Sample records for map configuration comparisons

  1. A study of an orbital radar mapping mission to Venus. Volume 2: Configuration comparisons and systems evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.

  2. A comparative study of linear and nonlinear MIMO feedback configurations

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Lin, C. A.

    1984-01-01

    In this paper, a comparison is conducted of several feedback configurations which have appeared in the literature (e.g. unity-feedback, model-reference, etc.). The linear time-invariant multi-input multi-output case is considered. For each configuration, the stability conditions are specified, the relation between achievable I/O maps and the achievable disturbance-to-output maps is examined, and the effect of various subsystem perturbations on the system performance is studied. In terms of these considerations, it is demonstrated that one of the configurations considered is better than all the others. The results are then extended to the nonlinear multi-input multi-output case.

  3. Failure detection in high-performance clusters and computers using chaotic map computations

    DOEpatents

    Rao, Nageswara S.

    2015-09-01

    A programmable media includes a processing unit capable of independent operation in a machine that is capable of executing 10.sup.18 floating point operations per second. The processing unit is in communication with a memory element and an interconnect that couples computing nodes. The programmable media includes a logical unit configured to execute arithmetic functions, comparative functions, and/or logical functions. The processing unit is configured to detect computing component failures, memory element failures and/or interconnect failures by executing programming threads that generate one or more chaotic map trajectories. The central processing unit or graphical processing unit is configured to detect a computing component failure, memory element failure and/or an interconnect failure through an automated comparison of signal trajectories generated by the chaotic maps.

  4. Temporal changes in the configuration of the water table in the vicinity of the management systems evaluation area site, central Nebraska

    USGS Publications Warehouse

    Kilpatrick, John M.

    1996-01-01

    To improve understanding of the hydrologic characteristics of the shallow aquifer in the vicinity of the Management Systems Evaluation Area site near Shelton, Nebraska, water levels were measured in approximately 130 observation wells in both June and September 1991. Two water-table maps and a water-level-change map were drawn on the basis of these measurements. In addition, historical data from U.S. Geological Survey computer files and published reports were used to determine the approximate configuration of the water table in 1931 and to draw one short-term and two-long term water- level hydrographs. Comparison of the three water- table maps indicates general similarities. The average horizontal hydraulic gradient in the shallow aquifer is about 7.5 feet per mile, and the flow direction is to the east-northeast. The water table declined 2 to 10 feet between June and September 1991, with the greatest decline occurring in a wedge-shaped area south of the Wood River and north of the Platte River. The 1991 water-table configurations appear to indicate that the aquifer either was discharging to the Platte River in this reach or there was little flow between the river and the aquifer. Comparison of the 1931 and 1991 water-table maps indicates that, except for short-term variations, the water-table configuration changed little during this 61-year period. Two long-term water-level hydrographs confirm this conclusion, indicating that the shallow aquifer in this area has been in long-term, dynamic equilibrium.

  5. A comparison of two conformal mapping techniques applied to an aerobrake body

    NASA Technical Reports Server (NTRS)

    Hommel, Mark J.

    1987-01-01

    Conformal mapping is a classical technique which has been utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping has been successfully applied in the construction of grids around airfoils, engine inlets and other aircraft configurations. Conformal mapping techniques were applied to an aerobrake body having an axis of symmetry. Two different approaches were utilized: (1) Karman-Trefftz transformation; and (2) Point Wise Schwarz Christoffel transformation. In both cases, the aerobrake body was mapped onto a near circle, and a grid was generated in the mapped plane. The mapped body and grid were then mapped back into physical space and the properties of the associated grids were examined. Advantages and disadvantages of both approaches are discussed.

  6. Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:

  7. Mapping of thermal injury in biologic tissues using quantitative pathologic techniques

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.

    1999-05-01

    Qualitative and quantitative pathologic techniques can be used for (1) mapping of thermal injury, (2) comparisons lesion sizes and configurations for different instruments or heating sources and (3) comparisons of treatment effects. Concentric zones of thermal damage form around a single volume heat source. The boundaries between some of these zones are distinct and measurable. Depending on the energy deposition, heating times and tissue type, the zones can include the following beginning at the hotter center and progressing to the cooler periphery: (1) tissue ablation, (2) carbonization, (3) tissue water vaporization, (4) structural protein denaturation (thermal coagulation), (5) vital enzyme protein denaturation, (6) cell membrane disruption, (7) hemorrhage, hemostasis and hyperhemia, (8) tissue necrosis and (9) wound organization and healing.

  8. Standard cell electrical and physical variability analysis based on automatic physical measurement for design-for-manufacturing purposes

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan; Parag, Allon; Khmaisy, Hafez; Krispil, Uri; Adan, Ofer; Levi, Shimon; Latinski, Sergey; Schwarzband, Ishai; Rotstein, Israel

    2011-04-01

    A fully automated system for process variability analysis of high density standard cell was developed. The system consists of layout analysis with device mapping: device type, location, configuration and more. The mapping step was created by a simple DRC run-set. This database was then used as an input for choosing locations for SEM images and for specific layout parameter extraction, used by SPICE simulation. This method was used to analyze large arrays of standard cell blocks, manufactured using Tower TS013LV (Low Voltage for high-speed applications) Platforms. Variability of different physical parameters like and like Lgate, Line-width-roughness and more as well as of electrical parameters like drive current (Ion), off current (Ioff) were calculated and statistically analyzed, in order to understand the variability root cause. Comparison between transistors having the same W/L but with different layout configurations and different layout environments (around the transistor) was made in terms of performances as well as process variability. We successfully defined "robust" and "less-robust" transistors configurations, and updated guidelines for Design-for-Manufacturing (DfM).

  9. Comparison of divided and full pupil configurations for line-scanning confocal microscopy in human skin and oral mucosa

    NASA Astrophysics Data System (ADS)

    Larson, Bjorg; Abeytunge, Sanjeewa; Glazowski, Chris; Rajadhyaksha, Milind

    2012-02-01

    Confocal point-scanning microscopy has been showing promise in the detection, diagnosing and mapping of skin lesions in clinical settings. The noninvasive technique allows provides optical sectioning and cellular resolution for in vivo diagnosis of melanoma and basal cell carcinoma and pre-operative and intra-operative mapping of margins. The imaging has also enabled more accurate "guided" biopsies while minimizing the otherwise large number of "blind" biopsies. Despite these translational advances, however, point-scanning technology remains relatively complex and expensive. Line-scanning technology may offer an alternative approach to accelerate translation to the clinic. Line-scanning, using fewer optical components, inexpensive linear-array detectors and custom electronics, may enable smaller, simpler and lower-cost confocal microscopes. A line is formed using a cylindrical lens and scanned through the back focal plane of the objective with a galvanometric scanner. A linear CCD is used for detection. Two pupil configurations were compared for performance in imaging human tissue. In the full-pupil configuration, illumination and detection is made through the full objective pupil. In the divided pupil approach, half the pupil is illuminated and the other half is used for detection. The divided pupil configuration loses spatial and axial resolution due to a diminished NA, but the sectioning capability and rejection of background is improved. Imaging in skin and oral mucosa illustrate the performance of the two configurations.

  10. OxfordGrid: a web interface for pairwise comparative map views.

    PubMed

    Yang, Hongyu; Gingle, Alan R

    2005-12-01

    OxfordGrid is a web application and database schema for storing and interactively displaying genetic map data in a comparative, dot-plot, fashion. Its display is composed of a matrix of cells, each representing a pairwise comparison of mapped probe data for two linkage groups or chromosomes. These are arranged along the axes with one forming grid columns and the other grid rows with the degree and pattern of synteny/colinearity between the two linkage groups manifested in the cell's dot density and structure. A mouse click over the selected grid cell launches an image map-based display for the selected cell. Both individual and linear groups of mapped probes can be selected and displayed. Also, configurable links can be used to access other web resources for mapped probe information. OxfordGrid is implemented in C#/ASP.NET and the package, including MySQL schema creation scripts, is available at ftp://cggc.agtec.uga.edu/OxfordGrid/.

  11. MAP, MAC, and vortex-rings configurations in the Weinberg-Salam model

    NASA Astrophysics Data System (ADS)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming

    2015-11-01

    We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)×U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the ϕ-winding number n = 1, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the z-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number n = 3. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of 4 πn / e. In the MAP configurations, the monopole-antimonopole pair is bounded by the Z0 field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges ± 4πn/e sin2θW respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges ± 4 πn/e respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant 0 ≤ λ ≤ 40 at Weinberg angle θW = π/4.

  12. Configuration and Specifications of AN Unmanned Aerial Vehicle for Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Erena, M.; Montesinos, S.; Portillo, D.; Alvarez, J.; Marin, C.; Fernandez, L.; Henarejos, J. M.; Ruiz, L. A.

    2016-06-01

    Unmanned Aerial Vehicles (UAVs) with multispectral sensors are increasingly attractive in geosciences for data capture and map updating at high spatial and temporal resolutions. These autonomously-flying systems can be equipped with different sensors, such as a six-band multispectral camera (Tetracam mini-MCA-6), GPS Ublox M8N, and MEMS gyroscopes, and miniaturized sensor systems for navigation, positioning, and mapping purposes. These systems can be used for data collection in precision viticulture. In this study, the efficiency of a light UAV system for data collection, processing, and map updating in small areas is evaluated, generating correlations between classification maps derived from remote sensing and production maps. Based on the comparison of the indices derived from UAVs incorporating infrared sensors with those obtained by satellites (Sentinel 2A and Landsat 8), UAVs show promise for the characterization of vineyard plots with high spatial variability, despite the low vegetative coverage of these crops. Consequently, a procedure for zoning map production based on UAV/UV images could provide important information for farmers.

  13. Comparison of Computational and Experimental Microphone Array Results for an 18%-Scale Aircraft Model

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Humphreys, William M.; Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano; Ravetta, Patricio A.

    2015-01-01

    An 18%-scale, semi-span model is used as a platform for examining the efficacy of microphone array processing using synthetic data from numerical simulations. Two hybrid RANS/LES codes coupled with Ffowcs Williams-Hawkings solvers are used to calculate 97 microphone signals at the locations of an array employed in the NASA LaRC 14x22 tunnel. Conventional, DAMAS, and CLEAN-SC array processing is applied in an identical fashion to the experimental and computational results for three different configurations involving deploying and retracting the main landing gear and a part span flap. Despite the short time records of the numerical signals, the beamform maps are able to isolate the noise sources, and the appearance of the DAMAS synthetic array maps is generally better than those from the experimental data. The experimental CLEAN-SC maps are similar in quality to those from the simulations indicating that CLEAN-SC may have less sensitivity to background noise. The spectrum obtained from DAMAS processing of synthetic array data is nearly identical to the spectrum of the center microphone of the array, indicating that for this problem array processing of synthetic data does not improve spectral comparisons with experiment. However, the beamform maps do provide an additional means of comparison that can reveal differences that cannot be ascertained from spectra alone.

  14. Elemental representation and configural mappings: combining elemental and configural theories of associative learning.

    PubMed

    McLaren, I P L; Forrest, C L; McLaren, R P

    2012-09-01

    In this article, we present our first attempt at combining an elemental theory designed to model representation development in an associative system (based on McLaren, Kaye, & Mackintosh, 1989) with a configural theory that models associative learning and memory (McLaren, 1993). After considering the possible advantages of such a combination (and some possible pitfalls), we offer a hybrid model that allows both components to produce the phenomena that they are capable of without introducing unwanted interactions. We then successfully apply the model to a range of phenomena, including latent inhibition, perceptual learning, the Espinet effect, and first- and second-order retrospective revaluation. In some cases, we present new data for comparison with our model's predictions. In all cases, the model replicates the pattern observed in our experimental results. We conclude that this line of development is a promising one for arriving at general theories of associative learning and memory.

  15. Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.

  16. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  17. Reconstruction of phase maps from the configuration of phase singularities in two-dimensional manifolds.

    PubMed

    Herlin, Antoine; Jacquemet, Vincent

    2012-05-01

    Phase singularity analysis provides a quantitative description of spiral wave patterns observed in chemical or biological excitable media. The configuration of phase singularities (locations and directions of rotation) is easily derived from phase maps in two-dimensional manifolds. The question arises whether one can construct a phase map with a given configuration of phase singularities. The existence of such a phase map is guaranteed provided that the phase singularity configuration satisfies a certain constraint associated with the topology of the supporting medium. This paper presents a constructive mathematical approach to numerically solve this problem in the plane and on the sphere as well as in more general geometries relevant to atrial anatomy including holes and a septal wall. This tool can notably be used to create initial conditions with a controllable spiral wave configuration for cardiac propagation models and thus help in the design of computer experiments in atrial electrophysiology.

  18. Topography of Venus and earth - A test for the presence of plate tectonics

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Yuter, S. E.; Solomon, S. C.

    1981-01-01

    Comparisons of earth and Venus topography by use of Pioneer/Venus radar altimetry are examined. Approximately 93% of the Venus surface has been mapped with a horizontal resolution of 200 km and a vertical resolution of 200 m. Tectonic troughs have been indicated in plains regions which cover 65% of Venus, and hypsometric comparisons between the two planets' elevation distributions revealed that while the earth has a bimodal height distribution, Venus displays a unimodal configuration, with 60% of the planet surface within 500 m of the modal planet radius. The effects of mapping the earth at the same resolution as the Venus observations were explored. Continents and oceans were apparent, and although folded mountains appeared as high spots, no indications of tectonic activity were discernible. A NASA Venus Orbiting Imaging radar is outlined, which is designed to detect volcanoes, folded mountain ranges, craters, and faults, and thereby allow definition of possible plate-tectonic activity on Venus.

  19. Doppler-Zeeman mapping of the magnetic CP star HD 215441

    NASA Astrophysics Data System (ADS)

    Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Tsymbal, V. V.

    1997-07-01

    The method of Vasilchenko et al. (1996) is used to obtain a Doppler-Zeeman map of the magnetic CP star HD 215441. The magnetic field is approximated by a magnetic dipole that is arbitrarily shifted from the star center. The solution of the inverse problem yields the dipole parameters and the maps of Si, Ti, Cr, and Fe abundance anomalies; the coordinates of local magnetic vectors on the star surface are computed. A comparison of the distribution of abundance anomalies and the magnetic-field configuration reveals that in the region where the magnetic-field lines are vertical (near the magnetic pole), Si, Ti and Cr are highly deficient, while the Fe enhancement is strongest. In the regions where the magnetic-field lines are horizontal (near the magnetic equator), Si, Ti and Cr show the greatest overabundance. In these regions, the Fe abundance is also slightly enhanced and exhibits, as it were, a secondary maximum. The factors that limit the accuracy of Doppler-Zeeman mapping are reviewed.

  20. Current Grid Generation Strategies and Future Requirements in Hypersonic Vehicle Design, Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Periklis; Venkatapathy, Ethiraj; Prabhu, Dinesh; Loomis, Mark P.; Olynick, Dave; Arnold, James O. (Technical Monitor)

    1998-01-01

    Recent advances in computational power enable computational fluid dynamic modeling of increasingly complex configurations. A review of grid generation methodologies implemented in support of the computational work performed for the X-38 and X-33 are presented. In strategizing topological constructs and blocking structures factors considered are the geometric configuration, optimal grid size, numerical algorithms, accuracy requirements, physics of the problem at hand, computational expense, and the available computer hardware. Also addressed are grid refinement strategies, the effects of wall spacing, and convergence. The significance of grid is demonstrated through a comparison of computational and experimental results of the aeroheating environment experienced by the X-38 vehicle. Special topics on grid generation strategies are also addressed to model control surface deflections, and material mapping.

  1. Doppler-Zeeman Mapping of the Rapidly Rotating Magnetic CP Star HD37776

    NASA Astrophysics Data System (ADS)

    Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Romanyuk, I. I.

    2000-03-01

    We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping (Vasilchenko et al. 1996), has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right- and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N > 200 (Romanyuk et al. 1999). The profile width of winged spectral lines (reaching 5 A) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, OII, AlIII, SiIII, and FeIII averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30 deg < i < 50 deg, beta = 40 deg, and a maximum surface field strength H_s = 60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum tangential field.

  2. Multi-Skyrmions on AdS2 × S2, rational maps and popcorn transitions

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Tallarita, Gianni

    2017-08-01

    By combining two different techniques to construct multi-soliton solutions of the (3 + 1)-dimensional Skyrme model, the generalized hedgehog and the rational map ansatz, we find multi-Skyrmion configurations in AdS2 ×S2. We construct Skyrmionic multi-layered configurations such that the total Baryon charge is the product of the number of kinks along the radial AdS2 direction and the degree of the rational map. We show that, for fixed total Baryon charge, as one increases the charge density on ∂ (AdS2 ×S2) , it becomes increasingly convenient energetically to have configurations with more peaks in the radial AdS2 direction but a lower degree of the rational map. This has a direct relation with the so-called holographic popcorn transitions in which, when the charge density is high, multi-layered configurations with low charge on each layer are favored over configurations with few layers but with higher charge on each layer. The case in which the geometry is M2 ×S2 can also be analyzed.

  3. Multiple-Purpose Subsonic Naval Aircraft (MPSNA): Multiple Application Propfan Study (MAPS)

    NASA Technical Reports Server (NTRS)

    Engelbeck, R. M.; Havey, C. T.; Klamka, A.; Mcneil, C. L.; Paige, M. A.

    1986-01-01

    Study requirements, assumptions and guidelines were identified regarding carrier suitability, aircraft missions, technology availability, and propulsion considerations. Conceptual designs were executed for two missions, a full multimission aircraft and a minimum mission aircraft using three different propulsion systems, the UnDucted Fan (UDF), the Propfan and an advanced Turbofan. Detailed aircraft optimization was completed on those configurations yielding gross weight performance and carrier spot factors. Propfan STOVL conceptual designs were exercised also to show the effects of STOVL on gross weight, spot factor and cost. An advanced technology research plan was generated to identify additional investigation opportunities from an airframe contractors standpoint. Life cycle cost analysis was accomplished yielding a comparison of the UDF and propfan configurations against each other as well as against a turbofan with equivalent state of the art turbo-machinery.

  4. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    PubMed Central

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  5. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velas, K. M.; Milroy, R. D.

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter usedmore » in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.« less

  6. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    NASA Technical Reports Server (NTRS)

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  7. Comparing conventional Descriptive Analysis and Napping®-UFP against physiochemical measurements: a case study using apples.

    PubMed

    Pickup, William; Bremer, Phil; Peng, Mei

    2018-03-01

    The extensive time and cost associated with conventional sensory profiling methods has spurred sensory researchers to develop rapid method alternatives, such as Napping® with Ultra-Flash Profiling (UFP). Napping®-UFP generates sensory maps by requiring untrained panellists to separate samples based on perceived sensory similarities. Evaluations of this method have been restrained to manufactured/formulated food models, and predominantly structured on comparisons against the conventional descriptive method. The present study aims to extend the validation of Napping®-UFP (N = 72) to natural biological products; and to evaluate this method against Descriptive Analysis (DA; N = 8) with physiochemical measurements as an additional evaluative criterion. The results revealed that sample configurations generated by DA and Napping®-UFP were not significantly correlated (RV = 0.425, P = 0.077); however, they were both correlated with the product map generated based on the instrumental measures (P < 0.05). The finding also noted that sample characterisations from DA and Napping®-UFP were driven by different sensory attributes, indicating potential structural differences between these two methods in configuring samples. Overall, these findings lent support for the extended use of Napping®-UFP for evaluations of natural biological products. Although DA was shown to be a better method for establishing sensory-instrumental relationships, Napping®-UFP exhibited strengths in generating informative sample configurations based on holistic perception of products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Mapping High Dimensional Sparse Customer Requirements into Product Configurations

    NASA Astrophysics Data System (ADS)

    Jiao, Yao; Yang, Yu; Zhang, Hongshan

    2017-10-01

    Mapping customer requirements into product configurations is a crucial step for product design, while, customers express their needs ambiguously and locally due to the lack of domain knowledge. Thus the data mining process of customer requirements might result in fragmental information with high dimensional sparsity, leading the mapping procedure risk uncertainty and complexity. The Expert Judgment is widely applied against that background since there is no formal requirements for systematic or structural data. However, there are concerns on the repeatability and bias for Expert Judgment. In this study, an integrated method by adjusted Local Linear Embedding (LLE) and Naïve Bayes (NB) classifier is proposed to map high dimensional sparse customer requirements to product configurations. The integrated method adjusts classical LLE to preprocess high dimensional sparse dataset to satisfy the prerequisite of NB for classifying different customer requirements to corresponding product configurations. Compared with Expert Judgment, the adjusted LLE with NB performs much better in a real-world Tablet PC design case both in accuracy and robustness.

  9. Planning Robotic Manipulation Strategies for Sliding Objects

    NASA Astrophysics Data System (ADS)

    Peshkin, Michael A.

    Automated planning of grasping or manipulation requires an understanding of both the physics and the geometry of manipulation, and a representation of that knowledge which facilitates the search for successful strategies. We consider manipulation on a level conveyor belt or tabletop, on which a part may slide when touched by a robot. Manipulation plans for a given part must succeed in the face of two types of uncertainty: that of the details of surfaces in contact, and that of the initial configuration of the part. In general the points of contact between the part and the surface it slides on will be unknown, so the motion of the part in response to a push cannot be predicted exactly. Using a simple variational principle (which is derived), we find the set of possible motions of a part for a given push, for all collections of points of contact. The answer emerges as a locus of centers of rotation (CORs). Manipulation plans made using this locus will succeed despite unknown details of contact. Results of experimental tests of the COR loci are presented. Uncertainty in the initial configuration of a part is usually also present. To plan in the presence of uncertainty, configuration maps are defined, which map all configurations of a part before an elementary operation to all possible outcomes, thus encapsulating the physics and geometry of the operation. The configuration map for an operation sequence is a product of configuration maps of elementary operations. Using COR loci we compute configuration maps for elementary sliding operations. Appropriate search techniques are applied to find operation sequences which succeed in the presence of uncertainty in the initial configuration and unknown details of contact. Such operation sequences may be used as parts feeder designs or as manipulation or grasping strategies for robots. As an example we demonstrate the automated design of a class of passive parts feeders consisting of multiple sequential fences across a conveyor belt.

  10. An Assessment of Flap and Main Landing Gear Noise Abatement Concepts

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.

    2015-01-01

    A detailed assessment of the acoustic performance of several noise reduction concepts for aircraft flaps and landing gear is presented. Consideration is given to the best performing concepts within the suite of technologies that were evaluated in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel using an 18 percent scale, semi-span, high-fidelity Gulfstream aircraft model as a test bed. Microphone array measurements were obtained with the model in a landing configuration (flap deflected 39 degrees and the main landing gear deployed or retracted). The effectiveness of each concept over the range of pitch angles, speeds, and directivity angles tested is presented. Comparison of the acoustic spectra, obtained from integration of the beamform maps between the untreated baseline and treated configurations, clearly demonstrates that the flap and gear concepts maintain noise reduction benefits over the entire range of the directivity angles tested.

  11. Evaluation of SIR-A space radar for geologic interpretation: United States, Panama, Colombia, and New Guinea

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W. P.; Kaupp, V. H.; Bridges, L. C.; Storm, M.

    1983-01-01

    Comparisons between LANDSAT MSS imagery, and aircraft and space radar imagery from different geologic environments in the United States, Panama, Colombia, and New Guinea demonstrate the interdependence of radar system geometry and terrain configuration for optimum retrieval of geologic information. Illustrations suggest that in the case of space radars (SIR-A in particular), the ability to acquire multiple look-angle/look-direction radar images of a given area is more valuable for landform mapping than further improvements in spatial resolution. Radar look-angle is concluded to be one of the most important system parameters of a space radar designed to be used for geologic reconnaissance mapping. The optimum set of system parameters must be determined for imaging different classes of landform features and tailoring the look-angle to local topography.

  12. Semantic networks for odors and colors in Alzheimer's disease.

    PubMed

    Razani, Jill; Chan, Agnes; Nordin, Steven; Murphy, Claire

    2010-05-01

    Impairment in odor-naming ability and in verbal and visual semantic networks raised the hypothesis of a breakdown in the semantic network for odors in Alzheimer's disease (AD). The current study addressed this hypothesis. Twenty-four individuals, half patients with probable AD and half control participants, performed triadic-similarity judgments for odors and colors, separately, which, utilizing the multidimensional scaling (MDS) technique of individual difference scaling analysis (INDSCAL), generated two-dimensional configurations of similarity. The abilities to match odors and colors with written name labels were assessed to investigate disease-related differences in ability to identify and conceptualize the stimuli. In addition, responses on attribute-sorting tasks, requiring the odor and color perceptions to be categorized as one polarity of a certain dimension, were obtained to allow for objective interpretation of the MDS spatial maps. Whereas comparison subjects generated spatial maps based predominantly on relatively abstract characteristics, patients with AD classified odors on perceptual characteristics. The maps for patients with AD also showed disorganized groupings and loose associations between odors. Their normal configurations for colors imply that the patients were able to comprehend the task per se. The data for label matching and for attribute sorting provide further evidence for a disturbance in semantic odor memory in AD. The patients performed poorer than controls on both these odor tasks, implying that the ability to identify and/or conceptualize odors is impaired in AD. The results provide clear evidence for deterioration of the structure of semantic knowledge for odors in AD.

  13. (Full field) optical coherence tomography and applications

    NASA Astrophysics Data System (ADS)

    Buchroithner, Boris; Hannesschläger, Günther; Leiss-Holzinger, Elisabeth; Prylepa, Andrii; Heise, Bettina

    2018-03-01

    This paper illustrates specific features and use of optical coherence tomography (OCT) in the raster-scanning and in comparison in the full field version of this imaging technique. Cases for nondestructive testing are discussed alongside other application schemes. In particular monitoring time-dependent processes and probing of birefringent specimens are considered here. In the context of polymer testing birefringence mapping may often provide information about internal strain and stress states. Recent results obtained with conventional raster-scanning OCT systems, with (dual and single-shot) full field OCT configurations, and with polarization-sensitive versions of (full field) OCT are presented here.

  14. Shapes and sounds as self-objects in learning geography.

    PubMed

    Baum, E A

    1978-01-01

    The pleasure which some children find in maps and map reading is manifold in origin. Children cathect patterns of configuration and color and derive joy from the visual mastery of these. This gratification is enhanced by the child's knowledge that the map represents something bigger than and external to itself. Likewise, some children take pleasure in the pronunciation of names themselves. The phonetic transcription of multisyllabic names is often a plearurable challenge. The vocalized name has its origin in the self, becomes barely external to self, and is self-monitored. Thus, in children both the configurations and the vocalizations associated with map reading have the properties of "self=objects" (Kohut, 1971). From the author's observation the delight which some children take in sounding out geographic names on a map may, in some instances, indicate pre-existing gratifying sound associations. Childish amusement in punning on cognomens may be an even greater stimulant for learning than visual configurations or artificial cognitive devices.

  15. Navigation assistance: a trade-off between wayfinding support and configural learning support.

    PubMed

    Münzer, Stefan; Zimmer, Hubert D; Baus, Jörg

    2012-03-01

    Current GPS-based mobile navigation assistance systems support wayfinding, but they do not support learning about the spatial configuration of an environment. The present study examined effects of visual presentation modes for navigation assistance on wayfinding accuracy, route learning, and configural learning. Participants (high-school students) visited a university campus for the first time and took a predefined assisted tour. In Experiment 1 (n = 84, 42 females), a presentation mode showing wayfinding information from eye-level was contrasted with presentation modes showing wayfinding information included in views that provided comprehensive configural information. In Experiment 2 (n = 48, 24 females), wayfinding information was included in map fragments. A presentation mode which always showed north on top of the device was compared with a mode which rotated according to the orientation of the user. Wayfinding accuracy (deviations from the route), route learning, and configural learning (direction estimates, sketch maps) were assessed. Results indicated a trade-off between wayfinding and configural learning: Presentation modes providing comprehensive configural information supported the acquisition of configural knowledge at the cost of accurate wayfinding. The route presentation mode supported wayfinding at the cost of configural knowledge acquisition. Both presentation modes based on map fragments supported wayfinding. Individual differences in visual-spatial working memory capacity explained a considerable portion of the variance in wayfinding accuracy, route learning, and configural learning. It is concluded that learning about an unknown environment during assisted navigation is based on the integration of spatial information from multiple sources and can be supported by appropriate visualization. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  16. Malleable architecture generator for FPGA computing

    NASA Astrophysics Data System (ADS)

    Gokhale, Maya; Kaba, James; Marks, Aaron; Kim, Jang

    1996-10-01

    The malleable architecture generator (MARGE) is a tool set that translates high-level parallel C to configuration bit streams for field-programmable logic based computing systems. MARGE creates an application-specific instruction set and generates the custom hardware components required to perform exactly those computations specified by the C program. In contrast to traditional fixed-instruction processors, MARGE's dynamic instruction set creation provides for efficient use of hardware resources. MARGE processes intermediate code in which each operation is annotated by the bit lengths of the operands. Each basic block (sequence of straight line code) is mapped into a single custom instruction which contains all the operations and logic inherent in the block. A synthesis phase maps the operations comprising the instructions into register transfer level structural components and control logic which have been optimized to exploit functional parallelism and function unit reuse. As a final stage, commercial technology-specific tools are used to generate configuration bit streams for the desired target hardware. Technology- specific pre-placed, pre-routed macro blocks are utilized to implement as much of the hardware as possible. MARGE currently supports the Xilinx-based Splash-2 reconfigurable accelerator and National Semiconductor's CLAy-based parallel accelerator, MAPA. The MARGE approach has been demonstrated on systolic applications such as DNA sequence comparison.

  17. Multiscale approach to the determination of the photoactive yellow protein signaling state ensemble.

    PubMed

    A Rohrdanz, Mary; Zheng, Wenwei; Lambeth, Bradley; Vreede, Jocelyne; Clementi, Cecilia

    2014-10-01

    The nature of the optical cycle of photoactive yellow protein (PYP) makes its elucidation challenging for both experiment and theory. The long transition times render conventional simulation methods ineffective, and yet the short signaling-state lifetime makes experimental data difficult to obtain and interpret. Here, through an innovative combination of computational methods, a prediction and analysis of the biological signaling state of PYP is presented. Coarse-grained modeling and locally scaled diffusion map are first used to obtain a rough bird's-eye view of the free energy landscape of photo-activated PYP. Then all-atom reconstruction, followed by an enhanced sampling scheme; diffusion map-directed-molecular dynamics are used to focus in on the signaling-state region of configuration space and obtain an ensemble of signaling state structures. To the best of our knowledge, this is the first time an all-atom reconstruction from a coarse grained model has been performed in a relatively unexplored region of molecular configuration space. We compare our signaling state prediction with previous computational and more recent experimental results, and the comparison is favorable, which validates the method presented. This approach provides additional insight to understand the PYP photo cycle, and can be applied to other systems for which more direct methods are impractical.

  18. A Configurational-Bias-Monte-Carlo Back-Mapping Algorithm for Efficient and Rapid Conversion of Coarse-Grained Water Structures Into Atomistic Models.

    PubMed

    Loeffler, Troy David; Chan, Henry; Narayanan, Badri; Cherukara, Mathew J; Gray, Stephen K; Sankaranarayanan, Subramanian K R S

    2018-06-20

    Coarse-grained molecular dynamics (MD) simulations represent a powerful approach to simulate longer time scale and larger length scale phenomena than those accessible to all-atom models. The gain in efficiency, however, comes at the cost of atomistic details. The reverse transformation, also known as back-mapping, of coarse grained beads into their atomistic constituents represents a major challenge. Most existing approaches are limited to specific molecules or specific force-fields and often rely on running a long time atomistic MD of the back-mapped configuration to arrive at an optimal solution. Such approaches are problematic when dealing with systems with high diffusion barriers. Here, we introduce a new extension of the configurational-bias-Monte-Carlo (CBMC) algorithm, which we term the crystalline-configurational-bias-Monte-Carlo (C-CBMC) algortihm, that allows rapid and efficient conversion of a coarse-grained model back into its atomistic representation. Although the method is generic, we use a coarse-grained water model as a representative example and demonstrate the back-mapping or reverse transformation for model systems ranging from the ice-liquid water interface to amorphous and crystalline ice configurations. A series of simulations using the TIP4P/Ice model are performed to compare the new CBMC method to several other standard Monte Carlo and Molecular Dynamics based back-mapping techniques. In all the cases, the C-CBMC algorithm is able to find optimal hydrogen bonded configuration many thousand evaluations/steps sooner than the other methods compared within this paper. For crystalline ice structures such as a hexagonal, cubic, and cubic-hexagonal stacking disorder structures, the C-CBMC was able to find structures that were between 0.05 and 0.1 eV/water molecule lower in energy than the ground state energies predicted by the other methods. Detailed analysis of the atomistic structures show a significantly better global hydrogen positioning when contrasted with the existing simpler back-mapping methods. Our results demonstrate the efficiency and efficacy of our new back-mapping approach, especially for crystalline systems where simple force-field based relaxations have a tendency to get trapped in local minima.

  19. Innovation Configuration Mapping as a Professional Development Tool: The Case of One-to-One Laptop Computing

    ERIC Educational Resources Information Center

    Towndrow, Phillip A.; Fareed, Wan

    2015-01-01

    This article illustrates how findings from a study of teachers' and students' uses of laptop computers in a secondary school in Singapore informed the development of an Innovation Configuration (IC) Map--a tool for identifying and describing alternative ways of implementing innovations based on teachers' unique feelings, preoccupations, thoughts…

  20. Mapping with Small UAS: A Point Cloud Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Toth, Charles; Jozkow, Grzegorz; Grejner-Brzezinska, Dorota

    2015-12-01

    Interest in using inexpensive Unmanned Aerial System (UAS) technology for topographic mapping has recently significantly increased. Small UAS platforms equipped with consumer grade cameras can easily acquire high-resolution aerial imagery allowing for dense point cloud generation, followed by surface model creation and orthophoto production. In contrast to conventional airborne mapping systems, UAS has limited ground coverage due to low flying height and limited flying time, yet it offers an attractive alternative to high performance airborne systems, as the cost of the sensors and platform, and the flight logistics, is relatively low. In addition, UAS is better suited for small area data acquisitions and to acquire data in difficult to access areas, such as urban canyons or densely built-up environments. The main question with respect to the use of UAS is whether the inexpensive consumer sensors installed in UAS platforms can provide the geospatial data quality comparable to that provided by conventional systems. This study aims at the performance evaluation of the current practice of UAS-based topographic mapping by reviewing the practical aspects of sensor configuration, georeferencing and point cloud generation, including comparisons between sensor types and processing tools. The main objective is to provide accuracy characterization and practical information for selecting and using UAS solutions in general mapping applications. The analysis is based on statistical evaluation as well as visual examination of experimental data acquired by a Bergen octocopter with three different image sensor configurations, including a GoPro HERO3+ Black Edition, a Nikon D800 DSLR and a Velodyne HDL-32. In addition, georeferencing data of varying quality were acquired and evaluated. The optical imagery was processed by using three commercial point cloud generation tools. Comparing point clouds created by active and passive sensors by using different quality sensors, and finally, by different commercial software tools, provides essential information for the performance validation of UAS technology.

  1. Utilization of ERTS-1 data in the Houston area

    NASA Technical Reports Server (NTRS)

    Erb, R. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Using clustering techniques, several large lakes in Texas have been accurately delineated in computer printout graymaps. It was also found that small bodies of water (one to two acres in size) could be detected by searching for small reflectance values in the infrared data. A graymap printout of a lake described a shore outline that was not consistent with available maps. Field examination revealed that the actual level of the lake was below that for which the map was drawn. The current lake configuration agrees in shape and relative size with the ERTS-1 data printout. Water turbidity causes reflectance changes which are detectable in ERTS-1 band 7 data. A comparison has been made of the Monterey Bay, California area using 1971 aerial color infrared photography and a 1972 ERTS-1 band 7 infrared image. This comparison revealed that some event has occurred to impound a significant amount of water in the area since the infrared photography was taken. Data values in the ERTS-1 infrared image exhibit detectable changes in brightness at inflow points, where high turbidity would be present. Researchers had not expected to detect water turbidity patterns in band 7 (800 to 1100 nanometers).

  2. Ground Collision Avoidance System (Igcas)

    NASA Technical Reports Server (NTRS)

    Prosser, Kevin (Inventor); Hook, Loyd (Inventor); Skoog, Mark A (Inventor)

    2017-01-01

    The present invention is a system and method for aircraft ground collision avoidance (iGCAS) comprising a modular array of software, including a sense own state module configured to gather data to compute trajectory, a sense terrain module including a digital terrain map (DTM) and map manger routine to store and retrieve terrain elevations, a predict collision threat module configured to generate an elevation profile corresponding to the terrain under the trajectory computed by said sense own state module, a predict avoidance trajectory module configured to simulate avoidance maneuvers ahead of the aircraft, a determine need to avoid module configured to determine which avoidance maneuver should be used, when it should be initiated, and when it should be terminated, a notify Module configured to display each maneuver's viability to the pilot by a colored GUI, a pilot controls module configured to turn the system on and off, and an avoid module configured to define how an aircraft will perform avoidance maneuvers through 3-dimensional space.

  3. Comparison between four dissimilar solar panel configurations

    NASA Astrophysics Data System (ADS)

    Suleiman, K.; Ali, U. A.; Yusuf, Ibrahim; Koko, A. D.; Bala, S. I.

    2017-12-01

    Several studies on photovoltaic systems focused on how it operates and energy required in operating it. Little attention is paid on its configurations, modeling of mean time to system failure, availability, cost benefit and comparisons of parallel and series-parallel designs. In this research work, four system configurations were studied. Configuration I consists of two sub-components arranged in parallel with 24 V each, configuration II consists of four sub-components arranged logically in parallel with 12 V each, configuration III consists of four sub-components arranged in series-parallel with 8 V each, and configuration IV has six sub-components with 6 V each arranged in series-parallel. Comparative analysis was made using Chapman Kolmogorov's method. The derivation for explicit expression of mean time to system failure, steady state availability and cost benefit analysis were performed, based on the comparison. Ranking method was used to determine the optimal configuration of the systems. The results of analytical and numerical solutions of system availability and mean time to system failure were determined and it was found that configuration I is the optimal configuration.

  4. Time domain localization technique with sparsity constraint for imaging acoustic sources

    NASA Astrophysics Data System (ADS)

    Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain

    2017-09-01

    This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Shrestha, Som S.

    Based on the laboratory investigation in FY16, for R-22 and R-410A alternative low GWP refrigerants in two baseline rooftop air conditioners (RTU), we used the DOE/ORNL Heat Pump Design Model to model the two RTUs and calibrated the models against the experimental data. Using the calibrated equipment models, we compared the compressor efficiencies, heat exchanger performances. An efficiency-based compressor mapping method was developed, which is able to predict compressor performances of the alternative low GWP refrigerants accurately. Extensive model-based optimizations were conducted to provide a fair comparison between all the low GWP candidates by selecting their preferred configurations at themore » same cooling capacity and compressor efficiencies.« less

  6. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  7. BenMAP Downloads

    EPA Pesticide Factsheets

    Download the current and legacy versions of the BenMAP program. Download configuration and aggregation/pooling/valuation files to estimate benefits. BenMAP-CE is free and open source software, and the source code is available upon request.

  8. Aorta modeling with the element-based zero-stress state and isogeometric discretization

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi

    2017-02-01

    Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight-tube configurations. Then we show how the method can be used in a 3D computation where the target geometry is coming from medical image of a human aorta.

  9. The Relationship between Self-Assembly and Conformal Mappings

    NASA Astrophysics Data System (ADS)

    Duque, Carlos; Santangelo, Christian

    The isotropic growth of a thin sheet has been used as a way to generate programmed shapes through controlled buckling. We discuss how conformal mappings, which are transformations that locally preserve angles, provide a way to quantify the area growth needed to produce a particular shape. A discrete version of the conformal map can be constructed from circle packings, which are maps between packings of circles whose contact network is preserved. This provides a link to the self-assembly of particles on curved surfaces. We performed simulations of attractive particles on a curved surface using molecular dynamics. The resulting particle configurations were used to generate the corresponding discrete conformal map, allowing us to quantify the degree of area distortion required to produce a particular shape by finding particle configurations that minimize the area distortion.

  10. The Spatial Scale and Spatial Configuration of Residential Settlement: Measuring Segregation in the Postbellum South

    PubMed Central

    Logan, John R.; Martinez, Matthew

    2018-01-01

    Studies of residential segregation typically focus on its degree without questioning its scale and configuration. We study Southern cities in 1880 to emphasize the salience of these spatial dimensions. Distance-based and sequence indices can reflect spatial patterns but with some limitations, while geocoded 100% population data make possible more informative measures. One improvement is flexibility in spatial scale, ranging from adjacent buildings to whole districts of the city. Another is the ability to map patterns in fine detail. In Southern cities we find qualitatively distinct configurations that include not only black “neighborhoods” as usually imagined, but also backyard housing, alley housing, and side streets that were predominantly black. These configurations represent the sort of symbolic boundaries recognized by urban ethnographers. By mapping residential configurations and interpreting them in light of historical accounts, our intention is to capture meanings that are too often missed by quantitative studies of segregation. PMID:29479108

  11. Comparing different stimulus configurations for population receptive field mapping in human fMRI

    PubMed Central

    Alvarez, Ivan; de Haas, Benjamin; Clark, Chris A.; Rees, Geraint; Schwarzkopf, D. Samuel

    2015-01-01

    Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time. PMID:25750620

  12. Generating Impact Maps from Automatically Detected Bomb Craters in Aerial Wartime Images Using Marked Point Processes

    NASA Astrophysics Data System (ADS)

    Kruse, Christian; Rottensteiner, Franz; Hoberg, Thorsten; Ziems, Marcel; Rebke, Julia; Heipke, Christian

    2018-04-01

    The aftermath of wartime attacks is often felt long after the war ended, as numerous unexploded bombs may still exist in the ground. Typically, such areas are documented in so-called impact maps which are based on the detection of bomb craters. This paper proposes a method for the automatic detection of bomb craters in aerial wartime images that were taken during the Second World War. The object model for the bomb craters is represented by ellipses. A probabilistic approach based on marked point processes determines the most likely configuration of objects within the scene. Adding and removing new objects to and from the current configuration, respectively, changing their positions and modifying the ellipse parameters randomly creates new object configurations. Each configuration is evaluated using an energy function. High gradient magnitudes along the border of the ellipse are favored and overlapping ellipses are penalized. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global energy optimum, which describes the conformance with a predefined model. For generating the impact map a probability map is defined which is created from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively. Our results show the general potential of the method for the automatic detection of bomb craters and its automated generation of an impact map in a heterogeneous image stock.

  13. mapKITE: a New Paradigm for Simultaneous Aerial and Terrestrial Geodata Acquisition and Mapping

    NASA Astrophysics Data System (ADS)

    Molina, P.; Blázquez, M.; Sastre, J.; Colomina, I.

    2016-06-01

    We introduce a new mobile, simultaneous terrestrial and aerial, geodata collection and post-processing method: mapKITE. By combining two mapping technologies such as terrestrial mobile mapping and unmanned aircraft aerial mapping, geodata are simultaneously acquired from air and ground. More in detail, a mapKITE geodata acquisition system consists on an unmanned aircraft and a terrestrial vehicle, which hosts the ground control station. By means of a real-time navigation system on the terrestrial vehicle, real-time waypoints are sent to the aircraft from the ground. By doing so, the aircraft is linked to the terrestrial vehicle through a "virtual tether," acting as a "mapping kite." In the article, we entail the concept of mapKITE as well as the various technologies and techniques involved, from aircraft guidance and navigation based on IMU and GNSS, optical cameras for mapping and tracking, sensor orientation and calibration, etc. Moreover, we report of a new measurement introduced in mapKITE, that is, point-and-scale photogrammetric measurements [of image coordinates and scale] for optical targets of known size installed on the ground vehicle roof. By means of accurate posteriori trajectory determination of the terrestrial vehicle, mapKITE benefits then from kinematic ground control points which are photogrametrically observed by point-and-scale measures. Initial results for simulated configurations show that these measurements added to the usual Integrated Sensor Orientation ones reduce or even eliminate the need of conventional ground control points -therefore, lowering mission costs- and enable selfcalibration of the unmanned aircraft interior orientation parameters in corridor configurations, in contrast to the situation of traditional corridor configurations. Finally, we report about current developments of the first mapKITE prototype, developed under the European Union Research and Innovation programme Horizon 2020. The first mapKITE mission will be held at the BCN Drone Center (Collsuspina, Moià, Spain) in mid 2016.

  14. The pentagon relation and incidence geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doliwa, Adam, E-mail: doliwa@matman.uwm.edu.pl; Sergeev, Sergey M., E-mail: Sergey.Sergeev@canberra.edu.au

    2014-06-01

    We define a map S:D²×D²→D²×D², where D is an arbitrary division ring (skew field), associated with the Veblen configuration, and we show that such a map provides solutions to the functional dynamical pentagon equation. We explain that fact in elementary geometric terms using the symmetry of the Veblen and Desargues configurations. We introduce also another map of a geometric origin with the pentagon property. We show equivalence of these maps with recently introduced Desargues maps which provide geometric interpretation to a non-commutative version of Hirota's discrete Kadomtsev–Petviashvili equation. Finally, we demonstrate that in an appropriate gauge the (commutative version ofmore » the) maps preserves a natural Poisson structure—the quasiclassical limit of the Weyl commutation relations. The corresponding quantum reduction is then studied. In particular, we discuss uniqueness of the Weyl relations for the ultra-local reduction of the map. We give then the corresponding solution of the quantum pentagon equation in terms of the non-compact quantum dilogarithm function.« less

  15. Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.

    2006-01-01

    This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.

  16. Concept mapping-An effective method for identifying diversity and congruity in cognitive style.

    PubMed

    Stoyanov, Slavi; Jablokow, Kathryn; Rosas, Scott R; Wopereis, Iwan G J H; Kirschner, Paul A

    2017-02-01

    This paper investigates the effects of cognitive style for decision making on the behaviour of participants in different phases of the group concept mapping process (GCM). It is argued that cognitive style should be included directly in the coordination of the GCM process and not simply considered as yet another demographic variable. The cognitive styles were identified using the Kirton Adaption-Innovation Inventory, which locates each person's style on a continuum ranging from very adaptive to very innovative. Cognitive style could explain diversity in the participants' behaviour in different phases of the GCM process. At the same time, the concept map as a group's common cognitive construct can consolidate individual differences and serves as a tool for managing diversity in groups of participants. Some of the results were that: (a) the more adaptive participants generated ideas that fit to a particular, well-established and consensually agreed paradigm, frame of reference, theory or practice; (b) the more innovative participants produced ideas that were more general in scope and required changing a settled structure (paradigm, frame of reference, theory or practice); and (c) the empirical comparison of the map configurations through Procrustes analysis indicated a strong dissimilarity between cognitive styles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Aggregating concept map data to investigate the knowledge of beginning CS students

    NASA Astrophysics Data System (ADS)

    Mühling, Andreas

    2016-07-01

    Concept maps have a long history in educational settings as a tool for teaching, learning, and assessing. As an assessment tool, they are predominantly used to extract the structural configuration of learners' knowledge. This article presents an investigation of the knowledge structures of a large group of beginning CS students. The investigation is based on a method that collects, aggregates, and automatically analyzes the concept maps of a group of learners as a whole, to identify common structural configurations and differences in the learners' knowledge. It shows that those students who have attended CS education in their secondary school life have, on average, configured their knowledge about typical core CS/OOP concepts differently. Also, artifacts of their particular CS curriculum are visible in their externalized knowledge. The data structures and analysis methods necessary for working with concept landscapes have been implemented as a GNU R package that is freely available.

  18. Transonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration. Volume 1: Experimental data report, base configuration and effects of wing twist and leading-edge configuration. [wind tunnel tests, aircraft models

    NASA Technical Reports Server (NTRS)

    Manro, M. E.; Manning, K. J. R.; Hallstaff, T. H.; Rogers, J. T.

    1975-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 0.4 to 1.1 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using current state-of-the-art attached and separated flow methods. The purpose of these comparisons was to delineate conditions under which these theories are valid for both flat and twisted wings and to explore the use of empirical methods to correct the theoretical methods where theory is deficient.

  19. Comparing Tactile Maps and Haptic Digital Representations of a Maritime Environment

    ERIC Educational Resources Information Center

    Simonnet, Mathieu; Vieilledent, Steephane; Jacobson, R. Daniel; Tisseau, Jacques

    2011-01-01

    A map exploration and representation exercise was conducted with participants who were totally blind. Representations of maritime environments were presented either with a tactile map or with a digital haptic virtual map. We assessed the knowledge of spatial configurations using a triangulation technique. The results revealed that both types of…

  20. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.

    PubMed

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-12-31

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  1. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    PubMed Central

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-01-01

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable. PMID:28042855

  2. High Accuracy Passive Magnetic Field-Based Localization for Feedback Control Using Principal Component Analysis.

    PubMed

    Foong, Shaohui; Sun, Zhenglong

    2016-08-12

    In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.

  3. Seismic slope-performance analysis: from hazard map to decision support system

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.; Ho, Carlton L.

    1999-01-01

    In response to the growing recognition of engineers and decision-makers of the regional effects of earthquake-induced landslides, this paper presents a general approach to conducting seismic landslide zonation, based on the popular Newmark's sliding block analogy for modeling coherent landslides. Four existing models based on the sliding block analogy are compared. The comparison shows that the models forecast notably different levels of slope performance. Considering this discrepancy along with the limitations of static maps as a decision tool, a spatial decision support system (SDSS) for seismic landslide analysis is proposed, which will support investigations over multiple scales for any number of earthquake scenarios and input conditions. Most importantly, the SDSS will allow use of any seismic landslide analysis model and zonation approach. Developments associated with the SDSS will produce an object-oriented model for encapsulating spatial data, an object-oriented specification to allow construction of models using modular objects, and a direct-manipulation, dynamic user-interface that adapts to the particular seismic landslide model configuration.

  4. Constructing Maps Collaboratively.

    ERIC Educational Resources Information Center

    Leinhardt, Gaea; Stainton, Catherine; Bausmith, Jennifer Merriman

    1998-01-01

    Summarizes a study that maintains that students who work together in small groups had a better understanding of map concepts. Discusses why making maps in groups can enhance students' conceptual geographic understanding and offers suggestions for improving geography instructions using small group configurations. Includes statistical and graphic…

  5. Motion planning with complete knowledge using a colored SOM.

    PubMed

    Vleugels, J; Kok, J N; Overmars, M

    1997-01-01

    The motion planning problem requires that a collision-free path be determined for a robot moving amidst a fixed set of obstacles. Most neural network approaches to this problem are for the situation in which only local knowledge about the configuration space is available. The main goal of the paper is to show that neural networks are also suitable tools in situations with complete knowledge of the configuration space. In this paper we present an approach that combines a neural network and deterministic techniques. We define a colored version of Kohonen's self-organizing map that consists of two different classes of nodes. The network is presented with random configurations of the robot and, from this information, it constructs a road map of possible motions in the work space. The map is a growing network, and different nodes are used to approximate boundaries of obstacles and the Voronoi diagram of the obstacles, respectively. In a second phase, the positions of the two kinds of nodes are combined to obtain the road map. In this way a number of typical problems with small obstacles and passages are avoided, and the required number of nodes for a given accuracy is within reasonable limits. This road map is searched to find a motion connecting the given source and goal configurations of the robot. The algorithm is simple and general; the only specific computation that is required is a check for intersection of two polygons. We implemented the algorithm for planar robots allowing both translation and rotation and experiments show that compared to conventional techniques it performs well, even for difficult motion planning scenes.

  6. Supersonic dynamic stability characteristics of the test technique demonstrator NASP configuration

    NASA Technical Reports Server (NTRS)

    Dress, David A.; Boyden, Richmond P.; Cruz, Christopher I.

    1992-01-01

    Wind tunnel tests of a National Aero-Space Plane (NASP) configuration were conducted in both test sections of the Langley Unitary Plan Wind Tunnel. The model used is a Langley designed blended body NASP configuration. Dynamic stability characteristics were measured on this configuration at Mach numbers of 2.0, 2.5, 3.5, and 4.5. In addition to tests of the baseline configuration, component buildup tests were conducted. The test results show that the baseline configuration generally has positive damping about all three axes with only isolated exceptions. In addition, there was generally good agreement between the in-pulse dynamic parameters and the corresponding static data which were measured during another series of tests in the Unitary Plan Wind Tunnel. Also included are comparisons of the experimental damping parameters with results from the engineering predictive code APAS (Aerodynamic Preliminary Analysis System). These comparisons show good agreement at low angles of attack; however, the comparisons are generally not as good at the higher angles of attack.

  7. Multitasking for flows about multiple body configurations using the chimera grid scheme

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.; Morgan, R. L.

    1987-01-01

    The multitasking of a finite-difference scheme using multiple overset meshes is described. In this chimera, or multiple overset mesh approach, a multiple body configuration is mapped using a major grid about the main component of the configuration, with minor overset meshes used to map each additional component. This type of code is well suited to multitasking. Both steady and unsteady two dimensional computations are run on parallel processors on a CRAY-X/MP 48, usually with one mesh per processor. Flow field results are compared with single processor results to demonstrate the feasibility of running multiple mesh codes on parallel processors and to show the increase in efficiency.

  8. Inspection design using 2D phased array, TFM and cueMAP software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim

    2014-02-18

    A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imagingmore » performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.« less

  9. Rapid exploration of configuration space with diffusion-map-directed molecular dynamics.

    PubMed

    Zheng, Wenwei; Rohrdanz, Mary A; Clementi, Cecilia

    2013-10-24

    The gap between the time scale of interesting behavior in macromolecular systems and that which our computational resources can afford often limits molecular dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named diffusion-map-directed MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses a diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here, we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems, we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300 K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD.

  10. Rapid Exploration of Configuration Space with Diffusion Map-directed-Molecular Dynamics

    PubMed Central

    Zheng, Wenwei; Rohrdanz, Mary A.; Clementi, Cecilia

    2013-01-01

    The gap between the timescale of interesting behavior in macromolecular systems and that which our computational resources can afford oftentimes limits Molecular Dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named Diffusion Map-directed-MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD. PMID:23865517

  11. Managing Hardware Configurations and Data Products for the Canadian Hydrogen Intensity Mapping Experiment

    NASA Astrophysics Data System (ADS)

    Hincks, A. D.; Shaw, J. R.; Chime Collaboration

    2015-09-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is an ambitious new radio telescope project for measuring cosmic expansion and investigating dark energy. Keeping good records of both physical configuration of its 1280 antennas and their analogue signal chains as well as the ˜100 TB of data produced daily from its correlator will be essential to the success of CHIME. In these proceedings we describe the database-driven software we have developed to manage this complexity.

  12. Comparison of thruster configurations in attitude control systems. M.S. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Drinkard, D. M., Jr.; White, L. R.; Chakravarthi, K. R.

    1973-01-01

    Several aspects concerning reaction control jet systems as used to govern the attitude of a spacecraft were considered. A thruster configuration currently in use was compared to several new configurations developed in this study. The method of determining the error signals which control the firing of the thrusters was also investigated. The current error determination procedure is explained and a new method is presented. Both of these procedures are applied to each of the thruster configurations which are developed and comparisons of the two methods are made.

  13. Nonunique and nonuniform mapping in few-body Coulomb-explosion imaging

    NASA Astrophysics Data System (ADS)

    Sayler, A. M.; Eckner, E.; McKenna, J.; Esry, B. D.; Carnes, K. D.; Ben-Itzhak, I.; Paulus, G. G.

    2018-03-01

    Much of our knowledge of molecular geometry and interaction dynamics comes from indirect measurements of the molecular fragments following breakup. This technique—Coulomb-explosion imaging (CEI), i.e., determining the initial molecular configuration of a system from the momenta of the resulting fragments using knowledge of the particle interactions—is one of the fundamental tools of molecular physics. Moreover, CEI has been a staple of molecular studies for decades. Here we show that one often cannot assign a unique initial configuration to the few-body breakup of a polyatomic molecule given the measurement of the resulting fragments' momenta. Specifically, multiple initial configurations can result in identical momenta for a molecule breaking into three or more parts. Further, the nonunique and nonuniform mapping from the initial configuration to the measured momenta also significantly complicates the determination of molecular alignment at the time of breakup.

  14. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  15. Optimization and performance of bifacial solar modules: A global perspective

    DOE PAGES

    Sun, Xingshu; Khan, Mohammad Ryyan; Deline, Chris; ...

    2018-02-06

    With the rapidly growing interest in bifacial photovoltaics (PV), a worldwide map of their potential performance can help assess and accelerate the global deployment of this emerging technology. However, the existing literature only highlights optimized bifacial PV for a few geographic locations or develops worldwide performance maps for very specific configurations, such as the vertical installation. It is still difficult to translate these location- and configuration-specific conclusions to a general optimized performance of this technology. In this paper, we present a global study and optimization of bifacial solar modules using a rigorous and comprehensive modeling framework. Our results demonstrate thatmore » with a low albedo of 0.25, the bifacial gain of ground-mounted bifacial modules is less than 10% worldwide. However, increasing the albedo to 0.5 and elevating modules 1 m above the ground can boost the bifacial gain to 30%. Moreover, we derive a set of empirical design rules, which optimize bifacial solar modules across the world and provide the groundwork for rapid assessment of the location-specific performance. We find that ground-mounted, vertical, east-west-facing bifacial modules will outperform their south-north-facing, optimally tilted counterparts by up to 15% below the latitude of 30 degrees, for an albedo of 0.5. The relative energy output is reversed in latitudes above 30 degrees. A detailed and systematic comparison with data from Asia, Africa, Europe, and North America validates the model presented in this paper.« less

  16. Optimization and performance of bifacial solar modules: A global perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Khan, Mohammad Ryyan; Deline, Chris

    With the rapidly growing interest in bifacial photovoltaics (PV), a worldwide map of their potential performance can help assess and accelerate the global deployment of this emerging technology. However, the existing literature only highlights optimized bifacial PV for a few geographic locations or develops worldwide performance maps for very specific configurations, such as the vertical installation. It is still difficult to translate these location- and configuration-specific conclusions to a general optimized performance of this technology. In this paper, we present a global study and optimization of bifacial solar modules using a rigorous and comprehensive modeling framework. Our results demonstrate thatmore » with a low albedo of 0.25, the bifacial gain of ground-mounted bifacial modules is less than 10% worldwide. However, increasing the albedo to 0.5 and elevating modules 1 m above the ground can boost the bifacial gain to 30%. Moreover, we derive a set of empirical design rules, which optimize bifacial solar modules across the world and provide the groundwork for rapid assessment of the location-specific performance. We find that ground-mounted, vertical, east-west-facing bifacial modules will outperform their south-north-facing, optimally tilted counterparts by up to 15% below the latitude of 30 degrees, for an albedo of 0.5. The relative energy output is reversed in latitudes above 30 degrees. A detailed and systematic comparison with data from Asia, Africa, Europe, and North America validates the model presented in this paper.« less

  17. Altitude and configuration of the potentiometric surface in the Lower White Clay Creek and Upper Christina River Basins including portions of Franklin, London Britain, New Garden, and New London Townships, Chester County, Pennsylvania, June through September 2005

    USGS Publications Warehouse

    Hale, Lindsay B.

    2006-01-01

    Since 1984, the U.S. Geological Survey (USGS) has been mapping the altitude and configuration of the potentiometric surface in Chester County as part of an ongoing cooperative program to measure and describe the water resources of the county.  Areas where the potentiometric surface has been mapped are shown on figure 1.  These maps can be used to determine the general direction of ground-water flow and are frequently referenced by municipalities and developers to evaluate ground-water conditions for water supply and resource-protection requirements (Wood, 1998).

  18. A maximum likelihood algorithm for genome mapping of cytogenetic loci from meiotic configuration data.

    PubMed Central

    Reyes-Valdés, M H; Stelly, D M

    1995-01-01

    Frequencies of meiotic configurations in cytogenetic stocks are dependent on chiasma frequencies in segments defined by centromeres, breakpoints, and telomeres. The expectation maximization algorithm is proposed as a general method to perform maximum likelihood estimations of the chiasma frequencies in the intervals between such locations. The estimates can be translated via mapping functions into genetic maps of cytogenetic landmarks. One set of observational data was analyzed to exemplify application of these methods, results of which were largely concordant with other comparable data. The method was also tested by Monte Carlo simulation of frequencies of meiotic configurations from a monotelodisomic translocation heterozygote, assuming six different sample sizes. The estimate averages were always close to the values given initially to the parameters. The maximum likelihood estimation procedures can be extended readily to other kinds of cytogenetic stocks and allow the pooling of diverse cytogenetic data to collectively estimate lengths of segments, arms, and chromosomes. Images Fig. 1 PMID:7568226

  19. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers.

    PubMed

    Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy

    2008-12-01

    We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.

  20. VSDMIP: virtual screening data management on an integrated platform

    NASA Astrophysics Data System (ADS)

    Gil-Redondo, Rubén; Estrada, Jorge; Morreale, Antonio; Herranz, Fernando; Sancho, Javier; Ortiz, Ángel R.

    2009-03-01

    A novel software (VSDMIP) for the virtual screening (VS) of chemical libraries integrated within a MySQL relational database is presented. Two main features make VSDMIP clearly distinguishable from other existing computational tools: (i) its database, which stores not only ligand information but also the results from every step in the VS process, and (ii) its modular and pluggable architecture, which allows customization of the VS stages (such as the programs used for conformer generation or docking), through the definition of a detailed workflow employing user-configurable XML files. VSDMIP, therefore, facilitates the storage and retrieval of VS results, easily adapts to the specific requirements of each method and tool used in the experiments, and allows the comparison of different VS methodologies. To validate the usefulness of VSDMIP as an automated tool for carrying out VS several experiments were run on six protein targets (acetylcholinesterase, cyclin-dependent kinase 2, coagulation factor Xa, estrogen receptor alpha, p38 MAP kinase, and neuraminidase) using nine binary (actives/inactive) test sets. The performance of several VS configurations was evaluated by means of enrichment factors and receiver operating characteristic plots.

  1. Functional and structural mapping of human cerebral cortex: Solutions are in the surfaces

    PubMed Central

    Van Essen, David C.; Drury, Heather A.; Joshi, Sarang; Miller, Michael I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex. PMID:9448242

  2. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  3. Structure contour map of the greater Green River basin, Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    Lickus, M.R.; Law, B.E.

    1988-01-01

    The Greater Green River basin of Wyoming, Colorado, and Utah contains five basins and associated major uplifts (fig. 1). Published structure maps of the region have commonly used the top of the Lower Cretaceous Dakota Sandstone as a structural datum (Petroleum Ownership Map Company (POMCO), 1984; Rocky Mountain Association of Geologists, 1972). However, because relatively few wells in this area penetrate the Dakota, the Dakota structural datum has to be constructed by projecting down from shallower wells. Extrapolating in this manner may produce errors in the map. The primary purpose of this report is to present a more reliable structure contour map of the Greater Green River basin based on datums that are penetrated by many wells. The final map shows the large- to small-scale structures present in the Greater Green River basin. The availability of subsurface control and the map scale determined whether or not a structural feature was included on the map. In general, large structures such as the Moxa arch, Pinedale anticline, and other large folds were placed on the map based solely on the structure contours. In comparison, smaller folds and some faults were placed on the map based on structure contours and other reports (Bader 1987; Bradley 1961; Love and Christiansen, 1985; McDonald, 1975; Roehler, 1979; Wyoming Geological Association Oil and Gas Symposium Committee, 1979). State geologic maps and other reports were used to position basin margin faults (Bryant, 1985; Gries, 1983a, b; Hansen 1986; Hintze, 1980; Love and Christiansen, 1985; Tweto, 1979, 1983). In addition, an interpreted east-west-trending regional seismic line by Garing and Tainter (1985), which shows the basin configuration in cross-section, was helpful in locating buried faults, such as the high-angle reverse or thrust fault along the west flank of the Rock Springs uplift.

  4. Moving NSDC's Staff Development Standards into Practice: Innovation Configurations, Volume II. [CD-ROMs

    ERIC Educational Resources Information Center

    National Staff Development Council, 2005

    2005-01-01

    The second volume of "Moving NSDC's Staff Development Standards into Practice: Innovation Configurations" builds on the work that began with the first volume published in 2003. An Innovation Configuration map is a device that identifies and describes the major components of a new practice such as the standards and details of how it would look in…

  5. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiangzhi, E-mail: xiangzhi.yu@rochester.edu; Gillmer, Steven R.; Woody, Shane C.

    2016-06-15

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted tomore » investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.« less

  6. The 100 cm solar telescope primary mirror study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The manufacturing impact of primary mirror configuration on the performance of a 100 cm aperture solar telescope was studied. Three primary mirror configurations were considered: solid, standard lightweight, and mushroom. All of these are of low expansion material. Specifically, the study consisted of evaluating the mirrors with regard to: manufacturing metrology, manufacturing risk factors and ultimate quality assessment. As a result of this evaluation, a performance comparison of the configurations was made, and a recommendation of mirror configuration is the final output. These evaluations, comparisons and recommendations are discussed in detail. Other investigations were completed and are documented in the appendices.

  7. AGARD standard aeroelastic configurations for dynamic response. Candidate configuration I.-wing 445.6

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1987-01-01

    To promote the evaluation of existing and emerging unsteady aerodynamic codes and methods for applying them to aeroelastic problems, especially for the transonic range, a limited number of aerodynamic configurations and experimental dynamic response data sets are to be designated by the AGARD Structures and Materials Panel as standards for comparison. This set is a sequel to that established several years ago for comparisons of calculated and measured aerodynamic pressures and forces. This report presents the information needed to perform flutter calculations for the first candidate standard configuration for dynamic response along with the related experimental flutter data.

  8. The multiscale coarse-graining method. XI. Accurate interactions based on the centers of charge of coarse-grained sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zhen; Voth, Gregory A., E-mail: gavoth@uchicago.edu

    It is essential to be able to systematically construct coarse-grained (CG) models that can efficiently and accurately reproduce key properties of higher-resolution models such as all-atom. To fulfill this goal, a mapping operator is needed to transform the higher-resolution configuration to a CG configuration. Certain mapping operators, however, may lose information related to the underlying electrostatic properties. In this paper, a new mapping operator based on the centers of charge of CG sites is proposed to address this issue. Four example systems are chosen to demonstrate this concept. Within the multiscale coarse-graining framework, CG models that use this mapping operatormore » are found to better reproduce the structural correlations of atomistic models. The present work also demonstrates the flexibility of the mapping operator and the robustness of the force matching method. For instance, important functional groups can be isolated and emphasized in the CG model.« less

  9. Compiling for Application Specific Computational Acceleration in Reconfigurable Architectures Final Report CRADA No. TSB-2033-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Supinski, B.; Caliga, D.

    2017-09-28

    The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.

  10. High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites.

    PubMed

    Haxton, Thomas K

    2015-03-10

    We introduce a method to bring nearly atomistic resolution to coarse-grained models, and we apply the method to proteins. Using a small number of coarse-grained sites (about one per eight atoms) but assigning an independent three-dimensional orientation to each site, we preferentially integrate out stiff degrees of freedom (bond lengths and angles, as well as dihedral angles in rings) that are accurately approximated by their average values, while retaining soft degrees of freedom (unconstrained dihedral angles) mostly responsible for conformational variability. We demonstrate that our scheme retains nearly atomistic resolution by mapping all experimental protein configurations in the Protein Data Bank onto coarse-grained configurations and then analytically backmapping those configurations back to all-atom configurations. This roundtrip mapping throws away all information associated with the eliminated (stiff) degrees of freedom except for their average values, which we use to construct optimal backmapping functions. Despite the 4:1 reduction in the number of degrees of freedom, we find that heavy atoms move only 0.051 Å on average during the roundtrip mapping, while hydrogens move 0.179 Å on average, an unprecedented combination of efficiency and accuracy among coarse-grained protein models. We discuss the advantages of such a high-resolution model for parametrizing effective interactions and accurately calculating observables through direct or multiscale simulations.

  11. Pore configuration landscape of granular crystallization.

    PubMed

    Saadatfar, M; Takeuchi, H; Robins, V; Francois, N; Hiraoka, Y

    2017-05-12

    Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.

  12. Pore configuration landscape of granular crystallization

    PubMed Central

    Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.

    2017-01-01

    Uncovering grain-scale mechanisms that underlie the disorder–order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics. PMID:28497794

  13. Pore configuration landscape of granular crystallization

    NASA Astrophysics Data System (ADS)

    Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.

    2017-05-01

    Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.

  14. Aerodynamic shape optimization of wing and wing-body configurations using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.

  15. Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with the surrounding arrangements of electrodes.

    PubMed

    Risco, C; Rubí-Juárez, H; Rodrigo, S; López-Vizcaíno, R; Saez, C; Cañizares, P; Barrera-Díaz, C; Navarro, V; Rodrigo, M A

    2016-07-15

    This work reports the results of a study in which the remediation of soil that undergoes an accidental discharge of oxyfluorfen is carried out by using electrokinetic soil flushing (EKSF). Two different electrode configurations were tested, consisting of several electrodes surrounding an electrode of different polarity (so-called 1A6C, one anode surrounded by six cathodes, and 1C6A, one cathode surrounded by six cathodes). A pilot plant scale was used (with a soil volume of 175dm(3)) to perform the studies. During the tests, different parameters were measured daily (flowrates, pH, electrical conductivity and herbicide concentration in different sampling positions). Furthermore, at the end of the test, a complete post-mortem analysis was carried out to obtain a 3-D map of the pollution, pH and electrical conductivity in the soil. The results demonstrate that electrode arrangement is a key factor for effective pollutant removal. In fact, the 1A6C configuration improves the removal rate by 41.3% versus the 27.0% obtained by the 1C6A configuration after a period of 35days. Finally, a bench mark comparison of this study of soil remediation polluted with 2,4-D allows for significant conclusions about the scale-up and full-scale application of this technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    ERIC Educational Resources Information Center

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  17. Human Exploration of Earth's Neighborhood and Mars

    NASA Technical Reports Server (NTRS)

    Condon, Gerald

    2003-01-01

    The presentation examines Mars landing scenarios, Earth to Moon transfers comparing direct vs. via libration points. Lunar transfer/orbit diagrams, comparison of opposition class and conjunction class missions, and artificial gravity for human exploration missions. Slides related to Mars landing scenarios include: mission scenario; direct entry landing locations; 2005 opportunity - Type 1; Earth-mars superior conjunction; Lander latitude accessibility; Low thrust - Earth return phase; SEP Earth return sequence; Missions - 200, 2007, 2009; and Mission map. Slides related to Earth to Moon transfers (direct vs. via libration points (L1, L2) include libration point missions, expeditionary vs. evolutionary, Earth-Moon L1 - gateway for lunar surface operations, and Lunar mission libration point vs. lunar orbit rendezvous (LOR). Slides related to lunar transfer/orbit diagrams include: trans-lunar trajectory from ISS parking orbit, trans-Earth trajectories, parking orbit considerations, and landing latitude restrictions. Slides related to comparison of opposition class (short-stay) and conjunction class (long-stay) missions for human exploration of Mars include: Mars mission planning, Earth-Mars orbital characteristics, delta-V variations, and Mars mission duration comparison. Slides related to artificial gravity for human exploration missions include: current configuration, NEP thruster location trades, minor axis rotation, and example load paths.

  18. Bäcklund transformations for harmonic maps in two independent variables

    NASA Astrophysics Data System (ADS)

    Başkal, S.; Eriş, A.

    1994-06-01

    Bäcklund transformations for harmonic maps are described as the action of the structure group on harmonic one-forms or as gauge transformations of the soliton connection constructed via embedding the configuration manifold into a flat space. As an illustration, Bäcklund transformations for maps from M 2 to the Poincaré upper half-plane and for maps determining stationary vacuum gravitational fields with axial symmetry are obtained.

  19. Allinea Parallel Profiling and Debugging Tools on the Peregrine System |

    Science.gov Websites

    client for your platform. (Mac/Windows/Linux) Configuration to connect to Peregrine: Open the Allinea view it # directly through x11 forwarding just type 'map', # it will open a GUI. $ map # to profile an enable x-forwarding when connecting to # Peregrine. $ map # This will open the GUI Debugging using

  20. Mapping uncharted territory in ice from zeolite networks to ice structures.

    PubMed

    Engel, Edgar A; Anelli, Andrea; Ceriotti, Michele; Pickard, Chris J; Needs, Richard J

    2018-06-05

    Ice is one of the most extensively studied condensed matter systems. Yet, both experimentally and theoretically several new phases have been discovered over the last years. Here we report a large-scale density-functional-theory study of the configuration space of water ice. We geometry optimise 74,963 ice structures, which are selected and constructed from over five million tetrahedral networks listed in the databases of Treacy, Deem, and the International Zeolite Association. All prior knowledge of ice is set aside and we introduce "generalised convex hulls" to identify configurations stabilised by appropriate thermodynamic constraints. We thereby rediscover all known phases (I-XVII, i, 0 and the quartz phase) except the metastable ice IV. Crucially, we also find promising candidates for ices XVIII through LI. Using the "sketch-map" dimensionality-reduction algorithm we construct an a priori, navigable map of configuration space, which reproduces similarity relations between structures and highlights the novel candidates. By relating the known phases to the tractably small, yet structurally diverse set of synthesisable candidate structures, we provide an excellent starting point for identifying formation pathways.

  1. An Adaptive Scheme for Robot Localization and Mapping with Dynamically Configurable Inter-Beacon Range Measurements

    PubMed Central

    Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal

    2014-01-01

    This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption. PMID:24776938

  2. An adaptive scheme for robot localization and mapping with dynamically configurable inter-beacon range measurements.

    PubMed

    Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal

    2014-04-25

    This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption.

  3. Metrics for comparison of crystallographic maps

    DOE PAGES

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; ...

    2014-10-01

    Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less

  4. Validation of projective mapping as potential sensory screening tool for application by the honeybush herbal tea industry.

    PubMed

    Moelich, Erika Ilette; Muller, Magdalena; Joubert, Elizabeth; Næs, Tormod; Kidd, Martin

    2017-09-01

    Honeybush herbal tea is produced from the endemic South African Cyclopia species. Plant material subjected to a high-temperature oxidation step ("fermentation") forms the bulk of production. Production lags behind demand forcing tea merchants to use blends of available material to supply local and international markets. The distinct differences in the sensory profiles of the herbal tea produced from the different Cyclopia species require that special care is given to blending to ensure a consistent, high quality product. Although conventional descriptive sensory analysis (DSA) is highly effective in providing a detailed sensory profile of herbal tea infusions, industry requires a method that is more time- and cost-effective. Recent advances in sensory science have led to the development of rapid profiling methodologies. The question is whether projective mapping can successfully be used for the sensory characterisation of herbal tea infusions. Trained assessors performed global and partial projective mapping to determine the validity of this technique for the sensory characterisation of infusions of five Cyclopia species. Similar product configurations were obtained when comparing results of DSA and global and partial projective mapping. Comparison of replicate sessions showed RV coefficients >0.8. A similarity index, based on multifactor analysis, was calculated to determine assessor repeatability. Global projective mapping, demonstrated to be a valid method for providing a broad sensory characterisation of Cyclopia species, is thus suitable as a rapid quality control method of honeybush infusions. Its application by the honeybush industry could improve the consistency of the sensory profile of blended products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Comparison of the Unpressurized Rover and Small Pressurized Rover During a Desert Field Evaluation

    NASA Technical Reports Server (NTRS)

    Litaker, Harry; Thompson, Shelby; Howard, Robert

    2009-01-01

    To effectively explore the lunar surface, astronauts will need a transportation vehicle which can traverse all types of terrain. Currently, the National Aeronautics and Space Administration s (NASA) is investigating two lunar rover configurations to meet such a requirement. Under the Lunar Electric Rover (LER) project, a comparison study between the unpressurized rover (UPR) and the small pressurized rover (SPR) was conducted at the Black Point Lava Flow in Arizona. The objective of the study was to obtain human-in-the-loop performance data on the vehicles with respect to human-machine interfaces, vehicle impacts on crew productivity, and scientific observations. Four male participants took part in four, one-day field tests using the exact same terrain and scientific sites for an accurate comparison between vehicle configurations. Subjective data was collected using several human factors performance measures. Results indicate either vehicle configuration was generally acceptable for a lunar mission; however, the SPR configuration was preferred over the UPR configuration primarily for the SPR s ability to cause less fatigue and enabling greater crew productivity.

  6. Comparing physiographic maps with different categorisations

    NASA Astrophysics Data System (ADS)

    Zawadzka, J.; Mayr, T.; Bellamy, P.; Corstanje, R.

    2015-02-01

    This paper addresses the need for a robust map comparison method suitable for finding similarities between thematic maps with different forms of categorisations. In our case, the requirement was to establish the information content of newly derived physiographic maps with regards to set of reference maps for a study area in England and Wales. Physiographic maps were derived from the 90 m resolution SRTM DEM, using a suite of existing and new digital landform mapping methods with the overarching purpose of enhancing the physiographic unit component of the Soil and Terrain database (SOTER). Reference maps were seven soil and landscape datasets mapped at scales ranging from 1:200,000 to 1:5,000,000. A review of commonly used statistical methods for categorical comparisons was performed and of these, the Cramer's V statistic was identified as the most appropriate for comparison of maps with different legends. Interpretation of multiple Cramer's V values resulting from one-by-one comparisons of the physiographic and baseline maps was facilitated by multi-dimensional scaling and calculation of average distances between the maps. The method allowed for finding similarities and dissimilarities amongst physiographic maps and baseline maps and informed the recommendation of the most suitable methodology for terrain analysis in the context of soil mapping.

  7. On applications of chimera grid schemes to store separation

    NASA Technical Reports Server (NTRS)

    Cougherty, F. C.; Benek, J. A.; Steger, J. L.

    1985-01-01

    A finite difference scheme which uses multiple overset meshes to simulate the aerodynamics of aircraft/store interaction and store separation is described. In this chimera, or multiple mesh, scheme, a complex configuration is mapped using a major grid about the main component of the configuration, and minor overset meshes are used to map each additional component such as a store. As a first step in modeling the aerodynamics of store separation, two dimensional inviscid flow calculations were carried out in which one of the minor meshes is allowed to move with respect to the major grid. Solutions of calibrated two dimensional problems indicate that allowing one mesh to move with respect to another does not adversely affect the time accuracy of an unsteady solution. Steady, inviscid three dimensional computations demonstrate the capability to simulate complex configurations, including closely packed multiple bodies.

  8. Innovation Configurations, Volume III: School-Based Staff Developers

    ERIC Educational Resources Information Center

    Killion, Joellen; Harrison, Cindy

    2007-01-01

    An Innovation Configuration (IC) map identifies and describes the major components of a new practice such as NSDC's standards and details how it would look in practice. NSDC's ICs are detailed by contexts and professional roles. This CD-ROM focuses on the role of school-based staff developers.

  9. Using sketch-map coordinates to analyze and bias molecular dynamics simulations

    PubMed Central

    Tribello, Gareth A.; Ceriotti, Michele; Parrinello, Michele

    2012-01-01

    When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about the process of interest, serve this purpose. Because finding these CVs is the most difficult part of any investigation, we recently developed a dimensionality reduction algorithm, sketch-map, that can be used to build a low-dimensional map of a phase space of high-dimensionality. In this paper we discuss how these machine-generated CVs can be used to accelerate the exploration of phase space and to reconstruct free-energy landscapes. To do so, we develop a formalism in which high-dimensional configurations are no longer represented by low-dimensional position vectors. Instead, for each configuration we calculate a probability distribution, which has a domain that encompasses the entirety of the low-dimensional space. To construct a biasing potential, we exploit an analogy with metadynamics and use the trajectory to adaptively construct a repulsive, history-dependent bias from the distributions that correspond to the previously visited configurations. This potential forces the system to explore more of phase space by making it desirable to adopt configurations whose distributions do not overlap with the bias. We apply this algorithm to a small model protein and succeed in reproducing the free-energy surface that we obtain from a parallel tempering calculation. PMID:22427357

  10. Place mapping and the role of spatial scale in understanding landowner views of fire and fuels management

    Treesearch

    Michael A. Cacciapaglia; Laurie Yung; Michael E. Patterson

    2011-01-01

    Place mapping is emerging as a way to understand the spatial components of people's relationships with particular locations and how these relate to support for management proposals. But despite the spatial focus of place mapping, scale is rarely explicitly examined in such exercises. This is particularly problematic since scalar definitions and configurations have...

  11. A Computational/Experimental Study of Two Optimized Supersonic Transport Designs and the Reference H Baseline

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Hicks, Raymond M.; Reuther, James J.

    1999-01-01

    Two supersonic transport configurations designed by use of non-linear aerodynamic optimization methods are compared with a linearly designed baseline configuration. One optimized configuration, designated Ames 7-04, was designed at NASA Ames Research Center using an Euler flow solver, and the other, designated Boeing W27, was designed at Boeing using a full-potential method. The two optimized configurations and the baseline were tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel to evaluate the non-linear design optimization methodologies. In addition, the experimental results are compared with computational predictions for each of the three configurations from the Enter flow solver, AIRPLANE. The computational and experimental results both indicate moderate to substantial performance gains for the optimized configurations over the baseline configuration. The computed performance changes with and without diverters and nacelles were in excellent agreement with experiment for all three models. Comparisons of the computational and experimental cruise drag increments for the optimized configurations relative to the baseline show excellent agreement for the model designed by the Euler method, but poorer comparisons were found for the configuration designed by the full-potential code.

  12. AGARD standard aeroelastic configurations for dynamic response. 1: Wing 445.6

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1988-01-01

    This report contains experimental flutter data for the AGARD 3-D swept tapered standard configuration Wing 445.6, along with related descriptive data of the model properties required for comparative flutter calculations. As part of a cooperative AGARD-SMP program, guided by the Sub-Committee on Aeroelasticity, this standard configuration may serve as a common basis for comparison of calculated and measured aeroelastic behavior. These comparisons will promote a better understanding of the assumptions, approximations and limitations underlying the various aerodynamic methods applied, thus pointing the way to further improvements.

  13. A comparison of arrow, trapezoidal and M wing concepts using a Mach 2 supersonic cruise transport mission

    NASA Technical Reports Server (NTRS)

    Martin, Glenn L.; Tice, David C.; Marcum, Don C., Jr.; Seidel, Jonathan A.

    1991-01-01

    The present analytic study of the potential performance of SST configurations radically differing from arrow-winged designs in lifting surface planform geometry gives attention to trapezoidal-wing and M-wing configurations; the trapezoidal wing is used as the baseline in the performance comparisons. The design mission was all-supersonic (Mach 2), carrying 248 passengers over a 5500 nautical-mile range. Design constraints encompassed approach speed, TO&L field length, and engine-out second-segment climb and missed-approach performance. Techniques for improving these configurations are discussed.

  14. Three-dimensional scrape off layer transport in the helically symmetric experiment HSX

    NASA Astrophysics Data System (ADS)

    Akerson, A. R.; Bader, A.; Hegna, C. C.; Schmitz, O.; Stephey, L. A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.

    2016-08-01

    The edge topology of helically symmetric experiment (HSX) in the quasi-helically symmetric configuration is characterized by an 8/7 magnetic island remnant embedded in a short connection length scrape-off layer (SOL) domain. A 2D mapping of edge plasma profiles within this heterogeneous SOL has been constructed using a movable, multi-pin Langmuir probe. Comparisons of these measurements to edge simulations using the EMC3-EIRENE 3D plasma fluid and kinetic neutral gas transport model have been performed. The measurements provide strong evidence that particle transport is diffusive within the island region and dominantly convective in the SOL region. Measurements indicate that phenomenological cross-field diffusion coefficients are low in the SOL region between the last closed flux surface and edge island (i.e. {{D}\\bot}≈ 0.03 m2 s-1). This level of transport was found to increase by a factor of two when a limiter is inserted almost completely into the magnetic island. A reduction in gradients of the edge electrostatic plasma potential was also measured in this configuration, suggesting that the reduced electric field may be linked to the increased cross-field transport observed.

  15. Attention Priority Map of Face Images in Human Early Visual Cortex.

    PubMed

    Mo, Ce; He, Dongjun; Fang, Fang

    2018-01-03

    Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1) and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modulated, not only by physical salience and task-goal relevance, but also by the configuration of stimuli images. Copyright © 2018 the authors 0270-6474/18/380149-09$15.00/0.

  16. A parametric study of various synthetic aperture telescope configurations for coherent imaging applications

    NASA Technical Reports Server (NTRS)

    Harvey, James E.; Wissinger, Alan B.; Bunner, Alan N.

    1986-01-01

    The comparative advantages of synthetic aperture telescopes (SATs) of segmented primary mirror and common secondary mirror type, on the one hand, and on the other those employing an array of independent telescopes, are discussed. The diffraction-limited optical performance of both redundant and nonredundant subaperture configurations are compared in terms of point spread function characteristics and encircled energy plots. Coherent imaging with afocal telescope SATs involves a pupil-mapping operation followed by a Fourier transform one. A quantitative analysis of the off-axis optical performance degradation due to pupil-mapping errors is presented, together with the field-dependent effects of residual design aberrations of independent telescopes.

  17. Using Neural Networks in the Mapping of Mixed Discrete/Continuous Design Spaces With Application to Structural Design

    DTIC Science & Technology

    1994-02-01

    desired that the problem to which the design space mapping techniques were applied be easily analyzed, yet provide a design space with realistic complexity...consistent fully stressed solution. 3 DESIGN SPACE MAPPING In order to reduce the computational expense required to optimize design spaces, neural networks...employed in this study. Some of the issues involved in using neural networks to do design space mapping are how to configure the neural network, how much

  18. Development of Map Construction Skills in Childhood

    ERIC Educational Resources Information Center

    Hirsch, Pamela L.; Sandberg, Elisabeth Hollister

    2013-01-01

    Two studies examined children's map construction skills when drawing demands were removed from the task and scenes were highly simplified. Study 1 compared the performance of first graders and third graders on their ability to preserve configuration during transformation of pictured arrays from eye-level to aerial views. For children with…

  19. Methodology and method and apparatus for signaling with capacity optimized constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2011-01-01

    Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.

  20. Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.).

    PubMed

    Ross, Caitlin R; DeFelice, Dominick S; Hunt, Greg J; Ihle, Kate E; Amdam, Gro V; Rueppell, Olav

    2015-02-21

    Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid. Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides. The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

  1. Supersonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1976-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 1.54 to 2.50 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using a state-of-the-art inviscid flow, constant-pressure-panel method. Emphasis was on conditions under which this theory is valid for both flat and twisted wings.

  2. Transonic pressure measurements and comparison of theory to experiment for three arrow-wing configurations

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1982-01-01

    Wind tunnel tests of arrow-wing body configurations consisting of flat, twisted, and cambered twisted wings, as well as a variety of leading and trailing edge control surface deflections, were conducted at Mach numbers from 0.4 to 1.05 to provide an experimental pressure data base for comparison with theoretical methods. Theory to experiment comparisons of detailed pressure distributions were made using state of the art attached flow methods. Conditions under which these theories are valid for these wings are presented.

  3. Spatial configuration and distribution of forest patches in Champaign County, Illinois: 1940 to 1993

    Treesearch

    J. Danilo Chinea

    1997-01-01

    Spatial configuration and distribution of landscape elements have implications for the dynamics of forest ecosystems, and, therefore, for the management of these resources. The forest cover of Champaign County, in east-central Illinois, was mapped from 1940 and 1993 aerial photography and entered in a geographical information system database. In 1940, 208 forest...

  4. Moving NSDC's Staff Development Standards into Practice: Innovation Configurations. Volume I

    ERIC Educational Resources Information Center

    National Staff Development Council, 2003

    2003-01-01

    NSDC's groundbreaking work in developing standards for staff development has now been joined by an equally important book that spells out exactly how those standards would look if they were being implemented by school districts. An Innovation Configuration map is a device that identifies and describes the major components of a new practice--in…

  5. EnviroAtlas - Austin, TX - Tree Cover Configuration and Connectivity, Water Background Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The EnviroAtlas Austin, TX tree cover configuration and connectivity map categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). In this community, Forest is defined as Trees & Forest (Trees & Forest - 40 = 1; All Else = 0). Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. Modelling sodium cobaltate by mapping onto magnetic Ising model

    NASA Astrophysics Data System (ADS)

    Gemperline, Patrick; Morris, David Jonathan Pryce

    Fast Ion conductors are a class of crystals that are frequently used as battery materials, especially in smart phones, laptops, and other portable devices. Sodium Cobalt Oxide, NaxCoO2, falls into this class of crystals, but is unique because it possesses the ability to act as a thermoelectric material and a superconductor at different concentrations of Na+. The crystal lattice is mapped onto an Ising Magnetic Spin model and a Monte-Carol Simulation is used to find the most energetically favorable configuration of spins. This spin configuration is mapped back to the crystal lattice resulting in the most stable crystal structure of Sodium Cobalt Oxide at various concentrations. Knowing the atomic structures of the crystals will aid in the research of the materials capabilities and the possible uses of the material commercially. Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. Columbus OH: Ohio Supercomputer Center. and the John Hauck Foundation.

  7. Computer controlled performance mapping of thermionic converters: effect of collector, guard-ring potential imbalances on the observed collector current-density, voltage characteristics and limited range performance map of an etched-rhenium, niobium planar converter

    NASA Technical Reports Server (NTRS)

    Manista, E. J.

    1972-01-01

    The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.

  8. Configuration selection for a 450-passenger ultraefficient 2020 aircraft

    NASA Astrophysics Data System (ADS)

    Paulus, D.; Salmon, T.; Mohr, B.; Roessler, C.; Petersson, Ӧ.; Stroscher, F.; Baier, H.; Hornung, M.

    2013-12-01

    This paper describes the configuration selection process in the FP7 project ACFA (Active Control for Flexible Aircraft) 2020 in view of the Advisory Council for Aeronautics Research in Europe (ACARE) aims. The design process challenges and the comparison of a blended wing body (BWB) aircraft with a wide body carry-through wing box (CWB) configuration are described in detail. Furthermore, the interactions between the conceptual design and structural design using multidisciplinary design optimization (MDO) to rapidly generate and adapt structural models to design changes and provide early feedback of mass and center of gravity values for these nontraditional configurations are discussed. Comparison of the two concepts determined that the developed all-lifting BWB airframe has the potential for a significant reduced fuel consumption compared to the CWB.

  9. Computational and experimental aftbody flow fields for hypersonic, airbreathing configurations with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1991-01-01

    Computational results are presented for three issues pertinent to hypersonic, airbreathing vehicles employing scramjet exhaust flow simulation. The first issue consists of a comparison of schlieren photographs obtained on the aftbody of a cruise missile configuration under powered conditions with two-dimensional computational solutions. The second issue presents the powered aftbody effects of modeling the inlet with a fairing to divert the external flow as compared to an operating flow-through inlet on a generic hypersonic vehicle. Finally, a comparison of solutions examining the potential of testing powered configurations in a wind-off, instead of a wind-on, environment, indicate that, depending on the extent of the three-dimensional plume, it may be possible to test aftbody powered hypersonic, airbreathing configurations in a wind-off environment.

  10. Comparison of results of an obstacle resolving microscale model with wind tunnel data

    NASA Astrophysics Data System (ADS)

    Grawe, David; Schlünzen, K. Heinke; Pascheke, Frauke

    2013-11-01

    The microscale transport and stream model MITRAS has been improved and a new technique has been implemented to improve numerical stability for complex obstacle configurations. Results of the updated version have been compared with wind tunnel data using an evaluation method that has been established for simple obstacle configurations. MITRAS is a part of the M-SYS model system for the assessment of ambient air quality. A comparison of model results for the flow field against quality ensured wind tunnel data has been carried out for both idealised and realistic test cases. Results of the comparison show a very good agreement of the wind field for most test cases and identify areas of possible improvement of the model. The evaluated MITRAS results can be used as input data for the M-SYS microscale chemistry model MICTM. This paper describes how such a comparison can be carried out for simple as well as realistic obstacle configurations and what difficulties arise.

  11. Map showing the altitude and configuration of the water level in the shallow aquifer, January 1975, Roswell Basin, Chaves and Eddy counties, New Mexico

    USGS Publications Warehouse

    Welder, G.E.

    1977-01-01

    The altitude and gradient of the water table in the ' shallow aquifer ' of the Roswell basin in Chaves and Eddy Counties, New Mexico, for January 1975 is shown on a map, scale of 1/2-inch per mile. The map was prepared by the U.S. Geological Survey in cooperation with the New Mexico State Engineer Office. (Woodard-USGS)

  12. Map showing the altitude and configuration of the water level in the shallow aquifer, January 1964, Roswell Basin, Chaves and Eddy counties, New Mexico

    USGS Publications Warehouse

    Welder, G.E.

    1977-01-01

    The altitude and gradient of the water table in the ' shallow aquifer ' of the Roswell basin in Chaves and Eddy Counties, New Mexico, for January 1964 is shown on a map, scale of 1/2-inch per mile. The map was prepared by the U.S. Geological Survey in cooperation with the New Mexico State Engineer Office. (Woodard-USGS)

  13. High Resolution IRAS Maps and IR Emission of M31 -- II. Diffuse Component and Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Xu, C.; Helou, G.

    1995-01-01

    Large-scale dust heating and cooling in the diffuse medium of M31 is studied using the high resolution (HiRes) IRAS maps in conjunction with UV, optical (UBV), and the HI maps. A dust heating/cooling model is developed based on a radiative transfer model which assumes a 'Sandwich' configuration of dust and stars takes account of the effect of dust grain scattering.

  14. MAP-Motivated Carrier Synchronization of GMSK Based on the Laurent AMP Representation

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1998-01-01

    Using the MAP estimation approach to carrier synchronization of digital modulations containing ISI together with a two pulse stream AMP representation of GMSK, it is possible to obtain an optimum closed loop configuration in the same manner as has been previously proposed for other conventional modulations with ISI.

  15. ANSI/ASAE S422.1 DEC2015: Mapping symbols and nomenclature for erosion and sediment control plans for land disturbing activities

    USDA-ARS?s Scientific Manuscript database

    Erosion and sediment control plans are implemented across a broad range of land disturbing situations and intensities, and may differ depending on the needs and configurations, both spatial and temporal, of the individual situations. Maintaining consistency in definition, mapping symbol, and nomencl...

  16. Loop Quantization and Symmetry: Configuration Spaces

    NASA Astrophysics Data System (ADS)

    Fleischhack, Christian

    2018-06-01

    Given two sets S 1, S 2 and unital C *-algebras A_1, A_2 of functions thereon, we show that a map {σ : {S}_1 \\longrightarrow {S}_2} can be lifted to a continuous map \\barσ : spec A_1 \\longrightarrow spec A_2 iff σ^\\ast A_2 := σ^\\ast f | f \\in A_2 \\subseteq A_1. Moreover, \\bar σ is unique if existing, and injective iff σ^\\ast A_2 is dense. Then, we apply these results to loop quantum gravity and loop quantum cosmology. For all usual technical conventions, we decide whether the cosmological quantum configuration space is embedded into the gravitational one; indeed, both are spectra of some C *-algebras, say, A_cosm and A_grav, respectively. Typically, there is no embedding, but one can always get an embedding by the defining A_cosm := C^\\ast(σ^\\ast A_grav), where {σ} denotes the embedding between the classical configuration spaces. Finally, we explicitly determine {C^\\ast(σ^\\ast A_grav) in the homogeneous isotropic case for A_grav generated by the matrix functions of parallel transports along analytic paths. The cosmological quantum configuration space so equals the disjoint union of R and the Bohr compactification of R, appropriately glued together.

  17. Loop Quantization and Symmetry: Configuration Spaces

    NASA Astrophysics Data System (ADS)

    Fleischhack, Christian

    2018-04-01

    Given two sets S 1, S 2 and unital C *-algebras A_1, A_2 of functions thereon, we show that a map σ : S_1 \\longrightarrow S_2 can be lifted to a continuous map \\barσ : spec A_1 \\longrightarrow spec A_2 iff σ^\\ast A_2 := σ^\\ast f | f \\in A_2 \\subseteq A_1. Moreover, \\bar σ is unique if existing, and injective iff {σ^\\ast A_2 is dense. Then, we apply these results to loop quantum gravity and loop quantum cosmology. For all usual technical conventions, we decide whether the cosmological quantum configuration space is embedded into the gravitational one; indeed, both are spectra of some C *-algebras, say, A_cosm and A_grav, respectively. Typically, there is no embedding, but one can always get an embedding by the defining A_cosm := C^\\ast(σ^\\ast A_grav), where σ denotes the embedding between the classical configuration spaces. Finally, we explicitly determine C^\\ast(σ^\\ast A_grav) in the homogeneous isotropic case for A_grav generated by the matrix functions of parallel transports along analytic paths. The cosmological quantum configuration space so equals the disjoint union of R and the Bohr compactification of R , appropriately glued together.

  18. Comparison and quantitative verification of mapping algorithms for whole genome bisulfite sequencing

    USDA-ARS?s Scientific Manuscript database

    Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitat...

  19. A feasibility study: California Department of Forestry and Fire Protection utilization of infrared technologies for wildland fire suppression and management

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Britten, R. A.; Parks, G. S.; Voss, J. M.

    1990-01-01

    NASA's JPL has completed a feasibility study using infrared technologies for wildland fire suppression and management. The study surveyed user needs, examined available technologies, matched the user needs with technologies, and defined an integrated infrared wildland fire mapping concept system configuration. System component trade-offs were presented for evaluation in the concept system configuration. The economic benefits of using infrared technologies in fire suppression and management were examined. Follow-on concept system configuration development and implementation were proposed.

  20. Perpetual factors involved in performance of air traffic controllers using a microwave landing system

    NASA Technical Reports Server (NTRS)

    Gershzohn, G.

    1978-01-01

    The task involved the control of two simulated aircraft targets per trial, in a 37.0 -km radius terminal area, by means of conventional radar vectoring and/or speed control. The goal was to insure that the two targets crossed the Missed Approach Point (MAP) at the runway threshold exactly 60 sec apart. The effects on controller performance of the MLS configuration under wind and no-wind conditions were examined. The data for mean separation time between targets at the MAP and the range about that mean were analyzed by appropriate analyses of variance. Significant effects were found for mean separation times as a result of the configuration of the MLS and for interaction between the configuration and wind conditions. The analysis of variance for range indicated significantly poorer performance under the wind condition. These findings are believed to be a result of certain perceptual factors involved in radar air traffic control (ATC) using the MLS with separation of targets in time.

  1. Data Access System for Hydrology

    NASA Astrophysics Data System (ADS)

    Whitenack, T.; Zaslavsky, I.; Valentine, D.; Djokic, D.

    2007-12-01

    As part of the CUAHSI HIS (Consortium of Universities for the Advancement of Hydrologic Science, Inc., Hydrologic Information System), the CUAHSI HIS team has developed Data Access System for Hydrology or DASH. DASH is based on commercial off the shelf technology, which has been developed in conjunction with a commercial partner, ESRI. DASH is a web-based user interface, developed in ASP.NET developed using ESRI ArcGIS Server 9.2 that represents a mapping, querying and data retrieval interface over observation and GIS databases, and web services. This is the front end application for the CUAHSI Hydrologic Information System Server. The HIS Server is a software stack that organizes observation databases, geographic data layers, data importing and management tools, and online user interfaces such as the DASH application, into a flexible multi- tier application for serving both national-level and locally-maintained observation data. The user interface of the DASH web application allows online users to query observation networks by location and attributes, selecting stations in a user-specified area where a particular variable was measured during a given time interval. Once one or more stations and variables are selected, the user can retrieve and download the observation data for further off-line analysis. The DASH application is highly configurable. The mapping interface can be configured to display map services from multiple sources in multiple formats, including ArcGIS Server, ArcIMS, and WMS. The observation network data is configured in an XML file where you specify the network's web service location and its corresponding map layer. Upon initial deployment, two national level observation networks (USGS NWIS daily values and USGS NWIS Instantaneous values) are already pre-configured. There is also an optional login page which can be used to restrict access as well as providing a alternative to immediate downloads. For large request, users would be notified via email with a link to their data when it is ready.

  2. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species

    NASA Astrophysics Data System (ADS)

    Madonsela, Sabelo; Cho, Moses Azong; Mathieu, Renaud; Mutanga, Onisimo; Ramoelo, Abel; Kaszta, Żaneta; Kerchove, Ruben Van De; Wolff, Eléonore

    2017-06-01

    Biodiversity mapping in African savannah is important for monitoring changes and ensuring sustainable use of ecosystem resources. Biodiversity mapping can benefit from multi-spectral instruments such as WorldView-2 with very high spatial resolution and a spectral configuration encompassing important spectral regions not previously available for vegetation mapping. This study investigated i) the benefits of the eight-band WorldView-2 (WV-2) spectral configuration for discriminating tree species in Southern African savannah and ii) if multiple-images acquired at key points of the typical phenological development of savannahs (peak productivity, transition to senescence) improve on tree species classifications. We first assessed the discriminatory power of WV-2 bands using interspecies-Spectral Angle Mapper (SAM) via Band Add-On procedure and tested the spectral capability of WorldView-2 against simulated IKONOS for tree species classification. The results from interspecies-SAM procedure identified the yellow and red bands as the most statistically significant bands (p = 0.000251 and p = 0.000039 respectively) in the discriminatory power of WV-2 during the transition from wet to dry season (April). Using Random Forest classifier, the classification scenarios investigated showed that i) the 8-bands of the WV-2 sensor achieved higher classification accuracy for the April date (transition from wet to dry season, senescence) compared to the March date (peak productivity season) ii) the WV-2 spectral configuration systematically outperformed the IKONOS sensor spectral configuration and iii) the multi-temporal approach (March and April combined) improved the discrimination of tress species and produced the highest overall accuracy results at 80.4%. Consistent with the interspecies-SAM procedure, the yellow (605 nm) band also showed a statistically significant contribution in the improved classification accuracy from WV-2. These results highlight the mapping opportunities presented by WV-2 data for monitoring the distribution status of e.g. species often harvested by local communities (e.g. Sclerocharya birrea), encroaching species, or species-specific tree losses induced by elephants.

  3. Objects and mappings: incompatible principles of display design - a critique of Marino and Mahan.

    PubMed

    Bennett, Kevin B

    2005-01-01

    Representation aiding (and similar approaches that share the general orientation) has a great deal of utility, predictive ability, and explanatory power. Marino and Mahan (2005) discuss principles that are critical to the RA approach (configurality, emergent features, and mappings) in a reasonable fashion. However, the application of these principles is far from reasonable. The authors explicitly realize the potential for interactions between nutrients: "The nutritional quality of a food product is a multidimensional concept, and higher order interactions between nutrients may exist" (p. 126). However, they made no effort to discover the nature of these interactions: "No attempt was made to identify contingent interactions between nutrients" (p. 126). Despite not knowing the nature of the interactions between nutrients, they purposely chose a highly configural display that produced numerous emergent features dependent upon these interactions: "A radial spoke display was selected because of the strong configural properties of such display formats (Bennett & Flach, 1992)" (p. 124). Finally, the authors show apparent disdain for the specific mappings among domain, agent, and display that are fundamental to the RA approach: "[O]ther configural display formats could have been used" (p. 124). It is impossible to reconcile these statements and the RA approach to display design. However, these statements make perfect sense if a perceptual object is a guiding principle in one's approach to display design. Marino and Mahan (2005) draw heavily upon the principle of a perceptual object in their design justifications, experimental predictions, and interpretations of results. As we have indicated here and elsewhere (Bennett & Flach, 1992), we believe that these two sets of organizing principles for display design (i.e., objects and mappings) are incompatible. Display design will never be an exact science; there will always be elements of art and creativity. However, the guiding principles have moved well beyond the simple strategy of throwing variables into a geometric object format and relying upon the human agent's powerful perceptual systems to carry the design.

  4. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  5. Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes.

    PubMed

    Srinivasachary; Dida, Mathews M; Gale, Mike D; Devos, Katrien M

    2007-08-01

    Finger millet is an allotetraploid (2n = 4x = 36) grass that belongs to the Chloridoideae subfamily. A comparative analysis has been carried out to determine the relationship of the finger millet genome with that of rice. Six of the nine finger millet homoeologous groups corresponded to a single rice chromosome each. Each of the remaining three finger millet groups were orthologous to two rice chromosomes, and in all the three cases one rice chromosome was inserted into the centromeric region of a second rice chromosome to give the finger millet chromosomal configuration. All observed rearrangements were, among the grasses, unique to finger millet and, possibly, the Chloridoideae subfamily. Gene orders between rice and finger millet were highly conserved, with rearrangements being limited largely to single marker transpositions and small putative inversions encompassing at most three markers. Only some 10% of markers mapped to non-syntenic positions in rice and finger millet and the majority of these were located in the distal 14% of chromosome arms, supporting a possible correlation between recombination and sequence evolution as has previously been observed in wheat. A comparison of the organization of finger millet, Panicoideae and Pooideae genomes relative to rice allowed us to infer putative ancestral chromosome configurations in the grasses.

  6. LANDSAT survey of near-shore ice conditions along the Arctic coast of Alaska

    NASA Technical Reports Server (NTRS)

    Stringer, W. J. (Principal Investigator); Barrett, S. A.

    1978-01-01

    The author has identified the following significant results. Winter and spring near-shore ice conditions were analyzed for the Beaufort Sea 1973-77, and the Chukchi Sea 1973-76. LANDSAT imagery was utilized to map major ice features related to regional ice morphology. Significant features from individual LANDSAT image maps were combined to yield regional maps of major ice ridge systems for each year of study and maps of flaw lead systems for representative seasons during each year. These regional maps were, in turn, used to prepare seasonal ice morphology maps. These maps showed, in terms of a zonal analysis, regions of statistically uniform ice behavior. The behavioral characteristics of each zone were described in terms of coastal processes and bathymetric configuration.

  7. Evaluating methods for controlling depth perception in stereoscopic cinematography

    NASA Astrophysics Data System (ADS)

    Sun, Geng; Holliman, Nick

    2009-02-01

    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography. We anticipate the results will be of particular interest to 3D filmmaking and real time computer games.

  8. Heat capacity mapping radiometer for AEM spacecraft

    NASA Technical Reports Server (NTRS)

    Sonnek, G. E.

    1977-01-01

    The operation, maintenance, and integration of the applications explorer mission heat capacity mapping radiometer is illustrated in block diagrams and detail schematics of circuit functions. Data format and logic timing diagrams are included along with radiometric and electronic calibration data. Mechanical and electrical configuration is presented to provide interface details for integration of the HCMR instrument to AEM spacecraft.

  9. Aggregating Concept Map Data to Investigate the Knowledge of Beginning CS Students

    ERIC Educational Resources Information Center

    Mühling, Andreas

    2016-01-01

    Concept maps have a long history in educational settings as a tool for teaching, learning, and assessing. As an assessment tool, they are predominantly used to extract the structural configuration of learners' knowledge. This article presents an investigation of the knowledge structures of a large group of beginning CS students. The investigation…

  10. Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area

    USGS Publications Warehouse

    Snyder, Daniel T.

    2008-01-01

    Reliable information on the configuration of the water table in the Portland metropolitan area is needed to address concerns about various water-resource issues, especially with regard to potential effects from stormwater injection systems such as UIC (underground injection control) systems that are either existing or planned. To help address these concerns, this report presents the estimated depth-to-water and water-table elevation maps for the Portland area, along with estimates of the relative uncertainty of the maps and seasonal water-table fluctuations. The method of analysis used to determine the water-table configuration in the Portland area relied on water-level data from shallow wells and surface-water features that are representative of the water table. However, the largest source of available well data is water-level measurements in reports filed by well constructors at the time of new well installation, but these data frequently were not representative of static water-level conditions. Depth-to-water measurements reported in well-construction records generally were shallower than measurements by the U.S. Geological Survey (USGS) in the same or nearby wells, although many depth-to-water measurements were substantially deeper than USGS measurements. Magnitudes of differences in depth-to-water measurements reported in well records and those measured by the USGS in the same or nearby wells ranged from -119 to 156 feet with a mean of the absolute value of the differences of 36 feet. One possible cause for the differences is that water levels in many wells reported in well records were not at equilibrium at the time of measurement. As a result, the analysis of the water-table configuration relied on water levels measured during the current study or used in previous USGS investigations in the Portland area. Because of the scarcity of well data in some areas, the locations of select surface-water features including major rivers, streams, lakes, wetlands, and springs representative of where the water table is at land surface were used to augment the analysis. Ground-water and surface-water data were combined for use in interpolation of the water-table configuration. Interpolation of the two representations typically used to define water-table position - depth to the water table below land surface and elevation of the water table above a datum - can produce substantially different results and may represent the end members of a spectrum of possible interpolations largely determined by the quantity of recharge and the hydraulic properties of the aquifer. Datasets of depth-to-water and water-table elevation for the current study were interpolated independently based on kriging as the method of interpolation with parameters determined through the use of semivariograms developed individually for each dataset. Resulting interpolations were then combined to create a single, averaged representation of the water-table configuration. Kriging analysis also was used to develop a map of relative uncertainty associated with the values of the water-table position. Accuracy of the depth-to-water and water-table elevation maps is dependent on various factors and assumptions pertaining to the data, the method of interpolation, and the hydrogeologic conditions of the surficial aquifers in the study area. Although the water-table configuration maps generally are representative of the conditions in the study area, the actual position of the water-table may differ from the estimated position at site-specific locations, and short-term, seasonal, and long-term variations in the differences also can be expected. The relative uncertainty map addresses some but not all possible errors associated with the analysis of the water-table configuration and does not depict all sources of uncertainty. Depth to water greater than 300 feet in the Portland area is limited to parts of the Tualatin Mountains, the foothills of the Cascade Range, and muc

  11. An Examination of One-to-One Computing in the Middle School: Does Increased Access Bring about Increased Student Engagement?

    ERIC Educational Resources Information Center

    Donovan, Loretta; Green, Tim; Hartley, Kendall

    2010-01-01

    This study explores configurations of laptop use in a one-to-one environment. Guided by methodologies of the Concerns-Based Adoption Model of change, an Innovation Configuration Map (description of the multiple ways an innovation is implemented) of a 1:1 laptop program at a middle school was developed and analyzed. Three distinct configurations…

  12. Improved spatial mapping of rainfall events with spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Brisco, B.; Dobson, C.

    1983-01-01

    The Seasat satellite acquired the first spaceborne synthetic-aperture radar (SAR) images of the earth's surface, in 1978, at a frequency of 1.275 GHz (L-band) in a like-polarization mode at incidence angles of 23 + or - 3 deg. Although this may not be the optimum system configuration for radar remote sensing of soil moisture, interpretation of two Seasat images of Iowa demonstrates the sensitivity of microwave backscatter to soil moisture content. In both scenes, increased image brightness, which represents more radar backscatter, can be related to previous rainfall activity in the two areas. Comparison of these images with ground-based rainfall observations illustrates the increased spatial coverage of the rainfall event that can be obtained from the satellite SAR data. These data can then be color-enhanced by a digital computer to produce aesthetically pleasing output products for the user community.

  13. Solar Sail Attitude Control Performance Comparison

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff J.; Lawrence, Dale A.

    2005-01-01

    Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.

  14. A comparison of tripolar concentric ring electrode and spline Laplacians on a four-layer concentric spherical model.

    PubMed

    Liu, Xiang; Makeyev, Oleksandr; Besio, Walter

    2011-01-01

    We have simulated a four-layer concentric spherical head model. We calculated the spline and tripolar Laplacian estimates and compared them to the analytical Laplacian on the spherical surface. In the simulations we used five different dipole groups and two electrode configurations. The comparison shows that the tripolar Laplacian has higher correlation coefficient to the analytical Laplacian in the electrode configurations tested (19, standard 10/20 locations and 64 electrodes).

  15. A Comparison of Interactional Aerodynamics Methods for a Helicopter in Low Speed Flight

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Letnikov, Victor; Bavykina, Irena; Chaffin, Mark S.

    1998-01-01

    Recent advances in computing subsonic flow have been applied to helicopter configurations with various degrees of success. This paper is a comparison of two specific methods applied to a particularly challenging regime of helicopter flight, very low speeds, where the interaction of the rotor wake and the fuselage are most significant. Comparisons are made between different methods of predicting the interactional aerodynamics associated with a simple generic helicopter configuration. These comparisons are made using fuselage pressure data from a Mach-scaled powered model helicopter with a rotor diameter of approximately 3 meters. The data shown are for an advance ratio of 0.05 with a thrust coefficient of 0.0066. The results of this comparison show that in this type of complex flow both analytical techniques have regions where they are more accurate in matching the experimental data.

  16. Janus configurations with SL(2, ℤ)-duality twists, strings on mapping tori and a tridiagonal determinant formula

    NASA Astrophysics Data System (ADS)

    Ganor, Ori J.; Moore, Nathan P.; Sun, Hao-Yu; Torres-Chicon, Nesty R.

    2014-07-01

    We develop an equivalence between two Hilbert spaces: (i) the space of states of U(1) n Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants (with corners) on T 2; and (ii) the space of ground states of strings on an associated mapping torus with T 2 fiber. The equivalence is deduced by studying the space of ground states of SL(2, ℤ)-twisted circle compactifications of U(1) gauge theory, connected with a Janus configuration, and further compactified on T 2. The equality of dimensions of the two Hilbert spaces (i) and (ii) is equivalent to a known identity on determinants of tridiagonal matrices with corners. The equivalence of operator algebras acting on the two Hilbert spaces follows from a relation between the Smith normal form of the Chern-Simons coupling constant matrix and the isometry group of the mapping torus, as well as the torsion part of its first homology group.

  17. High-Performance Tiled WMS and KML Web Server

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2007-01-01

    This software is an Apache 2.0 module implementing a high-performance map server to support interactive map viewers and virtual planet client software. It can be used in applications that require access to very-high-resolution geolocated images, such as GIS, virtual planet applications, and flight simulators. It serves Web Map Service (WMS) requests that comply with a given request grid from an existing tile dataset. It also generates the KML super-overlay configuration files required to access the WMS image tiles.

  18. A comparison between detailed and configuration-averaged collisional-radiative codes applied to nonlocal thermal equilibrium plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Gaufridy de Dortan, F. de

    A collisional-radiative model describing nonlocal-thermodynamic-equilibrium plasmas is developed. It is based on the HULLAC (Hebrew University Lawrence Livermore Atomic Code) suite for the transitions rates, in the zero-temperature radiation field hypothesis. Two variants of the model are presented: the first one is configuration averaged, while the second one is a detailed level version. Comparisons are made between them in the case of a carbon plasma; they show that the configuration-averaged code gives correct results for an electronic temperature T{sub e}=10 eV (or higher) but fails at lower temperatures such as T{sub e}=1 eV. The validity of the configuration-averaged approximation ismore » discussed: the intuitive criterion requiring that the average configuration-energy dispersion must be less than the electron thermal energy turns out to be a necessary but far from sufficient condition. Another condition based on the resolution of a modified rate-equation system is proposed. Its efficiency is emphasized in the case of low-temperature plasmas. Finally, it is shown that near-threshold autoionization cascade processes may induce a severe failure of the configuration-average formalism.« less

  19. Hypersonic aerodynamic characteristics of an all-body research aircraft configuration

    NASA Technical Reports Server (NTRS)

    Clark, L. E.

    1973-01-01

    An experimental investigation was conducted at Mach 6 to determine the hypersonic aerodynamic characteristics of an all-body, delta-planform, hypersonic research aircraft (HYFAC configuration). The aerodynamic characteristics were obtained at Reynolds numbers based on model length of 2.84 million and 10.5 million and over an angle-of-attack range from minus 4 deg to 20 deg. The experimental results show that the HYFAC configuration is longitudinally stable and can be trimmed over the range of test conditions. The configuration had a small degree of directional stability over the angle-of-attack range and positive effective dihedral at angles of attack greater than 2 deg. Addition of canards caused a decrease in longitudinal stability and an increase in directional stability. Oil-flow studies revealed extensive areas of separated and vortex flow on the fuselage lee surface. A limited comparison of wind-tunnel data with several hypersonic approximations indicated that, except for the directional stability, the tangent-cone method gave adequate agreement at control settings between 5 deg and minus 5 deg and positive lift coefficient. A limited comparison indicated that the HYFAC configuration had greater longitudinal stability than an elliptical-cross-section configuration, but a lower maximum lift-drag ratio.

  20. Effect of reduced aft diameter and increased blade number of high-speed counterrotation propeller performance

    NASA Technical Reports Server (NTRS)

    Gayle, E. Rose; Jeracki, Robert J.

    1989-01-01

    Performance data of 0.17-scale model counterrotation pusher propeller configurations were taken in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel at Mach numbers of 0.66, 0.71, 0.75, and 0.79. These tests investigated the aerodynamic performance of the unducted fan (UDF) demonstrator propeller engine developed in a joint program by General Electric and NASA. Data were recorded to show the effect on counterrotation propeller cruise efficiency of two takeoff noise-reduction concepts. These two concepts are reduced aft blade diameter and increased forward blade number. The four configurations tested were a baseline (F1/A1 8/8) configuration, a reduced aft diameter (F1/A3 8/8) configuration, an increase forward blade number (F1/A1 9/8) configuration, and a combination of the latter two (F1/A3 9/8) configurations. Data were collected with a complex counterrotation propeller test rig via rotating thrust and torque balances and pressure instrumentation. Data comparisons documented the power differences between the baseline and the reduced aft diameter concepts. Performance comparisons to the baseline configuration showed that reducing the aft blade diameter reduced the net efficiency, and adding a blade to the front rotor increased the net efficiency. The combination of the two concepts showed only slightly lower net efficiency than the baseline configuration. It was also found that the counterrotation demonstrator propeller model (F7/A7 8/8) configuration outperformed the baseline (F1/A1 8/8) configuration.

  1. Effect of reduced aft diameter and increased blade number on high-speed counterrotation propeller performance

    NASA Technical Reports Server (NTRS)

    Rose, Gayle E.; Jeracki, Robert J.

    1989-01-01

    Performance data of 0.17-scale model counterrotation pusher propeller configurations were taken in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel at Mach numbers of 0.66, 0.71, 0.75, and 0.79. These tests investigated the aerodynamic performance of the unducted fan (UDF) demonstrator propeller engine developed in a joint program by General Electric and NASA. Data were recorded to show the effect on counterrotation propeller cruise efficiency of two takeoff noise-reduction concepts. These two concepts are reduced aft blade diameter and increased forward blade number. The four configurations tested were a baseline (F1/A1 8/8) configuration, a reduced aft diameter (F1/A3 8/8) configuration, an increase forward blade number (F1/A1 9/8) configuration, and a combination of the latter two (F1/A3 9/8) configurations. Data were collected with a complex counterrotation propeller test rig via rotating thrust and torque balances and pressure instrumentation. Data comparisons documented the power differences between the baseline and the reduced aft diameter concepts. Performance comparisons to the baseline configuration showed that reducing the aft blade diameter reduced the net efficiency, and adding a blade to the front rotor increased the net efficiency. The combination of the two concepts showed only slightly lower net efficiency than the baseline configuration. It was also found that the counterrotation demonstrator propeller model (F7/A7 8/8) configuration outperformed the baseline (F1/A1 8/8) configuration.

  2. Mapping pocket gopher burrow systems with expanding polyurethane foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felthauser, M.; McInroy, D.

    The impetus for this study arose from the need to isolate buried chemical and radioactive waste from burrowing animals. In a study of barrier materials that inhibit burrowing by pocket gophers (Thomomys spp.) into waste material, it was necessary to map tunnel systems as a function of depth and soil type. A method of mapping burrow systems was needed that would be economical, portable, useful in a variety of soil types, and give accurate, permanent records of burrow configurations. A method is described for injecting an expanding polyurethane foam to map burrow systems in situ.

  3. Lunar UV-visible-IR mapping interferometric spectrometer

    NASA Technical Reports Server (NTRS)

    Smith, W. Hayden; Haskin, L.; Korotev, R.; Arvidson, R.; Mckinnon, W.; Hapke, B.; Larson, S.; Lucey, P.

    1992-01-01

    Ultraviolet-visible-infrared mapping digital array scanned interferometers for lunar compositional surveys was developed. The research has defined a no-moving-parts, low-weight and low-power, high-throughput, and electronically adaptable digital array scanned interferometer that achieves measurement objectives encompassing and improving upon all the requirements defined by the LEXSWIG for lunar mineralogical investigation. In addition, LUMIS provides a new, important, ultraviolet spectral mapping, high-spatial-resolution line scan camera, and multispectral camera capabilities. An instrument configuration optimized for spectral mapping and imaging of the lunar surface and provide spectral results in support of the instrument design are described.

  4. IntegratedMap: a Web interface for integrating genetic map data.

    PubMed

    Yang, Hongyu; Wang, Hongyu; Gingle, Alan R

    2005-05-01

    IntegratedMap is a Web application and database schema for storing and interactively displaying genetic map data. Its Web interface includes a menu for direct chromosome/linkage group selection, a search form for selection based on mapped object location and linkage group displays. An overview display provides convenient access to the full range of mapped and anchored object types with genetic locus details, such as numbers, types and names of mapped/anchored objects displayed in a compact scrollable list box that automatically updates based on selected map location and object type. Also, multilinkage group and localized map views are available along with links that can be configured for integration with other Web resources. IntegratedMap is implemented in C#/ASP.NET and the package, including a MySQL schema creation script, is available from http://cggc.agtec.uga.edu/Data/download.asp

  5. Evaluation of Natural Language Processing (NLP) Systems to Annotate Drug Product Labeling with MedDRA Terminology.

    PubMed

    Ly, Thomas; Pamer, Carol; Dang, Oanh; Brajovic, Sonja; Haider, Shahrukh; Botsis, Taxiarchis; Milward, David; Winter, Andrew; Lu, Susan; Ball, Robert

    2018-05-31

    The FDA Adverse Event Reporting System (FAERS) is a primary data source for identifying unlabeled adverse events (AEs) in a drug or biologic drug product's postmarketing phase. Many AE reports must be reviewed by drug safety experts to identify unlabeled AEs, even if the reported AEs are previously identified, labeled AEs. Integrating the labeling status of drug product AEs into FAERS could increase report triage and review efficiency. Medical Dictionary for Regulatory Activities (MedDRA) is the standard for coding AE terms in FAERS cases. However, drug manufacturers are not required to use MedDRA to describe AEs in product labels. We hypothesized that natural language processing (NLP) tools could assist in automating the extraction and MedDRA mapping of AE terms in drug product labels. We evaluated the performance of three NLP systems, (ETHER, I2E, MetaMap) for their ability to extract AE terms from drug labels and translate the terms to MedDRA Preferred Terms (PTs). Pharmacovigilance-based annotation guidelines for extracting AE terms from drug labels were developed for this study. We compared each system's output to MedDRA PT AE lists, manually mapped by FDA pharmacovigilance experts using the guidelines, for ten drug product labels known as the "gold standard AE list" (GSL) dataset. Strict time and configuration conditions were imposed in order to test each system's capabilities under conditions of no human intervention and minimal system configuration. Each NLP system's output was evaluated for precision, recall and F measure in comparison to the GSL. A qualitative error analysis (QEA) was conducted to categorize a random sample of each NLP system's false positive and false negative errors. A total of 417, 278, and 250 false positive errors occurred in the ETHER, I2E, and MetaMap outputs, respectively. A total of 100, 80, and 187 false negative errors occurred in ETHER, I2E, and MetaMap outputs, respectively. Precision ranged from 64% to 77%, recall from 64% to 83% and F measure from 67% to 79%. I2E had the highest precision (77%), recall (83%) and F measure (79%). ETHER had the lowest precision (64%). MetaMap had the lowest recall (64%). The QEA found that the most prevalent false positive errors were context errors such as "Context error/General term", "Context error/Instructions or monitoring parameters", "Context error/Medical history preexisting condition underlying condition risk factor or contraindication", and "Context error/AE manifestations or secondary complication". The most prevalent false negative errors were in the "Incomplete or missed extraction" error category. Missing AE terms were typically due to long terms, or terms containing non-contiguous words which do not correspond exactly to MedDRA synonyms. MedDRA mapping errors were a minority of errors for ETHER and I2E but were the most prevalent false positive errors for MetaMap. The results demonstrate that it may be feasible to use NLP tools to extract and map AE terms to MedDRA PTs. However, the NLP tools we tested would need to be modified or reconfigured to lower the error rates to support their use in a regulatory setting. Tools specific for extracting AE terms from drug labels and mapping the terms to MedDRA PTs may need to be developed to support pharmacovigilance. Conducting research using additional NLP systems on a larger, diverse GSL would also be informative. Copyright © 2018. Published by Elsevier Inc.

  6. Interferometry On Grazing Incidence Optics

    NASA Astrophysics Data System (ADS)

    Geary, Joseph; Maeda, Riki

    1988-08-01

    A preliminary interferometric procedure is described showing potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. The latter are found in some laser resonator configurations, and in Wolter type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians in the fabrication process.

  7. Interferometry on grazing incidence optics

    NASA Astrophysics Data System (ADS)

    Geary, Joseph M.; Maeda, Riki

    1987-12-01

    An interfeormetric procedure is described that shows potential for obtaining surface figure error maps of grazing incidence optics at normal incidence. Such optics are found in some laser resonator configurations and in Wolter-type X-ray optics. The procedure makes use of cylindrical wavefronts and error subtraction techniques over subapertures. The surface error maps obtained will provide critical information to opticians for the fabrication process.

  8. Self-optimizing Monte Carlo method for nuclear well logging simulation

    NASA Astrophysics Data System (ADS)

    Liu, Lianyan

    1997-09-01

    In order to increase the efficiency of Monte Carlo simulation for nuclear well logging problems, a new method has been developed for variance reduction. With this method, an importance map is generated in the regular Monte Carlo calculation as a by-product, and the importance map is later used to conduct the splitting and Russian roulette for particle population control. By adopting a spatial mesh system, which is independent of physical geometrical configuration, the method allows superior user-friendliness. This new method is incorporated into the general purpose Monte Carlo code MCNP4A through a patch file. Two nuclear well logging problems, a neutron porosity tool and a gamma-ray lithology density tool are used to test the performance of this new method. The calculations are sped up over analog simulation by 120 and 2600 times, for the neutron porosity tool and for the gamma-ray lithology density log, respectively. The new method enjoys better performance by a factor of 4~6 times than that of MCNP's cell-based weight window, as per the converged figure-of-merits. An indirect comparison indicates that the new method also outperforms the AVATAR process for gamma-ray density tool problems. Even though it takes quite some time to generate a reasonable importance map from an analog run, a good initial map can create significant CPU time savings. This makes the method especially suitable for nuclear well logging problems, since one or several reference importance maps are usually available for a given tool. Study shows that the spatial mesh sizes should be chosen according to the mean-free-path. The overhead of the importance map generator is 6% and 14% for neutron and gamma-ray cases. The learning ability towards a correct importance map is also demonstrated. Although false-learning may happen, physical judgement can help diagnose with contributon maps. Calibration and analysis are performed for the neutron tool and the gamma-ray tool. Due to the fact that a very good initial importance map is always available after the first point has been calculated, high computing efficiency is maintained. The availability of contributon maps provides an easy way of understanding the logging measurement and analyzing for the depth of investigation.

  9. Frequency to Voltage Converter Analog Front-End Prototype

    NASA Technical Reports Server (NTRS)

    Mata, Carlos; Raines, Matthew

    2012-01-01

    The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.

  10. Coordinating, Planning and Control

    DTIC Science & Technology

    1991-08-31

    18] Joseph Jeffrey Finger. Eplosting constrandn in design synthesis. Ph.D. Thesis , Stanford University, 1987. [19] Michael Fischer and Richard...configuration. q, to the goal configuration, q*, is a continuous map / :[0, 1] - Cft ,., subject to the constraints that it(O) = q and r( I) - q°. The...Mathematics and C’omputer Science. University of Aalborg, 1989. (221 Kanazawa. Keij i. Pmbability. Time. arid Action. PhD thesis . Drown UnIiversit y

  11. Advanced Wireless Integrated Navy Network - AWINN

    DTIC Science & Technology

    2005-09-30

    progress report No. 3 on AWINN hardware and software configurations of smart , wideband, multi-function antennas, secure configurable platform, close-in...results to the host PC via a UART soft core. The UART core used is a proprietary Xilinx core which incorporates features described in National...current software uses wheel odometry and visual landmarks to create a map and estimate position on an internal x, y grid . The wheel odometry provides a

  12. A comparison of contour maps derived from independent methods of measuring lunar magnetic fields

    NASA Technical Reports Server (NTRS)

    Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.

    1978-01-01

    Computer-generated contour maps of strong lunar remanent magnetic fields are presented and discussed. The maps, obtained by previously described (Eliason and Soderblom, 1977) techniques, are derived from a variety of direct and indirect measurements from Apollo 15 and 16 and Explorer 35 magnetometer and electron reflection data. A common display format is used to facilitate comparison of the maps over regions of overlapping coverage. Most large scale features of either weak or strong magnetic field regions are found to correlate fairly well on all the maps considered.

  13. Applying CBR to machine tool product configuration design oriented to customer requirements

    NASA Astrophysics Data System (ADS)

    Wang, Pengjia; Gong, Yadong; Xie, Hualong; Liu, Yongxian; Nee, Andrew Yehching

    2017-01-01

    Product customization is a trend in the current market-oriented manufacturing environment. However, deduction from customer requirements to design results and evaluation of design alternatives are still heavily reliant on the designer's experience and knowledge. To solve the problem of fuzziness and uncertainty of customer requirements in product configuration, an analysis method based on the grey rough model is presented. The customer requirements can be converted into technical characteristics effectively. In addition, an optimization decision model for product planning is established to help the enterprises select the key technical characteristics under the constraints of cost and time to serve the customer to maximal satisfaction. A new case retrieval approach that combines the self-organizing map and fuzzy similarity priority ratio method is proposed in case-based design. The self-organizing map can reduce the retrieval range and increase the retrieval efficiency, and the fuzzy similarity priority ratio method can evaluate the similarity of cases comprehensively. To ensure that the final case has the best overall performance, an evaluation method of similar cases based on grey correlation analysis is proposed to evaluate similar cases to select the most suitable case. Furthermore, a computer-aided system is developed using MATLAB GUI to assist the product configuration design. The actual example and result on an ETC series machine tool product show that the proposed method is effective, rapid and accurate in the process of product configuration. The proposed methodology provides a detailed instruction for the product configuration design oriented to customer requirements.

  14. Discontinuous permeable adsorptive barrier design and cost analysis: a methodological approach to optimisation.

    PubMed

    Santonastaso, Giovanni Francesco; Bortone, Immacolata; Chianese, Simeone; Di Nardo, Armando; Di Natale, Michele; Erto, Alessandro; Karatza, Despina; Musmarra, Dino

    2017-09-19

    The following paper presents a method to optimise a discontinuous permeable adsorptive barrier (PAB-D). This method is based on the comparison of different PAB-D configurations obtained by changing some of the main PAB-D design parameters. In particular, the well diameters, the distance between two consecutive passive wells and the distance between two consecutive well lines were varied, and a cost analysis for each configuration was carried out in order to define the best performing and most cost-effective PAB-D configuration. As a case study, a benzene-contaminated aquifer located in an urban area in the north of Naples (Italy) was considered. The PAB-D configuration with a well diameter of 0.8 m resulted the best optimised layout in terms of performance and cost-effectiveness. Moreover, in order to identify the best configuration for the remediation of the aquifer studied, a comparison with a continuous permeable adsorptive barrier (PAB-C) was added. In particular, this showed a 40% reduction of the total remediation costs by using the optimised PAB-D.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Cox, Jonathan Albert

    Methods and systems for stabilizing a resonant modulator include receiving pre-modulation and post-modulation portions of a carrier signal, determining the average power from these portions, comparing an average input power to the average output power, and operating a heater coupled to the modulator based on the comparison. One system includes a pair of input structures, one or more processing elements, a comparator, and a control element. The input structures are configured to extract pre-modulation and post-modulation portions of a carrier signal. The processing elements are configured to determine average powers from the extracted portions. The comparator is configured to comparemore » the average input power and the average output power. The control element operates a heater coupled to the modulator based on the comparison.« less

  16. Comparison of the crossed and the Gregorian Mizuguchi-Dragone for wide-field millimeter-wave astronomy.

    PubMed

    Tran, Huan; Lee, Adrian; Hanany, Shaul; Milligan, Michael; Renbarger, Tom

    2008-01-10

    We compare the geometric and physical-optics performance of two configurations of offset dual-reflector antennas that obey the Mizuguchi-Dragone condition. The traditional Gregorian configuration is compared with the larger crossed configuration. These configurations are candidates for experiments that measure the polarization of the cosmic microwave background. Particular attention is given to wide-field performance and polarization fidelity. Both a ray tracer and a physical optics simulation package are used to conclude that the crossed configuration has a larger diffraction-limited field of view, but within this limit both configurations have roughly the same instrumental polarization and both show excellent cross-polarization levels, with the crossed configuration showing approximately 10 dB better performance.

  17. Comparison of the crossed and the Gregorian Mizuguchi-Dragone for wide-field millimeter-wave astronomy

    NASA Astrophysics Data System (ADS)

    Tran, Huan; Lee, Adrian; Hanany, Shaul; Milligan, Michael; Renbarger, Tom

    2008-01-01

    We compare the geometric and physical-optics performance of two configurations of offset dual-reflector antennas that obey the Mizuguchi-Dragone condition. The traditional Gregorian configuration is compared with the larger crossed configuration. These configurations are candidates for experiments that measure the polarization of the cosmic microwave background. Particular attention is given to wide-field performance and polarization fidelity. Both a ray tracer and a physical optics simulation package are used to conclude that the crossed configuration has a larger diffraction-limited field of view, but within this limit both configurations have roughly the same instrumental polarization and both show excellent cross-polarization levels, with the crossed configuration showing ~10 dB better performance.

  18. SU-E-T-598: Clinical Experience of Configuration, Commission and Implementation for SmartArc with MOSAIQ R&V System.

    PubMed

    Kong, X; Clausen, C; Wang, S

    2012-06-01

    Clinical experience for configuration, commission and implementation of SmartArc with MOSAIQ R&V system. SmartArc is Pinnacle's solution for VMAT. On July 2011 we updated to Pinnacle 9.0 and purchased SmartArc. A standalone Eclipse workstation has been used 3 years for VMAT planning. Our clinical setting: Mosaiq 2.2; Varian Trilogy driven by 4DiTC and Varian 21ex driven by sequencer. Some key physics parameters have been studied: machine dose rate; MLC leaf speed; Leaf motion per gantry rotation. Tabletop was created by user to improve the dose accuracy for planning. In-house sandwich phantom was used with MapCheck for planner dose verification. A PTW 0.6cc ion chamber was included for absolute dose comparison. A copy of current machine data with default highest dose rate is recommended. It is due to after 10th iteration of optimization, the default dose rate will kick in. 2.5cm/s is the constraint for Varian Millennium 120 MLC; a buffer zone of 10% is suggested to reduce the MLC error on treatment. 2.25cm/s is used in our configuration. This results in MLC interlock if not configured correct. Maximum leaf motion per gantry rotation of 0.46cm/degree has to be checked for planning with Mosaiq R&V. Otherwise, undeliverable plan will show up sometimes on 4DiTC.Tabletop was exported as a DICOM structure from Eclipse to Pinnacle; we created a ROI template based on the matched tabletop.QA using in-house phantom for different sites were tested. Results for both planner dose and absolute chamber measurement are satisfactory. Special attentions need to be paid for dose rate, MLC leaf speed, leaf motion per gantry rotation when configuring SmartArc. Varian 21ex is supported but is slow for clinical delivery. Users need to create your own tabletop to improve planning accuracy. Conventional commission procedures for RapidArc also apply for SmartArc. © 2012 American Association of Physicists in Medicine.

  19. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.

    PubMed

    Zhao, Wei; Vernekohl, Don; Han, Fei; Han, Bin; Peng, Hao; Yang, Yong; Xing, Lei; Min, James K

    2018-04-21

    Many clinical applications depend critically on the accurate differentiation and classification of different types of materials in patient anatomy. This work introduces a unified framework for accurate nonlinear material decomposition and applies it, for the first time, in the concept of triple-energy CT (TECT) for enhanced material differentiation and classification as well as dual-energy CT (DECT). We express polychromatic projection into a linear combination of line integrals of material-selective images. The material decomposition is then turned into a problem of minimizing the least-squares difference between measured and estimated CT projections. The optimization problem is solved iteratively by updating the line integrals. The proposed technique is evaluated by using several numerical phantom measurements under different scanning protocols. The triple-energy data acquisition is implemented at the scales of micro-CT and clinical CT imaging with commercial "TwinBeam" dual-source DECT configuration and a fast kV switching DECT configuration. Material decomposition and quantitative comparison with a photon counting detector and with the presence of a bow-tie filter are also performed. The proposed method provides quantitative material- and energy-selective images examining realistic configurations for both DECT and TECT measurements. Compared to the polychromatic kV CT images, virtual monochromatic images show superior image quality. For the mouse phantom, quantitative measurements show that the differences between gadodiamide and iodine concentrations obtained using TECT and idealized photon counting CT (PCCT) are smaller than 8 and 1 mg/mL, respectively. TECT outperforms DECT for multicontrast CT imaging and is robust with respect to spectrum estimation. For the thorax phantom, the differences between the concentrations of the contrast map and the corresponding true reference values are smaller than 7 mg/mL for all of the realistic configurations. A unified framework for both DECT and TECT imaging has been established for the accurate extraction of material compositions using currently available commercial DECT configurations. The novel technique is promising to provide an urgently needed solution for several CT-based diagnostic and therapy applications, especially for the diagnosis of cardiovascular and abdominal diseases where multicontrast imaging is involved. © 2018 American Association of Physicists in Medicine.

  20. SU-F-P-39: End-To-End Validation of a 6 MV High Dose Rate Photon Beam, Configured for Eclipse AAA Algorithm Using Golden Beam Data, for SBRT Treatments Using RapidArc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreyra, M; Salinas Aranda, F; Dodat, D

    Purpose: To use end-to-end testing to validate a 6 MV high dose rate photon beam, configured for Eclipse AAA algorithm using Golden Beam Data (GBD), for SBRT treatments using RapidArc. Methods: Beam data was configured for Varian Eclipse AAA algorithm using the GBD provided by the vendor. Transverse and diagonals dose profiles, PDDs and output factors down to a field size of 2×2 cm2 were measured on a Varian Trilogy Linac and compared with GBD library using 2% 2mm 1D gamma analysis. The MLC transmission factor and dosimetric leaf gap were determined to characterize the MLC in Eclipse. Mechanical andmore » dosimetric tests were performed combining different gantry rotation speeds, dose rates and leaf speeds to evaluate the delivery system performance according to VMAT accuracy requirements. An end-to-end test was implemented planning several SBRT RapidArc treatments on a CIRS 002LFC IMRT Thorax Phantom. The CT scanner calibration curve was acquired and loaded in Eclipse. PTW 31013 ionization chamber was used with Keithley 35617EBS electrometer for absolute point dose measurements in water and lung equivalent inserts. TPS calculated planar dose distributions were compared to those measured using EPID and MapCheck, as an independent verification method. Results were evaluated with gamma criteria of 2% dose difference and 2mm DTA for 95% of points. Results: GBD set vs. measured data passed 2% 2mm 1D gamma analysis even for small fields. Machine performance tests show results are independent of machine delivery configuration, as expected. Absolute point dosimetry comparison resulted within 4% for the worst case scenario in lung. Over 97% of the points evaluated in dose distributions passed gamma index analysis. Conclusion: Eclipse AAA algorithm configuration of the 6 MV high dose rate photon beam using GBD proved efficient. End-to-end test dose calculation results indicate it can be used clinically for SBRT using RapidArc.« less

  1. ActionMap: A web-based software that automates loci assignments to framework maps.

    PubMed

    Albini, Guillaume; Falque, Matthieu; Joets, Johann

    2003-07-01

    Genetic linkage computation may be a repetitive and time consuming task, especially when numerous loci are assigned to a framework map. We thus developed ActionMap, a web-based software that automates genetic mapping on a fixed framework map without adding the new markers to the map. Using this tool, hundreds of loci may be automatically assigned to the framework in a single process. ActionMap was initially developed to map numerous ESTs with a small plant mapping population and is limited to inbred lines and backcrosses. ActionMap is highly configurable and consists of Perl and PHP scripts that automate command steps for the MapMaker program. A set of web forms were designed for data import and mapping settings. Results of automatic mapping can be displayed as tables or drawings of maps and may be exported. The user may create personal access-restricted projects to store raw data, settings and mapping results. All data may be edited, updated or deleted. ActionMap may be used either online or downloaded for free (http://moulon.inra.fr/~bioinfo/).

  2. ActionMap: a web-based software that automates loci assignments to framework maps

    PubMed Central

    Albini, Guillaume; Falque, Matthieu; Joets, Johann

    2003-01-01

    Genetic linkage computation may be a repetitive and time consuming task, especially when numerous loci are assigned to a framework map. We thus developed ActionMap, a web-based software that automates genetic mapping on a fixed framework map without adding the new markers to the map. Using this tool, hundreds of loci may be automatically assigned to the framework in a single process. ActionMap was initially developed to map numerous ESTs with a small plant mapping population and is limited to inbred lines and backcrosses. ActionMap is highly configurable and consists of Perl and PHP scripts that automate command steps for the MapMaker program. A set of web forms were designed for data import and mapping settings. Results of automatic mapping can be displayed as tables or drawings of maps and may be exported. The user may create personal access-restricted projects to store raw data, settings and mapping results. All data may be edited, updated or deleted. ActionMap may be used either online or downloaded for free (http://moulon.inra.fr/~bioinfo/). PMID:12824426

  3. Vacuum Magnetic Field Mapping of the Compact Toroidal Hybrid (CTH)

    NASA Astrophysics Data System (ADS)

    Peterson, J. T.; Hanson, J.; Hartwell, G. J.; Knowlton, S. F.; Montgomery, C.; Munoz, J.

    2007-11-01

    Vacuum magnetic field mapping experiments are performed on the CTH torsatron with a movable electron gun and phosphor-coated screen or movable wand at two different toroidal locations. These experiments compare the experimentally measured magnetic configuration produced by the as-built coil set, to the magnetic configuration simulated with the IFT Biot-Savart code using the measured coil set parameters. Efforts to minimize differences between the experimentally measured location of the magnetic axis and its predicted value utilizing a Singular Value Decomposition (SVD) process result in small modifications of the helical coil winding law used to model the vacuum magnetic field geometry of CTH. Because these studies are performed at relatively low fields B = 0.01 - 0.05 T, a uniform ambient magnetic field is included in the minimization procedure.

  4. A genetic linkage map for hazelnut (Corylus avellana L.) based on RAPD and SSR markerswac

    Treesearch

    Shawn A. Mehlenbacher; Rebecca N. Brown; Eduardo R. Nouhra; Tufan Gokirmak; Nahla V. Bassil; Thomas L. Kubisiak

    2006-01-01

    A linkage map for European hazelnut (Corylus avellana L.) was constructed using random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers and the 2-way pseudotestcross approach. A full-sib population of 144 seedlings from the cross OSU 252.146 x OSU 414.062 was used. RAPD markers in testcross configuration,segregating 1:I, were...

  5. The sensorimotor and social sides of the architecture of speech.

    PubMed

    Pezzulo, Giovanni; Barca, Laura; D'Ausilio, Alessando

    2014-12-01

    Speech is a complex skill to master. In addition to sophisticated phono-articulatory abilities, speech acquisition requires neuronal systems configured for vocal learning, with adaptable sensorimotor maps that couple heard speech sounds with motor programs for speech production; imitation and self-imitation mechanisms that can train the sensorimotor maps to reproduce heard speech sounds; and a "pedagogical" learning environment that supports tutor learning.

  6. 40 CFR 1065.510 - Engine mapping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Configure any auxiliary work inputs and outputs such as hybrid, turbo-compounding, or thermoelectric systems... intended primarily for propulsion of a vehicle with an automatic transmission where that engine is subject...

  7. Altitude and Configuration of the Potentiometric Surface in the Upper White Clay Creek and Lower West Branch Brandywine Creek Basins including Portions of Penn, London Grove, New Garden, Londonderry, West Marlborough, Highland, and East Fallowfield Townships and West Grove, Avondale, Modena, and South Coatesville boroughs, Chester County, Pennsylvania, May through July 2006

    USGS Publications Warehouse

    Hale, Lindsay B.

    2007-01-01

    INTRODUCTION Since 1984, the U.S. Geological Survey (USGS) has been mapping the altitude and configuration of the potentiometric surface in Chester County as part of an ongoing cooperative program to measure and describe the water resources of the county. These maps can be used to determine the general direction of ground-water flow and are frequently referenced by municipalities and developers to evaluate ground-water conditions for water supply and resource-protection requirements. For this study, the potentiometric surface was mapped for an area in south-central Chester County. The northern part of the map includes portions of Highland, East Fallowfield, Londonderry, and West Marlborough Townships and South Coatesville and Modena Boroughs. The southern part of the map includes portions of Londonderry, West Marlborough, Penn, London Grove, and New Garden Townships and West Grove and Avondale Boroughs. The study area is mostly underlain by metamorphic rocks of the Glenarm Supergroup including Peters Creek Schist, Octoraro Phyllite, Wissahickon Schist, Cockeysville Mrable, and Setters Quartzite; and by pegmatite, mafic gneiss, felsic gneiss, and diabase. Ground water is obtained from these bedrock formations by wells that intercept fractures. The altitude and configuration of the potentiometric surface was contoured from water levels measured on different dates in available wells during May through July 2006 and from the altitude of springs and perennial streams. Topography was used as a guide for contouring so that the altitude of the potentiometric surface was inferred nowhere to be higher than the land surface. The potentiometric surface shown on this map is an approximation of the water table. The altitude of the actual potentiometric surface may differ from the water table, especially in areas where wells are completed in a semi-confined zone or have long open intervals that reflect the composite hydraulic head of multiple water-yielding fractures. A composite head may differ from the potentiometric-surface altitude, particularly beneath hilltops and valleys where vertical hydraulic gradients are significant.

  8. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  9. Calculations, and comparison with an ideal minimum, of trimmed drag for conventional and canard configurations having various levels of static stability

    NASA Technical Reports Server (NTRS)

    Mclaughlin, M. D.

    1977-01-01

    Classical drag equations were used to calculate total and induced drag and ratios of stabilizer lift to wing lift for a variety of conventional and canard configurations. The Flight efficiencies of such configurations that are trimmed in pitch and have various values of static margin are evaluated. Classical calculation methods are compared with more modern lifting surface theory.

  10. Atypical development of configural face recognition in children with autism, Down syndrome and Williams syndrome.

    PubMed

    Dimitriou, D; Leonard, H C; Karmiloff-Smith, A; Johnson, M H; Thomas, M S C

    2015-05-01

    Configural processing in face recognition is a sensitivity to the spacing between facial features. It has been argued both that its presence represents a high level of expertise in face recognition, and also that it is a developmentally vulnerable process. We report a cross-syndrome investigation of the development of configural face recognition in school-aged children with autism, Down syndrome and Williams syndrome compared with a typically developing comparison group. Cross-sectional trajectory analyses were used to compare configural and featural face recognition utilising the 'Jane faces' task. Trajectories were constructed linking featural and configural performance either to chronological age or to different measures of mental age (receptive vocabulary, visuospatial construction), as well as the Benton face recognition task. An emergent inversion effect across age for detecting configural but not featural changes in faces was established as the marker of typical development. Children from clinical groups displayed atypical profiles that differed across all groups. We discuss the implications for the nature of face processing within the respective developmental disorders, and how the cross-sectional syndrome comparison informs the constraints that shape the typical development of face recognition. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  11. Automated thermal mapping techniques using chromatic image analysis

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  12. Selectivity evaluation for two experimental gill-net configurations used to sample Lake Erie walleyes

    USGS Publications Warehouse

    Vandergoot, Christopher S.; Kocovsky, Patrick M.; Brenden, Travis O.; Liu, Weihai

    2011-01-01

    We used length frequencies of captured walleyes Sander vitreus to indirectly estimate and compare selectivity between two experimental gill-net configurations used to sample fish in Lake Erie: (1) a multifilament configuration currently used by the Ohio Department of Natural Resources (ODNR) with stretched-measure mesh sizes ranging from 51 to 127 mm and a constant filament diameter (0.37 mm); and (2) a monofilament configuration with mesh sizes ranging from 38 to 178 mm and varying filament diameter (range = 0.20–0.33 mm). Paired sampling with the two configurations revealed that the catch of walleyes smaller than 250 mm and larger than 600 mm was greater in the monofilament configuration than in the multifilament configuration, but the catch of 250–600-mm fish was greater in the multifilament configuration. Binormal selectivity functions yielded the best fit to observed walleye catches for both gill-net configurations based on model deviances. Incorporation of deviation terms in the binormal selectivity functions (i.e., to relax the assumption of geometric similarity) further improved the fit to observed catches. The final fitted selectivity functions produced results similar to those from the length-based catch comparisons: the monofilament configuration had greater selectivity for small and large walleyes and the multifilament configuration had greater selectivity for mid-sized walleyes. Computer simulations that incorporated the fitted binormal selectivity functions indicated that both nets were likely to result in some bias in age composition estimates and that the degree of bias would ultimately be determined by the underlying condition, mortality rate, and growth rate of the Lake Erie walleye population. Before the ODNR switches its survey gear, additional comparisons of the different gill-net configurations, such as fishing the net pairs across a greater range of depths and at more locations in the lake, should be conducted to maintain congruence in the fishery-independent survey time series.

  13. The delineation and interpretation of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.

    1983-01-01

    The observed changes in velocity with time are reduced relative to the well-determined low degree and order GEM field model and accelerations are found by analytical differentiation of the range rates. This new map is essentially identical to the first map and we have produced a composite map by combining all 90 passes of SST data. The resolution of the map is at worst about 5 deg and much better in most places. A comparison of this map with conventional GEM models shows very good agreement. A reduction of the SEASAT altimeter data has also been carried out for an additional comparison. Although the SEASAT geoid contains much more high frequency information, it agrees very well with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. A further comparison with regional bathymetric data shows a remarkably close correlation with plate age.

  14. Operations analysis (study 2.1). Payload designs for space servicing, addendum

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1974-01-01

    Space replaceable units and payload configurations are revised to reflect increased levels of redundancy to be more consistent with current design practices. A reassessment of expendable payload design reliabilities was performed to provide a common basis for comparison with space serviceable configurations.

  15. Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model

    PubMed Central

    Lee, Won Hee; Lisanby, Sarah H.; Laine, Andrew F.; Peterchev, Angel V.

    2017-01-01

    Background This study examines the strength and spatial distribution of the electric field induced in the brain by electroconvulsive therapy (ECT) and magnetic seizure therapy (MST). Methods The electric field induced by standard (bilateral, right unilateral, and bifrontal) and experimental (focal electrically administered seizure therapy and frontomedial) ECT electrode configurations as well as a circular MST coil configuration was simulated in an anatomically realistic finite element model of the human head. Maps of the electric field strength relative to an estimated neural activation threshold were used to evaluate the stimulation strength and focality in specific brain regions of interest for these ECT and MST paradigms and various stimulus current amplitudes. Results The standard ECT configurations and current amplitude of 800–900 mA produced the strongest overall stimulation with median of 1.8–2.9 times neural activation threshold and more than 94% of the brain volume stimulated at suprathreshold level. All standard ECT electrode placements exposed the hippocampi to suprathreshold electric field, although there were differences across modalities with bilateral and right unilateral producing respectively the strongest and weakest hippocampal stimulation. MST stimulation is up to 9 times weaker compared to conventional ECT, resulting in direct activation of only 21% of the brain. Reducing the stimulus current amplitude can make ECT as focal as MST. Conclusions The relative differences in electric field strength may be a contributing factor for the cognitive sparing observed with right unilateral compared to bilateral ECT, and MST compared to right unilateral ECT. These simulations could help understand the mechanisms of seizure therapies and develop interventions with superior risk/benefit ratio. PMID:27318858

  16. Comparison of Measurements from Pressure-recording Inverted Echo Sounders and Satellite Altimetry in the North Equatorial Current Region of the Western Pacific

    NASA Astrophysics Data System (ADS)

    Jeon, Chanhyung; Park, Jae-Hun; Kim, Dong Guk; Kim, Eung; Jeon, Dongchull

    2018-04-01

    An array of 5 pressure-recording inverted echo sounders (PIESs) was deployed along the Jason-2 214 ground track in the North Equatorial Current (NEC) region of the western Pacific Ocean for about 2 years from June 2012. Round-trip acoustic travel time from the bottom to the sea surface and bottom pressure measurements from PIES were converted to sea level anomaly (SLA). AVISO along-track mono-mission SLA (Mono-SLA), reference mapped SLA (Ref-MSLA), and up-to-date mapped SLA (Upd-MSLA) products were used for comparison with PIESderived SLA (η tot). Comparisons of η tot with Mono-SLA revealed that hump artifact errors significantly contaminate the Mono-SLA. Differences of η tot from both Ref-MSLA and Upd-MSLA decreased as the hump errors were reduced in mapped SLA products. Comparisons of Mono-SLA measurements at crossover points of ground tracks near the observation sites revealed large differences though the time differences of their measurements were only 1.53 and 4.58 days. Comparisons between Mono-SLA and mapped SLA suggested that mapped SLA smooths out the hump artifact errors by taking values between the two discrepant Mono-SLA measurements at the crossover points. Consequently, mapped SLA showed better agreement with η tot at our observation sites. AVISO mapped sea surface height (SSH) products are the preferable dataset for studying SSH variability in the NEC region of the western Pacific, though some portions of hump artifact errors seem to still remain in them.

  17. Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.

    PubMed

    Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro

    2018-01-01

    We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.

  18. Exergy Analysis of Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, Andrew; Mesmer, Bryan; Watson, Michael D.

    2015-01-01

    Exergy is defined as the useful work available from a system in a specified environment. Exergy analysis allows for comparison between different system designs, and allows for comparison of subsystem efficiencies within system designs. The proposed paper explores the relationship between the fundamental rocket equation and an exergy balance equation. A previously derived exergy equation related to rocket systems is investigated, and a higher fidelity analysis will be derived. The exergy assessments will enable informed, value-based decision making when comparing alternative rocket system designs, and will allow the most efficient configuration among candidate configurations to be determined.

  19. A Comparison of Fuzzy Models in Similarity Assessment of Misregistered Area Class Maps

    NASA Astrophysics Data System (ADS)

    Brown, Scott

    Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.

  20. Satellite To Satellite Doppler Tracking (SSDT) for mapping of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Gaposchkin, E. M.; Grossi, M.

    1981-01-01

    Two SSDT schemes were evaluated: a standard, low-low, SSDT configuration, which both satellites are in basically the same low altitude nearly circular orbit and the pair is characterized by small angular separation; and a more general configuration in which the two satellites are in arbitrary orbits, so that different configurations can be comparatively analyed. The standard low-low SSDT configuration is capable of recovering 1 deg X 1 deg surface anomalies with a strength as low as 1 milligal, located on the projected satellite path, when observing from a height as large as 300 km. The Colombo scheme provides an important complement of SSDT observations, inasmuch as it is sensitive to radial velocity components, while keeping at the same performance level both measuring sensitivity and measurement resolution.

  1. Internet protocol network mapper

    DOEpatents

    Youd, David W.; Colon III, Domingo R.; Seidl, Edward T.

    2016-02-23

    A network mapper for performing tasks on targets is provided. The mapper generates a map of a network that specifies the overall configuration of the network. The mapper inputs a procedure that defines how the network is to be mapped. The procedure specifies what, when, and in what order the tasks are to be performed. Each task specifies processing that is to be performed for a target to produce results. The procedure may also specify input parameters for a task. The mapper inputs initial targets that specify a range of network addresses to be mapped. The mapper maps the network by, for each target, executing the procedure to perform the tasks on the target. The results of the tasks represent the mapping of the network defined by the initial targets.

  2. Optimal Mass Transport for Shape Matching and Comparison

    PubMed Central

    Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng

    2015-01-01

    Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n2) to O(n). For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265

  3. IFIS Model-Plus: A Web-Based GUI for Visualization, Comparison and Evaluation of Distributed Flood Forecasts and Hindcasts

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Della Libera Zanchetta, A.; Mantilla, R.; Demir, I.

    2017-12-01

    This work explores the use of hydroinformatics tools to provide an user friendly and accessible interface for executing and assessing the output of realtime flood forecasts using distributed hydrological models. The main result is the implementation of a web system that uses an Iowa Flood Information System (IFIS)-based environment for graphical displays of rainfall-runoff simulation results for both real-time and past storm events. It communicates with ASYNCH ODE solver to perform large-scale distributed hydrological modeling based on segmentation of the terrain into hillslope-link hydrologic units. The cyber-platform also allows hindcast of model performance by testing multiple model configurations and assumptions of vertical flows in the soils. The scope of the currently implemented system is the entire set of contributing watersheds for the territory of the state of Iowa. The interface provides resources for visualization of animated maps for different water-related modeled states of the environment, including flood-waves propagation with classification of flood magnitude, runoff generation, surface soil moisture and total water column in the soil. Additional tools for comparing different model configurations and performing model evaluation by comparing to observed variables at monitored sites are also available. The user friendly interface has been published to the web under the URL http://ifis.iowafloodcenter.org/ifis/sc/modelplus/.

  4. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.

    PubMed

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-25

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840  eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  5. Comparing the Potential of the Sentinel-2 MSI and the Future EnMAP HSI for the Retrieval of Winter Wheat Crop Parameters in Southern Germany

    NASA Astrophysics Data System (ADS)

    Danner, Martin; Hank, Tobias; Mauser, Wolfram

    2016-08-01

    This study tests the effect of improved spectral resolution on different approaches for the estimation of crop biophysical variables of winter wheat in Southern Germany by comparing the existing Sentinel-2 MSI with the future EnMAP HSI. The experiment is based on simulated sensor data of both Sentinel-2 and EnMAP, with their individual spectral configurations and radiometric properties taken into account. An advanced multispectral setup, such as provided by Sentinel-2, proved to enable reasonable estimation of biophysical variables by applying machine learning algorithms. The augmented information content inherent in hyperspectral signatures, however, marks an advantage for the creation of novel narrow-band indices (RMSE improvement of 10.0%) and for the inversion of canopy reflectance models like PROSAIL independent from in-situ data (RMSE improvement of 18.7%). With the notable advantages of Sentinel-2 - higher revisit rates and better spectral resolution - new synergies are expected to arise, once both instruments will be operating in parallel configuration.

  6. Children’s Mapping between Non-Symbolic and Symbolic Numerical Magnitudes and Its Association with Timed and Untimed Tests of Mathematics Achievement

    PubMed Central

    Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert

    2014-01-01

    The ability to map between non-symbolic numerical magnitudes and Arabic numerals has been put forward as a key factor in children’s mathematical development. This mapping ability has been mainly examined indirectly by looking at children’s performance on a symbolic magnitude comparison task. The present study investigated mapping in a more direct way by using a task in which children had to choose which of two choice quantities (Arabic digits or dot arrays) matched the target quantity (dot array or Arabic digit), thereby focusing on small quantities ranging from 1 to 9. We aimed to determine the development of mapping over time and its relation to mathematics achievement. Participants were 36 first graders (M = 6 years 8 months) and 46 third graders (M = 8 years 8 months) who all completed mapping tasks, symbolic and non-symbolic magnitude comparison tasks and standardized timed and untimed tests of mathematics achievement. Findings revealed that children are able to map between non-symbolic and symbolic representations and that this mapping ability develops over time. Moreover, we found that children’s mapping ability is related to timed and untimed measures of mathematics achievement, over and above the variance accounted for by their numerical magnitude comparison skills. PMID:24699664

  7. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R. A.; Johns, W. M.; Flood, R. E.; Hawley, K. T.; Wackwitz, L. K.

    1973-01-01

    The author has identified the following significant results. A detailed band 7 ERTS-1 lineament map covering western Montana and northern Idaho has been prepared and is being evaluated by direct comparison with geologic maps, by statistical plots of lineaments and known faults, and by field checking. Lineament patterns apparent in the Idaho and Boulder batholiths do not correspond to any known geologic structures. A band 5 mosaic of Montana and adjacent areas has been laid and a lineament annotation prepared for comparison with the band 7 map. All work to date indicates that ERTS-1 imagery is very useful for revealing patterns of high-angle faults, though much less useful for mapping rock units and patterns of low-angle faults. Large-scale mosaics of U-2 photographs of three test sites have been prepared for annotation and comparison with ERTS-1 maps. Mapping of Quaternary deposits in the Glacial Lake Missoula basin using U-2 color infrared transparencies has been successful resulting in the discovery of some deposits not previously mapped. Detailed work has been done for Test Site 354 D using ERTS-1 imagery; criteria for recognition of several rock types have been found. Photogeologic mapping for southeastern Montana suggest Wasatch deposits where none shown of geologic map.

  8. OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.

    PubMed

    Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M

    2007-01-01

    Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.

  9. Envisioning: Mental Rotation-based Semi-reactive Robot Control

    DTIC Science & Technology

    2012-01-01

    particular, the role of mental rotations acting on transient spatial representations de- rived from optic flow serves as our primary approach . Bio...mental mapping approach in which a model is mentally rotated to match one of several potential target configurations. The second approach is a...to mental mapping and rotation [Lourenco and Huttenlocher 07]. While this second approach is less likely to be subject to the time delays that are

  10. Doppler synthetic aperture radar interferometry: a novel SAR interferometry for height mapping using ultra-narrowband waveforms

    NASA Astrophysics Data System (ADS)

    Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.

    2018-05-01

    This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.

  11. Use of 3D vision for fine robot motion

    NASA Technical Reports Server (NTRS)

    Lokshin, Anatole; Litwin, Todd

    1989-01-01

    An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.

  12. The mapping of eccentricity and meridional angle onto orthogonal axes in the primary visual cortex: an activity-dependent developmental model.

    PubMed

    Philips, Ryan T; Chakravarthy, V Srinivasa

    2015-01-01

    Primate vision research has shown that in the retinotopic map of the primary visual cortex, eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto the dorsoventral axis. Theoretically such a map has been approximated by a complex log map. Neural models with correlational learning have explained the development of other visual maps like orientation maps and ocular-dominance maps. In this paper it is demonstrated that activity based mechanisms can drive a self-organizing map (SOM) into such a configuration that dilations and rotations of a particular image (in this case a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an appropriate boundary and realistic initial conditions, that a retinotopic map which maps eccentricity and meridional angle to the horizontal and vertical axes respectively can be developed. This developed map bears a strong resemblance to the complex log map. We also simulated lesion studies which indicate that the lateral excitatory connections play a crucial role in development of the retinotopic map.

  13. Three alternative structural configurations for phlebotomy: a comparison of effectiveness.

    PubMed

    Mannion, Heidi; Nadder, Teresa

    2007-01-01

    This study was designed to compare the effectiveness of three alternative structural configurations for inpatient phlebotomy. It was hypothesized that decentralized was less effective when compared to centralized inpatient phlebotomy. A non-experimental prospective survey design was conducted at the institution level. Laboratory managers completed an organizational survey and collected data on inpatient blood specimens during a 30-day data collection period. A random sample (n=31) of hospitals with onsite laboratories in the United States was selected from a database purchased from the Joint Commission on Accreditations of Healthcare Organizations (JCAHO). Effectiveness of the blood collection process was measured by the percentage of specimens rejected during the data collection period. Analysis of variance showed a statistically significant difference in the percentage of specimens rejected for centralized, hybrid, and decentralized phlebotomy configurations [F (2, 28) = 4.27, p = .02] with an effect size of .23. Post-hoc comparison using Tukey's HSD indicated that mean percentage of specimens rejected for centralized phlebotomy (M = .045, SD = 0.36) was significantly different from the decentralized configuration (M = 1.42, SD = 0.92, p = .03). found to be more effective when compared to the decentralized configuration.

  14. College students' understanding of stereochemistry: Difficulties in learning and critical junctures

    NASA Astrophysics Data System (ADS)

    Lyon, Gary Lester

    Because stereochemistry is an important part of both high school and college chemistry curricula, a study of difficulties experienced by students in the learning of stereochemistry was undertaken in a one-semester college organic chemistry course. This study, conducted over the course of two semesters with more than two hundred students, utilized clinical interviews, concept maps, and student journals to identify these difficulties, which were then tabulated and categorized. Although student journals were not a productive source of information, the types of difficulties that emerged from the concept maps were compared and contrasted with those that emerged from the clinical interviews. Data from the concept maps were analyzed using Kendall's W, a nonparametric statistic that was deemed appropriate for determining concordance between individual concept maps. The correlation between values of Kendall's W for sets of concept maps and multiple choice questions designed to evaluate the content of these same maps was determined, with values of Pearson's r of .8093 (p = .051) and .7191 (p = .044) for the Fall, 1997 and Spring, 1998 semesters, respectively. These data were used to estimate the occurrence of critical junctures in the learning of stereochemistry, or points at which students must possess a certain framework of understanding of previous concepts in order to master new material (Trowbridge & Wandersee, 1994). One critical juncture was identified that occurred when the topics of enantiorners, absolute configuration, and inversion of configuration were introduced. Among the more important conclusions of this study to the learning of stereochemistry are the following. Both concept maps and interviews provided useful information regarding difficulties in the learning of stereochemistry; this information was complementary in some aspects and similar in others. Concept maps were useful in diagnosing difficulties in application of terms and definitions, whereas interviews were useful when seeking information about difficulties in the manipulation of chemical structures. Both concept maps and interviews were superior to student journals as tools to probe student difficulties in the learning of stereochemistry.

  15. Uncertainties in ecosystem service maps: a comparison on the European scale.

    PubMed

    Schulp, Catharina J E; Burkhard, Benjamin; Maes, Joachim; Van Vliet, Jasper; Verburg, Peter H

    2014-01-01

    Safeguarding the benefits that ecosystems provide to society is increasingly included as a target in international policies. To support such policies, ecosystem service maps are made. However, there is little attention for the accuracy of these maps. We made a systematic review and quantitative comparison of ecosystem service maps on the European scale to generate insights in the uncertainty of ecosystem service maps and discuss the possibilities for quantitative validation. Maps of climate regulation and recreation were reasonably similar while large uncertainties among maps of erosion protection and flood regulation were observed. Pollination maps had a moderate similarity. Differences among the maps were caused by differences in indicator definition, level of process understanding, mapping aim, data sources and methodology. Absence of suitable observed data on ecosystem services provisioning hampers independent validation of the maps. Consequently, there are, so far, no accurate measures for ecosystem service map quality. Policy makers and other users need to be cautious when applying ecosystem service maps for decision-making. The results illustrate the need for better process understanding and data acquisition to advance ecosystem service mapping, modelling and validation.

  16. Pulsed xenon flashlamp device for the treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Baumgardner, Jonathan M.; Hennings, David R.; Johnston, Thomas F., Jr.; Taylor, Eric

    2003-06-01

    We present our research into a pulsed xenon lamp source for the treatment of psoriasis and other skin disorders. Various filtering techniques, lamp configurations, power supply configurations and delivery systems are discussed. Comparisons are made to existing treatment modalities. Cryogen cooling of the treatment site is discussed.

  17. X-MATE: a flexible system for mapping short read data

    PubMed Central

    Pearson, John V.; Cloonan, Nicole; Grimmond, Sean M.

    2011-01-01

    Summary: Accurate and complete mapping of short-read sequencing to a reference genome greatly enhances the discovery of biological results and improves statistical predictions. We recently presented RNA-MATE, a pipeline for the recursive mapping of RNA-Seq datasets. With the rapid increase in genome re-sequencing projects, progression of available mapping software and the evolution of file formats, we now present X-MATE, an updated version of RNA-MATE, capable of mapping both RNA-Seq and DNA datasets and with improved performance, output file formats, configuration files, and flexibility in core mapping software. Availability: Executables, source code, junction libraries, test data and results and the user manual are available from http://grimmond.imb.uq.edu.au/X-MATE/. Contact: n.cloonan@uq.edu.au; s.grimmond@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics Online. PMID:21216778

  18. Transmission imaging for integrated PET-MR systems.

    PubMed

    Bowen, Spencer L; Fuin, Niccolò; Levine, Michael A; Catana, Ciprian

    2016-08-07

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method's performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with (18)F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm(-1) was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly less artifacts and improved dynamic range, and differed greatly for highly attenuating materials in the case of the patient table, compared to CT results. Use of a fixed torus geometry, in combination with translation of the patient table to perform complete tomographic sampling, generated highly quantitative measured μ-maps and is expected to produce images with significantly higher SNR than competing fixed geometries at matched total acquisition time.

  19. Transmission imaging for integrated PET-MR systems

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer L.; Fuin, Niccolò; Levine, Michael A.; Catana, Ciprian

    2016-08-01

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method’s performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with 18F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm-1 was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly less artifacts and improved dynamic range, and differed greatly for highly attenuating materials in the case of the patient table, compared to CT results. Use of a fixed torus geometry, in combination with translation of the patient table to perform complete tomographic sampling, generated highly quantitative measured μ-maps and is expected to produce images with significantly higher SNR than competing fixed geometries at matched total acquisition time.

  20. Space shuttle requirements/configuration evolution

    NASA Technical Reports Server (NTRS)

    Andrews, E. P.

    1991-01-01

    Space Shuttle chronology; Space Shuttle comparison; Cost comparison; Performance; Program ground rules; Sizing criteria; Crew/passenger provisions; Space Shuttle Main Engine (SSME) characteristics; Space Shuttle program milestones; and Space Shuttle requirements are outlined. This presentation is represented by viewgraphs.

  1. Preliminary report on candidates for AGARD standard aeroelastic configurations for dynamic response

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1987-01-01

    At the request of the Aeroelasticity Subcommittee of the AGARD Structures and Materials Panel, a survey of member countries has been conducted to seek candidates for a prospective set of standard configurations to be used for comparison of calculated and measured dynamic aeroelastic behavior with emphasis on the transonic speed range. This set is a sequel to that established several years ago for comparisons of calculated and measured aerodynamic pressures and forces. Approximately two dozen people in the United States, and more than three dozen people in the other member countries, were contacted. This preliminary report presents the results of the survey and an analysis of those results along with recommendations for the initial set of standard configurations and for additional experimental work needed to fill significant gaps in the available information.

  2. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  3. Customised City Maps in Mobile Applications for Senior Citizens.

    PubMed

    Reins, Frank; Berker, Frank; Heck, Helmut

    2017-01-01

    Map services should be used in mobile applications for senior citizens. Do the commonly used map services meet the needs of elderly people? - Exemplarily, the contrast ratios of common maps in comparison to an optimized custom rendered map are examined in the paper.

  4. Not all memories are the same: Situational context influences spatial recall within one's city of residency.

    PubMed

    Meilinger, Tobias; Frankenstein, Julia; Simon, Nadine; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2016-02-01

    Reference frames in spatial memory encoding have been examined intensively in recent years. However, their importance for recall has received considerably less attention. In the present study, passersby used tags to arrange a configuration map of prominent city center landmarks. It has been shown that such configurational knowledge is memorized within a north-up reference frame. However, participants adjusted their maps according to their body orientations. For example, when participants faced south, the maps were likely to face south-up. Participants also constructed maps along their location perspective-that is, the self-target direction. If, for instance, they were east of the represented area, their maps were oriented west-up. If the location perspective and body orientation were in opposite directions (i.e., if participants faced away from the city center), participants relied on location perspective. The results indicate that reference frames in spatial recall depend on the current situation rather than on the organization in long-term memory. These results cannot be explained by activation spread within a view graph, which had been used to explain similar results in the recall of city plazas. However, the results are consistent with forming and transforming a spatial image of nonvisible city locations from the current location. Furthermore, prior research has almost exclusively focused on body- and environment-based reference frames. The strong influence of location perspective in an everyday navigational context indicates that such a reference frame should be considered more often when examining human spatial cognition.

  5. Comparison of several methods for estimating low speed stability derivatives

    NASA Technical Reports Server (NTRS)

    Fletcher, H. S.

    1971-01-01

    Methods presented in five different publications have been used to estimate the low-speed stability derivatives of two unpowered airplane configurations. One configuration had unswept lifting surfaces, the other configuration was the D-558-II swept-wing research airplane. The results of the computations were compared with each other, with existing wind-tunnel data, and with flight-test data for the D-558-II configuration to assess the relative merits of the methods for estimating derivatives. The results of the study indicated that, in general, for low subsonic speeds, no one text appeared consistently better for estimating all derivatives.

  6. Evaluation of the User Strategy on 2d and 3d City Maps Based on Novel Scanpath Comparison Method and Graph Visualization

    NASA Astrophysics Data System (ADS)

    Dolezalova, J.; Popelka, S.

    2016-06-01

    The paper is dealing with scanpath comparison of eye-tracking data recorded during case study focused on the evaluation of 2D and 3D city maps. The experiment contained screenshots from three map portals. Two types of maps were used - standard map and 3D visualization. Respondents' task was to find particular point symbol on the map as fast as possible. Scanpath comparison is one group of the eye-tracking data analyses methods used for revealing the strategy of the respondents. In cartographic studies, the most commonly used application for scanpath comparison is eyePatterns that output is hierarchical clustering and a tree graph representing the relationships between analysed sequences. During an analysis of the algorithm generating a tree graph, it was found that the outputs do not correspond to the reality. We proceeded to the creation of a new tool called ScanGraph. This tool uses visualization of cliques in simple graphs and is freely available at www.eyetracking.upol.cz/scangraph. Results of the study proved the functionality of the tool and its suitability for analyses of different strategies of map readers. Based on the results of the tool, similar scanpaths were selected, and groups of respondents with similar strategies were identified. With this knowledge, it is possible to analyse the relationship between belonging to the group with similar strategy and data gathered from the questionnaire (age, sex, cartographic knowledge, etc.) or type of stimuli (2D, 3D map).

  7. A study of an orbital radar mapping mission to Venus. Volume 3: Parametric studies and subsystem comparisons

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Parametric studies and subsystem comparisons for the orbital radar mapping mission to planet Venus are presented. Launch vehicle requirements and primary orbiter propulsion system requirements are evaluated. The systems parametric analysis indicated that orbit size and orientation interrelated with almost all of the principal spacecraft systems and influenced significantly the definition of orbit insertion propulsion requirements, weight in orbit capability, radar system design, and mapping strategy.

  8. Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-MOX, R2-UO2 and MORGANE/R configurations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.; Klann, R. T.; Nuclear Engineering Division

    2007-08-03

    An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.

  9. Aerodynamic Comparison of Hyper-Elliptic Cambered Span (HECS) Wings with Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Lazos, Barry S.; Visser, Kenneth D.

    2006-01-01

    An experimental study was conducted to examine the aerodynamic and flow field characteristics of hyper-elliptic cambered span (HECS) wings and compare results with more conventional configurations used for induced drag reduction. Previous preliminary studies, indicating improved L/D characteristics when compared to an elliptical planform prompted this more detailed experimental investigation. Balance data were acquired on a series of swept and un-swept HECS wings, a baseline elliptic planform, two winglet designs and a raked tip configuration. Seven-hole probe wake surveys were also conducted downstream of a number of the configurations. Wind tunnel results indicated aerodynamic performance levels of all but one of the HECS wings exceeded that of the other configurations. The flow field data surveys indicate the HECS configurations displaced the tip vortex farther outboard of the wing than the Baseline configuration. Minimum drag was observed on the raked tip configuration and it was noted that the winglet wake lacked the cohesive vortex structure present in the wakes of the other configurations.

  10. Sea-surface circulation, sediment transport, and marine mammal distribution, Alaska continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burns, J. J.

    1973-01-01

    The author has identified the following significant results. Even though nonsynchronous, the ERTS-1 imagery of November 4, 1972, showed a striking similarity to the ground truth data obtained in late August and September, 1972. The comparison of the images with ground truth data revealed that the general water circulation pattern in Lower Cook Inlet is consistent through the Fall season and that ERTS-1 images in MSS bands 4 and 5 are capable of delineating water masses with a suspended load as low as 1 mg/liter. The ERTS-1 data and the ground truth data demonstrate clearly that the coriolis effect dominates circulation in Lower Cook Inlet. The configuration of plumes in Nushagak and Kuskokwim bays further indicates the influence of the coriolis effect on the movement of sea water at high latitudes. Comparison of MSS bands 4, 5, 6, and 7 suggest MSS-1 penetration of several meters into the water column. Sea ice analysis of available imagery was exceptionally rewarding. The imagery provided a rapid method to delineate and describe the ice types apparent in the photos. The ice types ranged from newly formed grease ice to heavy flows of disintegrating shore-fast ice. Sea ice maps showing the extent of different ice zones in the Chukchi Sea are being compiled.

  11. Parametric analysis of ATT configurations.

    NASA Technical Reports Server (NTRS)

    Lange, R. H.

    1972-01-01

    This paper describes the results of a Lockheed parametric analysis of the performance, environmental factors, and economics of an advanced commercial transport envisioned for operation in the post-1985 time period. The design parameters investigated include cruise speeds from Mach 0.85 to Mach 1.0, passenger capacities from 200 to 500, ranges of 2800 to 5500 nautical miles, and noise level criteria. NASA high performance configurations and alternate configurations are operated over domestic and international route structures. Indirect and direct costs and return on investment are determined for approximately 40 candidate aircraft configurations. The candidate configurations are input to an aircraft sizing and performance program which includes a subroutine for noise criteria. Comparisons are made between preferred configurations on the basis of maximum return on investment as a function of payload, range, and design cruise speed.

  12. Automated mapping of the ocean floor using the theory of intrinsic random functions of order k

    USGS Publications Warehouse

    David, M.; Crozel, D.; Robb, James M.

    1986-01-01

    High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.

  13. The SCUBA-2 Data Reduction Cookbook

    NASA Astrophysics Data System (ADS)

    Thomas, Holly S.; Currie, Malcolm J.

    This cookbook provides a short introduction to Starlink facilities, especially SMURF, the Sub-Millimetre User Reduction Facility, for reducing, displaying, and calibrating SCUBA-2 data. It describes some of the data artefacts present in SCUBA-2 time-series and methods to mitigate them. In particular, this cookbook illustrates the various steps required to reduce the data; and gives an overview of the Dynamic Iterative Map-Maker, which carries out all of these steps using a single command controlled by a configuration file. Specialised configuration files are presented.

  14. Friction Stir Process Mapping Methodology

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Kooney, Alex; Russell, Carolyn

    2003-01-01

    The weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.

  15. SAD-Based Stereo Vision Machine on a System-on-Programmable-Chip (SoPC)

    PubMed Central

    Zhang, Xiang; Chen, Zhangwei

    2013-01-01

    This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users' configuration data. The Sum of Absolute Differences (SAD) algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels. PMID:23459385

  16. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  17. A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    NASA Technical Reports Server (NTRS)

    Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.

    1988-01-01

    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.

  18. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-01-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  19. Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year

    NASA Astrophysics Data System (ADS)

    Klein, A. G.; Thapa, S.

    2017-12-01

    The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.

  20. A novel modeling to predict the critical current behavior of Nb3Sn PIT strand under transverse load based on a scaling law and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tiening; Chiesa, Luisa; Takayasu, Makoto; Bordini, Bernardo

    2014-09-01

    Superconducting Nb3Sn Powder-In-Tube (PIT) strands could be used for the superconducting magnets of the next generation Large Hadron Collider. The strands are cabled into the typical flat Rutherford cable configuration. During the assembly of a magnet and its operation the strands experience not only longitudinal but also transverse load due to the pre-compression applied during the assembly and the Lorentz load felt when the magnets are energized. To properly design the magnets and guarantee their safe operation, mechanical load effects on the strand superconducting properties are studied extensively; particularly, many scaling laws based on tensile load experiments have been established to predict the critical current dependence on strain. However, the dependence of the superconducting properties on transverse load has not been extensively studied so far. One of the reasons is that transverse loading experiments are difficult to conduct due to the small diameter of the strand (about 1 mm) and the data currently available do not follow a common measurement standard making the comparison between different data sets difficult. Recently at the University of Geneva, a new device has been developed to characterize the critical current of Nb3Sn strands under transverse loads. In this work we present a new 2D Finite Element Analysis (FEA) to predict the electro-mechanical response of a PIT strand that was tested at the University of Geneva when transverse load is applied. The FEA provides the strain map for the superconducting filaments when the load is applied. Those strain maps are then used to evaluate the critical current behavior of a PIT strand using a recently developed scaling law that correlates the superconducting properties of a wire with the strain invariants due to the load applied on the superconductor. The benefits and limitations of this method are discussed based on the comparison between the critical current simulation results obtained with the filament strain map and the experimental results available for PIT strands.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  2. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  3. RPython high-level synthesis

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  4. Comparison of Multiple Beam Coverage to Earth Coverage for a Maritime Satellite System

    DOT National Transportation Integrated Search

    1973-12-01

    Preliminary tradeoff comparisons were analyzed for a possible baseline L-band maritime communications satellite system. Primary emphasis was given to major shipping routes with secondary coverage elsewhere. A low cost satellite configuration was post...

  5. Robust synchronization in fiber laser arrays.

    PubMed

    Peles, Slaven; Rogers, Jeffrey L; Wiesenfeld, Kurt

    2006-02-01

    Synchronization of coupled fiber lasers has been reported in recent experiments [Bruesselbach, Opt. Lett. 30, 1339 (2005); Minden, Proc. SPIE 5335, 89 (2004)]. While these results may lead to dramatic advances in laser technology, the mechanism by which these lasers synchronize is not understood. We analyze a recently proposed [Rogers, IEEE J. Quantum Electron. 41, 767 (2005)] iterated map model of fiber laser arrays to explore this phenomenon. In particular, we look at synchronous solutions of the maps when the gain fields are constant. Determining the stability of these solutions is analytically tractable for a number of different coupling schemes. We find that in the most symmetric physical configurations the most symmetric solution is either unstable or stable over insufficient parameter range to be practical. In contrast, a lower symmetry configuration yields surprisingly robust coherence. This coherence persists beyond the pumping threshold for which the gain fields become time dependent.

  6. Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Humphreys, Jr., William M. (Inventor); Brooks, Thomas F. (Inventor)

    2012-01-01

    Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.

  7. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    DOEpatents

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  8. Deconvolution methods and systems for the mapping of acoustic sources from phased microphone arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)

    2010-01-01

    A method and system for mapping acoustic sources determined from a phased microphone array. A plurality of microphones are arranged in an optimized grid pattern including a plurality of grid locations thereof. A linear configuration of N equations and N unknowns can be formed by accounting for a reciprocal influence of one or more beamforming characteristics thereof at varying grid locations among the plurality of grid locations. A full-rank equation derived from the linear configuration of N equations and N unknowns can then be iteratively determined. A full-rank can be attained by the solution requirement of the positivity constraint equivalent to the physical assumption of statically independent noise sources at each N location. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with the phased microphone array in order to compile an output presentation thereof, thereby removing the beamforming characteristics from the resulting output presentation.

  9. Structural propensities and entropy effects in peptide helix-coil transitions

    NASA Astrophysics Data System (ADS)

    Chemmama, Ilan E.; Pelea, Adam Colt; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2012-09-01

    The helix-coil transition in peptides is a critical structural transition leading to functioning proteins. Peptide chains have a large number of possible configurations that must be accounted for in statistical mechanical investigations. Using hydrogen bond and local helix propensity interaction terms, we develop a method for obtaining and incorporating the degeneracy factor that allows the exact calculation of the partition function for a peptide as a function of chain length. The partition function is used in calculations for engineered peptide chains of various lengths that allow comparison with a variety of different types of experimentally measured quantities, such as fraction of helicity as a function of both temperature and chain length, heat capacity, and denaturation studies. When experimental sensitivity in helicity measurements is properly accounted for in the calculations, the calculated curves fit well with the experimental curves. We determine values of interaction energies for comparison with known biochemical interactions, as well as quantify the difference in the number of configurations available to an amino acid in a random coil configuration compared to a helical configuration.

  10. Geometrical eigen-subspace framework based molecular conformation representation for efficient structure recognition and comparison

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Tian; Yang, Xiao-Bao; Zhao, Yu-Jun

    2017-04-01

    We have developed an extended distance matrix approach to study the molecular geometric configuration through spectral decomposition. It is shown that the positions of all atoms in the eigen-space can be specified precisely by their eigen-coordinates, while the refined atomic eigen-subspace projection array adopted in our approach is demonstrated to be a competent invariant in structure comparison. Furthermore, a visual eigen-subspace projection function (EPF) is derived to characterize the surrounding configuration of an atom naturally. A complete set of atomic EPFs constitute an intrinsic representation of molecular conformation, based on which the interatomic EPF distance and intermolecular EPF distance can be reasonably defined. Exemplified with a few cases, the intermolecular EPF distance shows exceptional rationality and efficiency in structure recognition and comparison.

  11. A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Neuhart, Dan H.; Zawodny, Nikolas S.; Liu, Fei; Yardibi, Tarik; Cattafesta, Louis; Van de Ven, Thomas

    2009-01-01

    A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.

  12. Forward-swept wing configuration designed for high maneuverability by use of a transonic computational method

    NASA Technical Reports Server (NTRS)

    Mann, M. J.; Mercer, C. E.

    1986-01-01

    A transonic computational analysis method and a transonic design procedure have been used to design the wing and the canard of a forward-swept-wing fighter configuration for good transonic maneuver performance. A model of this configuration was tested in the Langley 16-Foot Transonic Tunnel. Oil-flow photographs were obtained to examine the wind flow patterns at Mach numbers from 0.60 to 0.90. The transonic theory gave a reasonably good estimate of the wing pressure distributions at transonic maneuver conditions. Comparison of the forward-swept-wing configuration with an equivalent aft-swept-wing-configuration showed that, at a Mach number of 0.90 and a lift coefficient of 0.9, the two configurations have the same trimmed drag. The forward-swept wing configuration was also found to have trimmed drag levels at transonic maneuver conditions which are comparable to those of the HiMAT (highly maneuverable aircraft technology) configuration and the X-29 forward-swept-wing research configuration. The configuration of this study was also tested with a forebody strake.

  13. Aerodynamic characteristics of a tandem wing configuration of a Mach number of 0.30

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.; Huffman, J. K.

    1975-01-01

    An investigation was conducted to determine the aerodynamic characteristics of a tandem wing configuration. The configuration had a low forward mounted sweptback wing and a high rear mounted sweptforward wing jointed at the wing tip by an end plate. The investigation was conducted at a Mach number of 0.30 at angles of attack up to 20 deg. A comparison of the experimentally determined drag due to lift characteristics with theoretical estimates is also included.

  14. High sensitivity boundary layer transition detector

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Hoeft, T.

    1985-01-01

    A high sensitivity differential interferometer has been developed to locate the region where the boundary layer flow changes from laminar to turbulent. Two experimental configurations have been used to evaluate the performance of the interferometer, open shear layer configuration and wind tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations in the order of .001 the laser wavelength.

  15. Momentum Maps and Stochastic Clebsch Action Principles

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  16. Thermal and albedo mapping of the north and south polar regions of Mars

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Keegan, K. D.

    1991-01-01

    The first maps of the thermal properties of the north and south polar region of Mars are presented. The maps complete the mapping of the entire planet. The maps for the north polar region were derived from Viking Infrared Thermal Mapper (IRTM) observations obtained from 10 Jun. to 30 Sep. 1978. This period corresponds to the early summer season in the north, when the north residual water ice cap was exposed, and the polar surface temperatures were near their maximum. The maps in the south were derived from observations obtained between 24 Aug. to 23 Sep. 1977. This period corresponds to the late summer season in the south, when the seasonal polar cap had retreated to close to its residual configuration, and the second global dust storm of 1977 had largely subsided. The major results concerning the following topics are summarized: (1) surface water ice; (2) polar dune material; and (3) dust deposits.

  17. Use of LANDSAT-1 data for the detection and mapping of saline seeps in Montana

    NASA Technical Reports Server (NTRS)

    May, G. A. (Principal Investigator); Petersen, G. W.

    1976-01-01

    The author has identified the following significant results. April, May, and August are the best times to detect saline seeps. Specific times within these months would be dependent upon weather, phenology, and growth conditions. Saline seeps can be efficiently and accurately mapped, within resolution capabilities, from merged May and August LANDSAT 1 data. Seeps were mapped by detecting salt crusts in the spring and indicator plants in the fall. These indicator plants were kochia, inkweed, and foxtail barley. The total hectares of the mapped saline seeps were calculated and tabulated. Saline seeps less than two hectares in size or that have linear configurations less than 200 meters in width were not mapped using the LANDSAT 1 data. Saline seep signatures developed in the Coffee Creek test site were extended to map saline seeps located outside this area.

  18. Flow Structure Comparison for Two 7-Point LDI Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, Kathleen M.

    2017-01-01

    This paper presents a comparison primarily of the cold flow 2-D velocity profiles; and describes flame tube combusting flow operability for a 7-point Lean Direct Injector (LDI). This circular LDI array consists of a center element surrounded by six outer elements spaced 60 degrees apart; the spacing between all adjacent elements is the same. Each element consists of a simplex atomizer that injects at the throat of a converging-diverging venturi, and an axial swirler upstream of the venturi throat to generate swirl. The two configurations were: 1) one which consists of all 60 deg co-swirling axial air swirlers, and; 2) one configuration which uses a 60 deg swirler in the center, surrounded by counter-swirling 45 deg swirlers. Testing was done at 5- bar and at an inlet temperature of 700K. Two air reference velocities were considered in the cold flow measurements. The 2D velocity profiles were determined using particle image velocimetry. Results indicate the configuration using all 60 deg swirlers generates a field that moderates to a more uniform distribution at a shorter distance downstream and is more easily operable than the second configuration, which produces recirculation regions at the edges of the outer 45 deg swirlers, and results in a more stratified velocity field at any given axial location.

  19. Nonlinear distortion of thin liquid sheets

    NASA Astrophysics Data System (ADS)

    Mehring, Carsten Ralf

    Thin planar, annular and conical liquid sheets or films are analyzed, in a unified manner, by means of a reduced- dimension approach providing governing equations for the nonlinear motion of planar and swirling annular thin inviscid and incompressible liquid sheets in zero gravity and with axial disturbances only. Temporal analyses of periodically disturbed infinite sheets are considered, as well as spatial analyses of semi-infinite sheets modulated at the nozzle exit. Results on planar and swirling annular or conical sheets are presented for a zero density ambient gas. Here, conical sheets are obtained in the nearfield of the nozzle exit by considering sheets or films with swirl in excess of that needed to stabilize the discharging stream in its annular configuration. For nonswirling annular sheets a spatially and/or temporally constant gas-core pressure is assumed. A model extension considering the influence of aerodynamic effects on planar sheets is proposed. For planar and annular sheets, linear analyses of the pure initial- and pure boundary-value problem provide insight into the propagation characteristics of dilational and sinuous waves, the (linear) coupling between both wave modes, the stability limits for the annular configuration, as well as the appearance of particular waves on semi-infinite modulated sheets downstream from the nozzle exit. Nonlinear steady-state solutions for the conical configuration (without modulation) are illustrated. Comparison between nonlinear and linear numerical and linear analytical solutions for temporally or spatially developing sheets provides detailed information on the nonlinear distortion characteristics including nonlinear wave propagation and mode-coupling for all the considered geometric configurations and for a variety of parameter configurations. Sensitivity studies on the influence of Weber number, modulation frequency, annular radius, forcing amplitude and sheet divergence on breakup or collapse length and times are reported for modulated semi-infinite annular and conical sheets. Comparisons between the different geometric configurations are made. For periodically disturbed planar sheets, accuracy of the employed reduced-dimension approach is demonstrated by comparison with more accurate two-dimensional vortex dynamics simulations.

  20. Conceptual Trade Study of General Purpose Heat Source Powered Stirling Converter Configurations

    NASA Technical Reports Server (NTRS)

    Turpin, J. B.

    2007-01-01

    This Technical Manual describes a parametric study of general purpose heat source (GPHS) powered Stirling converter configurations. This study was performed in support of MSFC s efforts to establish the capability to perform non-nuclear system level testing and integration of radioisotope power systems. Six different GPHS stack configurations at a total of three different power levels (80, 250, and 500 W(sub e) were analyzed. The thermal profiles of the integrated GPHS modules (for each configuration) were calculated to determine maximum temperatures for comparison to allowable material limits. Temperature profiles for off-nominal power conditions were also assessed in order to better understand how power demands from the Stirling engine impact the performance of a given configuration.

  1. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  2. Comparative studies of the interaction between the Sun and planetary near space environments with the Solar Connections Observatory for Planetary Environments (SCOPE)

    NASA Astrophysics Data System (ADS)

    Harris, W. M.; Scope Team

    2003-04-01

    The Solar Connections Observatory for Planetary Environments (SCOPE) is a remote sensing facility designed to probe the nature of the relationship of planetary bodies and the local interstellar medium to the solar wind and UV-EUV radiation field. In particular, the SCOPE program seeks to comparatively monitor the near space environments and thermosphere/ionospheres of planets, planetesimals, and satellites under different magnetospheric configurations and as a function of heliocentric distance and solar activity. In addition, SCOPE will include the Earth as a science target, providing new remote observations of auroral and upper atmospheric phenomena and utilizing it as baseline for direct comparison with other planetary bodies. The observatory will be scheduled into discrete campaigns interleaving Target-Terrestrial observations to provide a comparative annual activity map over the course of a solar half cycle. The SCOPE science instrument consists of binocular UV (115-310 nm) and EUV (500-120 nm) telescopes and a side channel sky-mapping interferometer on a spacecraft stationed in a remote orbit. The telescope instruments provide a mix of capabilities including high spatial resolution narrow band imaging, moderate resolution broadband spectro-imaging, and high-resolution line spectroscopy. The side channel instrument will be optimized for line profile measurements of diagnostic terrestrial upper atmospheric, comet, interplanetary, and interstellar extended emissions.

  3. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    PubMed Central

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  4. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    PubMed

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  5. Friction Stir Process Mapping Methodology

    NASA Technical Reports Server (NTRS)

    Kooney, Alex; Bjorkman, Gerry; Russell, Carolyn; Smelser, Jerry (Technical Monitor)

    2002-01-01

    In FSW (friction stir welding), the weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule. The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.

  6. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

    PubMed Central

    López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel

    2017-01-01

    One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758

  7. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; hide

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  8. Determination of the absolute configuration of two estrogenic nonylphenols in solution by chiroptical methods

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-01-01

    The absolute configurations of two estrogenic nonylphenols were determined in solution. Both nonylphenols, NP35 and NP112 could not be crystallized so that only solution methods are able to solve directly the question of absolute configuration. The conclusion based on experimental and calculated optical rotation and VCD data for the nonylphenol NP35 was independently confirmed by another study using a camphanoyl derivative and X-ray analysis of the obtained crystals. In case of NP112, the experimental rotation data are inconclusive. However, the comparison between experimental and calculated VCD data allowed the determination of the absolute configuration.

  9. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products

    USGS Publications Warehouse

    Hansen, M.C.; Reed, B.

    2000-01-01

    Two global 1 km land cover data sets derived from 1992-1993 Advanced Very High Resolution Radiometer (AVHRR) data are currently available, the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) DISCover and the University of Maryland (UMd) 1 km land cover maps. This paper makes a preliminary comparison of the methodologies and results of the two products. The DISCover methodology employed an unsupervised clustering classification scheme on a per-continent basis using 12 monthly maximum NDVI composites as inputs. The UMd approach employed a supervised classification tree method in which temporal metrics derived from all AVHRR bands and the NDVI were used to predict class membership across the entire globe. The DISCover map uses the IGBP classification scheme, while the UMd map employs a modified IGBP scheme minus the classes of permanent wetlands, cropland/natural vegetation mosaic and ice and snow. Global area totals of aggregated vegetation types are very similar and have a per-pixel agreement of 74%. For tall versus short/no vegetation, the per-pixel agreement is 84%. For broad vegetation types, core areas map similarly, while transition zones around core areas differ significantly. This results in high regional variability between the maps. Individual class agreement between the two 1 km maps is 49%. Comparison of the maps at a nominal 0.5 resolution with two global ground-based maps shows an improvement of thematic concurrency of 46% when viewing average class agreement. The absence of the cropland mosaic class creates a difficulty in comparing the maps, due to its significant extent in the DISCover map. The DISCover map, in general, has more forest, while the UMd map has considerably more area in the intermediate tree cover classes of woody savanna/ woodland and savanna/wooded grassland.

  10. First measurements of error fields on W7-X using flux surface mapping

    DOE PAGES

    Lazerson, Samuel A.; Otte, Matthias; Bozhenkov, Sergey; ...

    2016-08-03

    Error fields have been detected and quantified using the flux surface mapping diagnostic system on Wendelstein 7-X (W7-X). A low-field 'more » $${\\rlap{-}\\ \\iota} =1/2$$ ' magnetic configuration ($${\\rlap{-}\\ \\iota} =\\iota /2\\pi $$ ), sensitive to error fields, was developed in order to detect their presence using the flux surface mapping diagnostic. In this configuration, a vacuum flux surface with rotational transform of n/m = 1/2 is created at the mid-radius of the vacuum flux surfaces. If no error fields are present a vanishingly small n/m = 5/10 island chain should be present. Modeling indicates that if an n = 1 perturbing field is applied by the trim coils, a large n/m = 1/2 island chain will be opened. This island chain is used to create a perturbation large enough to be imaged by the diagnostic. Phase and amplitude scans of the applied field allow the measurement of a small $$\\sim 0.04$$ m intrinsic island chain with a $${{130}^{\\circ}}$$ phase relative to the first module of the W7-X experiment. Lastly, these error fields are determined to be small and easily correctable by the trim coil system.« less

  11. Comparison of RAPD Linkage Maps Constructed For a Single Longleaf Pine From Both Haploid and Diploid Mapping Populations

    Treesearch

    Thomas L. Kubisiak; C.Dana Nelson; W.L. Name; M. Stine

    1996-01-01

    Considerable concern has been voiced regarding the reproducibility/transferability of RAPD markers across different genetic backgrounds in genetic mapping experiments. Therefore, separate gametic subsets (mapping populations) were used to construct individual random amplified polymorphic DNA (RAPD) linkage maps for a single longleaf pine (Pinus palustris...

  12. BACCardI--a tool for the validation of genomic assemblies, assisting genome finishing and intergenome comparison.

    PubMed

    Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C

    2005-04-01

    We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.

  13. Generative Topographic Mapping (GTM): Universal Tool for Data Visualization, Structure-Activity Modeling and Dataset Comparison.

    PubMed

    Kireeva, N; Baskin, I I; Gaspar, H A; Horvath, D; Marcou, G; Varnek, A

    2012-04-01

    Here, the utility of Generative Topographic Maps (GTM) for data visualization, structure-activity modeling and database comparison is evaluated, on hand of subsets of the Database of Useful Decoys (DUD). Unlike other popular dimensionality reduction approaches like Principal Component Analysis, Sammon Mapping or Self-Organizing Maps, the great advantage of GTMs is providing data probability distribution functions (PDF), both in the high-dimensional space defined by molecular descriptors and in 2D latent space. PDFs for the molecules of different activity classes were successfully used to build classification models in the framework of the Bayesian approach. Because PDFs are represented by a mixture of Gaussian functions, the Bhattacharyya kernel has been proposed as a measure of the overlap of datasets, which leads to an elegant method of global comparison of chemical libraries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparison of various configurations of CDC-type traps for the collection of Phlebotomus papatasi (Scopoli) in southern Israel

    USDA-ARS?s Scientific Manuscript database

    We conducted 2 experiments to determine the best configuration of CDC-trap for catching male and female Phlebotomus papatasi. Darker traps caught significantly more male sand flies; significantly more females were captured by traps with either all black or a combination of black and white features. ...

  15. Payload/orbiter contamination control requirement study, volume 2, exhibit A

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Hooper, V. W.; Rantanen, R. O.; Ress, E. B.

    1974-01-01

    The computer printout data generated during the Payload/Orbiter Contamination Control Requirement Study are presented. The computer listings of the input surface data matrices, the viewfactor data matrices, and the geometric relationship data matrices for the three orbiter/spacelab configurations analyzed in this study are given. These configurations have been broken up into the geometrical surfaces and nodes necessary to define the principal critical surfaces whether they are contaminant sources, experimental surfaces, or operational surfaces. A numbering scheme was established based upon nodal numbers that relates the various spacelab surfaces to a specific surface material or function. This numbering system was developed for the spacelab configurations such that future extension to a surface mapping capability could be developed as required.

  16. Misalignment sensitivity in an intra-cavity coherently combined crossed-Porro resonator configuration

    NASA Astrophysics Data System (ADS)

    Alperovich, Z.; Buchinsky, O.; Greenstein, S.; Ishaaya, A. A.

    2017-08-01

    We investigate the misalignment sensitivity in a crossed-Porro resonator configuration when coherently combining two pulsed multimode Nd:YAG laser channels. To the best of our knowledge, this is the first reported study of this configuration. The configuration is based on a passive intra-cavity interferometric combiner that promotes self-phase locking and coherent combining. Detailed misalignment sensitivity measurements are presented, examining both translation and angular deviations of the end prisms and combiner, and are compared to the results for standard flat end-mirror configurations. The results show that the most sensitive parameter in the crossed-Porro resonator configuration is the angular tuning of the intra-cavity interferometric combiner, which is ~±54 µrad. In comparison, with the flat end mirror configuration, the most sensitive parameter in the resonator is the angular tuning of the output coupler, which is ~±11 µrad. Thus, with the crossed-Porro configuration, we obtain significantly reduced sensitivity. This ability to reduce the misalignment sensitivity in coherently combined solid-state configurations may be beneficial in paving their way into practical use in a variety of demanding applications.

  17. An autonomous flying vehicle for Mars exploration

    NASA Astrophysics Data System (ADS)

    Bouras, Peter; Fox, Tim

    1990-09-01

    A remotely reprogrammable, autonomous flying craft for surveying and mapping the Martian surface environment is presented. This solar powered, modified flying wing design could cover about 2000 statute miles while maneuvering at Mach 0.3. The craft is configured to fly one km above the surface, measuring atmospheric properties, performing subsurface mapping, mapping the surface topography, and searching for the presence of water and perhaps life. A 35 kg scientific payload, plus communication and control electronics, are placed spanwise inside the flying wing, removing the requirement for a normal fuselage, and reducing structural needs. Thrust is provided by a two-bladed electrically driven propeller motorized by high-efficiency solar cells.

  18. Calibration of the DRASTIC ground water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, M.G.

    2001-01-01

    Ground water vulnerability maps developed using the DRASTIC method have been produced in many parts of the world. Comparisons of those maps with actual ground water quality data have shown that the DRASTIC method is typically a poor predictor of ground water contamination. This study significantly improved the effectiveness of a modified DRASTIC ground water vulnerability map by calibrating the point rating schemes to actual ground water quality data by using nonparametric statistical techniques and a geographic information system. Calibration was performed by comparing data on nitrite plus nitrate as nitrogen (NO2 + NO3-N) concentrations in ground water to land-use, soils, and depth to first-encountered ground water data. These comparisons showed clear statistical differences between NO2 + NO3-N concentrations and the various categories. Ground water probability point ratings for NO2 + NO3-N contamination were developed from the results of these comparisons, and a probability map was produced. This ground water probability map was then correlated with an independent set of NO2 + NO3-N data to demonstrate its effectiveness in predicting elevated NO2 + NO3-N concentrations in ground water. This correlation demonstrated that the probability map was effective, but a vulnerability map produced with the uncalibrated DRASTIC method in the same area and using the same data layers was not effective. Considerable time and expense have been outlaid to develop ground water vulnerability maps with the DRASTIC method. This study demonstrates a cost-effective method to improve and verify the effectiveness of ground water vulnerability maps.

  19. 32 CFR Appendix B to Part 651 - Categorical Exclusions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disturbance. Examples include topographic surveys, bird counts, wetland mapping, and other resources... existing land-use patterns. (4) Modification, product improvement, or configuration engineering design... original product design and there are no unusual disposal requirements. The development and use by the...

  20. 32 CFR Appendix B to Part 651 - Categorical Exclusions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disturbance. Examples include topographic surveys, bird counts, wetland mapping, and other resources... existing land-use patterns. (4) Modification, product improvement, or configuration engineering design... original product design and there are no unusual disposal requirements. The development and use by the...

  1. 32 CFR Appendix B to Part 651 - Categorical Exclusions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disturbance. Examples include topographic surveys, bird counts, wetland mapping, and other resources... existing land-use patterns. (4) Modification, product improvement, or configuration engineering design... original product design and there are no unusual disposal requirements. The development and use by the...

  2. 32 CFR Appendix B to Part 651 - Categorical Exclusions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disturbance. Examples include topographic surveys, bird counts, wetland mapping, and other resources... existing land-use patterns. (4) Modification, product improvement, or configuration engineering design... original product design and there are no unusual disposal requirements. The development and use by the...

  3. Kinematic functions for the 7 DOF robotics research arm

    NASA Technical Reports Server (NTRS)

    Kreutz, K.; Long, M.; Seraji, Homayoun

    1989-01-01

    The Robotics Research Model K-1207 manipulator is a redundant 7R serial link arm with offsets at all joints. To uniquely determine joint angles for a given end-effector configuration, the redundancy is parameterized by a scalar variable which corresponds to the angle between the manipulator elbow plane and the vertical plane. The forward kinematic mappings from joint-space to end-effector configuration and elbow angle, and the augmented Jacobian matrix which gives end-effector and elbow angle rates as a function of joint rates, are also derived.

  4. Superior spatial resolution in confocal X-ray techniques using collimating channel array optics: elemental mapping and speciation in archaeological human bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, S.; Agyeman-Budu, D. N.; Woll, A. R.

    Confocal X-ray fluorescence imaging (CXFI) and confocal X-ray absorption spectroscopy (CXAS) respectively enable the study of three dimensionally resolved localization and speciation of elements. Applied to a thick sample, essentially any volume element of interest within the X-ray fluorescence escape depth can be examined without the need for physical thin sectioning. To date, X-ray confocal detection generally has employed a polycapillary optic in front of the detector to collect fluorescence from the probe volume formed at the intersection of its focus with the incident microfocus beam. This work demonstrates the capability of a novel Collimating Channel Array (CCA) optic inmore » providing an improved and essentially energy independent depth resolution approaching 2 μm. By presenting a comparison of elemental maps of archaeological bone collected without confocal detection, and with polycapillary- and CCA-based confocal detection, this study highlights the strengths and limitations of each mode. Unlike the polycapillary, the CCA shows similar spatial resolution in maps for both low (Ca) and high (Pb and Sr) energy X-ray fluorescence, thus illustrating the energy independent nature of the CCA optic resolution. While superior spatial resolution is demonstrated for all of these elements, the most significant improvement is observed for Ca, demonstrating the advantage of employing the CCA optic in examining light elements. In addition to CXFI, this configuration also enables the collection of Pb L3 CXAS data from micro-volumes with dimensions comparable to bone microstructures of interest. Our CXAS result, which represents the first CCA-based biological CXAS, demonstrates the ability of CCA optics to collect site specific spectroscopic information. The demonstrated combination of site-specific elemental localization and speciation data will be useful in diverse fields.« less

  5. Outcrop-scale fracture trace identification using surface roughness derived from a high-density point cloud

    NASA Astrophysics Data System (ADS)

    Okyay, U.; Glennie, C. L.; Khan, S.

    2017-12-01

    Owing to the advent of terrestrial laser scanners (TLS), high-density point cloud data has become increasingly available to the geoscience research community. Research groups have started producing their own point clouds for various applications, gradually shifting their emphasis from obtaining the data towards extracting more and meaningful information from the point clouds. Extracting fracture properties from three-dimensional data in a (semi-)automated manner has been an active area of research in geosciences. Several studies have developed various processing algorithms for extracting only planar surfaces. In comparison, (semi-)automated identification of fracture traces at the outcrop scale, which could be used for mapping fracture distribution have not been investigated frequently. Understanding the spatial distribution and configuration of natural fractures is of particular importance, as they directly influence fluid-flow through the host rock. Surface roughness, typically defined as the deviation of a natural surface from a reference datum, has become an important metric in geoscience research, especially with the increasing density and accuracy of point clouds. In the study presented herein, a surface roughness model was employed to identify fracture traces and their distribution on an ophiolite outcrop in Oman. Surface roughness calculations were performed using orthogonal distance regression over various grid intervals. The results demonstrated that surface roughness could identify outcrop-scale fracture traces from which fracture distribution and density maps can be generated. However, considering outcrop conditions and properties and the purpose of the application, the definition of an adequate grid interval for surface roughness model and selection of threshold values for distribution maps are not straightforward and require user intervention and interpretation.

  6. An efficient approach to the travelling salesman problem using self-organizing maps.

    PubMed

    Vieira, Frederico Carvalho; Dória Neto, Adrião Duarte; Costa, José Alfredo Ferreira

    2003-04-01

    This paper presents an approach to the well-known Travelling Salesman Problem (TSP) using Self-Organizing Maps (SOM). The SOM algorithm has interesting topological information about its neurons configuration on cartesian space, which can be used to solve optimization problems. Aspects of initialization, parameters adaptation, and complexity analysis of the proposed SOM based algorithm are discussed. The results show an average deviation of 3.7% from the optimal tour length for a set of 12 TSP instances.

  7. Spectroscopic Ellipsometry Studies of Thin Film a-Si:H Solar Cell Fabrication by Multichamber Deposition in the n-i-p Substrate Configuration

    NASA Astrophysics Data System (ADS)

    Dahal, Lila Raj

    Real time spectroscopic ellipsometry (RTSE), and ex-situ mapping spectroscopic ellipsometry (SE) are powerful characterization techniques capable of performance optimization and scale-up evaluation of thin film solar cells used in various photovoltaics technologies. These non-invasive optical probes employ multichannel spectral detection for high speed and provide high precision parameters that describe (i) thin film structure, such as layer thicknesses, and (ii) thin film optical properties, such as oscillator variables in analytical expressions for the complex dielectric function. These parameters are critical for evaluating the electronic performance of materials in thin film solar cells and also can be used as inputs for simulating their multilayer optical performance. In this Thesis, the component layers of thin film hydrogenated silicon (Si:H) solar cells in the n-i-p or substrate configuration on rigid and flexible substrate materials have been studied by RTSE and ex-situ mapping SE. Depositions were performed by magnetron sputtering for the metal and transparent conducting oxide contacts and by plasma enhanced chemical vapor deposition (PECVD) for the semiconductor doped contacts and intrinsic absorber layers. The motivations are first to optimize the thin film Si:H solar cell in n-i-p substrate configuration for single-junction small-area dot cells and ultimately to scale-up the optimized process to larger areas with minimum loss in device performance. Deposition phase diagrams for both i- and p -layers on 2" x 2" rigid borosilicate glass substrate were developed as functions of the hydrogen-to-silane flow ratio in PECVD. These phase diagrams were correlated with the performance parameters of the corresponding solar cells, fabricated in the Cr/Ag/ZnO/n/i/ p/ITO structure. In both cases, optimization was achieved when the layers were deposited in the protocrystalline phase. Identical solar cell structures were fabricated on 6" x 6" borosilicate glass with 256 cells followed by ex-situ mapping SE on each cell to achieve better statistics for solar cell optimization by correlating local structural parameters with solar cell parameters. Solar cells of similar structure were also fabricated on flexible polymer substrates in the roll-to-roll configuration. In this configuration as well, RTSE was demonstrated as an effective process monitoring and control tool for thin film photovoltaics.

  8. The evolution of mapping habitat for northern spotted owls (Strix occidentalis caurina): A comparison of photo-interpreted, Landsat-based, and lidar-based habitat maps

    Treesearch

    Steven H. Ackers; Raymond J. Davis; Keith A. Olsen; Katie M. Dugger

    2015-01-01

    Wildlife habitat mapping has evolved at a rapid pace over the last fewdecades. Beginning with simple, often subjective, hand-drawn maps, habitat mapping now involves complex species distribution models (SDMs) using mapped predictor variables derived from remotely sensed data. For species that inhabit large geographic areas, remote sensing technology is often...

  9. Map Classification: A Comparison of Schemes with Special Reference to the Continent of Africa. Occasional Papers, Number 154.

    ERIC Educational Resources Information Center

    Merrett, Christopher E.

    This guide to the theory and practice of map classification begins with a discussion of the filing of maps and the function of map classification based on area and theme as illustrated by four maps of Africa. The description of the various classification systems which follows is divided into book schemes with provision for maps (including Dewey…

  10. Using Graphic Organizers to Teach Content Area Material to Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Dexter, Douglas D.

    2012-01-01

    A pretest-posttest comparison group design was used to investigate the effects of a semantic mapping lesson plus visual display versus a semantic mapping lesson alone on adolescents' with learning disabilities (LD) ability to gain and maintain factual knowledge from expository social studies material. In addition, a posttest only comparison group…

  11. Genome Comparisons Reveal a Dominant Mechanism of Chromosome Number Reduction in Grasses and Accelerated Genome Evolution in Triticeae

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphism was employed in the construction of a high-resolution, expressed sequence tag (EST) map of Aegilops tauschii, the diploid source of the wheat D genome. Comparison of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and...

  12. Determination of absolute configuration in 4-aryl-3, 4-dihydro-2(1H)-pyrimidones by high performance liquid chromatography and CD spectroscopy.

    PubMed

    Krenn, W; Verdino, P; Uray, G; Faber, K; Kappe, C O

    1999-01-01

    The absolute configuration of three 4-aryl-3, 4-dihydro-2(1H)-pyrimidones (Biginelli compounds, DHPMs) was established by comparison of the typical circular dichroism (CD) spectra of individual enantiomers with reference samples of known absolute configuration. The enantiomers were obtained by semipreparative separation of racemic mixtures on a Chiralcel OD-H chiral stationary phase. The method was used to establish the enantiopreference of various lipases in biocatalytic kinetic resolution experiments employing activated DHPM esters. Copyright 1999 Wiley-Liss, Inc.

  13. Comparison of peanut gentics and physical maps provided insights on collinearity, reversions and translocations

    USDA-ARS?s Scientific Manuscript database

    Genetic and physical maps are the valuable resources for peanut research community in understanding genome organization and serving as the basis for map-based cloning and marker-assisted selection. Physical maps of two diploid wild peanut progenitor species, Arachis duranensis (A genome) and A. ipae...

  14. Cognitive Processes in Orienteering: A Review.

    ERIC Educational Resources Information Center

    Seiler, Roland

    1996-01-01

    Reviews recent research on information processing and decision making in orienteering. The main cognitive demands investigated were selection of relevant map information for route choice, comparison between map and terrain in map reading and in relocation, and quick awareness of mistakes. Presents a model of map reading based on results. Contains…

  15. Airframe Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.

    2016-01-01

    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  16. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam.

    PubMed

    Rydzewski, J; Nowak, W

    2016-04-12

    In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand-protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [ Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015 , 143 ( 12 ), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam-camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.

  17. Identification of subsurface layer with Wenner-Schlumberger arrays configuration geoelectrical method

    NASA Astrophysics Data System (ADS)

    Jamaluddin; Prasetyawati Umar, Emi

    2018-02-01

    One of measurement methods to investigate the condition of the subsurface is by using geoelectric method. This research uses wenner-Schlumberger arrays configuration geoelectrical method which is mapping resistivity that is commonly known as profiling (2D) in order to identify the lateral and vertical anomaly of material resistivity. 2D resistivity cross section is obtained from the result of data- processing on software Res2Dinv. The data were obtained along 70 m using Wenner-Schlumberger configuration with 5 m spaced electrode. The approximated value of resistivity obtained from the data processing ranged from 1000-1548 Ωm and with the iteration error 87.9%. Based on the geological map of Ujung Pandang sheet, the location of the research is an alluvium and coastal precipitation area with grain in forms of gravel, sand, clay, mud, and coral limestone. Thus, by observing and analyzing the variety of the resistivity cross-section from the inversion data, there are areas (a) showing resistivity values ranged from 0.1-0.2 Ωm which is estimated to be salt water intrusion based on the resistivity table of Earth materials, and region (b) which is a mixture of sand and clay material with the range of resistivity values between 1-1000 μm.

  18. Forest fire advanced system technology (FFAST) conceptual design study

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Warren, John R.

    1987-01-01

    The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  19. Using Hadoop MapReduce for Parallel Genetic Algorithms: A Comparison of the Global, Grid and Island Models.

    PubMed

    Ferrucci, Filomena; Salza, Pasquale; Sarro, Federica

    2017-06-29

    The need to improve the scalability of Genetic Algorithms (GAs) has motivated the research on Parallel Genetic Algorithms (PGAs), and different technologies and approaches have been used. Hadoop MapReduce represents one of the most mature technologies to develop parallel algorithms. Based on the fact that parallel algorithms introduce communication overhead, the aim of the present work is to understand if, and possibly when, the parallel GAs solutions using Hadoop MapReduce show better performance than sequential versions in terms of execution time. Moreover, we are interested in understanding which PGA model can be most effective among the global, grid, and island models. We empirically assessed the performance of these three parallel models with respect to a sequential GA on a software engineering problem, evaluating the execution time and the achieved speedup. We also analysed the behaviour of the parallel models in relation to the overhead produced by the use of Hadoop MapReduce and the GAs' computational effort, which gives a more machine-independent measure of these algorithms. We exploited three problem instances to differentiate the computation load and three cluster configurations based on 2, 4, and 8 parallel nodes. Moreover, we estimated the costs of the execution of the experimentation on a potential cloud infrastructure, based on the pricing of the major commercial cloud providers. The empirical study revealed that the use of PGA based on the island model outperforms the other parallel models and the sequential GA for all the considered instances and clusters. Using 2, 4, and 8 nodes, the island model achieves an average speedup over the three datasets of 1.8, 3.4, and 7.0 times, respectively. Hadoop MapReduce has a set of different constraints that need to be considered during the design and the implementation of parallel algorithms. The overhead of data store (i.e., HDFS) accesses, communication, and latency requires solutions that reduce data store operations. For this reason, the island model is more suitable for PGAs than the global and grid model, also in terms of costs when executed on a commercial cloud provider.

  20. Apollo guidance, navigation, and control: Candidate configuration trade study, Stellar-Inertial Measurement System (SIMS) for an Earth Observation Satellite (EOS)

    NASA Technical Reports Server (NTRS)

    Ogletree, G.; Coccoli, J.; Mckern, R.; Smith, M.; White, R.

    1972-01-01

    The ten candidate SIMS configurations were reduced to three in preparation for the final trade comparison. The report emphasizes subsystem design trades, star availability studies, data processing (smoothing) methods, and the analytical and simulation studies at subsystem and system levels from which candidate accuracy estimates will be presented.

  1. A Comparison of Alternative Methods of Obtaining Defense Logistics Agency (DLA) Cognizance Spare Parts for Contractor Furnished Equipment (CFE) during Initial Outfitting of New Construction U.S. Navy Ships

    DTIC Science & Technology

    1991-12-01

    database, the Real Time Operation Management Information System (ROMIS), and Fitting Out Management Information System (FOMIS). These three configuration...Codes ROMIS Real Time Operation Management Information System SCLSIS Ship’s Configuration and Logistics Information System SCN Shipbuilding and

  2. Temporal switching jitter in photoconductive switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GAUDET,JOHN A.; SKIPPER,MICHAEL C.; ABDALLA,MICHAEL D.

    This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.

  3. No clustering for linkage map based on low-copy and undermethylated microsatellites.

    PubMed

    Zhou, Yi; Gwaze, David P; Reyes-Valdés, M Humberto; Bui, Thomas; Williams, Claire G

    2003-10-01

    Clustering has been reported for conifer genetic maps based on hypomethylated or low-copy molecular markers, resulting in uneven marker distribution. To test this, a framework genetic map was constructed from three types of microsatellites: low-copy, undermethylated, and genomic. These Pinus taeda L. microsatellites were mapped using a three-generation pedigree with 118 progeny. The microsatellites were highly informative; of the 32 markers in intercross configuration, 29 were segregating for three or four alleles in the progeny. The sex-averaged map placed 51 of the 95 markers in 15 linkage groups at LOD > 4.0. No clustering or uneven distribution across the genome was observed. The three types of P. taeda microsatellites were randomly dispersed within each linkage group. The 51 microsatellites covered a map distance of 795 cM, an average distance of 21.8 cM between markers, roughly half of the estimated total map length. The minimum and maximum distances between any two bins was 4.4 and 45.3 cM, respectively. These microsatellites provided anchor points for framework mapping for polymorphism in P. taeda and other closely related hard pines.

  4. Hybrid cloud and cluster computing paradigms for life science applications

    PubMed Central

    2010-01-01

    Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982

  5. Hybrid cloud and cluster computing paradigms for life science applications.

    PubMed

    Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey

    2010-12-21

    Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.

  6. Fine-grained, local maps and coarse, global representations support human spatial working memory.

    PubMed

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.

  7. Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory

    PubMed Central

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601

  8. Photodetachment Studies Of Atomic Negative Ions Through Velocity-Map Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chartkunchand, Kiattichart

    The technique of velocity-map imaging (VMI) spectroscopy as been adapted to a keV-level negative ion beamline for studies of photon-negative ion collisions. The design and operation of the VMI spectrometer takes into consideration the use of continuous, fast-moving (5 keV to 10 keV) ion beams, as well as a continuous wave (CW) laser as the source of photons. The VMI spectrometer has been used in photodetachment studies of the Group 14 negative ions Ge--, Sn--, and Pb-- at a photon wavelength of 532 nm. Measurements of the photoelectron angular distributions and asymmetry parameters for Ge-- and Sn-- were benchmarked against those measured previously [W. W. Williams, D. L. Carpenter, A. M. Covington, and J. S. Thompson, Phys. Rev. A 59, 4368 (1999), V. T. Davis, J. Ashokkumar, and J. S. Thompson, Phys. Rev. A 65, 024702 (2002)], while fine-structure-resolved asymmetry parameters for Pb-- were measured for the first time. Definitive evidence of a "forbidden" 4S 3/2→1D2 transition was observed in both the Ge-- and Sn-- photoelectron kinetic energy spectra. This transition is explained in terms of the inadequacy of the single-configuration description for the 1D2 excited state in the corresponding neutral. Near-threshold photodetachment studies of S-- were carried out in order to measure the spectral dependence of the photoelectron angular distribution. The resulting asymmetry parameters were measured at several photon wavelengths in the range of 575 nm (2.156 eV photon energy) to 615 nm (2.016 eV photon energy). Comparison of the measurements to a qualitative model of p-electron photodetachment [D. Hanstorp, C. Bengtsson, and D. J. Larson, Phys. Rev. A 40, 670 (1989)] were made. Deviations of the measured asymmetry parameters from the Hanstorp model near photodetachment thresholds suggests a reduced degree of suppression of d partial-waves than predicted by models. Measurement of the electron affinity of terbium was performed along with a determination of the structure of Tb--. The energy scale for the Tb-- photoelectron kinetic energy spectrum was calibrated to the photoelectron kinetic energy spectrum of Cs-- , whose electron affinity is well-known [T. A. Patterson, H. Hotop, A. Kasdan, D. W. Norcross, and W. C. Lineberger, Phys. Rev. Lett. 32 , 189 (1974)]. Comparison to a previous experimental measurement of the electron affinity of terbium [S. S. Duvvuri, Ph. D. dissertation, University of Nevada, Reno (2006)] and to theoretical calculations of the electron affinity [S. M. O'Malley and D. R. Beck, Phys. Rev. A 79, 012511 (2009)] were made. In contrast to the [Xe]4f106 s2 5I8 ground state configuration proposed in the experimental study and the [Xe]4f 85d6s26p 9G7 ground state configuration proposed in the theoretical study, the present study suggests a Tb-- ground state of [Xe]4f96s 26p 7I3 and an electron affinity of 0.13 +/- 0.07 eV for terbium.

  9. Map LineUps: Effects of spatial structure on graphical inference.

    PubMed

    Beecham, Roger; Dykes, Jason; Meulemans, Wouter; Slingsby, Aidan; Turkay, Cagatay; Wood, Jo

    2017-01-01

    Fundamental to the effective use of visualization as an analytic and descriptive tool is the assurance that presenting data visually provides the capability of making inferences from what we see. This paper explores two related approaches to quantifying the confidence we may have in making visual inferences from mapped geospatial data. We adapt Wickham et al.'s 'Visual Line-up' method as a direct analogy with Null Hypothesis Significance Testing (NHST) and propose a new approach for generating more credible spatial null hypotheses. Rather than using as a spatial null hypothesis the unrealistic assumption of complete spatial randomness, we propose spatially autocorrelated simulations as alternative nulls. We conduct a set of crowdsourced experiments (n=361) to determine the just noticeable difference (JND) between pairs of choropleth maps of geographic units controlling for spatial autocorrelation (Moran's I statistic) and geometric configuration (variance in spatial unit area). Results indicate that people's abilities to perceive differences in spatial autocorrelation vary with baseline autocorrelation structure and the geometric configuration of geographic units. These results allow us, for the first time, to construct a visual equivalent of statistical power for geospatial data. Our JND results add to those provided in recent years by Klippel et al. (2011), Harrison et al. (2014) and Kay & Heer (2015) for correlation visualization. Importantly, they provide an empirical basis for an improved construction of visual line-ups for maps and the development of theory to inform geospatial tests of graphical inference.

  10. Investigation of different ethylenediamine-N,N'-disuccinic acid-enhanced washing configurations for remediation of a Cu-contaminated soil: process kinetics and efficiency comparison between single-stage and multi-stage configurations.

    PubMed

    Ferraro, Alberto; Fabbricino, Massimiliano; van Hullebusch, Eric D; Esposito, Giovanni

    2017-09-01

    A comparison of Cu extraction yields for three different ethylenediamine-N,N'-disuccinic acid (EDDS)-enhanced washing configurations was performed on a Cu-contaminated soil. Batch experiments were used to simulate a single-stage continuous stirred tank reactor (CSTR) and a multi-stage (side feeding and counter-current) reactor. Single-stage CSTR conditions were simulated for various EDDS:(Cu + Cd + Pb + Co + Ni + Zn) molar ratio (EDDS:M ratio) (from 1 to 30) and liquid to soil (L/S) ratio (from 15 to 45). The highest Cu extraction yield (≃56%) was achieved with EDDS:M = 30. In contrast, a Cu extraction yield decrease was observed with increasing L/S ratio with highest extracted Cu achievement (≃48%) for L/S = 15. Side feeding configuration was tested in four experimental conditions through different fractionation mode of EDDS dose and treatment time at each washing step. Results from the four tests showed all enhanced Cu extraction (maximum values from ≃43 to ≃51%) achieved at lower treatment time and lower EDDS:M molar ratio compared to CSTR configuration with L/S = 25 and EDDS:M = 10. The counter-current washing was carried out through two washing flows achieving a process performance enhancement with 27% increase of extracted Cu compared to single-stage CSTR configuration. Higher Cu extraction percentage (36.8%) was observed in the first washing phase than in the second one (24.7%).

  11. Experimental Aerodynamic Characteristics of the Pegasus Air-Launched Booster and Comparisons with Predicted and Flight Results

    NASA Technical Reports Server (NTRS)

    Rhode, M. N.; Engelund, Walter C.; Mendenhall, Michael R.

    1995-01-01

    Experimental longitudinal and lateral-directional aerodynamic characteristics were obtained for the Pegasus and Pegasus XL configurations over a Mach number range from 1.6 to 6 and angles of attack from -4 to +24 degrees. Angle of sideslip was varied from -6 to +6 degrees, and control surfaces were deflected to obtain elevon, aileron, and rudder effectiveness. Experimental data for the Pegasus configuration are compared with engineering code predictions performed by Nielsen Engineering & Research, Inc. (NEAR) in the aerodynamic design of the Pegasus vehicle, and with results from the Aerodynamic Preliminary Analysis System (APAS) code. Comparisons of experimental results are also made with longitudinal flight data from Flight #2 of the Pegasus vehicle. Results show that the longitudinal aerodynamic characteristics of the Pegasus and Pegasus XL configurations are similar, having the same lift-curve slope and drag levels across the Mach number range. Both configurations are longitudinally stable, with stability decreasing towards neutral levels as Mach number increases. Directional stability is negative at moderate to high angles of attack due to separated flow over the vertical tail. Dihedral effect is positive for both configurations, but is reduced 30-50 percent for the Pegasus XL configuration because of the horizontal tail anhedral. Predicted longitudinal characteristics and both longitudinal and lateral-directional control effectiveness are generally in good agreement with experiment. Due to the complex leeside flowfield, lateral-directional characteristics are not as well predicted by the engineering codes. Experiment and flight data are in good agreement across the Mach number range.

  12. Using Concept Mapping to Improve Poor Readers' Understanding of Expository Text

    ERIC Educational Resources Information Center

    Morfidi, Eleni; Mikropoulos, Anastasios; Rogdaki, Aspasia

    2018-01-01

    The present study examined whether the use of concept mapping is more effective in teaching expository material in comparison to a traditional, lecture only, approach. Its objective was threefold. First, to determine if multimedia concept mapping produces differential learning outcomes compared to digital text-based concept mapping. Secondly, to…

  13. CMap 1.01: a comparative mapping application for the internet

    USDA-ARS?s Scientific Manuscript database

    CMap is a web-based tool for displaying and comparing maps of any type and from any species. A user can compare an unlimited number of maps, view pair-wise comparisons of known correspondences, and search for maps or for features by name, species, type and accession. CMap is freely available, can ...

  14. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically Coupled Configuration

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Briggs, Maxwell H.; Hervol, David S.

    2011-01-01

    A pair of 1-kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12-kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measureable difference in performance from the baseline data collected when the engines were separate, and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  15. Supporting performance and configuration management of GTE cellular networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ming; Lafond, C.; Jakobson, G.

    GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less

  16. On the Circulation Manifold for Two Adjacent Lifting Sections

    NASA Technical Reports Server (NTRS)

    Zannetti, Luca; Iollo, Angelo

    1998-01-01

    The circulation functional relative to two adjacent lifting sections is studied for two cases. In the first case we consider two adjacent circles. The circulation is computed as a function of the displacement of the secondary circle along the axis joining the two centers and of the angle of attack of the secondary circle, The gradient of such functional is computed by deriving a set of elliptic functions with respect both to their argument and to their Period. In the second case studied, we considered a wing-flap configuration. The circulation is computed by some implicit mappings, whose differentials with respect to the variation of the geometrical configuration in the physical space are found by divided differences. Configurations giving rise to local maxima and minima in the circulation manifold are presented.

  17. A new method for recognizing hand configurations of Brazilian gesture language.

    PubMed

    Costa Filho, C F F; Dos Santos, B L; de Souza, R S; Dos Santos, J R; Costa, M G F

    2016-08-01

    This paper describes a new method for recognizing hand configurations of the Brazilian Gesture Language - LIBRAS - using depth maps obtained with a Kinect® camera. The proposed method comprised three phases: hand segmentation, feature extraction, and classification. The segmentation phase is independent from the background and depends only on pixel depth information. Using geometric operations and numerical normalization, the feature extraction process was done independent from rotation and translation. The features are extracted employing two techniques: (2D)2LDA and (2D)2PCA. The classification is made with a novelty classifier. A robust database was constructed for classifier evaluation, with 12,200 images of LIBRAS and 200 gestures of each hand configuration. The best accuracy obtained was 95.41%, which was greater than previous values obtained in the literature.

  18. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically-Coupled Configuration

    NASA Astrophysics Data System (ADS)

    Geng, S. M.; Briggs, M. H.; Hervol, D. S.

    A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  19. Morphologic Evolution of the Mount St. Helens Crater Area, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1985-01-01

    The large rockslide-avalanche that preceded the eruption of Mount St. Helens on 18 May 1980 removed approximately 2.8 cubic km of material from the summit and north flank of the volcano, forming a horseshoe-shaped crater 2.0 km wide and 3.9 km long. A variety of erosional and depositional processes, notably mass wasting and gully development, acted to modify the topographic configuration of the crater area. To document this morphologic evolution, a series of annual large-scale topographic maps is being produced as a base for comparitive geomorphic analysis. Four topographic maps of the Mount St. Helens crater area at a scale of 1:4000 were produced by the National Mapping Division of the U. S. Geological Survey. Stereo aerial photography for the maps was obtained on 23 October 1980, 10 September 1981, 1 September 1982, and 17 August 1983. To quantify topographic changes in the study area, each topographic map is being digitized and corresponding X, Y, and Z values from successive maps are being computer-compared.

  20. A New N-methoxypyridone from the Co-Cultivation of Hawaiian Endophytic Fungi Camporesia sambuci FT1061 and Epicoccum sorghinum FT1062.

    PubMed

    Li, Chunshun; Sarotti, Ariel M; Yang, Baojun; Turkson, James; Cao, Shugeng

    2017-07-12

    A new N -methoxypyridone analog ( 1 ), together with four known compounds, was isolated from the co-culture of Hawaiian endophytic fungi Camporesia sambuci FT1061 and Epicoccum sorghinum FT1062. The structure of the new compound was elucidated as 11 S -hydroxy-1-methoxyfusaricide ( 1 ) by extensive spectroscopic analysis and comparison with the literature. The absolute configuration of 1 was determined by comparison with the experimental and calculated ECD spectra. The absolute configuration of compound 3 was investigated and renamed as (+)-epipyridone by comparison of the optical rotation and CD spectrum with those of 1 . The other known compounds were identified as epicoccarine B ( 2 ), D8646-2-6 ( 4 ), and iso-D8646-2-6 ( 5 ). Compounds 4 and 5 showed modest inhibitory activity towards pathogenic fungi. Epicoccarine B ( 2 ) inhibited A2780 and TK-10 with an IC 50 value of 22 μM.

  1. Comparison of Single-Event Transients Induced in an Operational Amplifier (LM124) by Pulsed Laser Light and a Broad Beam of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Buchner, Steve; McMorrow, Dale; Poivey, Christian; Howard, James, Jr.; Pease, Rom; Savage, Mark; Boulghassoul, Younis; Massengill, Lloyd

    2003-01-01

    A comparison of transients from heavy-ion and pulsed-laser testing shows good agreement for many different voltage configurations. The agreement is illustrated by comparing directly individual transients and plots of transient amplitude versus width.

  2. Towards easing the configuration and new team member accommodation for open source software based portals

    NASA Astrophysics Data System (ADS)

    Fu, L.; West, P.; Zednik, S.; Fox, P. A.

    2013-12-01

    For simple portals such as vocabulary based services, which contain small amounts of data and require only hyper-textual representation, it is often an overkill to adopt the whole software stack of database, middleware and front end, or to use a general Web development framework as the starting point of development. Directly combining open source software is a much more favorable approach. However, our experience with the Coastal and Marine Spatial Planning Vocabulary (CMSPV) service portal shows that there are still issues such as system configuration and accommodating a new team member that need to be handled carefully. In this contribution, we share our experience in the context of the CMSPV portal, and focus on the tools and mechanisms we've developed to ease the configuration job and the incorporation process of new project members. We discuss the configuration issues that arise when we don't have complete control over how the software in use is configured and need to follow existing configuration styles that may not be well documented, especially when multiple pieces of such software need to work together as a combined system. As for the CMSPV portal, it is built on two pieces of open source software that are still under rapid development: a Fuseki data server and Epimorphics Linked Data API (ELDA) front end. Both lack mature documentation and tutorials. We developed comparison and labeling tools to ease the problem of system configuration. Another problem that slowed down the project is that project members came and went during the development process, so new members needed to start with a partially configured system and incomplete documentation left by old members. We developed documentation/tutorial maintenance mechanisms based on our comparison and labeling tools to make it easier for the new members to be incorporated into the project. These tools and mechanisms also provided benefit to other projects that reused the software components from the CMSPV system.

  3. Comparison of different sets of array configurations for multichannel 2D ERT acquisition

    NASA Astrophysics Data System (ADS)

    Martorana, R.; Capizzi, P.; D'Alessandro, A.; Luzio, D.

    2017-02-01

    Traditional electrode arrays such Wenner-Schlumberger or dipole-dipole are still widely used thanks to their well-known properties but the array configurations are generally not optimized for multi-channel resistivity measures. Synthetic datasets relating to four different arrays, dipole-dipole (DD), pole-dipole (PD), Wenner-Schlumberger (WS) and a modified version of multiple gradient (MG), have been made for a systematic comparison between 2D resistivity models and their inverted images. Different sets of array configurations generated from simple combinations of geometric parameters (potential dipole lengths and dipole separation factors) were tested with synthetic and field data sets, even considering the influence of errors and the acquisition velocity. The purpose is to establish array configurations capable to provide reliable results but, at the same time, not involving excessive survey costs, even linked to the acquiring time and therefore to the number of current dipoles used. For DD, PD and WS arrays a progression of different datasets were considered increasing the number of current dipoles trying to get about the same amount of measures. A multi-coverage MG array configuration is proposed by increasing the lateral coverage and so the number of current dipoles. Noise simulating errors both on the electrode positions and on the electric potential was added. The array configurations have been tested on field data acquired in the landfill site of Bellolampo (Palermo, Italy), to detect and locate the leachate plumes and to identify the HDPE bottom of the landfill. The inversion results were compared using a quantitative analysis of data misfit, relative model resolution and model misfit. The results show that the trends of the first two parameters are linked on the array configuration and that a cumulative analysis of these parameters can help to choose the best array configuration in order to obtain a good resolution and reliability of a survey, according to generally short acquisition times.

  4. Tags, wireless communication systems, tag communication methods, and wireless communications methods

    DOEpatents

    Scott,; Jeff W. , Pratt; Richard, M [Richland, WA

    2006-09-12

    Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.

  5. Vector MO magnetometry for mapping microwave currents

    NASA Astrophysics Data System (ADS)

    Višňovský, Š.; Lišková-Jakubisová, E.; Harward, I.; Celinski, Z.

    2018-05-01

    Magneto-optic (MO) effects in magnetic multilayers (MML) can be employed in non-invasive 2D mapping of microwave (mw) radiation on the surface of semiconductor chips. A typical sensor configuration consists of Fe nanolayers sandwiched with dielectrics on a thin Si substrate transparent to mw radiation. To extend the observation bandwidth, Δf, up to 100 GHz range the sensor works at ferromagnetic resonance (FMR) frequency in applied magnetic flux density, Bappl. The mw currents excite the precession of magnetization, M, in magnetic nanolayers proportional to their amplitude. The MO component reflected on the sensor surface is proportional to the amplitude of M component, M⊥. The laser source operates at the wavelength of 410 nm. Its plane of incidence is oriented perpendicular to the M⊥ plane. M⊥ oscillates between polar and transverse configurations. A substantial improvement of MO figure of merit takes place in aperiodic MML. More favorable Δf vs. Bappl dependence and MO response can potentially be achieved in MML imbedding hexagonal ferrite or Co nanolayers with in-plane magnetic anisotropy.

  6. Developing an integrated electronic nursing record based on standards.

    PubMed

    van Grunsven, Arno; Bindels, Rianne; Coenen, Chel; de Bel, Ernst

    2006-01-01

    The Radboud University Nijmegen Medical Centre in the Netherlands develops a multidisciplinar (Electronic Health Record) based on the latest HL7 v3 (Health Level 7 version 3) D-MIM : Care provision. As part of this process we are trying to establish which nursing diagnoses and activities are minimally required. These NMDS (Nursing Minimal Data Set) are mapped or translated to ICF (for diagnoses) and CEN1828 Structures for (for activities). The mappings will be the foundation for the development of user interfaces for the registration of nursing activities. A homegrown custom-made web based configuration tool is used to exploit the possibilities of HL7 v3. This enables a sparkling launch of user interfaces that can contain the diversity of health care work processes. The first screens will be developed to support history taking for the nursing chart of the Neurology ward. The screens will contain both Dutch NMDS items and ward specific information. This will be configured dynamically per (group of) ward(s).

  7. Reaction schemes visualized in network form: the syntheses of strychnine as an example.

    PubMed

    Proudfoot, John R

    2013-05-24

    Representation of synthesis sequences in a network form provides an effective method for the comparison of multiple reaction schemes and an opportunity to emphasize features such as reaction scale that are often relegated to experimental sections. An example of data formatting that allows construction of network maps in Cytoscape is presented, along with maps that illustrate the comparison of multiple reaction sequences, comparison of scaffold changes within sequences, and consolidation to highlight common key intermediates used across sequences. The 17 different synthetic routes reported for strychnine are used as an example basis set. The reaction maps presented required a significant data extraction and curation, and a standardized tabular format for reporting reaction information, if applied in a consistent way, could allow the automated combination of reaction information across different sources.

  8. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    PubMed

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  9. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    PubMed Central

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-01-01

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203

  10. Short-term memory for spatial configurations in the tactile modality: a comparison with vision.

    PubMed

    Picard, Delphine; Monnier, Catherine

    2009-11-01

    This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.

  11. A Comparison of Computed and Experimental Flowfields of the RAH-66 Helicopter

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Budge, A. M.; Duque, E. P. N.

    1996-01-01

    This paper compares and evaluates numerical and experimental flowfields of the RAH-66 Comanche helicopter. The numerical predictions were obtained by solving the Thin-Layer Navier-Stokes equations. The computations use actuator disks to investigate the main and tail rotor effects upon the fuselage flowfield. The wind tunnel experiment was performed in the 14 x 22 foot facility located at NASA Langley. A suite of flow conditions, rotor thrusts and fuselage-rotor-tail configurations were tested. In addition, the tunnel model and the computational geometry were based upon the same CAD definition. Computations were performed for an isolated fuselage configuration and for a rotor on configuration. Comparisons between the measured and computed surface pressures show areas of correlation and some discrepancies. Local areas of poor computational grid-quality and local areas of geometry differences account for the differences. These calculations demonstrate the use of advanced computational fluid dynamic methodologies towards a flight vehicle currently under development. It serves as an important verification for future computed results.

  12. A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis.

    PubMed

    King, Julie; Thomas, Ann; James, Caron; King, Ian; Armstead, Ian

    2013-07-03

    Ryegrasses and fescues (genera, Lolium and Festuca) are species of forage and turf grasses which are used widely in agricultural and amenity situations. They are classified within the sub-family Pooideae and so are closely related to Brachypodium distachyon, wheat, barley, rye and oats. Recently, a DArT array has been developed which can be used in generating marker and mapping information for ryegrasses and fescues. This represents a potential common marker set for ryegrass and fescue researchers which can be linked through to comparative genomic information for the grasses. A F2 perennial ryegrass genetic map was developed consisting of 7 linkage groups defined by 1316 markers and deriving a total map length of 683 cM. The marker set included 866 DArT and 315 gene sequence-based markers. Comparison with previous DArT mapping studies in perennial and Italian ryegrass (L. multiflorum) identified 87 and 105 DArT markers in common, respectively, of which 94% and 87% mapped to homoeologous linkage groups. A similar comparison with meadow fescue (F. pratensis) identified only 28 DArT markers in common, of which c. 50% mapped to non-homoelogous linkage groups. In L. perenne, the genetic distance spanned by the DArT markers encompassed the majority of the regions that could be described in terms of comparative genomic relationships with rice, Brachypodium distachyon, and Sorghum bicolor. DArT markers are likely to be a useful common marker resource for ryegrasses and fescues, though the success in aligning different populations through the mapping of common markers will be influenced by degrees of population interrelatedness. The detailed mapping of DArT and gene-based markers in this study potentially allows comparative relationships to be derived in future mapping populations characterised using solely DArT markers.

  13. A Comparison of Active and Passive Methods for Control of Hypersonic Boundary Layers on Airbreathing Configurations

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    2003-01-01

    Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.

  14. Quantifying Patterns of Smooth Muscle Motility in the Gut and Other Organs With New Techniques of Video Spatiotemporal Mapping

    PubMed Central

    Lentle, Roger G.; Hulls, Corrin M.

    2018-01-01

    The uses and limitations of the various techniques of video spatiotemporal mapping based on change in diameter (D-type ST maps), change in longitudinal strain rate (L-type ST maps), change in area strain rate (A-type ST maps), and change in luminous intensity of reflected light (I-maps) are described, along with their use in quantifying motility of the wall of hollow structures of smooth muscle such as the gut. Hence ST-methods for determining the size, speed of propagation and frequency of contraction in the wall of gut compartments of differing geometric configurations are discussed. We also discuss the shortcomings and problems that are inherent in the various methods and the use of techniques to avoid or minimize them. This discussion includes, the inability of D-type ST maps to indicate the site of a contraction that does not reduce the diameter of a gut segment, the manipulation of axis [the line of interest (LOI)] of L-maps to determine the true axis of propagation of a contraction, problems with anterior curvature of gut segments and the use of adjunct image analysis techniques that enhance particular features of the maps. PMID:29686624

  15. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  16. Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management

    PubMed Central

    Crossman, Neville D.; MacEwan, Richard J.; Wallace, D. Dugal; Bennett, Lauren T.

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km2 in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes. PMID:24616632

  17. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management.

    PubMed

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  18. The DosiMap, a new 2D scintillating dosimeter for IMRT quality assurance: characterization of two Cerenkov discrimination methods.

    PubMed

    Frelin, A M; Fontbonne, J M; Ban, G; Colin, J; Labalme, M; Batalla, A; Vela, A; Boher, P; Braud, M; Leroux, T

    2008-05-01

    New radiation therapy techniques such as IMRT present significant efficiency due to their highly conformal dose distributions. A consequence of the complexity of their dose distributions (high gradients, small irradiation fields, low dose distribution, ...) is the requirement for better precision quality assurance than in classical radiotherapy in order to compare the conformation of the delivered dose with the planned dose distribution and to guarantee the quality of the treatment. Currently this control is mostly performed by matrices of ionization chambers, diode detectors, dosimetric films, portal imaging, or dosimetric gels. Another approach is scintillation dosimetry, which has been developed in the last 15 years mainly through scintillating fiber devices. Despite having many advantages over other methods it is still at an experimental level for routine dosimetry because the Cerenkov radiation produced under irradiation represents an important stem effect. A new 2D water equivalent scintillating dosimeter, the DosiMap, and two different Cerenkov discrimination methods were developed with the collaboration of the Laboratoire de Physique Corpusculaire of Caen, the Comprehensive Cancer Center François Baclesse, and the ELDIM Co., in the frame of the MAESTRO European project. The DosiMap consists of a plastic scintillating sheet placed inside a transparent polystyrene phantom. The light distribution produced under irradiation is recorded by a CCD camera. Our first Cerenkov discrimination technique is subtractive. It uses a chessboard pattern placed in front of the scintillator, which provides a background signal containing only Cerenkov light. Our second discrimination technique is colorimetric. It performs a spectral analysis of the light signal, which allows the unfolding of the Cerenkov radiation and the scintillation. Tests were carried out with our DosiMap prototype and the performances of the two discrimination methods were assessed. The comparison of the dose measurements performed with the DosiMap and with dosimetric films for three different irradiation configurations showed discrepancies smaller than 3.5% for a 2 mm spatial resolution. Two innovative discrimination solutions were demonstrated to separate the scintillation from the Cerenkov radiation. It was also shown that the DosiMap, which is water equivalent, fast, and user friendly, is a very promising tool for radiotherapy quality assurance.

  19. One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application

    NASA Astrophysics Data System (ADS)

    Lignell, David O.; Lansinger, Victoria B.; Medina, Juan; Klein, Marten; Kerstein, Alan R.; Schmidt, Heiko; Fistler, Marco; Oevermann, Michael

    2018-06-01

    The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects.

  20. A Theoretical and Experimental Comparison of 3-3 and 3-1 Mode Piezoelectric Microelectromechanical Systems (MEMS)

    PubMed Central

    Kim, Donghwan; Hewa-Kasakarage, Nishshanka; Hall, Neal A.

    2014-01-01

    Two piezoelectric transducer modes applied in microelectromechanical systems are (i) the 3-1 mode with parallel electrodes perpendicular to a vertical polarization vector, and (ii) the 3-3 mode which uses interdigitated (IDT) electrodes to realize an in-plane polarization vector. This study compares the two configurations by deriving a Norton equivalent representation of each approach – including expressions for output charge and device capacitance. The model is verified using a microfabricated device comprised of multiple epitaxial silicon beams with sol-gel deposited lead zirconate titanate at the surface. The beams have identical dimensions and are attached to a common moving element at their tip. The only difference between beams is electrode configuration – enabling a direct comparison. Capacitance and charge measurements verify the presented theory with high accuracy. The Norton equivalent representation is general and enables comparison of any figure of merit, including electromechanical coupling coefficient and signal to noise ratio. With respect to coupling coefficient, the experimentally validated theory in this work suggests that 3-3 mode IDT-electrode configurations offer the potential for modest improvements compared against 3-1 mode devices (less than 2×), and the only geometrical parameter affecting this ratio is the fill factor of the IDT electrode. PMID:25309041

  1. Applied photo interpretation for airbrush cartography

    NASA Technical Reports Server (NTRS)

    Inge, J. L.; Bridges, P. M.

    1976-01-01

    New techniques of cartographic portrayal have been developed for the compilation of maps of lunar and planetary surfaces. Conventional photo interpretation methods utilizing size, shape, shadow, tone, pattern, and texture are applied to computer processed satellite television images. The variety of the image data allows the illustrator to interpret image details by inter-comparison and intra-comparison of photographs. Comparative judgements are affected by illumination, resolution, variations in surface coloration, and transmission or processing artifacts. The validity of the interpretation process is tested by making a representational drawing by an airbrush portrayal technique. Production controls insure the consistency of a map series. Photo interpretive cartographic portrayal skills are used to prepare two kinds of map series and are adaptable to map products of different kinds and purposes.

  2. Two and three dimensional grid generation by an algebraic homotopy procedure

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1990-01-01

    An algebraic method for generating two- and three-dimensional grid systems for aerospace vehicles is presented. The method is based on algebraic procedures derived from homotopic relations for blending between inner and outer boundaries of any given configuration. Stable properties of homotopic maps have been exploited to provide near-orthogonality and specified constant spacing at the inner boundary. The method has been successfully applied to analytically generated blended wing-body configurations as well as discretely defined geometries such as the High-Speed Civil Transport Aircraft. Grid examples representative of the capabilities of the method are presented.

  3. Effect of Ice Shape Fidelity on Swept-Wing Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Camello, Stephanie C.; Bragg, Michael B.; Broeren, Andy P.; Lum, Christopher W.; Woodard, Brian S.; Lee, Sam

    2017-01-01

    Low-Reynolds number testing was conducted at the 7 ft. x 10 ft. Walter H. Beech Memorial Wind Tunnel at Wichita State University to study the aerodynamic effects of ice shapes on a swept wing. A total of 17 ice shape configurations of varying geometric detail were tested. Simplified versions of an ice shape may help improve current ice accretion simulation methods and therefore aircraft design, certification, and testing. For each configuration, surface pressure, force balance, and fluorescent mini-tuft data were collected and for a selected subset of configurations oil-flow visualization and wake survey data were collected. A comparison of two ice shape geometries and two configurations with simplified geometric detail for each ice shape geometry is presented in this paper.

  4. Cortical responses following simultaneous and sequential retinal neurostimulation with different return configurations.

    PubMed

    Barriga-Rivera, Alejandro; Morley, John W; Lovell, Nigel H; Suaning, Gregg J

    2016-08-01

    Researchers continue to develop visual prostheses towards safer and more efficacious systems. However limitations still exist in the number of stimulating channels that can be integrated. Therefore there is a need for spatial and time multiplexing techniques to provide improved performance of the current technology. In particular, bright and high-contrast visual scenes may require simultaneous activation of several electrodes. In this research, a 24-electrode array was suprachoroidally implanted in three normally-sighted cats. Multi-unit activity was recorded from the primary visual cortex. Four stimulation strategies were contrasted to provide activation of seven electrodes arranged hexagonally: simultaneous monopolar, sequential monopolar, sequential bipolar and hexapolar. Both monopolar configurations showed similar cortical activation maps. Hexapolar and sequential bipolar configurations activated a lower number of cortical channels. Overall, the return configuration played a more relevant role in cortical activation than time multiplexing and thus, rapid sequential stimulation may assist in reducing the number of channels required to activate large retinal areas.

  5. A Comparison of Three Second-generation Swirl-Venturi Lean Direct Injection Combustor Concepts

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Podboy, Derek P.; He, Zhuohui Joe; Lee, Phil; Dam, Bidhan; Mongia, Hukam

    2016-01-01

    Three variations of a low emissions aircraft gas turbine engine combustion concept were developed and tested. The concept is a second generation swirl-venturi lean direct injection (SV-LDI) concept. LDI is a lean-burn combustion concept in which the fuel is injected directly into the flame zone. All three variations were based on the baseline 9- point SV-LDI configuration reported previously. The three second generation SV-LDI variations are called the 5-recess configuration, the flat dome configuration, and the 9- recess configuration. These three configurations were tested in a NASA Glenn Research Center medium pressure flametube. All three second generation variations had better low power operability than the baseline 9-point configuration. All three configurations had low NO(sub x) emissions, with the 5-recess configuration generally having slightly lower NO(x) than the flat dome or 9-recess configurations. Due to the limitations of the flametube that prevented testing at pressures above 20 atm, correlation equations were developed for the at dome and 9-recess configurations so that the landing-takeoff NO(sub x) emissions could be estimated. The flat dome and 9-recess landing-takeoff NO(x) emissions are estimated to be 81-88% below the CAEP/6 standards, exceeding the project goal of 75% reduction.

  6. Using a Statistical Approach to Anticipate Leaf Wetness Duration Under Climate Change in France

    NASA Astrophysics Data System (ADS)

    Huard, F.; Imig, A. F.; Perrin, P.

    2014-12-01

    Leaf wetness plays a major role in the development of fungal plant diseases. Leaf wetness duration (LWD) above a threshold value is determinant for infection and can be seen as a good indicator of impact of climate on infection occurrence and risk. As LWD is not widely measured, several methods, based on physics and empirical approach, have been developed to estimate it from weather data. Many LWD statistical models do exist, but the lack of standard for measurements require reassessments. A new empirical LWD model, called MEDHI (Modèle d'Estimation de la Durée d'Humectation à l'Inra) was developed for french configuration for wetness sensors (angle : 90°, height : 50 cm). This deployment is different from what is usually recommended from constructors or authors in other countries (angle from 10 to 60°, height from 10 to 150 cm…). MEDHI is a decision support system based on hourly climatic conditions at time steps n and n-1 taking account relative humidity, rainfall and previously simulated LWD. Air temperature, relative humidity, wind speed, rain and LWD data from several sensors with 2 configurations were measured during 6 months in Toulouse and Avignon (South West and South East of France) to calibrate MEDHI. A comparison of empirical models : NHRH (RH threshold), DPD (dew point depression), CART (classification and regression tree analysis dependant on RH, wind speed and dew point depression) and MEDHI, using meteorological and LWD measurements obtained during 5 months in Toulouse, showed that the development of this new model MEHDI was definitely better adapted to French conditions. In the context of climate change, MEDHI was used for mapping the evolution of leaf wetness duration in France from 1950 to 2100 with the French regional climate model ALADIN under different Representative Concentration Pathways (RCPs) and using a QM (Quantile-Mapping) statistical downscaling method. Results give information on the spatial distribution of infection risks during the current century. Such approach could be easily combined with thermal response curves of fungal infection for various pathogens.

  7. Advanced turboprop aircraft flyover noise annoyance - Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1989-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and jet aircraft flyover noise. It was found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved prediction ability.

  8. TOSCA calculations and measurements for the SLAC SLC damping ring dipole magnet

    NASA Astrophysics Data System (ADS)

    Early, R. A.; Cobb, J. K.

    1985-04-01

    The SLAC damping ring dipole magnet was originally designed with removable nose pieces at the ends. Recently, a set of magnetic measurements was taken of the vertical component of induction along the center of the magnet for four different pole-end configurations and several current settings. The three dimensional computer code TOSCA, which is currently installed on the National Magnetic Fusion Energy Computer Center's Cray X-MP, was used to compute field values for the four configurations at current settings near saturation. Comparisons were made for magnetic induction as well as effective magnetic lengths for the different configurations.

  9. High-sensitivity density fluctuation detector

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Hoeft, T.

    1987-01-01

    A high-sensitivity differential interferometer has been developed to detect small density fluctuations over an optical path length of the order of the boundary layer thickness near transition. Two experimental configurations have been used to evaluate the performance of the interferometer: an open shear-layer configuration and a wind-tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold-wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations of the order of 0.001 of the laser wavelength.

  10. Use of constrained optimization in the conceptual design of a medium-range subsonic transport

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1980-01-01

    Constrained parameter optimization was used to perform the optimal conceptual design of a medium range transport configuration. The impact of choosing a given performance index was studied, and the required income for a 15 percent return on investment was proposed as a figure of merit. A number of design constants and constraint functions were systematically varied to document the sensitivities of the optimal design to a variety of economic and technological assumptions. A comparison was made for each of the parameter variations between the baseline configuration and the optimally redesigned configuration.

  11. Low-speed Aerodynamic Investigations of a Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Gatlin, Gregory M.; Jenkins, Luther N.; Murphy, Patrick C.; Carter, Melissa B.

    2014-01-01

    Two low-speed static wind tunnel tests and a water tunnel static and dynamic forced-motion test have been conducted on a hybrid wing-body (HWB) twinjet configuration. These tests, in addition to computational fluid dynamics (CFD) analysis, have provided a comprehensive dataset of the low-speed aerodynamic characteristics of this nonproprietary configuration. In addition to force and moment measurements, the tests included surface pressures, flow visualization, and off-body particle image velocimetry measurements. This paper will summarize the results of these tests and highlight the data that is available for code comparison or additional analysis.

  12. Temporal variation in spatial sources of discharge in a large watershed

    EPA Science Inventory

    We examined how the spatial configuration of source areas for runoff varied over time in a watershed contaminated with mercury in order to understand processes governing material loading to rivers. Source areas within the Fox River watershed (Wisconsin, USA) were mapped for indiv...

  13. a Model Study of Small-Scale World Map Generalization

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.

    2018-04-01

    With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.

  14. Pump-probe photoelectron velocity-map imaging of autoionizing singly excited 4s{sup 1}4p{sup 6}np{sup 1}(n=7,8) and doubly excited 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} resonances in atomic krypton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, Benjamin; Haber, Louis H.; Leone, Stephen R.

    2011-10-15

    Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s{sup 1}4p{sup 6}np{sup 1} (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be {beta}{sub 2} = 1.61 {+-} 0.06 and {beta}{sub 4} = 1.54 {+-} 0.16 while the 8p configuration gives {beta}{sub 2} = 1.23 {+-} 0.19 and {beta}{submore » 4} = 0.60 {+-} 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.« less

  15. Water table in rocks of Cenozoic and Paleozoic age, 1980, Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Doty, G.C.; Thordarson, William

    1983-01-01

    The water table at Yucca Flat, Nevada Test Site, Nevada, occurs in rocks of Paleozoic age and in tuffs and alluvium of Cenozoic age and ranges in altitude from about 2,425 feet to about 3,500 feet. The configuration of the water table is depicted by contours with intervals of 25 to 500 feet. Control for the map consists of water-level information from 61 drill holes, whose locations and age of geologic units penetrated are shown by symbols on the map. (USGS)

  16. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map.

    PubMed Central

    Davis, G L; McMullen, M D; Baysdorfer, C; Musket, T; Grant, D; Staebell, M; Xu, G; Polacco, M; Koster, L; Melia-Hancock, S; Houchins, K; Chao, S; Coe, E H

    1999-01-01

    We have constructed a 1736-locus maize genome map containing1156 loci probed by cDNAs, 545 probed by random genomic clones, 16 by simple sequence repeats (SSRs), 14 by isozymes, and 5 by anonymous clones. Sequence information is available for 56% of the loci with 66% of the sequenced loci assigned functions. A total of 596 new ESTs were mapped from a B73 library of 5-wk-old shoots. The map contains 237 loci probed by barley, oat, wheat, rice, or tripsacum clones, which serve as grass genome reference points in comparisons between maize and other grass maps. Ninety core markers selected for low copy number, high polymorphism, and even spacing along the chromosome delineate the 100 bins on the map. The average bin size is 17 cM. Use of bin assignments enables comparison among different maize mapping populations and experiments including those involving cytogenetic stocks, mutants, or quantitative trait loci. Integration of nonmaize markers in the map extends the resources available for gene discovery beyond the boundaries of maize mapping information into the expanse of map, sequence, and phenotype information from other grass species. This map provides a foundation for numerous basic and applied investigations including studies of gene organization, gene and genome evolution, targeted cloning, and dissection of complex traits. PMID:10388831

  17. Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.

    2010-04-01

    A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.

  18. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  19. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae.

    PubMed Central

    Philipp, W J; Poulet, S; Eiglmeier, K; Pascopella, L; Balasubramanian, V; Heym, B; Bergh, S; Bloom, B R; Jacobs, W R; Cole, S T

    1996-01-01

    An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis, was constructed by using a twin-pronged approach. Pulsed-field gel electrophoretic analysis enabled cleavage sites for Asn I and Dra I to be positioned on the 4.4-Mb circular chromosome, while, in parallel, clones from two cosmid libraries were ordered into contigs by means of fingerprinting and hybridization mapping. The resultant contig map was readily correlated with the physical map of the genome via the landmarked restriction sites. Over 165 genes and markers were localized on the integrated map, thus enabling comparisons with the leprosy bacillus, Mycobacterium leprae, to be undertaken. Mycobacterial genomes appear to have evolved as mosaic structures since extended segments with conserved gene order and organization are interspersed with different flanking regions. Repetitive sequences and insertion elements are highly abundant in M. tuberculosis, but the distribution of IS6110 is apparently nonrandom. Images Fig. 1 Fig. 2 PMID:8610181

  20. Fitting Multimeric Protein Complexes into Electron Microscopy Maps Using 3D Zernike Descriptors

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-01-01

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root mean square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases. PMID:22417139

  1. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  2. Model-based optimizations of packaged rooftop air conditioners using low global warming potential refrigerants

    DOE PAGES

    Shen, Bo; Abdelaziz, Omar; Shrestha, Som; ...

    2017-10-31

    Based on laboratory investigations for R-22 and R-410A alternative low GWP refrigerants in two baseline rooftop air conditioners (RTU), the DOE/ORNL Heat Pump Design Model was used to model the two RTUs and the models were calibrated against the experimental data. We compared the compressor efficiencies and heat exchanger performances. An efficiency-based compressor mapping method was developed. Extensive model-based optimizations were conducted to provide a fair comparison between all the low GWP candidates by selecting optimal configurations. The results illustrate that all the R-22 low GWP refrigerants will lead to slightly lower COPs. ARM-20B appears to be the best R-22more » replacement at normal conditions. At higher ambient temperatures, ARM-20A exhibits better performance. All R-410A low GWP candidates will result in similar or better efficiencies than R-410A. R-32 has the best COP while requiring the smallest compressor. Finally, R-452B uses the closest compressor displacement volume and achieves the same efficiency as R-410A.« less

  3. Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals

    DOE PAGES

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed; ...

    2017-05-25

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  4. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishaldeep; Shen, Bo; Keinath, Chris

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less

  5. Model-based optimizations of packaged rooftop air conditioners using low global warming potential refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Shrestha, Som

    Based on laboratory investigations for R-22 and R-410A alternative low GWP refrigerants in two baseline rooftop air conditioners (RTU), the DOE/ORNL Heat Pump Design Model was used to model the two RTUs and the models were calibrated against the experimental data. We compared the compressor efficiencies and heat exchanger performances. An efficiency-based compressor mapping method was developed. Extensive model-based optimizations were conducted to provide a fair comparison between all the low GWP candidates by selecting optimal configurations. The results illustrate that all the R-22 low GWP refrigerants will lead to slightly lower COPs. ARM-20B appears to be the best R-22more » replacement at normal conditions. At higher ambient temperatures, ARM-20A exhibits better performance. All R-410A low GWP candidates will result in similar or better efficiencies than R-410A. R-32 has the best COP while requiring the smallest compressor. Finally, R-452B uses the closest compressor displacement volume and achieves the same efficiency as R-410A.« less

  6. Numerical simulations of stellar jets and comparison between synthetic and observed maps: clues to the launch mechanism

    NASA Astrophysics Data System (ADS)

    Rubini, F.; Maurri, L.; Inghirami, G.; Bacciotti, F.; Del Zanna, L.

    2014-07-01

    High angular resolution spectra obtained with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) provide rich morphological and kinematical information about the stellar jet phenomenon, which allows us to test theoretical models efficiently. In this work, numerical simulations of stellar jets in the propagation region are executed with the PLUTO code, by adopting inflow conditions that arise from former numerical simulations of magnetized outflows, accelerated by the disk-wind mechanism in the launching region. By matching the two regions, information about the magneto-centrifugal accelerating mechanism underlying a given astrophysical object can be extrapolated by comparing synthetic and observed position-velocity diagrams. We show that quite different jets, like those from the young T Tauri stars DG-Tau and RW-Aur, may originate from the same disk-wind model for different configurations of the magnetic field at the disk surface. This result supports the idea that all the observed jets may be generated by the same mechanism. Appendix A is available in electronic form at http://www.aanda.org

  7. Void fraction development in gas-liquid flow after a U-bend in a vertically upwards serpentine-configuration large-diameter pipe

    NASA Astrophysics Data System (ADS)

    Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi

    2018-01-01

    We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.

  8. Infrasound Observations from Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Thomas, R. J.; Jones, K. R.

    2008-12-01

    To provide additional insight into the nature of lightning, we have investigated its infrasound manifestations. An array of three stations in a triangular configuration, with three sensors each, was deployed during the Summer of 2008 (July 24 to July 28) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) sources due to lightning. Hyperbolic formulations of time of arrival (TOA) measurements and interferometric techniques were used to locate lightning sources occurring over and outside the network. A comparative analysis of simultaneous Lightning Mapping Array (LMA) data and infrasound measurements operating in the same area was made. The LMA locates the sources of impulsive RF radiation produced by lightning flashes in three spatial dimensions and time, operating in the 60 - 66 MHz television band. The comparison showed strong evidence that lightning does produce infrasound. This work is a continuation of the study of the frequency spectrum of thunder conducted by Holmes et al., who reported measurements of infrasound frequencies. The integration of infrasound measurements with RF source localization by the LMA shows great potential for improved understanding of lightning processes.

  9. Daniel J. Schell | NREL

    Science.gov Websites

    processing High solids biomass conversion Fermentation process development Separation processes Techno ; Bioresour. Technol. (2010) "An economic comparison of different fermentation configurations to convert

  10. Evaluation of FIDC system. [fuel vapor injector/ogniter and lean limit controller for automobile engines

    NASA Technical Reports Server (NTRS)

    Hall, R. A.; Dowdy, M. W.; Price, T. W.

    1978-01-01

    A fuel vapor injector/igniter system was evaluated for its effect on automobile engine performance, fuel economy, and exhaust emissions. Improved fuel economy and emissions, found during the single cylinder tests were not realized with a multicylinder engine. Multicylinder engine tests were conducted to compare the system with both a stock and modified stock configuration. A comparison of cylinder-to-cylinder equivalence ratio distribution was also obtained from the multicylinder engine tests. The multicylinder engine was installed in a vehicle was tested on a chassis dynamometer to compare the system with stock and modified stock configurations. The fuel vapor injector/igniter system (FIDC) configuration demonstrated approximately five percent improved fuel economy over the stock configuration, but the modified stock configuration demonstrated approximately twelve percent improved fuel economy. The hydrocarbon emissions were approximately two-hundred-thirty percent higher with the FIDC system than with the stock configuration. Both the FIDC system and the modified stock configuration adversely affected driveability. The FIDC system demonstrated a modest fuel savings, but with the penalty of increased emissions, and loss of driveability.

  11. Participation in the Journey to Life Conversation Map Improves Control of Hypertension, Diabetes, and Hypercholesterolemia.

    PubMed

    Crawford, Paul; Wiltz, Scott

    2015-01-01

    The Diabetes Conversation Map program includes 4 "board game-like" education tools. We describe how the Journey to Life Conversation Map Education Class improves diabetes performance measures of hemoglobin A1c (HbA1c), low-density lipoprotein (LDL), and blood pressure (BP). Retrospective case-control study in a military family medicine clinic from January 2007 to January 2010. We included 202 patients who completed ≥1 conversation map class and a comparison group of 209 patients who did not attend. Attendees started with HbA1c 8.25 (95% confidence interval [CI], 7.86-8.64) and decreased to 6.96 (95% CI, 6.69-7.23). Patients in the comparison group started at 8.57 (95% CI, 8.18-8.95) and decreased to 8.27 (95% CI, 8.01-8.54) (P < .001). Attendees began with LDL of 111 mg/dL (95% CI, 103-119) and decreased to 94 mg/dL (95% CI, 81-106). Patients in the comparison group started at 89 mg/dL (95% CI, 81-98) and increased to 98 mg/dL (95% CI, 85-110) (P < .007). Systolic BP decreased 5.4 mmHg among attendees versus 0.8 mmHg among those in the comparison group (P = .014), whereas diastolic BP was unchanged (P = .110). The Journey to Life Healthy Interactions Conversation Map Education Class for diabetes improves diabetes performance measures. © Copyright 2015 by the American Board of Family Medicine.

  12. Layer configurations comparison of bilayer-films for EGFET pH sensor application

    NASA Astrophysics Data System (ADS)

    Rahman, R. A.; Zulkefle, M. A.; Yusof, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-05-01

    The comparison between bilayer configurations were presented in this paper. TiO2 and ZnO layer configurations were manipulated in order to investigate which configuration produce highest sensing performance to be applied as EGFET pH sensor. Both of the materials were deposited together as the bilayer film. The configurations were manipulated between TiO2/ZnO and ZnO/TiO2. ITO was used as the substrate in this study and both of the materials were deposited by using sol-gel spin coating technique. After deposition process, these bilayer film then undergone for EGFET pH sensor measurement and physical characterization. The EGFET pH sensor measurement was done by dipping the fabricated bilayer film into three different pH values, which is pH4, pH7 and pH10. Bilayer film act as the pH-sensitive membrane, which connected to the commercial metal-oxide semiconductor FET (MOSFET). This MOSFET was connected to the interfacing circuit. Voltage output obtained were recorded and the graph was plotted by using the data recorded. Based on the EGFET pH sensor measurement, TiO2/ZnO bilayer film exhibit higher sensing performance, compared with ZnO/TiO2. TiO2/ZnO bilayer film produced 53.10 mV/pH with the linearity value of 0.9913. Afterwards, fabricated bilayer films then were characterized with AFM to explore their surface roughness and surface topography behavior.

  13. CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino

    2016-01-01

    A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.

  14. Annoyance caused by advanced turboprop aircraft flyover noise: Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1991-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and turbofan aircraft flyover noise. A computer synthesis system was used to generate 40 realistic, time varying simulations of advanced turboprop takeoff noise. Of the 40 noises, single-rotating propeller configurations (8) and counter-rotating propeller configurations with an equal (12) and unequal (20) number of blades on each rotor were represented. Analyses found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops, but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved annoyance prediction ability.

  15. Annoyance caused by advanced turboprop aircraft flyover noise: Comparison of different propeller configurations

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.

    1991-10-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and turbofan aircraft flyover noise. A computer synthesis system was used to generate 40 realistic, time varying simulations of advanced turboprop takeoff noise. Of the 40 noises, single-rotating propeller configurations (8) and counter-rotating propeller configurations with an equal (12) and unequal (20) number of blades on each rotor were represented. Analyses found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops, but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved annoyance prediction ability.

  16. Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks

    PubMed Central

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed. PMID:22346584

  17. Self-configuration and self-optimization process in heterogeneous wireless networks.

    PubMed

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network's scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed.

  18. Application of an optimized winglet configuration to an advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Shollenberger, C. A.

    1979-01-01

    The design is presented of an aircraft which employs an integrated wing and winglet lift system. Comparison was made with a conventional baseline configuration employing a high-aspect-ratio supercritical wing. An optimized wing-winglet combination was selected from four proposed configurations for which aerodynamic, structural, and weight characteristics were evaluated. Each candidate wing-winglet configuration was constrained to the same induced drag coefficient as the baseline aircraft. The selected wing-winglet configuration was resized for a specific medium-range mission requirement, and operating costs were estimated for a typical mission. Study results indicated that the wing-winglet aircraft was lighter and could complete the specified mission at less cost than the conventional wing aircraft. These indications were sensitive to the impact of flutter characteristics and, to a lesser extent, to the performance of the high-lift system. Further study in these areas is recommended to reduce uncertainty in future development.

  19. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.

    PubMed

    Bierer, Julie Arenberg; Faulkner, Kathleen F; Tremblay, Kelly L

    2011-01-01

    The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low-threshold channels. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration. These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.

  20. Fabrication of prepackaged superalloy honeycomb Thermal Protection System (TPS) panels

    NASA Technical Reports Server (NTRS)

    Blair, W.; Meaney, J. E.; Rosenthal, H. A.

    1985-01-01

    High temperature materials were surveyed, and Inconel 617 and titanium were selected for application to a honeycomb TPS configuration designed to withstand 2000 F. The configuration was analyzed both thermally and structurally. Component and full-sized panels were fabricated and tested to obtain data for comparison with analysis. Results verified the panel design. Twenty five panels were delivered to NASA Langley Research Center for additional evaluation.

  1. HL-20 structural design comparison - Conformal shell versus cylindrical crew compartment

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Wahls, Deborah M.; Robinson, James C.

    1993-01-01

    Extensive studies have been performed at NASA Langley Research Center (LaRC) on personnel launch systems (PLS) concepts. The primary mission of a PLS is the transport of Space Station crew members from Earth to the Space Station and return. The NASA LaRC PLS studies have led to the design of a lifting body configuration named the HL-20. In this study, two different HL-20 structural configurations are evaluated. The two configurations are deemed the conformal shell and the cylindrical crew compartment. The configurations are based on two different concerns for maintenance and operations. One configuration allows for access to subsystems while on-orbit from the interior, while the other allows for easy access to the subsystems during ground maintenance and operations. For each concept, the total structural weight required to sustain the applied loads is quantified through a structural evaluation. Structural weight for both configurations is compared along with the particular attributes of each. Analyses of both configurations indicate no appreciable weight or load relief advantage of one concept over the other. Maintainability and operability, therefore become the primary discriminator, leading to a choice of a crew compartment configuration.

  2. Deep Neural Network Detects Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  3. Guiding District Implementation of Common Core State Standards: Innovation Configuration Maps

    ERIC Educational Resources Information Center

    Roy, Patricia; Killion, Joellen

    2011-01-01

    Leadership Networks are regional and content-specific networks focused on the preparation of college- and career-ready students. Each network includes teacher leaders, school administrators, central office staff, regional cooperatives, and institutes of higher education. Network members work collaboratively to focus their efforts on regional needs…

  4. Teaching Representation Translations with Magnetic Field Experiments

    ERIC Educational Resources Information Center

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and…

  5. Mapping Creativity: Creativity Measurements Network Analysis

    ERIC Educational Resources Information Center

    Pinheiro, Igor Reszka; Cruz, Roberto Moraes

    2014-01-01

    This article borrowed network analysis tools to discover how the construct formed by the set of all measures of creativity configures itself. To this end, using a variant of the meta-analytical method, a database was compiled simulating 42,381 responses to 974 variables centered on 64 creativity measures. Results, although preliminary, indicate…

  6. Highly loaded multi-stage fan drive turbine: Plain blade configuration design

    NASA Technical Reports Server (NTRS)

    Evans, D. C.; Wolfmeyer, G. W.

    1972-01-01

    The constant-inside-diameter flowpath was scaled for testing in an existing turbine test facility. Blading detailed design is discussed, and design data are summarized. Predicted performance maps are presented. Steady-state stresses and vibratory behavior are discussed and the results of the mechanical design analysis are presented.

  7. Staggered transverse tripoles with quadripolar lateral anodes using percutaneous and surgical leads in spinal cord stimulation.

    PubMed

    Sankarasubramanian, Vishwanath; Buitenweg, Jan R; Holsheimer, Jan; Veltink, Peter H

    2013-03-01

    In spinal cord stimulation for low-back pain, the use of electrode arrays with both low-power requirements and selective activation of target dorsal column (DC) fibers is desired. The aligned transverse tripolar lead configuration offers the best DC selectivity. Electrode alignment of the same configuration using 3 parallel percutaneous leads is possible, but compromised by longitudinal migration, resulting in loss of DC selectivity. This loss might be repaired by using the adjacent anodal contacts on the lateral leads. To investigate if stimulation using adjacent anodal contacts on the lateral percutaneous leads of a staggered transverse tripole can restore DC selectivity. Staggered transverse tripoles with quadripolar lateral anodes were modeled on the low-thoracic vertebral region (T10-T12) of the spinal cord using (a) percutaneous lead with staggered quadripolar lateral anodal configuration (PERC QD) and (b) laminotomy lead with staggered quadripolar lateral anodal configuration (LAM QD), of the same contact dimensions. The commercially available LAM 565 surgical lead with 16 widely spaced contacts was also modeled. For comparison with PERC QD, staggered transverse tripoles with dual lateral anodes were modeled by using percutaneous lead with staggered dual lateral anodal configuration (PERC ST). The PERC QD improved the depth of DC penetration and enabled selective recruitment of DCs in comparison with PERC ST. Mediolateral selectivity of DCs could not be achieved with the LAM 565. Stimulation using PERC QD improves anodal shielding of dorsal roots and restores DC selectivity. Based on our modeling study, we hypothesize that, in clinical practice, LAM QD can provide an improved performance compared with the PERC QD. Our model also predicts that the same configuration realized on the commercial LAM 565 surgical lead with widely spaced contacts cannot selectively stimulate DCs essential in treating low-back pain.

  8. Outline and comparison of the possible effects present in a metal-thin-film-insulator-semiconductor solar cell

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1976-01-01

    The advantages possible with the insertion of a thin-film insulating or semi-insulating layer between a metal and a semiconductor to form the MIS photovoltaic device have been presented previously in the literature. This MIS configuration may be considered as a specific example of a more general class of photovoltaic devices: electrode-thin-film-insulator-semiconductor devices. Since the advantages of the configuration were pointed out, there has been considerable experimental interest in these photovoltaic devices. Because the previous analysis showed that the introduction of the insulator layer could produce several different but advantageous effects, this paper presents a further outline giving a comparison of these effects together with their ramifications.

  9. Survey of engineering computational methods and experimental programs for estimating supersonic missile aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Sawyer, W. C.; Allen, J. M.; Hernandez, G.; Dillenius, M. F. E.; Hemsch, M. J.

    1982-01-01

    This paper presents a survey of engineering computational methods and experimental programs used for estimating the aerodynamic characteristics of missile configurations. Emphasis is placed on those methods which are suitable for preliminary design of conventional and advanced concepts. An analysis of the technical approaches of the various methods is made in order to assess their suitability to estimate longitudinal and/or lateral-directional characteristics for different classes of missile configurations. Some comparisons between the predicted characteristics and experimental data are presented. These comparisons are made for a large variation in flow conditions and model attitude parameters. The paper also presents known experimental research programs developed for the specific purpose of validating analytical methods and extending the capability of data-base programs.

  10. A clone-free, single molecule map of the domestic cow (Bos taurus) genome.

    PubMed

    Zhou, Shiguo; Goldstein, Steve; Place, Michael; Bechner, Michael; Patino, Diego; Potamousis, Konstantinos; Ravindran, Prabu; Pape, Louise; Rincon, Gonzalo; Hernandez-Ortiz, Juan; Medrano, Juan F; Schwartz, David C

    2015-08-28

    The cattle (Bos taurus) genome was originally selected for sequencing due to its economic importance and unique biology as a model organism for understanding other ruminants, or mammals. Currently, there are two cattle genome sequence assemblies (UMD3.1 and Btau4.6) from groups using dissimilar assembly algorithms, which were complemented by genetic and physical map resources. However, past comparisons between these assemblies revealed substantial differences. Consequently, such discordances have engendered ambiguities when using reference sequence data, impacting genomic studies in cattle and motivating construction of a new optical map resource--BtOM1.0--to guide comparisons and improvements to the current sequence builds. Accordingly, our comprehensive comparisons of BtOM1.0 against the UMD3.1 and Btau4.6 sequence builds tabulate large-to-immediate scale discordances requiring mediation. The optical map, BtOM1.0, spanning the B. taurus genome (Hereford breed, L1 Dominette 01449) was assembled from an optical map dataset consisting of 2,973,315 (439 X; raw dataset size before assembly) single molecule optical maps (Rmaps; 1 Rmap = 1 restriction mapped DNA molecule) generated by the Optical Mapping System. The BamHI map spans 2,575.30 Mb and comprises 78 optical contigs assembled by a combination of iterative (using the reference sequence: UMD3.1) and de novo assembly techniques. BtOM1.0 is a high-resolution physical map featuring an average restriction fragment size of 8.91 Kb. Comparisons of BtOM1.0 vs. UMD3.1, or Btau4.6, revealed that Btau4.6 presented far more discordances (7,463) vs. UMD3.1 (4,754). Overall, we found that Btau4.6 presented almost double the number of discordances than UMD3.1 across most of the 6 categories of sequence vs. map discrepancies, which are: COMPLEX (misassembly), DELs (extraneous sequences), INSs (missing sequences), ITs (Inverted/Translocated sequences), ECs (extra restriction cuts) and MCs (missing restriction cuts). Alignments of UMD3.1 and Btau4.6 to BtOM1.0 reveal discordances commensurate with previous reports, and affirm the NCBI's current designation of UMD3.1 sequence assembly as the "reference assembly" and the Btau4.6 as the "alternate assembly." The cattle genome optical map, BtOM1.0, when used as a comprehensive and largely independent guide, will greatly assist improvements to existing sequence builds, and later serve as an accurate physical scaffold for studies concerning the comparative genomics of cattle breeds.

  11. Comparison of the Effects of Episodic Mapping and Traditional Notetaking on the Recall of Historical Text.

    ERIC Educational Resources Information Center

    Denner, Peter R.

    This study examined the effects of episodic-mapping, traditional notetaking, and rereading on eighth-grade students' recall of historical text. Episodic-maps are a kind of notetaking procedure that requires students to represent ideas from a text in the form of a graphic diagram. As predicted, both episodic-mapping and traditional notetaking…

  12. SU-F-T-262: Commissioning Varian Portal Dosimetry for EPID-Based Patient Specific QA in a Non-Aria Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, M; Knutson, N; University of Rhode Island, Kingston, RI

    2016-06-15

    Purpose: Development of an in-house program facilitates a workflow that allows Electronic Portal Imaging Device (EPID) patient specific quality assurance (QA) measurements to be acquired and analyzed in the Portal Dosimetry Application (Varian Medical Systems, Palo Alto, CA) using a non-Aria Record and Verify (R&V) system (MOSAIQ, Elekta, Crawley, UK) to deliver beams in standard clinical treatment mode. Methods: Initial calibration of an in-house software tool includes characterization of EPID dosimetry parameters by importing DICOM images of varying delivered MUs to determine linear mapping factors in order to convert image pixel values to Varian-defined Calibrated Units (CU). Using this information,more » the Portal Dose Image Prediction (PDIP) algorithm was commissioned by converting images of various field sizes to output factors using the Eclipse Scripting Application Programming Interface (ESAPI) and converting a delivered configuration fluence to absolute dose units. To verify the algorithm configuration, an integrated image was acquired, exported directly from the R&V client, automatically converted to a compatible, calibrated dosimetric image, and compared to a PDIP calculated image using Varian’s Portal Dosimetry Application. Results: For two C-Series and one TrueBeam Varian linear accelerators, gamma comparisons (global 3% / 3mm) of PDIP algorithm predicted dosimetric images and images converted via the inhouse system demonstrated agreement for ≥99% of all pixels, exceeding vendor-recommended commissioning guidelines. Conclusion: Combinations of a programmatic image conversion tool and ESAPI allow for an efficient and accurate method of patient IMRT QA incorporating a 3rd party R&V system.« less

  13. Noise Spectra and Directivity For a Scale-Model Landing Gear

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Brooks, Thomas F.

    2007-01-01

    An extensive experimental study has been conducted to acquire detailed noise spectra and directivity data for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. The measurements were conducted in the NASA Langley Quiet Flow Facility using a 41-microphone directional array system positioned at a range of polar and azimuthal observer angles with respect to the model. DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) array processing as well as straightforward individual microphone processing were employed to compile unique flyover and sideline directivity databases for a range of freestream Mach numbers (0.11 - 0.17) covering typical approach conditions. Comprehensive corrections were applied to the test data to account for shear layer ray path and amplitude variations. This allowed proper beamforming at different measurement orientations, as well as directivity presentation in free-field emission coordinates. Four different configurations of the landing gear were tested: a baseline configuration with and without an attached side door, and a noise reduction concept "toboggan" truck fairing with and without side door. DAMAS noise source distributions were determined. Spectral analyses demonstrated that individual microphones could establish model spectra. This finding permitted the determination of unique, spatially-detailed directivity contours of spectral band levels over a hemispherical surface. Spectral scaling for the baseline model confirmed that the acoustic intensity scaled with the expected sixth-power of the Mach number. Finally, comparison of spectra and directivity between the baseline gear and the gear with an attached toboggan indicated that the toboggan fairing may be of some value in reducing gear noise over particular frequency ranges.

  14. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming

    NASA Astrophysics Data System (ADS)

    Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin

    2006-08-01

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10° greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  15. FASTMap v. 2010.01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bynum, Leo

    FASTMap is mapping application available for the web or on mobile devices (IOS and Android) that browses geospatial data and produces detailed reports of objects within any area of analysis. FASTMap can access any geospatial dataset. The software can provide immediate access to the selected data through a fully symbolized interactive mapping interface. FASTMap can load arbitrary contours that represent a region of interest and can dynamically identify and geospatially select objects that reside within the region. The software can produce a report listing the objects and aggregations for the region, as well as producing publication quality maps. FASTMap alsomore » has the ability to post and maintain authored maps, any GIS data included in the map, areas of interest, as well as any titles, and labels. These defining ingredients of a map are called map contexts. These mao contexts can be instantly broadcast via the internet through any of an infinite number of named channels to small or large numbers of users monitouring any of the channels being posted to, so a user can author a map and immediately share that map with others instantly, whether they are on traditional desktop computer, laptop, mobile tablet or smartphone. Further, users receiving broadcast maps can also alter the maps can also alter the maps, or create new ones and publish back to the channel in a collaborative manner. FASTMap can be configured to access virtually any geospatial data.« less

  16. Examining a Half Century of Northwestern North American Glacier Behavior

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Fahey, M. J.; Friesen, B.; Josberger, E. G.

    2015-12-01

    In 1957, as part of the United States' contribution to the International Geophysical Year (IGY), the American Geographical Society (AGS) initiated a multi-institutional mapping project to produce 1:10,000-scale topographic maps of nine northwestern North American glaciers. The project's goal was to prepare precise maps at large scales of selected small glaciers to form a permanent record of the condition of these glaciers so that at a future date they could be resurveyed and compared. Continued surveys would give the history of wastage and accumulation, and more accurate interpretation of the response of these glaciers to meteorological and other factors. The resulting maps and a descriptive summary brochure were published in 1960 by the American Geographical Society. The USGS Global Fiducials Program (GFP) began to systematically image the same nine glaciers approximately half-century after its IGY mapping. The results of the GFP analyses would permit the types of comparisons that were envisioned by the IGY project. Imagery of each of these nine glaciers has been collected from multiple sources, including Next View licensed commercial imagery, vertical and oblique aerial photography, Landsat, and US National Imagery Systems. Exploitation of the imagery has resulted in the production of new 21st century maps that can be compared and contrasted with the vintage AGS map set. Comparison will permit the calculation of a number of parameters which will provide a direct insight into the changes that northwestern North American glaciers have been experiencing during the past half century. Specifically, these comparisons will permit the calculation of changes in glacier length, area, thickness, and volume; computation of rates of glacier advance and/or retreat, rates of glacier thickening and/or thinning, and rates of volume change; production of digital elevation models (DEMs); and generation of velocity fields from crevasse migration. The subsequent re-mapping and comparison to the 1950s maps will provide a unique survey of glacier change across western North America from Alaska to northwestern Washington. Each pair of glacier maps will be accompanied with a summary document describing the changes that have occurred at that glacier. From north to south, the nine IGY glaciers span a distance of more than 2,600 km.

  17. Phenotypic mapping of metabolic profiles using self-organizing maps of high-dimensional mass spectrometry data.

    PubMed

    Goodwin, Cody R; Sherrod, Stacy D; Marasco, Christina C; Bachmann, Brian O; Schramm-Sapyta, Nicole; Wikswo, John P; McLean, John A

    2014-07-01

    A metabolic system is composed of inherently interconnected metabolic precursors, intermediates, and products. The analysis of untargeted metabolomics data has conventionally been performed through the use of comparative statistics or multivariate statistical analysis-based approaches; however, each falls short in representing the related nature of metabolic perturbations. Herein, we describe a complementary method for the analysis of large metabolite inventories using a data-driven approach based upon a self-organizing map algorithm. This workflow allows for the unsupervised clustering, and subsequent prioritization of, correlated features through Gestalt comparisons of metabolic heat maps. We describe this methodology in detail, including a comparison to conventional metabolomics approaches, and demonstrate the application of this method to the analysis of the metabolic repercussions of prolonged cocaine exposure in rat sera profiles.

  18. Gravity Recovery and Interior Laboratory (GRAIL) Mission: Status at the Initiation of the Science Mapping Phase

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Smith, David E.; Asmar, Sami W.; Alomon; Konopliv, Alexander S.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips. Roger J.; Solomon, Sean C.; hide

    2012-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission, a component of NASA's Discovery Program, launched successfully from Cape Canaveral Air Force Station on September 10, 2011. The dual spacecraft traversed independent, low-energy trajectories to the Moon via the EL-1 Lagrange point and inserted into elliptical, 11.5-hour polar orbits around the Moon on December 31, 2011, and January 1, 2012. The spacecraft are currently executing a series of maneuvers to circularize their orbits at 55-km mean altitude. Once the mapping orbit is achieved, the spacecraft will undergo additional maneuvers to align them into mapping configuration. The mission is on track to initiate the Science Phase on March 8, 2012.

  19. Equilibrium contact angle or the most-stable contact angle?

    PubMed

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  20. Mapping magnetic field lines between the Sun and Earth

    NASA Astrophysics Data System (ADS)

    Li, B.; Cairns, Iver H.; Gosling, J. T.; Steward, G.; Francis, M.; Neudegg, D.; Schulte in den Bäumen, H.; Player, P. R.; Milne, A. R.

    2016-02-01

    Magnetic field topologies between the Sun and Earth are important for the connectivity to Earth of solar suprathermal particles, e.g., solar energetic particles and beam electrons in type III solar radio bursts. An approach is developed for mapping large-scale magnetic field lines near the solar equatorial plane, using near-Earth observations and a solar wind model with nonzero azimuthal magnetic field at the source surface. Unlike Parker's spiral model, which restricts the in-ecliptic angle ΦB in the Geocentric Solar Ecliptic coordinates to (90°-180°, 270°-360°) and so is unable to predict field configurations for the other ΦB values frequently observed in the solar wind, our approach can account for all the observed ΦB values. A set of predicted maps shows that near both minimal and maximal solar activity the field lines are typically open and that loops with both ends either connected to or disconnected from the Sun are relatively rare. The open field lines, nonetheless, often do not closely follow the Parker spiral, being less or more tightly wound, or strongly azimuthally or radially oriented, or inverted. The time-varying classes, e.g., bidirectional electrons, of suprathermal electron pitch angle distributions (PADs) at 1 AU are predicted from the mapped field line configurations and compared with Wind observations for two solar rotations, one each near solar minimum and solar maximum. PAD predictions by our approach agree quantitatively (≈90%) with the PAD observations and outperform (by ≈20%) PAD predictions using Parker's model.

  1. Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli

    2018-02-01

    Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.

  2. Geohydrologic systems in Kansas physical framework of the upper aquifer unit in the western interior plains aquifer system

    USGS Publications Warehouse

    Hansen, Cristi V.; Spinazola, Joseph M.; Underwood, E.J.; Wolf, R.J.

    1992-01-01

    The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifers and confining systems in Kansas. Chapter D presents maps that show the areal extent, altitude and configuration of the top, and thickness of Mississippian rocks that compose the upper aquifer unit of the Western Interior Plains aquifer system in Kansas, The chapter is limited to the presentation of the physical framework of the upper aquifer unit. The interpretation of the physical framework of the upper aquifer unit is based on selected geophysical and lithologic logs and published maps of stratigraphically equivalent units. Maps indicating the thickness and the altitude and configuration of the top of the upper aquifer unit in the Western Interior Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian basement through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic unit are consistent with the maps of underlying and overlying units. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.

  3. Ocean Thermal Feature Recognition, Discrimination and Tracking Using Infrared Satellite Imagery

    DTIC Science & Technology

    1991-06-01

    rejected if the temperature in the mapped area exceeds classification criteria ............................... 17 viii 2.6 Ideal feature space mapping from...in seconds, and 1P is the side dimension of the pixel in meters. Figure 2.6: Ideal feature space mapping from pattern tile - search tile comparison. 20

  4. Assessing Geographic Knowledge with Sketch Maps.

    ERIC Educational Resources Information Center

    Wise, Naomi; Kon, Jane Heckley

    1990-01-01

    Maintains that comparison of students' sketch maps at the beginning and end of the year can provide information on how student's representations of the world changes. Describes a study from the California International Studies Project (CISP) that provides an easy method for sorting and summarizing sketch map data. Illustrates the method with…

  5. Hemispherical map for the human brain cortex

    NASA Astrophysics Data System (ADS)

    Tosun, Duygu; Prince, Jerry L.

    2001-07-01

    Understanding the function of the human brain cortex is a primary goal in human brain mapping. Methods to unfold and flatten the cortical surface for visualization and measurement have been described in previous literature; but comparison across multiple subjects is still difficult because of the lack of a standard mapping technique. We describe a new approach that maps each hemisphere of the cortex to a portion of a sphere in a standard way, making comparison of anatomy and function across different subjects possible. Starting with a three-dimensional magnetic resonance image of the brain, the cortex is segmented and represented as a triangle mesh. Defining a cut around the corpus collosum identifies the left and right hemispheres. Together, the two hemispheres are mapped to the complex plane using a conformal mapping technique. A Mobius transformation, which is conformal, is used to transform the points on the complex plane so that a projective transformation maps each brain hemisphere onto a spherical segment comprising a sphere with a cap removed. We determined the best size of the spherical cap by minimizing the relative area distortion between hemispherical maps and original cortical surfaces. The relative area distortion between the hemispherical maps and the original cortical surfaces for fifteen human brains is analyzed.

  6. Seals Flow Code Development 1993

    NASA Technical Reports Server (NTRS)

    Liang, Anita D. (Compiler); Hendricks, Robert C. (Compiler)

    1994-01-01

    Seals Workshop of 1993 code releases include SPIRALI for spiral grooved cylindrical and face seal configurations; IFACE for face seals with pockets, steps, tapers, turbulence, and cavitation; GFACE for gas face seals with 'lift pad' configurations; and SCISEAL, a CFD code for research and design of seals of cylindrical configuration. GUI (graphical user interface) and code usage was discussed with hands on usage of the codes, discussions, comparisons, and industry feedback. Other highlights for the Seals Workshop-93 include environmental and customer driven seal requirements; 'what's coming'; and brush seal developments including flow visualization, numerical analysis, bench testing, T-700 engine testing, tribological pairing and ceramic configurations, and cryogenic and hot gas facility brush seal results. Also discussed are seals for hypersonic engines and dynamic results for spiral groove and smooth annular seals.

  7. Soils of Walker Branch Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietzke, D.A.

    1994-03-01

    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1,200 usingmore » a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed.« less

  8. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry

    PubMed Central

    Kruse, Fred A.; L. Bedell, Richard; Taranik, James V.; Peppin, William A.; Weatherbee, Oliver; Calvin, Wendy M.

    2011-01-01

    Imaging spectrometer data (also known as ‘hyperspectral imagery’ or HSI) are well established for detailed mineral mapping from airborne and satellite systems. Overhead data, however, have substantial additional potential when used together with ground-based measurements. An imaging spectrometer system was used to acquire airborne measurements and to image in-place outcrops (mine walls) and boxed drill core and rock chips using modified sensor-mounting configurations. Data were acquired at 5 nm nominal spectral resolution in 360 channels from 0.4 to 2.45 μm. Analysis results using standardized hyperspectral methodologies demonstrate rapid extraction of representative mineral spectra and mapping of mineral distributions and abundances in map-plan, with core depth, and on the mine walls. The examples shown highlight the capabilities of these data for mineral mapping. Integration of these approaches promotes improved understanding of relations between geology, alteration and spectral signatures in three dimensions and should lead to improved efficiency of mine development, operations and ultimately effective mine closure. PMID:25937681

  9. OZONE MONITORING, MAPPING, AND PUBLIC OUTREACH ...

    EPA Pesticide Factsheets

    The U.S. EPA had developed a handbook to help state and local government officials implement ozone monitoring, mapping, and outreach programs. The handbook, called Ozone Monitoring, Mapping, and Public Outreach: Delivering Real-Time Ozone Information to Your Community, provides step-by-step instructions on how to: Design, site, operate, and maintain an ozone monitoring network. Install, configure, and operate the Automatic Data Transfer System Use MapGen software to create still-frame and animated ozone maps. Develop and outreach plan to communicate information about real-time ozone levels and their health effects to the public.This handbook was developed by EPA's EMPACT program. The program takes advantage of new technologies that make it possible to provide environmental information to the public in near real time. EMPACT is working with the 86 largest metropolitan areas of the country to help communities in these areas: Collect, manage and distribute time-relevant environmental information. Provide their residents with easy-to-understand information they can use in making informed, day-to-day decisions. Information

  10. Superior cognitive mapping through single landmark-related learning than through boundary-related learning.

    PubMed

    Zhou, Ruojing; Mou, Weimin

    2016-08-01

    Cognitive mapping is assumed to be through hippocampus-dependent place learning rather than striatum-dependent response learning. However, we proposed that either type of spatial learning, as long as it involves encoding metric relations between locations and reference points, could lead to a cognitive map. Furthermore, the fewer reference points to specify individual locations, the more accurate a cognitive map of these locations will be. We demonstrated that participants have more accurate representations of vectors between 2 locations and of configurations among 3 locations when locations are individually encoded in terms of a single landmark than when locations are encoded in terms of a boundary. Previous findings have shown that learning locations relative to a boundary involve stronger place learning and higher hippocampal activation whereas learning relative to a single landmark involves stronger response learning and higher striatal activation. Recognizing this, we have provided evidence challenging the cognitive map theory but favoring our proposal. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Correlation of Predicted and Flight Derived Stability and Control Derivatives with Particular Application to Tailless Delta Wing Configurations

    NASA Technical Reports Server (NTRS)

    Weil, J.

    1981-01-01

    Flight derived longitudinal and lateral-directional stability and control derivatives were compared to wind-tunnel derived values. As a result of these comparisons, boundaries representing the uncertainties that could be expected from wind-tunnel predictions were established. These boundaries provide a useful guide for control system sensitivity studies prior to flight. The primary application for this data was the space shuttle, and as a result the configurations included in the study were those most applicable to the space shuttle. The configurations included conventional delta wing aircraft as well as the X-15 and lifting body vehicles.

  12. Real-time method for establishing a detection map for a network of sensors

    DOEpatents

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  13. Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses.

    PubMed

    Seo, Seongho; Kim, Su Jin; Lee, Dong Soo; Lee, Jae Sung

    2014-10-01

    Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal has progressed from regional data quantification to parametric mapping that produces images of kinetic-model parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a major parametric mapping technique that is independent on any compartmental model configuration, robust to noise, and computationally efficient. In this paper, we provide an overview of recent advances in the parametric mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic modeling are presented, including commonly-used compartment models and major parameters of interest. Technical details of GA approaches for reversible and irreversible radioligands are described, considering both plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric imaging.

  14. $n$ -Dimensional Discrete Cat Map Generation Using Laplace Expansions.

    PubMed

    Wu, Yue; Hua, Zhongyun; Zhou, Yicong

    2016-11-01

    Different from existing methods that use matrix multiplications and have high computation complexity, this paper proposes an efficient generation method of n -dimensional ( [Formula: see text]) Cat maps using Laplace expansions. New parameters are also introduced to control the spatial configurations of the [Formula: see text] Cat matrix. Thus, the proposed method provides an efficient way to mix dynamics of all dimensions at one time. To investigate its implementations and applications, we further introduce a fast implementation algorithm of the proposed method with time complexity O(n 4 ) and a pseudorandom number generator using the Cat map generated by the proposed method. The experimental results show that, compared with existing generation methods, the proposed method has a larger parameter space and simpler algorithm complexity, generates [Formula: see text] Cat matrices with a lower inner correlation, and thus yields more random and unpredictable outputs of [Formula: see text] Cat maps.

  15. Non-coincident Inter-instrument Comparisons of Ozone Measurements Using Quasi-conservative Coordinates

    NASA Technical Reports Server (NTRS)

    Lait, L. R.; Newman, P. A.; Schoeberl, M. R.; McGee, T.; Twigg, T.; Browell, E.; Bevilacqua, R.; Andersen, S. B.; DeBacker, H.; Benesova, A.

    2004-01-01

    Ozone measurements from ozonesondes, AROTAL, DIAL, and POAM III instruments during the SOLVE-2/VINTERSOL period are composited in a time-varying, flow-following quasi-conservative (PV-6) coordinate space; the resulting composites from each instrument are mapped onto the other instruments locations and times. The mapped data are then used to intercompare data from the different instruments. Overall, the four data sets are found to be in good agreement. AROTAL shows somewhat lower values below 16 km, and DIAL has a positive bias at the upper limits of its altitude range. These intercomparisons are consistent with those obtained from more conventional near-coincident profiles, where available. Although the PV-theta mapping technique entails larger uncertainties of individual profile differences compared to direct near-coincident comparisons, the ability to include much larger numbers of comparisons can make this technique advantageous.

  16. A configural dominant account of contextual cueing: Configural cues are stronger than colour cues.

    PubMed

    Kunar, Melina A; John, Rebecca; Sweetman, Hollie

    2014-01-01

    Previous work has shown that reaction times to find a target in displays that have been repeated are faster than those for displays that have never been seen before. This learning effect, termed "contextual cueing" (CC), has been shown using contexts such as the configuration of the distractors in the display and the background colour. However, it is not clear how these two contexts interact to facilitate search. We investigated this here by comparing the strengths of these two cues when they appeared together. In Experiment 1, participants searched for a target that was cued by both colour and distractor configural cues, compared with when the target was only predicted by configural information. The results showed that the addition of a colour cue did not increase contextual cueing. In Experiment 2, participants searched for a target that was cued by both colour and distractor configuration compared with when the target was only cued by colour. The results showed that adding a predictive configural cue led to a stronger CC benefit. Experiments 3 and 4 tested the disruptive effects of removing either a learned colour cue or a learned configural cue and whether there was cue competition when colour and configural cues were presented together. Removing the configural cue was more disruptive to CC than removing colour, and configural learning was shown to overshadow the learning of colour cues. The data support a configural dominant account of CC, where configural cues act as the stronger cue in comparison to colour when they are presented together.

  17. Tradespace Assessment: Thermal Strain Modeling Comparison Of Multiple Clothing Configurations Based On Different Environmental Conditions

    DTIC Science & Technology

    2017-02-01

    risks, by modeling thermal strain. Twenty clothing ensembles were tested for thermal and evaporative resistances according to American Society of...e.g., football, hockey, etc.) or during military, law enforcement, or first responder operations (e.g., body armor, flame resistant clothing, etc...Each clothing configuration was tested to American Society of Testing and Materials (ASTM) standards for “dry” thermal resistance (Rct) (ASTM F1291

  18. Separation of Betti Reaction Product Enantiomers: Absolute Configuration and Inhibition of Botulinum Neurotoxin A

    DTIC Science & Technology

    2011-03-01

    of Betti Reaction Product Enantiomers : Absolute Configuration and Inhibition of Botulinum Neurotoxin A John H. Cardellina II,† Rebecca C. Vieira...observing sufficient resolution of the two enantiomers on a Chiralcel OD column to permit semipreparative purification of adequate quantities of (þ)-1...comparison of the botulinum neurotoxin serotype A (BoNT/A) inhibitory activity of the (þ) and () enantiomers of 1 was accomplished via an HPLC-based assay

  19. Recent Developments in Silver/Zinc Rechargeable Cell Studies

    NASA Technical Reports Server (NTRS)

    Lewis, Harlan L.

    2001-01-01

    This viewgraph presentation discusses silver/zinc cell casing configurations and test results examining discharge capacity and silver migration comparisons. The following recommendations were proposed: 1) Use silver-treated cellophane instead of clear cellophane; 2) Use split wrap for cellophane whenever possible; and 3) Strongly consider use of sausage casing with PVA film in the following configuration: 1-mil (tubular) SC/1-mil PVA film/2.3-mil plain or 6-mil fiber-reinforced SC tubular.

  20. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE PAGES

    Colgan, James; Fontes, Christopher; Zhang, Honglin; ...

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. As a result, we also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  1. Triple Halo Coil: Development and Comparison with Other TMS Coils

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  2. Light aircraft lift, drag, and moment prediction: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summey, D. C.; Smith, N. S.; Carden, R. K.

    1975-01-01

    The historical development of analytical methods for predicting the lift, drag, and pitching moment of complete light aircraft configurations in cruising flight is reviewed. Theoretical methods, based in part on techniques described in the literature and in part on original work, are developed. These methods form the basis for understanding the computer programs given to: (1) compute the lift, drag, and moment of conventional airfoils, (2) extend these two-dimensional characteristics to three dimensions for moderate-to-high aspect ratio unswept wings, (3) plot complete configurations, (4) convert the fuselage geometric data to the correct input format, (5) compute the fuselage lift and drag, (6) compute the lift and moment of symmetrical airfoils to M = 1.0 by a simplified semi-empirical procedure, and (7) compute, in closed form, the pressure distribution over a prolate spheroid at alpha = 0. Comparisons of the predictions with experiment indicate excellent lift and drag agreement for conventional airfoils and wings. Limited comparisons of body-alone drag characteristics yield reasonable agreement. Also included are discussions for interference effects and techniques for summing the results above to obtain predictions for complete configurations.

  3. Flow Structure Comparison for Two 7-Point LDI Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, Kathleen M.

    2017-01-01

    This paper presents a comparison primarily of the 2-D velocity profiles in the non-burning system; and for the luminescent flame structure for a 7-point Lean Direct Injector (LDI). This circular LDI array consists of a center element surrounded by six outer elements spaced 60 degrees apart; the spacing between all adjacent elements is the same. Each element consists of simplex atomizer that injects at the throat of a converging-diverging venturi, and an axial swirler upstream of the venturi throat to generate swirl. The two configurations were: 1) one which consists of all 60 co-swirling axial air swirlers, and; 2) one configuration which uses a 60 swirler in the center, surrounded by counter-swirling 45 swirlers. Testing was done at 5 atm and an inlet temperature of 800F. Two air reference velocities were considered in the cold flow measurements and one common air flow condition for the burning case.The 2D velocity profiles were determined using particle image velocimetry and the flame structure was determined using high speed photography.

  4. Absolute configuration in 4-alkyl- and 4-aryl-3,4-dihydro-2(1H)-pyrimidones: a combined theoretical and experimental investigation.

    PubMed

    Uray, G; Verdino, P; Belaj, F; Kappe, C O; Fabian, W M

    2001-10-05

    Structural features (orientation of the carboxyl group, ring puckering), electronic absorption, and circular dichroism spectra of 4-alkyl- and 4-aryl-dihydropyrimidones 1-5 are calculated by semiempirical (AM1, INDO/S), ab initio (HF/6-31G, CIS/6-31G, RPA/6-31G), and density functional theory (B3LYP/6-31G) methods. These calculations allow an assignment of the absolute configuration by comparison of simulated and experimental CD spectra. Although the ab initio methods greatly overestimate electronic transition energies, the general appearance of the experimental CD spectra is quite nicely reproduced by these calculations. Thus, comparison of experimental with calculated CD spectra is a reliable tool for the assignment of the absolute configuration. For 4-methyl derivatives 1, the first enantiopure DHPM examples with no additional aromatic substituent, the stereochemistry at C4 provided by the theoretical results is confirmed by X-ray structure determination of the diastereomeric salt 6. Additional support is the consistent HPLC elution order found for all investigated DHPMs on a cellulose-derived chiral stationary phase.

  5. All-digital precision processing of ERTS images

    NASA Technical Reports Server (NTRS)

    Bernstein, R. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Digital techniques have been developed and used to apply precision-grade radiometric and geometric corrections to ERTS MSS and RBV scenes. Geometric accuracies sufficient for mapping at 1:250,000 scale have been demonstrated. Radiometric quality has been superior to ERTS NDPF precision products. A configuration analysis has shown that feasible, cost-effective all-digital systems for correcting ERTS data are easily obtainable. This report contains a summary of all results obtained during this study and includes: (1) radiometric and geometric correction techniques, (2) reseau detection, (3) GCP location, (4) resampling, (5) alternative configuration evaluations, and (6) error analysis.

  6. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation.

    PubMed

    Figueroa, Debbie M; Bass, Hank W

    2012-05-01

    Integrated cytogenetic pachytene fluorescence in situ hybridization (FISH) maps were developed for chromosomes 1, 3, 4, 5, 6, and 8 of maize using restriction fragment length polymorphism marker-selected Sorghum propinquum bacterial artificial chromosomes (BACs) for 19 core bin markers and 4 additional genetic framework loci. Using transgenomic BAC FISH mapping on maize chromosome addition lines of oats, we found that the relative locus position along the pachytene chromosome did not change as a function of total arm length, indicative of uniform axial contraction along the fibers during mid-prophase for tested loci on chromosomes 4 and 5. Additionally, we cytogenetically FISH mapped six loci from chromosome 9 onto their duplicated syntenic regions on chromosomes 1 and 6, which have varying amounts of sequence divergence, using sorghum BACs homologous to the chromosome 9 loci. We found that successful FISH mapping was possible even when the chromosome 9 selective marker had no counterpart in the syntenic block. In total, these 29 FISH-mapped loci were used to create the most extensive pachytene FISH maps to date for these six maize chromosomes. The FISH-mapped loci were then merged into one composite karyotype for direct comparative analysis with the recombination nodule-predicted cytogenetic, genetic linkage, and genomic physical maps using the relative marker positions of the loci on all the maps. Marker colinearity was observed between all pair-wise map comparisons, although marker distribution patterns varied widely in some cases. As expected, we found that the recombination nodule-based predictions most closely resembled the cytogenetic map positions overall. Cytogenetic and linkage map comparisons agreed with previous studies showing a decrease in marker spacing in the peri-centromeric heterochromatin region on the genetic linkage maps. In fact, there was a general trend with most loci mapping closer towards the telomere on the linkage maps than on the cytogenetic maps, regardless of chromosome number or maize inbred line source, with just some of the telomeric loci exempted. Finally and somewhat surprisingly, we observed considerable variation between the relative arm positions of loci when comparing our cytogenetic FISH map to the B73 genomic physical maps, even where comparisons were to a B73-derived cytogenetic map. This variation is more evident between different chromosome arms, but less so within a given arm, ruling out any type of inbred-line dependent global features of linear deoxyribonucleic acid compared with the meiotic fiber organization. This study provides a means for analyzing the maize genome structure by producing new connections for integrating the cytogenetic, linkage, and physical maps of maize.

  7. A Holistic Landscape Description Reveals That Landscape Configuration Changes More over Time than Composition: Implications for Landscape Ecology Studies.

    PubMed

    Mimet, Anne; Pellissier, Vincent; Houet, Thomas; Julliard, Romain; Simon, Laurent

    2016-01-01

    Space-for-time substitution-that is, the assumption that spatial variations of a system can explain and predict the effect of temporal variations-is widely used in ecology. However, it is questionable whether it can validly be used to explain changes in biodiversity over time in response to land-cover changes. Here, we hypothesize that different temporal vs spatial trajectories of landscape composition and configuration may limit space-for-time substitution in landscape ecology. Land-cover conversion changes not just the surface areas given over to particular types of land cover, but also affects isolation, patch size and heterogeneity. This means that a small change in land cover over time may have only minor repercussions on landscape composition but potentially major consequences for landscape configuration. Using land-cover maps of the Paris region for 1982 and 2003, we made a holistic description of the landscape disentangling landscape composition from configuration. After controlling for spatial variations, we analyzed and compared the amplitudes of changes in landscape composition and configuration over time. For comparable spatial variations, landscape configuration varied more than twice as much as composition over time. Temporal changes in composition and configuration were not always spatially matched. The fact that landscape composition and configuration do not vary equally in space and time calls into question the use of space-for-time substitution in landscape ecology studies. The instability of landscapes over time appears to be attributable to configurational changes in the main. This may go some way to explaining why the landscape variables that account for changes over time in biodiversity are not the same ones that account for the spatial distribution of biodiversity.

  8. A Holistic Landscape Description Reveals That Landscape Configuration Changes More over Time than Composition: Implications for Landscape Ecology Studies

    PubMed Central

    Mimet, Anne; Pellissier, Vincent; Houet, Thomas; Julliard, Romain; Simon, Laurent

    2016-01-01

    Background Space-for-time substitution—that is, the assumption that spatial variations of a system can explain and predict the effect of temporal variations—is widely used in ecology. However, it is questionable whether it can validly be used to explain changes in biodiversity over time in response to land-cover changes. Hypothesis Here, we hypothesize that different temporal vs spatial trajectories of landscape composition and configuration may limit space-for-time substitution in landscape ecology. Land-cover conversion changes not just the surface areas given over to particular types of land cover, but also affects isolation, patch size and heterogeneity. This means that a small change in land cover over time may have only minor repercussions on landscape composition but potentially major consequences for landscape configuration. Methods Using land-cover maps of the Paris region for 1982 and 2003, we made a holistic description of the landscape disentangling landscape composition from configuration. After controlling for spatial variations, we analyzed and compared the amplitudes of changes in landscape composition and configuration over time. Results For comparable spatial variations, landscape configuration varied more than twice as much as composition over time. Temporal changes in composition and configuration were not always spatially matched. Significance The fact that landscape composition and configuration do not vary equally in space and time calls into question the use of space-for-time substitution in landscape ecology studies. The instability of landscapes over time appears to be attributable to configurational changes in the main. This may go some way to explaining why the landscape variables that account for changes over time in biodiversity are not the same ones that account for the spatial distribution of biodiversity. PMID:26959363

  9. A novel optimal coordinated control strategy for the updated robot system for single port surgery.

    PubMed

    Bai, Weibang; Cao, Qixin; Leng, Chuntao; Cao, Yang; Fujie, Masakatsu G; Pan, Tiewen

    2017-09-01

    Research into robotic systems for single port surgery (SPS) has become widespread around the world in recent years. A new robot arm system for SPS was developed, but its positioning platform and other hardware components were not efficient. Special features of the developed surgical robot system make good teleoperation with safety and efficiency difficult. A robot arm is combined and used as new positioning platform, and the remote center motion is realized by a new method using active motion control. A new mapping strategy based on kinematics computation and a novel optimal coordinated control strategy based on real-time approaching to a defined anthropopathic criterion configuration that is referred to the customary ease state of human arms and especially the configuration of boxers' habitual preparation posture are developed. The hardware components, control architecture, control system, and mapping strategy of the robotic system has been updated. A novel optimal coordinated control strategy is proposed and tested. The new robot system can be more dexterous, intelligent, convenient and safer for preoperative positioning and intraoperative adjustment. The mapping strategy can achieve good following and representation for the slave manipulator arms. And the proposed novel control strategy can enable them to complete tasks with higher maneuverability, lower possibility of self-interference and singularity free while teleoperating. Copyright © 2017 John Wiley & Sons, Ltd.

  10. How MAP kinase modules function as robust, yet adaptable, circuits.

    PubMed

    Tian, Tianhai; Harding, Angus

    2014-01-01

    Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution.

  11. How MAP kinase modules function as robust, yet adaptable, circuits

    PubMed Central

    Tian, Tianhai; Harding, Angus

    2014-01-01

    Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution. PMID:25483189

  12. A new complete sample of submillijansky radio sources: An optical and near-infrared study

    NASA Technical Reports Server (NTRS)

    Masci, F.; Condon, J.; Barlow, T.; Lonsdale, C.; Xu, C.; Shupe, D.; Pevunova, O.; Fang, F.; Cutri, R.

    2001-01-01

    The Very Large Array has been used in C configuration to map an area similar or equal to 0.3 deg(2) at 1.4 GHz with 5 sigma sensitivities of 0.305, 0.325, 0.380, and 0.450 mJy beam(-1)over four equal subareas.

  13. Comparison of 1:1 and 1:m CSCL Environment for Collaborative Concept Mapping

    ERIC Educational Resources Information Center

    Lin, C.-P.; Wong, L.-H.; Shao, Y.-J.

    2012-01-01

    This paper reports an investigation into the effects of collaborative concept mapping in a digital learning environment, in terms of students' overall learning gains, knowledge retention, quality of student artefacts (the collaboratively created concept maps), interactive patterns, and learning perceptions. Sixty-four 12-year-old students from two…

  14. Phase coexistence and domain configuration in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Xu, Han; Yang, Bin

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  15. Planning Paths Through Singularities in the Center of Mass Space

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Messner, William C.; Juang, Jer-Nan

    1998-01-01

    The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.

  16. An approach to improve the spatial resolution of a force mapping sensing system

    NASA Astrophysics Data System (ADS)

    Negri, Lucas Hermann; Manfron Schiefer, Elberth; Sade Paterno, Aleksander; Muller, Marcia; Luís Fabris, José

    2016-02-01

    This paper proposes a smart sensor system capable of detecting sparse forces applied to different positions of a metal plate. The sensing is performed with strain transducers based on fiber Bragg gratings (FBG) distributed under the plate. Forces actuating in nine squared regions of the plate, resulting from up to three different loads applied simultaneously to the plate, were monitored with seven transducers. The system determines the magnitude of the force/pressure applied on each specific area, even in the absence of a dedicated transducer for that area. The set of strain transducers with coupled responses and a compressive sensing algorithm are employed to solve the underdetermined inverse problem which emerges from mapping the force. In this configuration, experimental results have shown that the system is capable of recovering the value of the load distributed on the plate with a signal-to-noise ratio better than 12 dB, when the plate is submitted to three simultaneous test loads. The proposed method is a practical illustration of compressive sensing algorithms for the reduction of the number of FBG-based transducers used in a quasi-distributed configuration.

  17. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology.

    PubMed

    Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D; Kim, Yun-Soung; Blanco, Justin A; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J; Rogers, John A; Litt, Brian

    2010-03-24

    In all current implantable medical devices such as pacemakers, deep brain stimulators, and epilepsy treatment devices, each electrode is independently connected to separate control systems. The ability of these devices to sample and stimulate tissues is hindered by this configuration and by the rigid, planar nature of the electronics and the electrode-tissue interfaces. Here, we report the development of a class of mechanically flexible silicon electronics for multiplexed measurement of signals in an intimate, conformal integrated mode on the dynamic, three-dimensional surfaces of soft tissues in the human body. We demonstrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating porcine heart in vivo. The devices sample with simultaneous submillimeter and submillisecond resolution through 288 amplified and multiplexed channels. We use this system to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This demonstration is one example of many possible uses of this technology in minimally invasive medical devices.

  18. Pilot vehicle interface on the advanced fighter technology integration F-16

    NASA Technical Reports Server (NTRS)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  19. KML Super Overlay to WMS Translator

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2007-01-01

    This translator is a server-based application that automatically generates KML super overlay configuration files required by Google Earth for map data access via the Open Geospatial Consortium WMS (Web Map Service) standard. The translator uses a set of URL parameters that mirror the WMS parameters as much as possible, and it also can generate a super overlay subdivision of any given area that is only loaded when needed, enabling very large areas of coverage at very high resolutions. It can make almost any dataset available as a WMS service visible and usable in any KML application, without the need to reformat the data.

  20. Reduction and Analysis of Phosphor Thermography Data With the IHEAT Software Package

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1998-01-01

    Detailed aeroheating information is critical to the successful design of a thermal protection system (TPS) for an aerospace vehicle. This report describes NASA Langley Research Center's (LaRC) two-color relative-intensity phosphor thermography method and the IHEAT software package which is used for the efficient data reduction and analysis of the phosphor image data. Development of theory is provided for a new weighted two-color relative-intensity fluorescence theory for quantitatively determining surface temperatures on hypersonic wind tunnel models; an improved application of the one-dimensional conduction theory for use in determining global heating mappings; and extrapolation of wind tunnel data to flight surface temperatures. The phosphor methodology at LaRC is presented including descriptions of phosphor model fabrication, test facilities and phosphor video acquisition systems. A discussion of the calibration procedures, data reduction and data analysis is given. Estimates of the total uncertainties (with a 95% confidence level) associated with the phosphor technique are shown to be approximately 8 to 10 percent in the Langley's 31-Inch Mach 10 Tunnel and 7 to 10 percent in the 20-Inch Mach 6 Tunnel. A comparison with thin-film measurements using two-inch radius hemispheres shows the phosphor data to be within 7 percent of thin-film measurements and to agree even better with predictions via a LATCH computational fluid dynamics solution (CFD). Good agreement between phosphor data and LAURA CFD computations on the forebody of a vertical takeoff/vertical lander configuration at four angles of attack is also shown. In addition, a comparison is given between Mach 6 phosphor data and laminar and turbulent solutions generated using the LAURA, GASP and LATCH CFD codes. Finally, the extrapolation method developed in this report is applied to the X-34 configuration with good agreement between the phosphor extrapolation and LAURA flight surface temperature predictions. The phosphor process outlined in the paper is believed to provide the aerothermodynamic community with a valuable capability for rapidly obtaining (4 to 5 weeks) detailed heating information needed in TPS design.

  1. A Generalized Form of Context-Dependent Psychophysiological Interactions (gPPI): A Comparison to Standard Approaches

    PubMed Central

    McLaren, Donald G.; Ries, Michele L.; Xu, Guofan; Johnson, Sterling C.

    2012-01-01

    Functional MRI (fMRI) allows one to study task-related regional responses and task-dependent connectivity analysis using psychophysiological interaction (PPI) methods. The latter affords the additional opportunity to understand how brain regions interact in a task-dependent manner. The current implementation of PPI in Statistical Parametric Mapping (SPM8) is configured primarily to assess connectivity differences between two task conditions, when in practice fMRI tasks frequently employ more than two conditions. Here we evaluate how a generalized form of context-dependent PPI (gPPI; http://www.nitrc.org/projects/gppi), which is configured to automatically accommodate more than two task conditions in the same PPI model by spanning the entire experimental space, compares to the standard implementation in SPM8. These comparisons are made using both simulations and an empirical dataset. In the simulated dataset, we compare the interaction beta estimates to their expected values and model fit using the Akaike Information Criterion (AIC). We found that interaction beta estimates in gPPI were robust to different simulated data models, were not different from the expected beta value, and had better model fits than when using standard PPI (sPPI) methods. In the empirical dataset, we compare the model fit of the gPPI approach to sPPI. We found that the gPPI approach improved model fit compared to sPPI. There were several regions that became non-significant with gPPI. These regions all showed significantly better model fits with gPPI. Also, there were several regions where task-dependent connectivity was only detected using gPPI methods, also with improved model fit. Regions that were detected with all methods had more similar model fits. These results suggest that gPPI may have greater sensitivity and specificity than standard implementation in SPM. This notion is tempered slightly as there is no gold standard; however, data simulations with a known outcome support our conclusions about gPPI. In sum, the generalized form of context-dependent PPI approach has increased flexibility of statistical modeling, and potentially improves model fit, specificity to true negative findings, and sensitivity to true positive findings. PMID:22484411

  2. Comparison of traditional burn wound mapping with a computerized program.

    PubMed

    Williams, James F; King, Booker T; Aden, James K; Serio-Melvin, Maria; Chung, Kevin K; Fenrich, Craig A; Salinas, José; Renz, Evan M; Wolf, Steven E; Blackbourne, Lorne H; Cancio, Leopoldo C

    2013-01-01

    Accurate burn estimation affects the use of burn resuscitation formulas and treatment strategies, and thus can affect patient outcomes. The objective of this process-improvement project was to compare the accuracy of a computer-based burn mapping program, WoundFlow (WF), with the widely used hand-mapped Lund-Browder (LB) diagram. Manikins with various burn representations (from 1% to more than 60% TBSA) were used for comparison of the WF system and LB diagrams. Burns were depicted on the manikins using red vinyl adhesive. Healthcare providers responsible for mapping of burn patients were asked to perform burn mapping of the manikins. Providers were randomized to either an LB or a WF group. Differences in the total map area between groups were analyzed. Also, direct measurements of the burn representations were taken and compared with LB and WF results. The results of 100 samples, compared using Bland-Altman analysis, showed no difference between the two methods. WF was as accurate as LB mapping for all burn surface areas. WF may be additionally beneficial in that it can track daily progress until complete wound closure, and can automatically calculate burn size, thus decreasing the chances of mathematical errors.

  3. Thermal stability of bubble domains in ferromagnetic discs

    NASA Astrophysics Data System (ADS)

    Hrkac, G.; Bance, S.; Goncharov, A.; Schrefl, T.; Suess, D.

    2007-05-01

    The transition and thermal stability of disc-shaped ferromagnetic particles at the temperature of T = 300 K with a uniaxial anisotropy along the symmetry axis from a bi-domain to a single domain state has been studied. The nudge elastic band method was used to map the energy landscape and to calculate the energy barrier between the transition states. For single FePt disc-shaped particles with perpendicular anisotropy three transition configurations have been found: single domain, stripe- and stable bubble domains at zero applied field. The single domain configuration along the positive anisotropy axis is reached by an annihilation process of the domain wall and the all-down state by a complex domain expansion process. Magnetization configurations in two interacting discs show an increase in thermal stability compared with single disc systems, which is attributed to the interacting magnetostatic energy between the two particles.

  4. Comparison of DOE and NIRMA approaches to configuration management programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, E.Y.; Kulzick, K.C.

    One of the major management programs used for commercial, laboratory, and defense nuclear facilities is configuration management. The safe and efficient operation of a nuclear facility requires constant vigilance in maintaining the facility`s design basis with its as-built condition. Numerous events have occurred that can be attributed to (either directly or indirectly) the extent to which configuration management principles have been applied. The nuclear industry, as a whole, has been addressing this management philosophy with efforts taken on by its constituent professional organizations. The purpose of this paper is to compare and contrast the implementation plans for enhancing a configurationmore » management program as outlined in the U.S. Department of Energy`s (DOE`s) DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program,{close_quotes} with the following guidelines developed by the Nuclear Information and Records Management Association (NIRMA): 1. PP02-1994, {open_quotes}Position Paper on Configuration Management{close_quotes} 2. PP03-1992, {open_quotes}Position Paper for Implementing a Configuration Management Enhancement Program for a Nuclear Facility{close_quotes} 3. PP04-1994 {open_quotes}Position Paper for Configuration Management Information Systems.{close_quotes}« less

  5. What is the Best Configuration of Wearable Sensors to Measure Spatiotemporal Gait Parameters in Children with Cerebral Palsy?

    PubMed Central

    Carcreff, Lena; Paraschiv-Ionescu, Anisoara; De Coulon, Geraldo; Armand, Stéphane; Aminian, Kamiar

    2018-01-01

    Wearable inertial devices have recently been used to evaluate spatiotemporal parameters of gait in daily life situations. Given the heterogeneity of gait patterns in children with cerebral palsy (CP), the sensor placement and analysis algorithm may influence the validity of the results. This study aimed at comparing the spatiotemporal measurement performances of three wearable configurations defined by different sensor positioning on the lower limbs: (1) shanks and thighs, (2) shanks, and (3) feet. The three configurations were selected based on their potential to be used in daily life for children with CP and typically developing (TD) controls. For each configuration, dedicated gait analysis algorithms were used to detect gait events and compute spatiotemporal parameters. Fifteen children with CP and 11 TD controls were included. Accuracy, precision, and agreement of the three configurations were determined in comparison with an optoelectronic system as a reference. The three configurations were comparable for the evaluation of TD children and children with a low level of disability (CP-GMFCS I) whereas the shank-and-thigh-based configuration was more robust regarding children with a higher level of disability (CP-GMFCS II–III). PMID:29385700

  6. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one that has been scaled to have equal aspect ratio. Comparisons of numerous parameters, such as flow angles, pressure (both static and stagnation), entropy, boundary layers and displacement thickness, vorticity, etc. paint a picture that shows the symmetric equal aspect ratio configuration to be decidedly better at producing desirable test section flow. It has been shown that virtually all parameters of interest are both more consistent and have lower deviation from ideal conditions for the symmetric equal area configuration.

  7. Configuring a fuel cell based residential combined heat and power system

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Papadias, Dionissios D.; Ahluwalia, Rajesh K.

    2013-11-01

    The design and performance of a fuel cell based residential combined heat and power (CHP) system operating on natural gas has been analyzed. The natural gas is first converted to a hydrogen-rich reformate in a steam reformer based fuel processor, and the hydrogen is then electrochemically oxidized in a low temperature polymer electrolyte fuel cell to generate electric power. The heat generated in the fuel cell and the available heat in the exhaust gas is recovered to meet residential needs for hot water and space heating. Two fuel processor configurations have been studied. One of the configurations was explored to quantify the effects of design and operating parameters, which include pressure, temperature, and steam-to-carbon ratio in the fuel processor, and fuel utilization in the fuel cell. The second configuration applied the lessons from the study of the first configuration to increase the CHP efficiency. Results from the two configurations allow a quantitative comparison of the design alternatives. The analyses showed that these systems can operate at electrical efficiencies of ∼46% and combined heat and power efficiencies of ∼90%.

  8. Spacesuit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.

    2008-01-01

    For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.

  9. Method and infrastructure for cycle-reproducible simulation on large scale digital circuits on a coordinated set of field-programmable gate arrays (FPGAs)

    DOEpatents

    Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A

    2014-01-28

    A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.

  10. The UV reflectance of Patroclus: Exploring the surface composition and origins of Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Molyneux, Pippa

    2017-08-01

    (617) Patroclus is a binary system comprising two almost equally sized Trojan asteroids, Patroclus and Menoetius. (617) Patroclus has never been observed in the UV spectral region, which contains important diagnostic features of major Trojan surface constituents inferred from fits to visible-near IR spectra. Previous spectral observations have not been spatially resolved, precluding a direct spectral comparison of the two bodies. We propose to obtain full surface UV reflectance maps of both Patroclus and Menoetius using the STIS G230L mode, to search for characteristic absorption features of silicates, carbons/graphites and NH3, which together make up the major inferred Jupiter Trojan surface constituents, and for signs of ''spectral bluing'' that occurs for space-weathered objects. The Jupiter Trojans are believed to represent the most readily accessible Kuiper Belt material in the solar system, having been scattered from that region to their current orbits following a dynamical instability. A direct spectral comparison of Patroclus and Menoetius, indicating whether the objects share a common origin and evolution, will explore the hypothesis that the system is a rare binary survivor of this scattering. (617) Patroclus is also a target of the upcoming Lucy mission, and constraints on surface composition would represent a valuable input to instrument configuration and observation planning work for the mission. As Lucy will not carry a UV instrument, the proposed observations would remain unique and complementary to the results of the mission.

  11. Urban pavement surface temperature. Comparison of numerical and statistical approach

    NASA Astrophysics Data System (ADS)

    Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia

    2015-04-01

    The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.

  12. Ionospheric Correction of InSAR for Accurate Ice Motion Mapping at High Latitudes

    NASA Astrophysics Data System (ADS)

    Liao, H.; Meyer, F. J.

    2016-12-01

    Monitoring the motion of the large ice sheets is of great importance for determining ice mass balance and its contribution to sea level rise. Recently the first comprehensive ice motion of the Greenland and the Antarctica have been generated with InSAR. However, these studies have indicated that the performance of InSAR-based ice motion mapping is limited by the presence of the ionosphere. This is particularly true at high latitudes and for low-frequency SAR data. Filter-based and empirical methods (e.g., removing polynomials), which have often been used to mitigate ionospheric effects, are often ineffective in these areas due to the typically strong spatial variability of ionospheric phase delay in high latitudes and due to the risk of removing true deformation signals from the observations. In this study, we will first present an outline of our split-spectrum InSAR-based ionospheric correction approach and particularly highlight how our method improves upon published techniques, such as the multiple sub-band approach to boost estimation accuracy as well as advanced error correction and filtering algorithms. We applied our work flow to a large number of ionosphere-affected dataset over the large ice sheets to estimate the benefit of ionospheric correction on ice motion mapping accuracy. Appropriate test sites over Greenland and the Antarctic have been chosen through cooperation with authors (UW, Ian Joughin) of previous ice motion studies. To demonstrate the magnitude of ionospheric noise and to showcase the performance of ionospheric correction, we will show examples of ionospheric-affected InSAR data and our ionosphere corrected result for comparison in visual. We also compared the corrected phase data to known ice velocity fields quantitatively for the analyzed areas from experts in ice velocity mapping. From our studies we found that ionospheric correction significantly reduces biases in ice velocity estimates and boosts accuracy by a factor that depends on a set of system (range bandwidth, temporal and spatial baseline) and processing parameters (e.g., filtering strength and sub-band configuration). A case study in Greenland is attached below.

  13. Impact of the coupling effect and the configuration on a compact rectenna array

    NASA Astrophysics Data System (ADS)

    Rivière, J.; Douyere, A.; Luk, J. D. Lan Sun

    2014-10-01

    This paper proposes an experimental study of the coupling effect of a rectenna array. The rectifying antenna consists of a compact and efficient rectifying circuit in a series topology, coupled with a small metamaterial-inspired antenna. The measurements are investigated in the X plane on the rectenna array's behavior, with series and parallel DC- combining configuration of two and three spaced rectennas from 3 cm to 10 cm. This study shows that the maximum efficiency is reached for the series configuration, with a resistive load of 10 kQ. The optimal distance is not significant for series or parallel configuration. Then, a comparison between a rectenna array with non-optimal mutual coupling and a more traditional patch rectenna is performed. Finally, a practical application is tested to demonstrate the effectiveness of such small rectenna array.

  14. Laminar Heating Validation of the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Lillard, Randolph P.; Dries, Kevin M.

    2005-01-01

    OVERFLOW, a structured finite difference code, was applied to the solution of hypersonic laminar flow over several configurations assuming perfect gas chemistry. By testing OVERFLOW's capabilities over several configurations encompassing a variety of flow physics a validated laminar heating was produced. Configurations tested were a flat plate at 0 degrees incidence, a sphere, a compression ramp, and the X-38 re-entry vehicle. This variety of test cases shows the ability of the code to predict boundary layer flow, stagnation heating, laminar separation with re-attachment heating, and complex flow over a three-dimensional body. In addition, grid resolutions studies were done to give recommendations for the correct number of off-body points to be applied to generic problems and for wall-spacing values to capture heat transfer and skin friction. Numerical results show good comparison to the test data for all the configurations.

  15. Testing of aircraft passenger seat cushion material, full scale. Data, volume 2

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1980-01-01

    Burn characteristics of presently used and proposed seat cushion materials and types of constructions were determined. Eight different seat cushion configurations were subjected to full scale burn tests. Each cushion configuration was tested twice for a total of 16 tests. Two different fire sources were used: Jet A-fuel for eight tests, and a radiant energy source with propane flame for eight tests. Data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and type and content of gas within the cabin. When compared to existing seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance. Flammability comparison tests were conducted upon one fire blocking configuration and one polyimide configuration.

  16. A new EEG measure using the 1D cluster variation method

    NASA Astrophysics Data System (ADS)

    Maren, Alianna J.; Szu, Harold H.

    2015-05-01

    A new information measure, drawing on the 1-D Cluster Variation Method (CVM), describes local pattern distributions (nearest-neighbor and next-nearest neighbor) in a binary 1-D vector in terms of a single interaction enthalpy parameter h for the specific case where the fractions of elements in each of two states are the same (x1=x2=0.5). An example application of this method would be for EEG interpretation in Brain-Computer Interfaces (BCIs), especially in the frontier of invariant biometrics based on distinctive and invariant individual responses to stimuli containing an image of a person with whom there is a strong affiliative response (e.g., to a person's grandmother). This measure is obtained by mapping EEG observed configuration variables (z1, z2, z3 for next-nearest neighbor triplets) to h using the analytic function giving h in terms of these variables at equilibrium. This mapping results in a small phase space region of resulting h values, which characterizes local pattern distributions in the source data. The 1-D vector with equal fractions of units in each of the two states can be obtained using the method for transforming natural images into a binarized equi-probability ensemble (Saremi & Sejnowski, 2014; Stephens et al., 2013). An intrinsically 2-D data configuration can be mapped to 1-D using the 1-D Peano-Hilbert space-filling curve, which has demonstrated a 20 dB lower baseline using the method compared with other approaches (cf. SPIE ICA etc. by Hsu & Szu, 2014). This CVM-based method has multiple potential applications; one near-term one is optimizing classification of the EEG signals from a COTS 1-D BCI baseball hat. This can result in a convenient 3-D lab-tethered EEG, configured in a 1-D CVM equiprobable binary vector, and potentially useful for Smartphone wireless display. Longer-range applications include interpreting neural assembly activations via high-density implanted soft, cellular-scale electrodes.

  17. Device Discovery in Frequency Hopping Wireless Ad Hoc Networks

    DTIC Science & Technology

    2004-09-01

    10.1. Benchmark scatternet configuration used for outreach compar- ison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 10.2. Average...Slave - Slave A B C DE Figure 10.1: Benchmark scatternet configuration used for outreach comparison. Additionally: • All nodes are within range of one...MSTSs ISOM mean = 6.97 MSTSs NISOM mean = 7.21 MSTSs Exponential distribution MSTSs P ic on et A -D p ac ke t g en er at io n ti m e pr ob ab il it y

  18. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  19. Detached-Eddy Simulations of Separated Flow Around Wings With Ice Accretions: Year One Report

    NASA Technical Reports Server (NTRS)

    Choo, Yung K. (Technical Monitor); Thompson, David; Mogili, Prasad

    2004-01-01

    A computational investigation was performed to assess the effectiveness of Detached-Eddy Simulation (DES) as a tool for predicting icing effects. The AVUS code, a public domain flow solver, was employed to compute solutions for an iced wing configuration using DES and steady Reynolds Averaged Navier-Stokes (RANS) equation methodologies. The configuration was an extruded GLC305/944-ice shape section with a rectangular planform. The model was mounted between two walls so no tip effects were considered. The numerical results were validated by comparison with experimental data for the same configuration. The time-averaged DES computations showed some improvement in lift and drag results near stall when compared to steady RANS results. However, comparisons of the flow field details did not show the level of agreement suggested by the integrated quantities. Based on our results, we believe that DES may prove useful in a limited sense to provide analysis of iced wing configurations when there is significant flow separation, e.g., near stall, where steady RANS computations are demonstrably ineffective. However, more validation is needed to determine what role DES can play as part of an overall icing effects prediction strategy. We conclude the report with an assessment of existing computational tools for application to the iced wing problem and a discussion of issues that merit further study.

  20. Measuring spatial variability in soil characteristics

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  1. A program for the conversion of The National Map data from proprietary format to resource description framework (RDF)

    USGS Publications Warehouse

    Bulen, Andrew; Carter, Jonathan J.; Varanka, Dalia E.

    2011-01-01

    To expand data functionality and capabilities for users of The National Map of the U.S. Geological Survey, data sets for six watersheds and three urban areas were converted from the Best Practices vector data model formats to Semantic Web data formats. This report describes and documents the conver-sion process. The report begins with an introduction to basic Semantic Web standards and the background of The National Map. Data were converted from a proprietary format to Geog-raphy Markup Language to capture the geometric footprint of topographic data features. Configuration files were designed to eliminate redundancy and make the conversion more efficient. A SPARQL endpoint was established for data validation and queries. The report concludes by describing the results of the conversion.

  2. Pharmacophore modeling of diverse classes of p38 MAP kinase inhibitors.

    PubMed

    Sarma, Rituparna; Sinha, Sharat; Ravikumar, Muttineni; Kishore Kumar, Madala; Mahmood, S K

    2008-12-01

    Mitogen-activated protein (MAP) p38 kinase is a serine-threonine protein kinase and its inhibitors are useful in the treatment of inflammatory diseases. Pharmacophore models were developed using HypoGen program of Catalyst with diverse classes of p38 MAP kinase inhibitors. The best pharmacophore hypothesis (Hypo1) with hydrogen-bond acceptor (HBA), hydrophobic (HY), hydrogen-bond donor (HBD), and ring aromatic (RA) as features has correlation coefficient of 0.959, root mean square deviation (RMSD) of 1.069 and configuration cost of 14.536. The model was validated using test set containing 119 compounds and had high correlation coefficient of 0.851. The results demonstrate that results obtained in this study can be considered to be useful and reliable tools in identifying structurally diverse compounds with desired biological activity.

  3. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    PubMed

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some differences in texture details. Moreover, quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation indicate that the short- and half-scan configurations yield results in close agreement with the ground-truth information and that of the full-scan configuration. The one-step method considered can compensate effectively for the nonlinear spectral response in full- and partial-angular-scan dual-energy CT. It can be exploited for enabling partial-angular-scan configurations on standard CT scanner without involving additional hardware. Visual inspection and quantitative studies reveal that, with the one-step method, partial-angular-scan configurations considered can perform at a level comparable to that of the full-scan configuration, thus suggesting the potential of the two partial-angular-scan configurations in reducing imaging dose and scan time in the standard single-kVp-switch full-scan CT in which two full rotations are performed. The work also yields insights into the investigation and design of other nonstandard scan configurations of potential practical significance in dual-energy CT. © 2018 American Association of Physicists in Medicine.

  4. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.

    PubMed

    Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke

    2010-12-01

    A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.

  5. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).

    PubMed

    Ohmido, Nobuko; Iwata, Aiko; Kato, Seiji; Wako, Toshiyuki; Fukui, Kiichi

    2018-01-01

    A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using imaging methods. The map depicts not only distribution patterns of chromomeres specific to pachytene chromosomes, but also the higher order information of chromosomal structures, such as heterochromatin (condensed regions), euchromatin (decondensed regions), the primary constrictions (centromeres), and the secondary constriction (nucleolar organizing regions, NOR). These features were image analyzed and quantitatively mapped onto the map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin, thus was, clearly visualized. Then the pachytene chromosome map was unified with the existing somatic chromosome and linkage maps by physically mapping common DNA markers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1 bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ hybridization (FISH). Detailed comparison between the locations of the DNA probes on the pachytene chromosomes using multicolor FISH, and the linkage map enabled determination of the chromosome number and short/long arms of individual pachytene chromosomes using the chromosome number and arm assignment designated for the linkage map. As a result, the quantitative pachytene chromosome map was unified with two other major rice chromosome maps representing somatic prometaphase chromosomes and genetic linkages. In conclusion, the unification of the three rice maps serves as an indispensable basic information, not only for an in-depth comparison between genetic and chromosomal data, but also for practical breeding programs.

  6. A Comparison of Combustion Dynamics for Multiple 7-Point Lean Direct Injection Combustor Configurations

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Hicks, Yolanda R.

    2017-01-01

    The combustion dynamics of two 7-point lean direct injection (LDI) combustor configurations are compared. This 7-point LDI configuration has a circular cross section, with a center ("pilot") fuel-air mixer surrounded by six outer ("main") fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle. In the 'all-60' configuration, the swirler blade angle was 60 deg for all fuel-air mixers. In the '45-60' configuration, the swirler blade angle was 60 deg on the center and 45 deg on the outer fuel-air mixers. Testing was done in a 5-atm flame tube with inlet air temperatures from 630 to 830 F and equivalence ratios from 0.2 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section. Both configurations had large pressure fluctuations (greater than 2 psi peak-peak) near 730 Hz, the quarter-wave frequency. The all-60 configuration also had large pressure fluctuations near 1170 Hz; the 45-60 configuration did not. The 45-60 configuration had large pressure fluctuations near 480 Hz; the all-60 configuration did not.

  7. Global Genomic Diversity of Oryza sativa Varieties Revealed by Comparative Physical Mapping

    PubMed Central

    Wang, Xiaoming; Kudrna, David A.; Pan, Yonglong; Wang, Hao; Liu, Lin; Lin, Haiyan; Zhang, Jianwei; Song, Xiang; Goicoechea, Jose Luis; Wing, Rod A.; Zhang, Qifa; Luo, Meizhong

    2014-01-01

    Bacterial artificial chromosome (BAC) physical maps embedding a large number of BAC end sequences (BESs) were generated for Oryza sativa ssp. indica varieties Minghui 63 (MH63) and Zhenshan 97 (ZS97) and were compared with the genome sequences of O. sativa spp. japonica cv. Nipponbare and O. sativa ssp. indica cv. 93-11. The comparisons exhibited substantial diversities in terms of large structural variations and small substitutions and indels. Genome-wide BAC-sized and contig-sized structural variations were detected, and the shared variations were analyzed. In the expansion regions of the Nipponbare reference sequence, in comparison to the MH63 and ZS97 physical maps, as well as to the previously constructed 93-11 physical map, the amounts and types of the repeat contents, and the outputs of gene ontology analysis, were significantly different from those of the whole genome. Using the physical maps of four wild Oryza species from OMAP (http://www.omap.org) as a control, we detected many conserved and divergent regions related to the evolution process of O. sativa. Between the BESs of MH63 and ZS97 and the two reference sequences, a total of 1532 polymorphic simple sequence repeats (SSRs), 71,383 SNPs, 1767 multiple nucleotide polymorphisms, 6340 insertions, and 9137 deletions were identified. This study provides independent whole-genome resources for intra- and intersubspecies comparisons and functional genomics studies in O. sativa. Both the comparative physical maps and the GBrowse, which integrated the QTL and molecular markers from GRAMENE (http://www.gramene.org) with our physical maps and analysis results, are open to the public through our Web site (http://gresource.hzau.edu.cn/resource/resource.html). PMID:24424778

  8. Cognitive Maps as a Way of Presenting the Dimension of Comparison within the History of Psychology.

    ERIC Educational Resources Information Center

    Diekhoff, George M.

    1982-01-01

    Describes how cognitive maps can help to stimulate discussion of the structural inter-relationships of psychological theory in college-level history of psychology classes. The author describes a cognitive mapping activity in which students pair prominent theorists and theories, rate their degrees of similarity, and graph the relationships of their…

  9. Projection-viewer for microscale aerial photography

    Treesearch

    Robert C. Aldrich; James von Mosch; Wallace Greentree

    1972-01-01

    A low-cost projection-viewer has been developed to enlarge portions of microscale aerial photographs. These pictures can be used for interpretation or mapping, or for comparison with existing photographs, maps, and overlays to monitor environmental changes. The projection-viewer can enlarge from 2.5 to 20 times, and can be calibrated so that maps may be drawn with a...

  10. Chapter 8 - Mapping existing vegetation composition and structure for the LANDFIRE Prototype Project

    Treesearch

    Zhiliang Zhu; James Vogelmann; Donald Ohlen; Jay Kost; Xuexia Chen; Brian Tolk

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required the mapping of existing vegetation composition (cover type) and structural stages at a 30-m spatial resolution to provide baseline vegetation data for the development of wildland fuel maps and for comparison to simulated historical vegetation reference...

  11. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia

    Treesearch

    Dirk Pflugmacher; Olga N. Krankina; Warren B. Cohen; Mark A. Friedl; Damien Sulla-Menashe; Robert E. Kennedy; Peder Nelson; Tatiana V. Loboda; Tobias Kuemmerle; Egor Dyukarev; Vladimir Elsadov; Viacheslav I. Kharuk

    2011-01-01

    Information on land cover at global and continental scales is critical for addressing a range of ecological, socioeconomic and policy questions. Global land cover maps have evolved rapidly in the last decade, but efforts to evaluate map uncertainties have been limited, especially in remote areas like Northern Eurasia. Northern Eurasia comprises a particularly diverse...

  12. Land cover change map comparisons using open source web mapping technologies

    Treesearch

    Erik Lindblom; Ian Housman; Tony Guay; Mark Finco; Kevin Megown

    2015-01-01

    The USDA Forest Service is evaluating the status of current landscape change maps and assessing gaps in their information content. These activities have been occurring under the auspices of the Landscape Change Monitoring System (LCMS) project, which is a joint effort between USFS Research, USFS Remote Sensing Applications Center (RSAC), USGS Earth Resources...

  13. Fluid design studies of integrated modular engine system

    NASA Technical Reports Server (NTRS)

    Frankenfield, Bruce; Carek, Jerry

    1993-01-01

    A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.

  14. Change of nuclear configurations in the neutrinoless double-β decay of 130Te →130Be and 136Xe136Ba

    NASA Astrophysics Data System (ADS)

    Entwisle, J. P.; Kay, B. P.; Tamii, A.; Adachi, S.; Aoi, N.; Clark, J. A.; Freeman, S. J.; Fujita, H.; Fujita, Y.; Furuno, T.; Hashimoto, T.; Hoffman, C. R.; Ideguchi, E.; Ito, T.; Iwamoto, C.; Kawabata, T.; Liu, B.; Miura, M.; Ong, H. J.; Schiffer, J. P.; Sharp, D. K.; Süsoy, G.; Suzuki, T.; Szwec, S. V.; Takaki, M.; Tsumura, M.; Yamamoto, T.

    2016-06-01

    The change in the configuration of valence protons between the initial and final states in the neutrinoless double-β decay of 130Te → 130Be and of 136Xe136Ba has been determined by measuring the cross sections of the (d ,3He) reaction with 101-MeV deuterons. Together with our recent determination of the relevant neutron configurations involved in the process, a quantitative comparison with the latest shell-model and interacting-boson-model calculations reveals significant discrepancies. These are the same calculations used to determine the nuclear matrix elements governing the rate of neutrinoless double-β decay in these systems.

  15. Change of Nuclear Configurations in the Neutrinoless Double-β Decay of 130Te → 130Xe and 136Xe → 136Ba

    DOE PAGES

    Entwisle, J. P.; Kay, B. P.; Tamii, A.; ...

    2016-06-13

    The change in the configuration of valence protons between the initial and final states in the neutrinoless double-beta decay of Te-130 -> Xe-130 and of Xe-136 -> Ba-136 has been determined by measuring the cross sections of the (d,He-3) reaction with 101-MeV deuterons. Together with our recent determination of the relevant neutron configurations involved in the process, a quantitative comparison with the latest shell-model and interacting-boson-model calculations reveals significant discrepancies. These are the same calculations used to determine the nuclear matrix elements governing the rate of neutrinoless double-beta decay in these systems.

  16. Identifying cochlear implant channels with poor electrode-neuron interface: electrically-evoked auditory brainstem responses measured with the partial tripolar configuration

    PubMed Central

    Bierer, Julie Arenberg; Faulkner, Kathleen F.; Tremblay, Kelly L.

    2011-01-01

    Objectives The goal of this study was to compare cochlear implant behavioral measures and electrically-evoked auditory brainstem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves (Bierer and Faulkner, 2010). The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, such as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping procedure, especially for young children. Here we have extended the previous investigation to determine if a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Design Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ=1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ=0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Results Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low threshold channel. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration. Conclusions These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception. PMID:21178633

  17. On testing for spatial correspondence between maps of human brain structure and function.

    PubMed

    Alexander-Bloch, Aaron F; Shou, Haochang; Liu, Siyuan; Satterthwaite, Theodore D; Glahn, David C; Shinohara, Russell T; Vandekar, Simon N; Raznahan, Armin

    2018-06-01

    A critical issue in many neuroimaging studies is the comparison between brain maps. Nonetheless, it remains unclear how one should test hypotheses focused on the overlap or spatial correspondence between two or more brain maps. This "correspondence problem" affects, for example, the interpretation of comparisons between task-based patterns of functional activation, resting-state networks or modules, and neuroanatomical landmarks. To date, this problem has been addressed with remarkable variability in terms of methodological approaches and statistical rigor. In this paper, we address the correspondence problem using a spatial permutation framework to generate null models of overlap by applying random rotations to spherical representations of the cortical surface, an approach for which we also provide a theoretical statistical foundation. We use this method to derive clusters of cognitive functions that are correlated in terms of their functional neuroatomical substrates. In addition, using publicly available data, we formally demonstrate the correspondence between maps of task-based functional activity, resting-state fMRI networks and gyral-based anatomical landmarks. We provide open-access code to implement the methods presented for two commonly-used tools for surface based cortical analysis (https://www.github.com/spin-test). This spatial permutation approach constitutes a useful advance over widely-used methods for the comparison of cortical maps, thereby opening new possibilities for the integration of diverse neuroimaging data. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.

    PubMed

    Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus

    We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.

  19. Cross-correlating Planck tSZ with RCSLenS weak lensing: implications for cosmology and AGN feedback

    NASA Astrophysics Data System (ADS)

    Hojjati, Alireza; Tröster, Tilman; Harnois-Déraps, Joachim; McCarthy, Ian G.; van Waerbeke, Ludovic; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hinshaw, Gary; Ma, Yin-Zhe; Miller, Lance; Viola, Massimo; Tanimura, Hideki

    2017-10-01

    We present measurements of the spatial mapping between (hot) baryons and the total matter in the Universe, via the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) map from Planck and the weak gravitational lensing maps from the Red Cluster Sequence Lensing Survey (RCSLenS). The cross-correlations are performed on the map level where all the sources (including diffuse intergalactic gas) contribute to the signal. We consider two configuration-space correlation function estimators, ξy-κ and ξ ^ {y-γ t}, and a Fourier-space estimator, C_{ℓ}^{y-κ}, in our analysis. We detect a significant correlation out to 3° of angular separation on the sky. Based on statistical noise only, we can report 13σ and 17σ detections of the cross-correlation using the configuration-space y-κ and y-γt estimators, respectively. Including a heuristic estimate of the sampling variance yields a detection significance of 7σ and 8σ, respectively. A similar level of detection is obtained from the Fourier-space estimator, C_{ℓ}^{y-κ}. As each estimator probes different dynamical ranges, their combination improves the significance of the detection. We compare our measurements with predictions from the cosmo-OverWhelmingly Large Simulations suite of cosmological hydrodynamical simulations, where different galactic feedback models are implemented. We find that a model with considerable active galactic nuclei (AGN) feedback that removes large quantities of hot gas from galaxy groups and Wilkinson Microwave Anisotropy Probe 7-yr best-fitting cosmological parameters provides the best match to the measurements. All baryonic models in the context of a Planck cosmology overpredict the observed signal. Similar cosmological conclusions are drawn when we employ a halo model with the observed 'universal' pressure profile.

  20. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  1. Accuracy and Significance of Polymerase Chain Reaction Detection of Sentinel Node Metastases in Breast Cancer Patients

    DTIC Science & Technology

    2000-10-01

    oral presentation at the 1 998 AACR meeting and on the subsequent Cancer Research article, many investigators in the field have abandoned K19 as a...1999) "Comparison of Intradermal and Subcutaneous Injections in Lymphatic Mapping." Oral presentation_at the 33rd Annual Meeting of the Association of...Lannin D, Tafra L. Comparison of Intradermal and Subcutaneous Injections in Lymphatic Mapping, Oral presentation at the 33rd Annual Meeting of the

  2. Synoptic maps constructed from brightness observations of Thomson scattering by heliospheric electrons

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B.; Schwenn, R.

    1991-01-01

    Observations of the Thomson scattering brightness by electrons in the inner heliosphere provide a means of probing the heliospheric electron distributions. An extensive data base of Thomson scattering observations, stretching over many years, is available from the zodiacal light photometers on board the two Helios spacecraft. A survey of these data is in progress, presenting these scattering intensities in the form of synoptic maps for successive Carrington rotations. The Thomson scattering maps reflect conditions at typically several tenths of an astronomical unit from the sun. Some representative examples from the survey in comparison with other solar/heliospheric data, such as in situ observations of the Helios plasma experiment and synoptic maps constructed from magnetic field, H alpha and K-coronameter data are presented. The comparison will provide some information about the extension of solar surface features into the inner heliosphere.

  3. Value-centric design architecture based on analysis of space system characteristics

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Hollingsworth, P.; Smith, K.

    2018-03-01

    Emerging design concepts such as miniaturisation, modularity, and standardisation, have contributed to the rapid development of small and inexpensive platforms, particularly cubesats. This has been stimulating an upcoming revolution in space design and development, leading satellites into the era of "smaller, faster, and cheaper". However, the current requirement-centric design philosophy, focused on bespoke monolithic systems, along with the associated development and production process does not inherently fit with the innovative modular, standardised, and mass-produced technologies. This paper presents a new categorisation, characterisation, and value-centric design architecture to address this need for both traditional and novel system designs. Based on the categorisation of system configurations, a characterisation of space systems, comprised of duplication, fractionation, and derivation, is proposed to capture the overall system configuration characteristics and promote potential hybrid designs. Complying with the definitions of the system characterisation, mathematical mapping relations between the system characterisation and the system properties are described to establish the mathematical foundation of the proposed value-centric design methodology. To illustrate the methodology, subsystem reliability relationships are therefore analysed to explore potential system configurations in the design space. The results of the applications of system characteristic analysis clearly show that the effects of different configuration characteristics on the system properties can be effectively analysed and evaluated, enabling the optimization of system configurations.

  4. Gravity Field Mapping of Mars with MGS

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Lemoine, Frank G.

    1998-01-01

    Tracking of the MGS spacecraft in orbit at Mars by the Deep Space Network since last September has provided doppler and range measurements that are being used to improve the model of the Mars gravity field. During most of October 1997, April 1998, and June thru August 1998 high quality tracking data were obtained while the periapse was in the northern hemisphere at altitudes in the 170 to 190 km range. The eccentric orbit had a period of about 11.5 hrs and an inclination of about 96.2 degrees so that low altitude tracking was obtained over most of the northern hemisphere, including the north polar icecap. Data from the earlier Mariner 9 and Viking missions have been added to the MGS data and a series of experimental gravity models developed from the combined datasets. These models have generally been of degree and order 70 and are a significant improvement over earlier models that did not include the MGS data. Gravity anomalies over the north polar cap region of Mars are generally less than 50 to 100 mgals and show no obvious correlation with the topography. Successive MGS orbits derived using these new models are showing agreement at the 100 meter level, and this has been confirmed with the laser altimeter (MOLA) on MGS These comparisons are expected to improve significantly as more tracking data get included in the solution and the MGS orbit becomes more circular giving a more balanced geographical distribution of data at low altitude. This will happen early in 1999 as the orbit approaches the mapping configuration of a circular orbit at about 400 Km.

  5. Selecting landscape metrics as indicators of spatial heterogeneity-A comparison among Greek landscapes

    NASA Astrophysics Data System (ADS)

    Plexida, Sofia G.; Sfougaris, Athanassios I.; Ispikoudis, Ioannis P.; Papanastasis, Vasilios P.

    2014-02-01

    This paper investigates the spatial heterogeneity of three landscapes along an altitudinal gradient and different human land use. The main aim was the identification of appropriate landscape indicators using different extents. ASTER image was used to create a land cover map consisting of three landscapes which differed in altitude and land use. A number of landscape metrics quantifying patch complexity, configuration, diversity and connectivity were derived from the thematic map at the landscape level. There were significant differences among the three landscapes regarding these four aspects of landscape heterogeneity. The analysis revealed a specific pattern of land use where lowlands are being increasingly utilized by humans (percentage of agricultural land = 65.84%) characterized by physical connectedness (high values of Patch Cohesion Index) and relatively simple geometries (low values of fractal dimension index). The landscape pattern of uplands was found to be highly diverse based upon the Shannon Diversity index. After selecting the scale (600 ha) where metrics values stabilized, it was shown that metrics were more correlated at the small scale of 60 ha. From the original 24 metrics, 14 individual metrics with high Spearman correlation coefficient and Variance Inflation Factor criterion were eliminated, leaving 10 representative metrics for subsequent analysis. Data reduction analysis showed that Patch Density, Area-Weighted Mean Fractal Dimension Index and Patch Cohesion Index are suitable to describe landscape patterns irrespective of the scale. A systematic screening of these metrics could enhance a deeper understanding of the results obtained by them and contribute to a sustainable landscape management of Mediterranean landscapes.

  6. Application of Vehicle Dynamic Modeling in Uavs for Precise Determination of Exterior Orientation

    NASA Astrophysics Data System (ADS)

    Khaghani, M.; Skaloud, J.

    2016-06-01

    Advances in unmanned aerial vehicles (UAV) and especially micro aerial vehicle (MAV) technology together with increasing quality and decreasing price of imaging devices have resulted in growing use of MAVs in photogrammetry. The practicality of MAV mapping is seriously enhanced with the ability to determine parameters of exterior orientation (EO) with sufficient accuracy, in both absolute and relative senses (change of attitude between successive images). While differential carrier phase GNSS satisfies cm-level positioning accuracy, precise attitude determination is essential for both direct sensor orientation (DiSO) and integrated sensor orientation (ISO) in corridor mapping or in block configuration imaging over surfaces with low texture. Limited cost, size, and weight of MAVs represent limitations on quality of onboard navigation sensors and puts emphasis on exploiting full capacity of available resources. Typically short flying times (10-30 minutes) also limit the possibility of estimating and/or correcting factors such as sensor misalignment and poor attitude initialization of inertial navigation system (INS). This research aims at increasing the accuracy of attitude determination in both absolute and relative senses with no extra sensors onboard. In comparison to classical INS/GNSS setup, novel approach is presented here to integrated state estimation, in which vehicle dynamic model (VDM) is used as the main process model. Such system benefits from available information from autopilot and physical properties of the platform in enhancing performance of determination of trajectory and parameters of exterior orientation consequently. The navigation system employs a differential carrier phase GNSS receiver and a micro electro-mechanical system (MEMS) grade inertial measurement unit (IMU), together with MAV control input from autopilot. Monte-Carlo simulation has been performed on trajectories for typical corridor mapping and block imaging. Results reveal considerable reduction in attitude errors with respect to conventional INS/GNSS system, in both absolute and relative senses. This eventually translates into higher redundancy and accuracy for photogrammetry applications.

  7. AF-GEOSpace Version 2.1 Release

    NASA Astrophysics Data System (ADS)

    Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Madden, D.; Perry, K. L.; Tautz, M.; Roth, C.

    2006-05-01

    AF-GEOSpace Version 2.1 is a graphics-intensive software program with space environment models and applications developed recently by the Space Weather Center of Excellence at AFRL. A review of new and planned AF-GEOSpace capabilities will be given. The software addresses a wide range of physical domains and addresses such topics as solar disturbance propagation, geomagnetic field and radiation belt configurations, auroral particle precipitation, and ionospheric scintillation. Building on the success of previous releases, AF-GEOSpace has become a platform for the rapid prototyping of automated operational and simulation space weather visualization products and helps with a variety of tasks, including: orbit specification for radiation hazard avoidance; satellite design assessment and post-event anomaly analysis; solar disturbance effects forecasting; determination of link outage regions for active ionospheric conditions; satellite magnetic conjugate studies, scientific model validation and comparison, physics research, and education. Previously, Version 2.0 provided a simplified graphical user interface, improved science and application modules, significantly enhanced graphical performance, common input data archive sets, and 1-D, 2-D, and 3- D visualization tools for all models. Dynamic capabilities permit multiple environments to be generated at user- specified time intervals while animation tools enable the display of satellite orbits and environment data together as a function of time. Building on the Version 2.0 software architecture, AF-GEOSpace Version 2.1 includes a host of new modules providing, for example, plasma sheet charged particle fluxes, neutral atmosphere densities, 3-D cosmic ray cutoff maps, low-altitude trapped proton belt flux specification, DMSP particle data displays, satellite magnetic field footprint mapping determination, and meteor sky maps and shower/storm fluxes with spacecraft impact probabilities. AF-GEOSpace Version 2.1 was developed for Windows XP and Linux systems. To receive a copy of the AF-GEOSpace 2.1 software, please submit requests via e-mail to the first author.

  8. Integration of electro-anatomical and imaging data of the left ventricle: An evaluation framework.

    PubMed

    Soto-Iglesias, David; Butakoff, Constantine; Andreu, David; Fernández-Armenta, Juan; Berruezo, Antonio; Camara, Oscar

    2016-08-01

    Integration of electrical and structural information for scar characterization in the left ventricle (LV) is a crucial step to better guide radio-frequency ablation therapies, which are usually performed in complex ventricular tachycardia (VT) cases. This integration requires finding a common representation where to map the electrical information from the electro-anatomical map (EAM) surfaces and tissue viability information from delay-enhancement magnetic resonance images (DE-MRI). However, the development of a consistent integration method is still an open problem due to the lack of a proper evaluation framework to assess its accuracy. In this paper we present both: (i) an evaluation framework to assess the accuracy of EAM and imaging integration strategies with simulated EAM data and a set of global and local measures; and (ii) a new integration methodology based on a planar disk representation where the LV surface meshes are quasi-conformally mapped (QCM) by flattening, allowing for simultaneous visualization and joint analysis of the multi-modal data. The developed evaluation framework was applied to estimate the accuracy of the QCM-based integration strategy on a benchmark dataset of 128 synthetically generated ground-truth cases presenting different scar configurations and EAM characteristics. The obtained results demonstrate a significant reduction in global overlap errors (50-100%) with respect to state-of-the-art integration techniques, also better preserving the local topology of small structures such as conduction channels in scars. Data from seventeen VT patients were also used to study the feasibility of the QCM technique in a clinical setting, consistently outperforming the alternative integration techniques in the presence of sparse and noisy clinical data. The proposed evaluation framework has allowed a rigorous comparison of different EAM and imaging data integration strategies, providing useful information to better guide clinical practice in complex cardiac interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Orbiting deep space relay station. Volume 3: Implementation plan

    NASA Technical Reports Server (NTRS)

    Hunter, J. A.

    1979-01-01

    An implementation plan for the Orbiting Deep Space Relay Station (ODSRS) is described. A comparison of ODSRS life cycle costs to other configuration options meeting future communication requirements is presented.

  10. Accuracy, resolution, and cost comparisons between small format and mapping cameras for environmental mapping

    NASA Technical Reports Server (NTRS)

    Clegg, R. H.; Scherz, J. P.

    1975-01-01

    Successful aerial photography depends on aerial cameras providing acceptable photographs within cost restrictions of the job. For topographic mapping where ultimate accuracy is required only large format mapping cameras will suffice. For mapping environmental patterns of vegetation, soils, or water pollution, 9-inch cameras often exceed accuracy and cost requirements, and small formats may be better. In choosing the best camera for environmental mapping, relative capabilities and costs must be understood. This study compares resolution, photo interpretation potential, metric accuracy, and cost of 9-inch, 70mm, and 35mm cameras for obtaining simultaneous color and color infrared photography for environmental mapping purposes.

  11. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Peterson, Peter Y.; Williams, George J.; Gilland, James; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front magnetic pole cover thruster configuration with the thruster body electrically tied to cathode, and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68% and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the discharge current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability were mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 1×10-5 Torr-Xe (for thruster flow rates of 20.5 mg/s). Power spectral density analysis of the discharge current waveforms showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant breathing mode frequency. Finally, IVB maps of the TDU-1 thruster indicated that the discharge current became more oscillatory with higher discharge current peak-to-peak and RMS values with increased facility background pressure at lower thruster mass flow rates; thruster operation at higher flow rates resulted in less change to the thruster's IVB characteristics with elevated background pressure.

  12. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Peterson, Peter; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front pole cover thruster configuration with the thruster body electrically tied to cathode and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68 and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability was mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 110-5 Torr-Xe (for thruster flow rate above 8 mgs). Power spectral density analysis of the discharge current waveform showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant frequency. Finally the IVB maps of the TDU-1 thruster taken at elevated magnetic fields indicated that the discharge current became more oscillatory with increased facility background pressure at lower thruster mass flow rates, where thruster operation at higher flow rates resulted in less change to the thrusters IVB characteristics.

  13. Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment.

    NASA Astrophysics Data System (ADS)

    Fretwell, Peter; Pritchard, Hamish

    2013-04-01

    Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment. The Bedmap2 project has been a large cooperative effort to compile, model, map and visualize the ice-rock interface beneath the Antarctic ice sheet. Here we present the final output of that project; the Bedmap2 printed map. The map is an A1, double sided print, showing 2d and 3d visualizations of the dataset. It includes scientific interpretations, cross sections and comparisons with other areas. Paper copies of the colour double sided map will be freely distributed at this session.

  14. Reading in Two Writing Systems: Accommodation and Assimilation of the Brain's Reading Network

    ERIC Educational Resources Information Center

    Perfetti, Charles A.; Liu, Ying; Fiez, Julie; Nelson, Jessica; Bolger, Donald J.; Tan, Li-Hai

    2007-01-01

    Bilingual reading can require more than knowing two languages. Learners must acquire also the writing conventions of their second language, which can differ in its deep mapping principles (writing system) and its visual configurations (script). We review ERP (event-related potential) and fMRI studies of both Chinese-English bilingualism and…

  15. Concentrating Solar Power Projects by Country | Concentrating Solar Power |

    Science.gov Websites

    NREL Country In this section, you can select a country from the map or the following list of countries. You can then select a specific concentrating solar power (CSP) project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar

  16. Beyond the Point Charge: Equipotential Surfaces and Electric Fields of Various Charge Configurations

    ERIC Educational Resources Information Center

    Phillips, Jeffrey A.; Sanny, Jeff; Berube, David; Hoemke, Anatol

    2017-01-01

    A laboratory experiment often performed in an introductory electricity and magnetism course involves the mapping of equipotential lines on a conductive sheet between two objects at different potentials. In this article, we describe how we have expanded this experiment so that it can be used to illustrate the electrostatic properties of conductors.…

  17. "Training Floors" and "Training Ceilings": Metonyms for Understanding Training Trends

    ERIC Educational Resources Information Center

    Felstead, Alan; Jewson, Nick

    2014-01-01

    This article outlines a conceptual framework for mapping and understanding training trends. It uses the metonyms of floors and ceilings to distinguish between different types of training configurations. The argument is made that the ups and downs of employer reports of training activity are a crude basis on which to make judgements about the…

  18. Transformation formulas relating geodetic coordinates to a tangent to Earth, plane coordinate system

    NASA Technical Reports Server (NTRS)

    Credeur, L.

    1981-01-01

    Formulas and their approximation were developed to map geodetic position to an Earth tangent plane with an airport centered rectangular coordinate system. The transformations were developed for use in a terminal area air traffic model with deterministic aircraft traffic. The exact configured vehicle's approximation equations used in their precision microwave landing system navigation experiments.

  19. Visualisierungen im Lehr-Lern-Process (Visualizations in the Process of Teaching and Learning).

    ERIC Educational Resources Information Center

    Schnotz, Wolfgang; Zink, Thomas; Pfeiffer, Michael

    1996-01-01

    Discusses the role of visualization of information in learning. Theorizes that the comprehension of visualizations is a process of structure mapping between a visuo-spatial configuration and a mental model. Tests the model and finds differences in the use of text and picture information to answer different kinds of text questions. (DSK)

  20. A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map.

    PubMed

    Solignac, Michel; Mougel, Florence; Vautrin, Dominique; Monnerot, Monique; Cornuet, Jean-Marie

    2007-01-01

    The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes. We present the genetic (meiotic) map here and describe the main features that emerged from comparison with the sequence-based physical map. The genetic map of the honey bee is saturated and the chromosomes are oriented from the centromeric to the telomeric regions. The map is based on 2,008 markers and is about 40 Morgans (M) long, resulting in a marker density of one every 2.05 centiMorgans (cM). For the 186 megabases (Mb) of the genome mapped and assembled, this corresponds to a very high average recombination rate of 22.04 cM/Mb. Honey bee meiosis shows a relatively homogeneous recombination rate along and across chromosomes, as well as within and between individuals. Interference is higher than inferred from the Kosambi function of distance. In addition, numerous recombination hotspots are dispersed over the genome. The very large genetic length of the honey bee genome, its small physical size and an almost complete genome sequence with a relatively low number of genes suggest a very promising future for association mapping in the honey bee, particularly as the existence of haploid males allows easy bulk segregant analysis.

Top