Proterozoic rocks that underlie steep slopes are locally subject to rockfall. Sand and gravel resources for construction and other uses in and near the Granite quadrangle are present in outwash-terrace deposits of middle and late Pleistocene age along the Arkansas River and along tributary streams in glaciated valleys.
1995-10-29
STS073-E-5274 (3 Nov. 1995) --- Colima was photographed with a color Electronic Still Camera (ESC) onboard the Earth-orbiting space shuttle Columbia. The volcano lies due south of Guadalajara and Lake Chapala. It is considered to be one of Mexico's most active and most dangerous volcanoes, lying not far from heavily populated areas.
Spontaneous PT-Symmetry Breaking for Systems of Noncommutative Euclidean Lie Algebraic Type
NASA Astrophysics Data System (ADS)
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2015-11-01
We propose a noncommutative version of the Euclidean Lie algebra E 2. Several types of non-Hermitian Hamiltonian systems expressed in terms of generic combinations of the generators of this algebra are investigated. Using the breakdown of the explicitly constructed Dyson maps as a criterium, we identify the domains in the parameter space in which the Hamiltonians have real energy spectra and determine the exceptional points signifying the crossover into the different types of spontaneously broken PT-symmetric regions with pairs of complex conjugate eigenvalues. We find exceptional points which remain invariant under the deformation as well as exceptional points becoming dependent on the deformation parameter of the algebra.
Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii
Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.
2007-01-01
INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.
Tracing accelerated galaxy formation in a proto-cluster at z=3.8 with GMOS
NASA Astrophysics Data System (ADS)
Handel Hughes, David; Lowenthal, James; Wilson, Grant; Yun, Min S.; Fazio, Giovanni G.; Huang, Jiasheng; Aretxaga, Itziar; Porras, Alicia; Smail, Ian; Ivison, Rob J.; Stevens, Jason; Dunlop, James S.
2007-08-01
The 1.1mm AzTEC camera has recently conducted the largest and most sensitive survey at mm-wavelengths towards a powerful high-redshift radio galaxy: 4C41.17 at z 3.8. The 1.1mm map reveals a significant over-density of luminous, massive dust-enshrouded galaxies, a factor of 10 more numerous than the blank-field mm-galaxy population, which statistically is expected to lie at lower-redshifts, z 2.2. The AzTEC sources are expected to trace the bulk of the elliptical galaxy formation within a massive protocluster at z 3.8, over an unprecedentedly large area of 6 x 6 Mpc^2. We propose to acquire multi-object spectroscopic observations over 3 adjacent GMOS fields to provide redshifts for 5 SMA/AzTEC sources, which have sub-arcsec interferometric precisions, identifying unambiguously their optical/IR counterparts, which are inferred to be forming stars at rates in excess of 500 M_sun/yr ( L(FIR) > 10^13 L_sun ). Although these are dusty objects, we expect most of them to have patchy obscuration, and thus be able to detect emission-lines from the star-forming regions, as has been achieved with the mm-selected blank-field population. Additional slitlets in the 3 GMOS masks will also simultaneously measure the redshift of 30 neighbouring (< 20") optical/Spitzer selected galaxies that could be associated with the haloes of these SMA detected AzTEC sources, and 60 additional optical/Spitzer sources that, through photo-z, are likely to be at z 3.8 and be associated with other mm-galaxies that lie within the AzTEC map. These GMOS data will identify whether small groups of dynamically-interacting galaxies in the local environment (dark matter haloes) of the gas-rich, luminous starburst AzTEC sources are stimulating the accelerated levels of galaxy formation observed towards this biased region (protocluster) in the early Universe.
Sherrod, Brian L.; Barnett, Elizabeth; Schermer, Elizabeth; Kelsey, Harvey M.; Hughes, Jonathan; Foit, Franklin F.; Weaver, Craig S.; Haugerud, Ralph; Hyatt, Tim
2013-01-01
We use LiDAR imagery to identify two fault scarps on latest Pleistocene glacial outwash deposits along the North Fork Nooksack River in Whatcom County, Washington (United States). Mapping and paleoseismic investigation of these previously unknown scarps provide constraints on the earthquake history and seismic hazard in the northern Puget Lowland. The Kendall scarp lies along the mapped trace of the Boulder Creek fault, a south-dipping Tertiary normal fault, and the Canyon Creek scarp lies in close proximity to the south-dipping Canyon Creek fault and the south-dipping Glacier Extensional fault. Both scarps are south-side-up, opposite the sense of displacement observed on the nearby bedrock faults. Trenches excavated across these scarps exposed folded and faulted late Quaternary glacial outwash, locally dated between ca. 12 and 13 ka, and Holocene buried soils and scarp colluvium. Reverse and oblique faulting of the soils and colluvial deposits indicates at least two late Holocene earthquakes, while folding of the glacial outwash prior to formation of the post-glacial soil suggests an earlier Holocene earthquake. Abrupt changes in bed thickness across faults in the Canyon Creek excavation suggest a lateral component of slip. Sediments in a wetland adjacent to the Kendall scarp record three pond-forming episodes during the Holocene—we infer that surface ruptures on the Boulder Creek fault during past earthquakes temporarily blocked the stream channel and created an ephemeral lake. The Boulder Creek and Canyon Creek faults formed in the early to mid-Tertiary as normal faults and likely lay dormant until reactivated as reverse faults in a new stress regime. The most recent earthquakes—each likely Mw > 6.3 and dating to ca. 8050–7250 calendar years B.P. (cal yr B.P.), 3190–2980 cal. yr B.P., and 910–740 cal. yr B.P.—demonstrate that reverse faulting in the northern Puget Lowland poses a hazard to urban areas between Seattle (Washington) and Vancouver, British Columbia (Canada).
Geologic map of the Winslow 30’ × 60’ quadrangle, Coconino and Navajo Counties, northern Arizona
Billingsley, George H.; Block, Debra L.; Redsteer, Margaret Hiza
2013-01-01
The Winslow 30’ × 60’ quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Coconino and Navajo Counties of northern Arizona. It is characterized by gently dipping Paleozoic and Mesozoic strata that dip 1° to 2° northeastward in the southwestern part of the quadrangle and become nearly flat-lying in the northeastern part of the quadrangle. In the northeastern part, a shallow Cenozoic erosional basin developed about 20 million years ago, which subsequently was filled with flat-lying Miocene and Pliocene lacustrine sediments of the Bidahochi Formation, as well as associated volcanic rocks of the Hopi Buttes Volcanic Field. The lacustrine sediments and volcanic rocks unconformably overlie Triassic, Jurassic, and Cretaceous strata. Beginning about early Pliocene time, the Little Colorado River and its tributaries began to remove large volumes of Paleozoic and Mesozoic bedrock from the map area. This erosional development has continued through Pleistocene and Holocene time. Fluvial sediments accumulated episodically throughout this erosional cycle, as indicated by isolated Pliocene(?) and Pleistocene Little Colorado River terrace-gravel deposits on Tucker Mesa and Toltec Divide west of Winslow and younger terrace-gravel deposits along the margins of the Little Colorado River Valley. These gravel deposits suggest that the ancestral Little Colorado River and its valley has eroded and migrated northeastward toward its present location and largely parallels the strike of the Chinle Formation. Today, the Little Colorado River meanders within a 5-km (3-mi) wide valley between Winslow and Leupp, where soft strata of the Chinle Formation is mostly covered by an unknown thickness of Holocene flood-plain deposits. In modern times, the Little Colorado River channel has changed its position as much as a 1.5 km (1 mi) during flood events, but for much of the year the channel is a dry river bed. Surficial alluvial and eolian deposits cover extensive parts of the bedrock outcrops over the entire Winslow quadrangle.
Correlation functions from a unified variational principle: Trial Lie groups
NASA Astrophysics Data System (ADS)
Balian, R.; Vénéroni, M.
2015-11-01
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie-Poisson structure. At second order, the variational expression for two-time correlation functions separates-as does its exact counterpart-the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.
Preferences of lame cows for type of surface and level of social contact in hospital pens.
Jensen, M B; Herskin, M S; Thomsen, P T; Forkman, B; Houe, H
2015-07-01
To investigate preferences of lame cows for flooring and level of social contact, 37 lame, lactating dairy cows (diagnosed with sole ulcer or white line disease) were housed individually for 6 d in experimental hospital pens, where they could choose between 2 equally sized areas (6m × 4.5m) with either deep-bedded sand or a rubber surface. On both surfaces, cows could choose between 2 equally sized areas either near or away from heifers in a neighboring group pen. Cows spent more time lying on the deep-bedded sand than on the rubber surface (870 vs. 71min/d), whereas they spent less time upright (standing or walking) on the sand than on the rubber surface (180 vs. 319min/d). In addition, cows spent less time self-grooming on the sand than on the rubber surface (2.2 vs. 4.7% of time spent upright). With regard to level of social contact, cows spent more time near the neighboring heifers than away from them; this was true both while lying (565 vs. 374min/d) and upright (276 vs. 223min/d). Self-grooming was seen significantly more near neighboring heifers than away from them (4.8 vs. 3.3% of time spent upright). When lying, cows more often positioned themselves in areas of the pen where they could maintain visual contact with neighboring heifers. Lame cows with sole ulcers or white line disease preferred deep-bedded sand for lying, and preferred to perform self-grooming while on the rubber surface. Similarly, they preferred to lie and to perform self-grooming while positioned near animals in a neighboring pen. These results suggest that provision of a deep-bedded lying area in hospital pens is important to the welfare of lame cows. We found no evidence of isolation-seeking behavior in animals with these diagnoses (and no systemic symptoms) while they were kept in individual hospital pens. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghimire, H.; Bhusal, U. C.; Khatiwada, B.; Pandey, D.
2017-12-01
Geophysical investigation using two dimensional electrical resistivity tomography (2D-ERT) method plays a significant role in determining the subsurface resistivity distribution by making measurement on the ground surface. This method was carried out at Dudhkoshi-II (230 MW) Hydroelectric Project, lies on Lesser Himalayan region of the Eastern Nepal to delineate the nature of the subsurface geology to assess its suitability for the construction of dam, desanding basin and powerhouse. The main objective of the proposed study consists of mapping vertical as well as horizontal variations of electrical resistivity to enable detection of the boundaries between unconsolidated materials and rocks of the different resistivity, possible geologic structures, such as possible presence of faults, fractures, and voids in intake and powerhouse area. For this purpose, the (WDJD-4 Multi-function Digital DC Resistivity/IP) equipment was used with Wenner array (60 electrodes). To fulfill these objectives of the study, the site area was mapped by Nine ERT profiles with different profile length and space between electrodes was 5 m. The depth of the investigation was 50 m. The acquired data were inverted to tomogram sections using tomographic inversion with RES2DINV commercial software. The Tomography sections show that the subsurface is classified into distinct geo-electric layers of dry unconsolidated overburden, saturated overburden, fractured rock and fresh bedrock of phyllites with quartzite and gneiss with different resistivity values. There were no voids and faults in the study area. Thickness of overburden at different region found to be different. Most of the survey area has bedrock of phyllites with quartzite; gneiss is also present in some location at intake area. Bedrock is found at the varies depth of 5-8 m at dam axis, 20-32 m at desanding basin and 3-10 m at powerhouse area. These results are confirmed and verified by using several boreholes data were drilled on the survey area. The results obtained from the study showed that the site is suitable for the construction of the proposed dam, desanding basin and powerhouse.
2002-10-15
KENNEDY SPACE CENTER, FLA. -- Sonar mapping equipment lies on the deck of the Liberty Star, one of NASA's solid rocket booster retrieval ships. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S.
2010-01-01
SUMMARY A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker–Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes. PMID:20454468
Forming maps of targets having multiple reflectors with a biomimetic audible sonar.
Kuc, Roman
2018-05-01
A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... area of Utah County that lies west of the Wasatch Mountain Range (and this includes the Cities of Provo... Weber County that lies west of the Wasatch Mountain Range with an eastern boundary for Weber County to... within Utah: Township 15 North Range 1 East; Township 14 North Range 1 East; Township 13 North Range 1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... area of Utah County that lies west of the Wasatch Mountain Range (and this includes the Cities of Provo... Weber County that lies west of the Wasatch Mountain Range with an eastern boundary for Weber County to... within Utah: Township 15 North Range 1 East; Township 14 North Range 1 East; Township 13 North Range 1...
Cochran, Susan A.; Gibbs, Ann E.; Logan, Joshua B.
2006-01-01
In cooperation with the U.S. National Park Service (NPS), the U.S. Geological Survey (USGS) has mapped the underwater environment in and adjacent to three parks along the Kona coast on the island of Hawai‘i. This report is the second of two produced for the NPS on the geologic resource evaluation of Pu‘ukoholā Heiau National Historic Site (PUHE) and presents benthic habitat mapping of the waters of Kawaihae Bay offshore of PUHE. See Part I (Richmond and others, 2006) for an overview of the regional geology, local volcanics, and a detailed description of coastal landforms in the park. PUHE boundaries do not officially extend into the marine environment; however, impacts downslope of any activity in the park are of concern to management. The area of Kawaihae Bay mapped for this report extends from the north edge of the U.S. Coast Guard Reservation north of Kawaihae Harbor approximately 3.5 km south to the north edge of the Mauna Kea Golf Course and Beach Resort at Waikoloa and from the shoreline to depths of approximately 40 m (130 ft), where the fore reef drops off to the sandy shelf. The waters of smaller Pelekane Bay directly offshore of the park, while not formally under NPS jurisdiction, are managed by the park under an agreement with the State. This embayment is described in greater detail because of its special resource status. PUHE lies within the Kawaihae watershed, which contributes ~75 percent of the drainage in the northern portion of the study area; the Waikoloa/Waiulaula watershed contributes ~25 percent in the southern portion of the study area. Drainages from these watersheds into the study area include Makahuna, Makeāhua, Pohaukole, Kukui, and Waikoloa/Waiulaula Gulches. The Waikoloa/Waiulaula Gulch is the only perennial stream with a year-round water flow. Only during periods of extreme rainfall will water flow in the Makeāhua and Pohaukole gulches, merge together in the park, and empty directly into Pelekane Bay. In the late 1950s the reef off of PUHE was dredged to construct Kawaihae Harbor. Coral rubble was used in the construction of causeways and a revetment wall surrounding the commercial harbor. In the late 1960s the reef near Pelekane was blasted to create a small-boat harbor adjacent to the larger commercial harbor. Damage from these activities, in addition to a change in circulation patterns, has led to problems of high turbidity in Pelekane Bay.
Exploring biology with small organic molecules
Stockwell, Brent R.
2011-01-01
Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore ‘biological-activity space’. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars — uncharted territory is explored using a system of coordinates that describes where each new feature lies. PMID:15602550
Economics and Comparative and International Education: Past, Present, Future
ERIC Educational Resources Information Center
Wolhuter, Charl
2017-01-01
The aim of this paper is to map this place of economics in the field of study of Comparative and International Education. Interrelationship between economy and education is concerned, two broad lines of enquiry lie within the scope of Comparative and International Education: economy as shaping force of education systems and the effect of education…
A note on large gauge transformations in double field theory
Naseer, Usman
2015-06-03
Here, we give a detailed proof of the conjecture by Hohm and Zwiebach in double field theory. Our result implies that their proposal for large gauge transformations in terms of the Jacobian matrix for coordinate transformations is, as required, equivalent to the standard exponential map associated with the generalized Lie derivative along a suitable parameter.
Central American Flying Weather
1985-12-01
CEILING; VISIBILITY; WIND, PRECIPITATIDNc’--." HAZE, SMOKE, TEMPORALE ; MOUNTAIN WAVE; MILITARY METEOROLOGY. 4k- / ’A. bstract; Asummary of~ing weather...1 The " Temporale " ....................................1 Mountain Waves ......................I...............1 Severe Thunderstorms...charts. The for any part of Central America lies in having: Tactical Pilota.e Chart series , produced by the Df -.nse Mapping Agency, is * A good, basic
NASA Astrophysics Data System (ADS)
Mandt, Kathleen; Mazarico, Erwan; Greathouse, Thomas K.; Byron, Ben; Retherford, Kurt D.; Gladstone, Randy; Liu, Yang; Hendrix, Amanda R.; Hurley, Dana; Stickle, Angela; Wes Patterson, G.; Cahill, Joshua; Williams, Jean-Pierre
2017-10-01
The south pole of the Moon is an area of great interest for exploration and scientific research because many low-lying regions are permanently shaded and are likely to trap volatiles for extended periods of time, while adjacent topographic highs can experience extended periods of sunlight. One of the goals of the Lunar Reconnaissance Orbiter (LRO) mission is to characterize the temporal variability of illumination of the lunar polar regions for the benefit of future exploration efforts. We use far ultraviolet (FUV) observations made by the Lyman Alpha Mapping Project (LAMP) to evaluate illumination at the lunar south pole (within 5° of the pole).LAMP observations are made through passive remote sensing in the FUV wavelength range of 57-196 nm using reflected sunlight during daytime observations and reflected light from the IPM and UV-bright stars during nighttime observations. In this study we focused on the region within 5° of the pole, and produced maps using nighttime data taken between September 2009 and February 2014. Summing over long time periods is necessary to obtain sufficient signal to noise. Many of the maps produced for this study show excess brightness in the “Off Band”, or 155-190 nm, because sunlight scattered into the PSRs is most evident in this wavelength range.LAMP observes the highest rate of scattered sunlight in two large PSRs during nighttime observations: Haworth and Shoemaker. We focus on these craters for comparisons with an illumination model and other LRO datasets. We find that the observations of scattered sunlight do not agree with model predictions. However, preliminary results comparing LAMP maps with other LRO datasets show a correlation between LAMP observations of scattered sunlight and Diviner measurements for maximum temperature.
A Quantitative Visual Mapping and Visualization Approach for Deep Ocean Floor Research
NASA Astrophysics Data System (ADS)
Hansteen, T. H.; Kwasnitschka, T.
2013-12-01
Geological fieldwork on the sea floor is still impaired by our inability to resolve features on a sub-meter scale resolution in a quantifiable reference frame and over an area large enough to reveal the context of local observations. In order to overcome these issues, we have developed an integrated workflow of visual mapping techniques leading to georeferenced data sets which we examine using state-of-the-art visualization technology to recreate an effective working style of field geology. We demonstrate a microbathymetrical workflow, which is based on photogrammetric reconstruction of ROV imagery referenced to the acoustic vehicle track. The advantage over established acoustical systems lies in the true three-dimensionality of the data as opposed to the perspective projection from above produced by downward looking mapping methods. A full color texture mosaic derived from the imagery allows studies at resolutions beyond the resolved geometry (usually one order of magnitude below the image resolution) while color gives additional clues, which can only be partly resolved in acoustic backscatter. The creation of a three-dimensional model changes the working style from the temporal domain of a video recording back to the spatial domain of a map. We examine these datasets using a custom developed immersive virtual visualization environment. The ARENA (Artificial Research Environment for Networked Analysis) features a (lower) hemispherical screen at a diameter of six meters, accommodating up to four scientists at once thus providing the ability to browse data interactively among a group of researchers. This environment facilitates (1) the development of spatial understanding analogue to on-land outcrop studies, (2) quantitative observations of seafloor morphology and physical parameters of its deposits, (3) more effective formulation and communication of working hypotheses.
Williams, Richard S.; Ferrigno, Jane G.
1988-01-01
Of all the world?s continents Antarctica is the coldest, the highest, and the least known. It is one and a half times the size of the United States, and on it lies 91 percent (30,109,800 km3) of the estimated volume of all the ice on Earth. Because so little is known about Antarctic glaciers compared with what is known about glaciers in populated countries, satellite imagery represents a great leap forward in the provision of basic data. From the coast of Antarctica to about 81?south latitude, there are 2,514 Landsat nominal scene centers (the fixed geographic position of the intersection of orbital paths and latitudinal rows). If there were cloud-free images for all these geographic centers, only about 520 Landsat images would be needed to provide complete coverage. Because of cloud cover, however, only about 70 percent of the Landsat imaging area, or 55 percent of the continent, is covered by good quality Landsat images. To date, only about 20 percent of Antarctica has been mapped at scales of 1:250,000 or larger, but these maps do include about half of the coastline. The area of Antarctica that could be planimetrically mapped at a scale of 1:250,000 would be tripled if the available Landsat images were used in image map production. This chapter contains brief descriptions and interpretations of features seen in 62 carefully selected Landsat images or image mosaics. Images were chosen on the basis of quality and interest; for this reason they are far from evenly spaced around the continent. Space limitations allow less than 15 percent of the Landsat imaging area of Antarctica to be shown in the illustrations reproduced in this chapter. Unfortunately, a wealth of glaciological and other features of compelling interest is present in the many hundreds of images that could not be included. To help show some important features beyond the limit of Landsat coverage, and as an aid to the interpretation of certain features seen in the images, 38 oblique aerial photographs have been included. Again, these represent only a small fraction of the large number of aerial photographs now available in various national collections. The chapter is divided into five geographic sections. The first is the Transantarctic Mountains in the Ross Sea area. Some very large outlet glaciers flow from the East Antarctic ice sheet through the Transantarctic Mountains to the Ross Ice Shelf. Byrd Glacier, one of the largest in the world, drains an area of more than 1,000,000 km2. Next, images from the Indian Ocean sector are discussed. These include the Lambert Glacier- Amery Ice Shelf system, so large that about 25 images must be mosaicked to cover its complex system of tributary glaciers. Shirase Glacier, a tidal outlet glacier in the sector, flows at a speed of 2.5 km a-l. About 200 km inland and 200 km west of Shirase Glacier lie the Queen Fabiola (?Yamato?) Mountains, whose extensive exposures of `blue ice? lay claim to being the world?s most important meteorite-collecting locality, with more than 4,700 meteorite fragments discovered since 1969. The Atlantic Ocean sector is fringed by ice shelves into which flow large ice streams like Jutulstraumen, Stancomb-Wills, Slessor, and Recovery Glaciers. Filchner and Ronne Ice Shelves together cover an area two-thirds the size of Texas. From the western margin of the Ronne Ice Shelf, the north-trending arc of the Antarctic Peninsula, with its fjord and alpine landscape and fringing ice shelves, stretches towards South America. The Pacific Ocean sector begins with the Ellsworth Mountains, which include the highest peaks (Vinson Massif at 4,897 m) in Antarctica. The area between the Ellsworth Mountains and the eastern margin of the Ross Ice Shelf is fringed with small ice shelves and some major outlet glaciers. One of these, Pine Island Glacier, was found from comparing 1973 and 1975 images to have an average ice-front velocity of 2.4 km a-l. This part of Antarctica
Evaluation of ERTS-1 image sensor spatial resolution in photographic form
NASA Technical Reports Server (NTRS)
Slater, P. N. (Principal Investigator); Schowengerdt, R. A.
1973-01-01
The author has identified the following significant results. A coherent optical system was used to display the spatial frequency content of the amplitude image of one area of the ground as obtained in the four wavelength bands of the multispectral scanner. This enabled a rapid comparison to be made between the four bands, from which it was clear that bands 5 and 7 were preferred to the others in terms of image definition, and thus mapping and acreage estimation, for the particular agricultural area imaged. With suitable scaling it was also possible to compare the modulation, as a function of spatial frequency, of MSS bands 4 and 5 with the green (BB) and red (DD) bands of the same area from the Apollo 9, SO65 experiment. A significant result is that the modulation in the MSS amplitude imagery is 65%-90% of that in the Apollo 9 amplitude imagery. In addition, the ratio of spatial frequencies for the ERTS-1 and Apollo imagery, at which the same modulation occurs, lies between 0.55 and 0.75 for the red band. This ratio is closely related to the ratio of resolutions for the two sensors. These values corroborate statements that the resolution of the MSS imagery is better than anticipated by pre-flight predictions.
Historical Techniques of Lie Detection
Vicianova, Martina
2015-01-01
Since time immemorial, lying has been a part of everyday life. For this reason, it has become a subject of interest in several disciplines, including psychology. The purpose of this article is to provide a general overview of the literature and thinking to date about the evolution of lie detection techniques. The first part explores ancient methods recorded circa 1000 B.C. (e.g., God’s judgment in Europe). The second part describes technical methods based on sciences such as phrenology, polygraph and graphology. This is followed by an outline of more modern-day approaches such as FACS (Facial Action Coding System), functional MRI, and Brain Fingerprinting. Finally, after the familiarization with the historical development of techniques for lie detection, we discuss the scope for new initiatives not only in the area of designing new methods, but also for the research into lie detection itself, such as its motives and regulatory issues related to deception. PMID:27247675
Anthropogenic influence of small urban watercourses - Case study from the Czech Republic
NASA Astrophysics Data System (ADS)
Svobodova, Eva; Jakubinsky, Jiri; Bacova, Radka; Kubicek, Petr; Herber, Vladimir
2013-04-01
Rivers and streams in the urban areas are losing natural environmental values. There is especially small watercourses issue, where there exists the lack of river management and interest of municipalities. The main used methods are based on the field research of river landscape, mapping and inventory of anthropogenic landforms and determination of Channel Capacity Coefficient (CCC). We establish the list of anthropogenic landforms, which we divide to the five categories - industrial, agrarian, urban, transport network, and water management structures. Values of the channel morphologic parameters - width of channel, width of riverbed, and the degree of countersink - are measured for Channel Capacity Coefficient calculation. Pattern of objects shrinking transverse profile and limiting the smooth flow are investigated beside the morphological features. Resulting from the application of these theoretical methods are several practical outputs. Firstly, we construct thematic grid cell monitoring maps (a) count of anthropogenic landforms in the floodplain; (b) weighted average of landform, whose weight was determined on the basis of their influence on the impact of floods. Secondly, we identify pattern distribution of the watercourses channel capacity in the selected study areas. Thirdly, we confirm existence of the urban stream syndrome which is characterized by consistently observed ecological degradation of brooks. The main symptoms of degradation are the altered channel morphology, occurrence of flashfloods, and the rate of ecological stability. Above mentioned characteristics were applied in two different catchments in the Czech Republic - the Leskava Brook and the Lacnovsky Brook. Both streams flow through the urban area in the diverse natural conditions and with various historical development. The Leskava Brook is situated in the southern part of Brno in the Southern Moravia, and the Lacnovsky Brook, lies in the northern part of Svitavy town on the border of Moravia and Bohemia. We compared quantitative and qualitative characteristics of both catchments, e.g. relief, area, land use types, state of hydrographic network. Significant contribution of this study is to demonstrate the discussed information needs to improve flood risk management.
Function representation with circle inversion map systems
NASA Astrophysics Data System (ADS)
Boreland, Bryson; Kunze, Herb
2017-01-01
The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Wen-li; Wang, Hong-rui; Wang, Cheng
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters have occurred almost annually in the urban area of Beijing, the capital of China. Based on a self-organizing map (SOM) artificial neural network (ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product (GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANN is suitable for automatically and quantitatively assessing risks associated withmore » waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors, producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. As a result, the points that were assigned risk grades of IV or V were located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.« less
Lai, Wen-li; Wang, Hong-rui; Wang, Cheng; ...
2017-05-05
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters have occurred almost annually in the urban area of Beijing, the capital of China. Based on a self-organizing map (SOM) artificial neural network (ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product (GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANN is suitable for automatically and quantitatively assessing risks associated withmore » waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors, producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. As a result, the points that were assigned risk grades of IV or V were located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.« less
Doctor, Daniel H.; Orndorff, Randall C.; Parker, Ronald A.; Weary, David J.; Repetski, John E.
2010-01-01
The White Hall 7.5-minute quadrangle is located within the Valley and Ridge province of northern Virginia and the eastern panhandle of West Virginia. The quadrangle is one of several being mapped to investigate the geologic framework and groundwater resources of Frederick County, Va., as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. All exposed bedrock outcrops are clastic and carbonate strata of Paleozoic age ranging from Middle Cambrian to Late Devonian. Surficial materials include unconsolidated alluvium, colluvium, and terrace deposits of Quaternary age, and local paleo-terrace deposits possibly of Tertiary age. The quadrangle lies across the northeast plunge of the Great North Mountain anticlinorium and includes several other regional folds. The North Mountain fault zone cuts through the eastern part of the quadrangle; it is a series of thrust faults generally oriented northeast-southwest that separate the Silurian and Devonian clastic rocks from the Cambrian and Ordovician carbonate rocks and shales. Karst development in the quadrangle occurs in all of the carbonate rocks. Springs occur mainly near or on faults. Sinkholes occur within all of the carbonate rock units, especially where the rocks have undergone locally intensified deformation through folding, faulting, or some combination.
Mars Structural and Stratigraphic Mapping along the Coprates Rise
NASA Technical Reports Server (NTRS)
Saunders, R Stephen
2009-01-01
This geologic mapping project supports a topical study of structures in east Thaumasia associated with the Coprates rise. The study examines cuesta-like features on the east flank of the Coprates rise first identified by Saunders et al. [1]. Mapping combines detailed local stratigraphy, structural geology and topography. Hogbacks and cuestas indicate erosion of tilted rock units. The extent of the erosion will be determined in the course of the mapping. The region of interest lies along the eastern margin of Thaumasia bounded by latitudes -15 and -35 and longitudes 50 to 70 W (Figure 1). Three MTM geologic quadrangles are being compiled for publication by the USGS (-20057, -25057, -30057). All existing data sources are used including THEMIS, MOC, CTX, HiRISE, MOLA and gravity, as well as higher level data available through the PDS data nodes at ASU, UA and Washington University. The extremely valuable ASU JMARS tools are used for analysis of many of the data sets. ArcGIS software has been obtained and is being learned for the map compilation.
Algebraic special functions and SO(3,2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-06-15
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less
Geologic map of the Yucca Mountain region, Nye County, Nevada
Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake II, Ronald M.; Taylor, Emily M.; Fridrich, Christopher J.; San Juan, Carma A.; Day, Warren C.
2002-01-01
Yucca Mountain, Nye County, Nev., has been identified as a potential site for underground storage of high-level radioactive waste. This geologic map compilation, including all of Yucca Mountain and Crater Flat, most of the Calico Hills, western Jackass Flats, Little Skull Mountain, the Striped Hills, the Skeleton Hills, and the northeastern Amargosa Desert, portrays the geologic framework for a saturated-zone hydrologic flow model of the Yucca Mountain site. Key geologic features shown on the geologic map and accompanying cross sections include: (1) exposures of Proterozoic through Devonian strata inferred to have been deformed by regional thrust faulting and folding, in the Skeleton Hills, Striped Hills, and Amargosa Desert near Big Dune; (2) folded and thrust-faulted Devonian and Mississippian strata, unconformably overlain by Miocene tuffs and lavas and cut by complex Neogene fault patterns, in the Calico Hills; (3) the Claim Canyon caldera, a segment of which is exposed north of Yucca Mountain and Crater Flat; (4) thick densely welded to nonwelded ash-flow sheets of the Miocene southwest Nevada volcanic field exposed in normal-fault-bounded blocks at Yucca Mountain; (5) upper Tertiary and Quaternary basaltic cinder cones and lava flows in Crater Flat and at southernmost Yucca Mountain; and (6) broad basins covered by Quaternary and upper Tertiary surficial deposits in Jackass Flats, Crater Flat, and the northeastern Amargosa Desert, beneath which Neogene normal and strike-slip faults are inferred to be present on the basis of geophysical data and geologic map patterns. A regional thrust belt of late Paleozoic or Mesozoic age affected all pre-Tertiary rocks in the region; main thrust faults, not exposed in the map area, are interpreted to underlie the map area in an arcuate pattern, striking north, northeast, and east. The predominant vergence of thrust faults exposed elsewhere in the region, including the Belted Range and Specter Range thrusts, was to the east, southeast, and south. The vertical to overturned strata of the Striped Hills are hypothesized to result from successive stacking of three south-vergent thrust ramps, the lowest of which is the Specter Range thrust. The CP thrust is interpreted as a north-vergent backthrust that may have been roughly contemporaneous with the Belted Range and Specter Range thrusts. The southwest Nevada volcanic field consists predominantly of a series of silicic tuffs and lava flows ranging in age from 15 to 8 Ma. The map area is in the southwestern quadrant of the southwest Nevada volcanic field, just south of the Timber Mountain caldera complex. The Claim Canyon caldera, exposed in the northern part of the map area, contains thick deposits of the 12.7-Ma Tiva Canyon Tuff, along with widespread megabreccia deposits of similar age, and subordinate thick exposures of other 12.8- to 12.7-Ma Paintbrush Group rocks. An irregular, blocky fault array, which affects parts of the caldera and much of the nearby area, includes several large-displacement, steeply dipping faults that strike radially to the caldera and bound south-dipping blocks of volcanic rock. South and southeast of the Claim Canyon caldera, in the area that includes Yucca Mountain, the Neogene fault pattern is dominated by closely spaced, north-northwest- to north-northeast-striking normal faults that lie within a north-trending graben. This 20- to 25-km-wide graben includes Crater Flat, Yucca Mountain, and Fortymile Wash, and is bounded on the east by the 'gravity fault' and on the west by the Bare Mountain fault. Both of these faults separate Proterozoic and Paleozoic sedimentary rocks in their footwalls from Miocene volcanic rocks in their hanging walls. Stratigraphic and structural relations at Yucca Mountain demonstrate that block-bounding faults were active before and during eruption of the 12.8- to 12.7-Ma Paintbrush Group, and significant motion on these faults continued unt
Interpreting geologic maps for engineering purposes: Hollidaysburg quadrangle, Pennsylvania
,
1953-01-01
This set of maps has been prepared to show the kinds of information, useful to engineers, that can be derived from ordinary geologic maps. A few additional bits of information, drawn from other sources, are mentioned below. Some of the uses of such maps are well known; they are indispensable tools in the modern search for oil or ore deposits; they are the first essential step in unraveling the story of the earth we live on. Less well known, perhaps, is the fact that topographic and geologic maps contain many of the basic data needed for planning any engineering construction job, big or little. Any structure built by man must fit into the topographic and geologic environment shown on such maps. Moreover, most if not all construction jobs must be based on knowledge of the soils and waters, which also are intimately related to this same environment. The topographic map shows the shape of the land the hills and valleys, the streams and swamps, the man-made features such as roads, railroads, and towns. The geologic map shows the kinds and shapes of the rock bodies that form the land surface and that lie beneath it. These are the facts around which the engineer must build.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Scorpion; abbrev. Sco., gen. Scorpii; area 497 sq. deg.) A southern zodiacal constellation which lies between Ophiuchus and Ara, and culminates at midnight in early June. Its origin dates back to Sumerian times, when it was called Girtab, `the stinger', but today it is associated with the scorpion that, in Greek mythology, killed Orion the hunter—and the two constellations lie on opposite sid...
Stone, Paul
2006-01-01
The Blythe 30' by 60' quadrangle is located along the Colorado River between southeastern California and western Arizona. This map depicts the geology of the west half of the Blythe quadrangle, which is mostly in California. The map area is a desert terrain consisting of mountain ranges surrounded by extensive alluvial fans and plains, including the flood plain of the Colorado River which covers the easternmost part of the area. Mountainous parts of the area, including the Big Maria, Little Maria, Riverside, McCoy, and Mule Mountains, consist of structurally complex rocks that range in age from Proterozoic to Miocene. Proterozoic gneiss and granite are overlain by Paleozoic to Early Jurassic metasedimentary rocks (mostly marble, quartzite, and schist) that are lithostratigraphically similar to coeval formations of the Colorado Plateau region to the east. The Paleozoic to Jurassic strata were deposited on the tectonically stable North American craton. These rocks are overlain by metamorphosed Jurassic volcanic rocks and are intruded by Jurassic plutonic rocks that represent part of a regionally extensive, northwest-trending magmatic arc. The overlying McCoy Mountains Formation, a very thick sequence of weakly metamorphosed sandstone and conglomerate of Jurassic(?) and Cretaceous age, accumulated in a rapidly subsiding depositional basin south of an east-trending belt of deformation and east of the north-trending Cretaceous Cordilleran magmatic arc. The McCoy Mountains Formation and older rocks were deformed, metamorphosed, and locally intruded by plutonic rocks in the Late Cretaceous. In Oligocene(?) to Miocene time, sedimentary and minor volcanic deposits accumulated locally, and the area was deformed by faulting. Tertiary rocks and their Proterozoic basement in the Riverside and northeastern Big Maria Mountains are in the upper plate of a low-angle normal (detachment) fault that lies within a region of major Early to Middle Miocene crustal extension. Surficial deposits of the flanking alluvial fans and plains range in age from late Miocene to Holocene. Among the oldest of these deposits are limestone and fine-grained clastic sediments of the late Miocene and (or) Pliocene Bouse Formation, which is commonly interpreted to represent an estuary or marine embayment connected to the proto-Gulf of California. Most of the surficial deposits younger than the Bouse Formation are composed of alluvium either derived from local mountain ranges or transported into the area by the Colorado River. Large parts of the area, particularly near the northern margin, are covered by eolian sand, and small parts are covered by playa sediments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 1 2011-01-01 2011-01-01 false Rural areas. 25.503 Section 25.503 Agriculture Office of the Secretary of Agriculture RURAL EMPOWERMENT ZONES AND ENTERPRISE COMMUNITIES Special Rules § 25.503 Rural areas. (a) What constitutes “rural”. A rural area may consist of any area that lies outside...
Persian leopard's (Panthera pardus saxicolor) unnatural mortality factors analysis in Iran.
Naderi, Morteza; Farashi, Azita; Erdi, Mehdi Alipour
2018-01-01
Due to the relatively low offspring survival rate, surviving adult leopards play a critical role in the species' viability. The unnatural mortality of leopards, caused by human activities can seriously compromise the species' long-term population survival. An analysis of spatial distribution and sex ratio of unnatural mortality of 147 recorded Persian leopard (Panthera pardus saxicolor) carcasses during a fifteen-year period (from 2000-2015) in Iran indicated that road mortality is the second most frequent cause of unnatural mortality of Persian leopards' after illegal hunting (or prey poisoning, such as poisoned meat) by villagers, shepherds and military forces. The greatest percent of unnatural mortality events were recorded in the Golestan provinc in the north of Iran and eastern most parts of the Hyrcanian forests. Using distribution models of species, based on road accident locations as species data, we mapped the species' distribution and critical areas of unnatural mortality of Persian leopard that can be used in prioritizing leopard-human conflicts management. Our results showed that mortality records were significantly higher in non-protected compared to protected areas. Males constituted 65 percent of the records used in the study as males dispersed more widely compared to the females. This imbalance can have severe demographic effects. A large proportion of leopards' activity, occurrence area, and habitat lies in non-protected areas, which is mirrored by the greater number of unnatural mortality outside protected areas. Most of the incidents were due to human factors, thus management interventions such as traffic speed limitations, signs, cameras, and faunal bridges as well as increasing public participation and awareness (especially among rural communities) will positively affect the species' conservation programs. This research aimed to produce unnatural mortality of leopards' risk map throughout Iran and discuss the different aspects of this phenomenon, major human-caused threats and the efficiency of the legal protected areas in satisfying the species' ecological requirements. We propose management interventions such as traffic speed limitations, signs, cameras, and faunal bridges as well as increasing public awareness and participation, especially among rural communities, to support the species' conservation.
Geology and underground waters of the Arkansas Valley in eastern Colorado
Darton, N.H.
1906-01-01
In the valley of Arkansas River in southeastern Colorado there is an area of considerable extent in which artesian flows are available. During the last ten years numerous wells have been sunk to develop this important resource and, in most cases in the lower lands, abundant water supplies have been obtained. The principal water-bearing bed is the "Dakota" formation, which consists of two sheets of porous sandstone separated by a small body of clay and overlain in the greater portion of the area by a mass of impervious shales. The sandstones receive their waters from, rainfall and from the sinking of streams along the foothills of the Rocky Mountains and on some of the higher slopes south of the Arkansas Valley. In the passage of this sandstone underground, the waters which it contains are held down by the overlying shales, but, as some of the sandstone outcrops are at relatively low levels to the east only a moderate head or pressure is sustained. On account of this low head, artesian flows are available only in the lower lands, and one of the principal objects of this investigation has been the determination of the area in which flows are to be expected. The "Dakota" sandstone and associated formations do not lie level, or even slope regularly to the east, but are flexed into low arches and shallow troughs of considerable complexity of configuration. Accordingly, in investigating this source of water supply, it has been necessary to ascertain the structure and distribution of the various formations in order to indicate the variations in depth to the water-bearing stratum. The principal results of these investigations are set forth: (1) In the geologic map (Pl. VI), which shows the distribution of the formations on the surface; (2) in the map, Pl. XXV, which shows the depth to the water-bearing horizon, the area in which flows are expected, the head of the underground waters, and other features, and (3) in the cross sections (Pls. VII and XXIII), which show the principal underground features. The investigation has been in progress for several years and is an extension of the preliminary examination of the region by G. K. Gilbert in 1894 and 1895.For the western portion of the area the maps and texts of the Pueblo, Elmoro, Walsenburg, Spanish Peaks, and Pikes Peak folios have been utilized as far as practicable. For the central and eastern portions the larger features of the geology have been specially mapped, and considerable detailed mapping has been done in the region south and southeast of Canyon and Colorado Springs. In the field work I have been assisted by Mr. C. A. Fisher, who has examined in detail the Nepesta quadrangle and contributed numerous other data. Dr. W. S. Tangier Smith and Messrs. C. E. Sicbenthal and W. T. Lee have made observations in certain areas. Much valuable information respecting wells has been furnished by Mr. William Archer, of the Atchison, Topeka and Santa Fe Railway Company, and Mr. C. H. McVay, well driller at Rocky Ford.
Antarctica’s Protected Areas Are Inadequate, Unrepresentative, and at Risk
Shaw, Justine D.; Terauds, Aleks; Riddle, Martin J.; Possingham, Hugh P.; Chown, Steven L.
2014-01-01
Antarctica is widely regarded as one of the planet's last true wildernesses, insulated from threat by its remoteness and declaration as a natural reserve dedicated to peace and science. However, rapidly growing human activity is accelerating threats to biodiversity. We determined how well the existing protected-area system represents terrestrial biodiversity and assessed the risk to protected areas from biological invasions, the region's most significant conservation threat. We found that Antarctica is one of the planet's least protected regions, with only 1.5% of its ice-free area formally designated as specially protected areas. Five of the distinct ice-free ecoregions have no specially designated areas for the protection of biodiversity. Every one of the 55 designated areas that protect Antarctica's biodiversity lies closer to sites of high human activity than expected by chance, and seven lie in high-risk areas for biological invasions. By any measure, including Aichi Target 11 under the Convention on Biological Diversity, Antarctic biodiversity is poorly protected by reserves, and those reserves are threatened. PMID:24936869
Kenny, Glen P; Gagnon, Daniel; Jay, Ollie; McInnis, Natalie H; Journeay, W Shane; Reardon, Francis D
2008-08-01
Cutaneous vascular conductance (CVC) and sweat rate are subject to non-thermal baroreflex-mediated attenuation post-exercise. Various recovery modalities have been effective in attenuating these decreases in CVC and sweat rate post-exercise. However, the interaction of recovery posture and preceding exercise intensity on post-exercise thermoregulation remains unresolved. We evaluated the combined effect of supine recovery and exercise intensity on post-exercise cardiovascular and thermal responses relative to an upright seated posture. Seven females performed 15 min of cycling ergometry at low- (LIE, 55% maximal oxygen consumption) or high-(HIE, 85% maximal oxygen consumption) intensity followed by 60 min of recovery in either an upright seated or supine posture. Esophageal temperature, CVC, sweat rate, cardiac output, stroke volume, heart rate, total peripheral resistance, and mean arterial pressure (MAP) were measured at baseline, at end-exercise, and at 2, 5, 12, 20, and every 10 min thereafter until the end of recovery. MAP and stroke volume were maintained during supine recovery to a greater extent relative to an upright seated recovery following HIE (p
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siler, Drew L; Faulds, James E; Mayhew, Brett
2013-04-16
Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundarymore » between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.« less
MESSENGER View of Mercury's Caloris Basin
2017-12-08
NASA image acquired October 28, 2011 This stunning, and as of yet unnamed, crater lies within the Caloris basin. Its floor provides another example of the beautiful "hollows" found on Mercury and has an etched appearance similar to that found in the crater Tyagaraja. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 250-meter/pixel (820 feet/pixel) morphology base map or the 1-kilometer/pixel (0.6 miles/pixel) color base map. It is not possible to cover all of Mercury's surface at this high resolution during MESSENGER's one-year mission, but several areas of high scientific interest are generally imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 1 2010-01-01 2010-01-01 false Rural areas. 25.503 Section 25.503 Agriculture Office....503 Rural areas. (a) What constitutes “rural”. A rural area may consist of any area that lies outside the boundaries of a Metropolitan Area, as designated by the Office of Management and Budget, or, is an...
Brown, Philip Monroe; Miller, James A.; Swain, Frederick Morrill
1972-01-01
This report describes and interprets the results of a detailed subsurface mapping program undertaken in that part of the Atlantic Coastal Plain which extends from the South Carolina and North Carolina border through Long Island, N.Y. Data obtained from more than 2,200 wells are analyzed. Seventeen chronostratigraphic units are mapped in the subsurface. They range in age from Jurassic(?) to post-Miocene. The purpose of the mapping program was to determine the external and internal geometry of mappable chronostratigraphic units and to derive and construct a permeability-distribution network for each unit based upon contrasts in the textures and compositions of its contained sediments. The report contains a structure map and a combined isopach, lithofacies, and permeability-distribution map for each of the chronostratigraphic units delineated in the subsurface. In addition, it contains a map of the top of the basement surface. These maps, together with 36 stratigraphic cross sections, present a three-dimensional view of the regional subsurface hydrogeology. They provide focal points of reference for a discussion of regional tectonics, structure, stratigraphy, and permeability distribution. Taken together and in chronologic sequence, the maps constitute a detailed sedimentary model, the first such model to be constructed for the middle Atlantic Coastal Plain. The chronostratigraphic units mapped record a structural history dominated by lateral and vertical movement along a system of intersecting hinge zones. Taphrogeny, related to transcurrent faulting, is the dominant type of deformation that controlled the geometry of the sedimentary model. Twelve of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are independent of the present-day configuration of the underlying basement surface. These 12 units, classified as genetically unrooted units, are assigned to a first-order tectonic stage. A structural model is proposed whose alinements of positive and negative structural features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant features of the structural model are northeast-plunging half grabens arranged en echelon and bordered by northeast-plunging fault-block anticlines. Tension-type hinge zones that strike north lie athwart the half grabens. Five of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are accordant with the present-day configuration of the underlying basement surface. These five units, classified as genetically rooted units, are assigned to a second-order tectonic stage. A structural model is proposed whose alinements of positive and negative features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant feature of this model is a graben that stands tangential to southeast-plunging asymmetrical anticlines. Tension-type hinge zones that strike northeast lie athwart the graben. To account for the semiperiodic realinement of structural features that has characterized the history of the region and as a working hypothesis, we propose that the dominant tectonic element, which is present in the area between north Florida and Long Island, N.Y., is a unit-structural block, a ?basement? block, bounded by wrench-fault zones. We propose that forces derived principally from the rotation and precession of the earth act on the unit-structural block and deform it. Two tectonic models are proposed. One model is compatible with the structural and sedimentary geometries that are associated with chronostratigraphic units assigned to a first-order tectonic stage. It features tension-type hinge zones that strike north and shear-type hinge zones that strike northeast. The other model is compatible with the structural and sedimentary geometries associated with chronostratigraphi
Fault specific GIS based seismic hazard maps for the Attica region, Greece
NASA Astrophysics Data System (ADS)
Deligiannakis, G.; Papanikolaou, I. D.; Roberts, G.
2018-04-01
Traditional seismic hazard assessment methods are based on the historical seismic records for the calculation of an annual probability of exceedance for a particular ground motion level. A new fault-specific seismic hazard assessment method is presented, in order to address problems related to the incompleteness and the inhomogeneity of the historical records and to obtain higher spatial resolution of hazard. This method is applied to the region of Attica, which is the most densely populated area in Greece, as nearly half of the country's population lives in Athens and its surrounding suburbs, in the Greater Athens area. The methodology is based on a database of 24 active faults that could cause damage to Attica in case of seismic rupture. This database provides information about the faults slip rates, lengths and expected magnitudes. The final output of the method is four fault-specific seismic hazard maps, showing the recurrence of expected intensities for each locality. These maps offer a high spatial resolution, as they consider the surface geology. Despite the fact that almost half of the Attica region lies on the lowest seismic risk zone according to the official seismic hazard zonation of Greece, different localities have repeatedly experienced strong ground motions during the last 15 kyrs. Moreover, the maximum recurrence for each intensity occurs in different localities across Attica. Highest recurrence for intensity VII (151-156 times over 15 kyrs, or up to a 96 year return period) is observed in the central part of the Athens basin. The maximum intensity VIII recurrence (115 times over 15 kyrs, or up to a 130 year return period) is observed in the western part of Attica, while the maximum intensity IX (73-77/15 kyrs, or a 195 year return period) and X (25-29/15 kyrs, or a 517 year return period) recurrences are observed near the South Alkyonides fault system, which dominates the strong ground motions hazard in the western part of the Attica mainland.
Summer snowmelt patterns in the South Shetlands using TerraSAR-X imagery
NASA Astrophysics Data System (ADS)
Mora, C.; Jimenez, J. J.; Catalao Fernades, J.; Ferreira, A.; David, A.; Ramos, M.; Vieira, G.
2014-12-01
Snow plays an important role in controlling ground thermal regime and thus influencing permafrost distribution in the lower areas of the South Shetlands archipelago, where late lying snowpatches protect the soil from summer warming. However, summer snow distribution is complex in the mountainous environments of the Maritime Antarctica and it is very difficult to obtain accurate mapping products of snow cover extent and also to monitor snowmelt. Field observations of snow cover in the region are currently based on: i) thickness data from a very scarce network of meteorological stations, ii) temperature poles allowing to estimate snow thickness, iii) and time-lapse cameras allowing for assessing snow distribution over relatively small areas. The high cloudiness of the Maritime Antarctic environment limits good mapping results from the analysis of optical remote sensing imagery such as Landsat, QuickBird or GeoEye. Therefore, microwave sensors provide the best imagery, since they are not influenced by cloudiness and are sensitive to wet-snow, typical of the melting season. We have acquired TerraSAR-X scenes for Deception and Livingston Islands for January-March 2014 in spotlight (HH, VV and HH/VV) and stripmap modes (HH) and analyse the radar backscattering for determining the differences between wet-snow, dry-snow and bare soil aiming at developing snow melt pattern maps. For ground truthing, snowpits were dug in order to characterize snow stratigraphy, grain size, grain type and snow density and to evaluate its effects on radar backscattering. Time-lapse cameras allow to identify snow patch boundaries in the field and ground surface temperatures obtained with minloggers, together with air temperatures, allow to identify the presence of snow cover in the ground. The current research is conducted in the framework of the project PERMANTAR-3 (Permafrost monitoring and modelling in Antarctic Peninsula - PTDC/AAG-GLO/3908/2012 of the FCT and PROPOLAR).
Characterizing the performance of eddy current probes using photoinductive field-mapping
NASA Astrophysics Data System (ADS)
Moulder, John C.; Nakagawa, Norio
1992-12-01
We present a new method for characterizing the performance of eddy current probes by mapping their electromagnetic fields. The technique is based on the photoinductive effect, the change in the impedance of an eddy current probe induced by laser heating of the material under the probe. The instrument we developed maps a probe's electric field distribution by scanning an infrared laser beam over a thin film of gold lying underneath the probe. Measurements of both photoinductive signals and flaw signals for a series of similar probes demonstrates that the impedance change caused by an electrical-discharge-machined notch or a fatigue crack is proportional to the strength of the photoinductive signal. Thus, photoinductive measurements can supplant the use of artifact standards to calibrate eddy current probes.
A real-time spectral mapper as an emerging diagnostic technology in biomedical sciences.
Epitropou, George; Kavvadias, Vassilis; Iliou, Dimitris; Stathopoulos, Efstathios; Balas, Costas
2013-01-01
Real time spectral imaging and mapping at video rates can have tremendous impact not only on diagnostic sciences but also on fundamental physiological problems. We report the first real-time spectral mapper based on the combination of snap-shot spectral imaging and spectral estimation algorithms. Performance evaluation revealed that six band imaging combined with the Wiener algorithm provided high estimation accuracy, with error levels lying within the experimental noise. High accuracy is accompanied with much faster, by 3 orders of magnitude, spectral mapping, as compared with scanning spectral systems. This new technology is intended to enable spectral mapping at nearly video rates in all kinds of dynamic bio-optical effects as well as in applications where the target-probe relative position is randomly and fast changing.
Simulating and mapping spatial complexity using multi-scale techniques
De Cola, L.
1994-01-01
A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author
Dohrenwend, J.C.
1982-01-01
The Walker Lake 1o x 2o quadrangle lies athwart the transitional boundary between the Sierra Nevade and Basin and Range physiographic provinces. Six distinct topographic domains are identified with the quadrangle (fig. 1). Theses domains are clearly defined by contrasting orientations, densities, and styles of lake Neogene faulting as follows:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrasekharappa, S.C.; King, S.E.; Lee, Y.H.
1994-05-15
A gene for early-onset breast and ovarian cancer (BRCA1) has been localized to a small region of chromosome 17q21. A combination of genetic linkage studies, radiation-reduced hybrid analysis, and physical mapping by FISH has identified several genes/markers that lie in this interval. Among these are the gene encoding pancreatic polypeptide (PPY) and a polymorphic marker at locus D17S78. Efforts to construct a physical map of this region by isolating a large number of yeast artificial chromosome (YAC) and cosmid clones demonstrate that PPY and D17S78 are present within the same cosmid clone, and therefore no farther than 45 kb apart.more » This observation takes on particular significance since it excludes a recently described BRCA1 candidate gene from the interval defined by meiotic mapping. Although PPY and D17S78 were found to be no farther than 45 kb apart, identification of a smaller fragment that hybridizes to both probes would indicate that these two are much closer. The probe p131 and the gene PPY were previously mapped to 17q21-q23 and to the proximal long arm of chromosome 17, respectively. The demonstration of the close proximity of these markers should allow them to be treated as a single locus in terms of long-range genomic mapping of this region, and the genomic clones isolated should serve as useful resources for the identification of the BRCA1 gene. Analysis of a large number of a familial and spordic breast and ovarian cancers has identified frequent loss of heterozygosity near the BRCA1 locus. A recent report has suggested the responsible interval lies just telomeric to PPY, and a suggested candidate gene (MCD) for BRCA1 was found to be somatically rearranged in two of several hundred sporadic breast tumors.« less
Bertazzon, Stefania; Shahid, Rizwan
2017-07-25
An exploratory spatial analysis investigates the location of schools in Calgary (Canada) in relation to air pollution and active transportation options. Air pollution exhibits marked spatial variation throughout the city, along with distinct spatial patterns in summer and winter; however, all school locations lie within low to moderate pollution levels. Conversely, the study shows that almost half of the schools lie in low walkability locations; likewise, transitability is low for 60% of schools, and only bikability is widespread, with 93% of schools in very bikable locations. School locations are subsequently categorized by pollution exposure and active transportation options. This analysis identifies and maps schools according to two levels of concern: schools in car-dependent locations and relatively high pollution; and schools in locations conducive of active transportation, yet exposed to relatively high pollution. The findings can be mapped and effectively communicated to the public, health practitioners, and school boards. The study contributes with an explicitly spatial approach to the intra-urban public health literature. Developed for a moderately polluted city, the methods can be extended to more severely polluted environments, to assist in developing spatial public health policies to improve respiratory outcomes, neurodevelopment, and metabolic and attention disorders in school-aged children.
NASA Astrophysics Data System (ADS)
Weichman, Marissa L.; Vlaisavljevich, Bess; DeVine, Jessalyn A.; Shuman, Nicholas S.; Ard, Shaun G.; Shiozaki, Toru; Neumark, Daniel M.; Viggiano, Albert A.
2017-12-01
The chemi-ionization reaction of atomic samarium, Sm + O → SmO+ + e-, has been investigated by the Air Force Research Laboratory as a means to modify local electron density in the ionosphere for reduction of scintillation of high-frequency radio waves. Neutral SmO is a likely unwanted byproduct. The spectroscopy of SmO is of great interest to aid in interpretation of optical emission spectra recorded following atmospheric releases of Sm as part of the Metal Oxide Space Cloud (MOSC) observations. Here, we report a joint experimental and theoretical study of SmO using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled SmO- anions (cryo-SEVI) and high-level spin-orbit complete active space calculations with corrections from second order perturbation theory (CASPT2). With cryo-SEVI, we measure the electron affinity of SmO to be 1.0581(11) eV and report electronic and vibrational structure of low-lying electronic states of SmO in good agreement with theory and prior experimental work. We also obtain spectra of higher-lying excited states of SmO for direct comparison to the MOSC results.
LRO-LAMP Observations of Illumination Conditions in the Lunar South Pole
NASA Astrophysics Data System (ADS)
Mandt, K.; Greathouse, T. K.; Retherford, K. D.; Mazarico, E.; Gladstone, R.; Liu, Y.; Hendrix, A.; Hurley, D.; Lemelin, M.; Patterson, G. W.; Bowman-Cisneros, E.
2016-12-01
The south pole of the Moon is an area of great interest for space exploration and scientific research, because many low-lying regions are permanently shaded while adjacent topographic highs experience near constant sunlight. The lack of direct sunlight in permanently shaded regions (PSRs) provides cold enough conditions for them to potentially trap and retain large quantities of volatiles in their soils, while the locations that receive extended periods of sunlight could provide a reliable source of solar energy and relatively stable temperature conditions. Illumination conditions at the lunar south pole vary diurnally and seasonally, but on different timescales than days and seasons on the Earth. The most important advancements in understanding illumination conditions at the poles are provided by topographic mapping and illumination modeling. These efforts have provided estimates of the extent of PSRs and the percent of time that sunlit peaks are illuminated. They also help to constrain the thermal balance of the PSRs based on other sources of illumination. However, comparing model results with spacecraft observations can help to validate the models and provides ground truth for planning future exploration efforts. We have developed a new method for observing illumination conditions at the south pole using data taken by the LRO Lyman Alpha Mapping Project (LAMP), a far ultraviolet (FUV) imaging spectrograph. LAMP produces maps of the albedo of the upper 25-100 nm of lunar regolith using measurements of the brightness of reflected light relative to known light sources in daytime and nighttime conditions. Nighttime observations have been used previously to determine the abundance of surface frost within the PSRs and the surface porosity of regolith within the PSRs. The maps that have been used for these studies excluded scattered sunlight by restricting observations to nighttime conditions when the solar zenith angle is greater than 91°. However, by producing maps of the PSRs using data that was excluded from these previous studies we are able to observe scattering of far-UV sunlight at night within the PSRs.
Coastal-change and glaciological map of the Amery Ice Shelf area, Antarctica: 1961–2004
Foley, Kevin M.; Ferrigno, Jane G.; Swithinbank, Charles; Williams, Richard S.; Orndorff, Audrey L.
2013-01-01
Reduction in the area and volume of Earth’s two polar ice sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. Amery Ice Shelf, lying between 67.5° and 75° East longitude and 68.5° and 73.2° South latitude, is the largest ice shelf in East Antarctica. The latest measurements of the area of the ice shelf range between 62,620 and 71,260 square kilometers. The ice shelf is fed primarily by Lambert, Mellor, and Fisher Glaciers; its thickness ranges from 3,000 meters in the center of the grounding line to less than 300 meters at the ice front. Lambert Glacier is considered to be the largest glacier in the world, and its drainage basin is more than 1 million square kilometers in area. It is possible to see some coastal change on the outlet glaciers along the coast, but most of the noticeable change occurs on the Amery Ice Shelf front.
Final report. [Mesozoic tectonic history of the northeastern Great Basin (Nevada)
NASA Technical Reports Server (NTRS)
Zamudio, Joe
1993-01-01
In eastern Nevada and western Utah is an extensive terrane that has experienced a complex tectonic history of Mesozoic deformation and superposed Tertiary extension. The Mesozoic tectonic history of this area has been the subject of controversy for the past twenty or more years. The debate has centered on whether major Mesozoic geologic structures were due to compressional or extensional tectonic regimes. The goal of our research was to decipher the deformational history of the area by combining detailed geologic mapping, remote sensing data analysis, and U-Pb and K-Ar geochronology. This study area includes the Dolly Varden Mountains and adjacent Currie Hills, located in the semi-arid environment of the northeastern Great Basin in Nevada. Vegetation cover in the Dolly Varden Mountains typically ranges from about 10 percent to 50 percent, with some places along drainages and on high, north-facing slopes where vegetation cover approaches 100 percent. Sagebrush is found at less vegetated lower elevations, whereas pinon pine and juniper are prevalent above 2,000 meters. A variety of geologic materials is exposed in the study area. A sequence of Late Paleozoic and Triassic sedimentary rocks includes limestone, dolomite, chert, sandstone, siltstone and shale. A two-phase granitic stock, called the Melrose, intruded these rocks, resulting in metamorphism along the intrusive contact. Tertiary volcanic rocks cover most of the eastern part of the Dolly Varden Mountains and low-lying areas in the Currie Hills.
Dark Material at the Surface of Polar Crater Deposits on Mercury
NASA Technical Reports Server (NTRS)
Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.
2012-01-01
Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low (<110 K). Thermal models [6,7] incorporating direct and scattered radiation, Mercury s eccentric orbit, 3:2 spin-orbit resonance, and near-zero obliquity generally do not support such conditions in all permanently shadowed craters but suggest that water ice buried near the surface (<0.5 m depth) could survive for > 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.
Da Lio, Cristina; Carol, Eleonora; Kruse, Eduardo; Teatini, Pietro; Tosi, Luigi
2015-11-15
The original morphology and hydrogeology of many low-lying coastlands worldwide have been significantly modified over the last century through river diversion, embankment built-up, and large-scale land reclamation projects. This led to a progressive shifting of the groundwater-surficial water exchanges from naturally to anthropogenically driven. In this human-influenced hydrologic landscape, the saltwater contamination usually jeopardizes the soil productivity. In the coastland south of Venice (Italy), several well log measurements, chemical and isotope analyses have been performed over the last decade to characterize the occurrence of the salt contamination. The processing of this huge dataset highlights a permanent variously-shaped saline contamination up to 20km inland, with different conditions in relation with the various geomorphological features of the area. The results point out the important role of the land reclamation in shaping the present-day salt contamination and reveal the contribution of precipitation, river discharge, lagoon and sea water to the shallow groundwater in the various coastal sectors. Moreover, an original vulnerability map to salt contamination in relation to the farmland productivity has been developed taking into account the electrical conductivity of the upper aquifer in the worst condition, the ground elevation, and the distance from salt and fresh surface water sources. Finally, the study allows highlighting the limit of traditional investigations in monitoring saltwater contamination at the regional scale in managed Holocene coastal environments. Possible improvements are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.
2012-12-01
Eolian sandstones of south-central and southeast Utah contain large volumes of contorted cross-strata that have long been recognized as products of liquefaction caused by seismic shaking. Unlike most sites where Navajo Sandstone is exposed, in Zion National Park (southwestern Utah), the Navajo contains very, very few contorted strata. We have, however, mapped the distribution of more than 1,000 small-scale, vertical pipes and dikes in uncontorted cross-strata of the Navajo at two small study sites in Zion. Pipes are 2-5 cm in diameter and up to 3 m long; dikes are ~6 cm wide. Clusters of the water-escape structures lie directly above and below numerous, near-horizontal bounding surfaces. Dikes are restricted to the wind-ripple strata that lie above the bounding surfaces. Pipes are common both above and below the bounding surfaces. In map view, most pipes are arranged in lines. Near the bounding surfaces, pipes merge upward with shallow dikes trending parallel to the lines of pipes. Pipes formed in grainflows—homogeneous, well-sorted sand lacking cohesion. Dikes formed above the bounding surface, in more-cohesive, poorly sorted, wind-ripple strata. As liquefaction began, expansion of subsurface sand caused spreading within the unliquified (capping) beds near the land surface. Dikes intruded cracks in the wind-ripple strata, and pipes rose from the better-sorted sand to interdune surfaces, following trends of cracks. Because the wind-ripple strata had low cohesive strength, a depression formed around each rupture, and ejected sand built upward to a flat-topped surface rather than forming the cone of a classic sand volcano. In one 3 m2 portion of the map area, a cluster of about 20 pipes and dikes, many with truncated tops, record eight stratigraphically distinct seismic events. The large dunes that deposited the Navajo cross-strata likely moved ~1m/yr. When, in response to seismic shaking, a few liters of fluidized sand erupted onto the lowermost portion of the dune lee slope through a pipe, the erupted sand dried and was buried by climbing wind-ripple strata as the large dune continued to advance downwind. The mapped cluster recording eight distinct seismic events lies within thin-laminated sediment that was deposited by wind ripples during 1 m (~ 1 year) of southeastward dune migration. We conclude that the small pipes and dikes of our study sites are products of numerous >MM 5 earthquakes, some of which recurred at intervals of less than 2 months. We interpret one small cluster of pipes and dikes with well-defined upward terminations as a distinct shock-aftershock sequence. Because the largest modern earthquakes can produce surface liquefaction only up to about 175 km from their epicenters, the Jurassic epicenters must have been well within that distance. The tendency of modern plate boundaries to produce high-frequency aftershocks suggests that the epicenter for this Jurassic sequence lay to the southwest, within the plate boundary zone (not within continental rocks to the east). As eolian dunes steadily migrate over interdune surfaces underlain by water-saturated dune cross-strata, the thin, distinct laminae produced by the wind ripples that occupy dune toes can faithfully record high-frequency seismic events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.J.Lewis; A.Lavine; S.L.Reneau
2002-12-01
We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluationsmore » and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east-west-striking faults. We consider all structures to be Quaternary in that they postdate the Tshirege Member (1.22 million years old) of the Bandelier Tuff. Older mesa-top alluvial deposits (Qoal), which may have a large age range but are probably in part about 1.13 million years old, are clearly faulted or deformed by many structures. At two localities, younger alluvial units (Qfo and Qfi) appear to be truncated by faults, but field relations are obscure, and we cannot confirm the presence of fault contacts. The youngest known faulting in the study area occurred in Holocene time on a down-to-the-west fault, recently trenched at the site of a new LANL Emergency Operations Center (Reneau et al. 2002).« less
The classical dynamic symmetry for the U(1) -Kepler problems
NASA Astrophysics Data System (ADS)
Bouarroudj, Sofiane; Meng, Guowu
2018-01-01
For the Jordan algebra of hermitian matrices of order n ≥ 2, we let X be its submanifold consisting of rank-one semi-positive definite elements. The composition of the cotangent bundle map πX: T∗ X → X with the canonical map X → CP n - 1 (i.e., the map that sends a given hermitian matrix to its column space), pulls back the Kähler form of the Fubini-Study metric on CP n - 1 to a real closed differential two-form ωK on T∗ X. Let ωX be the canonical symplectic form on T∗ X and μ a real number. A standard fact says that ωμ ≔ωX + 2 μωK turns T∗ X into a symplectic manifold, hence a Poisson manifold with Poisson bracket {,}μ. In this article we exhibit a Poisson realization of the simple real Lie algebra su(n , n) on the Poisson manifold (T∗ X ,{,}μ) , i.e., a Lie algebra homomorphism from su(n , n) to (C∞(T∗ X , R) ,{,}μ). Consequently one obtains the Laplace-Runge-Lenz vector for the classical U(1) -Kepler problem of level n and magnetic charge μ. Since the McIntosh-Cisneros-Zwanziger-Kepler problems (MICZ-Kepler Problems) are the U(1) -Kepler problems of level 2, the work presented here is a direct generalization of the work by A. Barut and G. Bornzin (1971) on the classical dynamic symmetry for the MICZ-Kepler problems.
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.
2010-05-01
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
Burbey, T.J.
1997-01-01
Seventeen hydrographic areas in southern Nevada were assessed for the ground-water development potential of the underlying carbonate-rock aquifers on the basis of geologic and hydrologic information developed as part of the Nevada Carbonate Aquifers Study and information compiled from previous investigations. All selected areas lie within a miogeoclinal belt where thick accumulations of carbonate rock followed by major episodes of compression and extension have greatly modified the region. Most of the selected hydrographic areas lie within the less extended terranes; however, several areas, or parts of areas, lie within severely extended terranes where carbonate rocks have been greatly thinned, or where deformed blocks of carbonate rock are discontinuous and isolated from surrounding carbonate rock aquifers. Three principal criteria were used to assess the development potential of each selected hydrographic area. These quantitative criteria are: (1) depth to water, (2) depth to and thickness of carbonate rocks, and (3) water quality. Other site-specific factors, such as accessibility and potential effects of ground-water development, are also discussed. Results suggest that sites with high potential for development may be scarce in southern Nevada. Many areas described as favorable on the basis of the three quantitative criteria were deemed unfavorable on the basis of possible short- and long-term effects associated with development and on the amount of available data used to make the assessment. The most favorable sites may be in more severely extended terranes, where development of isolated blocks (of carbonate-rock aquifer material) would be less likely to affect neighboring areas.
ERIC Educational Resources Information Center
Rust, Amber Heller
2011-01-01
When a student is not successful in mathematics, teachers frequently assume the difficulty lies within the student's mathematical ability or negative disposition towards mathematics, but the difficulty may lie with the student's reading comprehension (Draper, Smith, Hall, & Siebert, 2005; Kane, Byrne, & Hater, 1974). Many…
Urbanization and depopulation in the Alps.
Batzing, W; Perlik, M; Dekleva, M
1996-11-01
Demographic developments in the European Alpine region are analyzed over the period 1870-1990. The region is defined as including parts of Germany, France, Italy, Liechtenstein, Austria, Switzerland, and Slovenia. "Studies of growth, stagnation, decline, commune size, and altitude in almost 6,000 communes are presented on three colored maps.... It is apparent that two highly divergent processes are at work and, accordingly, statistical mean values reveal little of importance. Approximately one-half of Alpine Europe is undergoing general economic and demographic growth and has experienced significant increase in population since the end of the agricultural era. This development has taken place primarily in low-lying valleys and basins and in areas bordering the Alps that have good access to transport routes. Tourism is not as widespread as generally assumed and is usually characterized by a punctate pattern. Only in the western part of the Eastern Alps does tourism account for widespread population growth at higher altitudes; elsewhere the Alps have not been affected by modern development and the economy and population are declining, with some areas in danger of becoming completely abandoned. The results challenge the earlier concept of the Alps as a rural region, once populated by peasants, where tourism now plays a major role." (EXCERPT)
Geology of the Anderson Mesa quadrangle, Colorado
Cater, Fred W.; Withington, C.F.
1953-01-01
The Anderson Mesa quadrangle is one of the eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteenth quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quarternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-tending folds. Conspicuous among the folds are large anticlines having cores of intrusive slat and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing many thousands of tons. The ore consists of largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildanger, E.G.; Mahar, J.; Nieto, A.
1980-01-01
This study examined the geologic data, mining history, and subsidence trends of the St. David region. Mine subsidence has occurred due to collapse of the abandoned mine workings. The known subsidence areas have been mapped and described. Results of the study include: (1) St. David has been undermined by both large shipping mines and smaller local mines; (2) sinkholes will continue to develop in this area in response to rock failure and roof collapse above the abandoned mine workings; (3) some primary factors that contribute to the sinkhole problems are the undermining and roof rock composition; (4) sinkholes will bemore » smaller in the future; (5) ten of the 63 sinkholes occurred close enough to structures to cause damage, and only six sinkholes caused damage; (6) ways to minimize potential damage to future homes from sinkhole subsidence are manageable; (7) threats to residents lie in the collapse of heavy walls, brick chimneys, breaks in gas, water, or electrical lines; and (8) location of future subsidence is not predictable. (DP)« less
Adélie penguins and temperature changes in Antarctica: a long-term view.
Millar, Craig D; Subramanian, Sankar; Heupink, Tim H; Swaminathan, Siva; Baroni, Carlo; Lambert, David M
2012-06-01
During the summer months, Adélie penguins represent the dominant biomass of terrestrial Antarctica. Literally millions of individuals nest in ice-free areas around the coast of the continent. Hence, these modern populations of Adélie penguins have often been championed as an ideal biological indicator of ecological and environmental changes that we currently face. In addition, Adélie penguins show an extraordinary record of sub-fossil remains, dating back to the late Pleistocene. At this time, temperatures were much lower than now. Hence, this species offers unique long-term information, at both the genomic and ecological levels, about how a species has responded to climate change over more than 40 000 years. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.
Map Projections and the Visual Detective: How to Tell if a Map Is Equal-Area, Conformal, or Neither
ERIC Educational Resources Information Center
Olson, Judy M.
2006-01-01
The ability to see whether a map is equal-area, conformal, or neither is useful for looking intelligently at large-area maps. For example, only if a map is equal-area can reliable judgments of relative size be made. If a map is equal-area, latitude-longitude cells are equal in size between a given pair of parallels, the cells between a given pair…
Taylor, George C.; Osa, H.M.; Mitra, A.; Sen, B.N.
1964-01-01
This report is based on an investigation of the availability of ground-water supplies in the Bhachau area for the nearby Kandla Port and township development undertaken by the Government of India. This seaport lies on an estuary of the Gulf of Kutch in western India and in the eastern part of the State of Kutch. The fieldwork on the investigation was carried on from November 1952 through April 1953 with continuing hydrologic observations through 1954-55. The fieldwork included: geologic mapping and delimitation of the principal aquifers of the region; preparation of water-table maps; a detailed inventory of existing wells and springs; observations of significant water table fluctuations; preparation of isobicarb, isochlor and isosulf maps to show the areal distribution of ground-water salinity. The Bhachau area includes about 116 square miles in eastern Kutch and lies in a belt of semiarid low-latitude steppes. The mean annual rainfall is about 15 inches, most of which falls from late June to late September during the southwest monsoon. The area includes a central sandy upland ranging from about 100 to 250 feet above sea level ; a northern lowland of between about 50 to 125 feet altitude that slopes north to the Great Rann of Kutch; a belt of low buttes and discontinuous ridges ranging from about 200 to 275 feet above sea level; and southern lowland which slopes in a southerly to southeasterly direction from an altitude of about 125 feet to 25 feet or less near the Gulf of Kutch. The principal streams are Kageshwar Vokra and Kara Vokra which drain north to the Great Rann and Kotwala Vokra and Dalwala Vokra which drain south toward the Gulf of Kutch. The rocks of the Bhachau area include nonmarine and marine sediments of Mesozoic, Tertiary, and Quaternary age and volcanic rocks of late Mesozoic to early Tertiary age. The oldest rocks in the area are medium- to coarse-grained white to buff current-bedded friable sandstone with occasional partings of white silty shale of the Upper Bhuj series that has been assigned to the Early Cretaceous. The soft friable sandstone of the Upper Bhuj series constitutes the most productive ground-water reservoir in the Bhachau area. At present (1955) there are nine irrigated tracts for which water is obtained from dug wells less than 90 feet deep in the Upper Bhuj. These wells are worked by bullocks and 'motes' (leather bags) at withdrawal rates ranging from about 6,000 to 24,000imperial gallons per day; however, many existing individual wells if equipped with mechanical pumps are capable of yielding 100,000 gallons per day. The Deccan trap of Late Cretaceous to Eocene age occurs in a sequence of basaltic lava flows in the Bhachau area, but trap dikes, sills and plugs that are common in other parts of Kutch have not been observed in the area. Laterite of probable Eocene age is extensive at the top of the Deccan trap, and in places where the lava flows are thin the parent rock has been almost completely lateritized. The Deccan lava flows or the laterite, where the trap is absent, rest disconformably on the Upper Bhuj. No wells have been observed in the Deccan trap of the Bhachau area, but it is possible that locally small supplies of good water may be obtained from these rocks. The Tertiary sediments, which are assigned to the Manchhar series of Pliocene age, generally rest on the laterite or the Deccan trap ; but where both are absent, the Manchhar rests directly on the Upper Bhuj. The Manchhar series includes massive reddish-brown gypseous clay shales, laminated gray siltstones, some limestone, mottled sandstone, and laterite trap gravel. Only meager supplies of brackish water are obtained from wells in these sediments. Along the channels of Kotwala, Dalwala, Kageshwar, and Kara Vokras are narrow bands of unconsolidated coarse sand with fine gravel of Quaternary age. No wells were observed in these deposits, but it is possible that locally they may contain small supplies of bracki
NASA Astrophysics Data System (ADS)
Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.; McIntosh, Kirk D.; Gibson, James; Orange, Daniel; Ranero, Cesar R.; von Huene, Roland
2013-03-01
We used high-resolution mapping to document 161 sites of potential fluid seepage on the shelf and slope regions where no geophysical seep indicators had been reported. Identified potential seabed seepage sites show both high-backscatter anomalies and bathymetric expressions, such as pockmarks, mounds, and ridges. Almost all identified seabed features are associated with bright spots and flat spots beneath, as mapped within the 3-D seismic grid. We obtained EM122 multi-beam data using closely spaced receiver beams and 4-5 times overlapping multi-beam swaths, which greatly improved the sounding density and geologic resolvability of the data. At least one location shows an acoustic plume in the water column on a 3.5 kHz profile, and this plume is located along a fault trace and above surface and subsurface seepage indicators. Fluid indicators are largely associated with folds and faults within the sediment section, and many of the faults continue into and offset the reflective basement. A dense pattern of normal faults is seen on the outer shelf in the multi-beam bathymetry, backscatter, and 3-D seismic data, and the majority of fluid seepage indicators lie along mapped fault traces. Furthermore, linear mounds, ridges, and pockmark chains are found on the upper, middle, and lower slope regions. The arcuate shape of the shelf edge, projection of the Quepos Ridge, and high density of potential seep sites suggest that this area may be a zone of former seamount/ridge subduction. These results demonstrate a much greater potential seep density and distribution than previously reported across the Costa Rican margin.
NASA Astrophysics Data System (ADS)
Xue, Zhaohui; Du, Peijun; Li, Jun; Su, Hongjun
2017-02-01
The generally limited availability of training data relative to the usually high data dimension pose a great challenge to accurate classification of hyperspectral imagery, especially for identifying crops characterized with highly correlated spectra. However, traditional parametric classification models are problematic due to the need of non-singular class-specific covariance matrices. In this research, a novel sparse graph regularization (SGR) method is presented, aiming at robust crop mapping using hyperspectral imagery with very few in situ data. The core of SGR lies in propagating labels from known data to unknown, which is triggered by: (1) the fraction matrix generated for the large unknown data by using an effective sparse representation algorithm with respect to the few training data serving as the dictionary; (2) the prediction function estimated for the few training data by formulating a regularization model based on sparse graph. Then, the labels of large unknown data can be obtained by maximizing the posterior probability distribution based on the two ingredients. SGR is more discriminative, data-adaptive, robust to noise, and efficient, which is unique with regard to previously proposed approaches and has high potentials in discriminating crops, especially when facing insufficient training data and high-dimensional spectral space. The study area is located at Zhangye basin in the middle reaches of Heihe watershed, Gansu, China, where eight crop types were mapped with Compact Airborne Spectrographic Imager (CASI) and Shortwave Infrared Airborne Spectrogrpahic Imager (SASI) hyperspectral data. Experimental results demonstrate that the proposed method significantly outperforms other traditional and state-of-the-art methods.
Extracting Rayleigh wave dispersion from ambient noise across the Indian Ocean
NASA Astrophysics Data System (ADS)
Ma, Z.; Dalton, C. A.
2016-12-01
Rayleigh wave dispersion extracted from ambient seismic noise has been widely used to image crustal and uppermost mantle structure. Applications of this approach in continental settings are abundant, but there have been relatively few studies within ocean basins. In this presentation, we will first demonstrate the feasibility of extracting high quality Rayleigh wave dispersion information from ambient noise across the entire Indian Ocean basin. Phase arrival times measured from ambient noise are largely consistent with the ones predicted from 2-D phase velocity maps that were determined from earthquake data alone. Secondly, we show that adding dispersion information extracted from ambient noise to existing earthquake data can indeed improve the resolution of phase velocity maps by about 20% in the western Indian Ocean region where the station distribution is the densest. High quality Rayleigh wave dispersion information can be obtained from stacking waveforms over less than two years at land stations and less than four years at island stations. After removing the age dependent average velocities, the 2-D phase velocity maps show slow anomalies associated with the Seychelles-Mascarene plateau. Forward modeling suggests that the crust is about 15-25 km thick in this area, which agrees with previous estimates obtained from gravity data. We also observe that the slow anomaly related to the Central Indian Ridge is asymmetric. The center of this slow anomaly lies to the west side of ridge, which is opposite to the ridge migration direction. This asymmetry probably reflects the interactions between the ridge and nearby hotspots.
Representations of spacetime diffeomorphisms. I. Canonical parametrized field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isham, C.J.; Kuchar, K.V.
The super-Hamiltonian and supermomentum in canonical geometrodynamics or in a parametried field theory on a given Riemannian background have Poisson brackets which obey the Dirac relations. By smearing the supermomentum with vector fields VepsilonL Diff..sigma.. on the space manifold ..sigma.., the Lie algebra L Diff ..sigma.. of the spatial diffeomorphism group Diff ..sigma.. can be mapped antihomomorphically into the Poisson bracket algebra on the phase space of the system. The explicit dependence of the Poisson brackets between two super-Hamiltonians on canonical coordinates (spatial metrics in geometrodynamics and embedding variables in parametrized theories) is usually regarded as an indication that themore » Dirac relations cannot be connected with a representation of the complete Lie algebra L Diff M of spacetime diffeomorphisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, I K
In this paper we study topological properties of an integrable case for Euler's equations on the Lie algebra so(4), which can be regarded as an analogue of the classical Kovalevskaya case in rigid body dynamics. In particular, for all values of the parameters of the system under consideration, the bifurcation diagrams of the momentum mapping are constructed, the types of critical points of rank 0 are determined, the bifurcations of Liouville tori are described, and the loop molecules are computed for all singular points of the bifurcation diagrams. It follows from the obtained results that some topological properties of the classicalmore » Kovalevskaya case can be obtained from the corresponding properties of the considered integrable case on the Lie algebra so(4) by taking a natural limit. Bibliography: 21 titles.« less
Assessing the ecological state and managing Armenia's farmlands
NASA Astrophysics Data System (ADS)
Saghatelyan, Armen; Asmaryan, Shushanik; Muradyan, Vahagn; Tepanosyan, Garegin; Minasyan, Lilit
2014-05-01
The territory of the Republic of Armenia (RA) occupies an area 29.8 sq. km, the major part of which - 2077 hectares - falls on farmlands located at a height 400-3200m a.s.l. Such a variation in altitude complicates development of territories especially in the case they have an extensive character stemmed from the Soviet era: land plough-up on sites lying at a very steep angle of decline - >20 grade, unregulated grazing and so on. A long-term, unplanned and unregulated use of farmlands entailed intense washout of upper soil horizon, which subsequently provoked intense development of erosion and degradation of lands. A practicable solution to this problem is a scientifically and methodically grounded assessment of ecological state of farmlands and economically 'competent' planning and management of agricultural resources. With the view of developing animal husbandry and managing pastures/hayfields, in 2011-2012 the Government of the Republic of Armenia under support of the World Bank implemented a Farm Resources Management and Competitiveness Program. The goal of the Program is ceasing a trend to overgrazing and degradation of close-to-village sites, using remote pastures/hayfields in the best effective manner, improving feed production and animal feeding networks, and promoting a growth in animal feed production volumes. To achieve that, the following works were planned and implemented successfully in 23 rural communities of 6 marzes of the RA, which was done by 3 stages. In preparatory stage • Accessible web resources - programs and sites (Google Earth, www.landcocer.org) with a view of identifying information to support implementation of the planned activities, were explored and evaluated. • Cartographic material (topographic maps sc.1:10000, landscape maps, panchromatic and multi-spectral high- and medium - resolution satellite images /LANDSAT ETM, QuickBird/ and other thematic cartographic and archival material) required for subsequent treatment of information which underlay development of field maps of the noted communities of the six marzes, was selected. Schematic maps required for implementation of field works, which helped indicate optimal routes and evaluate accessibility of separate sites, were produced. • Through collation between maps and satellite images visual signatures of interpretation of satellite images of separate objects (cliffs, rocky river slopes, etc.) were developed, which in chamber conditions would help calculate and exclude idle, vegetation- barren and impassable areas from pastures. Based on field observations and tests the overall state of natural pastures and the level of degradation was assessed. In final stage for the 23 communities series of cartographic layers was produced that included relief, river-ravine and road networks, infrastructure (roads, aqueducts, electricity cables, gas pipelines, irrigation points, structures erected on grazing sites); data on land use and soil types in the noted communities were processed, a relevant database was compiled and mapped. Finally, with a view of assessing the usable area of vegetation cover on the grazing sites, the area occupied by objects found on separate pastures (stone contents, stone fields, rocks, rocky-side ravines etc.) was calculated. The latter underpinned the assessment of ecological status of all the grazing sites.
NASA Astrophysics Data System (ADS)
De Toffoli, Barbara; Pozzobon, Riccardo; Mazzarini, Francesco; Massironi, Matteo; Cremonese, Gabriele
2017-04-01
We mapped around 6000 mounds in three different portions of the Martian surface on an average area of about 90.000 Km2 for each region. The study areas are located in Hellas basin, Utopia basin and a portion of the Northern Plains lying north of Arabia Terra, between Acidalia and Utopia Planitia. The aim of the study was to understand the nature of the observed features, particularly if they could be interpreted as mud volcanoes or not, and improve our knowledge about the Martian mound fields origin. The analysis of Context Camera (onboard Mars Reconnaissance Orbiter) images showed circular, elliptical and coalescent mounds with central and/or distal pits and flow features such as concentric annular lobes around the source pits and apron-like extensions. We produced DTMs and then high-to-diameter morphometric analysis on two groups of mounds located in Utopia and Hellas basins to enhance the geomorphological observations. We inferred, by means of cluster and fractal analyses, the thickness of the medium cracked by connected fractures and, consequently, the depths of reservoirs that fed the mounds. We found that the fields, which are seated at different latitudes, has been fed, at least partially, by reservoirs located at the base of the gas hydrate stability zone according to Clifford et al., 2010. This evidence produces a meaningful relationship between the clathrates distribution underneath the Martian surface and the occurrence of mound fields on the surface leading to the assumption that the involvement of water, ostensibly as a result of gas hydrate dissociation, plays a key role in the subsurface processes that potentially worked as triggers. These outcomes corroborate the hypothesis that the mapped mounds are actually mud volcanoes and make these structures outstanding targets for astrobiology and habitability studies. In fact, mud volcanoes, extruding material from depths that are still not affordable by our present-day instrumentations, could have sampled and brought to the surface with the sediments a putative extinct or extant deep biosphere. In conclusion, on the base of this study, emerged that: (i) mud volcanoes are the best terrestrial analogs for the considered Martian mounds, (ii) there is a recurrent specific subsurface environment where the phenomenon may be triggered and it is the base of gas hydrate-rich cryosphere for all the study areas and (iii) mud volcanism seems to be, at least partially, a geologically recent event in terms of planet thermal evolution timespan. In light of these results, the CaSSIS camera, onboard the Trace Gas Orbiter ExoMARS mission, will provide new images of these features to improve and widen the understanding of the mechanisms that lie behind this phenomenon.
2008-03-01
Jasmine , you have sacrificed daddy for countless hours and weekends when I was required to study. At times, it was overwhelming and seemed as if it...by leveraging the 8 command and control advantage enjoyed by U. S. forces. The article stated that “The essence of this concept lies in the
Location of Nearest Rocky Exoplanet Known
2015-07-30
This sky map shows the location of the star HD 219134 (circle), host to the nearest confirmed rocky planet found to date outside of our solar system. The star lies just off the "W" shape of the constellation Cassiopeia and can be seen with the naked eye in dark skies. It actually has multiple planets, none of which are habitable. http://photojournal.jpl.nasa.gov/catalog/PIA19832
2012-11-01
Estrella mountain range is approximately six miles west of the Installation and the Sacaton mountain range lie approximate- ly six miles to the southeast...Structures 3-4 Figure 5. Geological Map of Gila River AFSSS and Vicinity Sierra Estrella Range Sacaton Range EA — Construct Maintenance & Storage
Toward Determining the Comprehensibility of Machine Translations
2012-01-01
responses to a stimulus (Macmillan and Creelman , 1991). It has been applied in areas such as lie detection (truth/lie), inspection (ac- ceptable...1-1/(2N) (Macmil- lan and Creelman , 1991). Negative values, which usually indicate response confusion, were eliminated. The results of...Macmillan, Neil and C. Douglas Creelman . (1991). Detection theory: A User’s guide. Cambridge Univer- sity Press, pp. 10 &125. Marchant
NASA Astrophysics Data System (ADS)
Porsani, Jorge Luís; Almeida, Emerson Rodrigo; Bortolozo, Cassiano Antonio; Santos, Fernando Acácio Monteiro dos
2012-07-01
This article presents TDEM results from an area with recent induced shallow seismicity. The purpose was to do a geoelectrical mapping of sedimentary and fractured basaltic aquifers for better understanding of the hydrogeologic setting. The study area is in the Paraná basin where flood basalts are overlain by sedimentary units near the city of Bebedouro, northern São Paulo State, Brazil. 86 TDEM soundings were acquired in an area of 90 km2 in the Andes and Botafogo study areas. The soundings were chosen next to wells for calibration, and also along profiles crossing the seismically active areas. 1-D interpretation results showed the general geoelectrical stratigraphy of this part of the Paraná basin. The upper geoelectrical layer is the shallow sedimentary aquifer (Adamantina formation) with less than 80 m thickness. The second geoelectrical layer contains the upper basalts of the Serra Geral formation at about 60-80 m depths. A saturated fractured basalt zone between 100 and 300 m depths was identifiable on various TDEM soundings. This depth range corresponds to the range of hypocentral depths for more than 3000 micro-earthquakes in this area. The lower basalt layer was estimated to lie between 400 and 650 m depth. The deepest geoelectrical layer detected by various TDEM soundings corresponds to the Botucatu sandstone (Guarani aquifer). Results suggest that the high-discharge wells are located in the fractured zone in the middle basalt of the Serra Geral formation. There is a good correlation between seismically active areas, high discharge wells (> 190 m3/h), and fracture zones in the middle basalt. The results reinforce the hypothesis that the shallow seismic activity in the Bebedouro region is being triggered by high rates of groundwater withdrawal.
What should autism research focus upon? Community views and priorities from the United Kingdom
Dinsmore, Adam; Charman, Tony
2014-01-01
The rise in the measured prevalence of autism has been accompanied by much new research and research investment internationally. This study sought to establish whether the pattern of current UK autism research funding maps on to the concerns of the autism community. Interviews and focus groups were conducted with autistic adults, family members, practitioners and researchers to identify their priorities for research. We also captured the views of a large number of stakeholders via an online survey. There was a clear disparity between the United Kingdom’s pattern of funding for autism research and the priorities articulated by the majority of participants. There was general consensus that future priorities for autism research should lie in those areas that make a difference to people’s day-to-day lives. There needs to be greater involvement of the autism community both in priority setting and in research more broadly to ensure that resources reach where they are most needed and can make the most impact. PMID:24789871
Anomalous variation in GPS based TEC measurements prior to the 30 September 2009 Sumatra Earthquake
NASA Astrophysics Data System (ADS)
Karia, Sheetal; Pathak, Kamlesh
This paper investigates the features of pre-earthquake ionospheric anomalies in the total elec-tron content (TEC) data obtained on the basis of regular GPS observations from the GPS receiver at SVNIT Surat (21.16 N, 72.78 E Geog) located at the northern crest of equatorial anomaly region. The data has been analysed for 5 different earthquakes that occurred during 2009 in India and its neighbouring regions. Our observation shows that for the cases of the earthquake, in which the preparation area lies between the crests of the equatorial anomaly close to the geomagnetic equator the enhancement in TEC was followed by a depletion in TEC on the day of earthquake, which may be connected to the equatorial anomaly shape distortions. For the analysis of the ionospheric effects of one of such case-the 30 September 2009 Sumatra earthquake, Global Ionospheric Maps of TEC were used. The possible influence of the earth-quake preparation processes on the main low-latitude ionosphere peculiarity—the equatorial anomaly—is discussed.
Topographic analysis of lunar secondary craters of Copernicus and implications
NASA Technical Reports Server (NTRS)
Oberbeck, V. R.; Aggarwal, H. R.
1977-01-01
An analysis is conducted of the topography of lunar secondary craters and the associated herringbone pattern observed on lunar topophotomaps. The topography and the patterns are compared with those of crater pairs produced in the laboratory. The results are used to identify secondaries on the lunar uplands. The chain of craters that was selected for mapping and which is described is known to be a secondary impact crater chain produced by material ejected from Copernicus Crater because it lies on a well-developed ray system of Copernicus. Oberbeck et al. (1977) had hypothesized that most lunar areas exhibit more craters smaller than 50 km than are observed on Mars and Mercury because lower lunar gravity permitted more widespread distribution of secondaries for the moon. After removal of basin secondaries it is found that the surfaces of the lunar uplands are only sparsely populated by craters between 5 and 50 km. The lunar uplands appear then similar to the Mercurian terrain.
Observations of the north polar region of Mars from the Mars orbiter laser altimeter.
Zuber, M T; Smith, D E; Solomon, S C; Abshire, J B; Afzal, R S; Aharonson, O; Fishbaugh, K; Ford, P G; Frey, H V; Garvin, J B; Head, J W; Ivanov, A B; Johnson, C L; Muhleman, D O; Neumann, G A; Pettengill, G H; Phillips, R J; Sun, X; Zwally, H J; Banerdt, W B; Duxbury, T C
1998-12-11
Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.
NASA Astrophysics Data System (ADS)
Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri
2015-04-01
Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.
Soller, David R.; Garrity, Christopher P.
2018-01-26
Beginning roughly 2.6 million years ago, global climate entered a cooling phase known as the Pleistocene Epoch. As snow in northern latitudes compacted into ice several kilometers thick, it flowed as glaciers southward across the North American continent. These glaciers extended across the northern United States, dramatically altering the landscape they covered. East of the Rocky Mountains, the ice coalesced into continental glaciers (called the Laurentide Ice Sheet) that at times blanketed much of the north-central and northeastern United States. To the west of the Laurentide Ice Sheet, glaciers formed in the mountains of western Canada and the United States and coalesced into the Cordilleran ice sheet; this relatively smaller ice mass extended into the conterminous United States in the northernmost areas of western Montana, Idaho, and Washington. Throughout the Pleistocene, landscape alteration occurred by (1) glacial erosion of the rocks and sediments; (2) redeposition of the eroded earth materials in a form substantially different from their source rocks, in terms of texture and overall character; and (3) disruption of preexisting drainage patterns by the newly deposited sediments. In many cases, pre-glacial drainage systems (including, for example, the Mississippi River) were rerouted because their older drainage courses became blocked with glacial sediment.The continental glaciers advanced and retreated many times across those areas. During each ice advance, or glaciation, erosion and deposition occurred, and the landscape was again altered. Through successive glaciations, the landscape and the bedrock surface gradually came to resemble their present configurations. As continental ice sheets receded and the Pleistocene ended, erosion and deposition of sediment (for example in stream valleys) continued to shape the landscape up to the present day (albeit to a lesser extent than during glaciation). The interval of time since the last recession of the glaciers is called the Holocene and, together with the Pleistocene, constitutes the Quaternary Period of geologic time; this publication characterizes the three-dimensional geometry of the Quaternary sediments and the bedrock surface that lies beneath.The pre-glacial landscape was underlain mostly by weathered bedrock generally similar in nature to that found in many areas of the non-glaciated United States. Glacial erosion and redeposition of earth materials produced a young, mineral-rich soil that formed the basis for the highly productive agricultural economy in the U.S. midcontinent. Extensive buried sands and gravels within the glacial deposits also provided a stimulus to other economic sectors by serving as high-quality aquifers supplying groundwater to the region’s industry and cities. An understanding of the three-dimensional distribution of these glacial sediments has direct utility for addressing various societal issues including groundwater quality and supply, and landscape and soil response to earthquake-induced shaking.The Quaternary sediment thickness map and bedrock topographic map shown here provide a regional overview and are intended to supplement the more detailed work on which they are based. Detailed mapping is particularly useful in populated areas for site-specific planning. In contrast, regional maps such as these serve to place local, detailed mapping in context; to permit the extrapolation of data into unmapped areas; and to depict large-scale regional geologic features and patterns that are beyond the scope of local, detailed mapping. They also can enhance the reader’s general understanding of the region’s landscape and geologic history and provide a source of information for regional decision making that could benefit by improved predictability of bedrock depth beneath the unconsolidated Quaternary sediments. To enable these maps to be analyzed in conjunction with other types of information, this publication also includes the map data in GIS compatible format.
NASA Astrophysics Data System (ADS)
She, Yuchen; Li, Shuang
2018-01-01
The planning algorithm to calculate a satellite's optimal slew trajectory with a given keep-out constraint is proposed. An energy-optimal formulation is proposed for the Space-based multiband astronomical Variable Objects Monitor Mission Analysis and Planning (MAP) system. The innovative point of the proposed planning algorithm lies in that the satellite structure and control limitation are not considered as optimization constraints but are formulated into the cost function. This modification is able to relieve the burden of the optimizer and increases the optimization efficiency, which is the major challenge for designing the MAP system. Mathematical analysis is given to prove that there is a proportional mapping between the formulation and the satellite controller output. Simulations with different scenarios are given to demonstrate the efficiency of the developed algorithm.
Lopes, R.M.C.; Kamp, L.W.; Doute, S.; Smythe, W.D.; Carlson, R.W.; McEwen, A.S.; Geissler, P.E.; Kieffer, S.W.; Leader, F.E.; Davies, A.G.; Barbinis, E.; Mehlman, R.; Segura, M.; Shirley, J.; Soderblom, L.A.
2001-01-01
Galileo's Near-Infrared Mapping Spectrometer (NIMS) observed Io during the spacecraft's three flybys in October 1999, November 1999, and February 2000. The observations, which are summarized here, were used to map the detailed thermal structure of active volcanic regions and the surface distribution of SO2 and to investigate the origin of a yet unidentified compound showing an absorption feature at ???1 ??m. We present a summary of the observations and results, focusing on the distribution of thermal emission and of SO2 deposits. We find high eruption temperatures, consistent with ultramafic volcanism, at Pele. Such temperatures may be present at other hot spots, but the hottest areas may be too small for those temperatures to be detected at the spatial resolution of our observations. Loki is the site of frequent eruptions, and the low thermal emission may represent lavas cooling on the caldera's surface or the cooling crust of a lava lake. High-resolution spectral observations of Emakong caldera show thermal emission and SO2 within the same pixels, implying that patches of SO2 frost and patches of cooling lavas or sulfur flows are present within a few kilometers from one another. Thermal maps of Prometheus and Amirani show that these two hot spots are characterized by long lava flows. The thermal profiles of flows at both locations are consistent with insulated flows, with the Amirani flow field having more breakouts of fresh lava along its length. Prometheus and Amirani each show a white ring at visible wavelengths, while SO2 distribution maps show that the highest concentration of SO2 in both ring deposits lies outside the white portion. Visible measurements at high phase angles show that the white deposit around Prometheus extends into the SO2 ring. This suggests that the deposits are thin and that compositional or grain size variations may occur in the radial direction. SO2 mapping of the Chaac region shows that the interior of a caldera adjacent to Chaac has almost pure SO2. The deposit appears to be topographically controlled, suggesting a possible origin by liquid flow. Copyright 2001 by the American Geophysical Union.
Transboundary Groundwater Body Karavanke/Karawanken Between Austria and Slovenia
NASA Astrophysics Data System (ADS)
Brencic, M.; Poltnig, W.
2009-04-01
Large part of the border region between Republic of Slovenia and Republic of Austria is represented by high east west extended mountainous ridge of Karavanke/Karawanken. It is a range extending along the Slovenian-Austrian border for almost 150 km. Its terrain consists of long and prominent ridges, whose slopes steeply fall to the northern and southern side. Ridges are interrupted by long, deep and narrow valleys. The highest peaks reach over 2000 m above sea level. In the entire range prominent ridges with mountain meadows and forests prevail. The area is scarcely populated, the main economic activities are grazing and forestry, in some places tourism is also developing, especially winter sports centres. Karavanke/Karawanken lies on the contact between two continental plates, the large European plate in the north and the smaller Adriatic plate in the south. When the Adriatic plate was thrusted over the European one towards the north, the collision resulted in the folding of sediments previously deposited in the space between the plates. The contact of both plates caused large lateral displacements, causing the rocks of both plates to fold and fault and then extend along the contact. This is the area of Periadriatic lineament, dividing Karavanke/Karawanken range into their north and south part. Periadriatic lineament is large stripe slip tectonic structure along which on the northern side rocks were extruded to the east and on the southern side to the west. Along the lineament metamorphic (e.g. biotitic and feldsparic para-gneis, amfibolites) and magmatic (e.g. diabaz, granite and tonalite) rocks of various ages are present. Palaeozoic sedimentary rocks cover large part of the mountain ridge. The oldest are Silurian and Ordovician limestone on the northern border followed by Devonian ridge limestones. They are covered by molasse sedimentation in Carbon and shallow marine and river predominantly clastic sedimentation in Perm. The most abundant and with numerous varieties are rocks from Triassic age. In general they can be divided into rocks of Northern and Southern Karavanke/Karawanken deposited in different sedimentation basins. In lower part clastic rocks prevail, going into the upper part of Triassic age more and more carbonate rocks are present. In Southern Karavanke/Karawanken sedimentary rocks formed in the deeper part as well as on the carbonate platform are present, however in Northern Karavanke/Karawanken sedimentary rocks of shallower sedimentary environment are predominant. In the upper Triassic part of Northern Karavanke/Karawanken large zinc and lead ore deposits were formed. Among younger rocks only small patches are present. The most abundant are Rosenbacher coal-bearing beads of Jauntal/Juna in Austria of Miocen age where the uplift history of Karavanke/Karawanken is very well reflected. Extensive Quaternary sediments are present as slope sediments and sediments filling deep valleys. At the end of the 20th century decision was made to construct a 7,8 km long road tunnel through Karavanke/Karawanken between Hrušica on the Slovenian side and Rosenbach/Podrožca on the Austrian side. It was established already during the construction that waters flowing from the tunnel represent an important water resource. In Slovenia some of these springs were captured and led into the water supply network, while in Austria they remained well protected water resource for the future. Such important water resources require protection, which in turn demands knowledge about their recharge areas. This fact stimulated authorities of both countries to support the beginning of hydrogeological investigations in the west Karavanke/Karawanken region through the common ''Drava/Drau water-management commission'' and subcommission "Drinking water reserves of Karavanke/Karawanken mountains". During hydrogeological investigations detailed hydrogeological mapping of the whole Karavanke/Karawanken ridge was made. Sampling of important springs and low water discharge measurements followed this stage. Samples were taken for basic chemistry and stable isotope determination of water as well as some more sophisticated analyses (e.g. isotope analyses of noble gases) in the area of mineral waters appearance. Important part of investigations was production and compilation of new geological map based on older published and unpublished geological maps from both sides of the state border. This map represented background for the definition of hydrogeological and other detailed and specific maps (e.g. risk potential and vulnerability maps). Based on these results basic hydrological balance of the area was calculated, identification of cross border flow was performed and finally protection measures were suggested. A large part of Karavanke/Karawanken is built from karstified carbonate rocks of limestone and dolomite with underlying Paleozoic limestones. The largest part of karstified rocks lies in the area of North Karavanke/Karawanken, the Košuta unit and the Kamnik-Savinja Alps. About 3600 springs were recorded in the area of Karavanke/Karawanken on both sides of the Austrian-Slovenian state border from 1990 to 2002. For each spring, water flow, electrical conductivity and water temperature were determined. Mostly the springs have a small water flow. Only some very large springs flowing from a karstic aquifer were found to have a recharge area extending across the state border. In 2004 based on the bilateral agreement between Republic of Slovenia and Republic of Austria the common transboundary groundwater body Karavanke/Karawanken was defined. The body is defined according to the Water Framework Directive requirements and extends to the area of the main border ridge. It is divided on areas, where prevails the surface water outflow, which depends only on the surface form and areas, where groundwater outflow is present. Within the area of common water body of the Karavanke/Karawanken five cross-border aquifers were determined.
The Finnish "social wilderness"
Ville Hallikainen
2000-01-01
The cultural roots and images of the Finnish wilderness lie in its use as a source of livelihood practiced in southern and central Finland during the Middle Ages. There are statutory wilderness areas in Finland, but Finnish people consider many other areas as wilderness. It is important for management of the areas, statutory wilderness areas and the other wilderness-...
Floods on White Rock Creek above White Rock Lake at Dallas, Texas
Gilbert, Clarence R.
1963-01-01
The White Rock Creek watershed within the city limits of Dallas , Texas, presents problems not unique in the rapid residential and industrial development encountered by many cities throughout the United States. The advantages of full development of the existing area within a city before expanding city boundaries, are related to both economics and civic pride. The expansion of city boundaries usually results in higher per capital costs for the operation of city governments. Certainly no responsible city official would oppose reasonable development of watersheds and flood plains and thus sacrifice an increase in tax revenue. Within the words "reasonable development" lies the problem faced by these officials. They are aware that the natural function of a stream channel, and its associated flood plain is to carry away excess water in time of flood. They are also aware that failure to recognize this has often led to haphazard development on flood plains with a consequent increase in flood damages. In the absence of factual data defining the risk involved in occupying flood plains, stringent corrective and preventative measures must be taken to regulate man's activities on flood plains to a point beyond normal precaution. Flood-flow characteristics in the reach of White Rock Creek that lies between the northern city boundary of Dallas and Northwest Highway (Loop 12) at the upper end of White Rock Lake, are presented in this report. Hydrologic data shown include history and magnitude of floods, flood profiles, outlines of areas inundated by three floods, and estimates of mean velocities of flow at selected points. Approximate areas inundated by floods of April 1942 and July 1962 along White Rock Creek and by the flood of October 1962 along Cottonwood Creek, Floyd Branch, and Jackson Branch, are delineated on maps. Greater floods have undoubtedly occurred in the past but no attempt is made to show their probable overflow limits because basic data on such floods could not be obtained. Depths of inundation can be estimated from the information shown. Elevations shown are in feet above mean sea level, datum of 1929. The data and computations supporting the results given herein are in the files of the Geological Survey in Austin, Texas.
Shallow Depth Study Using Gravity & Magnetics Data in Central Java - Yogyakarta
NASA Astrophysics Data System (ADS)
Fawzy Ismullah M, Muhammad; Altin Massinai, Muhammad; Maria
2018-03-01
Gravity and magnetics measurements carried out in Karangsambung - Bayat - Wonosari track, Central Java - Yogyakarta region as much as 34 points for subsurface identification. Modeling and interpretation using both data at 3 sections. Section A lies on Karangsambung area and reach to 1900 m. Section A showed formation of 0.000001 - 0.0014 nT and 2.00 - 2.80 g/cm3 like alluvium, basalt and tuff. Section B lies on Wates - Yogyakarta area and reach to 1700 m. Section B showed formation of (-0.01) - 0.02 nT and 2.40 - 3.00 g/cm3 like andesite intrusive and Merapi volcano sediments. Section C lies on Bayat - Wonosari area and reach to 2000 m. Section C showed formation of 0.00016 - 0.0005 nT and 2.30 - 3.14 g/cm3 like limestone, tuff and diorite intrusive. Based on modeling results from 2D structure inversion method can identify the formation of sediments from volcano activity on Karangsambung - Bayat - Wonosari track, Central Java - Yogyakarta region. The method of this study shows potential application for identify the formation of volcano activity from 2D structure.
NASA Astrophysics Data System (ADS)
Dietrich, Peter; Werban, Ulrike; Sauer, Uta
2010-05-01
High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the sustainable dissemination of technologies and concepts developed in the projects through workshops for stakeholders and the publication of a handbook "Methods and Technologies for Mapping of Soil Properties, Function and Threat Risks". Besides, the CEN Workshop offers a new mechanism and approach to standardization. During the project we decided that the topic of the CEN Workshop should focus on a voluntary standardization of electromagnetic induction measurement to ensure that results can be evaluated and processed under uniform circumstances and can be comparable. At the poster we will also present the idea and the objectives of our CEN Workshop "Best Practice Approach for electromagnetic induction measurements of the near surface"and invite every interested person to participate.
Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy
NASA Technical Reports Server (NTRS)
Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.
1993-01-01
Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.
The HectoMAP Cluster Survey. I. redMaPPer Clusters
NASA Astrophysics Data System (ADS)
Sohn, Jubee; Geller, Margaret J.; Rines, Kenneth J.; Hwang, Ho Seong; Utsumi, Yousuke; Diaferio, Antonaldo
2018-04-01
We use the dense HectoMAP redshift survey to explore the properties of 104 redMaPPer cluster candidates. The redMaPPer systems in HectoMAP cover the full range of richness and redshift (0.08 < z < 0.60). Fifteen of the systems included in the Subaru/Hyper Suprime-Cam public data release are bona fide clusters. The median number of spectroscopic members per cluster is ∼20. We include redshifts of 3547 member candidates listed in the redMaPPer catalog whether they are cluster members or not. We evaluate the redMaPPer membership probability spectroscopically. The purity (number of real systems) in redMaPPer exceeds 90% even at the lowest richness. Three massive galaxy clusters (M ∼ 2 × 1013 M ⊙) associated with X-ray emission in the HectoMAP region are not included in the public redMaPPer catalog with λ rich > 20, because they lie outside the cuts for this catalog.
The HectoMAP Cluster Survey. I. redMaPPer Clusters
Sohn, Jubee; Geller, Margaret J.; Rines, Kenneth J.; ...
2018-04-05
We use the dense HectoMAP redshift survey to explore the properties of 104 redMaPPer cluster candidates. The redMaPPer systems in HectoMAP cover the full range of richness and redshift (0.08 < z < 0.60). Fifteen of the systems included in the Subaru/Hyper Suprime-Cam public data release are bona fide clusters. The median number of spectroscopic members per cluster is ~20. We include redshifts of 3547 member candidates listed in the redMaPPer catalog whether they are cluster members or not. Here, we evaluate the redMaPPer membership probability spectroscopically. The purity (number of real systems) in redMaPPer exceeds 90% even at themore » lowest richness. Three massive galaxy clusters (M ~ 2 × 10 13 M ⊙) associated with X-ray emission in the HectoMAP region are not included in the public redMaPPer catalog with λ rich > 20, because they lie outside the cuts for this catalog.« less
The HectoMAP Cluster Survey. I. redMaPPer Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, Jubee; Geller, Margaret J.; Rines, Kenneth J.
We use the dense HectoMAP redshift survey to explore the properties of 104 redMaPPer cluster candidates. The redMaPPer systems in HectoMAP cover the full range of richness and redshift (0.08 < z < 0.60). Fifteen of the systems included in the Subaru/Hyper Suprime-Cam public data release are bona fide clusters. The median number of spectroscopic members per cluster is ~20. We include redshifts of 3547 member candidates listed in the redMaPPer catalog whether they are cluster members or not. Here, we evaluate the redMaPPer membership probability spectroscopically. The purity (number of real systems) in redMaPPer exceeds 90% even at themore » lowest richness. Three massive galaxy clusters (M ~ 2 × 10 13 M ⊙) associated with X-ray emission in the HectoMAP region are not included in the public redMaPPer catalog with λ rich > 20, because they lie outside the cuts for this catalog.« less
Distance-Based Phylogenetic Methods Around a Polytomy.
Davidson, Ruth; Sullivant, Seth
2014-01-01
Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.
Denjoy minimal sets and Birkhoff periodic orbits for non-exact monotone twist maps
NASA Astrophysics Data System (ADS)
Qin, Wen-Xin; Wang, Ya-Nan
2018-06-01
A non-exact monotone twist map φbarF is a composition of an exact monotone twist map φ bar with a generating function H and a vertical translation VF with VF ((x , y)) = (x , y - F). We show in this paper that for each ω ∈ R, there exists a critical value Fd (ω) ≥ 0 depending on H and ω such that for 0 ≤ F ≤Fd (ω), the non-exact twist map φbarF has an invariant Denjoy minimal set with irrational rotation number ω lying on a Lipschitz graph, or Birkhoff (p , q)-periodic orbits for rational ω = p / q. Like the Aubry-Mather theory, we also construct heteroclinic orbits connecting Birkhoff periodic orbits, and show that quasi-periodic orbits in these Denjoy minimal sets can be approximated by periodic orbits. In particular, we demonstrate that at the critical value F =Fd (ω), the Denjoy minimal set is not uniformly hyperbolic and can be approximated by smooth curves.
NASA Astrophysics Data System (ADS)
Hošek, Michal; Matys Grygar, Tomáš; Popelka, Jan; Kiss, Timea; Elznicová, Jitka; Faměra, Martin
2017-04-01
In the recent years researchers have enjoyed noticeable improvements of portable analytical and geophysical methods, which allow studying floodplain architecture and deciphering pollutant distribution more easily than ever before. Our area of interest was floodplain of the Ploučnice River, particularly a pollution hotspot in Boreček, severely impacted by U mining between the 1970s and late 1980s, in particular a "radioactive flood" in 1981. In the area, we used hand drill coring and in situ (field) analysis of so acquired sediments by handheld X-ray fluorescence spectrometer (XRF), which gave us information about depth profiles of pollutants (Ba, U, Zn) and the Al/Si and Zr/Rb ratios, i.e., proxies for sediment lithology. We found that spatial distribution of pollutants (control by depth and position in the floodplain) is apparently complex and discontinuous. In some places, contamination is buried by a couple decimetres of less polluted sediments, while in other places the peak pollution is near surface, apparently without a straightforward connection with the surface topography and the distance to the river channel. We thus examined the floodplain architecture, the internal structure of the floodplain using two geophysical methods. First of them, dipole electromagnetic profiling (DEMP, also denoted EMP, MP, or Slingram) quickly acquires average electric resistivity in top strata in selected areas, which was actually top 3 m with our particular instrument. Second, electric resistivity tomography (ERT) produces much more detailed information on resistivity with depth resolution of ca 0.5 m to the depth of ca 5 m in selected lines. ERT thus allows identifying boundaries of electric resistivity domains (sediment bodies) and DEMP their spatial distribution. Based on the obtained data, we divided the floodplain to five segments with specific topography, pollution characteristics, and electric resistivity. We suppose that those segments are lithogenetic floodplain units. Those findings must, however, be checked by sediment examination and analysis in selected points. We processed the crucial characteristics obtained by geochemical mapping, namely depth of maximum pollution, amount of contamination, and lithology (Al/Si and Zr/Rb ratios), using geostatistics. Moreover, some parts of floodplain were dated by optically stimulated luminescence (OSL) which revealed, that recycling of top decimetres of floodplain fine fill (silts) in Boreček site has proceeded relatively recently (in decades and centuries) as compared to deeper lying coarser (sandy) strata (millennia). The results of geochemical mapping show complexity of pollution hotspots and need of their integrated interpretation. Key words: Dipole electromagneting profilling, electric resistivity tomography, floodplain contamination, geochemical mapping
NASA Astrophysics Data System (ADS)
Tappin, David R.; Evans, Hannah M.; Jordan, Colm J.; Richmond, Bruce; Sugawara, Daisuke; Goto, Kazuhisa
2012-12-01
A combination of time-series satellite imagery, helicopter-borne video footage and field observation is used to identify the impact of a major tsunami on a low-lying coastal zone located in eastern Japan. A comparison is made between the coast protected by armoured 'engineered' sea walls and the coast without. Changes are mapped from before and after imagery, and sedimentary processes identified from the video footage. The results are validated by field observations. The impact along a 'natural' coast, with minimal defences, is erosion focussed on the back beach. Along coasts with hard engineered protection constructed to defend against erosion, the presence of three to six metre high concrete-faced embankments results in severe erosion on their landward faces. The erosion is due to the tsunami wave accelerating through a hydraulic jump as it passes over the embankment, resulting in the formation of a ditch into which the foundations collapse. Engineered coastal defences are thus found to be small defence against highly energetic tsunami waves that overtop them. There is little erosion (or sedimentation) of the whole beach, and where active, it mainly forms V-shaped channels. These channels are probably initiated during tsunami inflow and then further developed during tsunami backflow. Tsunami backflow on such a low lying area takes place energetically as sheet flow immediately after tsunami flooding has ceased. Subsequently, when the water level landward of the coastal dune ridges falls below their elevation, flow becomes confined to rivers and breaches in the coast formed during tsunami inflow. Enigmatic, short lived, 'strand lines' are attributed to the slow fall of sea level after such a major tsunami. Immediately after the tsunami coastal reconstruction begins, sourced from the sediment recently flushed into the sea by tsunami backflow.
Weems, R.E.; Lewis, W.C.
2002-01-01
Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.
Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma
Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.
2013-01-01
This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.
Interpretation of sea-floor processes in Gulf of Mexico using GLORIA side-scan sonar system
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGregor, B.A.; Kenyon, N.H.; Rothwell, R.G.
1986-09-01
The extensive deformation of the continental slope seaward of Texas and Louisiana by salt tectonics has resulted in a complex pattern of basins and salt-dome highs. One continuous meandering channel was identified in this part of the gulf, extending from the shelf edge to the Sigsbee abyssal plain. Bottom currents have reworked the sediments in this channel's levees seaward of the Sigsbee Escarpment, the seaward edge of the salt front, suggesting that this channel may no longer be actively transporting sediment. Talus appears to lie along the base of the Sigsbee Escarpment, suggesting that erosion and deposition are occurring alongmore » this front. Three other discontinuous channel systems can be identified on the mosaic and appear to be contributing sediments to the deep gulf. Fans related to these channel systems are present seaward of the Rio Grande, the Mississippi Canyon, and the Desoto Canyon areas. Three major submarine slides were mapped: the East Breaks slide in the northwestern gulf, a slide in the Mississippi Canyon and fan area of the central gulf, and a slide in the Desoto Canyon area in the northeastern gulf. The areal extent of these slide and debris-flow deposits (ranging from 6000 to 50,000 km/sup 2/) suggests that mass wasting is an important process in distributing sediments in the Gulf of Mexico.« less
Fast approximate delivery of fluence maps for IMRT and VMAT
NASA Astrophysics Data System (ADS)
Balvert, Marleen; Craft, David
2017-02-01
In this article we provide a method to generate the trade-off between delivery time and fluence map matching quality for dynamically delivered fluence maps. At the heart of our method lies a mathematical programming model that, for a given duration of delivery, optimizes leaf trajectories and dose rates such that the desired fluence map is reproduced as well as possible. We begin with the single fluence map case and then generalize the model and the solution technique to the delivery of sequential fluence maps. The resulting large-scale, non-convex optimization problem was solved using a heuristic approach. We test our method using a prostate case and a head and neck case, and present the resulting trade-off curves. Analysis of the leaf trajectories reveals that short time plans have larger leaf openings in general than longer delivery time plans. Our method allows one to explore the continuum of possibilities between coarse, large segment plans characteristic of direct aperture approaches and narrow field plans produced by sliding window approaches. Exposing this trade-off will allow for an informed choice between plan quality and solution time. Further research is required to speed up the optimization process to make this method clinically implementable.
Distribution of Faint Atomic Gas in Hickson Compact Groups
NASA Astrophysics Data System (ADS)
Borthakur, Sanchayeeta; Yun, Min Su; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Zhu, Guangtun; Braatz, James A.
2015-10-01
We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25‧ × 25‧ (140-650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detected in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast-southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.
DISTRIBUTION OF FAINT ATOMIC GAS IN HICKSON COMPACT GROUPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borthakur, Sanchayeeta; Heckman, Timothy M.; Zhu, Guangtun
2015-10-10
We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25′ × 25′ (140–650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detectedmore » in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast–southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, J.R.; Russell, O.R.; Staskowski, R.J.
Analysis of 38 contiguous Landsat Multispectral Scanner scenes acquired over Myanmar (Burma) reveals numerous large-scale features associated with margins of the Burman plate, previously unidentified northeast-southwest-trending discontinuities, important extensions of previously mapped fault trends, and numerous structural features that appear favorable for petroleum exploration. A mosaic of these scenes at 1:1,000,000 scale shows a large number of tectonic elements and their spatial relationships. Within the area of investigation are portions of the Indian, Burman, Lhasa, and Shan-Thai plates, and perhaps other, smaller plates. The Himalayan front and Indo-Burman Ranges manifest effects of current and recently past plate movement. The complexitymore » of the kinematic history accounts for the diversity of structural features in the area. The last major event in this long and violent saga, which began in middle Miocene (approximately 11 Ma) time and continues to the present, is the recent change from a collisional to a right-lateral strike-slip transform margin between the Indian and Burman plates. The complexity of the structures visible is the product of multiple plate collisions, rotation of the Indian plate and parts of the Asian plate, and long-continued convergence that changed velocity and direction tbrough time. The most obvious evidence of this complexity, which is immediately apparent on geologic maps or the Landsat mosaic of the region, is the almost right-angle relationship of the folds of the Indo-Burman Ranges and the frontal thrusts and suture zones of the Himalaya. These two sets of compressive features imply maximum compressive stress axes that lie at right angles to each other. The implications are either that the orientation of the stress field changes rapidly over a short distance or that the stress field has changed through time. Both occurrences seem to be true.« less
The SAMCO Web-platform for resilience assessment in mountainous valleys impacted by landslide risks.
NASA Astrophysics Data System (ADS)
Grandjean, Gilles; Thomas, Loic; Bernardie, Severine
2016-04-01
The ANR-SAMCO project aims to develop a proactive resilience framework enhancing the overall resilience of societies on the impacts of mountain risks. The project aims to elaborate methodological tools to characterize and measure ecosystem and societal resilience from an operative perspective on three mountain representative case studies. To achieve this objective, the methodology is split in several points: (1) the definition of the potential impacts of global environmental changes (climate system, ecosystem e.g. land use, socio-economic system) on landslide hazards, (2) the analysis of these consequences in terms of vulnerability (e.g. changes in the location and characteristics of the impacted areas and level of their perturbation) and (3) the implementation of a methodology for quantitatively investigating and mapping indicators of mountain slope vulnerability exposed to several hazard types, and the development of a GIS-based demonstration platform available on the web. The strength and originality of the SAMCO project lies in the combination of different techniques, methodologies and models (multi-hazard assessment, risk evolution in time, vulnerability functional analysis, and governance strategies) that are implemented in a user-oriented web-platform, currently in development. We present the first results of this development task, architecture and functions of the web-tools, the case studies database showing the multi-hazard maps and the stakes at risks. Risk assessment over several area of interest in Alpine or Pyrenean valleys are still in progress, but the first analyses are presented for current and future periods for which climate change and land-use (economical, geographical and social aspects) scenarios are taken into account. This tool, dedicated to stakeholders, should be finally used to evaluate resilience of mountainous regions since multiple scenarios can be tested and compared.
Mapping Relative Sea Level Influences of the Cape Fear Arch in southern North Carolina
NASA Astrophysics Data System (ADS)
Hawkes, A.; Kemp, A.; Capar, P.
2017-12-01
Long-term relative sea-level (RSL) records are a necessary benchmark by which to gauge present accelerated rates of sea-level rise, future sea-level predictions, and their implications to the coastal zone. The east coast of the United States functions as a significant region of latitudinal RSL variability due to the continuous recovery of land from the deglaciation of the Laurentide Ice Sheet since the Last Glacial Maximum. Differential glacial isostatic adjustment (GIA) along the coastline has caused higher rates of subsidence in areas around the former forbulge maxima near New Jersey and Delaware and lower rates to the north and south of this maxima. However, the coast between southern North Carolina and northern South Carolina is experiencing a slower rate of RSL rise then is seen in reconstructed GIA latitudinal trends along the U.S. east coast. It was thought that this could have been attributed to non-isostatic, long-term tectonic processes causing less GIA subsidence of the lithosphere within the region impacted by uplift from the Cape Fear Arch (CFA), an underlying crystalline basement high. A recent study suggests that RSL rise is slower around the CFA than areas to the north and south due to suggested CFA uplift rates of 0.24+0.15mm a-1. An absence of RSL records for 200km north of the CFA make mapping of its influence difficult. Additional RSL records to the north of the CFA allow for a better understanding of the asymmetrical distribution in the rate of RSL rise in this region. Because the distribution in the rate of RSLR between records is not linear it is important for these low-lying coastal communities to better understand their risk to future RSLR.
Crowley, J.K.; Hook, S.J.
1996-01-01
Efflorescent salt crusts and associated sediments in Death Valley, California, were studied with remote-sensing data acquired by the NASA thermal infrared multispectral scanner (TIMS). Nine spectral classes that represent a variety of surface materials were distinguished, including several classes that reflect important aspects of the playa groundwater chemistry and hydrology. Evaporite crusts containing abundant thenardite (sodium sulfate) were mapped along the northern and eastern margins of the Cottonball Basin, areas where the inflow waters are rich in sodium. Gypsum (calcium sulfate) crusts were more common in the Badwater Basin, particularly near springs associated with calcic groundwaters along the western basin margin. Evaporite-rich crusts generally marked areas where groundwater is periodically near the surface and thus able to replenish the crusts though capillary evaporation. Detrital silicate minerals were prevalent in other parts of the salt pan where shallow groundwater does not affect the surface composition. The surface features in Death Valley change in response to climatic variations on several different timescales. For example, salt crusts on low-lying mudflats form and redissolve during seasonal-to-interannual cycles of wetting and desiccation. In contrast, recent flooding and erosion of rough-salt surfaces in Death Valley probably reflect increased regional precipitation spanning several decades. Remote-sensing observations of playas can provide a means for monitoring changes in evaporite facies and for better understanding the associated climatic processes. At present, such studies are limited by the availability of suitable airborne scanner data. However, with the launch of the Earth Observing System (EOS) AM-1 Platform in 1998, multispectral visible/near-infrared and thermal infrared remote-sensing data will become globally available. Copyright 1996 by the American Geophysical Union.
Global coastal flood hazard mapping
NASA Astrophysics Data System (ADS)
Eilander, Dirk; Winsemius, Hessel; Ward, Philip; Diaz Loaiza, Andres; Haag, Arjen; Verlaan, Martin; Luo, Tianyi
2017-04-01
Over 10% of the world's population lives in low-lying coastal areas (up to 10m elevation). Many of these areas are prone to flooding from tropical storm surges or extra-tropical high sea levels in combination with high tides. A 1 in 100 year extreme sea level is estimated to expose 270 million people and 13 trillion USD worth of assets to flooding. Coastal flood risk is expected to increase due to drivers such as ground subsidence, intensification of tropical and extra-tropical storms, sea level rise and socio-economic development. For better understanding of the hazard and drivers to global coastal flood risk, a globally consistent analysis of coastal flooding is required. In this contribution we present a comprehensive global coastal flood hazard mapping study. Coastal flooding is estimated using a modular inundation routine, based on a vegetation corrected SRTM elevation model and forced by extreme sea levels. Per tile, either a simple GIS inundation routine or a hydrodynamic model can be selected. The GIS inundation method projects extreme sea levels to land, taking into account physical obstructions and dampening of the surge level land inwards. For coastlines with steep slopes or where local dynamics play a minor role in flood behavior, this fast GIS method can be applied. Extreme sea levels are derived from the Global Tide and Surge Reanalysis (GTSR) dataset. Future sea level projections are based on probabilistic sea level rise for RCP 4.5 and RCP 8.5 scenarios. The approach is validated against observed flood extents from ground and satellite observations. The results will be made available through the online Aqueduct Global Flood Risk Analyzer of the World Resources Institute.
Pito Seamount revisited: the discovery and mapping of new black smoker vents
NASA Astrophysics Data System (ADS)
Cheadle, M. J.; John, B. E.; German, C. R.; Gee, J. S.; Coogan, L. A.; Gillis, K. M.; Swapp, S.
2017-12-01
In February 2017, the RV Atlantis PMaG (PaleoMagnetism and Gabbro) cruise re-visited a black smoker site originally discovered 24 years ago on Pito Seamount, by the submersible Nautile during the French Pito expedition (1993). Pito Seamount (111.639oW, 23.333oS) marks the northern tip of the propagating East Pacific Rise, bounding the east side of the Easter Microplate. There the seafloor rises to 2250mbsl and has a 900m wide, 50m deep axial valley, which hosts at least two separate fields of active hydrothermal vents. AUV Sentry mapping of the summit of Pito seamount (0.5-1m resolution) highlights over 50 active and inactive chimneys amid recent basaltic sheet flows, pillow mounds and ponded lava. The vents occur in two fields/sub-fields; the first covers an area of 800 x 200m, and lies parallel to the ridge axis, along incipient faults forming on the northeastern flank of the axial valley. The second field occurs in a 250m diameter area in the centre of the axial valley. Jason II dive 961 visited, sampled, measured vent orifice temperatures, and acquired 4k video of the chimneys, and re-discovered the active (Magnificent Village) vent first found by Nautile, in the now named Nautile vent field, together with five additional active hydrothermal vents (Jason, Medea, Sentry, Abe and Scotty's Castle). The Magnificent Village, the largest active vent, is 25m tall and has multiple active spires in three main groups surrounding a hollow amphitheater. Measured vent orifice temperatures ranged from 338oC (Magnificent Village) to 370oC (Jason). The vents host a fauna of alvinellid worms, bythograidid crabs, alvincardid shrimps, phymorhynchus gastropods, Corallimorphid anenomes and bathymodiolid mussels, but no vestimentiferan worms. Brisingid brittle stars colonize inactive chimneys.
Archeogeophysical Studies in Nitovikla Settlement, Karpaz/ Karpasia Peninsula, Cyprus
NASA Astrophysics Data System (ADS)
Kızılduman, Bülent; Ahmet Yüksel, Fethi; Avci, Kerim
2017-04-01
The island of Cyprus, which played a significant role in connecting different cultures in the Eastern Mediterranean; moreover it has always played a significant role in the Mediterranean due to its strategical and geographical location (as located between Egypt, Palestine, Syria, Anatolia and the Aegean) became the cradle of an authentic and peculiar culture both in prehistoric and historic times. In particular, the Karpaz/ Karpasia Peninsula, located on the northeasternmost corner of the island, still retains valuable traces of this indigenous culture. One of the reasons of this peculiarity lies on the fact that the peninsula perched on the Eastern Mediterranean trade routes and boasted abundant copper deposits. The structure of the fortress had probably fallen into ruins and lost its functionality in the Cyprus Late Bronze Age IIB. According to the 2D and 3D georadar cross sections and Self Potantial (SP) with cubic model obtained from georadar mesurements to define the locations and directions of fortress sections and the foundation of the castle walls georadar measurements have been made on 8 areas in Nitovikla Region based on the purpose of archaeogeophysics. Linear geometrically distributed anomalies were also identified as they consistently extend over 6 metres deep (at least in some areas) these seem to be related to each other however possessing an individual architectural coherence. Anomalies and Self Potential anomaly distribution map are identified after examining the 3D diagrams (top view) and post processual data analysis as well as interpretation of GPR measurements were also included in the newly drawn layout plan. Fortress locations and foundations of caste walls have mapped by interpretation of 2D and 3D images. these have also revealed linear anomalies have surround the research site. Key Words: Cyprus, Karpaz/ Karpasia, Nitovikla, Archaeology, Archeogeophysic, GPR, SP
Review: Factors affecting fouling in conventional pens for slaughter pigs.
Larsen, M L V; Bertelsen, M; Pedersen, L J
2018-02-01
This review assesses factors affecting fouling in conventional pens for slaughter pigs. Fouling of the pen happens when pigs change their excretory behaviour from occurring in the designated dunging area to the lying area. This can result in a lower hygiene, bad air quality, extra work for the farmer, disturbance of the pigs' resting behaviour and an increase in agonistic interactions. A systematic search was conducted and results narrowed down to 21 articles. Four factors were found to affect fouling directly: insufficient space allowance, the flooring design of the pen, the thermal climate and pigs' earlier experience. Further, these primary factors are affected by secondary factors such as the shape of the pen, the weight of the pigs and especially the heat balance of the pigs, which is affected by several tertiary factors including, for example, temperature, humidity and draught. Results indicate that the most important factor to control when trying to prevent fouling of a pen is the pen climate. An appropriate climate may be accomplished through floor cooling in the designated lying area, sprinklers above the designated dunging area and by ensuring a more optimal ambient temperature curve that also fits the weight of the pigs in different stages of the production. All in all, fouling of the pen in conventional slaughter pigs is a multifactorial problem, but it is important to focus on increasing the comfortability, and especially the climate, of the designated lying area.
JIGSAW: Joint Inhomogeneity estimation via Global Segment Assembly for Water-fat separation.
Lu, Wenmiao; Lu, Yi
2011-07-01
Water-fat separation in magnetic resonance imaging (MRI) is of great clinical importance, and the key to uniform water-fat separation lies in field map estimation. This work deals with three-point field map estimation, in which water and fat are modelled as two single-peak spectral lines, and field inhomogeneities shift the spectrum by an unknown amount. Due to the simplified spectrum modelling, there exists inherent ambiguity in forming field maps from multiple locally feasible field map values at each pixel. To resolve such ambiguity, spatial smoothness of field maps has been incorporated as a constraint of an optimization problem. However, there are two issues: the optimization problem is computationally intractable and even when it is solved exactly, it does not always separate water and fat images. Hence, robust field map estimation remains challenging in many clinically important imaging scenarios. This paper proposes a novel field map estimation technique called JIGSAW. It extends a loopy belief propagation (BP) algorithm to obtain an approximate solution to the optimization problem. The solution produces locally smooth segments and avoids error propagation associated with greedy methods. The locally smooth segments are then assembled into a globally consistent field map by exploiting the periodicity of the feasible field map values. In vivo results demonstrate that JIGSAW outperforms existing techniques and produces correct water-fat separation in challenging imaging scenarios.
Map showing drainage basins and historic cloudburst floods in the Salina quadrangle, Utah
Hackman, Robert J.; Williams, Paul L.
1972-01-01
In the Salina quadrangle, as in most of the arid West, summer precipitation commonly occurs as thunderstorms. Suring these storms, rain falls as a torrential downpour, or cloudburst, in a local area. An inch of rain or more may fall in half an hour; U.S. Weather Bureau records show that o.4 inch of rain has fallen in a period of 5 minutes (Woolley, 1946). Such a fall of water far exceeds the absorptive capacity of the ground surface, and in areas of steep sparsely vegetated terrain the runoff forms a cloudburst flood in which loose rock, soil, and alluvium combine with water to form a debris-laden mudflow. The mudflow then moves rapidly down gullies and canyons with power great enough to erode and to transport debris, and to destroy the works of man lying in its path. When the mudflow pours from the canyon mount into an open valley, solid debris separates from the water and is added to the alluvial fan built by numerous previous floods. Because many towns in Utah are built on fans at the mouths of canyons, there has been loss of life and considerable damage to buildings, streets, and crops since 1847, when white men first settled in Utah.This map shows historical cloudburst floods for which records exist; data were taken from the sources listed below. Most of the flooded areas shown are in or near populated places, and so the floods were observed and recorded. Actually, no part of the quadrangle is exempt from cloudburst floods; every canyon, dry wash, and swale is visited sooner or later by a cloudburst and becomes, briefly, the site of a destructive mudflow. The traveler is advised to exercise caution in all drainageways, especially during July and August, when 80 percent of the cloudbursts occur.
Some suggested future directions of quantitative resource assessments
Singer, D.A.
2001-01-01
Future quantitative assessments will be expected to estimate quantities, values, and locations of undiscovered mineral resources in a form that conveys both economic viability and uncertainty associated with the resources. Historically, declining metal prices point to the need for larger deposits over time. Sensitivity analysis demonstrates that the greatest opportunity for reducing uncertainty in assessments lies in lowering uncertainty associated with tonnage estimates. Of all errors possible in assessments, those affecting tonnage estimates are by far the most important. Selecting the correct deposit model is the most important way of controlling errors because the dominance of tonnage-deposit models are the best known predictor of tonnage. Much of the surface is covered with apparently barren rocks and sediments in many large regions. Because many exposed mineral deposits are believed to have been found, a prime concern is the presence of possible mineralized rock under cover. Assessments of areas with resources under cover must rely on extrapolation from surrounding areas, new geologic maps of rocks under cover, or analogy with other well-explored areas that can be considered training tracts. Cover has a profound effect on uncertainty and on methods and procedures of assessments because geology is seldom known and geophysical methods typically have attenuated responses. Many earlier assessment methods were based on relationships of geochemical and geophysical variables to deposits learned from deposits exposed on the surface-these will need to be relearned based on covered deposits. Mineral-deposit models are important in quantitative resource assessments for two reasons: (1) grades and tonnages of most deposit types are significantly different, and (2) deposit types are present in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Grade and tonnage models and development of quantitative descriptive, economic, and deposit density models will help reduce the uncertainty of these new assessments.
Duetzmann, Stephan; Forsey, Lynn M; Senft, Christian; Seifert, Volker; Ratliff, John; Park, Jon
2015-01-01
The prevalence of sacral pressure ulcers in patients with spinal cord injuries is high. The sacral area is vulnerable to compressive pressure because of immobility and because the sacrum and posterior superior iliac prominence lie closely under the skin with no muscle layer in between. The aim of this study was to assess peak sacral pressure before and after use of PURAP, a liquid-based pad that covers only the sacral area and can be applied on any bed surface. Healthy volunteers (n = 12) and patients with spinal cord injuries (n = 10) took part; the patients had undergone spine surgery within 7 days before data collection. Participants were in bed, pretest pressure maps were generated, PURAP was placed for 15 minutes, and then posttest pressure maps were generated. Peak pressure was obtained every second and averaged over the entire period. Patients rated whether their comfort had improved when PURAP was in use. For healthy volunteers, mean pretest peak sacral pressure was 74.7 (SD = 16.2) mmHg; the posttest mean was 49.1 (SD = 7.5) mmHg (p < .001, Wilcoxon signed-rank test). For patients with spinal cord injuries, mean pretest peak sacral pressure was 105.7 (SD = 22.4) mmHg; the posttest mean was 81.4 (SD = 18.3) mmHg (p < .001, Wilcoxon signed-rank test). The pad reduced the peak sacral pressure in the patient group by 23% (range = 11%-42%) and in the volunteers by 32% (range = 19%-46%). Overall, 70% of the patients reported increased comfort with PURAP. Peak sacral pressure was reduced when PURAP was used. It covers only the sacral area but could help many patients with spinal cord injury because the prevalence of sacral pressure ulcers is high in this group. PURAP may be economically advantageous in countries and hospitals with limited financial resources needed for more expensive mattresses and cushions.
Map of Martian Potassium at Mid-Latitudes
NASA Technical Reports Server (NTRS)
2003-01-01
This gamma ray spectrometer map of the mid-latitude region of Mars is based on gamma-rays from the element potassium. Potassium, having the chemical symbol K, is a naturally radioactive element and is a minor constituent of rocks on the surface of both Mars and Earth. The region of highest potassium content, shown in red, is concentrated in the northern part of Acidalia Planitia (centered near 55 degrees N, -30 degrees). Several areas of low potassium content, shown in blue, are distributed across the mid-latitudes, with two significant low concentrations, one associated with the Hellas Basin (centered near 35 degrees S, 70 degrees) and the other lying southeast of Elysium Mons (centered near 10 degrees N, 160 degrees). Contours of constant surface elevation are also shown. The long continuous line running from east to west marks the approximate separation of the younger lowlands in the north from the older highlands in the south.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The gamma ray spectrometer was provided by the University of Arizona, Tucson. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Tissue engineering and regenerative medicine: manufacturing challenges.
Williams, D J; Sebastine, I M
2005-12-01
Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.
Tomographic diffractive microscopy with a wavefront sensor.
Ruan, Y; Bon, P; Mudry, E; Maire, G; Chaumet, P C; Giovannini, H; Belkebir, K; Talneau, A; Wattellier, B; Monneret, S; Sentenac, A
2012-05-15
Tomographic diffractive microscopy is a recent imaging technique that reconstructs quantitatively the three-dimensional permittivity map of a sample with a resolution better than that of conventional wide-field microscopy. Its main drawbacks lie in the complexity of the setup and in the slowness of the image recording as both the amplitude and the phase of the field scattered by the sample need to be measured for hundreds of successive illumination angles. In this Letter, we show that, using a wavefront sensor, tomographic diffractive microscopy can be implemented easily on a conventional microscope. Moreover, the number of illuminations can be dramatically decreased if a constrained reconstruction algorithm is used to recover the sample map of permittivity.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.
2006-08-01
Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.
Mapping the Route of Leadership Education: Caution Ahead
2004-01-01
apprenticeship, and study of educational purpose. Such context -stripped research-based knowledge cannot substitute for professional knowledge.” — Joe L...concrete, ra- tional processes in high esteem . Reviewing the J9 proposal required us to step back and review educa- tional strategies for developing...tion. Those who learn and employ that knowledge in unique contexts are rightly described as professionals; in them lies the heart and soul of the
Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law
NASA Astrophysics Data System (ADS)
Legrand, Mathias; Junca, Stéphane; Heng, Sokly
2017-04-01
The dynamics of a N-degree-of-freedom autonomous oscillator undergoing an energy-preserving impact law on one of its masses is investigated in the light of nonlinear modal analysis. The impacted rigid foundation provides a natural Poincaré section of the investigated system from which is formulated a smooth First Return Map well-defined away from the grazing trajectory. In order to focus on the impact-induced nonlinearity, the oscillator is assumed linear. Continuous one-parameter families of T-periodic orbits featuring one impact per period and lying on two-dimensional invariant manifolds in the state-space are shown to exist. The geometry of these piecewise-smooth manifolds is such that a linear "flat" portion (on which contact is not activated) is continuously attached to a purely nonlinear portion (on which contact is activated once per period) exhibiting a velocity discontinuity through a grazing orbit. These features explain the newly introduced terminology "Nonsmooth modal analysis". The stability of the periodic orbits lying on the invariant manifolds is also explored by calculating the eigenvalues of the linearized First Return Map. Internal resonances and multiple impacts per period are not addressed in this work. However, the pre-stressed case is succinctly described and extensions to multiple oscillators as well as self-contact are discussed.
Bertazzon, Stefania; Shahid, Rizwan
2017-01-01
An exploratory spatial analysis investigates the location of schools in Calgary (Canada) in relation to air pollution and active transportation options. Air pollution exhibits marked spatial variation throughout the city, along with distinct spatial patterns in summer and winter; however, all school locations lie within low to moderate pollution levels. Conversely, the study shows that almost half of the schools lie in low walkability locations; likewise, transitability is low for 60% of schools, and only bikability is widespread, with 93% of schools in very bikable locations. School locations are subsequently categorized by pollution exposure and active transportation options. This analysis identifies and maps schools according to two levels of concern: schools in car-dependent locations and relatively high pollution; and schools in locations conducive of active transportation, yet exposed to relatively high pollution. The findings can be mapped and effectively communicated to the public, health practitioners, and school boards. The study contributes with an explicitly spatial approach to the intra-urban public health literature. Developed for a moderately polluted city, the methods can be extended to more severely polluted environments, to assist in developing spatial public health policies to improve respiratory outcomes, neurodevelopment, and metabolic and attention disorders in school-aged children. PMID:28757577
A YAC contig encompassing the Treacher Collins syndrome critical region at 5q31. 3-32
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, J.; Gladwin, A.J.; Perveen, R.
Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development the features of which include conductive hearing loss and cleft palate. Previous studies have localized the TCOF1 locus between D5S519 (proximal) and SPARC (distal), a region of 22 centirays as estimated by radiation hybrid mapping. In the current investigation the authors have created a contig across the TCOF1 critical region, using YAC clones. Isolation of a novel short tandem repeat polymorphism corresponding to the end of one of the YACs has allowed reduction of the size of the critical region to [approximately] 840 kb, which has been coveredmore » with three nonchimeric YACs. Restriction mapping has revealed that the region contains a high density of clustered rare-cutter restriction sites, suggesting that it may contain a number of different genes. The results of the present investigation have further allowed confirmation that the RPS14 locus lies proximal to the critical region and can thereby be excluded from a role in the pathogenesis of TCOF1, while ANX6 lies within the TCOF1 critical region and remains a potential candidate for the mutated gene. 26 refs., 4 figs., 1 tab.« less
Transcriptional mapping of the ribosomal RNA region of mouse L-cell mitochondrial DNA.
Nagley, P; Clayton, D A
1980-01-01
The map positions in mouse mitochondrial DNA of the two ribosomal RNA genes and adjacent genes coding several small transcripts have been determined precisely by application of a procedure in which DNA-RNA hybrids have been subjected to digestion by S1 nuclease under conditions of varying severity. Digestion of the DNA-RNA hybrids with S1 nuclease yielded a series of species which were shown to contain ribosomal RNA molecules together with adjacent transcripts hybridized conjointly to a continuous segment of mitochondrial DNA. There is one small transcript about 60 bases long whose gene adjoins the sequences coding the 5'-end of the small ribosomal RNA (950 bases) and which lies approximately 200 nucleotides from the D-loop origin of heavy strand mitochondrial DNA synthesis. An 80-base transcript lies between the small and large ribosomal RNA genes, and genes for two further short transcript (each about 80 bases in length) abut the sequences coding the 3'-end of the large ribosomal RNA (approximately 1500 bases). The ability to isolate a discrete DNA-RNA hybrid species approximately 2700 base pairs in length containing all these transcripts suggests that there can be few nucleotides in this region of mouse mitochondrial DNA which are not represented as stable RNA species. Images PMID:6253898
Rankin, Douglas W.
2018-06-13
The bedrock geologic map of the Littleton and Lower Waterford quadrangles covers an area of approximately 107 square miles (277 square kilometers) north and south of the Connecticut River in east-central Vermont and adjacent New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks. The northwestern part of the map is divided by the Monroe fault which separates Early Devonian rocks of the Connecticut Valley-Gaspé trough from rocks of the Bronson Hill anticlinorium.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic suite, and extends from Maine, down the eastern side of the Connecticut River in New Hampshire, to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary rocks and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (upper and lower sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of metamorphic and metasedimentary rocks. The Ammonoosuc Volcanics overlies the Albee Formation that consists of interlayered feldspathic sandstone, siltstone, pelite, and slate.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics, including the Whitefield pluton to the east, the Scrag granite of Billing (1937) in the far southeastern corner of the map, the Highlandcroft Granodiorite just to the west of the Ammonoosuc fault, and the Joslin Turn tonalite (just north of the Connecticut River). To the east of the Monroe fault lies the late Silurian Comerford Intrusive Complex, which consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes of the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics well east of the Monroe fault.This report consists of a single geologic map sheet and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information.
Soil Survey: Fraser Alpine Area, Colorado
J. L. Retzer
1962-01-01
The Fraser Alpine Area is a rough, mountainous area that lies approximately 50 miles west of Denver, Colo., and covers approximately 134 square miles. About seven-eighths of it is above timberline, and all is within the boundaries of Arapaho National Forest, U.S. Forest Service. The land in the Area is not suitable for cultivation and has never been farmed.
7 CFR 905.114 - Redistricting of citrus districts and reapportionment of grower members.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Palm Beach and Martin not included in Regulation Area II. This district shall have three grower members... Counties of Brevard, Indian River, Martin, and Palm Beach described as lying within Regulation Area II, and...
7 CFR 905.114 - Redistricting of citrus districts and reapportionment of grower members.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Palm Beach and Martin not included in Regulation Area II. This district shall have three grower members... Counties of Brevard, Indian River, Martin, and Palm Beach described as lying within Regulation Area II, and...
Atmospheric Science Data Center
2014-05-15
... Everglades is a region of broad, slow-moving sheets of water flowing southward over low-lying areas from Lake Okeechobee to the Gulf ... images include a series of shallow impoundments called Water Conservation Areas which were built to speed water flow through the Everglades ...
Nikolaidis, C; Mandalos, P; Vantarakis, A
2008-08-01
Chemical fertilizers are used extensively in modern agriculture, in order to improve yield and productivity of agricultural products. However, nutrient leaching from agricultural soil into groundwater resources poses a major environmental and public health concern. The Evros region is one of the largest agricultural areas in Northern Greece, extending over 1.5 million acres of cultivated land. Many of its drinking water resources are of groundwater origin and lie within agricultural areas. In order to assess the impact of agricultural fertilizers on drinking water quality in this region, tap-water samples from 64 different locations were collected and analyzed for the presence of nitrates (NO(3)(-)), nitrites (NO(2)(-)), ammonium (NH(4)(+)), sulfate (SO(4)(-2)) and phosphate (PO(4)(-3)). These chemicals were selected based on the information that ammonium nitrate, ammonium sulfate and inorganic phosphate were the primary fertilizers used in local crop production. NO(3)(-), SO(4)(-2) and PO(4)(-3) levels exceeding accepted values were recorded in 6.25, 4.70 and 9.38% of all sampling points, respectively. NO(2)(-) and NH(4)(+) concentrations, on the other hand, were inside the permitted range. The data generated were introduced into a geographic information system (GIS) program for computer analysis and projection maps representing afflicted areas were created. Our results indicate a profound geographic correlation in the surface distribution of primary contaminants in areas of intensified agricultural production. Thus, drinking water pollution in these areas can be attributed to excessive fertilizer use from agricultural sources.
NASA Astrophysics Data System (ADS)
Ono, Atsushi; Moteki, Masato
2017-06-01
The salp Salpa thompsoni has the potential to alter the Southern Ocean ecosystem through competition with krill Euphausia superba. Information on the reproductive status of S. thompsoni in the high Southern Ocean is thus essential to understanding salp population growth and predicting changes in the Southern Ocean ecosystem. We carried out stratified and quantitative sampling from the surface to a depth of 2000 m during the austral summer of 2008 to determine the spatial distribution and population structure of S. thompsoni in the Southern Ocean off Adélie Land. We found two salp species, S. thompsoni and Ihlea racovitzai, with the former being dominant. S. thompsoni was distributed north of the continental slope area, while I. racovitzai was observed in the neritic zone. Mature aggregates and solitary specimens of S. thompsoni were found south of the Southern Boundary of the Antarctic Circumpolar Current, suggesting that S. thompsoni is able to complete its life cycle in high Antarctic waters during the austral summer. However, S. thompsoni was sparsely distributed in the continental slope area, and absent south of the Antarctic Slope Front, suggesting that it is less competitive with krill for food in the slope area off Adélie Land, where krill is densely distributed during the austral summer.
Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.
1978-01-01
In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balian, R., E-mail: roger.balian@cea.fr; Vénéroni, M.
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces themore » original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.« less
Ponce, David A.; Watt, Janet T.; Bouligand, C.
2011-01-01
We utilize gravity and magnetic methods to investigate the regional geophysical setting of the Wells earthquake. In particular, we delineate major crustal structures that may have played a role in the location of the earthquake and discuss the geometry of a nearby sedimentary basin that may have contributed to observed ground shaking. The February 21, 2008 Mw 6.0 Wells earthquake, centered about 10 km northeast of Wells, Nevada, caused considerable damage to local buildings, especially in the historic old town area. The earthquake occurred on a previously unmapped normal fault and preliminary relocated events indicate a fault plane dipping about 55 degrees to the southeast. The epicenter lies near the intersection of major Basin and Range normal faults along the Ruby Mountains and Snake Mountains, and strike-slip faults in the southern Snake Mountains. Regionally, the Wells earthquake epicenter is aligned with a crustal-scale boundary along the edge of a basement gravity high that correlates to the Ruby Mountains fault zone. The Wells earthquake also occurred near a geophysically defined strike-slip fault that offsets buried plutonic rocks by about 30 km. In addition, a new depth-to-basement map, derived from the inversion of gravity data, indicates that the Wells earthquake and most of its associated aftershock sequence lie below a small oval- to rhomboid-shaped basin, that reaches a depth of about 2 km. Although the basin is of limited areal extent, it could have contributed to increased ground shaking in the vicinity of the city of Wells, Nevada, due to basin amplification of seismic waves.
NASA Astrophysics Data System (ADS)
Mansour Abdelmalak, Mohamed; Faleide, Jan Inge; Planke, Sverre; Theissen-Krah, Sonja; Zastrozhnov, Dmitrii; Breivik, Asbjørn Johan; Gernigon, Laurent; Myklebust, Reidun
2014-05-01
The distribution of breakup-related igneous rocks on rifted margins provide important constraints on the magmatic processes during continental extension and lithosphere separation which lead to a better understanding of the melt supply from the upper mantle and the relationship between tectonic setting and volcanism. The results can lead to a better understanding of the processes forming volcanic margins and thermal evolution of associated prospective basins. We present a revised mapping of the breakup-related igneous rocks in the NE Atlantic area, which are mainly based on the Mid-Norwegian (case example) margin. We divided the breakup related igneous rocks into (1) extrusive complexes, (2) shallow intrusive complexes (sills/dykes) and (3) deep intrusive complexes (Lower Crustal Body: LCB). The extrusive complex has been mapped using the seismic volcanostratigraphic method. Several distinct volcanic seismic facies units have been identified. The top basalt reflection is easily identified because of the high impedance contrast between the sedimentary and volcanic rocks resulting in a major reflector. The basal sequence boundary is frequently difficult to identify but it lies usually over the intruded sedimentary basin. Then the base is usually picked above the shallow sill intrusions identified on seismic profile. The mapping of the top and the base of the basaltic sequences allows us to determine the basalt thickness and estimate the volume of the magma production on the Mid- Norwegian margin. The thicker part of the basalt corresponds to the seaward dipping reflector (SDR). The magma feeder system, mainly formed by dyke and sill intrusions, represents the shallow intrusive complex. Deeper interconnected high-velocity sills are also mappable in the margin. Interconnected sill complexes can define continuous magma network >10 km in vertical ascent. The large-scale sill complexes, in addition to dyke swarm intrusions, represent a mode of vertical long-range magma transport through the upper crust. The deep intrusive complex represents the Lower Crustal Body (LCB) which is observed along the margin and characterized by high P-wave velocity bodies (Vp> 7km/s). On the Vøring margin a strong amplitude dome-shaped reflection (the so-called T-Reflection) has been identified and interpreted as the top LCB. In the sedimentary part of the margin, sill intrusions are the major feeder system and seem to be connected with LCB. In the volcanic part of the margin, dykes represent the main feeder system and lie above the thicker part of the LCB.
NASA Astrophysics Data System (ADS)
Wagner, R. J.; Schmedemann, N.; Stephan, K.; Jaumann, R.; Neesemann, A.; Preusker, F.; Kersten, E.; Roatsch, T.; Hiesinger, H.; Williams, D. A.; Yingst, R. A.; Crown, D. A.; Mest, S. C.; Raymond, C. A.; Russell, C. T.
2017-12-01
Since March 6, 2015, the surface of dwarf planet (1) Ceres is being imaged by the FC framing camera aboard the Dawn spacecraft from orbit at various altitudes [1]. For this study we focus on images from the Survey orbit phase (4424 km altitude) with spatial resolutions of 400 m/pxl and use images and topographic data from DTMs (digital terrain models) for global geologic mapping. On Ceres' surface cratered plains are ubiquitous, with variations in superimposed crater frequency indicating different ages and processes. Here, we take the topography into account for geologic mapping and discriminate cratered plains units according to their topographic level - high-standing, medium, or low-lying - in order to examine a possible correlation between topography and surface age. Absolute model ages (AMAs) are derived from two impact cratering chronology models discussed in detail by [2] (henceforth termed LDM: lunar-derived model, and ADM: asteroid-derived model). We also apply an improved method to obtain relative ages and AMAs from crater frequency measurements termed Poisson timing analysis [3]. Our ongoing analysis shows no trend that the topographic level has an influence on the age of the geologic units. Both high-standing and low-lying cratered plains have AMAs ranging from 3.5 to 1.5 Ga (LDM), versus 4.2 to 0.5 Ga (ADM). Some areas of measurement within these units, however, show effects of resurfacing processes in their crater distributions and feature an older and a younger age. We use LAMO data (altitude: 375 km; resolution 30 m/pxl) and/or HAMO data (altitude: 1475 km; resolution 140 m/pxl) to study local geologic units and their ages, e.g., smaller impact craters, especially those not dated so far with crater measurements and/or those with specific spectral properties [4], deposits of mass wasting (e.g., landslides), and mountains, such as Ahuna Mons. Crater frequencies are used to set these geologic units into the context of Ceres' time-stratigraphic system and chronologic periods [5]. References: [1] Russell C. T., et al. (2016), Science 353, doi:10.1126/science.aaf4219. [2] Hiesinger H. H. et al. (2016), Science 353, doi:10.1126/science.aaf4759. [3] Michael G. G. et al. (2016), Icarus 277, 279-285. [4] Stephan K. et al. (2017), submitted to Icarus. [5] Mest S. C. et al. (2017), LPSC XLVIII, abstr. No. 2512.
Climate change and Sea level rise: Potential impact on the coast of the Edremit Plain, NW Turkey.
NASA Astrophysics Data System (ADS)
Curebal, Isa; Efe, Recep; Soykan, Abdullah; Sonmez, Suleyman
2015-04-01
Over the past century, most of the world's mountain glaciers and the ice sheets have lost mass due to global warming. When the temperature exceeds a particular level, glaciers and polar ice caps will continue to lose mass. Recent studies report that low-lying coastal areas will be seriously affected by sea level rise. Changes in the amount of natural and anthropogenic greenhouse gases and aerosols had a warming effect on the global climate during last century. Thus, the pace of melting of ice sheets increased, and, accordingly, sea level began to rise faster. Rise in sea level between 1961 and 2003 was equal to 1.8 mm/year while it was 3.1 mm/year between 1993 and 2003. The total rise in the 20th century is estimated to be between 17 and 19 cm. The models based on the sea level change indicate that the average global temperature at the end of the 21st century will increase by 0.3°C - 6.4°C. Global sea level is projected to rise 8-25 cm by 2030, relative to 2000 levels, 18-48 cm by 2050, and 50-140 cm by 20110. The Edremit Plain lies between Mount Madra and the Kaz Mountains on the coast of Aegean Sea in NW Turkey. It is lowland with an area of 141 km2. The widest part of the plain is 16 km along the E - W direction. The N - S direction amounts to a width of 15 km. The plain is covered with alluvial deposits that settled in the Quaternary Period. The elevation ranges from 0 to 50 m a.s.l. in the plain. This study aims to determine how the low-lying coastal land areas of the Edremit Plain may be affected by possible changes in sea level. Elevation dataset is based on the digital elevation model (DEM) of Landsat ETM + satellite images. To that end, satellite images were used to draw the current coastline. Curves of 2.5, 5, and 10 m were drawn through the use of maps with a scale of 1/25.000. Later on, the areas of the fields between these points were calculated. Current estimates show that 2.5 m rise in sea level will cause sea water to cover an area of 8.6 km2 (%14.0), 5 m to 28.4 km2 (%21.2), and 10 m to 58.3 km2 (%41.2) on the coastal land. In such cases, a +2.5 m change will trigger the current coastline to regress by 1.3 km while a +5 m change will lead to 3.4 km, and a +10 m change will cause 5.2 km. As a result, residential, agricultural, and wetlands on the coastal land of the plain will be submerged by rising sea levels, leading to significant habitat loss and changes in the ecosystem. The creation of detailed elevation may reveal more clear effects of the changes in sea level. Key Words: Climate change, coastline, Edremit plain, global warming, sea level rise.
Carrara, Paul E.
2007-01-01
The Tok area 1:100,000-scale map, through which the Alaska Highway runs, is in east-central Alaska about 160 km west of the Yukon border. The surficial geologic mapping in the map area is in support of the 'Geologic Mapping in support of land, resources, and hazards issues in Alaska' Project of the USGS National Cooperative Geologic Mapping Program. The Tok map area contains parts of three physiographic provinces, the Alaska Range, the Yukon-Tanana Upland, and the Northway-Tanana Lowland. The high, rugged, glaciated landscape of the eastern Alaska Range dominates the southwestern map area. The highest peak, an unnamed summit at the head of Cathedral Rapids Creek No. 2, rises to 2166 m. The gently rolling hills of the Yukon-Tanana Upland, in the northern map area, rise to about 1000 m. The Northway-Tanana Lowland contains the valley of the westerly flowing Tanana River. Elevations along the floor of the lowland generally range between 470 and 520 m. The dominant feature within the map is the Tok fan, which occupies about 20 percent of the map area. This large (450 km2), nearly featureless fan contains a high percentage of volcanic clasts derived from outside the present-day drainage of the Tok River. Because the map area is dominated by various surficial deposits, the map depicts 26 different surficial units consisting of man-made, alluvial, colluvial, eolian, lacustrine, organic, glaciofluvial, glacial, and periglacial deposits. The accompanying table provides information concerning the various units including their properties, characteristics, resource potential, and associated hazards in this area of the upper Tanana valley.
Striatal dopamine (D2) receptor availability predicts socially desirable responding.
Reeves, Suzanne J; Mehta, Mitul A; Montgomery, Andrew J; Amiras, Dimitri; Egerton, Alice; Howard, Robert J; Grasby, Paul M
2007-02-15
Research in non-human primates has implicated striatal dopamine (D2) receptor function in the expression of social dominance--a fundamental component of social extraversion. We predicted that trait extraversion - indexed by the revised Eysenck Personality Questionnaire (EPQ-R) - would correlate with striatal DA (D2) receptor measures - indexed by [(11)C]-Raclopride binding potential (BP) - in 28 healthy post-menopausal females (mean age=75 years; range=58-91 years). Region of interest (ROI) and voxel-based statistical parametric mapping (SPM) analyses were performed, using a reference tissue model for [(11)C]-Raclopride. ROI analysis showed moderately significant negative correlations between extraversion and BP measures in the left caudate and between psychoticism scores and BP in the right putamen. Unexpectedly, scores on the Lie scale, a measure of socially desirable responding, were significantly and negatively correlated with BP measures in the putamen and survived Bonferroni correction on the right side. After controlling for the potential confounding of self-report bias in high Lie scorers, only the correlation between Lie scores and BP measures in the right putamen remained significant. Voxel-based analysis showed only Lie scores to be significantly and negatively correlated with BP measures in the right putamen. We explored this association further by applying an ROI-based approach to data on a previously scanned sample of young adults (n=13) and found a similar pattern of association, which achieved trend level significance in the right putamen. Although unanticipated, the relationship observed between BP measures in the right putamen and Lie scores is consistent with dopaminergic involvement in socially rewarding behaviour. How this relates to dopaminergic tone will need to be further explored.
Competency Mapping of the Employees
NASA Astrophysics Data System (ADS)
Anisha, N.
2012-10-01
Human resource management is a process of bringing people and organizations together so that the goals of each other are met. Nowadays it is not possible to show a good financial or operating report unless your personnel relations are in order. Over the years, highly skilled and knowledge based jobs are increasing while low skilled jobs are decreasing. Competency Mapping is a process of identifying key competencies for an organization, the jobs and functions within it. Competency mapping, the buzz word in any industry is not complicated as it may appear. At the heart of any successful activity lies a competence or skill. In the recent years, various thought leaders in business strategy have emphasized the need to identify what competencies a business needs, in order to compete in a specific environment. In this article explains the why competencies needed and how is measured competency of employees in the organization.
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-07-10
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.
Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-01-01
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology. PMID:26184205
Hydrogeology and the distribution of salinity in the Floridan Aquifer system, southwestern Florida
Reese, R.S.
2000-01-01
In most of the study area, the Floridan aquifer system can be divided into a brackish-water zone, a salinity transition zone, and a saline-water zone. The brackish-water zone contains water with a dissolved-solids concentration of less than 10,000 milligrams per liter. The saline-water zone has a dissolved-solids concentration of at least 35,000 milligrams per liter and a salinity similar to that of seawater. The salinity transition zone that separates these two zones is usually 150 feet or less in thickness. The altitude of the base of the brackish-water zone was mapped primarily using geophysical logs; it ranges from as shallow as 565 feet below sea level along the coast to almost 2,200 feet below sea level inland. This mapping indicated that the boundary represents a salinity interface, the depth of which is controlled by head in the brackish-water zone. Chloride concentrations in the upper part of the brackish-water zone range from 400 to 4,000 milligrams per liter. A large area of relatively low salinity in north-central Collier County and to the northwest, as defined by a 1,200-milligram-per-liter chloride-concentration line, coincides with a high area on the basal contact of the Hawthorn Group. As this contact dips away from this high area to central Hendry and southwestern Collier Counties, chloride concentration increases to 2,000 milligrams per liter or greater. However, the increase in salinity in these areas occurs only in the basal Hawthorn unit or Suwannee Limestone, but not in deeper units. In central Hendry County, the increase occurs only in the basal Hawthorn unit in an area where the unit is well developed and thick. These areas of higher salinity could have resulted from the influx of seawater from southwestern Collier County into zones of higher permeability in the Upper Floridan aquifer during high sea-level stands. The influx may only have occurred in structurally low areas and may have experienced incomplete flushing subsequently by the modern freshwater flow system. In an area in north-central Collier County, the altitude of the base of the brackish-water zone is anomalously deep given the position of this area relative to the coast. In this area, the base extends as deep as 2,090 feet below sea level, and the salinity transition zone is not present or is poorly defined. The origin of this anomalous area is interpreted to be related to the development of a unit containing thick dolomite and evaporite beds high in the middle confining unit of the Floridan aquifer system. The top of this dolomite-evaporite unit, which probably has very low permeability, occurs at the base of the brackish-water zone in this area. The axis of a high area mapped at the top of the unit trends to the northwest from central Collier County into north-central Lee County. This axis parallels and lies just to the west of the anomalous area, and it could have acted as an impermeable sill, preventing saline water from moving in laterally from the coast to the southwest and up from the Lower Floridan aquifer. Locating a Floridan aquifer system well field in or near this anomalous area could be optimal because of the lack of a salinity interface at depth.
Automating the selection of standard parallels for conic map projections
NASA Astrophysics Data System (ADS)
Šavriǒ, Bojan; Jenny, Bernhard
2016-05-01
Conic map projections are appropriate for mapping regions at medium and large scales with east-west extents at intermediate latitudes. Conic projections are appropriate for these cases because they show the mapped area with less distortion than other projections. In order to minimize the distortion of the mapped area, the two standard parallels of conic projections need to be selected carefully. Rules of thumb exist for placing the standard parallels based on the width-to-height ratio of the map. These rules of thumb are simple to apply, but do not result in maps with minimum distortion. There also exist more sophisticated methods that determine standard parallels such that distortion in the mapped area is minimized. These methods are computationally expensive and cannot be used for real-time web mapping and GIS applications where the projection is adjusted automatically to the displayed area. This article presents a polynomial model that quickly provides the standard parallels for the three most common conic map projections: the Albers equal-area, the Lambert conformal, and the equidistant conic projection. The model defines the standard parallels with polynomial expressions based on the spatial extent of the mapped area. The spatial extent is defined by the length of the mapped central meridian segment, the central latitude of the displayed area, and the width-to-height ratio of the map. The polynomial model was derived from 3825 maps-each with a different spatial extent and computationally determined standard parallels that minimize the mean scale distortion index. The resulting model is computationally simple and can be used for the automatic selection of the standard parallels of conic map projections in GIS software and web mapping applications.
Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.
2014-01-01
The Ute Mountain 7.5' quadrangle is located in the south-central part of the San Luis Basin of northern New Mexico, in the Rio Grande del Norte National Monument, and contains deposits that record volcanic, tectonic, and associated alluvial and colluvial processes over the past four million years. Ute Mountain has the distinction of being one of the largest intermediate composition eruptive centers of the Taos Plateau, a largely volcanic tableland occupying the southern portion of the San Luis Basin. Ute Mountain rises to an elevation in excess of 3,000 m, nearly 700 m above the basaltic plateau at its base, and is characterized by three distinct phases of Pliocene eruptive activity recorded in the stratigraphy exposed on the flanks of the mountain and in the Rio Grande gorge. Unconformably overlain by largely flat-lying lava flows of Servilleta Basalt, the area surrounding Ute Mountain records a westward thickening of basin-fill volcanic deposits interstratified in the subsurface with Pliocene basin-fill sedimentary deposits derived from older Tertiary and Precambrian sources to the east. Superimposed on this volcanic stratigraphy are alluvial and colluvial deposits derived from the flanks of Ute Mountain and more distally-derived alluvium from the uplifted Sangre de Cristo Mountains to the east, that record a complex temporal and stratigraphic succession of Quaternary basin deposition and erosion. Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens. These poorly exposed fault scarps cutting lava flows of Ute Mountain volcano. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the relative youth of the deposits has resulted in only modest displacements on most faults, and (3) some of the faults may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as “certain” either have distinct offset of map units or had slip planes that were directly observed in the field. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations and are indicated as such on the map sheet.
75 FR 3917 - Notice of Partial Cancellation of Proposed Withdrawal; California
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
.... 16 E., Sec. 29, that portion lying westerly of the Old Woman Mountains Wilderness Area. Northern... southwesterly of the Old Woman Mountains Wilderness Area. Northern Expansion Area. T. 6 N., R. 7 E., Secs. 1 and... land laws generally, subject to valid existing rights, the provisions of existing withdrawals, other...
NASA Astrophysics Data System (ADS)
Pannatier, A.; Oppikofer, T.; Jaboyedoff, M.; Stock, G. M.
2009-04-01
In Yosemite National Park (California, USA) rockfalls from the steep valley flanks are frequent (>600 documented events in 150 years) and threaten infrastructure in this popular tourist area. This study focuses on a methodology to map the susceptibility to rockfall initiation based on a high-resolution digital elevation model (HRDEM) obtained from aerial laser scanning (1 meter cell size). This methodology is based on geometric factors derived from the HRDEM, i.e., the steepness of the topography, the presence of joints or fractures enabling either a planar or a wedge failure mechanism, and a high denudation potential. The slope angle histogram computed using standard GIS routines was simulated using Gaussian distributions, which were attributed to different parts of the topography, i.e., the cliffs, the valley flanks and the valley floor. Slopes steeper than 36° are found to form cliffs and thus potentially lead to rockfalls. A morpho-structural analysis of the HRDEM was performed in Coltop3D software to determine the major discontinuity sets that shape the topography. Kinematic analyses were made for each of these 7 discontinuity sets in order to determine the HRDEM cells that fulfil the geometric criteria for a planar or wedge failure mechanism. Most of the cliffs in Yosemite Valley enable one or both of these failure mechanisms. The denudation potential was assessed using the sloping local base level (SLBL) concept. The SLBL defines a basal erosion surface and the above lying rock masses (up to 400 m in some of the vertical cliffs) are susceptible to erosion by mass wasting. A thickness of 20 m above the SLBL surface was chosen as lower limit for the denudation potential criterion. The HRDEM cells that satisfy 1, 2 or all 3 criteria are considered having low, moderate and high susceptibility to rockfall initiation. The areas with highest susceptibility (El Capitan, Glacier Point, Yosemite Falls and Half Dome) coincide well with post-glacial talus accumulations and historic rockfall sources. Compared to previous maps of potential rockfall sources that were mainly based on the slope angle criterion, this study provides a more refined analysis of potential rockfall sources and is useful for focussing detailed field investigations on those areas with high susceptibility.
Seismotectonics of the Hindukush and Baluchistan arc
NASA Astrophysics Data System (ADS)
Verma, R. K.; Mukhopadhyay, M.; Bhanja, A. K.
1980-07-01
A seismicity map of that part of the Pakistan-Afghanistan region lying between the latitudes 28° to 38°N and longitudes 66° to 75°E is given using all available data for the period 1890-1970. The earthquakes of magnitude 4.5 and above were considered in the preparation of this map. On the basis of this map, it is observed that the seismicity pattern over the well-known Hindukush region is quite complex. Two prominent, mutually orthogonal, seismicity lineaments, namely the northvestern and the north-eastern trends, characterize the Hindukush area. The northwestern trend appears to extend from the Main Boundary Fault of the Kashmir Himalaya on the southeast to the plains of the Amu Darya in Uzbekistan on the northwest beyond the Hindukush. The Sulaiman and Kirthar ranges of Pakistan are well-defined zones of intermontane seismicity exhibiting north-south alignment. Thirty-two new focal-mechanism solutions for the above-mentioned region have been determined. These, together with the results obtained by earlier workers, suggest the pre-dominance of strike-slip faulting in the area. The Hazara Mountains, the Sulaiman wrench zone and the Kirthar wrench zone, as well as the supposed extension of the Murray ridge up to the Karachi coast, appear to be mostly undergoing strike-slip movements. In the Hindukush region, thrust and strike-slip faulting are found to be equally prevalent. Almost all the thrust-type mechanisms belonging to the Hindukush area have both the nodal planes in the NW-SE direction for shallow as well as intermediate depth earthquakes. The dip of P-axes for the events indicating thrust type mechanisms rarely exceeds 35°. The direction of the seismic slip vector obtained through thrust type solutions is always directed towards the northeast. The epicentral pattern together with these results suggest a deep-seated fault zone paralleling the northwesterly seismic zone underneath the Hindukush. This NW-lineament has a preference for thrust faulting, and it appears to extend from the vicinity of the Main Boundary Fault of the Kashmir Himalaya on the southeast of Uzbekistan on the northwest through Hindukush. Almost orthogonal to this NW-seismic zone, there is a NE-seismic lineament in which there is a preference for strike-slip faulting. The above results are discussed from the point of view of convergence of the Indian and Eurasian plates in the light of plate tectonics theory.
NASA Astrophysics Data System (ADS)
Mohanty, M. P.; Karmakar, S.; Ghosh, S.
2017-12-01
Many countries across the Globe are victims of floods. To monitor them, various sophisticated algorithms and flood models are used by the scientific community. However, there still lies a gap to efficiently mapping flood risk. The limitations being: (i) scarcity of extensive data inputs required for precise flood modeling, (ii) fizzling performance of models in large and complex terrains (iii) high computational cost and time, and (iv) inexpertise in handling model simulations by civic bodies. These factors trigger the necessity of incorporating uncomplicated and inexpensive, yet precise approaches to identify areas at different levels of flood risk. The present study addresses this issue by utilizing various easily available, low cost data in a GIS environment for a large flood prone and data poor region. A set of geomorphic indicators of Digital Elevation Model (DEM) are analysed through linear binary classification, and are used to identify the flood hazard. The performance of these indicators is then investigated using receiver operating characteristics (ROC) curve, whereas the calibration and validation of the derived flood maps are accomplished through a comparison with dynamically coupled 1-D 2-D flood model outputs. A high degree of similarity on flood inundation proves the reliability of the proposed approach in identifying flood hazard. On the other hand, an extensive list of socio-economic indicators is selected to represent the flood vulnerability at a very finer forward sortation level using multivariate Data Envelopment Analysis (DEA). A set of bivariate flood risk maps is derived combining the flood hazard and socio-economic vulnerability maps. Given the acute problem of floods in developing countries, the proposed methodology which may be characterized by low computational cost, lesser data requirement and limited flood modeling complexity may facilitate local authorities and planners for deriving effective flood management strategies.
NASA Astrophysics Data System (ADS)
Rejas, J. G.; Martínez-Frías, J.; Bonatti, J.; Martínez, R.; Marchamalo, M.
2012-07-01
The aim of this work is the comparative study of the presence of hydrothermal alteration materials in the Turrialba volcano (Costa Rica) in relation with computed spectral anomalies from multitemporal and multisensor data adquired in spectral ranges of the visible (VIS), short wave infrared (SWIR) and thermal infrared (TIR). We used for this purposes hyperspectral and multispectral images from the HyMAP and MASTER airborne sensors, and ASTER and Hyperion scenes in a period between 2002 and 2010. Field radiometry was applied in order to remove the atmospheric contribution in an empirical line method. HyMAP and MASTER images were georeferenced directly thanks to positioning and orientation data that were measured at the same time in the acquisition campaign from an inertial system based on GPS/IMU. These two important steps were allowed the identification of spectral diagnostic bands of hydrothermal alteration minerals and the accuracy spatial correlation. Enviromental impact of the volcano activity has been studied through different vegetation indexes and soil patterns. Have been mapped hydrothermal materials in the crater of the volcano, in fact currently active, and their surrounding carrying out a principal components analysis differentiated for a high and low absorption bands to characterize accumulations of kaolinite, illite, alunite and kaolinite+smectite, delimitating zones with the presence of these minerals. Spectral anomalies have been calculated on a comparative study of methods pixel and subpixel focused in thermal bands fused with high-resolution images. Results are presented as an approach based on expert whose main interest lies in the automated identification of patterns of hydrothermal altered materials without prior knowledge or poor information on the area.
Pedestrian Evacuation Analysis for Tsunami Hazards
NASA Astrophysics Data System (ADS)
Jones, J. M.; Ng, P.; Wood, N. J.
2014-12-01
Recent catastrophic tsunamis in the last decade, as well as the 50th anniversary of the 1964 Alaskan event, have heightened awareness of the threats these natural hazards present to large and increasing coastal populations. For communities located close to the earthquake epicenter that generated the tsunami, strong shaking may also cause significant infrastructure damage, impacting the road network and hampering evacuation. There may also be insufficient time between the earthquake and first wave arrival to rely on a coordinated evacuation, leaving at-risk populations to self-evacuate on foot and across the landscape. Emergency managers evaluating these coastal risks need tools to assess the evacuation potential of low-lying areas in order to discuss mitigation options, which may include vertical evacuation structures to provide local safe havens in vulnerable communities. The U.S. Geological Survey has developed the Pedestrian Evacuation Analyst software tool for use by researchers and emergency managers to assist in the assessment of a community's evacuation potential by modeling travel times across the landscape and producing both maps of travel times and charts of population counts with corresponding times. The tool uses an anisotropic (directionally dependent) least cost distance model to estimate evacuation potential and allows for the variation of travel speed to measure its effect on travel time. The effectiveness of vertical evacuation structures on evacuation time can also be evaluated and compared with metrics such as travel time maps showing each structure in place and graphs displaying the percentage change in population exposure for each structure against the baseline. Using the tool, travel time maps and at-risk population counts have been generated for some coastal communities of the U.S. Pacific Northwest and Alaska. The tool can also be used to provide valuable decision support for tsunami vertical evacuation siting.
Rapid mapping of ultrafine fault zone topography with structure from motion
Johnson, Kendra; Nissen, Edwin; Saripalli, Srikanth; Arrowsmith, J. Ramón; McGarey, Patrick; Scharer, Katherine M.; Williams, Patrick; Blisniuk, Kimberly
2014-01-01
Structure from Motion (SfM) generates high-resolution topography and coregistered texture (color) from an unstructured set of overlapping photographs taken from varying viewpoints, overcoming many of the cost, time, and logistical limitations of Light Detection and Ranging (LiDAR) and other topographic surveying methods. This paper provides the first investigation of SfM as a tool for mapping fault zone topography in areas of sparse or low-lying vegetation. First, we present a simple, affordable SfM workflow, based on an unmanned helium balloon or motorized glider, an inexpensive camera, and semiautomated software. Second, we illustrate the system at two sites on southern California faults covered by existing airborne or terrestrial LiDAR, enabling a comparative assessment of SfM topography resolution and precision. At the first site, an ∼0.1 km2 alluvial fan on the San Andreas fault, a colored point cloud of density mostly >700 points/m2 and a 3 cm digital elevation model (DEM) and orthophoto were produced from 233 photos collected ∼50 m above ground level. When a few global positioning system ground control points are incorporated, closest point vertical distances to the much sparser (∼4 points/m2) airborne LiDAR point cloud are mostly 530 points/m2 and a 2 cm DEM and orthophoto were produced from 450 photos taken from ∼60 m above ground level. Closest point vertical distances to existing terrestrial LiDAR data of comparable density are mostly <6 cm. Each SfM survey took ∼2 h to complete and several hours to generate the scene topography and texture. SfM greatly facilitates the imaging of subtle geomorphic offsets related to past earthquakes as well as rapid response mapping or long-term monitoring of faulted landscapes.
2015-04-16
Measurements from NASA MESSENGER MLA instrument during the spacecraft greater than four-year orbital mission have mapped the topography of Mercury northern hemisphere in great detail. This enhanced color mosaic shows (from left to right) Munch (61 km/38 mi.), Sander (52 km/32 mi.), and Poe (81 km/50 mi.) craters, which lie in the northwest portion of the Caloris basin. The smooth volcanic plains that fill the Caloris basin appear orange in this image. All three craters are superposed on these volcanic plains and have excavated low-reflectance material, which appears blue in this image, from the subsurface. Hollows, typically associated with low-reflectance material, dot the rims of Munch and Poe and cover the floor of Sander. These images were acquired as high-resolution targeted color observations. Targeted color observations are images of a small area on Mercury's surface at resolutions higher than the 1-kilometer/pixel 8-color base map. During MESSENGER's one-year primary mission, hundreds of targeted color observations were obtained. During MESSENGER's extended mission, high-resolution targeted color observations are more rare, as the 3-color base map is covering Mercury's northern hemisphere with the highest-resolution color images that are possible. Date acquired: July 03, 2011, July 04, 2011 Image Mission Elapsed Time (MET): 218204186, 218204190, 218204194, 218246487, 218246491, 218246495 Image ID: 458397, 458398, 458399, 460433, 460434, 460435 Instrument: Wide Angle Camera (WAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 42° N Center Longitude: 154° E Projection: Equirectangular Resolution: 239 meters/pixel Scale: Munch crater is approximately 61 km (38 mi.) in diameter Incidence Angle: 43°, 42° Emission Angle: 35°, 13° Phase Angle: 79°, 55° http://photojournal.jpl.nasa.gov/catalog/PIA19421
Geologic map of the Montauk quadrangle, Dent, Texas, and Shannon Counties, Missouri
Weary, David J.
2015-04-30
The Montauk 7.5-minute quadrangle is located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,000 feet (ft) of flat-lying to gently dipping lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as caves, springs, and sinkholes, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from approximately 830 ft where the Current River exits the middle-eastern edge of the quadrangle to about 1,320 ft in sec. 16, T. 31 N., R. 7 W., in the southwestern part of the quadrangle. The most prominent physiographic features within the quadrangle are the deeply incised valleys of the Current River and its major tributaries located in the center of the map area. The Montauk quadrangle is named for Montauk Springs, a cluster of several springs that resurge in sec. 22, T. 32 N., R. 7 W. These springs supply clean, cold water for the Montauk Fish Hatchery, and the addition of their flow to that of Pigeon Creek produces the headwaters of the Current River, the centerpiece of the Ozark National Scenic Riverways park. Most of the land in the quadrangle is privately owned and used primarily for grazing cattle and horses and growing timber. A smaller portion of the land within the quadrangle is publicly owned by either Montauk State Park or the Ozark National Scenic Riverways (National Park Service). Geologic mapping for this investigation was conducted in 2007 and 2009.
Barr, G.L.
1996-01-01
From 1991 to 1995, the hydrogeology of the surficial aquifer system and the major permeable zones and confining units of the intermediate aquifer system in southwest Florida was studied. The study area is a 1,400-square-mile area that includes Sarasota County and parts of Manatee, De Soto, Charlotte, and Lee Counties. Lithologic, geophysical, hydraulic property, and water-level data were used to correlate the hydrogeology and map the extent of the aquifer systems. Water chemistry was evaluated in southwest Sarasota County to determine salinity of the surficial and intermediate aquifer systems. The surficial aquifer is an unconfined aquifer system that overlies the intermediate aquifer system and ranges from a few feet to over 60 feet in thickness in the study area. Hydraulic properties of the surficial aquifer system determined from aquifer and laboratory tests, and model simulations vary considerably across the study area. The intermediate aquifer system, a confined aquifer system that lies between the surficial and the Upper Floridan aquifers, is composed of alternating confining units and permeable zones. The intermediate aquifer system has three major permeable zones that exhibit a wide range of hydraulic properties. Horizontal flow in the intermediate aquifer system is northeast to southwest. Most of the study area is in a discharge area of the intermediate aquifer system. Water ranges naturally from fresh in the surficial aquifer system and upper permeable zones of the intermediate aquifer system to moderately saline in the lower permeable zone. Water-quality data collected in coastal southwest Sarasota County indicate that ground-water withdrawals from major pumping centers have resulted in lateral seawater intrusion and upconing into the surficial and intermediate aquifer systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
This volume contains eight appendices: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps. These appendices pertain to the Durango B detail area.
Huang, Luoxiu; Chen, Xin; Shou, Tiande
2004-02-20
The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.
Trends and causes of historical wetland loss in coastal Louisiana
Bernier, Julie
2013-01-01
Wetland losses in the northern Gulf Coast region of the United States are so extensive that they represent critical concerns to government environmental agencies and natural resource managers. In Louisiana, almost 3,000 square kilometers (km2) of low-lying wetlands converted to open water between 1956 and 2004, and billions of dollars in State and Federal funding have been allocated for coastal restoration projects intended to compensate for some of those wetland losses. Recent research at the St. Petersburg Coastal and Marine Science Center (SPCMSC) focused on understanding the physical processes and human activities that contributed to historical wetland loss in coastal Louisiana and the spatial and temporal trends of that loss. The physical processes (land-surface subsidence and sediment erosion) responsible for historical wetland loss were quantified by comparing marsh-surface elevations, water depths, and vertical displacements of stratigraphic contacts at 10 study areas in the Mississippi River delta plain and 6 sites at Sabine National Wildlife Refuge (SNWR) in the western chenier plain. The timing and extent of land loss at the study areas was determined by comparing historical maps, aerial photographs, and satellite imagery; the temporal and spatial trends of those losses were compared with historical subsidence rates and hydrocarbon production trends.
A Novel Computer-Assisted Approach to evaluate Multicellular Tumor Spheroid Invasion Assay
Cisneros Castillo, Liliana R.; Oancea, Andrei-Dumitru; Stüllein, Christian; Régnier-Vigouroux, Anne
2016-01-01
Multicellular tumor spheroids (MCTSs) embedded in a matrix are re-emerging as a powerful alternative to monolayer-based cultures. The primary information gained from a three-dimensional model is the invasiveness of treatment-exposed MCTSs through the acquisition of light microscopy images. The amount and complexity of the acquired data and the bias arisen by their manual analysis are disadvantages calling for an automated, high-throughput analysis. We present a universal algorithm we developed with the scope of being robust enough to handle images of various qualities and various invasion profiles. The novelty and strength of our algorithm lie in: the introduction of a multi-step segmentation flow, where each step is optimized for each specific MCTS area (core, halo, and periphery); the quantification through the density of the two-dimensional representation of a three-dimensional object. This latter offers a fine-granular differentiation of invasive profiles, facilitating a quantification independent of cell lines and experimental setups. Progression of density from the core towards the edges influences the resulting density map thus providing a measure no longer dependent on the sole area size of MCTS, but also on its invasiveness. In sum, we propose a new method in which the concept of quantification of MCTS invasion is completely re-thought. PMID:27731418
Geology of the Gateway quadrangle, Mesa county Colorado
Cater, Fred W.
1953-01-01
The Gateway quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Egnar quadrangle, Dolores and San Miguel counties, Colorado
Cater, Fred W.; Bush, A.L.; Bell, Henry
1954-01-01
The Egnar quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Hamm Canyon quadrangle, Colorado
Cater, Fred W.
1953-01-01
The Hamm Canyon quadrangle is on eof eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Davis Mesa quadrangle, Colorado
Cater, Fred W.; Bryner, Leonid
1953-01-01
The Davis Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Joe Davis Hill quadrangle, Dolores and San Miguel counties, Colorado
Cater, Fred W.; Bell, Henry
1953-01-01
The Joe Davis Hill quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Gypsum Gap quadrangle, Colorado
Cater, Fred W.
1953-01-01
The Gypsum Gap quadrangle is one eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comparative study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through a arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The core consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.
Geology of the Pine Mountain quadrangle, Mesa county, Colorado
Cater, Fred W.
1953-01-01
The Pine Mountain quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from Paleozoic to Quaternary. Over mush of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in sizer from irregular masses containing only a few ton of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.