Sample records for map detection algorithm

  1. Decision-level fusion of SAR and IR sensor information for automatic target detection

    NASA Astrophysics Data System (ADS)

    Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon

    2017-05-01

    We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.

  2. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    PubMed

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-09-11

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.

  3. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  4. A real time QRS detection using delay-coordinate mapping for the microcontroller implementation.

    PubMed

    Lee, Jeong-Whan; Kim, Kyeong-Seop; Lee, Bongsoo; Lee, Byungchae; Lee, Myoung-Ho

    2002-01-01

    In this article, we propose a new algorithm using the characteristics of reconstructed phase portraits by delay-coordinate mapping utilizing lag rotundity for a real-time detection of QRS complexes in ECG signals. In reconstructing phase portrait the mapping parameters, time delay, and mapping dimension play important roles in shaping of portraits drawn in a new dimensional space. Experimentally, the optimal mapping time delay for detection of QRS complexes turned out to be 20 ms. To explore the meaning of this time delay and the proper mapping dimension, we applied a fill factor, mutual information, and autocorrelation function algorithm that were generally used to analyze the chaotic characteristics of sampled signals. From these results, we could find the fact that the performance of our proposed algorithms relied mainly on the geometrical property such as an area of the reconstructed phase portrait. For the real application, we applied our algorithm for designing a small cardiac event recorder. This system was to record patients' ECG and R-R intervals for 1 h to investigate HRV characteristics of the patients who had vasovagal syncope symptom and for the evaluation, we implemented our algorithm in C language and applied to MIT/BIH arrhythmia database of 48 subjects. Our proposed algorithm achieved a 99.58% detection rate of QRS complexes.

  5. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.

  6. Stereo-vision-based terrain mapping for off-road autonomous navigation

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.

    2009-05-01

    Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as nogo regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.

  7. Stereo Vision Based Terrain Mapping for Off-Road Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.

    2009-01-01

    Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as no-go regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.

  8. Automatic detection of artifacts in converted S3D video

    NASA Astrophysics Data System (ADS)

    Bokov, Alexander; Vatolin, Dmitriy; Zachesov, Anton; Belous, Alexander; Erofeev, Mikhail

    2014-03-01

    In this paper we present algorithms for automatically detecting issues specific to converted S3D content. When a depth-image-based rendering approach produces a stereoscopic image, the quality of the result depends on both the depth maps and the warping algorithms. The most common problem with converted S3D video is edge-sharpness mismatch. This artifact may appear owing to depth-map blurriness at semitransparent edges: after warping, the object boundary becomes sharper in one view and blurrier in the other, yielding binocular rivalry. To detect this problem we estimate the disparity map, extract boundaries with noticeable differences, and analyze edge-sharpness correspondence between views. We pay additional attention to cases involving a complex background and large occlusions. Another problem is detection of scenes that lack depth volume: we present algorithms for detecting at scenes and scenes with at foreground objects. To identify these problems we analyze the features of the RGB image as well as uniform areas in the depth map. Testing of our algorithms involved examining 10 Blu-ray 3D releases with converted S3D content, including Clash of the Titans, The Avengers, and The Chronicles of Narnia: The Voyage of the Dawn Treader. The algorithms we present enable improved automatic quality assessment during the production stage.

  9. Fast object detection algorithm based on HOG and CNN

    NASA Astrophysics Data System (ADS)

    Lu, Tongwei; Wang, Dandan; Zhang, Yanduo

    2018-04-01

    In the field of computer vision, object classification and object detection are widely used in many fields. The traditional object detection have two main problems:one is that sliding window of the regional selection strategy is high time complexity and have window redundancy. And the other one is that Robustness of the feature is not well. In order to solve those problems, Regional Proposal Network (RPN) is used to select candidate regions instead of selective search algorithm. Compared with traditional algorithms and selective search algorithms, RPN has higher efficiency and accuracy. We combine HOG feature and convolution neural network (CNN) to extract features. And we use SVM to classify. For TorontoNet, our algorithm's mAP is 1.6 percentage points higher. For OxfordNet, our algorithm's mAP is 1.3 percentage higher.

  10. Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho

    2018-05-01

    We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.

  11. Development of an Algorithm for Satellite Remote Sensing of Sea and Lake Ice

    NASA Astrophysics Data System (ADS)

    Dorofy, Peter T.

    Satellite remote sensing of snow and ice has a long history. The traditional method for many snow and ice detection algorithms has been the use of the Normalized Difference Snow Index (NDSI). This manuscript is composed of two parts. Chapter 1, Development of a Mid-Infrared Sea and Lake Ice Index (MISI) using the GOES Imager, discusses the desirability, development, and implementation of alternative index for an ice detection algorithm, application of the algorithm to the detection of lake ice, and qualitative validation against other ice mapping products; such as, the Ice Mapping System (IMS). Chapter 2, Application of Dynamic Threshold in a Lake Ice Detection Algorithm, continues with a discussion of the development of a method that considers the variable viewing and illumination geometry of observations throughout the day. The method is an alternative to Bidirectional Reflectance Distribution Function (BRDF) models. Evaluation of the performance of the algorithm is introduced by aggregating classified pixels within geometrical boundaries designated by IMS and obtaining sensitivity and specificity statistical measures.

  12. Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm

    NASA Technical Reports Server (NTRS)

    Riggs, George; Hall, Dorothy K.

    2012-01-01

    The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).

  13. An incremental anomaly detection model for virtual machines.

    PubMed

    Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu

    2017-01-01

    Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform.

  14. An incremental anomaly detection model for virtual machines

    PubMed Central

    Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu

    2017-01-01

    Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform. PMID:29117245

  15. Algorithmic Approaches for Place Recognition in Featureless, Walled Environments

    DTIC Science & Technology

    2015-01-01

    inertial measurement unit LIDAR light detection and ranging RANSAC random sample consensus SLAM simultaneous localization and mapping SUSAN smallest...algorithm 38 21 Typical input image for general junction based algorithm 39 22 Short exposure image of hallway junction taken by LIDAR 40 23...discipline of simultaneous localization and mapping ( SLAM ) has been studied intensively over the past several years. Many technical approaches

  16. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    NASA Technical Reports Server (NTRS)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  17. Auditory Evidence Grids

    DTIC Science & Technology

    2006-01-01

    information of the robot (Figure 1) acquired via laser-based localization techniques. The results are maps of the global soundscape . The algorithmic...environments than noise maps. Furthermore, provided the acoustic localization algorithm can detect the sources, the soundscape can be mapped with many...gathering information about the auditory soundscape in which it is working. In addition to robustness in the presence of noise, it has also been

  18. Automated peroperative assessment of stents apposition from OCT pullbacks.

    PubMed

    Dubuisson, Florian; Péry, Emilie; Ouchchane, Lemlih; Combaret, Nicolas; Kauffmann, Claude; Souteyrand, Géraud; Motreff, Pascal; Sarry, Laurent

    2015-04-01

    This study's aim was to control the stents apposition by automatically analyzing endovascular optical coherence tomography (OCT) sequences. Lumen is detected using threshold, morphological and gradient operators to run a Dijkstra algorithm. Wrong detection tagged by the user and caused by bifurcation, struts'presence, thrombotic lesions or dissections can be corrected using a morphing algorithm. Struts are also segmented by computing symmetrical and morphological operators. Euclidian distance between detected struts and wall artery initializes a stent's complete distance map and missing data are interpolated with thin-plate spline functions. Rejection of detected outliers, regularization of parameters by generalized cross-validation and using the one-side cyclic property of the map also optimize accuracy. Several indices computed from the map provide quantitative values of malapposition. Algorithm was run on four in-vivo OCT sequences including different incomplete stent apposition's cases. Comparison with manual expert measurements validates the segmentation׳s accuracy and shows an almost perfect concordance of automated results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform.

    PubMed

    Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.

  20. High-Performance Signal Detection for Adverse Drug Events using MapReduce Paradigm.

    PubMed

    Fan, Kai; Sun, Xingzhi; Tao, Ying; Xu, Linhao; Wang, Chen; Mao, Xianling; Peng, Bo; Pan, Yue

    2010-11-13

    Post-marketing pharmacovigilance is important for public health, as many Adverse Drug Events (ADEs) are unknown when those drugs were approved for marketing. However, due to the large number of reported drugs and drug combinations, detecting ADE signals by mining these reports is becoming a challenging task in terms of computational complexity. Recently, a parallel programming model, MapReduce has been introduced by Google to support large-scale data intensive applications. In this study, we proposed a MapReduce-based algorithm, for common ADE detection approach, Proportional Reporting Ratio (PRR), and tested it in mining spontaneous ADE reports from FDA. The purpose is to investigate the possibility of using MapReduce principle to speed up biomedical data mining tasks using this pharmacovigilance case as one specific example. The results demonstrated that MapReduce programming model could improve the performance of common signal detection algorithm for pharmacovigilance in a distributed computation environment at approximately liner speedup rates.

  1. Implementation and testing of a sensor-netting algorithm for early warning and high confidence C/B threat detection

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Grim, Larry; Fauth, Ryan; Tercha, Brian; Powell, Chris; Steinhardt, Kristin

    2011-05-01

    Large networks of disparate chemical/biological (C/B) sensors, MET sensors, and intelligence, surveillance, and reconnaissance (ISR) sensors reporting to various command/display locations can lead to conflicting threat information, questions of alarm confidence, and a confused situational awareness. Sensor netting algorithms (SNA) are being developed to resolve these conflicts and to report high confidence consensus threat map data products on a common operating picture (COP) display. A data fusion algorithm design was completed in a Phase I SBIR effort and development continues in the Phase II SBIR effort. The initial implementation and testing of the algorithm has produced some performance results. The algorithm accepts point and/or standoff sensor data, and event detection data (e.g., the location of an explosion) from various ISR sensors (e.g., acoustic, infrared cameras, etc.). These input data are preprocessed to assign estimated uncertainty to each incoming piece of data. The data are then sent to a weighted tomography process to obtain a consensus threat map, including estimated threat concentration level uncertainty. The threat map is then tested for consistency and the overall confidence for the map result is estimated. The map and confidence results are displayed on a COP. The benefits of a modular implementation of the algorithm and comparisons of fused / un-fused data results will be presented. The metrics for judging the sensor-netting algorithm performance are warning time, threat map accuracy (as compared to ground truth), false alarm rate, and false alarm rate v. reported threat confidence level.

  2. Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time

    NASA Astrophysics Data System (ADS)

    Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.

    2017-12-01

    Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage losses and disaster alleviation/rescue at global scale.

  3. A Multiscale pipeline for the search of string-induced CMB anisotropies

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Movahed, S. M. S.; Farhang, M.; Ringeval, C.; Bouchet, F. R.

    2018-03-01

    We propose a multiscale edge-detection algorithm to search for the Gott-Kaiser-Stebbins imprints of a cosmic string (CS) network on the cosmic microwave background (CMB) anisotropies. Curvelet decomposition and extended Canny algorithm are used to enhance the string detectability. Various statistical tools are then applied to quantify the deviation of CMB maps having a CS contribution with respect to pure Gaussian anisotropies of inflationary origin. These statistical measures include the one-point probability density function, the weighted two-point correlation function (TPCF) of the anisotropies, the unweighted TPCF of the peaks and of the up-crossing map, as well as their cross-correlation. We use this algorithm on a hundred of simulated Nambu-Goto CMB flat sky maps, covering approximately 10 per cent of the sky, and for different string tensions Gμ. On noiseless sky maps with an angular resolution of 0.9 arcmin, we show that our pipeline detects CSs with Gμ as low as Gμ ≳ 4.3 × 10-10. At the same resolution, but with a noise level typical to a CMB-S4 phase II experiment, the detection threshold would be to Gμ ≳ 1.2 × 10-7.

  4. Subpixel Mapping of Hyperspectral Image Based on Linear Subpixel Feature Detection and Object Optimization

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoxin; Zhao, Liaoying; Li, Xiaorun; Chen, Shuhan

    2018-04-01

    Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.

  5. SA-SOM algorithm for detecting communities in complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Luogeng; Wang, Yanran; Huang, Xiaoming; Hu, Mengyu; Hu, Fang

    2017-10-01

    Currently, community detection is a hot topic. This paper, based on the self-organizing map (SOM) algorithm, introduced the idea of self-adaptation (SA) that the number of communities can be identified automatically, a novel algorithm SA-SOM of detecting communities in complex networks is proposed. Several representative real-world networks and a set of computer-generated networks by LFR-benchmark are utilized to verify the accuracy and the efficiency of this algorithm. The experimental findings demonstrate that this algorithm can identify the communities automatically, accurately and efficiently. Furthermore, this algorithm can also acquire higher values of modularity, NMI and density than the SOM algorithm does.

  6. Terrain mapping and control of unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kang, Yeonsik

    In this thesis, methods for terrain mapping and control of unmanned aerial vehicles (UAVs) are proposed. First, robust obstacle detection and tracking algorithm are introduced to eliminate the clutter noise uncorrelated with the real obstacle. This is an important problem since most types of sensor measurements are vulnerable to noise. In order to eliminate such noise, a Kalman filter-based interacting multiple model (IMM) algorithm is employed to effectively detect obstacles and estimate their positions precisely. Using the outcome of the IMM-based obstacle detection algorithm, a new method of building a probabilistic occupancy grid map is proposed based on Bayes rule in probability theory. Since the proposed map update law uses the outputs of the IMM-based obstacle detection algorithm, simultaneous tracking of moving targets and mapping of stationary obstacles are possible. This can be helpful especially in a noisy outdoor environment where different types of obstacles exist. Another feature of the algorithm is its capability to eliminate clutter noise as well as measurement noise. The proposed algorithm is simulated in Matlab using realistic sensor models. The results show close agreement with the layout of real obstacles. An efficient method called "quadtree" is used to process massive geographical information in a convenient manner. The algorithm is evaluated in a realistic simulation environment called RIPTIDE, which the NASA Ames Research Center developed to access the performance of complicated software for UAVs. Supposing that a UAV is equipped with abovementioned obstacle detection and mapping algorithm, the control problem of a small fixed-wing UAV is studied. A Nonlinear Model Predictive Control (NMPC is designed as a high level controller for the fixed-wing UAV using a kinematic model of the UAV. The kinematic model is employed because of the assumption that there exist low level controls on the UAV. The UAV dynamics are nonlinear with input constraints which is the main challenge explored in this thesis. The control objective of the NMPC is determined to track a desired line, and the analysis of the designed NMPC's stability is followed to find the conditions that can assure stability. Then, the control objective is extended to track adjoined multiple line segments with obstacle avoidance capability. In simulation, the performance of the NMPC is superb with fast convergence and small overshoot. The computation time is not a burden for a fixed-wing UAV controller with a Pentium level on-board computer that provides a reasonable control update rate.

  7. Shadow Detection from Very High Resoluton Satellite Image Using Grabcut Segmentation and Ratio-Band Algorithms

    NASA Astrophysics Data System (ADS)

    Kadhim, N. M. S. M.; Mourshed, M.; Bray, M. T.

    2015-03-01

    Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates significant performance of the ratio algorithm. The differences in the characteristics of the two satellite imageries in terms of spatial and spectral resolution can play an important role in the estimation and detection of the shadow of urban objects.

  8. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform

    PubMed Central

    Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711

  9. Radar Based Navigation in Unknown Terrain

    DTIC Science & Technology

    2012-12-31

    localization and mapping ( SLAM ) approach. The radar processing algorithms detect strong, persistent, and stationary reflectors embedded in the...Global System for Mobile Communications . . . . . . . . . 2 LIDAR Light Detection and Ranging . . . . . . . . . . . . . . . . 2 SAR Synthetic Aperture...22 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 25 FDM Frequency Division Multiplexing

  10. Optimalisation of remote sensing algorithm in mapping of chlorophyl-a concentration at Pasuruan coastal based on surface reflectance images of Aqua Modis

    NASA Astrophysics Data System (ADS)

    Wibisana, H.; Zainab, S.; Dara K., A.

    2018-01-01

    Chlorophyll-a is one of the parameters used to detect the presence of fish populations, as well as one of the parameters to state the quality of a water. Research on chlorophyll concentrations has been extensively investigated as well as with chlorophyll-a mapping using remote sensing satellites. Mapping of chlorophyll concentration is used to obtain an optimal picture of the condition of waters that is often used as a fishing area by the fishermen. The role of remote sensing is a technological breakthrough in broadly monitoring the condition of waters. And in the process to get a complete picture of the aquatic conditions it would be used an algorithm that can provide an image of the concentration of chlorophyll at certain points scattered in the research area of capture fisheries. Remote sensing algorithms have been widely used by researchers to detect the presence of chlorophyll content, where the channels corresponding to the mapping of chlorophyll -concentrations from Landsat 8 images are canals 4, 3 and 2. With multiple channels from Landsat-8 satellite imagery used for chlorophyll detection, optimum algorithmic search can be formulated to obtain maximum results of chlorophyll-a concentration in the research area. From the calculation of remote sensing algorithm hence can be known the suitable algorithm for condition at coast of Pasuruan, where green channel give good enough correlation equal to R2 = 0,853 with algorithm for Chlorophyll-a (mg / m3) = 0,093 (R (-0) Red - 3,7049, from this result it can be concluded that there is a good correlation of the green channel that can illustrate the concentration of chlorophyll scattered along the coast of Pasuruan

  11. Thorough statistical comparison of machine learning regression models and their ensembles for sub-pixel imperviousness and imperviousness change mapping

    NASA Astrophysics Data System (ADS)

    Drzewiecki, Wojciech

    2017-12-01

    We evaluated the performance of nine machine learning regression algorithms and their ensembles for sub-pixel estimation of impervious areas coverages from Landsat imagery. The accuracy of imperviousness mapping in individual time points was assessed based on RMSE, MAE and R2. These measures were also used for the assessment of imperviousness change intensity estimations. The applicability for detection of relevant changes in impervious areas coverages at sub-pixel level was evaluated using overall accuracy, F-measure and ROC Area Under Curve. The results proved that Cubist algorithm may be advised for Landsat-based mapping of imperviousness for single dates. Stochastic gradient boosting of regression trees (GBM) may be also considered for this purpose. However, Random Forest algorithm is endorsed for both imperviousness change detection and mapping of its intensity. In all applications the heterogeneous model ensembles performed at least as well as the best individual models or better. They may be recommended for improving the quality of sub-pixel imperviousness and imperviousness change mapping. The study revealed also limitations of the investigated methodology for detection of subtle changes of imperviousness inside the pixel. None of the tested approaches was able to reliably classify changed and non-changed pixels if the relevant change threshold was set as one or three percent. Also for fi ve percent change threshold most of algorithms did not ensure that the accuracy of change map is higher than the accuracy of random classifi er. For the threshold of relevant change set as ten percent all approaches performed satisfactory.

  12. A General Event Location Algorithm with Applications to Eclipse and Station Line-of-Sight

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Hughes, Steven P.

    2011-01-01

    A general-purpose algorithm for the detection and location of orbital events is developed. The proposed algorithm reduces the problem to a global root-finding problem by mapping events of interest (such as eclipses, station access events, etc.) to continuous, differentiable event functions. A stepping algorithm and a bracketing algorithm are used to detect and locate the roots. Examples of event functions and the stepping/bracketing algorithms are discussed, along with results indicating performance and accuracy in comparison to commercial tools across a variety of trajectories.

  13. A General Event Location Algorithm with Applications to Eclispe and Station Line-of-Sight

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Hughes, Steven P.

    2011-01-01

    A general-purpose algorithm for the detection and location of orbital events is developed. The proposed algorithm reduces the problem to a global root-finding problem by mapping events of interest (such as eclipses, station access events, etc.) to continuous, differentiable event functions. A stepping algorithm and a bracketing algorithm are used to detect and locate the roots. Examples of event functions and the stepping/bracketing algorithms are discussed, along with results indicating performance and accuracy in comparison to commercial tools across a variety of trajectories.

  14. A Combined Approach to Cartographic Displacement for Buildings Based on Skeleton and Improved Elastic Beam Algorithm

    PubMed Central

    Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya

    2014-01-01

    Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727

  15. Comparison of a sentinel lymph node mapping algorithm and comprehensive lymphadenectomy in the detection of stage IIIC endometrial carcinoma at higher risk for nodal disease.

    PubMed

    Ducie, Jennifer A; Eriksson, Ane Gerda Zahl; Ali, Narisha; McGree, Michaela E; Weaver, Amy L; Bogani, Giorgio; Cliby, William A; Dowdy, Sean C; Bakkum-Gamez, Jamie N; Soslow, Robert A; Keeney, Gary L; Abu-Rustum, Nadeem R; Mariani, Andrea; Leitao, Mario M

    2017-12-01

    To determine if a sentinel lymph node (SLN) mapping algorithm will detect metastatic nodal disease in patients with intermediate-/high-risk endometrial carcinoma. Patients were identified and surgically staged at two collaborating institutions. The historical cohort (2004-2008) at one institution included patients undergoing complete pelvic and paraaortic lymphadenectomy to the renal veins (LND cohort). At the second institution an SLN mapping algorithm, including pathologic ultra-staging, was performed (2006-2013) (SLN cohort). Intermediate-risk was defined as endometrioid histology (any grade), ≥50% myometrial invasion; high-risk as serous or clear cell histology (any myometrial invasion). Patients with gross peritoneal disease were excluded. Isolated tumor cells, micro-metastases, and macro-metastases were considered node-positive. We identified 210 patients in the LND cohort, 202 in the SLN cohort. Nodal assessment was performed for most patients. In the intermediate-risk group, stage IIIC disease was diagnosed in 30/107 (28.0%) (LND), 29/82 (35.4%) (SLN) (P=0.28). In the high-risk group, stage IIIC disease was diagnosed in 20/103 (19.4%) (LND), 26 (21.7%) (SLN) (P=0.68). Paraaortic lymph node (LN) assessment was performed significantly more often in intermediate-/high-risk groups in the LND cohort (P<0.001). In the intermediate-risk group, paraaortic LN metastases were detected in 20/96 (20.8%) (LND) vs. 3/28 (10.7%) (SLN) (P=0.23). In the high-risk group, paraaortic LN metastases were detected in 13/82 (15.9%) (LND) and 10/56 (17.9%) (SLN) (%, P=0.76). SLN mapping algorithm provides similar detection rates of stage IIIC endometrial cancer. The SLN algorithm does not compromise overall detection compared to standard LND. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time.

    PubMed

    Dhar, Amrit; Minin, Vladimir N

    2017-05-01

    Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences.

  17. Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time

    PubMed Central

    Dhar, Amrit

    2017-01-01

    Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780

  18. Mapping the mineralogy and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple spectral feature mapping algorithm

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea

    1992-01-01

    The sedimentary sections exposed in the Canyonlands and Arches National Parks region of Utah (generally referred to as 'Canyonlands') consist of sandstones, shales, limestones, and conglomerates. Reflectance spectra of weathered surfaces of rocks from these areas show two components: (1) variations in spectrally detectable mineralogy, and (2) variations in the relative ratios of the absorption bands between minerals. Both types of information can be used together to map each major lithology and the Clark spectral features mapping algorithm is applied to do the job.

  19. Testing mapping algorithms of the cancer-specific EORTC QLQ-C30 onto EQ-5D in malignant mesothelioma.

    PubMed

    Arnold, David T; Rowen, Donna; Versteegh, Matthijs M; Morley, Anna; Hooper, Clare E; Maskell, Nicholas A

    2015-01-23

    In order to estimate utilities for cancer studies where the EQ-5D was not used, the EORTC QLQ-C30 can be used to estimate EQ-5D using existing mapping algorithms. Several mapping algorithms exist for this transformation, however, algorithms tend to lose accuracy in patients in poor health states. The aim of this study was to test all existing mapping algorithms of QLQ-C30 onto EQ-5D, in a dataset of patients with malignant pleural mesothelioma, an invariably fatal malignancy where no previous mapping estimation has been published. Health related quality of life (HRQoL) data where both the EQ-5D and QLQ-C30 were used simultaneously was obtained from the UK-based prospective observational SWAMP (South West Area Mesothelioma and Pemetrexed) trial. In the original trial 73 patients with pleural mesothelioma were offered palliative chemotherapy and their HRQoL was assessed across five time points. This data was used to test the nine available mapping algorithms found in the literature, comparing predicted against observed EQ-5D values. The ability of algorithms to predict the mean, minimise error and detect clinically significant differences was assessed. The dataset had a total of 250 observations across 5 timepoints. The linear regression mapping algorithms tested generally performed poorly, over-estimating the predicted compared to observed EQ-5D values, especially when observed EQ-5D was below 0.5. The best performing algorithm used a response mapping method and predicted the mean EQ-5D with accuracy with an average root mean squared error of 0.17 (Standard Deviation; 0.22). This algorithm reliably discriminated between clinically distinct subgroups seen in the primary dataset. This study tested mapping algorithms in a population with poor health states, where they have been previously shown to perform poorly. Further research into EQ-5D estimation should be directed at response mapping methods given its superior performance in this study.

  20. An improved image non-blind image deblurring method based on FoEs

    NASA Astrophysics Data System (ADS)

    Zhu, Qidan; Sun, Lei

    2013-03-01

    Traditional non-blind image deblurring algorithms always use maximum a posterior(MAP). MAP estimates involving natural image priors can reduce the ripples effectively in contrast to maximum likelihood(ML). However, they have been found lacking in terms of restoration performance. Based on this issue, we utilize MAP with KL penalty to replace traditional MAP. We develop an image reconstruction algorithm that minimizes the KL divergence between the reference distribution and the prior distribution. The approximate KL penalty can restrain over-smooth caused by MAP. We use three groups of images and Harris corner detection to prove our method. The experimental results show that our algorithm of non-blind image restoration can effectively reduce the ringing effect and exhibit the state-of-the-art deblurring results.

  1. Space moving target detection using time domain feature

    NASA Astrophysics Data System (ADS)

    Wang, Min; Chen, Jin-yong; Gao, Feng; Zhao, Jin-yu

    2018-01-01

    The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects (target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10-5, which outperforms those of compared algorithms.

  2. Mapped Landmark Algorithm for Precision Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Ansar, Adnan; Matthies, Larry

    2007-01-01

    A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.

  3. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  4. Data fusion strategies for hazard detection and safe site selection for planetary and small body landings

    NASA Astrophysics Data System (ADS)

    Câmara, F.; Oliveira, J.; Hormigo, T.; Araújo, J.; Ribeiro, R.; Falcão, A.; Gomes, M.; Dubois-Matra, O.; Vijendran, S.

    2015-06-01

    This paper discusses the design and evaluation of data fusion strategies to perform tiered fusion of several heterogeneous sensors and a priori data. The aim is to increase robustness and performance of hazard detection and avoidance systems, while enabling safe planetary and small body landings anytime, anywhere. The focus is on Mars and asteroid landing mission scenarios and three distinct data fusion algorithms are introduced and compared. The first algorithm consists of a hybrid camera-LIDAR hazard detection and avoidance system, the H2DAS, in which data fusion is performed at both sensor-level data (reconstruction of the point cloud obtained with a scanning LIDAR using the navigation motion states and correcting the image for motion compensation using IMU data), feature-level data (concatenation of multiple digital elevation maps, obtained from consecutive LIDAR images, to achieve higher accuracy and resolution maps while enabling relative positioning) as well as decision-level data (fusing hazard maps from multiple sensors onto a single image space, with a single grid orientation and spacing). The second method presented is a hybrid reasoning fusion, the HRF, in which innovative algorithms replace the decision-level functions of the previous method, by combining three different reasoning engines—a fuzzy reasoning engine, a probabilistic reasoning engine and an evidential reasoning engine—to produce safety maps. Finally, the third method presented is called Intelligent Planetary Site Selection, the IPSIS, an innovative multi-criteria, dynamic decision-level data fusion algorithm that takes into account historical information for the selection of landing sites and a piloting function with a non-exhaustive landing site search capability, i.e., capable of finding local optima by searching a reduced set of global maps. All the discussed data fusion strategies and algorithms have been integrated, verified and validated in a closed-loop simulation environment. Monte Carlo simulation campaigns were performed for the algorithms performance assessment and benchmarking. The simulations results comprise the landing phases of Mars and Phobos landing mission scenarios.

  5. An improved dehazing algorithm of aerial high-definition image

    NASA Astrophysics Data System (ADS)

    Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying

    2016-01-01

    For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.

  6. Solution of the problem of superposing image and digital map for detection of new objects

    NASA Astrophysics Data System (ADS)

    Rizaev, I. S.; Miftakhutdinov, D. I.; Takhavova, E. G.

    2018-01-01

    The problem of superposing the map of the terrain with the image of the terrain is considered. The image of the terrain may be represented in different frequency bands. Further analysis of the results of collation the digital map with the image of the appropriate terrain is described. Also the approach to detection of differences between information represented on the digital map and information of the image of the appropriate area is offered. The algorithm for calculating the values of brightness of the converted image area on the original picture is offered. The calculation is based on using information about the navigation parameters and information according to arranged bench marks. For solving the posed problem the experiments were performed. The results of the experiments are shown in this paper. The presented algorithms are applicable to the ground complex of remote sensing data to assess differences between resulting images and accurate geopositional data. They are also suitable for detecting new objects in the image, based on the analysis of the matching the digital map and the image of corresponding locality.

  7. Spatial cluster detection using dynamic programming.

    PubMed

    Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F

    2012-03-25

    The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.

  8. Spatial cluster detection using dynamic programming

    PubMed Central

    2012-01-01

    Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103

  9. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  10. Lining seam elimination algorithm and surface crack detection in concrete tunnel lining

    NASA Astrophysics Data System (ADS)

    Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling

    2016-11-01

    Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.

  11. Comparison between genetic algorithm and self organizing map to detect botnet network traffic

    NASA Astrophysics Data System (ADS)

    Yugandhara Prabhakar, Shinde; Parganiha, Pratishtha; Madhu Viswanatham, V.; Nirmala, M.

    2017-11-01

    In Cyber Security world the botnet attacks are increasing. To detect botnet is a challenging task. Botnet is a group of computers connected in a coordinated fashion to do malicious activities. Many techniques have been developed and used to detect and prevent botnet traffic and the attacks. In this paper, a comparative study is done on Genetic Algorithm (GA) and Self Organizing Map (SOM) to detect the botnet network traffic. Both are soft computing techniques and used in this paper as data analytics system. GA is based on natural evolution process and SOM is an Artificial Neural Network type, uses unsupervised learning techniques. SOM uses neurons and classifies the data according to the neurons. Sample of KDD99 dataset is used as input to GA and SOM.

  12. Consistency functional map propagation for repetitive patterns

    NASA Astrophysics Data System (ADS)

    Wang, Hao

    2017-09-01

    Repetitive patterns appear frequently in both man-made and natural environments. Automatically and robustly detecting such patterns from an image is a challenging problem. We study repetitive pattern alignment by embedding segmentation cue with a functional map model. However, this model cannot tackle the repetitive patterns directly due to the large photometric and geometric variations. Thus, a consistency functional map propagation (CFMP) algorithm that extends the functional map with dynamic propagation is proposed to address this issue. This propagation model is acquired in two steps. The first one aligns the patterns from a local region, transferring segmentation functions among patterns. It can be cast as an L norm optimization problem. The latter step updates the template segmentation for the next round of pattern discovery by merging the transferred segmentation functions. Extensive experiments and comparative analyses have demonstrated an encouraging performance of the proposed algorithm in detection and segmentation of repetitive patterns.

  13. Expanded Processing Techniques for EMI Systems

    DTIC Science & Technology

    2012-07-01

    possible to perform better target detection using physics-based algorithms and the entire data set, rather than simulating a simpler data set and mapping...possible to perform better target detection using physics-based algorithms and the entire data set, rather than simulating a simpler data set and...54! Figure 4.25: Plots of simulated MetalMapper data for two oblate spheroidal targets

  14. Estimating the resolution limit of the map equation in community detection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Rosvall, Martin

    2015-01-01

    A community detection algorithm is considered to have a resolution limit if the scale of the smallest modules that can be resolved depends on the size of the analyzed subnetwork. The resolution limit is known to prevent some community detection algorithms from accurately identifying the modular structure of a network. In fact, any global objective function for measuring the quality of a two-level assignment of nodes into modules must have some sort of resolution limit or an external resolution parameter. However, it is yet unknown how the resolution limit affects the so-called map equation, which is known to be an efficient objective function for community detection. We derive an analytical estimate and conclude that the resolution limit of the map equation is set by the total number of links between modules instead of the total number of links in the full network as for modularity. This mechanism makes the resolution limit much less restrictive for the map equation than for modularity; in practice, it is orders of magnitudes smaller. Furthermore, we argue that the effect of the resolution limit often results from shoehorning multilevel modular structures into two-level descriptions. As we show, the hierarchical map equation effectively eliminates the resolution limit for networks with nested multilevel modular structures.

  15. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S K

    2006-02-09

    We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated datamore » with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.« less

  16. The Effect of Shadow Area on Sgm Algorithm and Disparity Map Refinement from High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.

    2017-09-01

    Semi Global Matching (SGM) algorithm is known as a high performance and reliable stereo matching algorithm in photogrammetry community. However, there are some challenges using this algorithm especially for high resolution satellite stereo images over urban areas and images with shadow areas. As it can be seen, unfortunately the SGM algorithm computes highly noisy disparity values for shadow areas around the tall neighborhood buildings due to mismatching in these lower entropy areas. In this paper, a new method is developed to refine the disparity map in shadow areas. The method is based on the integration of potential of panchromatic and multispectral image data to detect shadow areas in object level. In addition, a RANSAC plane fitting and morphological filtering are employed to refine the disparity map. The results on a stereo pair of GeoEye-1 captured over Qom city in Iran, shows a significant increase in the rate of matched pixels compared to standard SGM algorithm.

  17. Assessment of Gamma-Ray Spectra Analysis Method Utilizing the Fireworks Algorithm for various Error Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    Significant role in enhancing nuclear nonproliferation plays the analysis of obtained data and the inference of the presence or not of special nuclear materials in them. Among various types of measurements, gamma-ray spectra is the widest used type of data utilized for analysis in nonproliferation. In this chapter, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, with non-zero coefficients expressing the detected signatures. FWA is tested on amore » set of experimentally obtained measurements and various objective functions -MSE, RMSE, Theil-2, MAE, MAPE, MAP- with results exhibiting its potential in providing high accuracy and high precision of detected signatures. Furthermore, FWA is benchmarked against genetic algorithms, and multiple linear regression with results exhibiting its superiority over the rest tested algorithms with respect to precision for MAE, MAPE and MAP measures.« less

  18. Automated System for Early Breast Cancer Detection in Mammograms

    NASA Technical Reports Server (NTRS)

    Bankman, Isaac N.; Kim, Dong W.; Christens-Barry, William A.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.

    1993-01-01

    The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed.

  19. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oines, A; Oines, A; Kilian-Meneghin, J

    2016-06-15

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  20. Lane detection based on color probability model and fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Jo, Kang-Hyun

    2018-04-01

    In the vehicle driver assistance systems, the accuracy and speed of lane line detection are the most important. This paper is based on color probability model and Fuzzy Local Information C-Means (FLICM) clustering algorithm. The Hough transform and the constraints of structural road are used to detect the lane line accurately. The global map of the lane line is drawn by the lane curve fitting equation. The experimental results show that the algorithm has good robustness.

  1. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  2. Map based localization to assist commercial fleet operations.

    DOT National Transportation Integrated Search

    2014-08-01

    This report outlines key recent contributions to the state of the art in lane detection, lane departure warning, : and map-based sensor fusion algorithms. These key studies are used as a basis for a discussion about the : limitations of systems that ...

  3. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.

    2017-01-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16C year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms.These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.

  4. The artificial object detection and current velocity measurement using SAR ocean surface images

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  5. Hazardous gas detection for FTIR-based hyperspectral imaging system using DNN and CNN

    NASA Astrophysics Data System (ADS)

    Kim, Yong Chan; Yu, Hyeong-Geun; Lee, Jae-Hoon; Park, Dong-Jo; Nam, Hyun-Woo

    2017-10-01

    Recently, a hyperspectral imaging system (HIS) with a Fourier Transform InfraRed (FTIR) spectrometer has been widely used due to its strengths in detecting gaseous fumes. Even though numerous algorithms for detecting gaseous fumes have already been studied, it is still difficult to detect target gases properly because of atmospheric interference substances and unclear characteristics of low concentration gases. In this paper, we propose detection algorithms for classifying hazardous gases using a deep neural network (DNN) and a convolutional neural network (CNN). In both the DNN and CNN, spectral signal preprocessing, e.g., offset, noise, and baseline removal, are carried out. In the DNN algorithm, the preprocessed spectral signals are used as feature maps of the DNN with five layers, and it is trained by a stochastic gradient descent (SGD) algorithm (50 batch size) and dropout regularization (0.7 ratio). In the CNN algorithm, preprocessed spectral signals are trained with 1 × 3 convolution layers and 1 × 2 max-pooling layers. As a result, the proposed algorithms improve the classification accuracy rate by 1.5% over the existing support vector machine (SVM) algorithm for detecting and classifying hazardous gases.

  6. A stereo-vision hazard-detection algorithm to increase planetary lander autonomy

    NASA Astrophysics Data System (ADS)

    Woicke, Svenja; Mooij, Erwin

    2016-05-01

    For future landings on any celestial body, increasing the lander autonomy as well as decreasing risk are primary objectives. Both risk reduction and an increase in autonomy can be achieved by including hazard detection and avoidance in the guidance, navigation, and control loop. One of the main challenges in hazard detection and avoidance is the reconstruction of accurate elevation models, as well as slope and roughness maps. Multiple methods for acquiring the inputs for hazard maps are available. The main distinction can be made between active and passive methods. Passive methods (cameras) have budgetary advantages compared to active sensors (radar, light detection and ranging). However, it is necessary to proof that these methods deliver sufficiently good maps. Therefore, this paper discusses hazard detection using stereo vision. To facilitate a successful landing not more than 1% wrong detections (hazards that are not identified) are allowed. Based on a sensitivity analysis it was found that using a stereo set-up at a baseline of ≤ 2 m is feasible at altitudes of ≤ 200 m defining false positives of less than 1%. It was thus shown that stereo-based hazard detection is an effective means to decrease the landing risk and increase the lander autonomy. In conclusion, the proposed algorithm is a promising candidate for future landers.

  7. Processing LiDAR Data to Predict Natural Hazards

    NASA Technical Reports Server (NTRS)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  8. Edge detection, cosmic strings and the south pole telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Andrew; Brandenberger, Robert, E-mail: stewarta@physics.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2009-02-15

    We develop a method of constraining the cosmic string tension G{mu} which uses the Canny edge detection algorithm as a means of searching CMB temperature maps for the signature of the Kaiser-Stebbins effect. We test the potential of this method using high resolution, simulated CMB temperature maps. By modeling the future output from the South Pole Telescope project (including anticipated instrumental noise), we find that cosmic strings with G{mu} > 5.5 Multiplication-Sign 10{sup -8} could be detected.

  9. Automated segmentation of oral mucosa from wide-field OCT images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goldan, Ryan N.; Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine F.; Lane, Pierre

    2016-03-01

    Optical Coherence Tomography (OCT) can discriminate morphological tissue features important for oral cancer detection such as the presence or absence of basement membrane and epithelial thickness. We previously reported an OCT system employing a rotary-pullback catheter capable of in vivo, rapid, wide-field (up to 90 x 2.5mm2) imaging in the oral cavity. Due to the size and complexity of these OCT data sets, rapid automated image processing software that immediately displays important tissue features is required to facilitate prompt bed-side clinical decisions. We present an automated segmentation algorithm capable of detecting the epithelial surface and basement membrane in 3D OCT images of the oral cavity. The algorithm was trained using volumetric OCT data acquired in vivo from a variety of tissue types and histology-confirmed pathologies spanning normal through cancer (8 sites, 21 patients). The algorithm was validated using a second dataset of similar size and tissue diversity. We demonstrate application of the algorithm to an entire OCT volume to map epithelial thickness, and detection of the basement membrane, over the tissue surface. These maps may be clinically useful for delineating pre-surgical tumor margins, or for biopsy site guidance.

  10. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-03-01

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.

  11. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    PubMed

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  12. Non-supervised method for early forest fire detection and rapid mapping

    NASA Astrophysics Data System (ADS)

    Artés, Tomás; Boca, Roberto; Liberta, Giorgio; San-Miguel, Jesús

    2017-09-01

    Natural hazards are a challenge for the society. Scientific community efforts have been severely increased assessing tasks about prevention and damage mitigation. The most important points to minimize natural hazard damages are monitoring and prevention. This work focuses particularly on forest fires. This phenomenon depends on small-scale factors and fire behavior is strongly related to the local weather. Forest fire spread forecast is a complex task because of the scale of the phenomena, the input data uncertainty and time constraints in forest fire monitoring. Forest fire simulators have been improved, including some calibration techniques avoiding data uncertainty and taking into account complex factors as the atmosphere. Such techniques increase dramatically the computational cost in a context where the available time to provide a forecast is a hard constraint. Furthermore, an early mapping of the fire becomes crucial to assess it. In this work, a non-supervised method for forest fire early detection and mapping is proposed. As main sources, the method uses daily thermal anomalies from MODIS and VIIRS combined with land cover map to identify and monitor forest fires with very few resources. This method relies on a clustering technique (DBSCAN algorithm) and on filtering thermal anomalies to detect the forest fires. In addition, a concave hull (alpha shape algorithm) is applied to obtain rapid mapping of the fire area (very coarse accuracy mapping). Therefore, the method leads to a potential use for high-resolution forest fire rapid mapping based on satellite imagery using the extent of each early fire detection. It shows the way to an automatic rapid mapping of the fire at high resolution processing as few data as possible.

  13. Object detection system based on multimodel saliency maps

    NASA Astrophysics Data System (ADS)

    Guo, Ya'nan; Luo, Chongfan; Ma, Yide

    2017-03-01

    Detection of visually salient image regions is extensively applied in computer vision and computer graphics, such as object detection, adaptive compression, and object recognition, but any single model always has its limitations to various images, so in our work, we establish a method based on multimodel saliency maps to detect the object, which intelligently absorbs the merits of various individual saliency detection models to achieve promising results. The method can be roughly divided into three steps: in the first step, we propose a decision-making system to evaluate saliency maps obtained by seven competitive methods and merely select the three most valuable saliency maps; in the second step, we introduce heterogeneous PCNN algorithm to obtain three prime foregrounds; and then a self-designed nonlinear fusion method is proposed to merge these saliency maps; at last, the adaptive improved and simplified PCNN model is used to detect the object. Our proposed method can constitute an object detection system for different occasions, which requires no training, is simple, and highly efficient. The proposed saliency fusion technique shows better performance over a broad range of images and enriches the applicability range by fusing different individual saliency models, this proposed system is worthy enough to be called a strong model. Moreover, the proposed adaptive improved SPCNN model is stemmed from the Eckhorn's neuron model, which is skilled in image segmentation because of its biological background, and in which all the parameters are adaptive to image information. We extensively appraise our algorithm on classical salient object detection database, and the experimental results demonstrate that the aggregation of saliency maps outperforms the best saliency model in all cases, yielding highest precision of 89.90%, better recall rates of 98.20%, greatest F-measure of 91.20%, and lowest mean absolute error value of 0.057, the value of proposed saliency evaluation EHA reaches to 215.287. We deem our method can be wielded to diverse applications in the future.

  14. Saliency detection using mutual consistency-guided spatial cues combination

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Ning, Chen; Xu, Lizhong

    2015-09-01

    Saliency detection has received extensive interests due to its remarkable contribution to wide computer vision and pattern recognition applications. However, most existing computational models are designed for detecting saliency in visible images or videos. When applied to infrared images, they may suffer from limitations in saliency detection accuracy and robustness. In this paper, we propose a novel algorithm to detect visual saliency in infrared images by mutual consistency-guided spatial cues combination. First, based on the luminance contrast and contour characteristics of infrared images, two effective saliency maps, i.e., the luminance contrast saliency map and contour saliency map are constructed, respectively. Afterwards, an adaptive combination scheme guided by mutual consistency is exploited to integrate these two maps to generate the spatial saliency map. This idea is motivated by the observation that different maps are actually related to each other and the fusion scheme should present a logically consistent view of these maps. Finally, an enhancement technique is adopted to incorporate spatial saliency maps at various scales into a unified multi-scale framework to improve the reliability of the final saliency map. Comprehensive evaluations on real-life infrared images and comparisons with many state-of-the-art saliency models demonstrate the effectiveness and superiority of the proposed method for saliency detection in infrared images.

  15. Comparison of soft-input-soft-output detection methods for dual-polarized quadrature duobinary system

    NASA Astrophysics Data System (ADS)

    Chang, Chun; Huang, Benxiong; Xu, Zhengguang; Li, Bin; Zhao, Nan

    2018-02-01

    Three soft-input-soft-output (SISO) detection methods for dual-polarized quadrature duobinary (DP-QDB), including maximum-logarithmic-maximum-a-posteriori-probability-algorithm (Max-log-MAP)-based detection, soft-output-Viterbi-algorithm (SOVA)-based detection, and a proposed SISO detection, which can all be combined with SISO decoding, are presented. The three detection methods are investigated at 128 Gb/s in five-channel wavelength-division-multiplexing uncoded and low-density-parity-check (LDPC) coded DP-QDB systems by simulations. Max-log-MAP-based detection needs the returning-to-initial-states (RTIS) process despite having the best performance. When the LDPC code with a code rate of 0.83 is used, the detecting-and-decoding scheme with the SISO detection does not need RTIS and has better bit error rate (BER) performance than the scheme with SOVA-based detection. The former can reduce the optical signal-to-noise ratio (OSNR) requirement (at BER=10-5) by 2.56 dB relative to the latter. The application of the SISO iterative detection in LDPC-coded DP-QDB systems makes a good trade-off between requirements on transmission efficiency, OSNR requirement, and transmission distance, compared with the other two SISO methods.

  16. Sentinel lymph node detection rates using indocyanine green in women with early-stage cervical cancer.

    PubMed

    Beavis, Anna L; Salazar-Marioni, Sergio; Sinno, Abdulrahman K; Stone, Rebecca L; Fader, Amanda N; Santillan-Gomez, Antonio; Tanner, Edward J

    2016-11-01

    Our study objective was to determine feasibility and mapping rates using indocyanine green (ICG) for sentinel lymph node (SLN) mapping in early-stage cervical cancer. We performed a retrospective review of all women who underwent SLN mapping with ICG during primary surgical management of early-stage cervical cancer by robotic-assisted radical hysterectomy (RA-RH) or fertility-sparing surgery. Patients were treated at two high-volume centers from 10/2012 to 02/2016. Completion pelvic lymphadenectomy was performed after SLN biopsy; additionally, removal of clinically enlarged/suspicious nodes was part of the SLN treatment algorithm. Thirty women with a median age of 42.5 and BMI of 26.5 were included. Most (90%) had stage IB disease, and 67% had squamous histology. RA-RH was performed in 86.7% of cases. One patient underwent fertility-sparing surgery. Median cervical tumor size was 2.0cm. At least one SLN was detected in all cases (100%), with bilateral mapping achieved in 87%. SLN detection was not impacted by tumor size and was most commonly identified in the hypogastric (40.3%), obturator (26.0%), and external iliac (20.8%) regions. Five cases of lymphatic metastasis were identified (16.7%): three in clinically enlarged SLNs, one in a clinically enlarged non-SLN, and one case with cytokeratin positive cells in an SLN. All metastatic disease would have been detected even if full lymphadenectomy had been omitted from our treatment algorithm, CONCLUSIONS: SLN mapping with ICG is feasible and results in high detection rates in women with early-stage cervical cancer. Prospective studies are needed to determine if SLN mapping can replace lymphadenectomy in this setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Small target detection using objectness and saliency

    NASA Astrophysics Data System (ADS)

    Zhang, Naiwen; Xiao, Yang; Fang, Zhiwen; Yang, Jian; Wang, Li; Li, Tao

    2017-10-01

    We are motived by the need for generic object detection algorithm which achieves high recall for small targets in complex scenes with acceptable computational efficiency. We propose a novel object detection algorithm, which has high localization quality with acceptable computational cost. Firstly, we obtain the objectness map as in BING[1] and use NMS to get the top N points. Then, k-means algorithm is used to cluster them into K classes according to their location. We set the center points of the K classes as seed points. For each seed point, an object potential region is extracted. Finally, a fast salient object detection algorithm[2] is applied to the object potential regions to highlight objectlike pixels, and a series of efficient post-processing operations are proposed to locate the targets. Our method runs at 5 FPS on 1000*1000 images, and significantly outperforms previous methods on small targets in cluttered background.

  18. Recent Developments for Satellite-Based Fire Monitoring in Canada

    NASA Astrophysics Data System (ADS)

    Abuelgasim, A.; Fraser, R.

    2002-05-01

    Wildfires in Canadian forests are a major source of natural disturbance. These fires have a tremendous impact on the local environment, humans and wildlife, ecosystem function, weather, and climate. Approximately 9000 fires burn 3 million hectares per year in Canada (based on a 10-year average). While only 2 to 3 percent of these wildfires grow larger than 200 hectares in size, they account for almost 97 percent of the annual area burned. This provides an excellent opportunity to monitor active fires using a combination of low and high resolution sensors for the purpose of determining fire location and burned areas. Given the size of Canada, the use of remote sensing data is a cost-effective way to achieve a synoptic overview of large forest fire activity in near-real time. In 1998 the Canada Centre for Remote Sensing (CCRS) and the Canadian Forest Service (CFS) developed a system for Fire Monitoring, Mapping and Modelling (Fire M3;http://fms.nofc.cfs.nrcan.gc.ca/FireM3/). Fire M3 automatically identifies, monitors, and maps large forest fires on a daily basis using NOAA AVHRR data. These data are processed daily using the GEOCOMP-N satellite image processing system. This presentation will describe recent developments to Fire M3, included the addition of a set of algorithms tailored for NOAA-16 (N-16) data. The two fire detection algorithms are developed for N-16 day and night-time daily data collection. The algorithms exploit both the multi-spectral and thermal information from the AVHRR daily images. The set of N-16 day and night algorithms was used to generate daily active fire maps across North America for the 2001 fire season. Such a combined approach for fire detection leads to an improved detection rate, although day-time detection based on the new 1.6 um channel was much less effective (note - given the low detection rate with day time imagery, I don't think we can make the statement about capturing the diurnal cycle). Selected validation sites in western Canada and the United States showed reasonable correspondence with the location of fires mapped by CFS and those mapped by the USDA Forest Service using conventional means.

  19. A Novel Real-Time Reference Key Frame Scan Matching Method.

    PubMed

    Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu

    2017-05-07

    Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions' environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.

  20. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    NASA Astrophysics Data System (ADS)

    Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.

    2017-10-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375 m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16+ year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms. These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.

  1. Automated recognition of microcalcification clusters in mammograms

    NASA Astrophysics Data System (ADS)

    Bankman, Isaac N.; Christens-Barry, William A.; Kim, Dong W.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.

    1993-07-01

    The widespread and increasing use of mammographic screening for early breast cancer detection is placing a significant strain on clinical radiologists. Large numbers of radiographic films have to be visually interpreted in fine detail to determine the subtle hallmarks of cancer that may be present. We developed an algorithm for detecting microcalcification clusters, the most common and useful signs of early, potentially curable breast cancer. We describe this algorithm, which utilizes contour map representations of digitized mammographic films, and discuss its benefits in overcoming difficulties often encountered in algorithmic approaches to radiographic image processing. We present experimental analyses of mammographic films employing this contour-based algorithm and discuss practical issues relevant to its use in an automated film interpretation instrument.

  2. Retinal vessel segmentation on SLO image

    PubMed Central

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.

    2010-01-01

    A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149

  3. Fast Drawing of Traffic Sign Using Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Tan, B.; Huang, Y.

    2016-06-01

    Traffic sign provides road users with the specified instruction and information to enhance traffic safety. Automatic detection of traffic sign is important for navigation, autonomous driving, transportation asset management, etc. With the advance of laser and imaging sensors, Mobile Mapping System (MMS) becomes widely used in transportation agencies to map the transportation infrastructure. Although many algorithms of traffic sign detection are developed in the literature, they are still a tradeoff between the detection speed and accuracy, especially for the large-scale mobile mapping of both the rural and urban roads. This paper is motivated to efficiently survey traffic signs while mapping the road network and the roadside landscape. Inspired by the manual delineation of traffic sign, a drawing strategy is proposed to quickly approximate the boundary of traffic sign. Both the shape and color prior of the traffic sign are simultaneously involved during the drawing process. The most common speed-limit sign circle and the statistic color model of traffic sign are studied in this paper. Anchor points of traffic sign edge are located with the local maxima of color and gradient difference. Starting with the anchor points, contour of traffic sign is drawn smartly along the most significant direction of color and intensity consistency. The drawing process is also constrained by the curvature feature of the traffic sign circle. The drawing of linear growth is discarded immediately if it fails to form an arc over some steps. The Kalman filter principle is adopted to predict the temporal context of traffic sign. Based on the estimated point,we can predict and double check the traffic sign in consecutive frames.The event probability of having a traffic sign over the consecutive observations is compared with the null hypothesis of no perceptible traffic sign. The temporally salient traffic sign is then detected statistically and automatically as the rare event of having a traffic sign.The proposed algorithm is tested with a diverse set of images that are taken inWuhan, China with theMMS ofWuhan University. Experimental results demonstrate that the proposed algorithm can detect traffic signs at the rate of over 80% in around 10 milliseconds. It is promising for the large-scale traffic sign survey and change detection using the mobile mapping system.

  4. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.

    2003-01-01

    Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.

  5. Fixing convergence of Gaussian belief propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K; Bickson, Danny; Dolev, Danny

    Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm ismore » linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanari's linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.« less

  6. Research of cartographer laser SLAM algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Liu, Zhengjun; Fu, Yiran; Zhang, Changsai

    2017-11-01

    As the indoor is a relatively closed and small space, total station, GPS, close-range photogrammetry technology is difficult to achieve fast and accurate indoor three-dimensional space reconstruction task. LIDAR SLAM technology does not rely on the external environment a priori knowledge, only use their own portable lidar, IMU, odometer and other sensors to establish an independent environment map, a good solution to this problem. This paper analyzes the Google Cartographer laser SLAM algorithm from the point cloud matching and closed loop detection. Finally, the algorithm is presented in the 3D visualization tool RViz from the data acquisition and processing to create the environment map, complete the SLAM technology and realize the process of indoor threedimensional space reconstruction

  7. A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1996-02-01

    The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.

  8. A floor-map-aided WiFi/pseudo-odometry integration algorithm for an indoor positioning system.

    PubMed

    Wang, Jian; Hu, Andong; Liu, Chunyan; Li, Xin

    2015-03-24

    This paper proposes a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data to provide meter-level positioning without additional infrastructure. A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of further improving the positioning accuracy is to use a more effective multi-threshold step detection algorithm, as proposed by the authors. The "go and back" phenomenon caused by incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning coordinates, P-O measurements and fused heading angles as observations. The "cross-wall" problem is solved based on the development of a floor-map-aided particle filter algorithm by weighting the particles, thereby also eliminating the gross-error effects originating from WiFi or P-O measurements. The performance observed in a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirms that the proposed scheme can reliably achieve meter-level positioning.

  9. Solving graph data issues using a layered architecture approach with applications to web spam detection.

    PubMed

    Scarselli, Franco; Tsoi, Ah Chung; Hagenbuchner, Markus; Noi, Lucia Di

    2013-12-01

    This paper proposes the combination of two state-of-the-art algorithms for processing graph input data, viz., the probabilistic mapping graph self organizing map, an unsupervised learning approach, and the graph neural network, a supervised learning approach. We organize these two algorithms in a cascade architecture containing a probabilistic mapping graph self organizing map, and a graph neural network. We show that this combined approach helps us to limit the long-term dependency problem that exists when training the graph neural network resulting in an overall improvement in performance. This is demonstrated in an application to a benchmark problem requiring the detection of spam in a relatively large set of web sites. It is found that the proposed method produces results which reach the state of the art when compared with some of the best results obtained by others using quite different approaches. A particular strength of our method is its applicability towards any input domain which can be represented as a graph. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.

    NASA Astrophysics Data System (ADS)

    Giridhar, K.

    The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal decision-feedback mechanism is introduced to truncate the channel memory "seen" by the MAPSD section. Also, simpler gradient-based updates for the channel estimates, and a metric pruning technique are used to further reduce the MAPSD complexity. Spatial diversity MAP combiners are developed to enhance the error rate performance and combat channel fading. As a first application of the MAPSD algorithm, dual-mode recovery techniques for TDMA (time-division multiple access) mobile radio signals are presented. Combined estimation of the symbol timing and the multipath parameters is proposed, using an auxiliary extended Kalman filter during the training cycle, and then tracking of the fading parameters is performed during the data cycle using the blind MAPSD algorithm. For the second application, a single-input receiver is employed to jointly recover cochannel narrowband signals. Assuming known channels, this two-stage joint MAPSD (JMAPSD) algorithm is compared to the optimal joint maximum likelihood sequence estimator, and to the joint decision-feedback detector. A blind MAPSD algorithm for the joint recovery of cochannel signals is also presented. Computer simulation results are provided to quantify the performance of the various algorithms proposed in this dissertation.

  11. Robust spike classification based on frequency domain neural waveform features.

    PubMed

    Yang, Chenhui; Yuan, Yuan; Si, Jennie

    2013-12-01

    We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.

  12. Adapting sensory data for multiple robots performing spill cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storjohann, K.; Saltzen, E.

    1990-09-01

    This paper describes a possible method of converting a single performing robot algorithm into a multiple performing robot algorithm without the need to modify previously written codes. The algorithm to be converted involves spill detection and clean up by the HERMIES-III mobile robot. In order to achieve the goal of multiple performing robots with this algorithm, two steps are taken. First, the task is formally divided into two sub-tasks, spill detection and spill clean-up, the former of which is allocated to the added performing robot, HERMIES-IIB. Second, a inverse perspective mapping, is applied to the data acquired by the newmore » performing robot (HERMIES-IIB), allowing the data to be processed by the previously written algorithm without re-writing the code. 6 refs., 4 figs.« less

  13. Damage Proxy Map from InSAR Coherence Applied to February 2011 M6.3 Christchurch Earthquake, 2011 M9.0 Tohoku-oki Earthquake, and 2011 Kirishima Volcano Eruption

    NASA Astrophysics Data System (ADS)

    Yun, S.; Agram, P. S.; Fielding, E. J.; Simons, M.; Webb, F.; Tanaka, A.; Lundgren, P.; Owen, S. E.; Rosen, P. A.; Hensley, S.

    2011-12-01

    Under ARIA (Advanced Rapid Imaging and Analysis) project at JPL and Caltech, we developed a prototype algorithm to detect surface property change caused by natural or man-made damage using InSAR coherence change. The algorithm was tested on building demolition and construction sites in downtown Pasadena, California. The developed algorithm performed significantly better, producing 150 % higher signal-to-noise ratio, than a standard coherence change detection method. We applied the algorithm to February 2011 M6.3 Christchurch earthquake in New Zealand, 2011 M9.0 Tohoku-oki earthquake in Japan, and 2011 Kirishima volcano eruption in Kyushu, Japan, using ALOS PALSAR data. In Christchurch area we detected three different types of damage: liquefaction, building collapse, and landslide. The detected liquefaction damage is extensive in the eastern suburbs of Christchurch, showing Bexley as one of the most significantly affected areas as was reported in the media. Some places show sharp boundaries of liquefaction damage, indicating different type of ground materials that might have been formed by the meandering Avon River in the past. Well reported damaged buildings such as Christchurch Cathedral, Canterbury TV building, Pyne Gould building, and Cathedral of the Blessed Sacrament were detected by the algorithm. A landslide in Redcliffs was also clearly detected. These detected damage sites were confirmed with Google earth images provided by GeoEye. Larger-scale damage pattern also agrees well with the ground truth damage assessment map indicated with polygonal zones of 3 different damage levels, compiled by the government of New Zealand. The damage proxy map of Sendai area in Japan shows man-made structure damage due to the tsunami caused by the M9.0 Tohoku-oki earthquake. Long temporal baseline (~2.7 years) and volume scattering caused significant decorrelation in the farmlands and bush forest along the coastline. The 2011 Kirishima volcano eruption caused a lot of ash fall deposit in the southeast from the volcano. The detected ash fall damage area exactly matches the in-situ measurements implemented through fieldwork by Geological Survey of Japan. With 99-percentile threshold for damage detection, the periphery of the detected damage area aligns with a contour line of 100 kg/m2 ash deposit, equivalent to 10 cm of depth assuming a density of 1000 kg/m3 for the ash layer. With growing number of InSAR missions, rapidly produced accurate damage assessment maps will help save people, assisting effective prioritization of rescue operations at early stage of response, and significantly improve timely situational awareness for emergency management and national / international assessment and response for recovery planning. Results of this study will also inform the design of future InSAR missions including the proposed DESDynI.

  14. An Improved Otsu Threshold Segmentation Method for Underwater Simultaneous Localization and Mapping-Based Navigation

    PubMed Central

    Yuan, Xin; Martínez, José-Fernán; Eckert, Martina; López-Santidrián, Lourdes

    2016-01-01

    The main focus of this paper is on extracting features with SOund Navigation And Ranging (SONAR) sensing for further underwater landmark-based Simultaneous Localization and Mapping (SLAM). According to the characteristics of sonar images, in this paper, an improved Otsu threshold segmentation method (TSM) has been developed for feature detection. In combination with a contour detection algorithm, the foreground objects, although presenting different feature shapes, are separated much faster and more precisely than by other segmentation methods. Tests have been made with side-scan sonar (SSS) and forward-looking sonar (FLS) images in comparison with other four TSMs, namely the traditional Otsu method, the local TSM, the iterative TSM and the maximum entropy TSM. For all the sonar images presented in this work, the computational time of the improved Otsu TSM is much lower than that of the maximum entropy TSM, which achieves the highest segmentation precision among the four above mentioned TSMs. As a result of the segmentations, the centroids of the main extracted regions have been computed to represent point landmarks which can be used for navigation, e.g., with the help of an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-SLAM approach is a recursive and iterative estimation-update process, which besides a prediction and an update stage (as in classical Extended Kalman Filter (EKF)), includes an augmentation stage. During navigation, the robot localizes the centroids of different segments of features in sonar images, which are detected by our improved Otsu TSM, as point landmarks. Using them with the AEKF achieves more accurate and robust estimations of the robot pose and the landmark positions, than with those detected by the maximum entropy TSM. Together with the landmarks identified by the proposed segmentation algorithm, the AEKF-SLAM has achieved reliable detection of cycles in the map and consistent map update on loop closure, which is shown in simulated experiments. PMID:27455279

  15. An Improved Otsu Threshold Segmentation Method for Underwater Simultaneous Localization and Mapping-Based Navigation.

    PubMed

    Yuan, Xin; Martínez, José-Fernán; Eckert, Martina; López-Santidrián, Lourdes

    2016-07-22

    The main focus of this paper is on extracting features with SOund Navigation And Ranging (SONAR) sensing for further underwater landmark-based Simultaneous Localization and Mapping (SLAM). According to the characteristics of sonar images, in this paper, an improved Otsu threshold segmentation method (TSM) has been developed for feature detection. In combination with a contour detection algorithm, the foreground objects, although presenting different feature shapes, are separated much faster and more precisely than by other segmentation methods. Tests have been made with side-scan sonar (SSS) and forward-looking sonar (FLS) images in comparison with other four TSMs, namely the traditional Otsu method, the local TSM, the iterative TSM and the maximum entropy TSM. For all the sonar images presented in this work, the computational time of the improved Otsu TSM is much lower than that of the maximum entropy TSM, which achieves the highest segmentation precision among the four above mentioned TSMs. As a result of the segmentations, the centroids of the main extracted regions have been computed to represent point landmarks which can be used for navigation, e.g., with the help of an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-SLAM approach is a recursive and iterative estimation-update process, which besides a prediction and an update stage (as in classical Extended Kalman Filter (EKF)), includes an augmentation stage. During navigation, the robot localizes the centroids of different segments of features in sonar images, which are detected by our improved Otsu TSM, as point landmarks. Using them with the AEKF achieves more accurate and robust estimations of the robot pose and the landmark positions, than with those detected by the maximum entropy TSM. Together with the landmarks identified by the proposed segmentation algorithm, the AEKF-SLAM has achieved reliable detection of cycles in the map and consistent map update on loop closure, which is shown in simulated experiments.

  16. Cosmic string detection with tree-based machine learning

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.

    2018-07-01

    We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9'-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.

  17. Cosmic String Detection with Tree-Based Machine Learning

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.

    2018-05-01

    We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9΄-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.

  18. Edge-directed inference for microaneurysms detection in digital fundus images

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Yan, Michelle; Aviyente, Selin

    2007-03-01

    Microaneurysms (MAs) detection is a critical step in diabetic retinopathy screening, since MAs are the earliest visible warning of potential future problems. A variety of algorithms have been proposed for MAs detection in mass screening. Different methods have been proposed for MAs detection. The core technology for most of existing methods is based on a directional mathematical morphological operation called "Top-Hat" filter that requires multiple filtering operations at each pixel. Background structure, uneven illumination and noise often cause confusion between MAs and some non-MA structures and limits the applicability of the filter. In this paper, a novel detection framework based on edge directed inference is proposed for MAs detection. The candidate MA regions are first delineated from the edge map of a fundus image. Features measuring shape, brightness and contrast are extracted for each candidate MA region to better exclude false detection from true MAs. Algorithmic analysis and empirical evaluation reveal that the proposed edge directed inference outperforms the "Top-Hat" based algorithm in both detection accuracy and computational speed.

  19. A service relation model for web-based land cover change detection

    NASA Astrophysics Data System (ADS)

    Xing, Huaqiao; Chen, Jun; Wu, Hao; Zhang, Jun; Li, Songnian; Liu, Boyu

    2017-10-01

    Change detection with remotely sensed imagery is a critical step in land cover monitoring and updating. Although a variety of algorithms or models have been developed, none of them can be universal for all cases. The selection of appropriate algorithms and construction of processing workflows depend largely on the expertise of experts about the "algorithm-data" relations among change detection algorithms and the imagery data used. This paper presents a service relation model for land cover change detection by integrating the experts' knowledge about the "algorithm-data" relations into the web-based geo-processing. The "algorithm-data" relations are mapped into a set of web service relations with the analysis of functional and non-functional service semantics. These service relations are further classified into three different levels, i.e., interface, behavior and execution levels. A service relation model is then established using the Object and Relation Diagram (ORD) approach to represent the multi-granularity services and their relations for change detection. A set of semantic matching rules are built and used for deriving on-demand change detection service chains from the service relation model. A web-based prototype system is developed in .NET development environment, which encapsulates nine change detection and pre-processing algorithms and represents their service relations as an ORD. Three test areas from Shandong and Hebei provinces, China with different imagery conditions are selected for online change detection experiments, and the results indicate that on-demand service chains can be generated according to different users' demands.

  20. Mapping the distribution of materials in hyperspectral data using the USGS Material Identification and Characterization Algorithm (MICA)

    USGS Publications Warehouse

    Kokaly, R.F.; King, T.V.V.; Hoefen, T.M.

    2011-01-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important method in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow scientists to detect materials and map their distributions across the landscape. With new satellite-borne hyperspectral sensors planned for the future, for example, HYSPIRI (HYPerspectral InfraRed Imager), robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral-feature based analysis of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described in this paper. The core concepts and calculations of MICA are presented. A MICA command file has been developed and applied to map minerals in the full-country coverage of the 2007 Afghanistan HyMap hyperspectral data. ?? 2011 IEEE.

  1. Optimized static and video EEG rapid serial visual presentation (RSVP) paradigm based on motion surprise computation

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Huber, David J.; Bhattacharyya, Rajan

    2017-05-01

    In this paper, we describe an algorithm and system for optimizing search and detection performance for "items of interest" (IOI) in large-sized images and videos that employ the Rapid Serial Visual Presentation (RSVP) based EEG paradigm and surprise algorithms that incorporate motion processing to determine whether static or video RSVP is used. The system works by first computing a motion surprise map on image sub-regions (chips) of incoming sensor video data and then uses those surprise maps to label the chips as either "static" or "moving". This information tells the system whether to use a static or video RSVP presentation and decoding algorithm in order to optimize EEG based detection of IOI in each chip. Using this method, we are able to demonstrate classification of a series of image regions from video with an azimuth value of 1, indicating perfect classification, over a range of display frequencies and video speeds.

  2. Uniform, optimal signal processing of mapped deep-sequencing data.

    PubMed

    Kumar, Vibhor; Muratani, Masafumi; Rayan, Nirmala Arul; Kraus, Petra; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2013-07-01

    Despite their apparent diversity, many problems in the analysis of high-throughput sequencing data are merely special cases of two general problems, signal detection and signal estimation. Here we adapt formally optimal solutions from signal processing theory to analyze signals of DNA sequence reads mapped to a genome. We describe DFilter, a detection algorithm that identifies regulatory features in ChIP-seq, DNase-seq and FAIRE-seq data more accurately than assay-specific algorithms. We also describe EFilter, an estimation algorithm that accurately predicts mRNA levels from as few as 1-2 histone profiles (R ∼0.9). Notably, the presence of regulatory motifs in promoters correlates more with histone modifications than with mRNA levels, suggesting that histone profiles are more predictive of cis-regulatory mechanisms. We show by applying DFilter and EFilter to embryonic forebrain ChIP-seq data that regulatory protein identification and functional annotation are feasible despite tissue heterogeneity. The mathematical formalism underlying our tools facilitates integrative analysis of data from virtually any sequencing-based functional profile.

  3. Image denoising based on noise detection

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanxiang; Yuan, Rui; Sun, Yuqiu; Tian, Jinwen

    2018-03-01

    Because of the noise points in the images, any operation of denoising would change the original information of non-noise pixel. A noise detection algorithm based on fractional calculus was proposed to denoise in this paper. Convolution of the image was made to gain direction gradient masks firstly. Then, the mean gray was calculated to obtain the gradient detection maps. Logical product was made to acquire noise position image next. Comparisons in the visual effect and evaluation parameters after processing, the results of experiment showed that the denoising algorithms based on noise were better than that of traditional methods in both subjective and objective aspects.

  4. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    NASA Astrophysics Data System (ADS)

    Herrera, V.; Romero, J. F.; Amestegui, M.

    2011-03-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  5. A New Algorithm for Detecting Cloud Height using OMPS/LP Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; DeLand, Matthew; Bhartia, Pawan K.

    2016-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) ozone product requires the determination of cloud height for each event to establish the lower boundary of the profile for the retrieval algorithm. We have created a revised cloud detection algorithm for LP measurements that uses the spectral dependence of the vertical gradient in radiance between two wavelengths in the visible and near-IR spectral regions. This approach provides better discrimination between clouds and aerosols than results obtained using a single wavelength. Observed LP cloud height values show good agreement with coincident Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements.

  6. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  7. Advancing research and applications with lightning detection and mapping systems

    NASA Astrophysics Data System (ADS)

    MacGorman, Donald R.; Goodman, Steven J.

    2011-11-01

    Southern Thunder 2011 Workshop; Norman, Oklahoma, 11-14 July 2011 The Southern Thunder 2011 (ST11) Workshop was the fourth in a series intended to accelerate research and operational applications made possible by the expanding availability of ground-based and satellite systems that detect and map all types of lightning (in-cloud and cloud-to-ground). This community workshop, first held in 2004, brings together lightning data providers, algorithm developers, and operational users in government, academia, and industry.

  8. The energy ratio mapping algorithm: a tool to improve the energy-based detection of odontocete echolocation clicks.

    PubMed

    Klinck, Holger; Mellinger, David K

    2011-04-01

    The energy ratio mapping algorithm (ERMA) was developed to improve the performance of energy-based detection of odontocete echolocation clicks, especially for application in environments with limited computational power and energy such as acoustic gliders. ERMA systematically evaluates many frequency bands for energy ratio-based detection of echolocation clicks produced by a target species in the presence of the species mix in a given geographic area. To evaluate the performance of ERMA, a Teager-Kaiser energy operator was applied to the series of energy ratios as derived by ERMA. A noise-adaptive threshold was then applied to the Teager-Kaiser function to identify clicks in data sets. The method was tested for detecting clicks of Blainville's beaked whales while rejecting echolocation clicks of Risso's dolphins and pilot whales. Results showed that the ERMA-based detector correctly identified 81.6% of the beaked whale clicks in an extended evaluation data set. Average false-positive detection rate was 6.3% (3.4% for Risso's dolphins and 2.9% for pilot whales).

  9. A generic nuclei detection method for histopathological breast images

    NASA Astrophysics Data System (ADS)

    Kost, Henning; Homeyer, André; Bult, Peter; Balkenhol, Maschenka C. A.; van der Laak, Jeroen A. W. M.; Hahn, Horst K.

    2016-03-01

    The detection of cell nuclei plays a key role in various histopathological image analysis problems. Considering the high variability of its applications, we propose a novel generic and trainable detection approach. Adaption to specific nuclei detection tasks is done by providing training samples. A trainable deconvolution and classification algorithm is used to generate a probability map indicating the presence of a nucleus. The map is processed by an extended watershed segmentation step to identify the nuclei positions. We have tested our method on data sets with different stains and target nuclear types. We obtained F1-measures between 0.83 and 0.93.

  10. Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.

    PubMed

    Lin, Lanny; Goodrich, Michael A

    2014-12-01

    During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.

  11. Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    PubMed Central

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better. PMID:24959631

  12. Global detection of live virtual machine migration based on cellular neural networks.

    PubMed

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.

  13. A Novel Real-Time Reference Key Frame Scan Matching Method

    PubMed Central

    Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu

    2017-01-01

    Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions’ environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems. PMID:28481285

  14. Resolution Enhanced Magnetic Sensing System for Wide Coverage Real Time UXO Detection

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Bregman, Yuri; Salomonski, Nizan; Zafrir, Hovav

    2012-09-01

    In this paper we present a new high resolution automatic detection algorithm based upon a Wavelet transform and then validate it in marine related experiments. The proposed approach allows obtaining an automatic detection in a very low signal to noise ratios. The amount of calculations is reduced, the magnetic trend is depressed and the probability of detection/ false alarm rate can easily be controlled. Moreover, the algorithm enables to distinguish between close targets. In the algorithm we use the physical dependence of the magnetic field of a magnetic dipole in order to define a Wavelet mother function that later on can detect magnetic targets modeled as dipoles and embedded in noisy surrounding, at improved resolution. The proposed algorithm was realized on synthesized targets and then validated in field experiments involving a marine surface-floating system for wide coverage real time unexploded ordinance (UXO) detection and mapping. The detection probability achieved in the marine experiment was above 90%. The horizontal radial error of most of the detected targets was only 16 m and two baseline targets that were immersed about 20 m one to another could easily be distinguished.

  15. Interactive remote data processing using Pixelize Wavelet Filtration (PWF-method) and PeriodMap analysis

    NASA Astrophysics Data System (ADS)

    Sych, Robert; Nakariakov, Valery; Anfinogentov, Sergey

    Wavelet analysis is suitable for investigating waves and oscillating in solar atmosphere, which are limited in both time and frequency. We have developed an algorithms to detect this waves by use the Pixelize Wavelet Filtration (PWF-method). This method allows to obtain information about the presence of propagating and non-propagating waves in the data observation (cube images), and localize them precisely in time as well in space. We tested the algorithm and found that the results of coronal waves detection are consistent with those obtained by visual inspection. For fast exploration of the data cube, in addition, we applied early-developed Period- Map analysis. This method based on the Fast Fourier Transform and allows on initial stage quickly to look for "hot" regions with the peak harmonic oscillations and determine spatial distribution at the significant harmonics. We propose the detection procedure of coronal waves separate on two parts: at the first part, we apply the PeriodMap analysis (fast preparation) and than, at the second part, use information about spatial distribution of oscillation sources to apply the PWF-method (slow preparation). There are two possible algorithms working with the data: in automatic and hands-on operation mode. Firstly we use multiply PWF analysis as a preparation narrowband maps at frequency subbands multiply two and/or harmonic PWF analysis for separate harmonics in a spectrum. Secondly we manually select necessary spectral subband and temporal interval and than construct narrowband maps. For practical implementation of the proposed methods, we have developed the remote data processing system at Institute of Solar-Terrestrial Physics, Irkutsk. The system based on the data processing server - http://pwf.iszf.irk.ru. The main aim of this resource is calculation in remote access through the local and/or global network (Internet) narrowband maps of wave's sources both in whole spectral band and at significant harmonics. In addition, we can obtain temporal dynamics (mpeg- files) of the main oscillation characteristics: amplitude, power and phase as a spatial-temporal coordinates. For periodogram mapping of data cubes as a method for the pre-analysis, we developed preparation of the color maps where the pixel's colour corresponds to the frequency of the power spectrum maximum. The computer system based on applications ION-scripts, algorithmic languages IDL and PHP, and Apache WEB server. The IDL ION-scripts use for preparation and configuration of network requests at the central data server with subsequent connection to IDL run-unit software and graphic output on FTP-server and screen. Web page is constructed using PHP language.

  16. A Cooperative Search and Coverage Algorithm with Controllable Revisit and Connectivity Maintenance for Multiple Unmanned Aerial Vehicles.

    PubMed

    Liu, Zhong; Gao, Xiaoguang; Fu, Xiaowei

    2018-05-08

    In this paper, we mainly study a cooperative search and coverage algorithm for a given bounded rectangle region, which contains several unknown stationary targets, by a team of unmanned aerial vehicles (UAVs) with non-ideal sensors and limited communication ranges. Our goal is to minimize the search time, while gathering more information about the environment and finding more targets. For this purpose, a novel cooperative search and coverage algorithm with controllable revisit mechanism is presented. Firstly, as the representation of the environment, the cognitive maps that included the target probability map (TPM), the uncertain map (UM), and the digital pheromone map (DPM) are constituted. We also design a distributed update and fusion scheme for the cognitive map. This update and fusion scheme can guarantee that each one of the cognitive maps converges to the same one, which reflects the targets’ true existence or absence in each cell of the search region. Secondly, we develop a controllable revisit mechanism based on the DPM. This mechanism can concentrate the UAVs to revisit sub-areas that have a large target probability or high uncertainty. Thirdly, in the frame of distributed receding horizon optimizing, a path planning algorithm for the multi-UAVs cooperative search and coverage is designed. In the path planning algorithm, the movement of the UAVs is restricted by the potential fields to meet the requirements of avoiding collision and maintaining connectivity constraints. Moreover, using the minimum spanning tree (MST) topology optimization strategy, we can obtain a tradeoff between the search coverage enhancement and the connectivity maintenance. The feasibility of the proposed algorithm is demonstrated by comparison simulations by way of analyzing the effects of the controllable revisit mechanism and the connectivity maintenance scheme. The Monte Carlo method is employed to validate the influence of the number of UAVs, the sensing radius, the detection and false alarm probabilities, and the communication range on the proposed algorithm.

  17. Geometrical characterization of fluorescently labelled surfaces from noisy 3D microscopy data.

    PubMed

    Shelton, Elijah; Serwane, Friedhelm; Campàs, Otger

    2018-03-01

    Modern fluorescence microscopy enables fast 3D imaging of biological and inert systems alike. In many studies, it is important to detect the surface of objects and quantitatively characterize its local geometry, including its mean curvature. We present a fully automated algorithm to determine the location and curvatures of an object from 3D fluorescence images, such as those obtained using confocal or light-sheet microscopy. The algorithm aims at reconstructing surface labelled objects with spherical topology and mild deformations from the spherical geometry with high accuracy, rather than reconstructing arbitrarily deformed objects with lower fidelity. Using both synthetic data with known geometrical characteristics and experimental data of spherical objects, we characterize the algorithm's accuracy over the range of conditions and parameters typically encountered in 3D fluorescence imaging. We show that the algorithm can detect the location of the surface and obtain a map of local mean curvatures with relative errors typically below 2% and 20%, respectively, even in the presence of substantial levels of noise. Finally, we apply this algorithm to analyse the shape and curvature map of fluorescently labelled oil droplets embedded within multicellular aggregates and deformed by cellular forces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  18. A unified approach for debugging is-a structure and mappings in networked taxonomies

    PubMed Central

    2013-01-01

    Background With the increased use of ontologies and ontology mappings in semantically-enabled applications such as ontology-based search and data integration, the issue of detecting and repairing defects in ontologies and ontology mappings has become increasingly important. These defects can lead to wrong or incomplete results for the applications. Results We propose a unified framework for debugging the is-a structure of and mappings between taxonomies, the most used kind of ontologies. We present theory and algorithms as well as an implemented system RepOSE, that supports a domain expert in detecting and repairing missing and wrong is-a relations and mappings. We also discuss two experiments performed by domain experts: an experiment on the Anatomy ontologies from the Ontology Alignment Evaluation Initiative, and a debugging session for the Swedish National Food Agency. Conclusions Semantically-enabled applications need high quality ontologies and ontology mappings. One key aspect is the detection and removal of defects in the ontologies and ontology mappings. Our system RepOSE provides an environment that supports domain experts to deal with this issue. We have shown the usefulness of the approach in two experiments by detecting and repairing circa 200 and 30 defects, respectively. PMID:23548155

  19. A clustering algorithm for determining community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Yu, Wei; Li, ShiJun

    2018-02-01

    Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.

  20. A Lightning Channel Retrieval Algorithm for the North Alabama Lightning Mapping Array (LMA)

    NASA Technical Reports Server (NTRS)

    Koshak, William; Arnold, James E. (Technical Monitor)

    2002-01-01

    A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The network will support on-going ground validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with lightning and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) Lightning Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is developed completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic definition of source altitude that accounts for Earth oblateness (this can become important for sources that are hundreds of kilometers away from the network). In addition, the new algorithm is being applied to analyze computer simulated LMA datasets in order to obtain detailed location/time retrieval error maps for sources in and around the LMA network. These maps will provide a more comprehensive analysis of retrieval errors for LMA than the 1996 study did of LDAR retrieval errors. Finally, we note that the new algorithm can be applied to LDAR, and essentially any other multi-station TWA network that depends on direct line-of-site antenna excitation.

  1. Multiresolution saliency map based object segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Xin; Dai, ZhenYou

    2015-11-01

    Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.

  2. Real-time 3D change detection of IEDs

    NASA Astrophysics Data System (ADS)

    Wathen, Mitch; Link, Norah; Iles, Peter; Jinkerson, John; Mrstik, Paul; Kusevic, Kresimir; Kovats, David

    2012-06-01

    Road-side bombs are a real and continuing threat to soldiers in theater. CAE USA recently developed a prototype Volume based Intelligence Surveillance Reconnaissance (VISR) sensor platform for IED detection. This vehicle-mounted, prototype sensor system uses a high data rate LiDAR (1.33 million range measurements per second) to generate a 3D mapping of roadways. The mapped data is used as a reference to generate real-time change detection on future trips on the same roadways. The prototype VISR system is briefly described. The focus of this paper is the methodology used to process the 3D LiDAR data, in real-time, to detect small changes on and near the roadway ahead of a vehicle traveling at moderate speeds with sufficient warning to stop the vehicle at a safe distance from the threat. The system relies on accurate navigation equipment to geo-reference the reference run and the change-detection run. Since it was recognized early in the project that detection of small changes could not be achieved with accurate navigation solutions alone, a scene alignment algorithm was developed to register the reference run with the change detection run prior to applying the change detection algorithm. Good success was achieved in simultaneous real time processing of scene alignment plus change detection.

  3. Rotation-invariant features for multi-oriented text detection in natural images.

    PubMed

    Yao, Cong; Zhang, Xin; Bai, Xiang; Liu, Wenyu; Ma, Yi; Tu, Zhuowen

    2013-01-01

    Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes.

  4. A Floor-Map-Aided WiFi/Pseudo-Odometry Integration Algorithm for an Indoor Positioning System

    PubMed Central

    Wang, Jian; Hu, Andong; Liu, Chunyan; Li, Xin

    2015-01-01

    This paper proposes a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data to provide meter-level positioning without additional infrastructure. A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of further improving the positioning accuracy is to use a more effective multi-threshold step detection algorithm, as proposed by the authors. The “go and back” phenomenon caused by incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning coordinates, P-O measurements and fused heading angles as observations. The “cross-wall” problem is solved based on the development of a floor-map-aided particle filter algorithm by weighting the particles, thereby also eliminating the gross-error effects originating from WiFi or P-O measurements. The performance observed in a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirms that the proposed scheme can reliably achieve meter-level positioning. PMID:25811224

  5. Using airborne LiDAR in geoarchaeological contexts: Assessment of an automatic tool for the detection and the morphometric analysis of grazing archaeological structures (French Massif Central).

    NASA Astrophysics Data System (ADS)

    Roussel, Erwan; Toumazet, Jean-Pierre; Florez, Marta; Vautier, Franck; Dousteyssier, Bertrand

    2014-05-01

    Airborne laser scanning (ALS) of archaeological regions of interest is nowadays a widely used and established method for accurate topographic and microtopographic survey. The penetration of the vegetation cover by the laser beam allows the reconstruction of reliable digital terrain models (DTM) of forested areas where traditional prospection methods are inefficient, time-consuming and non-exhaustive. The ALS technology provides the opportunity to discover new archaeological features hidden by vegetation and provides a comprehensive survey of cultural heritage sites within their environmental context. However, the post-processing of LiDAR points clouds produces a huge quantity of data in which relevant archaeological features are not easily detectable with common visualizing and analysing tools. Undoubtedly, there is an urgent need for automation of structures detection and morphometric extraction techniques, especially for the "archaeological desert" in densely forested areas. This presentation deals with the development of automatic detection procedures applied to archaeological structures located in the French Massif Central, in the western forested part of the Puy-de-Dôme volcano between 950 and 1100 m a.s.l.. These unknown archaeological sites were discovered by the March 2011 ALS mission and display a high density of subcircular depressions with a corridor access. The spatial organization of these depressions vary from isolated to aggregated or aligned features. Functionally, they appear to be former grazing constructions built from the medieval to the modern period. Similar grazing structures are known in other locations of the French Massif Central (Sancy, Artense, Cézallier) where the ground is vegetation-free. In order to develop a reliable process of automatic detection and mapping of these archaeological structures, a learning zone has been delineated within the ALS surveyed area. The grazing features were mapped and typical morphometric attributes were calculated based on 2 methods: (i) The mapping of the archaeological structures by a human operator using common visualisation tools (DTM, multi-direction hillshading & local relief models) within a GIS environment; (ii) The automatic detection and mapping performed by a recognition algorithm based on a user defined geometric pattern of the grazing structures. The efficiency of the automatic tool has been assessed by comparing the number of structures detected and the morphometric attributes calculated by the two methods. Our results indicate that the algorithm is efficient for the detection and the location of grazing structures. Concerning the morphometric results, there is still a discrepancy between automatic and expert calculations, due to both the expert mapping choices and the algorithm calibration.

  6. The Chandra Source Catalog: Algorithms

    NASA Astrophysics Data System (ADS)

    McDowell, Jonathan; Evans, I. N.; Primini, F. A.; Glotfelty, K. J.; McCollough, M. L.; Houck, J. C.; Nowak, M. A.; Karovska, M.; Davis, J. E.; Rots, A. H.; Siemiginowska, A. L.; Hain, R.; Evans, J. D.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    Creation of the Chandra Source Catalog (CSC) required adjustment of existing pipeline processing, adaptation of existing interactive analysis software for automated use, and development of entirely new algorithms. Data calibration was based on the existing pipeline, but more rigorous data cleaning was applied and the latest calibration data products were used. For source detection, a local background map was created including the effects of ACIS source readout streaks. The existing wavelet source detection algorithm was modified and a set of post-processing scripts used to correct the results. To analyse the source properties we ran the SAO Traceray trace code for each source to generate a model point spread function, allowing us to find encircled energy correction factors and estimate source extent. Further algorithms were developed to characterize the spectral, spatial and temporal properties of the sources and to estimate the confidence intervals on count rates and fluxes. Finally, sources detected in multiple observations were matched, and best estimates of their merged properties derived. In this paper we present an overview of the algorithms used, with more detailed treatment of some of the newly developed algorithms presented in companion papers.

  7. A targeted change-detection procedure by combining change vector analysis and post-classification approach

    NASA Astrophysics Data System (ADS)

    Ye, Su; Chen, Dongmei; Yu, Jie

    2016-04-01

    In remote sensing, conventional supervised change-detection methods usually require effective training data for multiple change types. This paper introduces a more flexible and efficient procedure that seeks to identify only the changes that users are interested in, here after referred to as "targeted change detection". Based on a one-class classifier "Support Vector Domain Description (SVDD)", a novel algorithm named "Three-layer SVDD Fusion (TLSF)" is developed specially for targeted change detection. The proposed algorithm combines one-class classification generated from change vector maps, as well as before- and after-change images in order to get a more reliable detecting result. In addition, this paper introduces a detailed workflow for implementing this algorithm. This workflow has been applied to two case studies with different practical monitoring objectives: urban expansion and forest fire assessment. The experiment results of these two case studies show that the overall accuracy of our proposed algorithm is superior (Kappa statistics are 86.3% and 87.8% for Case 1 and 2, respectively), compared to applying SVDD to change vector analysis and post-classification comparison.

  8. Path planning of decentralized multi-quadrotor based on fuzzy-cell decomposition algorithm

    NASA Astrophysics Data System (ADS)

    Iswanto, Wahyunggoro, Oyas; Cahyadi, Adha Imam

    2017-04-01

    The paper aims to present a design algorithm for multi quadrotor lanes in order to move towards the goal quickly and avoid obstacles in an area with obstacles. There are several problems in path planning including how to get to the goal position quickly and avoid static and dynamic obstacles. To overcome the problem, therefore, the paper presents fuzzy logic algorithm and fuzzy cell decomposition algorithm. Fuzzy logic algorithm is one of the artificial intelligence algorithms which can be applied to robot path planning that is able to detect static and dynamic obstacles. Cell decomposition algorithm is an algorithm of graph theory used to make a robot path map. By using the two algorithms the robot is able to get to the goal position and avoid obstacles but it takes a considerable time because they are able to find the shortest path. Therefore, this paper describes a modification of the algorithms by adding a potential field algorithm used to provide weight values on the map applied for each quadrotor by using decentralized controlled, so that the quadrotor is able to move to the goal position quickly by finding the shortest path. The simulations conducted have shown that multi-quadrotor can avoid various obstacles and find the shortest path by using the proposed algorithms.

  9. A deviation based assessment methodology for multiple machine health patterns classification and fault detection

    NASA Astrophysics Data System (ADS)

    Jia, Xiaodong; Jin, Chao; Buzza, Matt; Di, Yuan; Siegel, David; Lee, Jay

    2018-01-01

    Successful applications of Diffusion Map (DM) in machine failure detection and diagnosis have been reported in several recent studies. DM provides an efficient way to visualize the high-dimensional, complex and nonlinear machine data, and thus suggests more knowledge about the machine under monitoring. In this paper, a DM based methodology named as DM-EVD is proposed for machine degradation assessment, abnormality detection and diagnosis in an online fashion. Several limitations and challenges of using DM for machine health monitoring have been analyzed and addressed. Based on the proposed DM-EVD, a deviation based methodology is then proposed to include more dimension reduction methods. In this work, the incorporation of Laplacian Eigen-map and Principal Component Analysis (PCA) are explored, and the latter algorithm is named as PCA-Dev and is validated in the case study. To show the successful application of the proposed methodology, case studies from diverse fields are presented and investigated in this work. Improved results are reported by benchmarking with other machine learning algorithms.

  10. Next-generation forest change mapping across the United States: the landscape change monitoring system (LCMS)

    Treesearch

    Sean P. Healey; Warren B. Cohen; Yang Zhiqiang; Ken Brewer; Evan Brooks; Noel Gorelick; Mathew Gregory; Alexander Hernandez; Chengquan Huang; Joseph Hughes; Robert Kennedy; Thomas Loveland; Kevin Megown; Gretchen Moisen; Todd Schroeder; Brian Schwind; Stephen Stehman; Daniel Steinwand; James Vogelmann; Curtis Woodcock; Limin Yang; Zhe Zhu

    2015-01-01

    Forest change information is critical in forest planning, ecosystem modeling, and in updating forest condition maps. The Landsat satellite platform has provided consistent observations of the world’s ecosystems since 1972. A number of innovative change detection algorithms have been developed to use the Landsat archive to identify and characterize forest change. The...

  11. Spatially-Aware Temporal Anomaly Mapping of Gamma Spectra

    NASA Astrophysics Data System (ADS)

    Reinhart, Alex; Athey, Alex; Biegalski, Steven

    2014-06-01

    For security, environmental, and regulatory purposes it is useful to continuously monitor wide areas for unexpected changes in radioactivity. We report on a temporal anomaly detection algorithm which uses mobile detectors to build a spatial map of background spectra, allowing sensitive detection of any anomalies through many days or months of monitoring. We adapt previously-developed anomaly detection methods, which compare spectral shape rather than count rate, to function with limited background data, allowing sensitive detection of small changes in spectral shape from day to day. To demonstrate this technique we collected daily observations over the period of six weeks on a 0.33 square mile research campus and performed source injection simulations.

  12. Dysphonia Detected by Pattern Recognition of Spectral Composition.

    ERIC Educational Resources Information Center

    Leinonen, Lea; And Others

    1992-01-01

    This study analyzed production of a long vowel sound within Finnish words by normal or dysphonic voices, using the Self-Organizing Map, the artificial neural network algorithm of T. Kohonen which produces two-dimensional representations of speech. The method was found to be both sensitive and specific in the detection of dysphonia. (Author/JDD)

  13. A Practical and Automated Approach to Large Area Forest Disturbance Mapping with Remote Sensing

    PubMed Central

    Ozdogan, Mutlu

    2014-01-01

    In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions. PMID:24717283

  14. MODIS Collection 6 Data at the National Snow and Ice Data Center (NSIDC)

    NASA Astrophysics Data System (ADS)

    Fowler, D. K.; Steiker, A. E.; Johnston, T.; Haran, T. M.; Fowler, C.; Wyatt, P.

    2015-12-01

    For over 15 years, the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) has archived and distributed snow and sea ice products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Collection 6 represents the next revision to NSIDC's MODIS archive, mainly affecting the snow-cover products. Collection 6 specifically addresses the needs of the MODIS science community by targeting the scenarios that have historically confounded snow detection and introduced errors into the snow-cover and fractional snow-cover maps even though MODIS snow-cover maps are typically 90 percent accurate or better under good observing conditions, Collection 6 uses revised algorithms to discriminate between snow and clouds, resolve uncertainties along the edges of snow-covered regions, and detect summer snow cover in mountains. Furthermore, Collection 6 applies modified and additional snow detection screens and new Quality Assessment protocols that enhance the overall accuracy of the snow maps compared with Collection 5. Collection 6 also introduces several new MODIS snow products, including a daily Climate Modelling Grid (CMG) cloud gap-filled (CGF) snow-cover map which generates cloud-free maps by using the most recent clear observations.. The MODIS Collection 6 sea ice extent and ice surface temperature algorithms and products are much the same as Collection 5; however, Collection 6 updates to algorithm inputs—in particular, the L1B calibrated radiances, land and water mask, and cloud mask products—have improved the sea ice outputs. The MODIS sea ice products are currently available at NSIDC, and the snow cover products are soon to follow in 2016 NSIDC offers a variety of methods for obtaining these data. Users can download data directly from an online archive or use the NASA Reverb Search & Order Tool to perform spatial, temporal, and parameter subsetting, reformatting, and re-projection of the data.

  15. A practical and automated approach to large area forest disturbance mapping with remote sensing.

    PubMed

    Ozdogan, Mutlu

    2014-01-01

    In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions.

  16. Detecting fluorescence hot-spots using mosaic maps generated from multimodal endoscope imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chenying; Soper, Timothy D.; Seibel, Eric J.

    2013-03-01

    Fluorescence labeled biomarkers can be detected during endoscopy to guide early cancer biopsies, such as high-grade dysplasia in Barrett's Esophagus. To enhance intraoperative visualization of the fluorescence hot-spots, a mosaicking technique was developed to create full anatomical maps of the lower esophagus and associated fluorescent hot-spots. The resultant mosaic map contains overlaid reflectance and fluorescence images. It can be used to assist biopsy and document findings. The mosaicking algorithm uses reflectance images to calculate image registration between successive frames, and apply this registration to simultaneously acquired fluorescence images. During this mosaicking process, the fluorescence signal is enhanced through multi-frame averaging. Preliminary results showed that the technique promises to enhance the detectability of the hot-spots due to enhanced fluorescence signal.

  17. A conjugate gradients/trust regions algorithms for training multilayer perceptrons for nonlinear mapping

    NASA Technical Reports Server (NTRS)

    Madyastha, Raghavendra K.; Aazhang, Behnaam; Henson, Troy F.; Huxhold, Wendy L.

    1992-01-01

    This paper addresses the issue of applying a globally convergent optimization algorithm to the training of multilayer perceptrons, a class of Artificial Neural Networks. The multilayer perceptrons are trained towards the solution of two highly nonlinear problems: (1) signal detection in a multi-user communication network, and (2) solving the inverse kinematics for a robotic manipulator. The research is motivated by the fact that a multilayer perceptron is theoretically capable of approximating any nonlinear function to within a specified accuracy. The algorithm that has been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Gradients and the Trust Regions Algorithms. The performance is compared to a widely used algorithm, the Backpropagation Algorithm, that is basically a gradient-based algorithm, and hence, slow in converging. The performances of the two algorithms are compared with the convergence rate. Furthermore, in the case of the signal detection problem, performances are also benchmarked by the decision boundaries drawn as well as the probability of error obtained in either case.

  18. Clustering Multiple Sclerosis Subgroups with Multifractal Methods and Self-Organizing Map Algorithm

    NASA Astrophysics Data System (ADS)

    Karaca, Yeliz; Cattani, Carlo

    Magnetic resonance imaging (MRI) is the most sensitive method to detect chronic nervous system diseases such as multiple sclerosis (MS). In this paper, Brownian motion Hölder regularity functions (polynomial, periodic (sine), exponential) for 2D image, such as multifractal methods were applied to MR brain images, aiming to easily identify distressed regions, in MS patients. With these regions, we have proposed an MS classification based on the multifractal method by using the Self-Organizing Map (SOM) algorithm. Thus, we obtained a cluster analysis by identifying pixels from distressed regions in MR images through multifractal methods and by diagnosing subgroups of MS patients through artificial neural networks.

  19. Shack-Hartmann wavefront sensor with large dynamic range.

    PubMed

    Xia, Mingliang; Li, Chao; Hu, Lifa; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li

    2010-01-01

    A new spot centroid detection algorithm for a Shack-Hartmann wavefront sensor (SHWFS) is experimentally investigated. The algorithm is a kind of dynamic tracking algorithm that tracks and calculates the corresponding spot centroid of the current spot map based on the spot centroid of the previous spot map, according to the strong correlation of the wavefront slope and the centroid of the corresponding spot between temporally adjacent SHWFS measurements. That is, for adjacent measurements, the spot centroid movement will usually fall within some range. Using the algorithm, the dynamic range of an SHWFS can be expanded by a factor of three in the measurement of tilt aberration compared with the conventional algorithm, more than 1.3 times in the measurement of defocus aberration, and more than 2 times in the measurement of the mixture of spherical aberration plus coma aberration. The algorithm is applied in our SHWFS to measure the distorted wavefront of the human eye. The experimental results of the adaptive optics (AO) system for retina imaging are presented to prove its feasibility for highly aberrated eyes.

  20. Road marking features extraction using the VIAPIX® system

    NASA Astrophysics Data System (ADS)

    Kaddah, W.; Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.; Gutierrez, C.

    2016-07-01

    Precise extraction of road marking features is a critical task for autonomous urban driving, augmented driver assistance, and robotics technologies. In this study, we consider an autonomous system allowing us lane detection for marked urban roads and analysis of their features. The task is to relate the georeferencing of road markings from images obtained using the VIAPIX® system. Based on inverse perspective mapping and color segmentation to detect all white objects existing on this road, the present algorithm enables us to examine these images automatically and rapidly and also to get information on road marks, their surface conditions, and their georeferencing. This algorithm allows detecting all road markings and identifying some of them by making use of a phase-only correlation filter (POF). We illustrate this algorithm and its robustness by applying it to a variety of relevant scenarios.

  1. Processing the Bouguer anomaly map of Biga and the surrounding area by the cellular neural network: application to the southwestern Marmara region

    NASA Astrophysics Data System (ADS)

    Aydogan, D.

    2007-04-01

    An image processing technique called the cellular neural network (CNN) approach is used in this study to locate geological features giving rise to gravity anomalies such as faults or the boundary of two geologic zones. CNN is a stochastic image processing technique based on template optimization using the neighborhood relationships of cells. These cells can be characterized by a functional block diagram that is typical of neural network theory. The functionality of CNN is described in its entirety by a number of small matrices (A, B and I) called the cloning template. CNN can also be considered to be a nonlinear convolution of these matrices. This template describes the strength of the nearest neighbor interconnections in the network. The recurrent perceptron learning algorithm (RPLA) is used in optimization of cloning template. The CNN and standard Canny algorithms were first tested on two sets of synthetic gravity data with the aim of checking the reliability of the proposed approach. The CNN method was compared with classical derivative techniques by applying the cross-correlation method (CC) to the same anomaly map as this latter approach can detect some features that are difficult to identify on the Bouguer anomaly maps. This approach was then applied to the Bouguer anomaly map of Biga and its surrounding area, in Turkey. Structural features in the area between Bandirma, Biga, Yenice and Gonen in the southwest Marmara region are investigated by applying the CNN and CC to the Bouguer anomaly map. Faults identified by these algorithms are generally in accordance with previously mapped surface faults. These examples show that the geologic boundaries can be detected from Bouguer anomaly maps using the cloning template approach. A visual evaluation of the outputs of the CNN and CC approaches is carried out, and the results are compared with each other. This approach provides quantitative solutions based on just a few assumptions, which makes the method more powerful than the classical methods.

  2. Lane marking detection based on waveform analysis and CNN

    NASA Astrophysics Data System (ADS)

    Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li

    2017-06-01

    Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.

  3. Vision based speed breaker detection for autonomous vehicle

    NASA Astrophysics Data System (ADS)

    C. S., Arvind; Mishra, Ritesh; Vishal, Kumar; Gundimeda, Venugopal

    2018-04-01

    In this paper, we are presenting a robust and real-time, vision-based approach to detect speed breaker in urban environments for autonomous vehicle. Our method is designed to detect the speed breaker using visual inputs obtained from a camera mounted on top of a vehicle. The method performs inverse perspective mapping to generate top view of the road and segment out region of interest based on difference of Gaussian and median filter images. Furthermore, the algorithm performs RANSAC line fitting to identify the possible speed breaker candidate region. This initial guessed region via RANSAC, is validated using support vector machine. Our algorithm can detect different categories of speed breakers on cement, asphalt and interlock roads at various conditions and have achieved a recall of 0.98.

  4. An object correlation and maneuver detection approach for space surveillance

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Hu, Wei-Dong; Xin, Qin; Du, Xiao-Yong

    2012-10-01

    Object correlation and maneuver detection are persistent problems in space surveillance and maintenance of a space object catalog. We integrate these two problems into one interrelated problem, and consider them simultaneously under a scenario where space objects only perform a single in-track orbital maneuver during the time intervals between observations. We mathematically formulate this integrated scenario as a maximum a posteriori (MAP) estimation. In this work, we propose a novel approach to solve the MAP estimation. More precisely, the corresponding posterior probability of an orbital maneuver and a joint association event can be approximated by the Joint Probabilistic Data Association (JPDA) algorithm. Subsequently, the maneuvering parameters are estimated by optimally solving the constrained non-linear least squares iterative process based on the second-order cone programming (SOCP) algorithm. The desired solution is derived according to the MAP criterions. The performance and advantages of the proposed approach have been shown by both theoretical analysis and simulation results. We hope that our work will stimulate future work on space surveillance and maintenance of a space object catalog.

  5. Fast, shape-directed, landmark-based deep gray matter segmentation for quantification of iron deposition

    NASA Astrophysics Data System (ADS)

    Ekin, Ahmet; Jasinschi, Radu; van der Grond, Jeroen; van Buchem, Mark A.; van Muiswinkel, Arianne

    2006-03-01

    This paper introduces image processing methods to automatically detect the 3D volume-of-interest (VOI) and 2D region-of-interest (ROI) for deep gray matter organs (thalamus, globus pallidus, putamen, and caudate nucleus) of patients with suspected iron deposition from MR dual echo images. Prior to the VOI and ROI detection, cerebrospinal fluid (CSF) region is segmented by a clustering algorithm. For the segmentation, we automatically determine the cluster centers with the mean shift algorithm that can quickly identify the modes of a distribution. After the identification of the modes, we employ the K-Harmonic means clustering algorithm to segment the volumetric MR data into CSF and non-CSF. Having the CSF mask and observing that the frontal lobe of the lateral ventricle has more consistent shape accross age and pathological abnormalities, we propose a shape-directed landmark detection algorithm to detect the VOI in a speedy manner. The proposed landmark detection algorithm utilizes a novel shape model of the front lobe of the lateral ventricle for the slices where thalamus, globus pallidus, putamen, and caudate nucleus are expected to appear. After this step, for each slice in the VOI, we use horizontal and vertical projections of the CSF map to detect the approximate locations of the relevant organs to define the ROI. We demonstrate the robustness of the proposed VOI and ROI localization algorithms to pathologies, including severe amounts of iron accumulation as well as white matter lesions, and anatomical variations. The proposed algorithms achieved very high detection accuracy, 100% in the VOI detection , over a large set of a challenging MR dataset.

  6. A Depth Map Generation Algorithm Based on Saliency Detection for 2D to 3D Conversion

    NASA Astrophysics Data System (ADS)

    Yang, Yizhong; Hu, Xionglou; Wu, Nengju; Wang, Pengfei; Xu, Dong; Rong, Shen

    2017-09-01

    In recent years, 3D movies attract people's attention more and more because of their immersive stereoscopic experience. However, 3D movies is still insufficient, so estimating depth information for 2D to 3D conversion from a video is more and more important. In this paper, we present a novel algorithm to estimate depth information from a video via scene classification algorithm. In order to obtain perceptually reliable depth information for viewers, the algorithm classifies them into three categories: landscape type, close-up type, linear perspective type firstly. Then we employ a specific algorithm to divide the landscape type image into many blocks, and assign depth value by similar relative height cue with the image. As to the close-up type image, a saliency-based method is adopted to enhance the foreground in the image and the method combine it with the global depth gradient to generate final depth map. By vanishing line detection, the calculated vanishing point which is regarded as the farthest point to the viewer is assigned with deepest depth value. According to the distance between the other points and the vanishing point, the entire image is assigned with corresponding depth value. Finally, depth image-based rendering is employed to generate stereoscopic virtual views after bilateral filter. Experiments show that the proposed algorithm can achieve realistic 3D effects and yield satisfactory results, while the perception scores of anaglyph images lie between 6.8 and 7.8.

  7. Hyperspectral feature mapping classification based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli

    2016-03-01

    This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.

  8. Implementation of a near real-time burned area detection algorithm calibrated for VIIRS imagery

    Treesearch

    Brenna Schwert; Carl Albury; Jess Clark; Abigail Schaaf; Shawn Urbanski; Bryce Nordgren

    2016-01-01

    There is a need to implement methods for rapid burned area detection using a suitable replacement for Moderate Resolution Imaging Spectroradiometer (MODIS) imagery to meet future mapping and monitoring needs (Roy and Boschetti 2009, Tucker and Yager 2011). The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard the Suomi-National Polar-orbiting Partnership...

  9. A novel ship CFAR detection algorithm based on adaptive parameter enhancement and wake-aided detection in SAR images

    NASA Astrophysics Data System (ADS)

    Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun

    2018-03-01

    Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.

  10. Assessment of Gamma-Ray-Spectra Analysis Method Utilizing the Fireworks Algorithm for Various Error Measures

    DOE PAGES

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    The analysis of measured data plays a significant role in enhancing nuclear nonproliferation mainly by inferring the presence of patterns associated with special nuclear materials. Among various types of measurements, gamma-ray spectra is the widest utilized type of data in nonproliferation applications. In this paper, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular, FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, where non-zero coefficients express the detected signatures. FWA is tested on a set of experimentallymore » obtained measurements optimizing various objective functions—MSE, RMSE, Theil-2, MAE, MAPE, MAP—with results exhibiting its potential in providing highly accurate and precise signature detection. Finally and furthermore, FWA is benchmarked against genetic algorithms and multiple linear regression, showing its superiority over those algorithms regarding precision with respect to MAE, MAPE, and MAP measures.« less

  11. Transcription Factor Map Alignment of Promoter Regions

    PubMed Central

    Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic

    2006-01-01

    We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547

  12. Comparative analysis on the selection of number of clusters in community detection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Kabashima, Yoshiyuki

    2018-02-01

    We conduct a comparative analysis on various estimates of the number of clusters in community detection. An exhaustive comparison requires testing of all possible combinations of frameworks, algorithms, and assessment criteria. In this paper we focus on the framework based on a stochastic block model, and investigate the performance of greedy algorithms, statistical inference, and spectral methods. For the assessment criteria, we consider modularity, map equation, Bethe free energy, prediction errors, and isolated eigenvalues. From the analysis, the tendency of overfit and underfit that the assessment criteria and algorithms have becomes apparent. In addition, we propose that the alluvial diagram is a suitable tool to visualize statistical inference results and can be useful to determine the number of clusters.

  13. Regional Principal Color Based Saliency Detection

    PubMed Central

    Lou, Jing; Ren, Mingwu; Wang, Huan

    2014-01-01

    Saliency detection is widely used in many visual applications like image segmentation, object recognition and classification. In this paper, we will introduce a new method to detect salient objects in natural images. The approach is based on a regional principal color contrast modal, which incorporates low-level and medium-level visual cues. The method allows a simple computation of color features and two categories of spatial relationships to a saliency map, achieving higher F-measure rates. At the same time, we present an interpolation approach to evaluate resulting curves, and analyze parameters selection. Our method enables the effective computation of arbitrary resolution images. Experimental results on a saliency database show that our approach produces high quality saliency maps and performs favorably against ten saliency detection algorithms. PMID:25379960

  14. Quaternion-valued single-phase model for three-phase power system

    NASA Astrophysics Data System (ADS)

    Gou, Xiaoming; Liu, Zhiwen; Liu, Wei; Xu, Yougen; Wang, Jiabin

    2018-03-01

    In this work, a quaternion-valued model is proposed in lieu of the Clarke's α, β transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarke's transformation-based methods will fail to detect the zero sequence voltages. Based on the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations are provided to demonstrate the potentials of this new modeling method.

  15. A street rubbish detection algorithm based on Sift and RCNN

    NASA Astrophysics Data System (ADS)

    Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting

    2018-02-01

    This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).

  16. Infrared and visible image fusion method based on saliency detection in sparse domain

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Qi, Y.; Ding, W. R.

    2017-06-01

    Infrared and visible image fusion is a key problem in the field of multi-sensor image fusion. To better preserve the significant information of the infrared and visible images in the final fused image, the saliency maps of the source images is introduced into the fusion procedure. Firstly, under the framework of the joint sparse representation (JSR) model, the global and local saliency maps of the source images are obtained based on sparse coefficients. Then, a saliency detection model is proposed, which combines the global and local saliency maps to generate an integrated saliency map. Finally, a weighted fusion algorithm based on the integrated saliency map is developed to achieve the fusion progress. The experimental results show that our method is superior to the state-of-the-art methods in terms of several universal quality evaluation indexes, as well as in the visual quality.

  17. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans

    NASA Astrophysics Data System (ADS)

    Blondeau-Patissier, David; Gower, James F. R.; Dekker, Arnold G.; Phinn, Stuart R.; Brando, Vittorio E.

    2014-04-01

    The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters.

  18. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing.

    PubMed

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-06-15

    Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  19. Early Results from the Global Precipitation Measurement (GPM) Mission in Japan

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Kubota, Takuji; Masaki, Takeshi; Kaneko, Yuki; Kanemaru, Kaya; Oki, Riko; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2015-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The Dual-frequency Precipitation Radar (DPR) was developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and installed on the GPM Core Observatory. The GPM Core Observatory chooses a non-sun-synchronous orbit to carry on diurnal cycle observations of rainfall from the Tropical Rainfall Measuring Mission (TRMM) satellite and was successfully launched at 3:37 a.m. on February 28, 2014 (JST), while the Constellation Satellites, including JAXA's Global Change Observation Mission (GCOM) - Water (GCOM-W1) or "SHIZUKU," are launched by each partner agency sometime around 2014 and contribute to expand observation coverage and increase observation frequency JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map (GPM-GSMaP) algorithm, which is a latest version of the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. Major improvements in the GPM-GSMaP algorithm is; 1) improvements in microwave imager algorithm based on AMSR2 precipitation standard algorithm, including new land algorithm, new coast detection scheme; 2) Development of orographic rainfall correction method for warm rainfall in coastal area (Taniguchi et al., 2012); 3) Update of database, including rainfall detection over land and land surface emission database; 4) Development of microwave sounder algorithm over land (Kida et al., 2012); and 5) Development of gauge-calibrated GSMaP algorithm (Ushio et al., 2013). In addition to those improvements in the algorithms number of passive microwave imagers and/or sounders used in the GPM-GSMaP was increased compared to the previous version. After the early calibration and validation of the products and evaluation that all products achieved the release criteria, all GPM standard products and the GPM-GSMaP product has been released to the public since September 2014. The GPM products can be downloaded via the internet through the JAXA G-Portal (https://www.gportal.jaxa.jp).

  20. A Study on the Model of Detecting the Variation of Geomagnetic Intensity Based on an Adapted Motion Strategy.

    PubMed

    Li, Hong; Liu, Mingyong; Liu, Kun; Zhang, Feihu

    2017-12-25

    By simulating the geomagnetic fields and analyzing thevariation of intensities, this paper presents a model for calculating the objective function ofan Autonomous Underwater Vehicle (AUV)geomagnetic navigation task. By investigating the biologically inspired strategies, the AUV successfullyreachesthe destination duringgeomagnetic navigation without using the priori geomagnetic map. Similar to the pattern of a flatworm, the proposed algorithm relies on a motion pattern to trigger a local searching strategy by detecting the real-time geomagnetic intensity. An adapted strategy is then implemented, which is biased on the specific target. The results show thereliabilityandeffectivenessofthe proposed algorithm.

  1. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).

    PubMed

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-07-07

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.

  2. Feasibility of anomaly detection and characterization using trans-admittance mammography with 60 × 60 electrode array

    NASA Astrophysics Data System (ADS)

    Zhao, Mingkang; Wi, Hun; Lee, Eun Jung; Woo, Eung Je; In Oh, Tong

    2014-10-01

    Electrical impedance imaging has the potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. The tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. Additionally, the anomaly characterization is required to distinguish a malignant tumor from a benign tumor. In order to overcome the limitation of breast cancer detection using impedance measurement probes, we developed the high density trans-admittance mammography (TAM) system with 60 × 60 electrode array and produced trans-admittance maps obtained at several frequency pairs. We applied the anomaly detection algorithm to the high density TAM system for estimating the volume and position of breast tumor. We tested four different sizes of anomaly with three different conductivity contrasts at four different depths. From multifrequency trans-admittance maps, we can readily observe the transversal position and estimate its volume and depth. Specially, the depth estimated values were obtained accurately, which were independent to the size and conductivity contrast when applying the new formula using Laplacian of trans-admittance map. The volume estimation was dependent on the conductivity contrast between anomaly and background in the breast phantom. We characterized two testing anomalies using frequency difference trans-admittance data to eliminate the dependency of anomaly position and size. We confirmed the anomaly detection and characterization algorithm with the high density TAM system on bovine breast tissue. Both results showed the feasibility of detecting the size and position of anomaly and tissue characterization for screening the breast cancer.

  3. Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegele, W.; Loeschel, R.; Dobler, B.

    2011-02-15

    Purpose: In this work, a novel stochastic framework for patient positioning based on linac-mounted CB projections is introduced. Based on this formulation, the most probable shifts and rotations of the patient are estimated, incorporating interfractional deformations of patient anatomy and other uncertainties associated with patient setup. Methods: The target position is assumed to be defined by and is stochastically determined from positions of various features such as anatomical landmarks or markers in CB projections, i.e., radiographs acquired with a CB-CT system. The patient positioning problem of finding the target location from CB projections is posed as an inverse problem withmore » prior knowledge and is solved using a Bayesian maximum a posteriori (MAP) approach. The prior knowledge is three-fold and includes the accuracy of an initial patient setup (such as in-room laser and skin marks), the plasticity of the body (relative shifts between target and features), and the feature detection error in CB projections (which may vary depending on specific detection algorithm and feature type). For this purpose, MAP estimators are derived and a procedure of using them in clinical practice is outlined. Furthermore, a rule of thumb is theoretically derived, relating basic parameters of the prior knowledge (initial setup accuracy, plasticity of the body, and number of features) and the parameters of CB data acquisition (number of projections and accuracy of feature detection) to the expected estimation accuracy. Results: MAP estimation can be applied to arbitrary features and detection algorithms. However, to experimentally demonstrate its applicability and to perform the validation of the algorithm, a water-equivalent, deformable phantom with features represented by six 1 mm chrome balls were utilized. These features were detected in the cone beam projections (XVI, Elekta Synergy) by a local threshold method for demonstration purposes only. The accuracy of estimation (strongly varying for different plasticity parameters of the body) agreed with the rule of thumb formula. Moreover, based on this rule of thumb formula, about 20 projections for 6 detectable features seem to be sufficient for a target estimation accuracy of 0.2 cm, even for relatively large feature detection errors with standard deviation of 0.5 cm and spatial displacements of the features with standard deviation of 0.5 cm. Conclusions: The authors have introduced a general MAP-based patient setup algorithm accounting for different sources of uncertainties, which are utilized as the prior knowledge in a transparent way. This new framework can be further utilized for different clinical sites, as well as theoretical developments in the field of patient positioning for radiotherapy.« less

  4. Phase gradient imaging for positive contrast generation to superparamagnetic iron oxide nanoparticle-labeled targets in magnetic resonance imaging.

    PubMed

    Zhu, Haitao; Demachi, Kazuyuki; Sekino, Masaki

    2011-09-01

    Positive contrast imaging methods produce enhanced signal at large magnetic field gradient in magnetic resonance imaging. Several postprocessing algorithms, such as susceptibility gradient mapping and phase gradient mapping methods, have been applied for positive contrast generation to detect the cells targeted by superparamagnetic iron oxide nanoparticles. In the phase gradient mapping methods, smoothness condition has to be satisfied to keep the phase gradient unwrapped. Moreover, there has been no discussion about the truncation artifact associated with the algorithm of differentiation that is performed in k-space by the multiplication with frequency value. In this work, phase gradient methods are discussed by considering the wrapping problem when the smoothness condition is not satisfied. A region-growing unwrapping algorithm is used in the phase gradient image to solve the problem. In order to reduce the truncation artifact, a cosine function is multiplied in the k-space to eliminate the abrupt change at the boundaries. Simulation, phantom and in vivo experimental results demonstrate that the modified phase gradient mapping methods may produce improved positive contrast effects by reducing truncation or wrapping artifacts. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Golay Complementary Waveforms in Reed–Müller Sequences for Radar Detection of Nonzero Doppler Targets

    PubMed Central

    Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill

    2018-01-01

    Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708

  6. Navigation and Self-Semantic Location of Drones in Indoor Environments by Combining the Visual Bug Algorithm and Entropy-Based Vision.

    PubMed

    Maravall, Darío; de Lope, Javier; Fuentes, Juan P

    2017-01-01

    We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks.

  7. Navigation and Self-Semantic Location of Drones in Indoor Environments by Combining the Visual Bug Algorithm and Entropy-Based Vision

    PubMed Central

    Maravall, Darío; de Lope, Javier; Fuentes, Juan P.

    2017-01-01

    We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks. PMID:28900394

  8. Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

    PubMed Central

    Rezaee, Kh.; Azizi, E.; Haddadnia, J.

    2016-01-01

    Background Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder. Objective In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has been proposed. 844 hours of EEG were recorded form 23 pediatric patients consecutively with 163 occurrences of seizures. Signals had been collected from Children’s Hospital Boston with a sampling frequency of 256 Hz through 18 channels in order to assess epilepsy surgery. By selecting effective features from seizure and non-seizure signals of each individual and putting them into two categories, the proposed algorithm detects the onset of seizures quickly and with high sensitivity. Method In this algorithm, L-sec epochs of signals are displayed in form of a third-order tensor in spatial, spectral and temporal spaces by applying wavelet transform. Then, after applying general tensor discriminant analysis (GTDA) on tensors and calculating mapping matrix, feature vectors are extracted. GTDA increases the sensitivity of the algorithm by storing data without deleting them. Finally, K-Nearest neighbors (KNN) is used to classify the selected features. Results The results of simulating algorithm on algorithm standard dataset shows that the algorithm is capable of detecting 98 percent of seizures with an average delay of 4.7 seconds and the average error rate detection of three errors in 24 hours. Conclusion Today, the lack of an automated system to detect or predict the seizure onset is strongly felt. PMID:27672628

  9. Machine Learning Algorithms for Automated Satellite Snow and Sea Ice Detection

    NASA Astrophysics Data System (ADS)

    Bonev, George

    The continuous mapping of snow and ice cover, particularly in the arctic and poles, are critical to understanding the earth and atmospheric science. Much of the world's sea ice and snow covers the most inhospitable places, making measurements from satellite-based remote sensors essential. Despite the wealth of data from these instruments many challenges remain. For instance, remote sensing instruments reside on-board different satellites and observe the earth at different portions of the electromagnetic spectrum with different spatial footprints. Integrating and fusing this information to make estimates of the surface is a subject of active research. In response to these challenges, this dissertation will present two algorithms that utilize methods from statistics and machine learning, with the goal of improving on the quality and accuracy of current snow and sea ice detection products. The first algorithm aims at implementing snow detection using optical/infrared instrument data. The novelty in this approach is that the classifier is trained using ground station measurements of snow depth that are collocated with the reflectance observed at the satellite. Several classification methods are compared using this training data to identify the one yielding the highest accuracy and optimal space/time complexity. The algorithm is then evaluated against the current operational NASA snow product and it is found that it produces comparable and in some cases superior accuracy results. The second algorithm presents a fully automated approach to sea ice detection that integrates data obtained from passive microwave and optical/infrared satellite instruments. For a particular region of interest the algorithm generates sea ice maps of each individual satellite overpass and then aggregates them to a daily composite level, maximizing the amount of high resolution information available. The algorithm is evaluated at both, the individual satellite overpass level, and at the daily composite level. Results show that at the single overpass level for clear-sky regions, the developed multi-sensor algorithm performs with accuracy similar to that of the optical/infrared products, with the advantage of being able to also classify partially cloud-obscured regions with the help of passive microwave data. At the daily composite level, results show that the algorithm's performance with respect to total ice extent is in line with other daily products, with the novelty of being fully automated and having higher resolution.

  10. Mixing geometric and radiometric features for change classification

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre; Descombes, Xavier; Zerubia, Josiane

    2008-02-01

    Most basic change detection algorithms use a pixel-based approach. Whereas such approach is quite well defined for monitoring important area changes (such as urban growth monitoring) in low resolution images, an object based approach seems more relevant when the change detection is specifically aimed toward targets (such as small buildings and vehicles). In this paper, we present an approach that mixes radiometric and geometric features to qualify the changed zones. The goal is to establish bounds (appearance, disappearance, substitution ...) between the detected changes and the underlying objects. We proceed by first clustering the change map (containing each pixel bitemporal radiosity) in different classes using the entropy-kmeans algorithm. Assuming that most man-made objects have a polygonal shape, a polygonal approximation algorithm is then used in order to characterize the resulting zone shapes. Hence allowing us to refine the primary rough classification, by integrating the polygon orientations in the state space. Tests are currently conducted on Quickbird data.

  11. Inertial aided cycle slip detection and identification for integrated PPP GPS and INS.

    PubMed

    Du, Shuang; Gao, Yang

    2012-10-25

    The recently developed integrated Precise Point Positioning (PPP) GPS/INS system can be useful to many applications, such as UAV navigation systems, land vehicle/machine automation and mobile mapping systems. Since carrier phase measurements are the primary observables in PPP GPS, cycle slips, which often occur due to high dynamics, signal obstructions and low satellite elevation, must be detected and repaired in order to ensure the navigation performance. In this research, a new algorithm of cycle slip detection and identification has been developed. With the aiding from INS, the proposed method jointly uses WL and EWL phase combinations to uniquely determine cycle slips in the L1 and L2 frequencies. To verify the efficiency of the algorithm, both tactical-grade and consumer-grade IMUs are tested by using a real dataset collected from two field tests. The results indicate that the proposed algorithm can efficiently detect and identify the cycle slips and subsequently improve the navigation performance of the integrated system.

  12. Assessment of Data Fusion Algorithms for Earth Observation Change Detection Processes.

    PubMed

    Molina, Iñigo; Martinez, Estibaliz; Morillo, Carmen; Velasco, Jesus; Jara, Alvaro

    2016-09-30

    In this work a parametric multi-sensor Bayesian data fusion approach and a Support Vector Machine (SVM) are used for a Change Detection problem. For this purpose two sets of SPOT5-PAN images have been used, which are in turn used for Change Detection Indices (CDIs) calculation. For minimizing radiometric differences, a methodology based on zonal "invariant features" is suggested. The choice of one or the other CDI for a change detection process is a subjective task as each CDI is probably more or less sensitive to certain types of changes. Likewise, this idea might be employed to create and improve a "change map", which can be accomplished by means of the CDI's informational content. For this purpose, information metrics such as the Shannon Entropy and "Specific Information" have been used to weight the changes and no-changes categories contained in a certain CDI and thus introduced in the Bayesian information fusion algorithm. Furthermore, the parameters of the probability density functions (pdf's) that best fit the involved categories have also been estimated. Conversely, these considerations are not necessary for mapping procedures based on the discriminant functions of a SVM. This work has confirmed the capabilities of probabilistic information fusion procedure under these circumstances.

  13. Hazard Detection Software for Lunar Landing

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of viewing on hazard detection performance. The software has also been deployed to Johnson Space Center and integrated into the ALHAT real-time Hardware-in-the-Loop testbed.

  14. Infrared dim target detection based on visual attention

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lv, Guofang; Xu, Lizhong

    2012-11-01

    Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. Based on human visual attention mechanisms, an automatic detection algorithm for infrared dim target is presented. After analyzing the characteristics of infrared dim target images, the method firstly designs Difference of Gaussians (DoG) filters to compute the saliency map. Then the salient regions where the potential targets exist in are extracted by searching through the saliency map with a control mechanism of winner-take-all (WTA) competition and inhibition-of-return (IOR). At last, these regions are identified by the characteristics of the dim IR targets, so the true targets are detected, and the spurious objects are rejected. The experiments are performed for some real-life IR images, and the results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.

  15. Automated detection and segmentation of follicles in 3D ultrasound for assisted reproduction

    NASA Astrophysics Data System (ADS)

    Narayan, Nikhil S.; Sivanandan, Srinivasan; Kudavelly, Srinivas; Patwardhan, Kedar A.; Ramaraju, G. A.

    2018-02-01

    Follicle quantification refers to the computation of the number and size of follicles in 3D ultrasound volumes of the ovary. This is one of the key factors in determining hormonal dosage during female infertility treatments. In this paper, we propose an automated algorithm to detect and segment follicles in 3D ultrasound volumes of the ovary for quantification. In a first of its kind attempt, we employ noise-robust phase symmetry feature maps as likelihood function to perform mean-shift based follicle center detection. Max-flow algorithm is used for segmentation and gray weighted distance transform is employed for post-processing the results. We have obtained state-of-the-art results with a true positive detection rate of >90% on 26 3D volumes with 323 follicles.

  16. A Free Database of Auto-detected Full-sun Coronal Hole Maps

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.; Downs, C.; Linker, J.

    2016-12-01

    We present a 4-yr (06/10/2010 to 08/18/14 at 6-hr cadence) database of full-sun synchronic EUV and coronal hole (CH) maps made available on a dedicated web site (http://www.predsci.com/chd). The maps are generated using STEREO/EUVI A&B 195Å and SDO/AIA 193Å images through an automated pipeline (Caplan et al, (2016) Ap.J. 823, 53).Specifically, the original data is preprocessed with PSF-deconvolution, a nonlinear limb-brightening correction, and a nonlinear inter-instrument intensity normalization. Coronal holes are then detected in the preprocessed images using a GPU-accelerated region growing segmentation algorithm. The final results from all three instruments are then merged and projected to form full-sun sine-latitude maps. All the software used in processing the maps is provided, which can easily be adapted for use with other instruments and channels. We describe the data pipeline and show examples from the database. We also detail recent CH-detection validation experiments using synthetic EUV emission images produced from global thermodynamic MHD simulations.

  17. Automated Point Cloud Correspondence Detection for Underwater Mapping Using AUVs

    NASA Technical Reports Server (NTRS)

    Hammond, Marcus; Clark, Ashley; Mahajan, Aditya; Sharma, Sumant; Rock, Stephen

    2015-01-01

    An algorithm for automating correspondence detection between point clouds composed of multibeam sonar data is presented. This allows accurate initialization for point cloud alignment techniques even in cases where accurate inertial navigation is not available, such as iceberg profiling or vehicles with low-grade inertial navigation systems. Techniques from computer vision literature are used to extract, label, and match keypoints between "pseudo-images" generated from these point clouds. Image matches are refined using RANSAC and information about the vehicle trajectory. The resulting correspondences can be used to initialize an iterative closest point (ICP) registration algorithm to estimate accumulated navigation error and aid in the creation of accurate, self-consistent maps. The results presented use multibeam sonar data obtained from multiple overlapping passes of an underwater canyon in Monterey Bay, California. Using strict matching criteria, the method detects 23 between-swath correspondence events in a set of 155 pseudo-images with zero false positives. Using less conservative matching criteria doubles the number of matches but introduces several false positive matches as well. Heuristics based on known vehicle trajectory information are used to eliminate these.

  18. A new automatic synthetic aperture radar-based flood mapping application hosted on the European Space Agency's Grid Processing of Demand Fast Access to Imagery environment

    NASA Astrophysics Data System (ADS)

    Matgen, Patrick; Giustarini, Laura; Hostache, Renaud

    2012-10-01

    This paper introduces an automatic flood mapping application that is hosted on the Grid Processing on Demand (GPOD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver operationally flooded areas using both recent and historical acquisitions of SAR data. Having as a short-term target the flooding-related exploitation of data generated by the upcoming ESA SENTINEL-1 SAR mission, the flood mapping application consists of two building blocks: i) a set of query tools for selecting the "crisis image" and the optimal corresponding "reference image" from the G-POD archive and ii) an algorithm for extracting flooded areas via change detection using the previously selected "crisis image" and "reference image". Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate reference image. Potential users will also be able to apply the implemented flood delineation algorithm. The latter combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. Both algorithms are computationally efficient and operate with minimum data requirements. The case study of the high magnitude flooding event that occurred in July 2007 on the Severn River, UK, and that was observed with a moderateresolution SAR sensor as well as airborne photography highlights the performance of the proposed online application. The flood mapping application on G-POD can be used sporadically, i.e. whenever a major flood event occurs and there is a demand for SAR-based flood extent maps. In the long term, a potential extension of the application could consist in systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis.

  19. A computer-aided detection (CAD) system with a 3D algorithm for small acute intracranial hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Fernandez, James; Deshpande, Ruchi; Lee, Joon K.; Chan, Tao; Liu, Brent

    2012-02-01

    Acute Intracranial hemorrhage (AIH) requires urgent diagnosis in the emergency setting to mitigate eventual sequelae. However, experienced radiologists may not always be available to make a timely diagnosis. This is especially true for small AIH, defined as lesion smaller than 10 mm in size. A computer-aided detection (CAD) system for the detection of small AIH would facilitate timely diagnosis. A previously developed 2D algorithm shows high false positive rates in the evaluation based on LAC/USC cases, due to the limitation of setting up correct coordinate system for the knowledge-based classification system. To achieve a higher sensitivity and specificity, a new 3D algorithm is developed. The algorithm utilizes a top-hat transformation and dynamic threshold map to detect small AIH lesions. Several key structures of brain are detected and are used to set up a 3D anatomical coordinate system. A rule-based classification of the lesion detected is applied based on the anatomical coordinate system. For convenient evaluation in clinical environment, the CAD module is integrated with a stand-alone system. The CAD is evaluated by small AIH cases and matched normal collected in LAC/USC. The result of 3D CAD and the previous 2D CAD has been compared.

  20. A Probabilistic Approach to Network Event Formation from Pre-Processed Waveform Data

    NASA Astrophysics Data System (ADS)

    Kohl, B. C.; Given, J.

    2017-12-01

    The current state of the art for seismic event detection still largely depends on signal detection at individual sensor stations, including picking accurate arrivals times and correctly identifying phases, and relying on fusion algorithms to associate individual signal detections to form event hypotheses. But increasing computational capability has enabled progress toward the objective of fully utilizing body-wave recordings in an integrated manner to detect events without the necessity of previously recorded ground truth events. In 2011-2012 Leidos (then SAIC) operated a seismic network to monitor activity associated with geothermal field operations in western Nevada. We developed a new association approach for detecting and quantifying events by probabilistically combining pre-processed waveform data to deal with noisy data and clutter at local distance ranges. The ProbDet algorithm maps continuous waveform data into continuous conditional probability traces using a source model (e.g. Brune earthquake or Mueller-Murphy explosion) to map frequency content and an attenuation model to map amplitudes. Event detection and classification is accomplished by combining the conditional probabilities from the entire network using a Bayesian formulation. This approach was successful in producing a high-Pd, low-Pfa automated bulletin for a local network and preliminary tests with regional and teleseismic data show that it has promise for global seismic and nuclear monitoring applications. The approach highlights several features that we believe are essential to achieving low-threshold automated event detection: Minimizes the utilization of individual seismic phase detections - in traditional techniques, errors in signal detection, timing, feature measurement and initial phase ID compound and propagate into errors in event formation, Has a formalized framework that utilizes information from non-detecting stations, Has a formalized framework that utilizes source information, in particular the spectral characteristics of events of interest, Is entirely model-based, i.e. does not rely on a priori's - particularly important for nuclear monitoring, Does not rely on individualized signal detection thresholds - it's the network solution that matters.

  1. Web Based Rapid Mapping of Disaster Areas using Satellite Images, Web Processing Service, Web Mapping Service, Frequency Based Change Detection Algorithm and J-iView

    NASA Astrophysics Data System (ADS)

    Bandibas, J. C.; Takarada, S.

    2013-12-01

    Timely identification of areas affected by natural disasters is very important for a successful rescue and effective emergency relief efforts. This research focuses on the development of a cost effective and efficient system of identifying areas affected by natural disasters, and the efficient distribution of the information. The developed system is composed of 3 modules which are the Web Processing Service (WPS), Web Map Service (WMS) and the user interface provided by J-iView (fig. 1). WPS is an online system that provides computation, storage and data access services. In this study, the WPS module provides online access of the software implementing the developed frequency based change detection algorithm for the identification of areas affected by natural disasters. It also sends requests to WMS servers to get the remotely sensed data to be used in the computation. WMS is a standard protocol that provides a simple HTTP interface for requesting geo-registered map images from one or more geospatial databases. In this research, the WMS component provides remote access of the satellite images which are used as inputs for land cover change detection. The user interface in this system is provided by J-iView, which is an online mapping system developed at the Geological Survey of Japan (GSJ). The 3 modules are seamlessly integrated into a single package using J-iView, which could rapidly generate a map of disaster areas that is instantaneously viewable online. The developed system was tested using ASTER images covering the areas damaged by the March 11, 2011 tsunami in northeastern Japan. The developed system efficiently generated a map showing areas devastated by the tsunami. Based on the initial results of the study, the developed system proved to be a useful tool for emergency workers to quickly identify areas affected by natural disasters.

  2. What is missing? An operational inundation mapping framework by SAR data

    NASA Astrophysics Data System (ADS)

    Shen, X.; Anagnostou, E. N.; Zeng, Z.; Kettner, A.; Hong, Y.

    2017-12-01

    Compared to optical sensors, synthetic aperture radar (SAR) works all-day all-weather. In addition, its spatial resolution does not decrease with the height of the platform and is thus applicable to a range of important studies. However, existing studies did not address the operational demands of real-time inundation mapping. The direct proof is that no water body product exists for any SAR-based satellites. Then what is missing between science and products? Automation and quality. What makes it so difficult to develop an operational inundation mapping technique based on SAR data? Spectrum-wise, unlike optical water indices such as MNDWI, AWEI etc., where a relative constant threshold may apply across acquisition of images, regions and sensors, the threshold to separate water from non-water pixels in each SAR images has to be individually chosen. The optimization of the threshold is the first obstacle to the automation of the SAR data algorithm. Morphologically, the quality and reliability of the results have been compromised by over-detection caused by smooth surface and shadowing area, the noise-like speckle and under-detection caused by strong-scatter disturbance. In this study, we propose a three-step framework that addresses all aforementioned issues of operational inundation mapping by SAR data. The framework consists of 1) optimization of Wishart distribution parameters of single/dual/fully-polarized SAR data, 2) morphological removal of over-detection, and 3) machine-learning based removal of under-detection. The framework utilizes not only the SAR data, but also the synergy of digital elevation model (DEM), and optical sensor-based products of fine resolution, including the water probability map, land cover classification map (optional), and river width. The framework has been validated throughout multiple areas in different parts of the world using different satellite SAR data and globally available ancillary data products. Therefore, it has the potential to contribute as an operational inundation mapping algorithm to any SAR missions, such as SWOT, ALOS, Sentinel, etc. Selected results using ALOS/PALSAR-1 L-band dual polarized data around the Connecticut River is provided in the attached Figure.

  3. Comparison and optimization of radar-based hail detection algorithms in Slovenia

    NASA Astrophysics Data System (ADS)

    Stržinar, Gregor; Skok, Gregor

    2018-05-01

    Four commonly used radar-based hail detection algorithms are evaluated and optimized in Slovenia. The algorithms are verified against ground observations of hail at manned stations in the period between May and August, from 2002 to 2010. The algorithms are optimized by determining the optimal values of all possible algorithm parameters. A number of different contingency-table-based scores are evaluated with a combination of Critical Success Index and frequency bias proving to be the best choice for optimization. The best performance indexes are given by Waldvogel and the severe hail index, followed by vertically integrated liquid and maximum radar reflectivity. Using the optimal parameter values, a hail frequency climatology map for the whole of Slovenia is produced. The analysis shows that there is a considerable variability of hail occurrence within the Republic of Slovenia. The hail frequency ranges from almost 0 to 1.7 hail days per year with an average value of about 0.7 hail days per year.

  4. Automated Means of Identifying Landslide Deposits using LiDAR Data using the Contour Connection Method Algorithm

    NASA Astrophysics Data System (ADS)

    Olsen, M. J.; Leshchinsky, B. A.; Tanyu, B. F.

    2014-12-01

    Landslides are a global natural hazard, resulting in severe economic, environmental and social impacts every year. Often, landslides occur in areas of repeated slope instability, but despite these trends, significant residential developments and critical infrastructure are built in the shadow of past landslide deposits and marginally stable slopes. These hazards, despite their sometimes enormous scale and regional propensity, however, are difficult to detect on the ground, often due to vegetative cover. However, new developments in remote sensing technology, specifically Light Detection and Ranging mapping (LiDAR) are providing a new means of viewing our landscape. Airborne LiDAR, combined with a level of post-processing, enable the creation of spatial data representative of the earth beneath the vegetation, highlighting the scars of unstable slopes of the past. This tool presents a revolutionary technique to mapping landslide deposits and their associated regions of risk; yet, their inventorying is often done manually, an approach that can be tedious, time-consuming and subjective. However, the associated LiDAR bare earth data present the opportunity to use this remote sensing technology and typical landslide geometry to create an automated algorithm that can detect and inventory deposits on a landscape scale. This algorithm, called the Contour Connection Method (CCM), functions by first detecting steep gradients, often associated with the headscarp of a failed hillslope, and initiating a search, highlighting deposits downslope of the failure. Based on input of search gradients, CCM can assist in highlighting regions identified as landslides consistently on a landscape scale, capable of mapping more than 14,000 hectares rapidly (<30 minutes). CCM has shown preliminary agreement with manual landslide inventorying in Oregon's Coast Range, realizing almost 90% agreement with inventorying performed by a trained geologist. The global threat of landslides necessitates new and effective tools for inventorying regions of risk to protect people, infrastructure and the environment from landslide hazards. Use of the CCM algorithm combined with judgment and rapidly developing remote sensing technology may help better define these regions of risk.

  5. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography

    PubMed Central

    Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang; Jia, Yali

    2017-01-01

    Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution. PMID:29296475

  6. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography.

    PubMed

    Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali

    2017-12-01

    Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution.

  7. Vision guided landing of an an autonomous helicopter in hazardous terrain

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Montgomery, Jim

    2005-01-01

    Future robotic space missions will employ a precision soft-landing capability that will enable exploration of previously inaccessible sites that have strong scientific significance. To enable this capability, a fully autonomous onboard system that identifies and avoids hazardous features such as steep slopes and large rocks is required. Such a system will also provide greater functionality in unstructured terrain to unmanned aerial vehicles. This paper describes an algorithm for landing hazard avoidance based on images from a single moving camera. The core of the algorithm is an efficient application of structure from motion to generate a dense elevation map of the landing area. Hazards are then detected in this map and a safe landing site is selected. The algorithm has been implemented on an autonomous helicopter testbed and demonstrated four times resulting in the first autonomous landing of an unmanned helicopter in unknown and hazardous terrain.

  8. On dealing with multiple correlation peaks in PIV

    NASA Astrophysics Data System (ADS)

    Masullo, A.; Theunissen, R.

    2018-05-01

    A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.

  9. Automated thematic mapping and change detection of ERTS-A images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In the first part of the investigation, spatial and spectral features were developed which were employed to automatically recognize terrain features through a clustering algorithm. In this part of the investigation, the size of the cell which is the number of digital picture elements used for computing the spatial and spectral features was varied. It was determined that the accuracy of terrain recognition decreases slowly as the cell size is reduced and coincides with increased cluster diffuseness. It was also proven that a cell size of 17 x 17 pixels when used with the clustering algorithm results in high recognition rates for major terrain classes. ERTS-1 data from five diverse geographic regions of the United States were processed through the clustering algorithm with 17 x 17 pixel cells. Simple land use maps were produced and the average terrain recognition accuracy was 82 percent.

  10. A constraint optimization based virtual network mapping method

    NASA Astrophysics Data System (ADS)

    Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen

    2013-03-01

    Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.

  11. Algorithms for highway-speed acoustic impact-echo evaluation of concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Guthrie, W. Spencer

    2018-04-01

    A new acoustic impact-echo testing device has been developed for detecting and mapping delaminations in concrete bridge decks at highway speeds. The apparatus produces nearly continuous acoustic excitation of concrete bridge decks through rolling mats of chains that are placed around six wheels mounted to a hinged trailer. The wheels approximately span the width of a traffic lane, and the ability to remotely lower and raise the apparatus using a winch system allows continuous data collection without stationary traffic control or exposure of personnel to traffic. Microphones near the wheels are used to record the acoustic response of the bridge deck during testing. In conjunction with the development of this new apparatus, advances in the algorithms required for data analysis were needed. This paper describes the general framework of the algorithms developed for converting differential global positioning system data and multi-channel audio data into maps that can be used in support of engineering decisions about bridge deck maintenance, rehabilitation, and replacement (MR&R). Acquisition of position and audio data is coordinated on a laptop computer through a custom graphical user interface. All of the streams of data are synchronized with the universal computer time so that audio data can be associated with interpolated position information through data post-processing. The audio segments are individually processed according to particular detection algorithms that can adapt to variations in microphone sensitivity or particular chain excitations. Features that are greater than a predetermined threshold, which is held constant throughout the analysis, are then subjected to further analysis and included in a map that shows the results of the testing. Maps of data collected on a bridge deck using the new acoustic impact-echo testing device at different speeds ranging from approximately 10 km/h to 55 km/h indicate that the collected data are reasonably repeatable. Use of the new acoustic impact-echo testing device is expected to enable more informed decisions about MR&R of concrete bridge decks.

  12. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Galantowicz, J. F.; Picton, J.; Root, B.

    2017-12-01

    Passive microwave remote sensing can provided a distinct perspective on flood events by virtue of wide sensor fields of view, frequent observations from multiple satellites, and sensitivity through clouds and vegetation. During Hurricanes Harvey and Irma, we used AMSR2 (Advanced Microwave Scanning Radiometer 2, JAXA) data to map flood extents starting from the first post-storm rain-free sensor passes. Our standard flood mapping algorithm (FloodScan) derives flooded fraction from 22-km microwave data (AMSR2 or NASA's GMI) in near real time and downscales it to 90-m resolution using a database built from topography, hydrology, and Global Surface Water Explorer data and normalized to microwave data footprint shapes. During Harvey and Irma we tested experimental versions of the algorithm designed to map the maximum post-storm flood extent rapidly and made a variety of map products available immediately for use in storm monitoring and response. The maps have several unique features including spanning the entire storm-affected area and providing multiple post-storm updates as flood water shifted and receded. From the daily maps we derived secondary products such as flood duration, maximum flood extent (Figure 1), and flood depth. In this presentation, we describe flood extent evolution, maximum extent, and local details as detected by the FloodScan algorithm in the wake of Harvey and Irma. We compare FloodScan results to other available flood mapping resources, note observed shortcomings, and describe improvements made in response. We also discuss how best-estimate maps could be updated in near real time by merging FloodScan products and data from other remote sensing systems and hydrological models.

  13. Registering Ground and Satellite Imagery for Visual Localization

    DTIC Science & Technology

    2012-08-01

    reckoning, inertial, stereo, light detection and ranging ( LIDAR ), cellular radio, and visual. As no sensor or algorithm provides perfect localization in...by metric localization approaches to confine the region of a map that needs to be searched. Simultaneous Localization and Mapping ( SLAM ) (5, 6), using...estimate the metric location of the camera. Se et al. (7) use SIFT features for both appearance-based global localization and incremental 3D SLAM . Johns and

  14. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  15. White blood cell segmentation by circle detection using electromagnetism-like optimization.

    PubMed

    Cuevas, Erik; Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo

    2013-01-01

    Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.

  16. White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization

    PubMed Central

    Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo

    2013-01-01

    Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability. PMID:23476713

  17. Automated mapping of burned areas in semi-arid ecosystems using modis time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, L. A.; Blanco, P. D.; del Valle, H. F.; Metternicht, G. I.; Sione, W. F.

    2015-04-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Standard satellite burned area and active fire products derived from the 500-m MODIS and SPOT are avail - able to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applica - tions. Consequently, we propose a novel algorithm for automated identification and mapping of burned areas at regional scale in semi-arid shrublands. The algorithm uses a set of the Normalized Burned Ratio Index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. The correlation between the size of burnt areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01 - 0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  18. A median filter approach for correcting errors in a vector field

    NASA Technical Reports Server (NTRS)

    Schultz, H.

    1985-01-01

    Techniques are presented for detecting and correcting errors in a vector field. These methods employ median filters which are frequently used in image processing to enhance edges and remove noise. A detailed example is given for wind field maps produced by a spaceborne scatterometer. The error detection and replacement algorithm was tested with simulation data from the NASA Scatterometer (NSCAT) project.

  19. Techniques for automatic large scale change analysis of temporal multispectral imagery

    NASA Astrophysics Data System (ADS)

    Mercovich, Ryan A.

    Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst's job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change.

  20. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.

  1. Ultrahigh resolution optical coherence tomography for quantitative topographic mapping of retinal and intraretinal architectural morphology

    NASA Astrophysics Data System (ADS)

    Ko, Tony H.; Hartl, Ingmar; Drexler, Wolfgang; Ghanta, Ravi K.; Fujimoto, James G.

    2002-06-01

    Quantitative, three-dimensional mapping of retinal architectural morphology was achieved using an ultrahigh resolution ophthalmic OCT system. This OCT system utilizes a broad bandwidth titanium-sapphire laser light source generating bandwidths of up to 300 nm near 800 nm center wavelength. The system enables real-time cross-sectional imaging of the retina with ~3 micrometers axial resolution. The macula and the papillomacular axis of a normal human subject were systematically mapped using a series of linear scans. Edge detection and segmentation algorithms were developed to quantify retinal and intraretinal thicknesses. Topographic mapping of the total retinal thickness and the total ganglion cell/inner plexiform layer thickness was achieved around the macula. A topographic mapping quantifying the progressive thickening of the nerve fiber layer (NFL) nasally approaching the optic disk was also demonstrated. The ability to create three-dimensional topographic mapping of retinal architectural morphology at ~3 micrometers axial resolution will be relevant for the diagnosis of many retinal diseases. The topographic quantification of these structures can serve as a powerful tool for developing algorithms and clinical scanning protocols for the screening and staging of ophthalmic diseases such as glaucoma.

  2. An experimental comparison of standard stereo matching algorithms applied to cloud top height estimation from satellite IR images

    NASA Astrophysics Data System (ADS)

    Anzalone, Anna; Isgrò, Francesco

    2016-10-01

    The JEM-EUSO (Japanese Experiment Module-Extreme Universe Space Observatory) telescope will measure Ultra High Energy Cosmic Ray properties by detecting the UV fluorescent light generated in the interaction between cosmic rays and the atmosphere. Cloud information is crucial for a proper interpretation of these data. The problem of recovering the cloud-top height from satellite images in infrared has struck some attention over the last few decades, as a valuable tool for the atmospheric monitoring. A number of radiative methods do exist, like C02 slicing and Split Window algorithms, using one or more infrared bands. A different way to tackle the problem is, when possible, to exploit the availability of multiple views, and recover the cloud top height through stereo imaging and triangulation. A crucial step in the 3D reconstruction is the process that attempts to match a characteristic point or features selected in one image, with one of those detected in the second image. In this article the performance of a group matching algorithms that include both area-based and global techniques, has been tested. They are applied to stereo pairs of satellite IR images with the final aim of evaluating the cloud top height. Cloudy images from SEVIRI on the geostationary Meteosat Second Generation 9 and 10 (MSG-2, MSG-3) have been selected. After having applied to the cloudy scenes the algorithms for stereo matching, the outcoming maps of disparity are transformed in depth maps according to the geometry of the reference data system. As ground truth we have used the height maps provided by the database of MODIS (Moderate Resolution Imaging Spectroradiometer) on-board Terra/Aqua polar satellites, that contains images quasi-synchronous to the imaging provided by MSG.

  3. Feature detection on 3D images of dental imprints

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Laurendeau, Denis

    1994-09-01

    A computer vision approach for the extraction of feature points on 3D images of dental imprints is presented. The position of feature points are needed for the measurement of a set of parameters for automatic diagnosis of malocclusion problems in orthodontics. The system for the acquisition of the 3D profile of the imprint, the procedure for the detection of the interstices between teeth, and the approach for the identification of the type of tooth are described, as well as the algorithm for the reconstruction of the surface of each type of tooth. A new approach for the detection of feature points, called the watershed algorithm, is described in detail. The algorithm is a two-stage procedure which tracks the position of local minima at four different scales and produces a final map of the position of the minima. Experimental results of the application of the watershed algorithm on actual 3D images of dental imprints are presented for molars, premolars and canines. The segmentation approach for the analysis of the shape of incisors is also described in detail.

  4. Tracking Subpixel Targets with Critically Sampled Optical Sensors

    DTIC Science & Technology

    2012-09-01

    5 [32]. The Viterbi algorithm is a dynamic programming method for calculating the MAP in O(tn2) time . The most common use of this algorithm is in the... method to detect subpixel point targets using the sensor’s PSF as an identifying characteristic. Using matched filtering theory, a measure is defined to...ocean surface beneath the cloud will have a different distribution. While the basic methods will adapt to changes in cloud cover over time , it is also

  5. Modeling of light distribution in the brain for topographical imaging

    NASA Astrophysics Data System (ADS)

    Okada, Eiji; Hayashi, Toshiyuki; Kawaguchi, Hiroshi

    2004-07-01

    Multi-channel optical imaging system can obtain a topographical distribution of the activated region in the brain cortex by a simple mapping algorithm. Near-infrared light is strongly scattered in the head and the volume of tissue that contributes to the change in the optical signal detected with source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. We report theoretical investigations on the spatial resolution of the topographic imaging of the brain activity. The head model for the theoretical study consists of five layers that imitate the scalp, skull, subarachnoid space, gray matter and white matter. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The source-detector pairs are one dimensionally arranged on the surface of the model and the distance between the adjoining source-detector pairs are varied from 4 mm to 32 mm. The change in detected intensity caused by the absorption change is obtained by Monte Carlo simulation. The position of absorption change is reconstructed by the conventional mapping algorithm and the reconstruction algorithm using the spatial sensitivity profiles. We discuss the effective interval between the source-detector pairs and the choice of reconstruction algorithms to improve the topographic images of brain activity.

  6. Neural mechanisms underlying sensitivity to reverse-phi motion in the fly

    PubMed Central

    Meier, Matthias; Serbe, Etienne; Eichner, Hubert; Borst, Alexander

    2017-01-01

    Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics. PMID:29261684

  7. Neural mechanisms underlying sensitivity to reverse-phi motion in the fly.

    PubMed

    Leonhardt, Aljoscha; Meier, Matthias; Serbe, Etienne; Eichner, Hubert; Borst, Alexander

    2017-01-01

    Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics.

  8. Volumetric brain tumour detection from MRI using visual saliency.

    PubMed

    Mitra, Somosmita; Banerjee, Subhashis; Hayashi, Yoichi

    2017-01-01

    Medical image processing has become a major player in the world of automatic tumour region detection and is tantamount to the incipient stages of computer aided design. Saliency detection is a crucial application of medical image processing, and serves in its potential aid to medical practitioners by making the affected area stand out in the foreground from the rest of the background image. The algorithm developed here is a new approach to the detection of saliency in a three dimensional multi channel MR image sequence for the glioblastoma multiforme (a form of malignant brain tumour). First we enhance the three channels, FLAIR (Fluid Attenuated Inversion Recovery), T2 and T1C (contrast enhanced with gadolinium) to generate a pseudo coloured RGB image. This is then converted to the CIE L*a*b* color space. Processing on cubes of sizes k = 4, 8, 16, the L*a*b* 3D image is then compressed into volumetric units; each representing the neighbourhood information of the surrounding 64 voxels for k = 4, 512 voxels for k = 8 and 4096 voxels for k = 16, respectively. The spatial distance of these voxels are then compared along the three major axes to generate the novel 3D saliency map of a 3D image, which unambiguously highlights the tumour region. The algorithm operates along the three major axes to maximise the computation efficiency while minimising loss of valuable 3D information. Thus the 3D multichannel MR image saliency detection algorithm is useful in generating a uniform and logistically correct 3D saliency map with pragmatic applicability in Computer Aided Detection (CADe). Assignment of uniform importance to all three axes proves to be an important factor in volumetric processing, which helps in noise reduction and reduces the possibility of compromising essential information. The effectiveness of the algorithm was evaluated over the BRATS MICCAI 2015 dataset having 274 glioma cases, consisting both of high grade and low grade GBM. The results were compared with that of the 2D saliency detection algorithm taken over the entire sequence of brain data. For all comparisons, the Area Under the receiver operator characteristic (ROC) Curve (AUC) has been found to be more than 0.99 ± 0.01 over various tumour types, structures and locations.

  9. Automatic Polyp Detection via A Novel Unified Bottom-up and Top-down Saliency Approach.

    PubMed

    Yuan, Yixuan; Li, Dengwang; Meng, Max Q-H

    2017-07-31

    In this paper, we propose a novel automatic computer-aided method to detect polyps for colonoscopy videos. To find the perceptually and semantically meaningful salient polyp regions, we first segment images into multilevel superpixels. Each level corresponds to different sizes of superpixels. Rather than adopting hand-designed features to describe these superpixels in images, we employ sparse autoencoder (SAE) to learn discriminative features in an unsupervised way. Then a novel unified bottom-up and top-down saliency method is proposed to detect polyps. In the first stage, we propose a weak bottom-up (WBU) saliency map by fusing the contrast based saliency and object-center based saliency together. The contrast based saliency map highlights image parts that show different appearances compared with surrounding areas while the object-center based saliency map emphasizes the center of the salient object. In the second stage, a strong classifier with Multiple Kernel Boosting (MKB) is learned to calculate the strong top-down (STD) saliency map based on samples directly from the obtained multi-level WBU saliency maps. We finally integrate these two stage saliency maps from all levels together to highlight polyps. Experiment results achieve 0.818 recall for saliency calculation, validating the effectiveness of our method. Extensive experiments on public polyp datasets demonstrate that the proposed saliency algorithm performs favorably against state-of-the-art saliency methods to detect polyps.

  10. Approach for scene reconstruction from the analysis of a triplet of still images

    NASA Astrophysics Data System (ADS)

    Lechat, Patrick; Le Mestre, Gwenaelle; Pele, Danielle

    1997-03-01

    Three-dimensional modeling of a scene from the automatic analysis of 2D image sequences is a big challenge for future interactive audiovisual services based on 3D content manipulation such as virtual vests, 3D teleconferencing and interactive television. We propose a scheme that computes 3D objects models from stereo analysis of image triplets shot by calibrated cameras. After matching the different views with a correlation based algorithm, a depth map referring to a given view is built by using a fusion criterion taking into account depth coherency, visibility constraints and correlation scores. Because luminance segmentation helps to compute accurate object borders and to detect and improve the unreliable depth values, a two steps segmentation algorithm using both depth map and graylevel image is applied to extract the objects masks. First an edge detection segments the luminance image in regions and a multimodal thresholding method selects depth classes from the depth map. Then the regions are merged and labelled with the different depth classes numbers by using a coherence test on depth values according to the rate of reliable and dominant depth values and the size of the regions. The structures of the segmented objects are obtained with a constrained Delaunay triangulation followed by a refining stage. Finally, texture mapping is performed using open inventor or VRML1.0 tools.

  11. Principal curve detection in complicated graph images

    NASA Astrophysics Data System (ADS)

    Liu, Yuncai; Huang, Thomas S.

    2001-09-01

    Finding principal curves in an image is an important low level processing in computer vision and pattern recognition. Principal curves are those curves in an image that represent boundaries or contours of objects of interest. In general, a principal curve should be smooth with certain length constraint and allow either smooth or sharp turning. In this paper, we present a method that can efficiently detect principal curves in complicated map images. For a given feature image, obtained from edge detection of an intensity image or thinning operation of a pictorial map image, the feature image is first converted to a graph representation. In graph image domain, the operation of principal curve detection is performed to identify useful image features. The shortest path and directional deviation schemes are used in our algorithm os principal verve detection, which is proven to be very efficient working with real graph images.

  12. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects.

    PubMed

    Kook, Michael S; Cho, Hyun-soo; Seong, Mincheol; Choi, Jaewan

    2005-11-01

    To evaluate the ability of scanning laser polarimetry parameters and a novel deviation map algorithm to discriminate between healthy and early glaucomatous eyes with localized visual field (VF) defects confined to one hemifield. Prospective case-control study. Seventy glaucomatous eyes with localized VF defects and 66 normal controls. A Humphrey field analyzer 24-2 full-threshold test and scanning laser polarimetry with variable corneal compensation were used. We assessed the sensitivity and specificity of scanning laser polarimetry parameters, sensitivity and cutoff values for scanning laser polarimetry deviation map algorithms at different specificity values (80%, 90%, and 95%) in the detection of glaucoma, and correlations between the algorithms of scanning laser polarimetry and of the pattern deviation derived from Humphrey field analyzer testing. There were significant differences between the glaucoma group and normal subjects in the mean parametric values of the temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and TSNIT standard deviation (SD) (P<0.05). The sensitivity and specificity of each scanning laser polarimetry variable was as follows: TSNIT, 44.3% (95% confidence interval [CI], 39.8%-49.8%) and 100% (95.4%-100%); superior average, 30% (25.5%-34.5%) and 97% (93.5%-100%); inferior average, 45.7% (42.2%-49.2%) and 100% (95.8%-100%); and TSNIT SD, 30% (25.9%-34.1%) and 97% (93.2%-100%), respectively (when abnormal was defined as P<0.05). Based on nerve fiber indicator cutoff values of > or =30 and > or =51 to indicate glaucoma, sensitivities were 54.3% (50.1%-58.5%) and 10% (6.4%-13.6%), and specificities were 97% (93.2%-100%) and 100% (95.8%-100%), respectively. The range of areas under the receiver operating characteristic curves using the scanning laser polarimetry deviation map algorithm was 0.790 to 0.879. Overall sensitivities combining each probability scale and severity score at 80%, 90%, and 95% specificities were 90.0% (95% CI, 86.4%-93.6%), 71.4% (67.4%-75.4%), and 60.0% (56.2%-63.8%), respectively. There was a statistically significant correlation between the scanning laser polarimetry severity score and the VF severity score (R2 = 0.360, P<0.001). Scanning laser polarimetry parameters may not be sufficiently sensitive to detect glaucomatous patients with localized VF damage. Our algorithm using the scanning laser polarimetry deviation map may enhance the understanding of scanning laser polarimetry printouts in terms of the locality, deviation size, and severity of localized retinal nerve fiber layer defects in eyes with localized VF loss.

  13. Global detection of large lunar craters based on the CE-1 digital elevation model

    NASA Astrophysics Data System (ADS)

    Luo, Lei; Mu, Lingli; Wang, Xinyuan; Li, Chao; Ji, Wei; Zhao, Jinjin; Cai, Heng

    2013-12-01

    Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detection algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ⩾10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.

  14. Real-time moving objects detection and tracking from airborne infrared camera

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2017-10-01

    Detecting and tracking moving objects in real-time from an airborne infrared (IR) camera offers interesting possibilities in video surveillance, remote sensing and computer vision applications, such as monitoring large areas simultaneously, quickly changing the point of view on the scene and pursuing objects of interest. To fully exploit such a potential, versatile solutions are needed, but, in the literature, the majority of them works only under specific conditions about the considered scenario, the characteristics of the moving objects or the aircraft movements. In order to overcome these limitations, we propose a novel approach to the problem, based on the use of a cheap inertial navigation system (INS), mounted on the aircraft. To exploit jointly the information contained in the acquired video sequence and the data provided by the INS, a specific detection and tracking algorithm has been developed. It consists of three main stages performed iteratively on each acquired frame. The detection stage, in which a coarse detection map is computed, using a local statistic both fast to calculate and robust to noise and self-deletion of the targeted objects. The registration stage, in which the position of the detected objects is coherently reported on a common reference frame, by exploiting the INS data. The tracking stage, in which the steady objects are rejected, the moving objects are tracked, and an estimation of their future position is computed, to be used in the subsequent iteration. The algorithm has been tested on a large dataset of simulated IR video sequences, recreating different environments and different movements of the aircraft. Promising results have been obtained, both in terms of detection and false alarm rate, and in terms of accuracy in the estimation of position and velocity of the objects. In addition, for each frame, the detection and tracking map has been generated by the algorithm, before the acquisition of the subsequent frame, proving its capability to work in real-time.

  15. Implementation in an FPGA circuit of Edge detection algorithm based on the Discrete Wavelet Transforms

    NASA Astrophysics Data System (ADS)

    Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia

    2017-07-01

    The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.

  16. Anomaly clustering in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Doster, Timothy J.; Ross, David S.; Messinger, David W.; Basener, William F.

    2009-05-01

    The topological anomaly detection algorithm (TAD) differs from other anomaly detection algorithms in that it uses a topological/graph-theoretic model for the image background instead of modeling the image with a Gaussian normal distribution. In the construction of the model, TAD produces a hard threshold separating anomalous pixels from background in the image. We build on this feature of TAD by extending the algorithm so that it gives a measure of the number of anomalous objects, rather than the number of anomalous pixels, in a hyperspectral image. This is done by identifying, and integrating, clusters of anomalous pixels via a graph theoretical method combining spatial and spectral information. The method is applied to a cluttered HyMap image and combines small groups of pixels containing like materials, such as those corresponding to rooftops and cars, into individual clusters. This improves visualization and interpretation of objects.

  17. State-of-the-Art Fusion-Finder Algorithms Sensitivity and Specificity

    PubMed Central

    Carrara, Matteo; Beccuti, Marco; Lazzarato, Fulvio; Cavallo, Federica; Cordero, Francesca; Donatelli, Susanna; Calogero, Raffaele A.

    2013-01-01

    Background. Gene fusions arising from chromosomal translocations have been implicated in cancer. RNA-seq has the potential to discover such rearrangements generating functional proteins (chimera/fusion). Recently, many methods for chimeras detection have been published. However, specificity and sensitivity of those tools were not extensively investigated in a comparative way. Results. We tested eight fusion-detection tools (FusionHunter, FusionMap, FusionFinder, MapSplice, deFuse, Bellerophontes, ChimeraScan, and TopHat-fusion) to detect fusion events using synthetic and real datasets encompassing chimeras. The comparison analysis run only on synthetic data could generate misleading results since we found no counterpart on real dataset. Furthermore, most tools report a very high number of false positive chimeras. In particular, the most sensitive tool, ChimeraScan, reports a large number of false positives that we were able to significantly reduce by devising and applying two filters to remove fusions not supported by fusion junction-spanning reads or encompassing large intronic regions. Conclusions. The discordant results obtained using synthetic and real datasets suggest that synthetic datasets encompassing fusion events may not fully catch the complexity of RNA-seq experiment. Moreover, fusion detection tools are still limited in sensitivity or specificity; thus, there is space for further improvement in the fusion-finder algorithms. PMID:23555082

  18. Remote logo detection using angle-distance histograms

    NASA Astrophysics Data System (ADS)

    Youn, Sungwook; Ok, Jiheon; Baek, Sangwook; Woo, Seongyoun; Lee, Chulhee

    2016-05-01

    Among all the various computer vision applications, automatic logo recognition has drawn great interest from industry as well as various academic institutions. In this paper, we propose an angle-distance map, which we used to develop a robust logo detection algorithm. The proposed angle-distance histogram is invariant against scale and rotation. The proposed method first used shape information and color characteristics to find the candidate regions and then applied the angle-distance histogram. Experiments show that the proposed method detected logos of various sizes and orientations.

  19. Mathematical models application for mapping soils spatial distribution on the example of the farm from the North of Udmurt Republic of Russia

    NASA Astrophysics Data System (ADS)

    Dokuchaev, P. M.; Meshalkina, J. L.; Yaroslavtsev, A. M.

    2018-01-01

    Comparative analysis of soils geospatial modeling using multinomial logistic regression, decision trees, random forest, regression trees and support vector machines algorithms was conducted. The visual interpretation of the digital maps obtained and their comparison with the existing map, as well as the quantitative assessment of the individual soil groups detection overall accuracy and of the models kappa showed that multiple logistic regression, support vector method, and random forest models application with spatial prediction of the conditional soil groups distribution can be reliably used for mapping of the study area. It has shown the most accurate detection for sod-podzolics soils (Phaeozems Albic) lightly eroded and moderately eroded soils. In second place, according to the mean overall accuracy of the prediction, there are sod-podzolics soils - non-eroded and warp one, as well as sod-gley soils (Umbrisols Gleyic) and alluvial soils (Fluvisols Dystric, Umbric). Heavy eroded sod-podzolics and gray forest soils (Phaeozems Albic) were detected by methods of automatic classification worst of all.

  20. Change Detection of Remote Sensing Images by Dt-Cwt and Mrf

    NASA Astrophysics Data System (ADS)

    Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.

    2017-05-01

    Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.

  1. Semiautomated tremor detection using a combined cross-correlation and neural network approach

    USGS Publications Warehouse

    Horstmann, Tobias; Harrington, Rebecca M.; Cochran, Elizabeth S.

    2013-01-01

    Despite observations of tectonic tremor in many locations around the globe, the emergent phase arrivals, low‒amplitude waveforms, and variable event durations make automatic detection a nontrivial task. In this study, we employ a new method to identify tremor in large data sets using a semiautomated technique. The method first reduces the data volume with an envelope cross‒correlation technique, followed by a Self‒Organizing Map (SOM) algorithm to identify and classify event types. The method detects tremor in an automated fashion after calibrating for a specific data set, hence we refer to it as being “semiautomated”. We apply the semiautomated detection algorithm to a newly acquired data set of waveforms from a temporary deployment of 13 seismometers near Cholame, California, from May 2010 to July 2011. We manually identify tremor events in a 3 week long test data set and compare to the SOM output and find a detection accuracy of 79.5%. Detection accuracy improves with increasing signal‒to‒noise ratios and number of available stations. We find detection completeness of 96% for tremor events with signal‒to‒noise ratios above 3 and optimal results when data from at least 10 stations are available. We compare the SOM algorithm to the envelope correlation method of Wech and Creager and find the SOM performs significantly better, at least for the data set examined here. Using the SOM algorithm, we detect 2606 tremor events with a cumulative signal duration of nearly 55 h during the 13 month deployment. Overall, the SOM algorithm is shown to be a flexible new method that utilizes characteristics of the waveforms to identify tremor from noise or other seismic signals.

  2. Semiautomated tremor detection using a combined cross-correlation and neural network approach

    NASA Astrophysics Data System (ADS)

    Horstmann, T.; Harrington, R. M.; Cochran, E. S.

    2013-09-01

    Despite observations of tectonic tremor in many locations around the globe, the emergent phase arrivals, low-amplitude waveforms, and variable event durations make automatic detection a nontrivial task. In this study, we employ a new method to identify tremor in large data sets using a semiautomated technique. The method first reduces the data volume with an envelope cross-correlation technique, followed by a Self-Organizing Map (SOM) algorithm to identify and classify event types. The method detects tremor in an automated fashion after calibrating for a specific data set, hence we refer to it as being "semiautomated". We apply the semiautomated detection algorithm to a newly acquired data set of waveforms from a temporary deployment of 13 seismometers near Cholame, California, from May 2010 to July 2011. We manually identify tremor events in a 3 week long test data set and compare to the SOM output and find a detection accuracy of 79.5%. Detection accuracy improves with increasing signal-to-noise ratios and number of available stations. We find detection completeness of 96% for tremor events with signal-to-noise ratios above 3 and optimal results when data from at least 10 stations are available. We compare the SOM algorithm to the envelope correlation method of Wech and Creager and find the SOM performs significantly better, at least for the data set examined here. Using the SOM algorithm, we detect 2606 tremor events with a cumulative signal duration of nearly 55 h during the 13 month deployment. Overall, the SOM algorithm is shown to be a flexible new method that utilizes characteristics of the waveforms to identify tremor from noise or other seismic signals.

  3. Real-time detection of small and dim moving objects in IR video sequences using a robust background estimator and a noise-adaptive double thresholding

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2016-10-01

    We developed an algorithm for automatically detecting small and poorly contrasted (dim) moving objects in real-time, within video sequences acquired through a steady infrared camera. The algorithm is suitable for different situations since it is independent of the background characteristics and of changes in illumination. Unlike other solutions, small objects of any size (up to single-pixel), either hotter or colder than the background, can be successfully detected. The algorithm is based on accurately estimating the background at the pixel level and then rejecting it. A novel approach permits background estimation to be robust to changes in the scene illumination and to noise, and not to be biased by the transit of moving objects. Care was taken in avoiding computationally costly procedures, in order to ensure the real-time performance even using low-cost hardware. The algorithm was tested on a dataset of 12 video sequences acquired in different conditions, providing promising results in terms of detection rate and false alarm rate, independently of background and objects characteristics. In addition, the detection map was produced frame by frame in real-time, using cheap commercial hardware. The algorithm is particularly suitable for applications in the fields of video-surveillance and computer vision. Its reliability and speed permit it to be used also in critical situations, like in search and rescue, defence and disaster monitoring.

  4. Weighted community detection and data clustering using message passing

    NASA Astrophysics Data System (ADS)

    Shi, Cheng; Liu, Yanchen; Zhang, Pan

    2018-03-01

    Grouping objects into clusters based on the similarities or weights between them is one of the most important problems in science and engineering. In this work, by extending message-passing algorithms and spectral algorithms proposed for an unweighted community detection problem, we develop a non-parametric method based on statistical physics, by mapping the problem to the Potts model at the critical temperature of spin-glass transition and applying belief propagation to solve the marginals corresponding to the Boltzmann distribution. Our algorithm is robust to over-fitting and gives a principled way to determine whether there are significant clusters in the data and how many clusters there are. We apply our method to different clustering tasks. In the community detection problem in weighted and directed networks, we show that our algorithm significantly outperforms existing algorithms. In the clustering problem, where the data were generated by mixture models in the sparse regime, we show that our method works all the way down to the theoretical limit of detectability and gives accuracy very close to that of the optimal Bayesian inference. In the semi-supervised clustering problem, our method only needs several labels to work perfectly in classic datasets. Finally, we further develop Thouless-Anderson-Palmer equations which heavily reduce the computation complexity in dense networks but give almost the same performance as belief propagation.

  5. On Feature Extraction from Large Scale Linear LiDAR Data

    NASA Astrophysics Data System (ADS)

    Acharjee, Partha Pratim

    Airborne light detection and ranging (LiDAR) can generate co-registered elevation and intensity map over large terrain. The co-registered 3D map and intensity information can be used efficiently for different feature extraction application. In this dissertation, we developed two algorithms for feature extraction, and usages of features for practical applications. One of the developed algorithms can map still and flowing waterbody features, and another one can extract building feature and estimate solar potential on rooftops and facades. Remote sensing capabilities, distinguishing characteristics of laser returns from water surface and specific data collection procedures provide LiDAR data an edge in this application domain. Furthermore, water surface mapping solutions must work on extremely large datasets, from a thousand square miles, to hundreds of thousands of square miles. National and state-wide map generation/upgradation and hydro-flattening of LiDAR data for many other applications are two leading needs of water surface mapping. These call for as much automation as possible. Researchers have developed many semi-automated algorithms using multiple semi-automated tools and human interventions. This reported work describes a consolidated algorithm and toolbox developed for large scale, automated water surface mapping. Geometric features such as flatness of water surface, higher elevation change in water-land interface and, optical properties such as dropouts caused by specular reflection, bimodal intensity distributions were some of the linear LiDAR features exploited for water surface mapping. Large-scale data handling capabilities are incorporated by automated and intelligent windowing, by resolving boundary issues and integrating all results to a single output. This whole algorithm is developed as an ArcGIS toolbox using Python libraries. Testing and validation are performed on a large datasets to determine the effectiveness of the toolbox and results are presented. Significant power demand is located in urban areas, where, theoretically, a large amount of building surface area is also available for solar panel installation. Therefore, property owners and power generation companies can benefit from a citywide solar potential map, which can provide available estimated annual solar energy at a given location. An efficient solar potential measurement is a prerequisite for an effective solar energy system in an urban area. In addition, the solar potential calculation from rooftops and building facades could open up a wide variety of options for solar panel installations. However, complex urban scenes make it hard to estimate the solar potential, partly because of shadows cast by the buildings. LiDAR-based 3D city models could possibly be the right technology for solar potential mapping. Although, most of the current LiDAR-based local solar potential assessment algorithms mainly address rooftop potential calculation, whereas building facades can contribute a significant amount of viable surface area for solar panel installation. In this paper, we introduce a new algorithm to calculate solar potential of both rooftop and building facades. Solar potential received by the rooftops and facades over the year are also investigated in the test area.

  6. Detection and Tracking Based on a Dynamical Hierarchical Occupancy Map in Agent-Based Simulations

    DTIC Science & Technology

    2008-09-01

    describes various techniques for targeting with probabilty reasoning. Advantages and disadvantages of the different methods will be discussed...Psum. Such an algorithm could decrease the performance of the prototype itself and therefore was not considered. Probabilty over time 0 0.2 0.4 0.6

  7. Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor

    PubMed Central

    Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J.

    2015-01-01

    The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions. PMID:25803707

  8. Global coverage measurement planning strategies for mobile robots equipped with a remote gas sensor.

    PubMed

    Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J

    2015-03-20

    The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.

  9. Investigation of methods to search for the boundaries on the image and their use on lung hardware of methods finding saliency map

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Marchuk, V. I.; Fedosov, V. P.; Stradanchenko, S. G.; Ruslyakov, D. V.

    2015-05-01

    This work aimed to study computationally simple method of saliency map calculation. Research in this field received increasing interest for the use of complex techniques in portable devices. A saliency map allows increasing the speed of many subsequent algorithms and reducing the computational complexity. The proposed method of saliency map detection based on both image and frequency space analysis. Several examples of test image from the Kodak dataset with different detalisation considered in this paper demonstrate the effectiveness of the proposed approach. We present experiments which show that the proposed method providing better results than the framework Salience Toolbox in terms of accuracy and speed.

  10. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  11. Weather, Climate, and Society: New Demands on Science and Services

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A new algorithm has been constructed to estimate the path length of lightning channels for the purpose of improving the model predictions of lightning NOx in both regional air quality and global chemistry/climate models. This algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. Channel length distributions were also obtained for the different seasons.

  12. Sub-pixel mineral mapping using EO-1 Hyperion hyperspectral data

    NASA Astrophysics Data System (ADS)

    Kumar, C.; Shetty, A.; Raval, S.; Champatiray, P. K.; Sharma, R.

    2014-11-01

    This study describes the utility of Earth Observation (EO)-1 Hyperion data for sub-pixel mineral investigation using Mixture Tuned Target Constrained Interference Minimized Filter (MTTCIMF) algorithm in hostile mountainous terrain of Rajsamand district of Rajasthan, which hosts economic mineralization such as lead, zinc, and copper etc. The study encompasses pre-processing, data reduction, Pixel Purity Index (PPI) and endmember extraction from reflectance image of surface minerals such as illite, montmorillonite, phlogopite, dolomite and chlorite. These endmembers were then assessed with USGS mineral spectral library and lab spectra of rock samples collected from field for spectral inspection. Subsequently, MTTCIMF algorithm was implemented on processed image to obtain mineral distribution map of each detected mineral. A virtual verification method has been adopted to evaluate the classified image, which uses directly image information to evaluate the result and confirm the overall accuracy and kappa coefficient of 68 % and 0.6 respectively. The sub-pixel level mineral information with reasonable accuracy could be a valuable guide to geological and exploration community for expensive ground and/or lab experiments to discover economic deposits. Thus, the study demonstrates the feasibility of Hyperion data for sub-pixel mineral mapping using MTTCIMF algorithm with cost and time effective approach.

  13. Comparative Analysis of Daytime Fire Detection Algorithms, Using AVHRR Data for the 1995 Fire Season in Canda: Perspective for MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Y. J.; Fraser, R. H.; Jin, J.-Z.; Park, W. M.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.

  14. Fast Human Detection for Intelligent Monitoring Using Surveillance Visible Sensors

    PubMed Central

    Ko, Byoung Chul; Jeong, Mira; Nam, JaeYeal

    2014-01-01

    Human detection using visible surveillance sensors is an important and challenging work for intruder detection and safety management. The biggest barrier of real-time human detection is the computational time required for dense image scaling and scanning windows extracted from an entire image. This paper proposes fast human detection by selecting optimal levels of image scale using each level's adaptive region-of-interest (ROI). To estimate the image-scaling level, we generate a Hough windows map (HWM) and select a few optimal image scales based on the strength of the HWM and the divide-and-conquer algorithm. Furthermore, adaptive ROIs are arranged per image scale to provide a different search area. We employ a cascade random forests classifier to separate candidate windows into human and nonhuman classes. The proposed algorithm has been successfully applied to real-world surveillance video sequences, and its detection accuracy and computational speed show a better performance than those of other related methods. PMID:25393782

  15. Lost in Virtual Reality: Pathfinding Algorithms Detect Rock Fractures and Contacts in Point Clouds

    NASA Astrophysics Data System (ADS)

    Thiele, S.; Grose, L.; Micklethwaite, S.

    2016-12-01

    UAV-based photogrammetric and LiDAR techniques provide high resolution 3D point clouds and ortho-rectified photomontages that can capture surface geology in outstanding detail over wide areas. Automated and semi-automated methods are vital to extract full value from these data in practical time periods, though the nuances of geological structures and materials (natural variability in colour and geometry, soft and hard linkage, shadows and multiscale properties) make this a challenging task. We present a novel method for computer assisted trace detection in dense point clouds, using a lowest cost path solver to "follow" fracture traces and lithological contacts between user defined end points. This is achieved by defining a local neighbourhood network where each point in the cloud is linked to its neighbours, and then using a least-cost path algorithm to search this network and estimate the trace of the fracture or contact. A variety of different algorithms can then be applied to calculate the best fit plane, produce a fracture network, or map properties such as roughness, curvature and fracture intensity. Our prototype of this method (Fig. 1) suggests the technique is feasible and remarkably good at following traces under non-optimal conditions such as variable-shadow, partial occlusion and complex fracturing. Furthermore, if a fracture is initially mapped incorrectly, the user can easily provide further guidance by defining intermediate waypoints. Future development will include optimization of the algorithm to perform well on large point clouds and modifications that permit the detection of features such as step-overs. We also plan on implementing this approach in an interactive graphical user environment.

  16. Team VaCAS Design and Development of Cooperative UGV System

    DTIC Science & Technology

    2011-02-04

    Mapping ( SLAM ) [24]. Similar to such work, the technique to be used in the project will also (1) use the last reliably available data as the reference...Losada1, D., Matia1, F., Pedraza1, L., Jimenez A. and Galan, R., Consistency of SLAM -EKF Algorithms for Indoor Environments, Journal of Intelligent and...mounted on the UGV 1 include GPS for outdoor navigation, LiDAR for obstacle avoidance and mapping and camera for OOI detection and localization. UGVs 2

  17. Multiway spectral community detection in networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Newman, M. E. J.

    2015-11-01

    One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited, by and large, to the division of networks into only two or three communities, with divisions into more than three being achieved by repeated two-way division. Here we present a spectral algorithm that can directly divide a network into any number of communities. The algorithm makes use of a mapping from modularity maximization to a vector partitioning problem, combined with a fast heuristic for vector partitioning. We compare the performance of this spectral algorithm with previous approaches and find it to give superior results, particularly in cases where community sizes are unbalanced. We also give demonstrative applications of the algorithm to two real-world networks and find that it produces results in good agreement with expectations for the networks studied.

  18. The infrared video image pseudocolor processing system

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2003-11-01

    The infrared video image pseudo-color processing system, emphasizing on the algorithm and its implementation for measured object"s 2D temperature distribution using pseudo-color technology, is introduced in the paper. The data of measured object"s thermal image is the objective presentation of its surface temperature distribution, but the color has a close relationship with people"s subjective cognition. The so-called pseudo-color technology cross the bridge between subjectivity and objectivity, and represents the measured object"s temperature distribution in reason and at first hand. The algorithm of pseudo-color is based on the distance of IHS space. Thereby the definition of pseudo-color visual resolution is put forward. Both the software (which realize the map from the sample data to the color space) and the hardware (which carry out the conversion from the color space to palette by HDL) co-operate. Therefore the two levels map which is logic map and physical map respectively is presented. The system has been used abroad in failure diagnose of electric power devices, fire protection for lifesaving and even SARS detection in CHINA lately.

  19. A statistical model of false negative and false positive detection of phase singularities.

    PubMed

    Jacquemet, Vincent

    2017-10-01

    The complexity of cardiac fibrillation dynamics can be assessed by analyzing the distribution of phase singularities (PSs) observed using mapping systems. Interelectrode distance, however, limits the accuracy of PS detection. To investigate in a theoretical framework the PS false negative and false positive rates in relation to the characteristics of the mapping system and fibrillation dynamics, we propose a statistical model of phase maps with controllable number and locations of PSs. In this model, phase maps are generated from randomly distributed PSs with physiologically-plausible directions of rotation. Noise and distortion of the phase are added. PSs are detected using topological charge contour integrals on regular grids of varying resolutions. Over 100 × 10 6 realizations of the random field process are used to estimate average false negative and false positive rates using a Monte-Carlo approach. The false detection rates are shown to depend on the average distance between neighboring PSs expressed in units of interelectrode distance, following approximately a power law with exponents in the range of 1.14 to 2 for false negatives and around 2.8 for false positives. In the presence of noise or distortion of phase, false detection rates at high resolution tend to a non-zero noise-dependent lower bound. This model provides an easy-to-implement tool for benchmarking PS detection algorithms over a broad range of configurations with multiple PSs.

  20. Retrospective validation of the laparoscopic ICG SLN mapping in patients with grade 3 endometrial cancer.

    PubMed

    Papadia, Andrea; Gasparri, Maria Luisa; Radan, Anda P; Stämpfli, Chantal A L; Rau, Tilman T; Mueller, Michael D

    2018-04-24

    To evaluate the sensitivity, negative predictive value (NPV) and false-negative (FN) rate of the near infrared (NIR) indocyanine green (ICG) sentinel lymph node (SLN) mapping in patients with poorly differentiated endometrial cancer who have undergone a full pelvic and para-aortic lymphadenectomy after SLN mapping. We performed a retrospective analysis of patients with endometrial cancer undergoing a laparoscopic NIR-ICG SLN mapping followed by a systematic pelvic and para-aortic lymphadenectomy. Inclusion criteria were a grade 3 endometrial cancer or a high-risk histology (papillary serous, clear cell carcinoma, carcinosarcoma, and neuroendocrine carcinoma) and a completion pelvic and para-aortic lymphadenectomy to the renal vessels after SLN mapping. Overall and bilateral detection rates, sensitivity, NPV, and FN rates were calculated. From December 2012 until January 2017, 42 patients fulfilled inclusion criteria. Overall and bilateral detection rates were 100 and 90.5%, respectively. Overall, 23.8% of the patients had lymph node metastases. In one patient, despite negative bilateral pelvic SLNs, a metastatic non-SLN-isolated para-aortic metastasis was detected. This NSLN was clinically suspicious and sent to frozen section analysis during the surgery. FN rate, sensitivity, and NPV were 10, 90, and 97.1%, respectively. For the SLN mapping algorithm, FN rate, sensitivity, and NPV were 0, 100, and 100%, respectively. Laparoscopic NIR-ICG SLN mapping in high-risk endometrial cancer patients has acceptable sensitivity, FN rate, and NPV.

  1. Assessing the MODIS crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil.

    PubMed

    Gusso, Anibal; Arvor, Damien; Ducati, Jorge Ricardo; Veronez, Mauricio Roberto; da Silveira, Luiz Gonzaga

    2014-01-01

    Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R (2) = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state.

  2. Detection, Classification, and Density Estimation of Marine Mammals

    DTIC Science & Technology

    2012-10-01

    Energy and Environmental Readiness Division, Washington, D.C. DETECTION...was prepared for and funded by Chief of Naval Operations, Energy and Environmental Readiness Division, Washington DC. The report was prepared by...and classification, including improvements to the  Energy  Ratio Mapping Algorithm (ERMA) method for use on gliders and  its  extension  to  new

  3. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration.

    PubMed

    Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You

    2017-12-01

    The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

  4. The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Markiewicz, Jakub Stefan

    2016-06-01

    The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  5. A Method for Counting Moving People in Video Surveillance Videos

    NASA Astrophysics Data System (ADS)

    Conte, Donatello; Foggia, Pasquale; Percannella, Gennaro; Tufano, Francesco; Vento, Mario

    2010-12-01

    People counting is an important problem in video surveillance applications. This problem has been faced either by trying to detect people in the scene and then counting them or by establishing a mapping between some scene feature and the number of people (avoiding the complex detection problem). This paper presents a novel method, following this second approach, that is based on the use of SURF features and of an [InlineEquation not available: see fulltext.]-SVR regressor provide an estimate of this count. The algorithm takes specifically into account problems due to partial occlusions and to perspective. In the experimental evaluation, the proposed method has been compared with the algorithm by Albiol et al., winner of the PETS 2009 contest on people counting, using the same PETS 2009 database. The provided results confirm that the proposed method yields an improved accuracy, while retaining the robustness of Albiol's algorithm.

  6. Salient object detection: manifold-based similarity adaptation approach

    NASA Astrophysics Data System (ADS)

    Zhou, Jingbo; Ren, Yongfeng; Yan, Yunyang; Gao, Shangbing

    2014-11-01

    A saliency detection algorithm based on manifold-based similarity adaptation is proposed. The proposed algorithm is divided into three steps. First, we segment an input image into superpixels, which are represented as the nodes in a graph. Second, a new similarity measurement is used in the proposed algorithm. The weight matrix of the graph, which indicates the similarities between the nodes, uses a similarity-based method. It also captures the manifold structure of the image patches, in which the graph edges are determined in a data adaptive manner in terms of both similarity and manifold structure. Then, we use local reconstruction method as a diffusion method to obtain the saliency maps. The objective function in the proposed method is based on local reconstruction, with which estimated weights capture the manifold structure. Experiments on four bench-mark databases demonstrate the accuracy and robustness of the proposed method.

  7. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots.

    PubMed

    Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il Dan

    2016-03-01

    This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%.

  8. A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors

    PubMed Central

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng

    2017-01-01

    Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ-connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm. PMID:28587084

  9. A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors.

    PubMed

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng

    2017-05-25

    Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ -connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm.

  10. Efficient and Scalable Graph Similarity Joins in MapReduce

    PubMed Central

    Chen, Yifan; Zhang, Weiming; Tang, Jiuyang

    2014-01-01

    Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results. PMID:25121135

  11. Efficient and scalable graph similarity joins in MapReduce.

    PubMed

    Chen, Yifan; Zhao, Xiang; Xiao, Chuan; Zhang, Weiming; Tang, Jiuyang

    2014-01-01

    Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results.

  12. A Driving Cycle Detection Approach Using Map Service API

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lei; Gonder, Jeffrey D

    Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicatedmore » road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method's ability to detect vehicle mode accurately.« less

  13. Change detection and classification in brain MR images using change vector analysis.

    PubMed

    Simões, Rita; Slump, Cornelis

    2011-01-01

    The automatic detection of longitudinal changes in brain images is valuable in the assessment of disease evolution and treatment efficacy. Most existing change detection methods that are currently used in clinical research to monitor patients suffering from neurodegenerative diseases--such as Alzheimer's--focus on large-scale brain deformations. However, such patients often have other brain impairments, such as infarcts, white matter lesions and hemorrhages, which are typically overlooked by the deformation-based methods. Other unsupervised change detection algorithms have been proposed to detect tissue intensity changes. The outcome of these methods is typically a binary change map, which identifies changed brain regions. However, understanding what types of changes these regions underwent is likely to provide equally important information about lesion evolution. In this paper, we present an unsupervised 3D change detection method based on Change Vector Analysis. We compute and automatically threshold the Generalized Likelihood Ratio map to obtain a binary change map. Subsequently, we perform histogram-based clustering to classify the change vectors. We obtain a Kappa Index of 0.82 using various types of simulated lesions. The classification error is 2%. Finally, we are able to detect and discriminate both small changes and ventricle expansions in datasets from Mild Cognitive Impairment patients.

  14. Oriented Markov random field based dendritic spine segmentation for fluorescence microscopy images.

    PubMed

    Cheng, Jie; Zhou, Xiaobo; Miller, Eric L; Alvarez, Veronica A; Sabatini, Bernardo L; Wong, Stephen T C

    2010-10-01

    Dendritic spines have been shown to be closely related to various functional properties of the neuron. Usually dendritic spines are manually labeled to analyze their morphological changes, which is very time-consuming and susceptible to operator bias, even with the assistance of computers. To deal with these issues, several methods have been recently proposed to automatically detect and measure the dendritic spines with little human interaction. However, problems such as degraded detection performance for images with larger pixel size (e.g. 0.125 μm/pixel instead of 0.08 μm/pixel) still exist in these methods. Moreover, the shapes of detected spines are also distorted. For example, the "necks" of some spines are missed. Here we present an oriented Markov random field (OMRF) based algorithm which improves spine detection as well as their geometric characterization. We begin with the identification of a region of interest (ROI) containing all the dendrites and spines to be analyzed. For this purpose, we introduce an adaptive procedure for identifying the image background. Next, the OMRF model is discussed within a statistical framework and the segmentation is solved as a maximum a posteriori estimation (MAP) problem, whose optimal solution is found by a knowledge-guided iterative conditional mode (KICM) algorithm. Compared with the existing algorithms, the proposed algorithm not only provides a more accurate representation of the spine shape, but also improves the detection performance by more than 50% with regard to reducing both the misses and false detection.

  15. Determination of a Limited Scope Network's Lightning Detection Efficiency

    NASA Technical Reports Server (NTRS)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  16. Updating National Topographic Data Base Using Change Detection Methods

    NASA Astrophysics Data System (ADS)

    Keinan, E.; Felus, Y. A.; Tal, Y.; Zilberstien, O.; Elihai, Y.

    2016-06-01

    The traditional method for updating a topographic database on a national scale is a complex process that requires human resources, time and the development of specialized procedures. In many National Mapping and Cadaster Agencies (NMCA), the updating cycle takes a few years. Today, the reality is dynamic and the changes occur every day, therefore, the users expect that the existing database will portray the current reality. Global mapping projects which are based on community volunteers, such as OSM, update their database every day based on crowdsourcing. In order to fulfil user's requirements for rapid updating, a new methodology that maps major interest areas while preserving associated decoding information, should be developed. Until recently, automated processes did not yield satisfactory results, and a typically process included comparing images from different periods. The success rates in identifying the objects were low, and most were accompanied by a high percentage of false alarms. As a result, the automatic process required significant editorial work that made it uneconomical. In the recent years, the development of technologies in mapping, advancement in image processing algorithms and computer vision, together with the development of digital aerial cameras with NIR band and Very High Resolution satellites, allow the implementation of a cost effective automated process. The automatic process is based on high-resolution Digital Surface Model analysis, Multi Spectral (MS) classification, MS segmentation, object analysis and shape forming algorithms. This article reviews the results of a novel change detection methodology as a first step for updating NTDB in the Survey of Israel.

  17. Sparse Measurement Systems: Applications, Analysis, Algorithms and Design

    ERIC Educational Resources Information Center

    Narayanaswamy, Balakrishnan

    2011-01-01

    This thesis deals with "large-scale" detection problems that arise in many real world applications such as sensor networks, mapping with mobile robots and group testing for biological screening and drug discovery. These are problems where the values of a large number of inputs need to be inferred from noisy observations and where the…

  18. Mapping ephemeral stream networks in desert environments using very-high-spatial-resolution multispectral remote sensing

    DOE PAGES

    Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.; ...

    2016-03-26

    In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less

  19. Mapping ephemeral stream networks in desert environments using very-high-spatial-resolution multispectral remote sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.

    In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less

  20. Research on facial expression simulation based on depth image

    NASA Astrophysics Data System (ADS)

    Ding, Sha-sha; Duan, Jin; Zhao, Yi-wu; Xiao, Bo; Wang, Hao

    2017-11-01

    Nowadays, face expression simulation is widely used in film and television special effects, human-computer interaction and many other fields. Facial expression is captured by the device of Kinect camera .The method of AAM algorithm based on statistical information is employed to detect and track faces. The 2D regression algorithm is applied to align the feature points. Among them, facial feature points are detected automatically and 3D cartoon model feature points are signed artificially. The aligned feature points are mapped by keyframe techniques. In order to improve the animation effect, Non-feature points are interpolated based on empirical models. Under the constraint of Bézier curves we finish the mapping and interpolation. Thus the feature points on the cartoon face model can be driven if the facial expression varies. In this way the purpose of cartoon face expression simulation in real-time is came ture. The experiment result shows that the method proposed in this text can accurately simulate the facial expression. Finally, our method is compared with the previous method. Actual data prove that the implementation efficiency is greatly improved by our method.

  1. Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, Leonardo A.; Blanco, Paula D.; Valle, Héctor F. del; Metternicht, Graciela I.; Sione, Walter F.

    2015-06-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l'Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01-0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  2. People detection method using graphics processing units for a mobile robot with an omnidirectional camera

    NASA Astrophysics Data System (ADS)

    Kang, Sungil; Roh, Annah; Nam, Bodam; Hong, Hyunki

    2011-12-01

    This paper presents a novel vision system for people detection using an omnidirectional camera mounted on a mobile robot. In order to determine regions of interest (ROI), we compute a dense optical flow map using graphics processing units, which enable us to examine compliance with the ego-motion of the robot in a dynamic environment. Shape-based classification algorithms are employed to sort ROIs into human beings and nonhumans. The experimental results show that the proposed system detects people more precisely than previous methods.

  3. A new automatic SAR-based flood mapping application hosted on the European Space Agency's grid processing on demand fast access to imagery environment

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Chini, Marco; Matgen, Patrick; Giustarini, Laura

    2013-04-01

    There is a clear need for developing innovative processing chains based on earth observation (EO) data to generate products supporting emergency response and flood management at a global scale. Here an automatic flood mapping application is introduced. The latter is currently hosted on the Grid Processing on Demand (G-POD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver flooded areas using both recent and historical acquisitions of SAR data in an operational framework. It is worth mentioning that the method can be applied to both medium and high resolution SAR images. The flood mapping application consists of two main blocks: 1) A set of query tools for selecting the "crisis image" and the optimal corresponding pre-flood "reference image" from the G-POD archive. 2) An algorithm for extracting flooded areas using the previously selected "crisis image" and "reference image". The proposed method is a hybrid methodology, which combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. The method is based on the calibration of a statistical distribution of "open water" backscatter values inferred from SAR images of floods. Change detection with respect to a pre-flood reference image helps reducing over-detection of inundated areas. The algorithms are computationally efficient and operate with minimum data requirements, considering as input data a flood image and a reference image. Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate pre-flood reference image. Potential users will also be able to apply the implemented flood delineation algorithm. Case studies of several recent high magnitude flooding events (e.g. July 2007 Severn River flood, UK and March 2010 Red River flood, US) observed by high-resolution SAR sensors as well as airborne photography highlight advantages and limitations of the online application. A mid-term target is the exploitation of ESA SENTINEL 1 SAR data streams. In the long term it is foreseen to develop a potential extension of the application for systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis. On-going research activities investigate the usefulness of the method for mapping flood hazard at global scale using databases of historic SAR remote sensing-derived flood inundation maps.

  4. A Novel Color Image Encryption Algorithm Based on Quantum Chaos Sequence

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Jin, Cong

    2017-03-01

    In this paper, a novel algorithm of image encryption based on quantum chaotic is proposed. The keystreams are generated by the two-dimensional logistic map as initial conditions and parameters. And then general Arnold scrambling algorithm with keys is exploited to permute the pixels of color components. In diffusion process, a novel encryption algorithm, folding algorithm, is proposed to modify the value of diffused pixels. In order to get the high randomness and complexity, the two-dimensional logistic map and quantum chaotic map are coupled with nearest-neighboring coupled-map lattices. Theoretical analyses and computer simulations confirm that the proposed algorithm has high level of security.

  5. Compression of Flow Can Reveal Overlapping-Module Organization in Networks

    NASA Astrophysics Data System (ADS)

    Viamontes Esquivel, Alcides; Rosvall, Martin

    2011-10-01

    To better understand the organization of overlapping modules in large networks with respect to flow, we introduce the map equation for overlapping modules. In this information-theoretic framework, we use the correspondence between compression and regularity detection. The generalized map equation measures how well we can compress a description of flow in the network when we partition it into modules with possible overlaps. When we minimize the generalized map equation over overlapping network partitions, we detect modules that capture flow and determine which nodes at the boundaries between modules should be classified in multiple modules and to what degree. With a novel greedy-search algorithm, we find that some networks, for example, the neural network of the nematode Caenorhabditis elegans, are best described by modules dominated by hard boundaries, but that others, for example, the sparse European-roads network, have an organization of highly overlapping modules.

  6. Automated Plantation Mapping in Indonesia Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Karpatne, A.; Jia, X.; Khandelwal, A.; Kumar, V.

    2017-12-01

    Plantation mapping is critical for understanding and addressing deforestation, a key driver of climate change and ecosystem degradation. Unfortunately, most plantation maps are limited to small areas for specific years because they rely on visual inspection of imagery. In this work, we propose a data-driven approach which automatically generates yearly plantation maps for large regions using MODIS multi-spectral data. While traditional machine learning algorithms face manifold challenges in this task, e.g. imperfect training labels, spatio-temporal data heterogeneity, noisy and high-dimensional data, lack of evaluation data, etc., we introduce a novel deep learning-based framework that combines existing imperfect plantation products as training labels and models the spatio-temporal relationships of land covers. We also explores the post-processing steps based on Hidden Markov Model that further improve the detection accuracy. Then we conduct extensive evaluation of the generated plantation maps. Specifically, by randomly sampling and comparing with high-resolution Digital Globe imagery, we demonstrate that the generated plantation maps achieve both high precision and high recall. When compared with existing plantation mapping products, our detection can avoid both false positives and false negatives. Finally, we utilize the generated plantation maps in analyzing the relationship between forest fires and growth of plantations, which assists in better understanding the cause of deforestation in Indonesia.

  7. Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Woodcock, C. E.

    2012-12-01

    A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.

  8. Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.

    2007-01-01

    The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.

  9. The Goes-R Geostationary Lightning Mapper (GLM): Algorithm and Instrument Status

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2010-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.

  10. Text, photo, and line extraction in scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2012-07-01

    We propose a page layout analysis algorithm to classify a scanned document into different regions such as text, photo, or strong lines. The proposed scheme consists of five modules. The first module performs several image preprocessing techniques such as image scaling, filtering, color space conversion, and gamma correction to enhance the scanned image quality and reduce the computation time in later stages. Text detection is applied in the second module wherein wavelet transform and run-length encoding are employed to generate and validate text regions, respectively. The third module uses a Markov random field based block-wise segmentation that employs a basis vector projection technique with maximum a posteriori probability optimization to detect photo regions. In the fourth module, methods for edge detection, edge linking, line-segment fitting, and Hough transform are utilized to detect strong edges and lines. In the last module, the resultant text, photo, and edge maps are combined to generate a page layout map using K-Means clustering. The proposed algorithm has been tested on several hundred documents that contain simple and complex page layout structures and contents such as articles, magazines, business cards, dictionaries, and newsletters, and compared against state-of-the-art page-segmentation techniques with benchmark performance. The results indicate that our methodology achieves an average of ˜89% classification accuracy in text, photo, and background regions.

  11. The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Han, Baoling

    2016-11-01

    The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.

  12. Page layout analysis and classification for complex scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2011-09-01

    A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.

  13. Updating Landsat-derived land-cover maps using change detection and masking techniques

    NASA Technical Reports Server (NTRS)

    Likens, W.; Maw, K.

    1982-01-01

    The California Integrated Remote Sensing System's San Bernardino County Project was devised to study the utilization of a data base at a number of jurisdictional levels. The present paper discusses the implementation of change-detection and masking techniques in the updating of Landsat-derived land-cover maps. A baseline landcover classification was first created from a 1976 image, then the adjusted 1976 image was compared with a 1979 scene by the techniques of (1) multidate image classification, (2) difference image-distribution tails thresholding, (3) difference image classification, and (4) multi-dimensional chi-square analysis of a difference image. The union of the results of methods 1, 3 and 4 was used to create a mask of possible change areas between 1976 and 1979, which served to limit analysis of the update image and reduce comparison errors in unchanged areas. The techniques of spatial smoothing of change-detection products, and of combining results of difference change-detection algorithms are also shown to improve Landsat change-detection accuracies.

  14. Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Mandrake, Lukas; Green, Robert O.

    2013-01-01

    Mapping localized spectral features in large images demands sensitive and robust detection algorithms. Two aspects of large images that can harm matched-filter detection performance are addressed simultaneously. First, multimodal backgrounds may thwart the typical Gaussian model. Second, outlier features can trigger false detections from large projections onto the target vector. Two state-of-the-art approaches are combined that independently address outlier false positives and multimodal backgrounds. The background clustering models multimodal backgrounds, and the mixture tuned matched filter (MT-MF) addresses outliers. Combining the two methods captures significant additional performance benefits. The resulting mixture tuned clutter matched filter (MT-CMF) shows effective performance on simulated and airborne datasets. The classical MNF transform was applied, followed by k-means clustering. Then, each cluster s mean, covariance, and the corresponding eigenvalues were estimated. This yields a cluster-specific matched filter estimate as well as a cluster- specific feasibility score to flag outlier false positives. The technology described is a proof of concept that may be employed in future target detection and mapping applications for remote imaging spectrometers. It is of most direct relevance to JPL proposals for airborne and orbital hyperspectral instruments. Applications include subpixel target detection in hyperspectral scenes for military surveillance. Earth science applications include mineralogical mapping, species discrimination for ecosystem health monitoring, and land use classification.

  15. Change detection over Sokolov open-pit mining area, Czech Republic, using multi-temporal HyMAP data (2009-2010)

    NASA Astrophysics Data System (ADS)

    Adar, S.; Notesco, G.; Brook, A.; Livne, I.; Rojik, P.; Kopacková, V.; Zelenkova, K.; Misurec, J.; Bourguignon, A.; Chevrel, S.; Ehrler, C.; Fisher, C.; Hanus, J.; Shkolnisky, Y.; Ben Dor, E.

    2011-11-01

    Two HyMap images acquired over the same lignite open-pit mining site in Sokolov, Czech Republic, during the summers of 2009 and 2010 (12 months apart), were investigated in this study. The site selected for this research is one of three test sites (the others being in South Africa and Kyrgyzstan) within the framework of the EO-MINERS FP7 Project (http://www.eo-miners.eu). The goal of EO-MINERS is to "integrate new and existing Earth Observation tools to improve best practice in mining activities and to reduce the mining related environmental and societal footprint". Accordingly, the main objective of the current study was to develop hyperspectral-based means for the detection of small spectral changes and to relate these changes to possible degradation or reclamation indicators of the area under investigation. To ensure significant detection of small spectral changes, the temporal domain was investigated along with careful generation of reflectance information. Thus, intensive spectroradiometric ground measurements were carried out to ensure calibration and validation aspects during both overflights. The performance of these corrections was assessed using the Quality Indicators setup developed under a different FP7 project-EUFAR (http://www.eufar.net), which helped select the highest quality data for further work. This approach allows direct distinction of the real information from noise. The reflectance images were used as input for the application of spectral-based change-detection algorithms and indices to account for small and reliable changes. The related algorithms were then developed and applied on a pixel-by-pixel basis to map spectral changes over the space of a year. Using field spectroscopy and ground truth measurements on both overpass dates, it was possible to explain the results and allocate spatial kinetic processes of the environmental changes during the time elapsed between the flights. It was found, for instance, that significant spectral changes are capable of revealing mineral processes, vegetation status and soil formation long before these are apparent to the naked eye. Further study is being conducted under the above initiative to extend this approach to other mining areas worldwide and to improve the robustness of the developed algorithm.

  16. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography

    PubMed Central

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-01-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients’ eyes can be obtained. PMID:27446673

  17. Quantitative architectural analysis: a new approach to cortical mapping.

    PubMed

    Schleicher, A; Palomero-Gallagher, N; Morosan, P; Eickhoff, S B; Kowalski, T; de Vos, K; Amunts, K; Zilles, K

    2005-12-01

    Recent progress in anatomical and functional MRI has revived the demand for a reliable, topographic map of the human cerebral cortex. Till date, interpretations of specific activations found in functional imaging studies and their topographical analysis in a spatial reference system are, often, still based on classical architectonic maps. The most commonly used reference atlas is that of Brodmann and his successors, despite its severe inherent drawbacks. One obvious weakness in traditional, architectural mapping is the subjective nature of localising borders between cortical areas, by means of a purely visual, microscopical examination of histological specimens. To overcome this limitation, more objective, quantitative mapping procedures have been established in the past years. The quantification of the neocortical, laminar pattern by defining intensity line profiles across the cortical layers, has a long tradition. During the last years, this method has been extended to enable a reliable, reproducible mapping of the cortex based on image analysis and multivariate statistics. Methodological approaches to such algorithm-based, cortical mapping were published for various architectural modalities. In our contribution, principles of algorithm-based mapping are described for cyto- and receptorarchitecture. In a cytoarchitectural parcellation of the human auditory cortex, using a sliding window procedure, the classical areal pattern of the human superior temporal gyrus was modified by a replacing of Brodmann's areas 41, 42, 22 and parts of area 21, with a novel, more detailed map. An extension and optimisation of the sliding window procedure to the specific requirements of receptorarchitectonic mapping, is also described using the macaque central sulcus and adjacent superior parietal lobule as a second, biologically independent example. Algorithm-based mapping procedures, however, are not limited to these two architectural modalities, but can be applied to all images in which a laminar cortical pattern can be detected and quantified, e.g. myeloarchitectonic and in vivo high resolution MR imaging. Defining cortical borders, based on changes in cortical lamination in high resolution, in vivo structural MR images will result in a rapid increase of our knowledge on the structural parcellation of the human cerebral cortex.

  18. Landslide Mapping Using Imagery Acquired by a Fixed-Wing Uav

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Jhan, J. P.; Lo, C. F.; Lin, Y. S.

    2011-09-01

    In Taiwan, the average annual rainfall is about 2,500 mm, about three times the world average. Hill slopes where are mostly under meta-stable conditions due to fragmented surface materials can easily be disturbed by heavy typhoon rainfall and/or earthquakes, resulting in landslides and debris flows. Thus, an efficient data acquisition and disaster surveying method is critical for decision making. Comparing with satellite and airplane, the unmanned aerial vehicle (UAV) is a portable and dynamic platform for data acquisition. In particularly when a small target area is required. In this study, a fixed-wing UAV that equipped with a consumer grade digital camera, i.e. Canon EOS 450D, a flight control computer, a Garmin GPS receiver and an attitude heading reference system (AHRS) are proposed. The adopted UAV has about two hours flight duration time with a flight control range of 20 km and has a payload of 3 kg, which is suitable for a medium scale mapping and surveying mission. In the paper, a test area with 21.3 km2 in size containing hundreds of landslides induced by Typhoon Morakot is used for landslides mapping. The flight height is around 1,400 meters and the ground sampling distance of the acquired imagery is about 17 cm. The aerial triangulation, ortho-image generation and mosaicking are applied to the acquired images in advance. An automatic landslides detection algorithm is proposed based on the object-based image analysis (OBIA) technique. The color ortho-image and a digital elevation model (DEM) are used. The ortho-images before and after typhoon are utilized to estimate new landslide regions. Experimental results show that the developed algorithm can achieve a producer's accuracy up to 91%, user's accuracy 84%, and a Kappa index of 0.87. It demonstrates the feasibility of the landslide detection algorithm and the applicability of a fixed-wing UAV for landslide mapping.

  19. Plasmid mapping computer program.

    PubMed Central

    Nolan, G P; Maina, C V; Szalay, A A

    1984-01-01

    Three new computer algorithms are described which rapidly order the restriction fragments of a plasmid DNA which has been cleaved with two restriction endonucleases in single and double digestions. Two of the algorithms are contained within a single computer program (called MPCIRC). The Rule-Oriented algorithm, constructs all logical circular map solutions within sixty seconds (14 double-digestion fragments) when used in conjunction with the Permutation method. The program is written in Apple Pascal and runs on an Apple II Plus Microcomputer with 64K of memory. A third algorithm is described which rapidly maps double digests and uses the above two algorithms as adducts. Modifications of the algorithms for linear mapping are also presented. PMID:6320105

  20. NeatMap--non-clustering heat map alternatives in R.

    PubMed

    Rajaram, Satwik; Oono, Yoshi

    2010-01-22

    The clustered heat map is the most popular means of visualizing genomic data. It compactly displays a large amount of data in an intuitive format that facilitates the detection of hidden structures and relations in the data. However, it is hampered by its use of cluster analysis which does not always respect the intrinsic relations in the data, often requiring non-standardized reordering of rows/columns to be performed post-clustering. This sometimes leads to uninformative and/or misleading conclusions. Often it is more informative to use dimension-reduction algorithms (such as Principal Component Analysis and Multi-Dimensional Scaling) which respect the topology inherent in the data. Yet, despite their proven utility in the analysis of biological data, they are not as widely used. This is at least partially due to the lack of user-friendly visualization methods with the visceral impact of the heat map. NeatMap is an R package designed to meet this need. NeatMap offers a variety of novel plots (in 2 and 3 dimensions) to be used in conjunction with these dimension-reduction techniques. Like the heat map, but unlike traditional displays of such results, it allows the entire dataset to be displayed while visualizing relations between elements. It also allows superimposition of cluster analysis results for mutual validation. NeatMap is shown to be more informative than the traditional heat map with the help of two well-known microarray datasets. NeatMap thus preserves many of the strengths of the clustered heat map while addressing some of its deficiencies. It is hoped that NeatMap will spur the adoption of non-clustering dimension-reduction algorithms.

  1. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  2. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Lato, M. J.; Frauenfelder, R.; Bühler, Y.

    2012-09-01

    Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors), personal property (homes) and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR) optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object-oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers) are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.

  3. From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization

    PubMed Central

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067

  4. From determinism and probability to chaos: chaotic evolution towards philosophy and methodology of chaotic optimization.

    PubMed

    Pei, Yan

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.

  5. Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao

    2018-03-01

    The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.

  6. Real-time skeleton tracking for embedded systems

    NASA Astrophysics Data System (ADS)

    Coleca, Foti; Klement, Sascha; Martinetz, Thomas; Barth, Erhardt

    2013-03-01

    Touch-free gesture technology is beginning to become more popular with consumers and may have a significant future impact on interfaces for digital photography. However, almost every commercial software framework for gesture and pose detection is aimed at either desktop PCs or high-powered GPUs, making mobile implementations for gesture recognition an attractive area for research and development. In this paper we present an algorithm for hand skeleton tracking and gesture recognition that runs on an ARM-based platform (Pandaboard ES, OMAP 4460 architecture). The algorithm uses self-organizing maps to fit a given topology (skeleton) into a 3D point cloud. This is a novel way of approaching the problem of pose recognition as it does not employ complex optimization techniques or data-based learning. After an initial background segmentation step, the algorithm is ran in parallel with heuristics, which detect and correct artifacts arising from insufficient or erroneous input data. We then optimize the algorithm for the ARM platform using fixed-point computation and the NEON SIMD architecture the OMAP4460 provides. We tested the algorithm with two different depth-sensing devices (Microsoft Kinect, PMD Camboard). For both input devices we were able to accurately track the skeleton at the native framerate of the cameras.

  7. Automated aortic calcification detection in low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Htwe, Yu Maw; Padgett, Jennifer; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    The extent of aortic calcification has been shown to be a risk indicator for vascular events including cardiac events. We have developed a fully automated computer algorithm to segment and measure aortic calcification in low-dose noncontrast, non-ECG gated, chest CT scans. The algorithm first segments the aorta using a pre-computed Anatomy Label Map (ALM). Then based on the segmented aorta, aortic calcification is detected and measured in terms of the Agatston score, mass score, and volume score. The automated scores are compared with reference scores obtained from manual markings. For aorta segmentation, the aorta is modeled as a series of discrete overlapping cylinders and the aortic centerline is determined using a cylinder-tracking algorithm. Then the aortic surface location is detected using the centerline and a triangular mesh model. The segmented aorta is used as a mask for the detection of aortic calcification. For calcification detection, the image is first filtered, then an elevated threshold of 160 Hounsfield units (HU) is used within the aorta mask region to reduce the effect of noise in low-dose scans, and finally non-aortic calcification voxels (bony structures, calcification in other organs) are eliminated. The remaining candidates are considered as true aortic calcification. The computer algorithm was evaluated on 45 low-dose non-contrast CT scans. Using linear regression, the automated Agatston score is 98.42% correlated with the reference Agatston score. The automated mass and volume score is respectively 98.46% and 98.28% correlated with the reference mass and volume score.

  8. Flash LIDAR Emulator for HIL Simulation

    NASA Technical Reports Server (NTRS)

    Brewster, Paul F.

    2010-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is building a system for detecting hazards and automatically landing controlled vehicles safely anywhere on the Moon. The Flash Light Detection And Ranging (LIDAR) sensor is used to create on-the-fly a 3D map of the unknown terrain for hazard detection. As part of the ALHAT project, a hardware-in-the-loop (HIL) simulation testbed was developed to test the data processing, guidance, and navigation algorithms in real-time to prove their feasibility for flight. Replacing the Flash LIDAR camera with an emulator in the testbed provided a cheaper, safer, more feasible way to test the algorithms in a controlled environment. This emulator must have the same hardware interfaces as the LIDAR camera, have the same performance characteristics, and produce images similar in quality to the camera. This presentation describes the issues involved and the techniques used to create a real-time flash LIDAR emulator to support HIL simulation.

  9. An automated method for finding molecular complexes in large protein interaction networks

    PubMed Central

    Bader, Gary D; Hogue, Christopher WV

    2003-01-01

    Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261

  10. Common spatial pattern combined with kernel linear discriminate and generalized radial basis function for motor imagery-based brain computer interface applications

    NASA Astrophysics Data System (ADS)

    Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko

    2018-04-01

    Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.

  11. Developing an Automated Machine Learning Marine Oil Spill Detection System with Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.

    2016-02-01

    Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.

  12. An Algorithm for Obtaining the Distribution of 1-Meter Lightning Channel Segment Altitudes for Application in Lightning NOx Production Estimation

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Koshak, William J.

    2009-01-01

    An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.

  13. Automatic Debugging Support for UML Designs

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Swanson, Keith (Technical Monitor)

    2001-01-01

    Design of large software systems requires rigorous application of software engineering methods covering all phases of the software process. Debugging during the early design phases is extremely important, because late bug-fixes are expensive. In this paper, we describe an approach which facilitates debugging of UML requirements and designs. The Unified Modeling Language (UML) is a set of notations for object-orient design of a software system. We have developed an algorithm which translates requirement specifications in the form of annotated sequence diagrams into structured statecharts. This algorithm detects conflicts between sequence diagrams and inconsistencies in the domain knowledge. After synthesizing statecharts from sequence diagrams, these statecharts usually are subject to manual modification and refinement. By using the "backward" direction of our synthesis algorithm. we are able to map modifications made to the statechart back into the requirements (sequence diagrams) and check for conflicts there. Fed back to the user conflicts detected by our algorithm are the basis for deductive-based debugging of requirements and domain theory in very early development stages. Our approach allows to generate explanations oil why there is a conflict and which parts of the specifications are affected.

  14. Textural defect detect using a revised ant colony clustering algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Chao; Xiao, Li; Wang, Bingwen

    2007-11-01

    We propose a totally novel method based on a revised ant colony clustering algorithm (ACCA) to explore the topic of textural defect detection. In this algorithm, our efforts are mainly made on the definition of local irregularity measurement and the implementation of the revised ACCA. The local irregular measurement defined evaluates the local textural inconsistency of each pixel against their mini-environment. In our revised ACCA, the behaviors of each ant are divided into two steps: release pheromone and act. The quantity of pheromone released is proportional to the irregularity measurement; the actions of the ants to act next are chosen independently of each other in a stochastic way according to some evaluated heuristic knowledge. The independency of ants implies the inherent parallel computation architecture of this algorithm. We apply the proposed method in some typical textural images with defects. From the series of pheromone distribution map (PDM), it can be clearly seen that the pheromone distribution approaches the textual defects gradually. By some post-processing, the final distribution of pheromone can demonstrate the shape and area of the defects well.

  15. Cancer Diagnosis Epigenomics Scientific Workflow Scheduling in the Cloud Computing Environment Using an Improved PSO Algorithm

    PubMed

    N, Sadhasivam; R, Balamurugan; M, Pandi

    2018-01-27

    Objective: Epigenetic modifications involving DNA methylation and histone statud are responsible for the stable maintenance of cellular phenotypes. Abnormalities may be causally involved in cancer development and therefore could have diagnostic potential. The field of epigenomics refers to all epigenetic modifications implicated in control of gene expression, with a focus on better understanding of human biology in both normal and pathological states. Epigenomics scientific workflow is essentially a data processing pipeline to automate the execution of various genome sequencing operations or tasks. Cloud platform is a popular computing platform for deploying large scale epigenomics scientific workflow. Its dynamic environment provides various resources to scientific users on a pay-per-use billing model. Scheduling epigenomics scientific workflow tasks is a complicated problem in cloud platform. We here focused on application of an improved particle swam optimization (IPSO) algorithm for this purpose. Methods: The IPSO algorithm was applied to find suitable resources and allocate epigenomics tasks so that the total cost was minimized for detection of epigenetic abnormalities of potential application for cancer diagnosis. Result: The results showed that IPSO based task to resource mapping reduced total cost by 6.83 percent as compared to the traditional PSO algorithm. Conclusion: The results for various cancer diagnosis tasks showed that IPSO based task to resource mapping can achieve better costs when compared to PSO based mapping for epigenomics scientific application workflow. Creative Commons Attribution License

  16. Machine Learning for Flood Prediction in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Tellman, B.; Max, S. A.; Schwarz, B.

    2015-12-01

    With the increasing availability of high-resolution satellite imagery, dynamic flood mapping in near real time is becoming a reachable goal for decision-makers. This talk describes a newly developed framework for predicting biophysical flood vulnerability using public data, cloud computing and machine learning. Our objective is to define an approach to flood inundation modeling using statistical learning methods deployed in a cloud-based computing platform. Traditionally, static flood extent maps grounded in physically based hydrologic models can require hours of human expertise to construct at significant financial cost. In addition, desktop modeling software and limited local server storage can impose restraints on the size and resolution of input datasets. Data-driven, cloud-based processing holds promise for predictive watershed modeling at a wide range of spatio-temporal scales. However, these benefits come with constraints. In particular, parallel computing limits a modeler's ability to simulate the flow of water across a landscape, rendering traditional routing algorithms unusable in this platform. Our project pushes these limits by testing the performance of two machine learning algorithms, Support Vector Machine (SVM) and Random Forests, at predicting flood extent. Constructed in Google Earth Engine, the model mines a suite of publicly available satellite imagery layers to use as algorithm inputs. Results are cross-validated using MODIS-based flood maps created using the Dartmouth Flood Observatory detection algorithm. Model uncertainty highlights the difficulty of deploying unbalanced training data sets based on rare extreme events.

  17. A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications

    USDA-ARS?s Scientific Manuscript database

    An algorithm is presented to fuse the Normalized Difference Vegetation Index (NDVI) with Light Detection and Ranging (LiDAR) elevation data to produce a map potentially useful for the site-specific scouting and pest management of several insect pests. In cotton, these pests include the Tarnished Pl...

  18. System Framework for a Multi-Band, Multi-Mode Software Defined Radio

    DTIC Science & Technology

    2014-06-01

    detection, while the VITA Radio Transport ( VRT ) protocol over Gigabit Ethernet (GIGE) is implemented for the data interface. In addition to the SoC...CTRL VGA CTRL C2 GPP C2 CORE SW ARM0 RX SYN CTRL PL MEMORY MAP DR CTRL GENERIC INTERRUPT CONTROLLER DR GPP VITERBI ALGORITHM & VRT INTERFACE ARM1

  19. Efficient mapping algorithms for scheduling robot inverse dynamics computation on a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Chen, C. L.

    1989-01-01

    Two efficient mapping algorithms for scheduling the robot inverse dynamics computation consisting of m computational modules with precedence relationship to be executed on a multiprocessor system consisting of p identical homogeneous processors with processor and communication costs to achieve minimum computation time are presented. An objective function is defined in terms of the sum of the processor finishing time and the interprocessor communication time. The minimax optimization is performed on the objective function to obtain the best mapping. This mapping problem can be formulated as a combination of the graph partitioning and the scheduling problems; both have been known to be NP-complete. Thus, to speed up the searching for a solution, two heuristic algorithms were proposed to obtain fast but suboptimal mapping solutions. The first algorithm utilizes the level and the communication intensity of the task modules to construct an ordered priority list of ready modules and the module assignment is performed by a weighted bipartite matching algorithm. For a near-optimal mapping solution, the problem can be solved by the heuristic algorithm with simulated annealing. These proposed optimization algorithms can solve various large-scale problems within a reasonable time. Computer simulations were performed to evaluate and verify the performance and the validity of the proposed mapping algorithms. Finally, experiments for computing the inverse dynamics of a six-jointed PUMA-like manipulator based on the Newton-Euler dynamic equations were implemented on an NCUBE/ten hypercube computer to verify the proposed mapping algorithms. Computer simulation and experimental results are compared and discussed.

  20. Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system

    PubMed Central

    2012-01-01

    Background Structured association mapping is proving to be a powerful strategy to find genetic polymorphisms associated with disease. However, these algorithms are often distributed as command line implementations that require expertise and effort to customize and put into practice. Because of the difficulty required to use these cutting-edge techniques, geneticists often revert to simpler, less powerful methods. Results To make structured association mapping more accessible to geneticists, we have developed an automatic processing system called Auto-SAM. Auto-SAM enables geneticists to run structured association mapping algorithms automatically, using parallelization. Auto-SAM includes algorithms to discover gene-networks and find population structure. Auto-SAM can also run popular association mapping algorithms, in addition to five structured association mapping algorithms. Conclusions Auto-SAM is available through GenAMap, a front-end desktop visualization tool. GenAMap and Auto-SAM are implemented in JAVA; binaries for GenAMap can be downloaded from http://sailing.cs.cmu.edu/genamap. PMID:22471660

  1. Prospective study of atrial fibrillation termination during ablation guided by automated detection of fractionated electrograms.

    PubMed

    Porter, Michael; Spear, William; Akar, Joseph G; Helms, Ray; Brysiewicz, Neil; Santucci, Peter; Wilber, David J

    2008-06-01

    Complex fractionated atrial electrograms (CFAE) may identify critical sites for perpetuation of atrial fibrillation (AF) and provide useful targets for ablation. Current assessment of CFAE is subjective; automated detection algorithms may improve reproducibility, but their utility in guiding ablation has not been tested. In 67 patients presenting for initial AF ablation (42 paroxysmal, 25 persistent), LA and CS mapping were performed during induced or spontaneous AF. CFAE were identified by an online automated computer algorithm and displayed on electroanatomical maps. A mean of 28 +/- 18 sites/patient were identified (20 +/- 13% of mapped sites), and were more frequent during persistent AF. CFAE occurred most commonly within the CS, on the atrial septum, and around the pulmonary veins. Ablation initially targeting CFAE terminated AF in 88% of paroxysmal AF, but only 20% of persistent AF (P < 0.001). Subsequently, additional ablation was performed in all patients (PV isolation for paroxysmal AF, PV isolation + mitral and roof lines for persistent AF). Minimum follow-up was 1 year. One-year freedom from recurrent atrial arrhythmias without antiarrhythmic drug therapy after a single procedure was 90% for paroxysmal AF, and 68% for persistent AF. Ablation guided by automated detection of CFAE proved feasible, and was associated with a high AF termination rate in paroxysmal, but not persistent AF. As an adjunct to conventional techniques, it was associated with excellent long-term single procedure outcomes in both groups. Criteria for identifying optimal CFAE sites for ablation, and selection of patients most likely to benefit, require additional study.

  2. High-speed polarization sensitive optical coherence tomography for retinal diagnostics

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Wang, Bingqing; Vemishetty, Kalyanramu; Nagle, Jim; Liu, Shuang; Wang, Tianyi; Rylander, Henry G., III; Milner, Thomas E.

    2012-01-01

    We report design and construction of an FPGA-based high-speed swept-source polarization-sensitive optical coherence tomography (SS-PS-OCT) system for clinical retinal imaging. Clinical application of the SS-PS-OCT system is accurate measurement and display of thickness, phase retardation and birefringence maps of the retinal nerve fiber layer (RNFL) in human subjects for early detection of glaucoma. The FPGA-based SS-PS-OCT system provides three incident polarization states on the eye and uses a bulk-optic polarization sensitive balanced detection module to record two orthogonal interference fringe signals. Interference fringe signals and relative phase retardation between two orthogonal polarization states are used to obtain Stokes vectors of light returning from each RNFL depth. We implement a Levenberg-Marquardt algorithm on a Field Programmable Gate Array (FPGA) to compute accurate phase retardation and birefringence maps. For each retinal scan, a three-state Levenberg-Marquardt nonlinear algorithm is applied to 360 clusters each consisting of 100 A-scans to determine accurate maps of phase retardation and birefringence in less than 1 second after patient measurement allowing real-time clinical imaging-a speedup of more than 300 times over previous implementations. We report application of the FPGA-based SS-PS-OCT system for real-time clinical imaging of patients enrolled in a clinical study at the Eye Institute of Austin and Duke Eye Center.

  3. Applying FastSLAM to Articulated Rovers

    NASA Astrophysics Data System (ADS)

    Hewitt, Robert Alexander

    This thesis presents the navigation algorithms designed for use on Kapvik, a 30 kg planetary micro-rover built for the Canadian Space Agency; the simulations used to test the algorithm; and novel techniques for terrain classification using Kapvik's LIDAR (Light Detection And Ranging) sensor. Kapvik implements a six-wheeled, skid-steered, rocker-bogie mobility system. This warrants a more complicated kinematic model for navigation than a typical 4-wheel differential drive system. The design of a 3D navigation algorithm is presented that includes nonlinear Kalman filtering and Simultaneous Localization and Mapping (SLAM). A neural network for terrain classification is used to improve navigation performance. Simulation is used to train the neural network and validate the navigation algorithms. Real world tests of the terrain classification algorithm validate the use of simulation for training and the improvement to SLAM through the reduction of extraneous LIDAR measurements in each scan.

  4. Approach to explosive hazard detection using sensor fusion and multiple kernel learning with downward-looking GPR and EMI sensor data

    NASA Astrophysics Data System (ADS)

    Pinar, Anthony; Masarik, Matthew; Havens, Timothy C.; Burns, Joseph; Thelen, Brian; Becker, John

    2015-05-01

    This paper explores the effectiveness of an anomaly detection algorithm for downward-looking ground penetrating radar (GPR) and electromagnetic inductance (EMI) data. Threat detection with GPR is challenged by high responses to non-target/clutter objects, leading to a large number of false alarms (FAs), and since the responses of target and clutter signatures are so similar, classifier design is not trivial. We suggest a method based on a Run Packing (RP) algorithm to fuse GPR and EMI data into a composite confidence map to improve detection as measured by the area-under-ROC (NAUC) metric. We examine the value of a multiple kernel learning (MKL) support vector machine (SVM) classifier using image features such as histogram of oriented gradients (HOG), local binary patterns (LBP), and local statistics. Experimental results on government furnished data show that use of our proposed fusion and classification methods improves the NAUC when compared with the results from individual sensors and a single kernel SVM classifier.

  5. A new image enhancement algorithm with applications to forestry stand mapping

    NASA Technical Reports Server (NTRS)

    Kan, E. P. F. (Principal Investigator); Lo, J. K.

    1975-01-01

    The author has identified the following significant results. Results show that the new algorithm produced cleaner classification maps in which holes of small predesignated sizes were eliminated and significant boundary information was preserved. These cleaner post-processed maps better resemble true life timber stand maps and are thus more usable products than the pre-post-processing ones: Compared to an accepted neighbor-checking post-processing technique, the new algorithm is more appropriate for timber stand mapping.

  6. Using Map Service API for Driving Cycle Detection for Wearable GPS Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lei; Gonder, Jeffrey D

    Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicatedmore » road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method's ability to detect vehicle mode accurately.« less

  7. A combined approach based on MAF analysis and AHP method to fault detection mapping: A case study from a gas field, southwest of Iran

    NASA Astrophysics Data System (ADS)

    Shakiba, Sima; Asghari, Omid; Khah, Nasser Keshavarz Faraj

    2018-01-01

    A combined geostatitical methodology based on Min/Max Auto-correlation Factor (MAF) analysis and Analytical Hierarchy Process (AHP) is presented to generate a suitable Fault Detection Map (FDM) through seismic attributes. Five seismic attributes derived from a 2D time slice obtained from data related to a gas field located in southwest of Iran are used including instantaneous amplitude, similarity, energy, frequency, and Fault Enhancement Filter (FEF). The MAF analysis is implemented to reduce dimension of input variables, and then AHP method is applied on three obtained de-correlated MAF factors as evidential layer. Three Decision Makers (DMs) are used to construct PCMs for determining weights of selected evidential layer. Finally, weights obtained by AHP were multiplied in normalized valued of each alternative (MAF layers) and the concluded weighted layers were integrated in order to prepare final FDM. Results proved that applying algorithm proposed in this study generate a map more acceptable than the each individual attribute and sharpen the non-surface discontinuities as well as enhancing continuity of detected faults.

  8. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots

    PubMed Central

    Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il “Dan”

    2016-01-01

    This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%. PMID:26938540

  9. Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications

    NASA Astrophysics Data System (ADS)

    Budzan, Sebastian; Kasprzyk, Jerzy

    2016-02-01

    The problem of obstacle detection and recognition or, generally, scene mapping is one of the most investigated problems in computer vision, especially in mobile applications. In this paper a fused optical system using depth information with color images gathered from the Microsoft Kinect sensor and 3D laser range scanner data is proposed for obstacle detection and ground estimation in real-time mobile systems. The algorithm consists of feature extraction in the laser range images, processing of the depth information from the Kinect sensor, fusion of the sensor information, and classification of the data into two separate categories: road and obstacle. Exemplary results are presented and it is shown that fusion of information gathered from different sources increases the effectiveness of the obstacle detection in different scenarios, and it can be used successfully for road surface mapping.

  10. Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Todd, L. A.

    A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.

  11. Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation

    NASA Technical Reports Server (NTRS)

    Driscoll, Tobin A.; Vavasis, Stephen A.

    1996-01-01

    We propose a new algorithm for computing the Riemann mapping of the unit disk to a polygon, also known as the Schwarz-Christoffel transformation. The new algorithm, CRDT, is based on cross-ratios of the prevertices, and also on cross-ratios of quadrilaterals in a Delaunay triangulation of the polygon. The CRDT algorithm produces an accurate representation of the Riemann mapping even in the presence of arbitrary long, thin regions in the polygon, unlike any previous conformal mapping algorithm. We believe that CRDT can never fail to converge to the correct Riemann mapping, but the correctness and convergence proof depend on conjectures that we have so far not been able to prove. We demonstrate convergence with computational experiments. The Riemann mapping has applications to problems in two-dimensional potential theory and to finite-difference mesh generation. We use CRDT to produce a mapping and solve a boundary value problem on long, thin regions for which no other algorithm can solve these problems.

  12. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images.

    PubMed

    Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao

    2018-03-01

    We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.

  13. New segmentation-based tone mapping algorithm for high dynamic range image

    NASA Astrophysics Data System (ADS)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  14. A ground truth based comparative study on clustering of gene expression data.

    PubMed

    Zhu, Yitan; Wang, Zuyi; Miller, David J; Clarke, Robert; Xuan, Jianhua; Hoffman, Eric P; Wang, Yue

    2008-05-01

    Given the variety of available clustering methods for gene expression data analysis, it is important to develop an appropriate and rigorous validation scheme to assess the performance and limitations of the most widely used clustering algorithms. In this paper, we present a ground truth based comparative study on the functionality, accuracy, and stability of five data clustering methods, namely hierarchical clustering, K-means clustering, self-organizing maps, standard finite normal mixture fitting, and a caBIG toolkit (VIsual Statistical Data Analyzer--VISDA), tested on sample clustering of seven published microarray gene expression datasets and one synthetic dataset. We examined the performance of these algorithms in both data-sufficient and data-insufficient cases using quantitative performance measures, including cluster number detection accuracy and mean and standard deviation of partition accuracy. The experimental results showed that VISDA, an interactive coarse-to-fine maximum likelihood fitting algorithm, is a solid performer on most of the datasets, while K-means clustering and self-organizing maps optimized by the mean squared compactness criterion generally produce more stable solutions than the other methods.

  15. Smiles2Monomers: a link between chemical and biological structures for polymers.

    PubMed

    Dufresne, Yoann; Noé, Laurent; Leclère, Valérie; Pupin, Maude

    2015-01-01

    The monomeric composition of polymers is powerful for structure comparison and synthetic biology, among others. Many databases give access to the atomic structure of compounds but the monomeric structure of polymers is often lacking. We have designed a smart algorithm, implemented in the tool Smiles2Monomers (s2m), to infer efficiently and accurately the monomeric structure of a polymer from its chemical structure. Our strategy is divided into two steps: first, monomers are mapped on the atomic structure by an efficient subgraph-isomorphism algorithm ; second, the best tiling is computed so that non-overlapping monomers cover all the structure of the target polymer. The mapping is based on a Markovian index built by a dynamic programming algorithm. The index enables s2m to search quickly all the given monomers on a target polymer. After, a greedy algorithm combines the mapped monomers into a consistent monomeric structure. Finally, a local branch and cut algorithm refines the structure. We tested this method on two manually annotated databases of polymers and reconstructed the structures de novo with a sensitivity over 90 %. The average computation time per polymer is 2 s. s2m automatically creates de novo monomeric annotations for polymers, efficiently in terms of time computation and sensitivity. s2m allowed us to detect annotation errors in the tested databases and to easily find the accurate structures. So, s2m could be integrated into the curation process of databases of small compounds to verify the current entries and accelerate the annotation of new polymers. The full method can be downloaded or accessed via a website for peptide-like polymers at http://bioinfo.lifl.fr/norine/smiles2monomers.jsp.Graphical abstract:.

  16. A Semi-Automated Machine Learning Algorithm for Tree Cover Delineation from 1-m Naip Imagery Using a High Performance Computing Architecture

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.

    2014-12-01

    Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.

  17. Assisting the visually impaired: obstacle detection and warning system by acoustic feedback.

    PubMed

    Rodríguez, Alberto; Yebes, J Javier; Alcantarilla, Pablo F; Bergasa, Luis M; Almazán, Javier; Cela, Andrés

    2012-12-17

    The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system.

  18. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback

    PubMed Central

    Rodríguez, Alberto; Yebes, J. Javier; Alcantarilla, Pablo F.; Bergasa, Luis M.; Almazán, Javier; Cela, Andrés

    2012-01-01

    The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system. PMID:23247413

  19. Kalman/Map filtering-aided fast normalized cross correlation-based Wi-Fi fingerprinting location sensing.

    PubMed

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-11-13

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.

  20. Kalman/Map Filtering-Aided Fast Normalized Cross Correlation-Based Wi-Fi Fingerprinting Location Sensing

    PubMed Central

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-01-01

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results. PMID:24233027

  1. Change detection of bitemporal multispectral images based on FCM and D-S theory

    NASA Astrophysics Data System (ADS)

    Shi, Aiye; Gao, Guirong; Shen, Shaohong

    2016-12-01

    In this paper, we propose a change detection method of bitemporal multispectral images based on the D-S theory and fuzzy c-means (FCM) algorithm. Firstly, the uncertainty and certainty regions are determined by thresholding method applied to the magnitudes of difference image (MDI) and spectral angle information (SAI) of bitemporal images. Secondly, the FCM algorithm is applied to the MDI and SAI in the uncertainty region, respectively. Then, the basic probability assignment (BPA) functions of changed and unchanged classes are obtained by the fuzzy membership values from the FCM algorithm. In addition, the optimal value of fuzzy exponent of FCM is adaptively determined by conflict degree between the MDI and SAI in uncertainty region. Finally, the D-S theory is applied to obtain the new fuzzy partition matrix for uncertainty region and further the change map is obtained. Experiments on bitemporal Landsat TM images and bitemporal SPOT images validate that the proposed method is effective.

  2. Condition monitoring of 3G cellular networks through competitive neural models.

    PubMed

    Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo

    2005-09-01

    We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

  3. A complete solution of cartographic displacement based on elastic beams model and Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Guo, Q.; Sun, Y.

    2014-04-01

    In map production and generalization, it is inevitable to arise some spatial conflicts, but the detection and resolution of these spatial conflicts still requires manual operation. It is become a bottleneck hindering the development of automated cartographic generalization. Displacement is the most useful contextual operator that is often used for resolving the conflicts arising between two or more map objects. Automated generalization researches have reported many approaches of displacement including sequential approaches and optimization approaches. As an excellent optimization approach on the basis of energy minimization principles, elastic beams model has been used in resolving displacement problem of roads and buildings for several times. However, to realize a complete displacement solution, techniques of conflict detection and spatial context analysis should be also take into consideration. So we proposed a complete solution of displacement based on the combined use of elastic beams model and constrained Delaunay triangulation (CDT) in this paper. The solution designed as a cyclic and iterative process containing two phases: detection phase and displacement phase. In detection phase, CDT of map is use to detect proximity conflicts, identify spatial relationships and structures, and construct auxiliary structure, so as to support the displacement phase on the basis of elastic beams. In addition, for the improvements of displacement algorithm, a method for adaptive parameters setting and a new iterative strategy are put forward. Finally, we implemented our solution on a testing map generalization platform, and successfully tested it against 2 hand-generated test datasets of roads and buildings respectively.

  4. Improving depth maps of plants by using a set of five cameras

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Adam L.

    2015-03-01

    Obtaining high-quality depth maps and disparity maps with the use of a stereo camera is a challenging task for some kinds of objects. The quality of these maps can be improved by taking advantage of a larger number of cameras. The research on the usage of a set of five cameras to obtain disparity maps is presented. The set consists of a central camera and four side cameras. An algorithm for making disparity maps called multiple similar areas (MSA) is introduced. The algorithm was specially designed for the set of five cameras. Experiments were performed with the MSA algorithm and the stereo matching algorithm based on the sum of sum of squared differences (sum of SSD, SSSD) measure. Moreover, the following measures were included in the experiments: sum of absolute differences (SAD), zero-mean SAD (ZSAD), zero-mean SSD (ZSSD), locally scaled SAD (LSAD), locally scaled SSD (LSSD), normalized cross correlation (NCC), and zero-mean NCC (ZNCC). Algorithms presented were applied to images of plants. Making depth maps of plants is difficult because parts of leaves are similar to each other. The potential usability of the described algorithms is especially high in agricultural applications such as robotic fruit harvesting.

  5. Adaptive Feedback in Local Coordinates for Real-time Vision-Based Motion Control Over Long Distances

    NASA Astrophysics Data System (ADS)

    Aref, M. M.; Astola, P.; Vihonen, J.; Tabus, I.; Ghabcheloo, R.; Mattila, J.

    2018-03-01

    We studied the differences in noise-effects, depth-correlated behavior of sensors, and errors caused by mapping between coordinate systems in robotic applications of machine vision. In particular, the highly range-dependent noise densities for semi-unknown object detection were considered. An equation is proposed to adapt estimation rules to dramatic changes of noise over longer distances. This algorithm also benefits the smooth feedback of wheels to overcome variable latencies of visual perception feedback. Experimental evaluation of the integrated system is presented with/without the algorithm to highlight its effectiveness.

  6. Active edge maps for medical image registration

    NASA Astrophysics Data System (ADS)

    Kerwin, William; Yuan, Chun

    2001-07-01

    Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.

  7. Automatic Boosted Flood Mapping from Satellite Data

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence

    2016-01-01

    Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-the-art algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions.

  8. Automated method for measuring the extent of selective logging damage with airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Melendy, L.; Hagen, S. C.; Sullivan, F. B.; Pearson, T. R. H.; Walker, S. M.; Ellis, P.; Kustiyo; Sambodo, Ari Katmoko; Roswintiarti, O.; Hanson, M. A.; Klassen, A. W.; Palace, M. W.; Braswell, B. H.; Delgado, G. M.

    2018-05-01

    Selective logging has an impact on the global carbon cycle, as well as on the forest micro-climate, and longer-term changes in erosion, soil and nutrient cycling, and fire susceptibility. Our ability to quantify these impacts is dependent on methods and tools that accurately identify the extent and features of logging activity. LiDAR-based measurements of these features offers significant promise. Here, we present a set of algorithms for automated detection and mapping of critical features associated with logging - roads/decks, skid trails, and gaps - using commercial airborne LiDAR data as input. The automated algorithm was applied to commercial LiDAR data collected over two logging concessions in Kalimantan, Indonesia in 2014. The algorithm results were compared to measurements of the logging features collected in the field soon after logging was complete. The automated algorithm-mapped road/deck and skid trail features match closely with features measured in the field, with agreement levels ranging from 69% to 99% when adjusting for GPS location error. The algorithm performed most poorly with gaps, which, by their nature, are variable due to the unpredictable impact of tree fall versus the linear and regular features directly created by mechanical means. Overall, the automated algorithm performs well and offers significant promise as a generalizable tool useful to efficiently and accurately capture the effects of selective logging, including the potential to distinguish reduced impact logging from conventional logging.

  9. A robust color image watermarking algorithm against rotation attacks

    NASA Astrophysics Data System (ADS)

    Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min

    2018-01-01

    A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.

  10. Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip

    2015-07-01

    Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological datamore » can be incorporated by means of data fusion of the two sensors' output data. (authors)« less

  11. Self-recovery reversible image watermarking algorithm

    PubMed Central

    Sun, He; Gao, Shangbing; Jin, Shenghua

    2018-01-01

    The integrity of image content is essential, although most watermarking algorithms can achieve image authentication but not automatically repair damaged areas or restore the original image. In this paper, a self-recovery reversible image watermarking algorithm is proposed to recover the tampered areas effectively. First of all, the original image is divided into homogeneous blocks and non-homogeneous blocks through multi-scale decomposition, and the feature information of each block is calculated as the recovery watermark. Then, the original image is divided into 4×4 non-overlapping blocks classified into smooth blocks and texture blocks according to image textures. Finally, the recovery watermark generated by homogeneous blocks and error-correcting codes is embedded into the corresponding smooth block by mapping; watermark information generated by non-homogeneous blocks and error-correcting codes is embedded into the corresponding non-embedded smooth block and the texture block via mapping. The correlation attack is detected by invariant moments when the watermarked image is attacked. To determine whether a sub-block has been tampered with, its feature is calculated and the recovery watermark is extracted from the corresponding block. If the image has been tampered with, it can be recovered. The experimental results show that the proposed algorithm can effectively recover the tampered areas with high accuracy and high quality. The algorithm is characterized by sound visual quality and excellent image restoration. PMID:29920528

  12. The crack detection algorithm of pavement image based on edge information

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Geng, Mingyue

    2018-05-01

    As the images of pavement cracks are affected by a large amount of complicated noises, such as uneven illumination and water stains, the detected cracks are discontinuous and the main body information at the edge of the cracks is easily lost. In order to solve the problem, a crack detection algorithm in pavement image based on edge information is proposed. Firstly, the image is pre-processed by the nonlinear gray-scale transform function and reconstruction filter to enhance the linear characteristic of the crack. At the same time, an adaptive thresholding method is designed to coarsely extract the cracks edge according to the gray-scale gradient feature and obtain the crack gradient information map. Secondly, the candidate edge points are obtained according to the gradient information, and the edge is detected based on the single pixel percolation processing, which is improved by using the local difference between pixels in the fixed region. Finally, complete crack is obtained by filling the crack edge. Experimental results show that the proposed method can accurately detect pavement cracks and preserve edge information.

  13. An improved algorithm for wildfire detection

    NASA Astrophysics Data System (ADS)

    Nakau, K.

    2010-12-01

    Satellite information of wild fire location has strong demands from society. Therefore, Understanding such demands is quite important to consider what to improve the wild fire detection algorithm. Interviews and considerations imply that the most important improvements are geographical resolution of the wildfire product and classification of fire; smoldering or flaming. Discussion with fire service agencies are performed with fire service agencies in Alaska and fire service volunteer groups in Indonesia. Alaska Fire Service (AFS) makes 3D-map overlaid by fire location every morning. Then, this 3D-map is examined by leaders of fire service teams to decide their strategy to fighting against wild fire. Especially, firefighters of both agencies seek the best walk path to approach the fire. Because of mountainous landscape, geospatial resolution is quite important for them. For example, walking in bush for 1km, as same as one pixel of fire product, is very tough for firefighters. Also, in case of remote wild fire, fire service agencies utilize satellite information to decide when to have a flight observation to confirm the status; expanding, flaming, smoldering or out. Therefore, it is also quite important to provide the classification of fire; flaming or smoldering. Not only the aspect of disaster management, wildfire emits huge amount of carbon into atmosphere as much as one quarter to one half of CO2 by fuel combustion (IPCC AR4). Reduction of the CO2 emission by human caused wildfire is important. To estimate carbon emission from wildfire, special resolution is quite important. To improve sensitivity of wild fire detection, author adopts radiance based wildfire detection. Different from the existing brightness temperature approach, we can easily consider reflectance of background land coverage. Especially for GCOM-C1/SGLI, band to detect fire with 250m resolution is 1.6μm wavelength. In this band, we have much more sunlight reflection. Therefore, we need to consider the way to cancel sunlight reflection. In this study, author utilizes simple linear correction for estimation of infrared emission considering sunlight reflection. As well as bran new core part of wildfire algorithm, we need to eliminate bright reflectance matters, including cloud, desert and sun glint. Also, we need to eliminate the false alarms at coastal area for difference of surface temperature between land and ocean. An existing algorithm MOD14 has same procedure, however, some of these ancillary parts are newly introduced or improved. Snow mask is newly introduced to reduce a bright reflectance with snow and ice covered area. Also, the improved ancillary parts include candidate selection of fire pixel, cloud mask, water body mask. With these improvements, wildfire with dense smoke or wildfire under thin cloud could be detected by this algorithm. This wild fire product is not validated by ground observations yet. However, distribution is well corresponded with wildfire location in same periods. Unfortunately, this algorithm also detects false alarm in urban area same as existing one. This should be corrected adopting other bands. Current algorithm will be performed in JASMES website.

  14. A novel algorithm for fully automated mapping of geospatial ontologies

    NASA Astrophysics Data System (ADS)

    Chaabane, Sana; Jaziri, Wassim

    2018-01-01

    Geospatial information is collected from different sources thus making spatial ontologies, built for the same geographic domain, heterogeneous; therefore, different and heterogeneous conceptualizations may coexist. Ontology integrating helps creating a common repository of the geospatial ontology and allows removing the heterogeneities between the existing ontologies. Ontology mapping is a process used in ontologies integrating and consists in finding correspondences between the source ontologies. This paper deals with the "mapping" process of geospatial ontologies which consist in applying an automated algorithm in finding the correspondences between concepts referring to the definitions of matching relationships. The proposed algorithm called "geographic ontologies mapping algorithm" defines three types of mapping: semantic, topological and spatial.

  15. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data.

    PubMed

    Zhang, Yanju; Lameijer, Eric-Wubbo; 't Hoen, Peter A C; Ning, Zemin; Slagboom, P Eline; Ye, Kai

    2012-02-15

    RNA-seq is a powerful technology for the study of transcriptome profiles that uses deep-sequencing technologies. Moreover, it may be used for cellular phenotyping and help establishing the etiology of diseases characterized by abnormal splicing patterns. In RNA-Seq, the exact nature of splicing events is buried in the reads that span exon-exon boundaries. The accurate and efficient mapping of these reads to the reference genome is a major challenge. We developed PASSion, a pattern growth algorithm-based pipeline for splice site detection in paired-end RNA-Seq reads. Comparing the performance of PASSion to three existing RNA-Seq analysis pipelines, TopHat, MapSplice and HMMSplicer, revealed that PASSion is competitive with these packages. Moreover, the performance of PASSion is not affected by read length and coverage. It performs better than the other three approaches when detecting junctions in highly abundant transcripts. PASSion has the ability to detect junctions that do not have known splicing motifs, which cannot be found by the other tools. Of the two public RNA-Seq datasets, PASSion predicted ≈ 137,000 and 173,000 splicing events, of which on average 82 are known junctions annotated in the Ensembl transcript database and 18% are novel. In addition, our package can discover differential and shared splicing patterns among multiple samples. The code and utilities can be freely downloaded from https://trac.nbic.nl/passion and ftp://ftp.sanger.ac.uk/pub/zn1/passion.

  16. Different CT perfusion algorithms in the detection of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage.

    PubMed

    Cremers, Charlotte H P; Dankbaar, Jan Willem; Vergouwen, Mervyn D I; Vos, Pieter C; Bennink, Edwin; Rinkel, Gabriel J E; Velthuis, Birgitta K; van der Schaaf, Irene C

    2015-05-01

    Tracer delay-sensitive perfusion algorithms in CT perfusion (CTP) result in an overestimation of the extent of ischemia in thromboembolic stroke. In diagnosing delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH), delayed arrival of contrast due to vasospasm may also overestimate the extent of ischemia. We investigated the diagnostic accuracy of tracer delay-sensitive and tracer delay-insensitive algorithms for detecting DCI. From a prospectively collected series of aSAH patients admitted between 2007-2011, we included patients with any clinical deterioration other than rebleeding within 21 days after SAH who underwent NCCT/CTP/CTA imaging. Causes of clinical deterioration were categorized into DCI and no DCI. CTP maps were calculated with tracer delay-sensitive and tracer delay-insensitive algorithms and were visually assessed for the presence of perfusion deficits by two independent observers with different levels of experience. The diagnostic value of both algorithms was calculated for both observers. Seventy-one patients were included. For the experienced observer, the positive predictive values (PPVs) were 0.67 for the delay-sensitive and 0.66 for the delay-insensitive algorithm, and the negative predictive values (NPVs) were 0.73 and 0.74. For the less experienced observer, PPVs were 0.60 for both algorithms, and NPVs were 0.66 for the delay-sensitive and 0.63 for the delay-insensitive algorithm. Test characteristics are comparable for tracer delay-sensitive and tracer delay-insensitive algorithms for the visual assessment of CTP in diagnosing DCI. This indicates that both algorithms can be used for this purpose.

  17. A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    NASA Astrophysics Data System (ADS)

    Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.

    2002-01-01

    Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the analysis of X-ray image data, especially in the low count regime. We demonstrate the robustness of WAVDETECT by applying it to an image from an idealized detector with a spatially invariant Gaussian PSF and an exposure map similar to that of the Einstein IPC; to Pleiades Cluster data collected by the ROSAT PSPC; and to simulated Chandra ACIS-I image of the Lockman Hole region.

  18. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy.

    PubMed

    Welikala, R A; Fraz, M M; Dehmeshki, J; Hoppe, A; Tah, V; Mann, S; Williamson, T H; Barman, S A

    2015-07-01

    Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is the growth of abnormal new vessels. In this paper, an automated method for the detection of new vessels from retinal images is presented. This method is based on a dual classification approach. Two vessel segmentation approaches are applied to create two separate binary vessel map which each hold vital information. Local morphology features are measured from each binary vessel map to produce two separate 4-D feature vectors. Independent classification is performed for each feature vector using a support vector machine (SVM) classifier. The system then combines these individual outcomes to produce a final decision. This is followed by the creation of additional features to generate 21-D feature vectors, which feed into a genetic algorithm based feature selection approach with the objective of finding feature subsets that improve the performance of the classification. Sensitivity and specificity results using a dataset of 60 images are 0.9138 and 0.9600, respectively, on a per patch basis and 1.000 and 0.975, respectively, on a per image basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The role of image registration in brain mapping

    PubMed Central

    Toga, A.W.; Thompson, P.M.

    2008-01-01

    Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain. PMID:19890483

  20. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    NASA Astrophysics Data System (ADS)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  1. Support Vector Machines for Multitemporal and Multisensor Change Detection in a Mining Area

    NASA Astrophysics Data System (ADS)

    Hecheltjen, Antje; Waske, Bjorn; Thonfeld, Frank; Braun, Matthias; Menz, Gunter

    2010-12-01

    Long-term change detection often implies the challenge of incorporating multitemporal data from different sensors. Most of the conventional change detection algorithms are designed for bi-temporal datasets from the same sensors detecting only the existence of changes. The labeling of change areas remains a difficult task. To overcome such drawbacks, much attention has been given lately to algorithms arising from machine learning, such as Support Vector Machines (SVMs). While SVMs have been applied successfully for land cover classifications, the exploitation of this approach for change detection is still in its infancy. Few studies have already proven the applicability of SVMs for bi- and multitemporal change detection using data from one sensor only. In this paper we demonstrate the application of SVM for multitemporal and -sensor change detection. Our study site covers lignite open pit mining areas in the German state North Rhine-Westphalia. The dataset consists of bi-temporal Landsat data and multi-temporal ERS SAR data covering two time slots (2001 and 2009). The SVM is conducted using the IDL program imageSVM. Change is deduced from one time slot to the next resulting in two change maps. In contrast to change detection, which is based on post-classification comparison, change detection is seen here as a specific classification problem. Thus, changes are directly classified from a layer-stack of the two years. To reduce the number of change classes, we created a change mask using the magnitude of Change Vector Analysis (CVA). Training data were selected for different change classes (e.g. forest to mining or mining to agriculture) as well as for the no-change classes (e.g. agriculture). Subsequently, they were divided in two independent sets for training the SVMs and accuracy assessment, respectively. Our study shows the applicability of SVMs to classify changes via SVMs. The proposed method yielded a change map of reclaimed and active mines. The use of ERS SAR data, however, did not add to the accuracy compared to Landsat data only. A great advantage compared to other change detection approaches are the labeled change maps, which are a direct output of the methodology. Our approach also overcomes the drawback of post-classification comparison, namely the propagation of classification inaccuracies.

  2. Cloud computing-based TagSNP selection algorithm for human genome data.

    PubMed

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-05

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.

  3. Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data

    PubMed Central

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-01

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088

  4. Manifold absolute pressure estimation using neural network with hybrid training algorithm

    PubMed Central

    Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779

  5. Detection of bone disease by hybrid SST-watershed x-ray image segmentation

    NASA Astrophysics Data System (ADS)

    Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim

    2001-07-01

    Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.

  6. A 16-Channel Nonparametric Spike Detection ASIC Based on EC-PC Decomposition.

    PubMed

    Wu, Tong; Xu, Jian; Lian, Yong; Khalili, Azam; Rastegarnia, Amir; Guan, Cuntai; Yang, Zhi

    2016-02-01

    In extracellular neural recording experiments, detecting neural spikes is an important step for reliable information decoding. A successful implementation in integrated circuits can achieve substantial data volume reduction, potentially enabling a wireless operation and closed-loop system. In this paper, we report a 16-channel neural spike detection chip based on a customized spike detection method named as exponential component-polynomial component (EC-PC) algorithm. This algorithm features a reliable prediction of spikes by applying a probability threshold. The chip takes raw data as input and outputs three data streams simultaneously: field potentials, band-pass filtered neural data, and spiking probability maps. The algorithm parameters are on-chip configured automatically based on input data, which avoids manual parameter tuning. The chip has been tested with both in vivo experiments for functional verification and bench-top experiments for quantitative performance assessment. The system has a total power consumption of 1.36 mW and occupies an area of 6.71 mm (2) for 16 channels. When tested on synthesized datasets with spikes and noise segments extracted from in vivo preparations and scaled according to required precisions, the chip outperforms other detectors. A credit card sized prototype board is developed to provide power and data management through a USB port.

  7. A Locally Optimal Algorithm for Estimating a Generating Partition from an Observed Time Series and Its Application to Anomaly Detection.

    PubMed

    Ghalyan, Najah F; Miller, David J; Ray, Asok

    2018-06-12

    Estimation of a generating partition is critical for symbolization of measurements from discrete-time dynamical systems, where a sequence of symbols from a (finite-cardinality) alphabet may uniquely specify the underlying time series. Such symbolization is useful for computing measures (e.g., Kolmogorov-Sinai entropy) to identify or characterize the (possibly unknown) dynamical system. It is also useful for time series classification and anomaly detection. The seminal work of Hirata, Judd, and Kilminster (2004) derives a novel objective function, akin to a clustering objective, that measures the discrepancy between a set of reconstruction values and the points from the time series. They cast estimation of a generating partition via the minimization of their objective function. Unfortunately, their proposed algorithm is nonconvergent, with no guarantee of finding even locally optimal solutions with respect to their objective. The difficulty is a heuristic-nearest neighbor symbol assignment step. Alternatively, we develop a novel, locally optimal algorithm for their objective. We apply iterative nearest-neighbor symbol assignments with guaranteed discrepancy descent, by which joint, locally optimal symbolization of the entire time series is achieved. While most previous approaches frame generating partition estimation as a state-space partitioning problem, we recognize that minimizing the Hirata et al. (2004) objective function does not induce an explicit partitioning of the state space, but rather the space consisting of the entire time series (effectively, clustering in a (countably) infinite-dimensional space). Our approach also amounts to a novel type of sliding block lossy source coding. Improvement, with respect to several measures, is demonstrated over popular methods for symbolizing chaotic maps. We also apply our approach to time-series anomaly detection, considering both chaotic maps and failure application in a polycrystalline alloy material.

  8. Optimal mapping of neural-network learning on message-passing multicomputers

    NASA Technical Reports Server (NTRS)

    Chu, Lon-Chan; Wah, Benjamin W.

    1992-01-01

    A minimization of learning-algorithm completion time is sought in the present optimal-mapping study of the learning process in multilayer feed-forward artificial neural networks (ANNs) for message-passing multicomputers. A novel approximation algorithm for mappings of this kind is derived from observations of the dominance of a parallel ANN algorithm over its communication time. Attention is given to both static and dynamic mapping schemes for systems with static and dynamic background workloads, as well as to experimental results obtained for simulated mappings on multicomputers with dynamic background workloads.

  9. Cellular telephone-based radiation sensor and wide-area detection network

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2006-12-12

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  10. Cellular telephone-based radiation detection instrument

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  11. Cellular telephone-based wide-area radiation detection network

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  12. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D

    DOE PAGES

    Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto; ...

    2017-06-14

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less

  13. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less

  14. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D.

    PubMed

    Preciat Gonzalez, German A; El Assal, Lemmer R P; Noronha, Alberto; Thiele, Ines; Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2017-06-14

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, many algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.

  15. Resource utilization model for the algorithm to architecture mapping model

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Patel, Rakesh R.

    1993-01-01

    The analytical model for resource utilization and the variable node time and conditional node model for the enhanced ATAMM model for a real-time data flow architecture are presented in this research. The Algorithm To Architecture Mapping Model, ATAMM, is a Petri net based graph theoretic model developed at Old Dominion University, and is capable of modeling the execution of large-grained algorithms on a real-time data flow architecture. Using the resource utilization model, the resource envelope may be obtained directly from a given graph and, consequently, the maximum number of required resources may be evaluated. The node timing diagram for one iteration period may be obtained using the analytical resource envelope. The variable node time model, which describes the change in resource requirement for the execution of an algorithm under node time variation, is useful to expand the applicability of the ATAMM model to heterogeneous architectures. The model also describes a method of detecting the presence of resource limited mode and its subsequent prevention. Graphs with conditional nodes are shown to be reduced to equivalent graphs with time varying nodes and, subsequently, may be analyzed using the variable node time model to determine resource requirements. Case studies are performed on three graphs for the illustration of applicability of the analytical theories.

  16. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics

    PubMed Central

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M.

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system. PMID:26710335

  17. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.

    PubMed

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.

  18. Error Checking and Graphical Representation of Multiple–Complete–Digest (MCD) Restriction-Fragment Maps

    PubMed Central

    Thayer, Edward C.; Olson, Maynard V.; Karp, Richard M.

    1999-01-01

    Genetic and physical maps display the relative positions of objects or markers occurring within a target DNA molecule. In constructing maps, the primary objective is to determine the ordering of these objects. A further objective is to assign a coordinate to each object, indicating its distance from a reference end of the target molecule. This paper describes a computational method and a body of software for assigning coordinates to map objects, given a solution or partial solution to the ordering problem. We describe our method in the context of multiple–complete–digest (MCD) mapping, but it should be applicable to a variety of other mapping problems. Because of errors in the data or insufficient clone coverage to uniquely identify the true ordering of the map objects, a partial ordering is typically the best one can hope for. Once a partial ordering has been established, one often seeks to overlay a metric along the map to assess the distances between the map objects. This problem often proves intractable because of data errors such as erroneous local length measurements (e.g., large clone lengths on low-resolution physical maps). We present a solution to the coordinate assignment problem for MCD restriction-fragment mapping, in which a coordinated set of single-enzyme restriction maps are simultaneously constructed. We show that the coordinate assignment problem can be expressed as the solution of a system of linear constraints. If the linear system is free of inconsistencies, it can be solved using the standard Bellman–Ford algorithm. In the more typical case where the system is inconsistent, our program perturbs it to find a new consistent system of linear constraints, close to those of the given inconsistent system, using a modified Bellman–Ford algorithm. Examples are provided of simple map inconsistencies and the methods by which our program detects candidate data errors and directs the user to potential suspect regions of the map. PMID:9927487

  19. How similar are forest disturbance maps derived from different Landsat time series algorithms?

    Treesearch

    Warren B. Cohen; Sean P. Healey; Zhiqiang Yang; Stephen V. Stehman; C. Kenneth Brewer; Evan B. Brooks; Noel Gorelick; Chengqaun Huang; M. Joseph Hughes; Robert E. Kennedy; Thomas R. Loveland; Gretchen G. Moisen; Todd A. Schroeder; James E. Vogelmann; Curtis E. Woodcock; Limin Yang; Zhe Zhu

    2017-01-01

    Disturbance is a critical ecological process in forested systems, and disturbance maps are important for understanding forest dynamics. Landsat data are a key remote sensing dataset for monitoring forest disturbance and there recently has been major growth in the development of disturbance mapping algorithms. Many of these algorithms take advantage of the high temporal...

  20. Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.

    PubMed

    Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon

    2018-04-15

    In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.

  1. Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications

    PubMed Central

    Sotiropoulos, Konstantinos

    2018-01-01

    In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043

  2. Improvement of retinal blood vessel detection using morphological component analysis.

    PubMed

    Imani, Elaheh; Javidi, Malihe; Pourreza, Hamid-Reza

    2015-03-01

    Detection and quantitative measurement of variations in the retinal blood vessels can help diagnose several diseases including diabetic retinopathy. Intrinsic characteristics of abnormal retinal images make blood vessel detection difficult. The major problem with traditional vessel segmentation algorithms is producing false positive vessels in the presence of diabetic retinopathy lesions. To overcome this problem, a novel scheme for extracting retinal blood vessels based on morphological component analysis (MCA) algorithm is presented in this paper. MCA was developed based on sparse representation of signals. This algorithm assumes that each signal is a linear combination of several morphologically distinct components. In the proposed method, the MCA algorithm with appropriate transforms is adopted to separate vessels and lesions from each other. Afterwards, the Morlet Wavelet Transform is applied to enhance the retinal vessels. The final vessel map is obtained by adaptive thresholding. The performance of the proposed method is measured on the publicly available DRIVE and STARE datasets and compared with several state-of-the-art methods. An accuracy of 0.9523 and 0.9590 has been respectively achieved on the DRIVE and STARE datasets, which are not only greater than most methods, but are also superior to the second human observer's performance. The results show that the proposed method can achieve improved detection in abnormal retinal images and decrease false positive vessels in pathological regions compared to other methods. Also, the robustness of the method in the presence of noise is shown via experimental result. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  4. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  5. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    Wildfires have a profound impact upon the biosphere and our society in general. They cause loss of life, destruction of personal property and natural resources and alter the chemistry of the atmosphere. In response to the concern over the consequences of wildland fire and to support the fire management community, the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS) located in Camp Springs, Maryland gradually developed an operational system to routinely monitor wildland fire by satellite observations. The Hazard Mapping System, as it is known today, allows a team of trained fire analysts to examine and integrate, on a daily basis, remote sensing data from Geostationary Operational Environmental Satellite (GOES), Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors and generate a 24 hour fire product for the conterminous United States. Although assisted by automated fire detection algorithms, N O M has not been able to eliminate the human element from their fire detection procedures. As a consequence, the manually intensive effort has prevented NOAA from transitioning to a global fire product as urged particularly by climate modelers. NASA at Goddard Space Flight Center in Greenbelt, Maryland is helping N O M more fully automate the Hazard Mapping System by training neural networks to mimic the decision-making process of the frre analyst team as well as the automated algorithms.

  6. Creation of an Accurate Algorithm to Detect Snellen Best Documented Visual Acuity from Ophthalmology Electronic Health Record Notes.

    PubMed

    Mbagwu, Michael; French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J

    2016-05-04

    Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org.

  7. Creation of an Accurate Algorithm to Detect Snellen Best Documented Visual Acuity from Ophthalmology Electronic Health Record Notes

    PubMed Central

    French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J

    2016-01-01

    Background Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Objective Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. Methods We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Results Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Conclusions Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org. PMID:27146002

  8. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.

    PubMed

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-08-14

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.

  9. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    PubMed Central

    Wang, Shichen; Wong, Debbie; Forrest, Kerrie; Allen, Alexandra; Chao, Shiaoman; Huang, Bevan E; Maccaferri, Marco; Salvi, Silvio; Milner, Sara G; Cattivelli, Luigi; Mastrangelo, Anna M; Whan, Alex; Stephen, Stuart; Barker, Gary; Wieseke, Ralf; Plieske, Joerg; International Wheat Genome Sequencing Consortium; Lillemo, Morten; Mather, Diane; Appels, Rudi; Dolferus, Rudy; Brown-Guedira, Gina; Korol, Abraham; Akhunova, Alina R; Feuillet, Catherine; Salse, Jerome; Morgante, Michele; Pozniak, Curtis; Luo, Ming-Cheng; Dvorak, Jan; Morell, Matthew; Dubcovsky, Jorge; Ganal, Martin; Tuberosa, Roberto; Lawley, Cindy; Mikoulitch, Ivan; Cavanagh, Colin; Edwards, Keith J; Hayden, Matthew; Akhunov, Eduard

    2014-01-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat. PMID:24646323

  10. Statistical modeling, detection, and segmentation of stains in digitized fabric images

    NASA Astrophysics Data System (ADS)

    Gururajan, Arunkumar; Sari-Sarraf, Hamed; Hequet, Eric F.

    2007-02-01

    This paper will describe a novel and automated system based on a computer vision approach, for objective evaluation of stain release on cotton fabrics. Digitized color images of the stained fabrics are obtained, and the pixel values in the color and intensity planes of these images are probabilistically modeled as a Gaussian Mixture Model (GMM). Stain detection is posed as a decision theoretic problem, where the null hypothesis corresponds to absence of a stain. The null hypothesis and the alternate hypothesis mathematically translate into a first order GMM and a second order GMM respectively. The parameters of the GMM are estimated using a modified Expectation-Maximization (EM) algorithm. Minimum Description Length (MDL) is then used as the test statistic to decide the verity of the null hypothesis. The stain is then segmented by a decision rule based on the probability map generated by the EM algorithm. The proposed approach was tested on a dataset of 48 fabric images soiled with stains of ketchup, corn oil, mustard, ragu sauce, revlon makeup and grape juice. The decision theoretic part of the algorithm produced a correct detection rate (true positive) of 93% and a false alarm rate of 5% on these set of images.

  11. Using evolutionary computation to optimize an SVM used in detecting buried objects in FLIR imagery

    NASA Astrophysics Data System (ADS)

    Paino, Alex; Popescu, Mihail; Keller, James M.; Stone, Kevin

    2013-06-01

    In this paper we describe an approach for optimizing the parameters of a Support Vector Machine (SVM) as part of an algorithm used to detect buried objects in forward looking infrared (FLIR) imagery captured by a camera installed on a moving vehicle. The overall algorithm consists of a spot-finding procedure (to look for potential targets) followed by the extraction of several features from the neighborhood of each spot. The features include local binary pattern (LBP) and histogram of oriented gradients (HOG) as these are good at detecting texture classes. Finally, we project and sum each hit into UTM space along with its confidence value (obtained from the SVM), producing a confidence map for ROC analysis. In this work, we use an Evolutionary Computation Algorithm (ECA) to optimize various parameters involved in the system, such as the combination of features used, parameters on the Canny edge detector, the SVM kernel, and various HOG and LBP parameters. To validate our approach, we compare results obtained from an SVM using parameters obtained through our ECA technique with those previously selected by hand through several iterations of "guess and check".

  12. Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion

    PubMed Central

    Žitnik, Marinka; Zupan, Blaž

    2015-01-01

    Abstract Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions with greater precision. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, in this way completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to missing data values. We introduce a new interaction data imputation method called network-guided matrix completion (NG-MC). The core part of NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge presented as a collection of gene networks. NG-MC assumes that interactions are transitive, such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it propagates latent interaction profiles through each of the networks and updates gene network weights toward improved prediction. In a study with four different E-MAP data assays and considered protein–protein interaction and gene ontology similarity networks, NG-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allowed NG-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches. PMID:25658751

  13. a Weighted Closed-Form Solution for Rgb-D Data Registration

    NASA Astrophysics Data System (ADS)

    Vestena, K. M.; Dos Santos, D. R.; Oilveira, E. M., Jr.; Pavan, N. L.; Khoshelham, K.

    2016-06-01

    Existing 3D indoor mapping of RGB-D data are prominently point-based and feature-based methods. In most cases iterative closest point (ICP) and its variants are generally used for pairwise registration process. Considering that the ICP algorithm requires an relatively accurate initial transformation and high overlap a weighted closed-form solution for RGB-D data registration is proposed. In this solution, we weighted and normalized the 3D points based on the theoretical random errors and the dual-number quaternions are used to represent the 3D rigid body motion. Basically, dual-number quaternions provide a closed-form solution by minimizing a cost function. The most important advantage of the closed-form solution is that it provides the optimal transformation in one-step, it does not need to calculate good initial estimates and expressively decreases the demand for computer resources in contrast to the iterative method. Basically, first our method exploits RGB information. We employed a scale invariant feature transformation (SIFT) for extracting, detecting, and matching features. It is able to detect and describe local features that are invariant to scaling and rotation. To detect and filter outliers, we used random sample consensus (RANSAC) algorithm, jointly with an statistical dispersion called interquartile range (IQR). After, a new RGB-D loop-closure solution is implemented based on the volumetric information between pair of point clouds and the dispersion of the random errors. The loop-closure consists to recognize when the sensor revisits some region. Finally, a globally consistent map is created to minimize the registration errors via a graph-based optimization. The effectiveness of the proposed method is demonstrated with a Kinect dataset. The experimental results show that the proposed method can properly map the indoor environment with an absolute accuracy around 1.5% of the travel of a trajectory.

  14. A comparative analysis of chaotic particle swarm optimizations for detecting single nucleotide polymorphism barcodes.

    PubMed

    Chuang, Li-Yeh; Moi, Sin-Hua; Lin, Yu-Da; Yang, Cheng-Hong

    2016-10-01

    Evolutionary algorithms could overcome the computational limitations for the statistical evaluation of large datasets for high-order single nucleotide polymorphism (SNP) barcodes. Previous studies have proposed several chaotic particle swarm optimization (CPSO) methods to detect SNP barcodes for disease analysis (e.g., for breast cancer and chronic diseases). This work evaluated additional chaotic maps combined with the particle swarm optimization (PSO) method to detect SNP barcodes using a high-dimensional dataset. Nine chaotic maps were used to improve PSO method results and compared the searching ability amongst all CPSO methods. The XOR and ZZ disease models were used to compare all chaotic maps combined with PSO method. Efficacy evaluations of CPSO methods were based on statistical values from the chi-square test (χ 2 ). The results showed that chaotic maps could improve the searching ability of PSO method when population are trapped in the local optimum. The minor allele frequency (MAF) indicated that, amongst all CPSO methods, the numbers of SNPs, sample size, and the highest χ 2 value in all datasets were found in the Sinai chaotic map combined with PSO method. We used the simple linear regression results of the gbest values in all generations to compare the all methods. Sinai chaotic map combined with PSO method provided the highest β values (β≥0.32 in XOR disease model and β≥0.04 in ZZ disease model) and the significant p-value (p-value<0.001 in both the XOR and ZZ disease models). The Sinai chaotic map was found to effectively enhance the fitness values (χ 2 ) of PSO method, indicating that the Sinai chaotic map combined with PSO method is more effective at detecting potential SNP barcodes in both the XOR and ZZ disease models. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Delamination detection by Multi-Level Wavelet Processing of Continuous Scanning Laser Doppler Vibrometry data

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Martarelli, M.; Revel, G. M.

    2017-12-01

    A novel non-destructive testing procedure for delamination detection based on the exploitation of the simultaneous time and spatial sampling provided by Continuous Scanning Laser Doppler Vibrometry (CSLDV) and the feature extraction capability of Multi-Level wavelet-based processing is presented in this paper. The processing procedure consists in a multi-step approach. Once the optimal mother-wavelet is selected as the one maximizing the Energy to Shannon Entropy Ratio criterion among the mother-wavelet space, a pruning operation aiming at identifying the best combination of nodes inside the full-binary tree given by Wavelet Packet Decomposition (WPD) is performed. The pruning algorithm exploits, in double step way, a measure of the randomness of the point pattern distribution on the damage map space with an analysis of the energy concentration of the wavelet coefficients on those nodes provided by the first pruning operation. A combination of the point pattern distributions provided by each node of the ensemble node set from the pruning algorithm allows for setting a Damage Reliability Index associated to the final damage map. The effectiveness of the whole approach is proven on both simulated and real test cases. A sensitivity analysis related to the influence of noise on the CSLDV signal provided to the algorithm is also discussed, showing that the processing developed is robust enough to measurement noise. The method is promising: damages are well identified on different materials and for different damage-structure varieties.

  16. Distributed multimodal data fusion for large scale wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ertin, Emre

    2006-05-01

    Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.

  17. Conditional Random Field-Based Offline Map Matching for Indoor Environments

    PubMed Central

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-01-01

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm. PMID:27537892

  18. Conditional Random Field-Based Offline Map Matching for Indoor Environments.

    PubMed

    Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram

    2016-08-16

    In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm.

  19. Range image registration based on hash map and moth-flame optimization

    NASA Astrophysics Data System (ADS)

    Zou, Li; Ge, Baozhen; Chen, Lei

    2018-03-01

    Over the past decade, evolutionary algorithms (EAs) have been introduced to solve range image registration problems because of their robustness and high precision. However, EA-based range image registration algorithms are time-consuming. To reduce the computational time, an EA-based range image registration algorithm using hash map and moth-flame optimization is proposed. In this registration algorithm, a hash map is used to avoid over-exploitation in registration process. Additionally, we present a search equation that is better at exploration and a restart mechanism to avoid being trapped in local minima. We compare the proposed registration algorithm with the registration algorithms using moth-flame optimization and several state-of-the-art EA-based registration algorithms. The experimental results show that the proposed algorithm has a lower computational cost than other algorithms and achieves similar registration precision.

  20. Ten Years of Cloud Optical and Microphysical Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana

    2010-01-01

    The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).

  1. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing.

    PubMed

    Castle, John; Garrett-Engele, Phil; Armour, Christopher D; Duenwald, Sven J; Loerch, Patrick M; Meyer, Michael R; Schadt, Eric E; Stoughton, Roland; Parrish, Mark L; Shoemaker, Daniel D; Johnson, Jason M

    2003-01-01

    Microarrays offer a high-resolution means for monitoring pre-mRNA splicing on a genomic scale. We have developed a novel, unbiased amplification protocol that permits labeling of entire transcripts. Also, hybridization conditions, probe characteristics, and analysis algorithms were optimized for detection of exons, exon-intron edges, and exon junctions. These optimized protocols can be used to detect small variations and isoform mixtures, map the tissue specificity of known human alternative isoforms, and provide a robust, scalable platform for high-throughput discovery of alternative splicing.

  2. Lidar-Based Navigation Algorithm for Safe Lunar Landing

    NASA Technical Reports Server (NTRS)

    Myers, David M.; Johnson, Andrew E.; Werner, Robert A.

    2011-01-01

    The purpose of Hazard Relative Navigation (HRN) is to provide measurements to the Navigation Filter so that it can limit errors on the position estimate after hazards have been detected. The hazards are detected by processing a hazard digital elevation map (HDEM). The HRN process takes lidar images as the spacecraft descends to the surface and matches these to the HDEM to compute relative position measurements. Since the HDEM has the hazards embedded in it, the position measurements are relative to the hazards, hence the name Hazard Relative Navigation.

  3. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing

    PubMed Central

    Castle, John; Garrett-Engele, Phil; Armour, Christopher D; Duenwald, Sven J; Loerch, Patrick M; Meyer, Michael R; Schadt, Eric E; Stoughton, Roland; Parrish, Mark L; Shoemaker, Daniel D; Johnson, Jason M

    2003-01-01

    Microarrays offer a high-resolution means for monitoring pre-mRNA splicing on a genomic scale. We have developed a novel, unbiased amplification protocol that permits labeling of entire transcripts. Also, hybridization conditions, probe characteristics, and analysis algorithms were optimized for detection of exons, exon-intron edges, and exon junctions. These optimized protocols can be used to detect small variations and isoform mixtures, map the tissue specificity of known human alternative isoforms, and provide a robust, scalable platform for high-throughput discovery of alternative splicing. PMID:14519201

  4. An information-theoretic approach to the gravitational-wave burst detection problem

    NASA Astrophysics Data System (ADS)

    Katsavounidis, E.; Lynch, R.; Vitale, S.; Essick, R.; Robinet, F.

    2016-03-01

    The advanced era of gravitational-wave astronomy, with data collected in part by the LIGO gravitational-wave interferometers, has begun as of fall 2015. One potential type of detectable gravitational waves is short-duration gravitational-wave bursts, whose waveforms can be difficult to predict. We present the framework for a new detection algorithm - called oLIB - that can be used in relatively low-latency to turn calibrated strain data into a detection significance statement. This pipeline consists of 1) a sine-Gaussian matched-filter trigger generator based on the Q-transform - known as Omicron -, 2) incoherent down-selection of these triggers to the most signal-like set, and 3) a fully coherent analysis of this signal-like set using the Markov chain Monte Carlo (MCMC) Bayesian evidence calculator LALInferenceBurst (LIB). We optimally extract this information by using a likelihood-ratio test (LRT) to map these search statistics into a significance statement. Using representative archival LIGO data, we show that the algorithm can detect gravitational-wave burst events of realistic strength in realistic instrumental noise with good detection efficiencies across different burst waveform morphologies. With support from the National Science Foundation under Grant PHY-0757058.

  5. Localization in Self-Healing Autonomous Sensor Networks (SASNet): Studies on Cooperative Localization of Sensor Nodes using Distributed Maps

    DTIC Science & Technology

    2008-01-01

    CCA-MAP algorithm are analyzed. Further, we discuss the design considerations of the discussed cooperative localization algorithms to compare and...MAP and CCA-MAP to compare and evaluate their performance. Then a preliminary design analysis is given to address the implementation requirements and...plus précis, avec un nombre inférieur de nœuds ancres, comparativement aux autres types de schémas de localisation. En réalité, les algorithmes de

  6. Rapid Mapping Of Floods Using SAR Data: Opportunities And Critical Aspects

    NASA Astrophysics Data System (ADS)

    Pulvirenti, Luca; Pierdicca, Nazzareno; Chini, Marco

    2013-04-01

    The potentiality of spaceborne Synthetic Aperture Radar (SAR) for flood mapping was demonstrated by several past investigations. The synoptic view, the capability to operate in almost all-weather conditions and during both day time and night time and the sensitivity of the microwave band to water are the key features that make SAR data useful for monitoring inundation events. In addition, their high spatial resolution, which can reach 1m with the new generation of X-band instruments such as TerraSAR-X and COSMO-SkyMed (CSK), allows emergency managers to use flood maps at very high spatial resolution. CSK gives also the possibility of performing frequent observations of regions hit by floods, thanks to the four-satellite constellation. Current research on flood mapping using SAR is focused on the development of automatic algorithms to be used in near real time applications. The approaches are generally based on the low radar return from smooth open water bodies that behave as specular reflectors and appear dark in SAR images. The major advantage of automatic algorithms is the computational efficiency that makes them suitable for rapid mapping purposes. The choice of the threshold value that, in this kind of algorithms, separates flooded from non-flooded areas is a critical aspect because it depends on the characteristics of the observed scenario and on system parameters. To deal with this aspect an algorithm for automatic detection of the regions of low backscatter has been developed. It basically accomplishes three steps: 1) division of the SAR image in a set of non-overlapping sub-images or splits; 2) selection of inhomogeneous sub-images that contain (at least) two populations of pixels, one of which is formed by dark pixels; 3) the application in sequence of an automatic thresholding algorithm and a region growing algorithm in order to produce a homogeneous map of flooded areas. Besides the aforementioned choice of the threshold, rapid mapping of floods may present other critical aspects. Searching for low SAR backscatter areas only may cause inaccuracies because flooded soils do not always act as smooth open water bodies. The presence of wind or of vegetation emerging above the water surface may give rise to an increase of the radar backscatter. In particular, mapping flooded vegetation using SAR data may represent a difficult task since backscattering phenomena in the volume between canopy, trunks and floodwater are quite complex in the presence of vegetation. A typical phenomenon is the double-bounce effect involving soil and stems or trunks, which is generally enhanced by the floodwater, so that flooded vegetation may appear very bright in a SAR image. Even in the absence of dense vegetation or wind, some regions may appear dark because of artefacts due to topography (shadowing), absorption caused by wet snow, and attenuation caused by heavy precipitating clouds (X-band SARs). Examples of the aforementioned effects that may limit the reliability of flood maps will be presented at the conference and some indications to deal with these effects (e.g. presence of vegetation and of artefacts) will be provided.

  7. Statistical properties of interval mapping methods on quantitative trait loci location: impact on QTL/eQTL analyses

    PubMed Central

    2012-01-01

    Background Quantitative trait loci (QTL) detection on a huge amount of phenotypes, like eQTL detection on transcriptomic data, can be dramatically impaired by the statistical properties of interval mapping methods. One of these major outcomes is the high number of QTL detected at marker locations. The present study aims at identifying and specifying the sources of this bias, in particular in the case of analysis of data issued from outbred populations. Analytical developments were carried out in a backcross situation in order to specify the bias and to propose an algorithm to control it. The outbred population context was studied through simulated data sets in a wide range of situations. The likelihood ratio test was firstly analyzed under the "one QTL" hypothesis in a backcross population. Designs of sib families were then simulated and analyzed using the QTL Map software. On the basis of the theoretical results in backcross, parameters such as the population size, the density of the genetic map, the QTL effect and the true location of the QTL, were taken into account under the "no QTL" and the "one QTL" hypotheses. A combination of two non parametric tests - the Kolmogorov-Smirnov test and the Mann-Whitney-Wilcoxon test - was used in order to identify the parameters that affected the bias and to specify how much they influenced the estimation of QTL location. Results A theoretical expression of the bias of the estimated QTL location was obtained for a backcross type population. We demonstrated a common source of bias under the "no QTL" and the "one QTL" hypotheses and qualified the possible influence of several parameters. Simulation studies confirmed that the bias exists in outbred populations under both the hypotheses of "no QTL" and "one QTL" on a linkage group. The QTL location was systematically closer to marker locations than expected, particularly in the case of low QTL effect, small population size or low density of markers, i.e. designs with low power. Practical recommendations for experimental designs for QTL detection in outbred populations are given on the basis of this bias quantification. Furthermore, an original algorithm is proposed to adjust the location of a QTL, obtained with interval mapping, which co located with a marker. Conclusions Therefore, one should be attentive when one QTL is mapped at the location of one marker, especially under low power conditions. PMID:22520935

  8. Evaluation of the initial thematic output from a continuous change-detection algorithm for use in automated operational land-change mapping by the U.S. Geological Survey

    USGS Publications Warehouse

    Pengra, Bruce; Gallant, Alisa L.; Zhu, Zhe; Dahal, Devendra

    2016-01-01

    The U.S. Geological Survey (USGS) has begun the development of operational, 30-m resolution annual thematic land cover data to meet the needs of a variety of land cover data users. The Continuous Change Detection and Classification (CCDC) algorithm is being evaluated as the likely methodology following early trials. Data for training and testing of CCDC thematic maps have been provided by the USGS Land Cover Trends (LC Trends) project, which offers sample-based, manually classified thematic land cover data at 2755 probabilistically located sample blocks across the conterminous United States. These samples represent a high quality, well distributed source of data to train the Random Forest classifier invoked by CCDC. We evaluated the suitability of LC Trends data to train the classifier by assessing the agreement of annual land cover maps output from CCDC with output from the LC Trends project within 14 Landsat path/row locations across the conterminous United States. We used a small subset of circa 2000 data from the LC Trends project to train the classifier, reserving the remaining Trends data from 2000, and incorporating LC Trends data from 1992, to evaluate measures of agreement across time, space, and thematic classes, and to characterize disagreement. Overall agreement ranged from 75% to 98% across the path/rows, and results were largely consistent across time. Land cover types that were well represented in the training data tended to have higher rates of agreement between LC Trends and CCDC outputs. Characteristics of disagreement are being used to improve the use of LC Trends data as a continued source of training information for operational production of annual land cover maps.

  9. Multisensor and Multispectral Approach in Documenting and Analyzing Liquefaction Hazard using Remote Sensing

    NASA Astrophysics Data System (ADS)

    Oommen, T.; Baise, L. G.; Gens, R.; Prakash, A.; Gupta, R. P.

    2008-12-01

    Seismic liquefaction is the loss of strength of soil due to shaking that leads to various ground failures such as lateral spreading, settlements, tilting, and sand boils. It is important to document these failures after earthquakes to advance our study of when and where liquefaction occurs. The current approach of mapping these failures by field investigation teams suffers due to the inaccessibility to some of the sites immediately after the event, short life of some of these failures, difficulties in mapping the aerial extent of the failure, incomplete coverage etc. After the 2001 Bhuj earthquake (India), researchers, using the Indian remote sensing satellite, illustrated that satellite remote sensing can provide a synoptic view of the terrain and offer unbiased estimates of liquefaction failures. However, a multisensor (data from different sensors onboard of the same or different satellites) and multispectral (data collected in different spectral regions) approach is needed to efficiently document liquefaction incidences and/or its potential of occurrence due to the possibility of a particular satellite being located inappropriately to image an area shortly after an earthquake. The use of SAR satellite imagery ensures the acquisition of data in all weather conditions at day and night as well as information complimentary to the optical data sets. In this study, we analyze the applicability of the various satellites (Landsat, RADARSAT, Terra-MISR, IRS-1C, IRS-1D) in mapping liquefaction failures after the 2001 Bhuj earthquake using Support Vector Data Description (SVDD). The SVDD is a kernel based nonparametric outlier detection algorithm inspired by the Support Vector Machines (SVMs), which is a new generation learning algorithm based on the statistical learning theory. We present the applicability of SVDD for unsupervised change-detection studies (i.e. to identify post-earthquake liquefaction failures). The liquefaction occurrences identified from the different satellites using SVDD have been compared to the ground truth in terms of documented liquefaction failures by other researchers. We present the applicability and appropriateness of the various satellites and spectral regions for documenting liquefaction related failures. Results illustrate that the SVDD is a promising unsupervised change-detection algorithm, which can help in automating the documentation of earthquake induced liquefaction failures.

  10. Fast and Accurate Construction of Ultra-Dense Consensus Genetic Maps Using Evolution Strategy Optimization

    PubMed Central

    Mester, David; Ronin, Yefim; Schnable, Patrick; Aluru, Srinivas; Korol, Abraham

    2015-01-01

    Our aim was to develop a fast and accurate algorithm for constructing consensus genetic maps for chip-based SNP genotyping data with a high proportion of shared markers between mapping populations. Chip-based genotyping of SNP markers allows producing high-density genetic maps with a relatively standardized set of marker loci for different mapping populations. The availability of a standard high-throughput mapping platform simplifies consensus analysis by ignoring unique markers at the stage of consensus mapping thereby reducing mathematical complicity of the problem and in turn analyzing bigger size mapping data using global optimization criteria instead of local ones. Our three-phase analytical scheme includes automatic selection of ~100-300 of the most informative (resolvable by recombination) markers per linkage group, building a stable skeletal marker order for each data set and its verification using jackknife re-sampling, and consensus mapping analysis based on global optimization criterion. A novel Evolution Strategy optimization algorithm with a global optimization criterion presented in this paper is able to generate high quality, ultra-dense consensus maps, with many thousands of markers per genome. This algorithm utilizes "potentially good orders" in the initial solution and in the new mutation procedures that generate trial solutions, enabling to obtain a consensus order in reasonable time. The developed algorithm, tested on a wide range of simulated data and real world data (Arabidopsis), outperformed two tested state-of-the-art algorithms by mapping accuracy and computation time. PMID:25867943

  11. Computational modeling of river flow using bathymetry collected with an experimental, water-penetrating, green LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2009-12-01

    Airborne bathymetric Light Detection and Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly being deployed in fluvial environments. While the adaptation of this technology to rivers and streams would appear to be straightforward, currently technical challenges remain with regard to achieving high levels of vertical accuracy and precision when mapping bathymetry in shallow fluvial settings. Collectively these mapping errors have a direct bearing on hydraulic model predictions made using these data. We compared channel surveys conducted along the Platte River, Nebraska, and the Trinity River, California, using conventional ground-based methods with those made with the hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). In the turbid and braided Platte River, a bathymetric-waveform processing algorithm was shown to enhance the definition of thalweg channels over a more simplified, first-surface waveform processing algorithm. Consequently flow simulations using data processed with the shallow bathymetric algorithm resulted in improved prediction of wetted area relative to the first-surface algorithm, when compared to the wetted area in concurrent aerial imagery. However, when compared to using conventionally collected data for flow modeling, the inundation extent was over predicted with the EAARL topography due to higher bed elevations measured by the LiDAR. In the relatively clear, meandering Trinity River, bathymetric processing algorithms were capable of defining a 3 meter deep pool. However, a similar bias in depth measurement was observed, with the LiDAR measuring the elevation of the river bottom above its actual position, resulting in a predicted water surface higher than that measured by field data. This contribution addresses the challenge of making bathymetric measurements with the EAARL in different environmental conditions encountered in fluvial settings, explores technical issues related to reliably detecting the water surface and river bottom, and illustrates the impact of using LiDAR data and current processing techniques to produce above and below water topographic surfaces for hydraulic modeling and habitat applications.

  12. Detection of buried magnetic objects by a SQUID gradiometer system

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian

    2009-05-01

    We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.

  13. Computer simulation and evaluation of edge detection algorithms and their application to automatic path selection

    NASA Technical Reports Server (NTRS)

    Longendorfer, B. A.

    1976-01-01

    The construction of an autonomous roving vehicle requires the development of complex data-acquisition and processing systems, which determine the path along which the vehicle travels. Thus, a vehicle must possess algorithms which can (1) reliably detect obstacles by processing sensor data, (2) maintain a constantly updated model of its surroundings, and (3) direct its immediate actions to further a long range plan. The first function consisted of obstacle recognition. Obstacles may be identified by the use of edge detection techniques. Therefore, the Kalman Filter was implemented as part of a large scale computer simulation of the Mars Rover. The second function consisted of modeling the environment. The obstacle must be reconstructed from its edges, and the vast amount of data must be organized in a readily retrievable form. Therefore, a Terrain Modeller was developed which assembled and maintained a rectangular grid map of the planet. The third function consisted of directing the vehicle's actions.

  14. Nearest Neighbor Averaging and its Effect on the Critical Level and Minimum Detectable Concentration for Scanning Radiological Survey Instruments that Perform Facility Release Surveys.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, Sean Donovan; Beall, Patrick S; Miller, Mark L

    2014-08-01

    Through the SNL New Mexico Small Business Assistance (NMSBA) program, several Sandia engineers worked with the Environmental Restoration Group (ERG) Inc. to verify and validate a novel algorithm used to determine the scanning Critical Level (L c ) and Minimum Detectable Concentration (MDC) (or Minimum Detectable Areal Activity) for the 102F scanning system. Through the use of Monte Carlo statistical simulations the algorithm mathematically demonstrates accuracy in determining the L c and MDC when a nearest-neighbor averaging (NNA) technique was used. To empirically validate this approach, SNL prepared several spiked sources and ran a test with the ERG 102F instrumentmore » on a bare concrete floor known to have no radiological contamination other than background naturally occurring radioactive material (NORM). The tests conclude that the NNA technique increases the sensitivity (decreases the L c and MDC) for high-density data maps that are obtained by scanning radiological survey instruments.« less

  15. Large scale analysis of protein-binding cavities using self-organizing maps and wavelet-based surface patches to describe functional properties, selectivity discrimination, and putative cross-reactivity.

    PubMed

    Kupas, Katrin; Ultsch, Alfred; Klebe, Gerhard

    2008-05-15

    A new method to discover similar substructures in protein binding pockets, independently of sequence and folding patterns or secondary structure elements, is introduced. The solvent-accessible surface of a binding pocket, automatically detected as a depression on the protein surface, is divided into a set of surface patches. Each surface patch is characterized by its shape as well as by its physicochemical characteristics. Wavelets defined on surfaces are used for the description of the shape, as they have the great advantage of allowing a comparison at different resolutions. The number of coefficients to describe the wavelets can be chosen with respect to the size of the considered data set. The physicochemical characteristics of the patches are described by the assignment of the exposed amino acid residues to one or more of five different properties determinant for molecular recognition. A self-organizing neural network is used to project the high-dimensional feature vectors onto a two-dimensional layer of neurons, called a map. To find similarities between the binding pockets, in both geometrical and physicochemical features, a clustering of the projected feature vector is performed using an automatic distance- and density-based clustering algorithm. The method was validated with a small training data set of 109 binding cavities originating from a set of enzymes covering 12 different EC numbers. A second test data set of 1378 binding cavities, extracted from enzymes of 13 different EC numbers, was then used to prove the discriminating power of the algorithm and to demonstrate its applicability to large scale analyses. In all cases, members of the data set with the same EC number were placed into coherent regions on the map, with small distances between them. Different EC numbers are separated by large distances between the feature vectors. A third data set comprising three subfamilies of endopeptidases is used to demonstrate the ability of the algorithm to detect similar substructures between functionally related active sites. The algorithm can also be used to predict the function of novel proteins not considered in training data set. 2007 Wiley-Liss, Inc.

  16. Plumb as a cause of kidney cancer (case study: Iran from 2008-2010).

    PubMed

    Mazdak, Hamid; Rashidi, Maasoumeh; Zohary, Moien

    2015-10-01

    The main threats to human health from heavy metals are associated with exposure to plumb (Pb), cadmium, mercury, and arsenic. Some hazards that threat human health are the results of environmental factors and the relevant pollutions. Some important categories of diseases including (cancers) have considerable differences in various places, as observed in their spatial prevalence and distribution maps. The present study sets out to investigate the correlation between kidney cancer and the concentration of Pb in Iran. In this study, the first challenge was to collect some relevant information. In this connection, the authors managed to gain access to data concerning kidney cancer in Iran. The data were collected by a health centre for the period of 2008-2010. Besides, a map of Pb distribution in soil, drawn by the Mineral Exploration Organization, and Plumb Concentration Information, collected by Agriculture Jihad Organization, were used. Using a geographic information system (GIS) software such as ArcGIS (USA), the researchers drew the map of the spatial distribution of kidney cancer in the Iran country. In the indirect methods, one measures vegetation stress caused by heavy metal soil contamination. In direct methods, target detection algorithms are used to detect a selected material on the basis of its unique spectral signature. In this research, we applied target detection algorithms on moderate resolution imaging spectroradiometer (MODIS) images to detect Pb. MODIS is a sensor placed on the Terra satellite that collects data in 35 spectral bands with 250-1,000 m special resolutions. The spatial distribution of kidney cancer in Iran country delineated above revealed a positive correlation between the amount of lead and the high frequency of kidney cancer. Regression analyses also confirmed this relationship (R (2) = 0.77 and R = 0.87). The findings of the current study underscore not only the importance of preventing exposure to Pb but also the importance of controlling Pb-producing industries.

  17. Continuous intensity map optimization (CIMO): A novel approach to leaf sequencing in step and shoot IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Daliang; Earl, Matthew A.; Luan, Shuang

    2006-04-15

    A new leaf-sequencing approach has been developed that is designed to reduce the number of required beam segments for step-and-shoot intensity modulated radiation therapy (IMRT). This approach to leaf sequencing is called continuous-intensity-map-optimization (CIMO). Using a simulated annealing algorithm, CIMO seeks to minimize differences between the optimized and sequenced intensity maps. Two distinguishing features of the CIMO algorithm are (1) CIMO does not require that each optimized intensity map be clustered into discrete levels and (2) CIMO is not rule-based but rather simultaneously optimizes both the aperture shapes and weights. To test the CIMO algorithm, ten IMRT patient cases weremore » selected (four head-and-neck, two pancreas, two prostate, one brain, and one pelvis). For each case, the optimized intensity maps were extracted from the Pinnacle{sup 3} treatment planning system. The CIMO algorithm was applied, and the optimized aperture shapes and weights were loaded back into Pinnacle. A final dose calculation was performed using Pinnacle's convolution/superposition based dose calculation. On average, the CIMO algorithm provided a 54% reduction in the number of beam segments as compared with Pinnacle's leaf sequencer. The plans sequenced using the CIMO algorithm also provided improved target dose uniformity and a reduced discrepancy between the optimized and sequenced intensity maps. For ten clinical intensity maps, comparisons were performed between the CIMO algorithm and the power-of-two reduction algorithm of Xia and Verhey [Med. Phys. 25(8), 1424-1434 (1998)]. When the constraints of a Varian Millennium multileaf collimator were applied, the CIMO algorithm resulted in a 26% reduction in the number of segments. For an Elekta multileaf collimator, the CIMO algorithm resulted in a 67% reduction in the number of segments. An average leaf sequencing time of less than one minute per beam was observed.« less

  18. SNP Marker Integration and QTL Analysis of 12 Agronomic and Morphological Traits in F8 RILs of Pepper (Capsicum annuum L.)

    PubMed Central

    Lu, Fu-Hao; Kwon, Soon-Wook; Yoon, Min-Young; Kim, Ki-Taek; Cho, Myeong-Cheoul; Yoon, Moo-Kyung; Park, Yong-Jin

    2012-01-01

    Red pepper, Capsicum annuum L., has been attracting geneticists’ and breeders’ attention as one of the important agronomic crops. This study was to integrate 41 SNP markers newly developed from comparative transcriptomes into a previous linkage map, and map 12 agronomic and morphological traits into the integrated map. A total of 39 markers found precise position and were assigned to 13 linkage groups (LGs) as well as the unassigned LGe, leading to total 458 molecular markers present in this genetic map. Linkage mapping was supported by the physical mapping to tomato and potato genomes using BLAST retrieving, revealing at least two-thirds of the markers mapped to the corresponding LGs. A sum of 23 quantitative trait loci from 11 traits was detected using the composite interval mapping algorithm. A consistent interval between a035_1 and a170_1 on LG5 was detected as a main-effect locus among the resistance QTLs to Phytophthora capsici at high-, intermediate- and low-level tests, and interactions between the QTLs for high-level resistance test were found. Considering the epistatic effect, those QTLs could explain up to 98.25% of the phenotype variations of resistance. Moreover, 17 QTLs for another eight traits were found to locate on LG3, 4, and 12 mostly with varying phenotypic contribution. Furthermore, the locus for corolla color was mapped to LG10 as a marker. The integrated map and the QTLs identified would be helpful for current genetics research and crop breeding, especially in the Solanaceae family. PMID:22684870

  19. Simultaneous compression and encryption for secure real-time secure transmission of sensitive video transmission

    NASA Astrophysics Data System (ADS)

    Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah A.

    2014-05-01

    Video compression and encryption became very essential in a secured real time video transmission. Applying both techniques simultaneously is one of the challenges where the size and the quality are important in multimedia transmission. In this paper we proposed a new technique for video compression and encryption. Both encryption and compression are based on edges extracted from the high frequency sub-bands of wavelet decomposition. The compression algorithm based on hybrid of: discrete wavelet transforms, discrete cosine transform, vector quantization, wavelet based edge detection, and phase sensing. The compression encoding algorithm treats the video reference and non-reference frames in two different ways. The encryption algorithm utilized A5 cipher combined with chaotic logistic map to encrypt the significant parameters and wavelet coefficients. Both algorithms can be applied simultaneously after applying the discrete wavelet transform on each individual frame. Experimental results show that the proposed algorithms have the following features: high compression, acceptable quality, and resistance to the statistical and bruteforce attack with low computational processing.

  20. A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters

    NASA Astrophysics Data System (ADS)

    Shanmugam, Palanisamy

    2011-04-01

    A new bio-optical algorithm has been developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms. A global data set of concurrent measurements of pigment concentration and radiometric reflectance was compiled and used to develop this algorithm that uses the normalized water-leaving radiance ratios along with an algal bloom index (ABI) between three visible bands to determine Chl a concentrations. The algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a variety of coastal and ocean waters the present algorithm makes good retrievals of the Chl a concentration and shows statistically significant improvement over current global algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida shelf shows that the new algorithm provides a better means for detecting and differentiating algal blooms from other turbid features, whereas the OC3 algorithm has significant errors although yielding relatively consistent results in clear waters. These findings imply that, provided that an accurate atmospheric correction scheme is available to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be extensively used for quantitative and operational monitoring of algal blooms in various regional and global waters.

  1. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  2. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer

    Templeton, Dennise

    2013-11-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  3. Learning a detection map for a network of unattended ground sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hung D.; Koch, Mark William

    2010-03-01

    We have developed algorithms to automatically learn a detection map of a deployed sensor field for a virtual presence and extended defense (VPED) system without apriori knowledge of the local terrain. The VPED system is an unattended network of sensor pods, with each pod containing acoustic and seismic sensors. Each pod has the ability to detect and classify moving targets at a limited range. By using a network of pods we can form a virtual perimeter with each pod responsible for a certain section of the perimeter. The site's geography and soil conditions can affect the detection performance of themore » pods. Thus, a network in the field may not have the same performance as a network designed in the lab. To solve this problem we automatically estimate a network's detection performance as it is being installed at a site by a mobile deployment unit (MDU). The MDU will wear a GPS unit, so the system not only knows when it can detect the MDU, but also the MDU's location. In this paper, we demonstrate how to handle anisotropic sensor-configurations, geography, and soil conditions.« less

  4. Small Fire Detection Algorithm Development using VIIRS 375m Imagery: Application to Agricultural Fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin

    2016-04-01

    Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.

  5. Parallel algorithms for mapping pipelined and parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1988-01-01

    Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.

  6. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.

    PubMed

    Minati, Ludovico; Cercignani, Mara; Chan, Dennis

    2013-10-01

    Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. High-resolution Self-Organizing Maps for advanced visualization and dimension reduction.

    PubMed

    Saraswati, Ayu; Nguyen, Van Tuc; Hagenbuchner, Markus; Tsoi, Ah Chung

    2018-05-04

    Kohonen's Self Organizing feature Map (SOM) provides an effective way to project high dimensional input features onto a low dimensional display space while preserving the topological relationships among the input features. Recent advances in algorithms that take advantages of modern computing hardware introduced the concept of high resolution SOMs (HRSOMs). This paper investigates the capabilities and applicability of the HRSOM as a visualization tool for cluster analysis and its suitabilities to serve as a pre-processor in ensemble learning models. The evaluation is conducted on a number of established benchmarks and real-world learning problems, namely, the policeman benchmark, two web spam detection problems, a network intrusion detection problem, and a malware detection problem. It is found that the visualization resulted from an HRSOM provides new insights concerning these learning problems. It is furthermore shown empirically that broad benefits from the use of HRSOMs in both clustering and classification problems can be expected. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  9. A semi-supervised classification algorithm using the TAD-derived background as training data

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Ambeau, Brittany; Messinger, David W.

    2013-05-01

    In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.

  10. Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition.

    PubMed

    Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci

    2016-05-01

    Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility quantification at high-concentrated iron accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A segmentation/clustering model for the analysis of array CGH data.

    PubMed

    Picard, F; Robin, S; Lebarbier, E; Daudin, J-J

    2007-09-01

    Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.

  12. Autonomous spacecraft landing through human pre-attentive vision.

    PubMed

    Schiavone, Giuseppina; Izzo, Dario; Simões, Luís F; de Croon, Guido C H E

    2012-06-01

    In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in hazard avoidance algorithms and landmark detection, often by reference to a priori maps, ranked by scientists according to specific scientific criteria. Here, we present a bio-inspired approach based on the human ability to quickly select intrinsically salient targets in the visual scene; this ability is fundamental for fast decision-making processes in unpredictable and unknown circumstances. The proposed system integrates a simple model of the spacecraft and optimality principles which guarantee minimum fuel consumption during the landing procedure; detected salient sites are used for retargeting the spacecraft trajectory, under safety and reachability conditions. We compare the decisions taken by the proposed algorithm with that of a number of human subjects tested under the same conditions. Our results show how the developed algorithm is indistinguishable from the human subjects with respect to areas, occurrence and timing of the retargeting.

  13. Scene text recognition in mobile applications by character descriptor and structure configuration.

    PubMed

    Yi, Chucai; Tian, Yingli

    2014-07-01

    Text characters and strings in natural scene can provide valuable information for many applications. Extracting text directly from natural scene images or videos is a challenging task because of diverse text patterns and variant background interferences. This paper proposes a method of scene text recognition from detected text regions. In text detection, our previously proposed algorithms are applied to obtain text regions from scene image. First, we design a discriminative character descriptor by combining several state-of-the-art feature detectors and descriptors. Second, we model character structure at each character class by designing stroke configuration maps. Our algorithm design is compatible with the application of scene text extraction in smart mobile devices. An Android-based demo system is developed to show the effectiveness of our proposed method on scene text information extraction from nearby objects. The demo system also provides us some insight into algorithm design and performance improvement of scene text extraction. The evaluation results on benchmark data sets demonstrate that our proposed scheme of text recognition is comparable with the best existing methods.

  14. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  15. Implementation theory of distortion-invariant pattern recognition for optical and digital signal processing systems

    NASA Astrophysics Data System (ADS)

    Lhamon, Michael Earl

    A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.

  16. Detection of Thermal Erosion Gullies from High-Resolution Images Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Huang, L.; Liu, L.; Jiang, L.; Zhang, T.; Sun, Y.

    2017-12-01

    Thermal erosion gullies, one type of thermokarst landforms, develop due to thawing of ice-rich permafrost. Mapping the location and extent of thermal erosion gullies can help understand the spatial distribution of thermokarst landforms and their temporal evolution. Remote sensing images provide an effective way for mapping thermokarst landforms, especially thermokarst lakes. However, thermal erosion gullies are challenging to map from remote sensing images due to their small sizes and significant variations in geometric/radiometric properties. It is feasible to manually identify these features, as a few previous studies have carried out. However manual methods are labor-intensive, therefore, cannot be used for a large study area. In this work, we conduct automatic mapping of thermal erosion gullies from high-resolution images by using Deep Learning. Our study area is located in Eboling Mountain (Qinghai, China). Within a 6 km2 peatland area underlain by ice-rich permafrost, at least 20 thermal erosional gullies are well developed. The image used is a 15-cm-resolution Digital Orthophoto Map (DOM) generated in July 2016. First, we extracted 14 gully patches and ten non-gully patches as training data. And we performed image augmentation. Next, we fine-tuned the pre-trained model of DeepLab, a deep-learning algorithm for semantic image segmentation based on Deep Convolutional Neural Networks. Then, we performed inference on the whole DOM and obtained intermediate results in forms of polygons for all identified gullies. At last, we removed misidentified polygons based on a few pre-set criteria on the size and shape of each polygon. Our final results include 42 polygons. Validated against field measurements using GPS, most of the gullies are detected correctly. There are 20 false detections due to the small number and low quality of training images. We also found three new gullies that missed in the field observations. This study shows that (1) despite a challenging mapping task, DeepLab can detect small, irregular-shaped thermal erosion gullies with high accuracy. (2) Automatic detection is critical for mapping thermal erosion gully since manual mapping or field work may miss some targets even in a relatively small region. (3) The quantity and quality of training data are crucial for detection accuracy.

  17. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    NASA Astrophysics Data System (ADS)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  18. Automated analysis of brain activity for seizure detection in zebrafish models of epilepsy.

    PubMed

    Hunyadi, Borbála; Siekierska, Aleksandra; Sourbron, Jo; Copmans, Daniëlle; de Witte, Peter A M

    2017-08-01

    Epilepsy is a chronic neurological condition, with over 30% of cases unresponsive to treatment. Zebrafish larvae show great potential to serve as an animal model of epilepsy in drug discovery. Thanks to their high fecundity and relatively low cost, they are amenable to high-throughput screening. However, the assessment of seizure occurrences in zebrafish larvae remains a bottleneck, as visual analysis is subjective and time-consuming. For the first time, we present an automated algorithm to detect epileptic discharges in single-channel local field potential (LFP) recordings in zebrafish. First, candidate seizure segments are selected based on their energy and length. Afterwards, discriminative features are extracted from each segment. Using a labeled dataset, a support vector machine (SVM) classifier is trained to learn an optimal feature mapping. Finally, this SVM classifier is used to detect seizure segments in new signals. We tested the proposed algorithm both in a chemically-induced seizure model and a genetic epilepsy model. In both cases, the algorithm delivered similar results to visual analysis and found a significant difference in number of seizures between the epileptic and control group. Direct comparison with multichannel techniques or methods developed for different animal models is not feasible. Nevertheless, a literature review shows that our algorithm outperforms state-of-the-art techniques in terms of accuracy, precision and specificity, while maintaining a reasonable sensitivity. Our seizure detection system is a generic, time-saving and objective method to analyze zebrafish LPF, which can replace visual analysis and facilitate true high-throughput studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Multi-Temporal Multi-Sensor Analysis of Urbanization and Environmental/Climate Impact in China for Sustainable Urban Development

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun

    2016-08-01

    The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.

  20. An image-space parallel convolution filtering algorithm based on shadow map

    NASA Astrophysics Data System (ADS)

    Li, Hua; Yang, Huamin; Zhao, Jianping

    2017-07-01

    Shadow mapping is commonly used in real-time rendering. In this paper, we presented an accurate and efficient method of soft shadows generation from planar area lights. First this method generated a depth map from light's view, and analyzed the depth-discontinuities areas as well as shadow boundaries. Then these areas were described as binary values in the texture map called binary light-visibility map, and a parallel convolution filtering algorithm based on GPU was enforced to smooth out the boundaries with a box filter. Experiments show that our algorithm is an effective shadow map based method that produces perceptually accurate soft shadows in real time with more details of shadow boundaries compared with the previous works.

  1. Textile Pressure Mapping Sensor for Emotional Touch Detection in Human-Robot Interaction

    PubMed Central

    Cruz Zurian, Heber; Atefi, Seyed Reza; Seoane Martinez, Fernando; Lukowicz, Paul

    2017-01-01

    In this paper, we developed a fully textile sensing fabric for tactile touch sensing as the robot skin to detect human-robot interactions. The sensor covers a 20-by-20 cm2 area with 400 sensitive points and samples at 50 Hz per point. We defined seven gestures which are inspired by the social and emotional interactions of typical people to people or pet scenarios. We conducted two groups of mutually blinded experiments, involving 29 participants in total. The data processing algorithm first reduces the spatial complexity to frame descriptors, and temporal features are calculated through basic statistical representations and wavelet analysis. Various classifiers are evaluated and the feature calculation algorithms are analyzed in details to determine each stage and segments’ contribution. The best performing feature-classifier combination can recognize the gestures with a 93.3% accuracy from a known group of participants, and 89.1% from strangers. PMID:29120389

  2. Textile Pressure Mapping Sensor for Emotional Touch Detection in Human-Robot Interaction.

    PubMed

    Zhou, Bo; Altamirano, Carlos Andres Velez; Zurian, Heber Cruz; Atefi, Seyed Reza; Billing, Erik; Martinez, Fernando Seoane; Lukowicz, Paul

    2017-11-09

    In this paper, we developed a fully textile sensing fabric for tactile touch sensing as the robot skin to detect human-robot interactions. The sensor covers a 20-by-20 cm 2 area with 400 sensitive points and samples at 50 Hz per point. We defined seven gestures which are inspired by the social and emotional interactions of typical people to people or pet scenarios. We conducted two groups of mutually blinded experiments, involving 29 participants in total. The data processing algorithm first reduces the spatial complexity to frame descriptors, and temporal features are calculated through basic statistical representations and wavelet analysis. Various classifiers are evaluated and the feature calculation algorithms are analyzed in details to determine each stage and segments' contribution. The best performing feature-classifier combination can recognize the gestures with a 93 . 3 % accuracy from a known group of participants, and 89 . 1 % from strangers.

  3. Optimal Sensor Scheduling for Multiple Hypothesis Testing

    DTIC Science & Technology

    1981-09-01

    Naval Research, under contract N00014-77-0532 is gratpfully acknowledged. 2 Laboratory for Information and Decision Systems , MIT Room 35-213, Cambridge...treat the more general problem [9,10]. However, two common threads connect these approaches: they obtain feedback laws mapping posterior destributions ...objective of a detection or identification algorithm is to produce correct estimates of the true state of a system . It is also bene- ficial if these

  4. A Method of Mapping Burned Area Using Chinese FengYun-3 MERSI Satellite Data

    NASA Astrophysics Data System (ADS)

    Shan, T.

    2017-12-01

    Wildfire is a naturally reoccurring global phenomenon which has environmental and ecological consequences such as effects on the global carbon budget, changes to the global carbon cycle and disruption to ecosystem succession. The information of burned area is significant for post disaster assessment, ecosystems protection and restoration. The Medium Resolution Spectral Imager (MERSI) onboard FENGYUN-3C (FY-3C) has shown good ability for fire detection and monitoring but lacks recognition among researchers. In this study, an automated burned area mapping algorithm was proposed based on FY-3C MERSI data. The algorithm is generally divided into two phases: 1) selection of training pixels based on 1000-m resolution MERSI data, which offers more spectral information through the use of more vegetation indices; and 2) classification: first the region growing method is applied to 1000-m MERSI data to calculate the core burned area and then the same classification method is applied to the 250-m MERSI data set by using the core burned area as a seed to obtain results at a finer spatial resolution. An evaluation of the performance of the algorithm was carried out at two study sites in America and Canada. The accuracy assessment and validation were made by comparing our results with reference results derived from Landsat OLI data. The result has a high kappa coefficient and the lower commission error, indicating that this algorithm can improve the burned area mapping accuracy at the two study sites. It may then be possible to use MERSI and other data to fill the gaps in the imaging of burned areas in the future.

  5. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.

    PubMed

    Wang, Changqing; Zhang, Xinyuan; Liu, Xiaoyun; He, Taigang; Chen, Wufan; Feng, Qianjin; Feng, Yanqiu

    2018-08-01

    To improve liver R2* mapping by incorporating adaptive neighborhood regularization into pixel-wise curve fitting. Magnetic resonance imaging R2* mapping remains challenging because of the serial images with low signal-to-noise ratio. In this study, we proposed to exploit the neighboring pixels as regularization terms and adaptively determine the regularization parameters according to the interpixel signal similarity. The proposed algorithm, called the pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was compared with the conventional nonlinear least squares (NLS) and nonlocal means filter-based NLS algorithms on simulated, phantom, and in vivo data. Visually, the PCANR algorithm generates R2* maps with significantly reduced noise and well-preserved tiny structures. Quantitatively, the PCANR algorithm produces R2* maps with lower root mean square errors at varying R2* values and signal-to-noise-ratio levels compared with the NLS and nonlocal means filter-based NLS algorithms. For the high R2* values under low signal-to-noise-ratio levels, the PCANR algorithm outperforms the NLS and nonlocal means filter-based NLS algorithms in the accuracy and precision, in terms of mean and standard deviation of R2* measurements in selected region of interests, respectively. The PCANR algorithm can reduce the effect of noise on liver R2* mapping, and the improved measurement precision will benefit the assessment of hepatic iron in clinical practice. Magn Reson Med 80:792-801, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency.

    PubMed

    Zhang, Ying-Ying; Yang, Cai; Zhang, Ping

    2017-05-01

    In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Recursive approach to the moment-based phase unwrapping method.

    PubMed

    Langley, Jason A; Brice, Robert G; Zhao, Qun

    2010-06-01

    The moment-based phase unwrapping algorithm approximates the phase map as a product of Gegenbauer polynomials, but the weight function for the Gegenbauer polynomials generates artificial singularities along the edge of the phase map. A method is presented to remove the singularities inherent to the moment-based phase unwrapping algorithm by approximating the phase map as a product of two one-dimensional Legendre polynomials and applying a recursive property of derivatives of Legendre polynomials. The proposed phase unwrapping algorithm is tested on simulated and experimental data sets. The results are then compared to those of PRELUDE 2D, a widely used phase unwrapping algorithm, and a Chebyshev-polynomial-based phase unwrapping algorithm. It was found that the proposed phase unwrapping algorithm provides results that are comparable to those obtained by using PRELUDE 2D and the Chebyshev phase unwrapping algorithm.

  8. Glacier Frontal Line Extraction from SENTINEL-1 SAR Imagery in Prydz Area

    NASA Astrophysics Data System (ADS)

    Li, F.; Wang, Z.; Zhang, S.; Zhang, Y.

    2018-04-01

    Synthetic Aperture Radar (SAR) can provide all-day and all-night observation of the earth in all-weather conditions with high resolution, and it is widely used in polar research including sea ice, sea shelf, as well as the glaciers. For glaciers monitoring, the frontal position of a calving glacier at different moments of time is of great importance, which indicates the estimation of the calving rate and flux of the glaciers. In this abstract, an automatic algorithm for glacier frontal extraction using time series Sentinel-1 SAR imagery is proposed. The technique transforms the amplitude imagery of Sentinel-1 SAR into a binary map using SO-CFAR method, and then frontal points are extracted using profile method which reduces the 2D binary map to 1D binary profiles, the final frontal position of a calving glacier is the optimal profile selected from the different average segmented profiles. The experiment proves that the detection algorithm for SAR data can automatically extract the frontal position of glacier with high efficiency.

  9. The chimeric mapping problem: algorithmic strategies and performance evaluation on synthetic genomic data.

    PubMed

    Greenberg, D; Istrail, S

    1994-09-01

    The Human Genome Project requires better software for the creation of physical maps of chromosomes. Current mapping techniques involve breaking large segments of DNA into smaller, more-manageable pieces, gathering information on all the small pieces, and then constructing a map of the original large piece from the information about the small pieces. Unfortunately, in the process of breaking up the DNA some information is lost and noise of various types is introduced; in particular, the order of the pieces is not preserved. Thus, the map maker must solve a combinatorial problem in order to reconstruct the map. Good software is indispensable for quick, accurate reconstruction. The reconstruction is complicated by various experimental errors. A major source of difficulty--which seems to be inherent to the recombination technology--is the presence of chimeric DNA clones. It is fairly common for two disjoint DNA pieces to form a chimera, i.e., a fusion of two pieces which appears as a single piece. Attempts to order chimera will fail unless they are algorithmically divided into their constituent pieces. Despite consensus within the genomic mapping community of the critical importance of correcting chimerism, algorithms for solving the chimeric clone problem have received only passing attention in the literature. Based on a model proposed by Lander (1992a, b) this paper presents the first algorithms for analyzing chimerism. We construct physical maps in the presence of chimerism by creating optimization functions which have minimizations which correlate with map quality. Despite the fact that these optimization functions are invariably NP-complete our algorithms are guaranteed to produce solutions which are close to the optimum. The practical import of using these algorithms depends on the strength of the correlation of the function to the map quality as well as on the accuracy of the approximations. We employ two fundamentally different optimization functions as a means of avoiding biases likely to decorrelate the solutions from the desired map. Experiments on simulated data show that both our algorithm which minimizes the number of chimeric fragments in a solution and our algorithm which minimizes the maximum number of fragments per clone in a solution do, in fact, correlate to high quality solutions. Furthermore, tests on simulated data using parameters set to mimic real experiments show that that the algorithms have the potential to find high quality solutions with real data. We plan to test our software against real data from the Whitehead Institute and from Los Alamos Genomic Research Center in the near future.

  10. Insights on correlation dimension from dynamics mapping of three experimental nonlinear laser systems.

    PubMed

    McMahon, Christopher J; Toomey, Joshua P; Kane, Deb M

    2017-01-01

    We have analysed large data sets consisting of tens of thousands of time series from three Type B laser systems: a semiconductor laser in a photonic integrated chip, a semiconductor laser subject to optical feedback from a long free-space-external-cavity, and a solid-state laser subject to optical injection from a master laser. The lasers can deliver either constant, periodic, pulsed, or chaotic outputs when parameters such as the injection current and the level of external perturbation are varied. The systems represent examples of experimental nonlinear systems more generally and cover a broad range of complexity including systematically varying complexity in some regions. In this work we have introduced a new procedure for semi-automatically interrogating experimental laser system output power time series to calculate the correlation dimension (CD) using the commonly adopted Grassberger-Proccacia algorithm. The new CD procedure is called the 'minimum gradient detection algorithm'. A value of minimum gradient is returned for all time series in a data set. In some cases this can be identified as a CD, with uncertainty. Applying the new 'minimum gradient detection algorithm' CD procedure, we obtained robust measurements of the correlation dimension for many of the time series measured from each laser system. By mapping the results across an extended parameter space for operation of each laser system, we were able to confidently identify regions of low CD (CD < 3) and assign these robust values for the correlation dimension. However, in all three laser systems, we were not able to measure the correlation dimension at all parts of the parameter space. Nevertheless, by mapping the staged progress of the algorithm, we were able to broadly classify the dynamical output of the lasers at all parts of their respective parameter spaces. For two of the laser systems this included displaying regions of high-complexity chaos and dynamic noise. These high-complexity regions are differentiated from regions where the time series are dominated by technical noise. This is the first time such differentiation has been achieved using a CD analysis approach. More can be known of the CD for a system when it is interrogated in a mapping context, than from calculations using isolated time series. This has been shown for three laser systems and the approach is expected to be useful in other areas of nonlinear science where large data sets are available and need to be semi-automatically analysed to provide real dimensional information about the complex dynamics. The CD/minimum gradient algorithm measure provides additional information that complements other measures of complexity and relative complexity, such as the permutation entropy; and conventional physical measurements.

  11. Quasi-conformal mapping with genetic algorithms applied to coordinate transformations

    NASA Astrophysics Data System (ADS)

    González-Matesanz, F. J.; Malpica, J. A.

    2006-11-01

    In this paper, piecewise conformal mapping for the transformation of geodetic coordinates is studied. An algorithm, which is an improved version of a previous algorithm published by Lippus [2004a. On some properties of piecewise conformal mappings. Eesti NSV Teaduste Akademmia Toimetised Füüsika-Matemaakika 53, 92-98; 2004b. Transformation of coordinates using piecewise conformal mapping. Journal of Geodesy 78 (1-2), 40] is presented; the improvement comes from using a genetic algorithm to partition the complex plane into convex polygons, whereas the original one did so manually. As a case study, the method is applied to the transformation of the Spanish datum ED50 and ETRS89, and both its advantages and disadvantages are discussed herein.

  12. a New Object-Based Framework to Detect Shodows in High-Resolution Satellite Imagery Over Urban Areas

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.; Hadavand, A.

    2015-12-01

    In this paper a new object-based framework to detect shadow areas in high resolution satellite images is proposed. To produce shadow map in pixel level state of the art supervised machine learning algorithms are employed. Automatic ground truth generation based on Otsu thresholding on shadow and non-shadow indices is used to train the classifiers. It is followed by segmenting the image scene and create image objects. To detect shadow objects, a majority voting on pixel-based shadow detection result is designed. GeoEye-1 multi-spectral image over an urban area in Qom city of Iran is used in the experiments. Results shows the superiority of our proposed method over traditional pixel-based, visually and quantitatively.

  13. A hybrid approach for text detection in natural scenes

    NASA Astrophysics Data System (ADS)

    Wang, Runmin; Sang, Nong; Wang, Ruolin; Kuang, Xiaoqin

    2013-10-01

    In this paper, a hybrid approach is proposed to detect texts in natural scenes. It is performed by the following steps: Firstly, the edge map and the text saliency region are obtained. Secondly, the text candidate regions are detected by connected components (CC) based method and are identified by an off-line trained HOG classifier. And then, the remaining CCs are grouped into text lines with some heuristic strategies to make up for the false negatives. Finally, the text lines are broken into separate words. The performance of the proposed approach is evaluated on the location detection database of ICDAR 2003 robust reading competition. Experimental results demonstrate the validity of our approach and are competitive with other state-of-the-art algorithms.

  14. The HectoMAP Cluster Survey. II. X-Ray Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, Jubee; Chon, Gayoung; Bohringer, Hans

    Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less

  15. The HectoMAP Cluster Survey. II. X-Ray Clusters

    DOE PAGES

    Sohn, Jubee; Chon, Gayoung; Bohringer, Hans; ...

    2018-03-10

    Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less

  16. Concurrent and Accurate Short Read Mapping on Multicore Processors.

    PubMed

    Martínez, Héctor; Tárraga, Joaquín; Medina, Ignacio; Barrachina, Sergio; Castillo, Maribel; Dopazo, Joaquín; Quintana-Ortí, Enrique S

    2015-01-01

    We introduce a parallel aligner with a work-flow organization for fast and accurate mapping of RNA sequences on servers equipped with multicore processors. Our software, HPG Aligner SA (HPG Aligner SA is an open-source application. The software is available at http://www.opencb.org, exploits a suffix array to rapidly map a large fraction of the RNA fragments (reads), as well as leverages the accuracy of the Smith-Waterman algorithm to deal with conflictive reads. The aligner is enhanced with a careful strategy to detect splice junctions based on an adaptive division of RNA reads into small segments (or seeds), which are then mapped onto a number of candidate alignment locations, providing crucial information for the successful alignment of the complete reads. The experimental results on a platform with Intel multicore technology report the parallel performance of HPG Aligner SA, on RNA reads of 100-400 nucleotides, which excels in execution time/sensitivity to state-of-the-art aligners such as TopHat 2+Bowtie 2, MapSplice, and STAR.

  17. Chance of Vulnerability Reduction in Application-Specific NoC through Distance Aware Mapping Algorithm

    NASA Astrophysics Data System (ADS)

    Janidarmian, Majid; Fekr, Atena Roshan; Bokharaei, Vahhab Samadi

    2011-08-01

    Mapping algorithm which means which core should be linked to which router is one of the key issues in the design flow of network-on-chip. To achieve an application-specific NoC design procedure that minimizes the communication cost and improves the fault tolerant property, first a heuristic mapping algorithm that produces a set of different mappings in a reasonable time is presented. This algorithm allows the designers to identify the set of most promising solutions in a large design space, which has low communication costs while yielding optimum communication costs in some cases. Another evaluated parameter, vulnerability index, is then considered as a principle of estimating the fault-tolerance property in all produced mappings. Finally, in order to yield a mapping which considers trade-offs between these two parameters, a linear function is defined and introduced. It is also observed that more flexibility to prioritize solutions within the design space is possible by adjusting a set of if-then rules in fuzzy logic.

  18. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images

    PubMed Central

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-01-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between RiceLandsat and RiceNLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region. PMID:27688742

  19. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images.

    PubMed

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-04-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between Rice Landsat and Rice NLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.

  20. Asymmetric neighborhood functions accelerate ordering process of self-organizing maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji

    2011-02-15

    A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensionalmore » stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.« less

  1. Pattern Recognition and Size Prediction of Microcalcification Based on Physical Characteristics by Using Digital Mammogram Images.

    PubMed

    Jothilakshmi, G R; Raaza, Arun; Rajendran, V; Sreenivasa Varma, Y; Guru Nirmal Raj, R

    2018-06-05

    Breast cancer is one of the life-threatening cancers occurring in women. In recent years, from the surveys provided by various medical organizations, it has become clear that the mortality rate of females is increasing owing to the late detection of breast cancer. Therefore, an automated algorithm is needed to identify the early occurrence of microcalcification, which would assist radiologists and physicians in reducing the false predictions via image processing techniques. In this work, we propose a new algorithm to detect the pattern of a microcalcification by calculating its physical characteristics. The considered physical characteristics are the reflection coefficient and mass density of the binned digital mammogram image. The calculation of physical characteristics doubly confirms the presence of malignant microcalcification. Subsequently, by interpolating the physical characteristics via thresholding and mapping techniques, a three-dimensional (3D) projection of the region of interest (RoI) is obtained in terms of the distance in millimeter. The size of a microcalcification is determined using this 3D-projected view. This algorithm is verified with 100 abnormal mammogram images showing microcalcification and 10 normal mammogram images. In addition to the size calculation, the proposed algorithm acts as a good classifier that is used to classify the considered input image as normal or abnormal with the help of only two physical characteristics. This proposed algorithm exhibits a classification accuracy of 99%.

  2. Homozygosity mapping on a single patient: identification of homozygous regions of recent common ancestry by using population data.

    PubMed

    Zhang, Lu; Yang, Wanling; Ying, Dingge; Cherny, Stacey S; Hildebrandt, Friedhelm; Sham, Pak Chung; Lau, Yu Lung

    2011-03-01

    Homozygosity mapping has played an important role in detecting recessive mutations using families of consanguineous marriages. However, detection of regions identical and homozygosity by descent (HBD) when family data are not available, or when relationships are unknown, is still a challenge. Making use of population data from high-density SNP genotyping may allow detection of regions HBD from recent common founders in singleton patients without genealogy information. We report a novel algorithm that detects such regions by estimating the population haplotype frequencies (HF) for an entire homozygous region. We also developed a simulation method to evaluate the probability of HBD and linkage to disease for a homozygous region by examining the best regions in unaffected controls from the host population. The method can be applied to diseases of Mendelian inheritance but can also be extended to complex diseases to detect rare founder mutations that affect a very small number of patients using either multiplex families or sporadic cases. Testing of the method on both real cases (singleton affected) and simulated data demonstrated its superb sensitivity and robustness under genetic heterogeneity. © 2011 Wiley-Liss, Inc.

  3. Text image authenticating algorithm based on MD5-hash function and Henon map

    NASA Astrophysics Data System (ADS)

    Wei, Jinqiao; Wang, Ying; Ma, Xiaoxue

    2017-07-01

    In order to cater to the evidentiary requirements of the text image, this paper proposes a fragile watermarking algorithm based on Hash function and Henon map. The algorithm is to divide a text image into parts, get flippable pixels and nonflippable pixels of every lump according to PSD, generate watermark of non-flippable pixels with MD5-Hash, encrypt watermark with Henon map and select embedded blocks. The simulation results show that the algorithm with a good ability in tampering localization can be used to authenticate and forensics the authenticity and integrity of text images

  4. Flattening maps for the visualization of multibranched vessels.

    PubMed

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2005-02-01

    In this paper, we present two novel algorithms which produce flattened visualizations of branched physiological surfaces, such as vessels. The first approach is a conformal mapping algorithm based on the minimization of two Dirichlet functionals. From a triangulated representation of vessel surfaces, we show how the algorithm can be implemented using a finite element technique. The second method is an algorithm which adjusts the conformal mapping to produce a flattened representation of the original surface while preserving areas. This approach employs the theory of optimal mass transport. Furthermore, a new way of extracting center lines for vessel fly-throughs is provided.

  5. Flattening Maps for the Visualization of Multibranched Vessels

    PubMed Central

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    In this paper, we present two novel algorithms which produce flattened visualizations of branched physiological surfaces, such as vessels. The first approach is a conformal mapping algorithm based on the minimization of two Dirichlet functionals. From a triangulated representation of vessel surfaces, we show how the algorithm can be implemented using a finite element technique. The second method is an algorithm which adjusts the conformal mapping to produce a flattened representation of the original surface while preserving areas. This approach employs the theory of optimal mass transport. Furthermore, a new way of extracting center lines for vessel fly-throughs is provided. PMID:15707245

  6. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    NASA Astrophysics Data System (ADS)

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  7. A New Standard for Assessing the Performance of High Contrast Imaging Systems

    NASA Astrophysics Data System (ADS)

    Jensen-Clem, Rebecca; Mawet, Dimitri; Gomez Gonzalez, Carlos A.; Absil, Olivier; Belikov, Ruslan; Currie, Thayne; Kenworthy, Matthew A.; Marois, Christian; Mazoyer, Johan; Ruane, Garreth; Tanner, Angelle; Cantalloube, Faustine

    2018-01-01

    As planning for the next generation of high contrast imaging instruments (e.g., WFIRST, HabEx, and LUVOIR, TMT-PFI, EELT-EPICS) matures and second-generation ground-based extreme adaptive optics facilities (e.g., VLT-SPHERE, Gemini-GPI) finish their principal surveys, it is imperative that the performance of different designs, post-processing algorithms, observing strategies, and survey results be compared in a consistent, statistically robust framework. In this paper, we argue that the current industry standard for such comparisons—the contrast curve—falls short of this mandate. We propose a new figure of merit, the “performance map,” that incorporates three fundamental concepts in signal detection theory: the true positive fraction, the false positive fraction, and the detection threshold. By supplying a theoretical basis and recipe for generating the performance map, we hope to encourage the widespread adoption of this new metric across subfields in exoplanet imaging.

  8. Mapping advanced argillic alteration zones with ASTER and Hyperion data in the Andes Mountains of Peru

    NASA Astrophysics Data System (ADS)

    Ramos, Yuddy; Goïta, Kalifa; Péloquin, Stéphane

    2016-04-01

    This study evaluates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion hyperspectral sensor datasets to detect advanced argillic minerals. The spectral signatures of some alteration clay minerals, such as dickite and alunite, have similar absorption features; thus separating them using multispectral satellite images is a complex challenge. However, Hyperion with its fine spectral bands has potential for good separability of features. The Spectral Angle Mapper algorithm was used in this study to map three advanced argillic alteration minerals (alunite, kaolinite, and dickite) in a known alteration zone in the Peruvian Andes. The results from ASTER and Hyperion were analyzed, compared, and validated using a Portable Infrared Mineral Analyzer field spectrometer. The alterations corresponding to kaolinite and alunite were detected with both ASTER and Hyperion (80% to 84% accuracy). However, the dickite mineral was identified only with Hyperion (82% accuracy).

  9. The algorithm of fast image stitching based on multi-feature extraction

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Wu, Ge; Shi, Jing

    2018-05-01

    This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.

  10. Identification of residue pairing in interacting β-strands from a predicted residue contact map.

    PubMed

    Mao, Wenzhi; Wang, Tong; Zhang, Wenxuan; Gong, Haipeng

    2018-04-19

    Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Our algorithm RDb 2 C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb 2 C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb 2 C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb 2 C. Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .

  11. Partial Deconvolution with Inaccurate Blur Kernel.

    PubMed

    Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei

    2017-10-17

    Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.

  12. Mapping the EORTC QLQ-C30 onto the EQ-5D-3L: assessing the external validity of existing mapping algorithms.

    PubMed

    Doble, Brett; Lorgelly, Paula

    2016-04-01

    To determine the external validity of existing mapping algorithms for predicting EQ-5D-3L utility values from EORTC QLQ-C30 responses and to establish their generalizability in different types of cancer. A main analysis (pooled) sample of 3560 observations (1727 patients) and two disease severity patient samples (496 and 93 patients) with repeated observations over time from Cancer 2015 were used to validate the existing algorithms. Errors were calculated between observed and predicted EQ-5D-3L utility values using a single pooled sample and ten pooled tumour type-specific samples. Predictive accuracy was assessed using mean absolute error (MAE) and standardized root-mean-squared error (RMSE). The association between observed and predicted EQ-5D utility values and other covariates across the distribution was tested using quantile regression. Quality-adjusted life years (QALYs) were calculated using observed and predicted values to test responsiveness. Ten 'preferred' mapping algorithms were identified. Two algorithms estimated via response mapping and ordinary least-squares regression using dummy variables performed well on number of validation criteria, including accurate prediction of the best and worst QLQ-C30 health states, predicted values within the EQ-5D tariff range, relatively small MAEs and RMSEs, and minimal differences between estimated QALYs. Comparison of predictive accuracy across ten tumour type-specific samples highlighted that algorithms are relatively insensitive to grouping by tumour type and affected more by differences in disease severity. Two of the 'preferred' mapping algorithms suggest more accurate predictions, but limitations exist. We recommend extensive scenario analyses if mapped utilities are used in cost-utility analyses.

  13. PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences.

    PubMed

    Ferro, Myriam; Tardif, Marianne; Reguer, Erwan; Cahuzac, Romain; Bruley, Christophe; Vermat, Thierry; Nugues, Estelle; Vigouroux, Marielle; Vandenbrouck, Yves; Garin, Jérôme; Viari, Alain

    2008-05-01

    PepLine is a fully automated software which maps MS/MS fragmentation spectra of trypsic peptides to genomic DNA sequences. The approach is based on Peptide Sequence Tags (PSTs) obtained from partial interpretation of QTOF MS/MS spectra (first module). PSTs are then mapped on the six-frame translations of genomic sequences (second module) giving hits. Hits are then clustered to detect potential coding regions (third module). Our work aimed at optimizing the algorithms of each component to allow the whole pipeline to proceed in a fully automated manner using raw nucleic acid sequences (i.e., genomes that have not been "reduced" to a database of ORFs or putative exons sequences). The whole pipeline was tested on controlled MS/MS spectra sets from standard proteins and from Arabidopsis thaliana envelope chloroplast samples. Our results demonstrate that PepLine competed with protein database searching softwares and was fast enough to potentially tackle large data sets and/or high size genomes. We also illustrate the potential of this approach for the detection of the intron/exon structure of genes.

  14. Automatic Gleason grading of prostate cancer using SLIM and machine learning

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Sridharan, Shamira; Marcias, Virgilia; Balla, Andre K.; Do, Minh N.; Popescu, Gabriel

    2016-03-01

    In this paper, we present an updated automatic diagnostic procedure for prostate cancer using quantitative phase imaging (QPI). In a recent report [1], we demonstrated the use of Random Forest for image segmentation on prostate cores imaged using QPI. Based on these label maps, we developed an algorithm to discriminate between regions with Gleason grade 3 and 4 prostate cancer in prostatectomy tissue. The Area-Under-Curve (AUC) of 0.79 for the Receiver Operating Curve (ROC) can be obtained for Gleason grade 4 detection in a binary classification between Grade 3 and Grade 4. Our dataset includes 280 benign cases and 141 malignant cases. We show that textural features in phase maps have strong diagnostic values since they can be used in combination with the label map to detect presence or absence of basal cells, which is a strong indicator for prostate carcinoma. A support vector machine (SVM) classifier trained on this new feature vector can classify cancer/non-cancer with an error rate of 0.23 and an AUC value of 0.83.

  15. Predicting impact of multi-paths on phase change in map-based vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Lemieux, George; Sonnenberg, Jerome; Chester, David B.

    2014-05-01

    Dynamic Spectrum Access, which through its ability to adapt the operating frequency of a radio, is widely believed to be a solution to the limited spectrum problem. Mobile Ad Hoc Networks (MANETs) can extend high capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact cognitive radio employs spectrum sensing to facilitate identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We quantify optimal signal detection in map based cognitive radio networks with multiple rapidly varying phase changes and multiple orthogonal signals. Doppler shift occurs due to reflection, scattering, and rapid vehicle movement. Path propagation as well as vehicle movement produces either constructive or destructive interference with the incident wave. Our signal detection algorithms can assist the Doppler spread compensation algorithm by deciding how many phase changes in signals are present in a selected band of interest. Additionally we can populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate Dynamic Spectrum Access. We show how topography can help predict the impact of multi-paths on phase change, as well as about the prediction from dense traffic areas. Utilization of high resolution geospatial data layers in RF propagation analysis is directly applicable.

  16. [An object-oriented remote sensing image segmentation approach based on edge detection].

    PubMed

    Tan, Yu-Min; Huai, Jian-Zhu; Tang, Zhong-Shi

    2010-06-01

    Satellite sensor technology endorsed better discrimination of various landscape objects. Image segmentation approaches to extracting conceptual objects and patterns hence have been explored and a wide variety of such algorithms abound. To this end, in order to effectively utilize edge and topological information in high resolution remote sensing imagery, an object-oriented algorithm combining edge detection and region merging is proposed. Susan edge filter is firstly applied to the panchromatic band of Quickbird imagery with spatial resolution of 0.61 m to obtain the edge map. Thanks to the resulting edge map, a two-phrase region-based segmentation method operates on the fusion image from panchromatic and multispectral Quickbird images to get the final partition result. In the first phase, a quad tree grid consisting of squares with sides parallel to the image left and top borders agglomerates the square subsets recursively where the uniform measure is satisfied to derive image object primitives. Before the merger of the second phrase, the contextual and spatial information, (e. g., neighbor relationship, boundary coding) of the resulting squares are retrieved efficiently by means of the quad tree structure. Then a region merging operation is performed with those primitives, during which the criterion for region merging integrates edge map and region-based features. This approach has been tested on the QuickBird images of some site in Sanxia area and the result is compared with those of ENVI Zoom Definiens. In addition, quantitative evaluation of the quality of segmentation results is also presented. Experiment results demonstrate stable convergence and efficiency.

  17. A Voxel-by-Voxel Comparison of Deformable Vector Fields Obtained by Three Deformable Image Registration Algorithms Applied to 4DCT Lung Studies.

    PubMed

    Fatyga, Mirek; Dogan, Nesrin; Weiss, Elizabeth; Sleeman, William C; Zhang, Baoshe; Lehman, William J; Williamson, Jeffrey F; Wijesooriya, Krishni; Christensen, Gary E

    2015-01-01

    Commonly used methods of assessing the accuracy of deformable image registration (DIR) rely on image segmentation or landmark selection. These methods are very labor intensive and thus limited to relatively small number of image pairs. The direct voxel-by-voxel comparison can be automated to examine fluctuations in DIR quality on a long series of image pairs. A voxel-by-voxel comparison of three DIR algorithms applied to lung patients is presented. Registrations are compared by comparing volume histograms formed both with individual DIR maps and with a voxel-by-voxel subtraction of the two maps. When two DIR maps agree one concludes that both maps are interchangeable in treatment planning applications, though one cannot conclude that either one agrees with the ground truth. If two DIR maps significantly disagree one concludes that at least one of the maps deviates from the ground truth. We use the method to compare 3 DIR algorithms applied to peak inhale-peak exhale registrations of 4DFBCT data obtained from 13 patients. All three algorithms appear to be nearly equivalent when compared using DICE similarity coefficients. A comparison based on Jacobian volume histograms shows that all three algorithms measure changes in total volume of the lungs with reasonable accuracy, but show large differences in the variance of Jacobian distribution on contoured structures. Analysis of voxel-by-voxel subtraction of DIR maps shows differences between algorithms that exceed a centimeter for some registrations. Deformation maps produced by DIR algorithms must be treated as mathematical approximations of physical tissue deformation that are not self-consistent and may thus be useful only in applications for which they have been specifically validated. The three algorithms tested in this work perform fairly robustly for the task of contour propagation, but produce potentially unreliable results for the task of DVH accumulation or measurement of local volume change. Performance of DIR algorithms varies significantly from one image pair to the next hence validation efforts, which are exhaustive but performed on a small number of image pairs may not reflect the performance of the same algorithm in practical clinical situations. Such efforts should be supplemented by validation based on a longer series of images of clinical quality.

  18. Semisupervised GDTW kernel-based fuzzy c-means algorithm for mapping vegetation dynamics in mining region using normalized difference vegetation index time series

    NASA Astrophysics Data System (ADS)

    Jia, Duo; Wang, Cangjiao; Lei, Shaogang

    2018-01-01

    Mapping vegetation dynamic types in mining areas is significant for revealing the mechanisms of environmental damage and for guiding ecological construction. Dynamic types of vegetation can be identified by applying interannual normalized difference vegetation index (NDVI) time series. However, phase differences and time shifts in interannual time series decrease mapping accuracy in mining regions. To overcome these problems and to increase the accuracy of mapping vegetation dynamics, an interannual Landsat time series for optimum vegetation growing status was constructed first by using the enhanced spatial and temporal adaptive reflectance fusion model algorithm. We then proposed a Markov random field optimized semisupervised Gaussian dynamic time warping kernel-based fuzzy c-means (FCM) cluster algorithm for interannual NDVI time series to map dynamic vegetation types in mining regions. The proposed algorithm has been tested in the Shengli mining region and Shendong mining region, which are typical representatives of China's open-pit and underground mining regions, respectively. Experiments show that the proposed algorithm can solve the problems of phase differences and time shifts to achieve better performance when mapping vegetation dynamic types. The overall accuracies for the Shengli and Shendong mining regions were 93.32% and 89.60%, respectively, with improvements of 7.32% and 25.84% when compared with the original semisupervised FCM algorithm.

  19. A novel image encryption algorithm based on chaos maps with Markov properties

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang

    2015-02-01

    In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.

  20. A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Lin, Jun; Miao, Suoxia; Liu, Bocheng

    2017-06-01

    The digital Baker map is widely used in different kinds of cryptosystems, especially for image encryption. However, any chaotic map which is realized on the finite precision device (e.g. computer) will suffer from dynamical degradation, which refers to short cycle lengths, low complexity and strong correlations. In this paper, a novel double perturbation method is proposed for reducing the dynamical degradation of the digital Baker map. Both state variables and system parameters are perturbed by the digital logistic map. Numerical experiments show that the perturbed Baker map can achieve good statistical and cryptographic properties. Furthermore, a new image encryption algorithm is provided as a simple application. With a rather simple algorithm, the encrypted image can achieve high security, which is competitive to the recently proposed image encryption algorithms.

  1. Detecting text in natural scenes with multi-level MSER and SWT

    NASA Astrophysics Data System (ADS)

    Lu, Tongwei; Liu, Renjun

    2018-04-01

    The detection of the characters in the natural scene is susceptible to factors such as complex background, variable viewing angle and diverse forms of language, which leads to poor detection results. Aiming at these problems, a new text detection method was proposed, which consisted of two main stages, candidate region extraction and text region detection. At first stage, the method used multiple scale transformations of original image and multiple thresholds of maximally stable extremal regions (MSER) to detect the text regions which could detect character regions comprehensively. At second stage, obtained SWT maps by using the stroke width transform (SWT) algorithm to compute the candidate regions, then using cascaded classifiers to propose non-text regions. The proposed method was evaluated on the standard benchmark datasets of ICDAR2011 and the datasets that we made our own data sets. The experiment results showed that the proposed method have greatly improved that compared to other text detection methods.

  2. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    NASA Astrophysics Data System (ADS)

    Korzeniowska, Karolina; Bühler, Yves; Marty, Mauro; Korup, Oliver

    2017-10-01

    Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), the normalised difference water index (NDWI), and its standard deviation (SDNDWI) to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km-2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79-0.85. Testing the method for a larger area of 226.3 km-2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  3. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping

    PubMed Central

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N.; Syahreza, Saumi

    2015-01-01

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted MHNNA with remote sensing techniques (as based on ALOS images). PMID:26729148

  4. Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach.

    PubMed

    Ullah, Sami; Daud, Hanita; Dass, Sarat C; Khan, Habib Nawaz; Khalil, Alamgir

    2017-11-06

    Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space-time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.

  5. Growing a hypercubical output space in a self-organizing feature map.

    PubMed

    Bauer, H U; Villmann, T

    1997-01-01

    Neural maps project data from an input space onto a neuron position in a (often lower dimensional) output space grid in a neighborhood preserving way, with neighboring neurons in the output space responding to neighboring data points in the input space. A map-learning algorithm can achieve an optimal neighborhood preservation only, if the output space topology roughly matches the effective structure of the data in the input space. We here present a growth algorithm, called the GSOM or growing self-organizing map, which enhances a widespread map self-organization process, Kohonen's self-organizing feature map (SOFM), by an adaptation of the output space grid during learning. The GSOM restricts the output space structure to the shape of a general hypercubical shape, with the overall dimensionality of the grid and its extensions along the different directions being subject of the adaptation. This constraint meets the demands of many larger information processing systems, of which the neural map can be a part. We apply our GSOM-algorithm to three examples, two of which involve real world data. Using recently developed methods for measuring the degree of neighborhood preservation in neural maps, we find the GSOM-algorithm to produce maps which preserve neighborhoods in a nearly optimal fashion.

  6. The Structure-Mapping Engine: Algorithm and Examples.

    ERIC Educational Resources Information Center

    Falkenhainer, Brian; And Others

    This description of the Structure-Mapping Engine (SME), a flexible, cognitive simulation program for studying analogical processing which is based on Gentner's Structure-Mapping theory of analogy, points out that the SME provides a "tool kit" for constructing matching algorithms consistent with this theory. This report provides: (1) a…

  7. Can Mapping Algorithms Based on Raw Scores Overestimate QALYs Gained by Treatment? A Comparison of Mappings Between the Roland-Morris Disability Questionnaire and the EQ-5D-3L Based on Raw and Differenced Score Data.

    PubMed

    Madan, Jason; Khan, Kamran A; Petrou, Stavros; Lamb, Sarah E

    2017-05-01

    Mapping algorithms are increasingly being used to predict health-utility values based on responses or scores from non-preference-based measures, thereby informing economic evaluations. We explored whether predictions in the EuroQol 5-dimension 3-level instrument (EQ-5D-3L) health-utility gains from mapping algorithms might differ if estimated using differenced versus raw scores, using the Roland-Morris Disability Questionnaire (RMQ), a widely used health status measure for low back pain, as an example. We estimated algorithms mapping within-person changes in RMQ scores to changes in EQ-5D-3L health utilities using data from two clinical trials with repeated observations. We also used logistic regression models to estimate response mapping algorithms from these data to predict within-person changes in responses to each EQ-5D-3L dimension from changes in RMQ scores. Predicted health-utility gains from these mappings were compared with predictions based on raw RMQ data. Using differenced scores reduced the predicted health-utility gain from a unit decrease in RMQ score from 0.037 (standard error [SE] 0.001) to 0.020 (SE 0.002). Analysis of response mapping data suggests that the use of differenced data reduces the predicted impact of reducing RMQ scores across EQ-5D-3L dimensions and that patients can experience health-utility gains on the EQ-5D-3L 'usual activity' dimension independent from improvements captured by the RMQ. Mappings based on raw RMQ data overestimate the EQ-5D-3L health utility gains from interventions that reduce RMQ scores. Where possible, mapping algorithms should reflect within-person changes in health outcome and be estimated from datasets containing repeated observations if they are to be used to estimate incremental health-utility gains.

  8. The impact of noisy and misaligned attenuation maps on human-observer performance at lesion detection in SPECT

    NASA Astrophysics Data System (ADS)

    Wells, R. G.; Gifford, H. C.; Pretorius, P. H.; Famcombe, T. H.; Narayanan, M. V.; King, M. A.

    2002-06-01

    We have demonstrated an improvement due to attenuation correction (AC) at the task of lesion detection in thoracic SPECT images. However, increased noise in the transmission data due to aging sources or very large patients, and misregistration of the emission and transmission maps, can reduce the accuracy of the AC and may result in a loss of lesion detectability. We investigated the impact of noise in and misregistration of transmission data, on the detection of simulated Ga-67 thoracic lesions. Human-observer localization-receiver-operating-characteristic (LROC) methodology was used to assess performance. Both emission and transmission data were simulated using the MCAT computer phantom. Emission data were reconstructed using OSEM incorporating AC and detector resolution compensation. Clinical noise levels were used in the emission data. The transmission-data noise levels ranged from zero (noise-free) to 32 times the measured clinical levels. Transaxial misregistrations of 0.32, 0.63, and 1.27 cm between emission and transmission data were also examined. Three different algorithms were considered for creating the attenuation maps: filtered backprojection (FBP), unbounded maximum-likelihood (ML), and block-iterative transmission AB (BITAB). Results indicate that a 16-fold increase in the noise was required to eliminate the benefit afforded by AC, when using FBP or ML to reconstruct the attenuation maps. When using BITAB, no significant loss in performance was observed for a 32-fold increase in noise. Misregistration errors are also a concern as even small errors here reduce the performance gains of AC.

  9. RadMAP: The Radiological Multi-sensor Analysis Platform

    NASA Astrophysics Data System (ADS)

    Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai

    2016-12-01

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  10. A Method Based on Wavelet Transforms for Source Detection in Photon-counting Detector Images. II. Application to ROSAT PSPC Images

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1997-07-01

    We apply to the specific case of images taken with the ROSAT PSPC detector our wavelet-based X-ray source detection algorithm presented in a companion paper. Such images are characterized by the presence of detector ``ribs,'' strongly varying point-spread function, and vignetting, so that their analysis provides a challenge for any detection algorithm. First, we apply the algorithm to simulated images of a flat background, as seen with the PSPC, in order to calibrate the number of spurious detections as a function of significance threshold and to ascertain that the spatial distribution of spurious detections is uniform, i.e., unaffected by the ribs; this goal was achieved using the exposure map in the detection procedure. Then, we analyze simulations of PSPC images with a realistic number of point sources; the results are used to determine the efficiency of source detection and the accuracy of output quantities such as source count rate, size, and position, upon a comparison with input source data. It turns out that sources with 10 photons or less may be confidently detected near the image center in medium-length (~104 s), background-limited PSPC exposures. The positions of sources detected near the image center (off-axis angles < 15') are accurate to within a few arcseconds. Output count rates and sizes are in agreement with the input quantities, within a factor of 2 in 90% of the cases. The errors on position, count rate, and size increase with off-axis angle and for detections of lower significance. We have also checked that the upper limits computed with our method are consistent with the count rates of undetected input sources. Finally, we have tested the algorithm by applying it on various actual PSPC images, among the most challenging for automated detection procedures (crowded fields, extended sources, and nonuniform diffuse emission). The performance of our method in these images is satisfactory and outperforms those of other current X-ray detection techniques, such as those employed to produce the MPE and WGA catalogs of PSPC sources, in terms of both detection reliability and efficiency. We have also investigated the theoretical limit for point-source detection, with the result that even sources with only 2-3 photons may be reliably detected using an efficient method in images with sufficiently high resolution and low background.

  11. Backup Attitude Control Algorithms for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael

    1999-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and algorithm will be discussed, and simulation results presented.

  12. Fast algorithm for probabilistic bone edge detection (FAPBED)

    NASA Astrophysics Data System (ADS)

    Scepanovic, Danilo; Kirshtein, Joshua; Jain, Ameet K.; Taylor, Russell H.

    2005-04-01

    The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). FAPBED is designed to process CT volumes for registration to tracked US data. Tracked US is advantageous because it is real time, noninvasive, and non-ionizing, but it is also known to have inherent inaccuracies which create the need to develop a framework that is robust to various uncertainties, and can be useful in US-CT registration. Furthermore, conventional registration methods depend on accurate and absolute segmentation. Our proposed probabilistic framework addresses the segmentation-registration duality, wherein exact segmentation is not a prerequisite to achieve accurate registration. In this paper, we develop a method for fast and automatic probabilistic bone surface (edge) detection in CT images. Various features that influence the likelihood of the surface at each spatial coordinate are combined using a simple probabilistic framework, which strikes a fair balance between a high-level understanding of features in an image and the low-level number crunching of standard image processing techniques. The algorithm evaluates different features for detecting the probability of a bone surface at each voxel, and compounds the results of these methods to yield a final, low-noise, probability map of bone surfaces in the volume. Such a probability map can then be used in conjunction with a similar map from tracked intra-operative US to achieve accurate registration. Eight sample pelvic CT scans were used to extract feature parameters and validate the final probability maps. An un-optimized fully automatic Matlab code runs in five minutes per CT volume on average, and was validated by comparison against hand-segmented gold standards. The mean probability assigned to nonzero surface points was 0.8, while nonzero non-surface points had a mean value of 0.38 indicating clear identification of surface points on average. The segmentation was also sufficiently crisp, with a full width at half maximum (FWHM) value of 1.51 voxels.

  13. Dynamic Flood Vulnerability Mapping with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Tellman, B.; Kuhn, C.; Max, S. A.; Sullivan, J.

    2015-12-01

    Satellites capture the rate and character of environmental change from local to global levels, yet integrating these changes into flood exposure models can be cost or time prohibitive. We explore an approach to global flood modeling by leveraging satellite data with computing power in Google Earth Engine to dynamically map flood hazards. Our research harnesses satellite imagery in two main ways: first to generate a globally consistent flood inundation layer and second to dynamically model flood vulnerability. Accurate and relevant hazard maps rely on high quality observation data. Advances in publicly available spatial, spectral, and radar data together with cloud computing allow us to improve existing efforts to develop a comprehensive flood extent database to support model training and calibration. This talk will demonstrate the classification results of algorithms developed in Earth Engine designed to detect flood events by combining observations from MODIS, Landsat 8, and Sentinel-1. Our method to derive flood footprints increases the number, resolution, and precision of spatial observations for flood events both in the US, recorded in the NCDC (National Climatic Data Center) storm events database, and globally, as recorded events from the Colorado Flood Observatory database. This improved dataset can then be used to train machine learning models that relate spatial temporal flood observations to satellite derived spatial temporal predictor variables such as precipitation, antecedent soil moisture, and impervious surface. This modeling approach allows us to rapidly update models with each new flood observation, providing near real time vulnerability maps. We will share the water detection algorithms used with each satellite and discuss flood detection results with examples from Bihar, India and the state of New York. We will also demonstrate how these flood observations are used to train machine learning models and estimate flood exposure. The final stage of our comprehensive approach to flood vulnerability couples inundation extent with social data to determine which flood exposed communities have the greatest propensity for loss. Specifically, by linking model outputs to census derived social vulnerability estimates (Indian and US, respectively) to predict how many people are at risk.

  14. Landslide Detection in the Carlyon Beach, WA Peninsula: Analysis Of High Resolution DEMs

    NASA Astrophysics Data System (ADS)

    Fayne, J.; Tran, C.; Mora, O. E.

    2017-12-01

    Landslides are geological events caused by slope instability and degradation, leading to the sliding of large masses of rock and soil down a mountain or hillside. These events are influenced by topography, geology, weather and human activity, and can cause extensive damage to the environment and infrastructure, such as the destruction of transportation networks, homes, and businesses. It is therefore imperative to detect early-warning signs of landslide hazards as a means of mitigation and disaster prevention. Traditional landslide surveillance consists of field mapping, but the process is expensive and time consuming. This study uses Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) and k-means clustering and Gaussian Mixture Model (GMM) to analyze surface roughness and extract spatial features and patterns of landslides and landslide-prone areas. The methodology based on several feature extractors employs an unsupervised classifier on the Carlyon Beach Peninsula in the state of Washington to attempt to identify slide potential terrain. When compared with the independently compiled landslide inventory map, the proposed algorithm correctly classifies up to 87% of the terrain. These results suggest that the proposed methods and LiDAR-derived DEMs can provide important surface information and be used as efficient tools for digital terrain analysis to create accurate landslide maps.

  15. A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval

    NASA Astrophysics Data System (ADS)

    Takbiri, Zeinab; Ebtehaj, Ardeshir M.; Foufoula-Georgiou, Efi

    2017-06-01

    We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.

  16. Detection of ground fog in mountainous areas from MODIS (Collection 051) daytime data using a statistical approach

    NASA Astrophysics Data System (ADS)

    Schulz, Hans Martin; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg

    2016-03-01

    The mountain cloud forest of Taiwan can be delimited from other forest types using a map of the ground fog frequency. In order to create such a frequency map from remotely sensed data, an algorithm able to detect ground fog is necessary. Common techniques for ground fog detection based on weather satellite data cannot be applied to fog occurrences in Taiwan as they rely on several assumptions regarding cloud properties. Therefore a new statistical method for the detection of ground fog in mountainous terrain from MODIS Collection 051 data is presented. Due to the sharpening of input data using MODIS bands 1 and 2, the method provides fog masks in a resolution of 250 m per pixel. The new technique is based on negative correlations between optical thickness and terrain height that can be observed if a cloud that is relatively plane-parallel is truncated by the terrain. A validation of the new technique using camera data has shown that the quality of fog detection is comparable to that of another modern fog detection scheme developed and validated for the temperate zones. The method is particularly applicable to optically thinner water clouds. Beyond a cloud optical thickness of ≈ 40, classification errors significantly increase.

  17. On the Power and the Systematic Biases of the Detection of Chromosomal Inversions by Paired-End Genome Sequencing

    PubMed Central

    Lucas Lledó, José Ignacio; Cáceres, Mario

    2013-01-01

    One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis. We show that PEM is very appropriate to detect a wide range of inversions, even with low coverage data. However, % of inversions located between segmental duplications are expected to go undetected by the most common sequencing strategies. In general, longer DNA libraries improve the detectability of inversions far better than increments of the coverage depth or the read length. Finally, we review the performance of three algorithms to detect inversions —SVDetect, GRIAL, and VariationHunter—, identify common pitfalls, and reveal important differences in their breakpoint precisions. These results stress the importance of the sequencing strategy for the detection of structural variants, especially inversions, and offer guidelines for the design of future genome sequencing projects. PMID:23637806

  18. Opto-numerical procedures supporting dynamic lower limbs monitoring and their medical diagnosis

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Kujawińska, Malgorzata; Rapp, Walter; Sitnik, Robert

    2006-01-01

    New optical full-field shape measurement systems allow transient shape capture at rates between 15 and 30 Hz. These frequency rates are enough to monitor controlled movements used e.g. for medical examination purposes. In this paper we present a set of algorithms which may be applied for processing of data gathered by fringe projection method implemented for lower limbs shape measurement. The purpose of presented algorithms is to locate anatomical structures based on the limb shape and its deformation in time. The algorithms are based on local surface curvature calculation and analysis of curvature maps changes during the measurement sequence. One of anatomical structure of high medical interest that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. Therefore the usefulness of the algorithms developed was proven at examples of patella localization and monitoring.

  19. Real-time depth camera tracking with geometrically stable weight algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Xingyin; Zhu, Feng; Qi, Feng; Wang, Mingming

    2017-03-01

    We present an approach for real-time camera tracking with depth stream. Existing methods are prone to drift in sceneries without sufficient geometric information. First, we propose a new weight method for an iterative closest point algorithm commonly used in real-time dense mapping and tracking systems. By detecting uncertainty in pose and increasing weight of points that constrain unstable transformations, our system achieves accurate and robust trajectory estimation results. Our pipeline can be fully parallelized with GPU and incorporated into the current real-time depth camera tracking system seamlessly. Second, we compare the state-of-the-art weight algorithms and propose a weight degradation algorithm according to the measurement characteristics of a consumer depth camera. Third, we use Nvidia Kepler Shuffle instructions during warp and block reduction to improve the efficiency of our system. Results on the public TUM RGB-D database benchmark demonstrate that our camera tracking system achieves state-of-the-art results both in accuracy and efficiency.

  20. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data

    NASA Astrophysics Data System (ADS)

    Joshi, Neha; Mitchard, Edward TA; Woo, Natalia; Torres, Jorge; Moll-Rocek, Julian; Ehammer, Andrea; Collins, Murray; Jepsen, Martin R.; Fensholt, Rasmus

    2015-03-01

    Mapping anthropogenic forest disturbances has largely been focused on distinct delineations of events of deforestation using optical satellite images. In the tropics, frequent cloud cover and the challenge of quantifying forest degradation remain problematic. In this study, we detect processes of deforestation, forest degradation and successional dynamics, using long-wavelength radar (L-band from ALOS PALSAR) backscatter. We present a detection algorithm that allows for repeated disturbances on the same land, and identifies areas with slow- and fast-recovering changes in backscatter in close spatial and temporal proximity. In the study area in Madre de Dios, Peru, 2.3% of land was found to be disturbed over three years, with a false positive rate of 0.3% of area. A low, but significant, detection rate of degradation from sparse and small-scale selective logging was achieved. Disturbances were most common along the tri-national Interoceanic Highway, as well as in mining areas and areas under no land use allocation. A continuous spatial gradient of disturbance was observed, highlighting artefacts arising from imposing discrete boundaries on deforestation events. The magnitude of initial radar backscatter, and backscatter decrease, suggested that large-scale deforestation was likely in areas with initially low biomass, either naturally or since already under anthropogenic use. Further, backscatter increases following disturbance suggested that radar can be used to characterize successional disturbance dynamics, such as biomass accumulation in lands post-abandonment. The presented radar-based detection algorithm is spatially and temporally scalable, and can support monitoring degradation and deforestation in tropical rainforests with the use of products from ALOS-2 and the future SAOCOM and BIOMASS missions.

  1. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data

    PubMed Central

    Zhang, Yanju; Lameijer, Eric-Wubbo; 't Hoen, Peter A. C.; Ning, Zemin; Slagboom, P. Eline; Ye, Kai

    2012-01-01

    Motivation: RNA-seq is a powerful technology for the study of transcriptome profiles that uses deep-sequencing technologies. Moreover, it may be used for cellular phenotyping and help establishing the etiology of diseases characterized by abnormal splicing patterns. In RNA-Seq, the exact nature of splicing events is buried in the reads that span exon–exon boundaries. The accurate and efficient mapping of these reads to the reference genome is a major challenge. Results: We developed PASSion, a pattern growth algorithm-based pipeline for splice site detection in paired-end RNA-Seq reads. Comparing the performance of PASSion to three existing RNA-Seq analysis pipelines, TopHat, MapSplice and HMMSplicer, revealed that PASSion is competitive with these packages. Moreover, the performance of PASSion is not affected by read length and coverage. It performs better than the other three approaches when detecting junctions in highly abundant transcripts. PASSion has the ability to detect junctions that do not have known splicing motifs, which cannot be found by the other tools. Of the two public RNA-Seq datasets, PASSion predicted ∼ 137 000 and 173 000 splicing events, of which on average 82 are known junctions annotated in the Ensembl transcript database and 18% are novel. In addition, our package can discover differential and shared splicing patterns among multiple samples. Availability: The code and utilities can be freely downloaded from https://trac.nbic.nl/passion and ftp://ftp.sanger.ac.uk/pub/zn1/passion Contact: y.zhang@lumc.nl; k.ye@lumc.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22219203

  2. First results in terrain mapping for a roving planetary explorer

    NASA Technical Reports Server (NTRS)

    Krotkov, E.; Caillas, C.; Hebert, M.; Kweon, I. S.; Kanade, Takeo

    1989-01-01

    To perform planetary exploration without human supervision, a complete autonomous rover must be able to model its environment while exploring its surroundings. Researchers present a new algorithm to construct a geometric terrain representation from a single range image. The form of the representation is an elevation map that includes uncertainty, unknown areas, and local features. By virtue of working in spherical-polar space, the algorithm is independent of the desired map resolution and the orientation of the sensor, unlike other algorithms that work in Cartesian space. They also describe new methods to evaluate regions of the constructed elevation maps to support legged locomotion over rough terrain.

  3. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  4. Computerized detection of breast lesions in multi-centre and multi-instrument DCE-MR data using 3D principal component maps and template matching

    NASA Astrophysics Data System (ADS)

    Ertas, Gokhan; Doran, Simon; Leach, Martin O.

    2011-12-01

    In this study, we introduce a novel, robust and accurate computerized algorithm based on volumetric principal component maps and template matching that facilitates lesion detection on dynamic contrast-enhanced MR. The study dataset comprises 24 204 contrast-enhanced breast MR images corresponding to 4034 axial slices from 47 women in the UK multi-centre study of MRI screening for breast cancer and categorized as high risk. The scans analysed here were performed on six different models of scanner from three commercial vendors, sited in 13 clinics around the UK. 1952 slices from this dataset, containing 15 benign and 13 malignant lesions, were used for training. The remaining 2082 slices, with 14 benign and 12 malignant lesions, were used for test purposes. To prevent false positives being detected from other tissues and regions of the body, breast volumes are segmented from pre-contrast images using a fast semi-automated algorithm. Principal component analysis is applied to the centred intensity vectors formed from the dynamic contrast-enhanced T1-weighted images of the segmented breasts, followed by automatic thresholding to eliminate fatty tissues and slowly enhancing normal parenchyma and a convolution and filtering process to minimize artefacts from moderately enhanced normal parenchyma and blood vessels. Finally, suspicious lesions are identified through a volumetric sixfold neighbourhood connectivity search and calculation of two morphological features: volume and volumetric eccentricity, to exclude highly enhanced blood vessels, nipples and normal parenchyma and to localize lesions. This provides satisfactory lesion localization. For a detection sensitivity of 100%, the overall false-positive detection rate of the system is 1.02/lesion, 1.17/case and 0.08/slice, comparing favourably with previous studies. This approach may facilitate detection of lesions in multi-centre and multi-instrument dynamic contrast-enhanced breast MR data.

  5. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    PubMed

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-08-31

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.

  6. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    PubMed Central

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  7. An optimization method of VON mapping for energy efficiency and routing in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun

    2018-03-01

    To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.

  8. A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing

    PubMed Central

    Yu, Ning; Xiao, Chenxian; Wu, Yinfeng; Feng, Renjian

    2016-01-01

    Traditional radio-map-based localization methods need to sample a large number of location fingerprints offline, which requires huge amount of human and material resources. To solve the high sampling cost problem, an automatic radio-map construction algorithm based on crowdsourcing is proposed. The algorithm employs the crowd-sourced information provided by a large number of users when they are walking in the buildings as the source of location fingerprint data. Through the variation characteristics of users’ smartphone sensors, the indoor anchors (doors) are identified and their locations are regarded as reference positions of the whole radio-map. The AP-Cluster method is used to cluster the crowdsourced fingerprints to acquire the representative fingerprints. According to the reference positions and the similarity between fingerprints, the representative fingerprints are linked to their corresponding physical locations and the radio-map is generated. Experimental results demonstrate that the proposed algorithm reduces the cost of fingerprint sampling and radio-map construction and guarantees the localization accuracy. The proposed method does not require users’ explicit participation, which effectively solves the resource-consumption problem when a location fingerprint database is established. PMID:27070623

  9. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  10. Combining Benford's Law and machine learning to detect money laundering. An actual Spanish court case.

    PubMed

    Badal-Valero, Elena; Alvarez-Jareño, José A; Pavía, Jose M

    2018-01-01

    This paper is based on the analysis of the database of operations from a macro-case on money laundering orchestrated between a core company and a group of its suppliers, 26 of which had already been identified by the police as fraudulent companies. In the face of a well-founded suspicion that more companies have perpetrated criminal acts and in order to make better use of what are very limited police resources, we aim to construct a tool to detect money laundering criminals. We combine Benford's Law and machine learning algorithms (logistic regression, decision trees, neural networks, and random forests) to find patterns of money laundering criminals in the context of a real Spanish court case. After mapping each supplier's set of accounting data into a 21-dimensional space using Benford's Law and applying machine learning algorithms, additional companies that could merit further scrutiny are flagged up. A new tool to detect money laundering criminals is proposed in this paper. The tool is tested in the context of a real case. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality.

    PubMed

    Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio

    2016-02-04

    Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle's location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent.

  12. Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality

    PubMed Central

    Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio

    2016-01-01

    Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle’s location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent. PMID:26861320

  13. High-resolution three-dimensional imaging with compress sensing

    NASA Astrophysics Data System (ADS)

    Wang, Jingyi; Ke, Jun

    2016-10-01

    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  14. The GOES-R GeoStationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.

  15. Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.

    PubMed

    Dastmalchi, Pouya; Veronis, Georgios

    2013-12-30

    We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.

  16. Saliency Detection on Light Field.

    PubMed

    Li, Nianyi; Ye, Jinwei; Ji, Yu; Ling, Haibin; Yu, Jingyi

    2017-08-01

    Existing saliency detection approaches use images as inputs and are sensitive to foreground/background similarities, complex background textures, and occlusions. We explore the problem of using light fields as input for saliency detection. Our technique is enabled by the availability of commercial plenoptic cameras that capture the light field of a scene in a single shot. We show that the unique refocusing capability of light fields provides useful focusness, depths, and objectness cues. We further develop a new saliency detection algorithm tailored for light fields. To validate our approach, we acquire a light field database of a range of indoor and outdoor scenes and generate the ground truth saliency map. Experiments show that our saliency detection scheme can robustly handle challenging scenarios such as similar foreground and background, cluttered background, complex occlusions, etc., and achieve high accuracy and robustness.

  17. Perception for rugged terrain

    NASA Technical Reports Server (NTRS)

    Kweon, In SO; Hebert, Martial; Kanade, Takeo

    1989-01-01

    A three-dimensional perception system for building a geometrical description of rugged terrain environments from range image data is presented with reference to the exploration of the rugged terrain of Mars. An intermediate representation consisting of an elevation map that includes an explicit representation of uncertainty and labeling of the occluded regions is proposed. The locus method used to convert range image to an elevation map is introduced, along with an uncertainty model based on this algorithm. Both the elevation map and the locus method are the basis of a terrain matching algorithm which does not assume any correspondences between range images. The two-stage algorithm consists of a feature-based matching algorithm to compute an initial transform and an iconic terrain matching algorithm to merge multiple range images into a uniform representation. Terrain modeling results on real range images of rugged terrain are presented. The algorithms considered are a fundamental part of the perception system for the Ambler, a legged locomotor.

  18. Benchmarking of data fusion algorithms in support of earth observation based Antarctic wildlife monitoring

    NASA Astrophysics Data System (ADS)

    Witharana, Chandi; LaRue, Michelle A.; Lynch, Heather J.

    2016-03-01

    Remote sensing is a rapidly developing tool for mapping the abundance and distribution of Antarctic wildlife. While both panchromatic and multispectral imagery have been used in this context, image fusion techniques have received little attention. We tasked seven widely-used fusion algorithms: Ehlers fusion, hyperspherical color space fusion, high-pass fusion, principal component analysis (PCA) fusion, University of New Brunswick fusion, and wavelet-PCA fusion to resolution enhance a series of single-date QuickBird-2 and Worldview-2 image scenes comprising penguin guano, seals, and vegetation. Fused images were assessed for spectral and spatial fidelity using a variety of quantitative quality indicators and visual inspection methods. Our visual evaluation elected the high-pass fusion algorithm and the University of New Brunswick fusion algorithm as best for manual wildlife detection while the quantitative assessment suggested the Gram-Schmidt fusion algorithm and the University of New Brunswick fusion algorithm as best for automated classification. The hyperspherical color space fusion algorithm exhibited mediocre results in terms of spectral and spatial fidelities. The PCA fusion algorithm showed spatial superiority at the expense of spectral inconsistencies. The Ehlers fusion algorithm and the wavelet-PCA algorithm showed the weakest performances. As remote sensing becomes a more routine method of surveying Antarctic wildlife, these benchmarks will provide guidance for image fusion and pave the way for more standardized products for specific types of wildlife surveys.

  19. Monitoring rubber plantation expansion using Landsat data time series and a Shapelet-based approach

    NASA Astrophysics Data System (ADS)

    Ye, Su; Rogan, John; Sangermano, Florencia

    2018-02-01

    The expansion of tree plantations in tropical forests for commercial rubber cultivation threatens biodiversity which may affect ecosystem services, and hinders ecosystem productivity, causing net carbon emission. Numerous studies refer to the challenge of reliably distinguishing rubber plantations from natural forest, using satellite data, due to their similar spectral signatures, even when phenology is incorporated into an analysis. This study presents a novel approach for monitoring the establishment and expansion of rubber plantations in Seima Protection Forest (SPF), Cambodia (1995-2015), by detecting and analyzing the 'shapelet' structure in a Landsat-NDVI time series. This paper introduces a new classification procedure consisting of two steps: (1) an exhaustive-searching algorithm to detect shapelets that represent a period for relatively low NDVI values within an image time series; and (2) a t-test used to determine if NDVI values of detected shapelets are significantly different than their non-shapelet trend, thereby indicating the presence of rubber plantations. Using this approach, historical rubber plantation events were mapped over the twenty-year timespan. The shapelet algorithm produced two types of information: (1) year of rubber plantation establishment; and (2) pre-conversion land-cover type (i.e., agriculture, or natural forest). The overall accuracy of the rubber plantation map for the year of 2015 was 89%. The multi-temporal map products reveal that more than half of the rubber planting activity (57%) took place in 2010 and 2011, following the granting of numerous rubber concessions two years prior. Seventy-three percent of the rubber plantations were converted from natural forest and twenty-three percent were established on non-forest land-cover. The shapelet approach developed here can be used reliably to improve our understanding of the expansion of rubber production beyond Seima Protection Forest of Cambodia, and likely elsewhere in the tropics.

  20. Automated Visual Event Detection, Tracking, and Data Management System for Cabled- Observatory Video

    NASA Astrophysics Data System (ADS)

    Edgington, D. R.; Cline, D. E.; Schlining, B.; Raymond, E.

    2008-12-01

    Ocean observatories and underwater video surveys have the potential to unlock important discoveries with new and existing camera systems. Yet the burden of video management and analysis often requires reducing the amount of video recorded through time-lapse video or similar methods. It's unknown how many digitized video data sets exist in the oceanographic community, but we suspect that many remain under analyzed due to lack of good tools or human resources to analyze the video. To help address this problem, the Automated Visual Event Detection (AVED) software and The Video Annotation and Reference System (VARS) have been under development at MBARI. For detecting interesting events in the video, the AVED software has been developed over the last 5 years. AVED is based on a neuromorphic-selective attention algorithm, modeled on the human vision system. Frames are decomposed into specific feature maps that are combined into a unique saliency map. This saliency map is then scanned to determine the most salient locations. The candidate salient locations are then segmented from the scene using algorithms suitable for the low, non-uniform light and marine snow typical of deep underwater video. For managing the AVED descriptions of the video, the VARS system provides an interface and database for describing, viewing, and cataloging the video. VARS was developed by the MBARI for annotating deep-sea video data and is currently being used to describe over 3000 dives by our remotely operated vehicles (ROV), making it well suited to this deepwater observatory application with only a few modifications. To meet the compute and data intensive job of video processing, a distributed heterogeneous network of computers is managed using the Condor workload management system. This system manages data storage, video transcoding, and AVED processing. Looking to the future, we see high-speed networks and Grid technology as an important element in addressing the problem of processing and accessing large video data sets.

Top