Forest fire risk zonation mapping using remote sensing technology
NASA Astrophysics Data System (ADS)
Chandra, Sunil; Arora, M. K.
2006-12-01
Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.
Non-supervised method for early forest fire detection and rapid mapping
NASA Astrophysics Data System (ADS)
Artés, Tomás; Boca, Roberto; Liberta, Giorgio; San-Miguel, Jesús
2017-09-01
Natural hazards are a challenge for the society. Scientific community efforts have been severely increased assessing tasks about prevention and damage mitigation. The most important points to minimize natural hazard damages are monitoring and prevention. This work focuses particularly on forest fires. This phenomenon depends on small-scale factors and fire behavior is strongly related to the local weather. Forest fire spread forecast is a complex task because of the scale of the phenomena, the input data uncertainty and time constraints in forest fire monitoring. Forest fire simulators have been improved, including some calibration techniques avoiding data uncertainty and taking into account complex factors as the atmosphere. Such techniques increase dramatically the computational cost in a context where the available time to provide a forecast is a hard constraint. Furthermore, an early mapping of the fire becomes crucial to assess it. In this work, a non-supervised method for forest fire early detection and mapping is proposed. As main sources, the method uses daily thermal anomalies from MODIS and VIIRS combined with land cover map to identify and monitor forest fires with very few resources. This method relies on a clustering technique (DBSCAN algorithm) and on filtering thermal anomalies to detect the forest fires. In addition, a concave hull (alpha shape algorithm) is applied to obtain rapid mapping of the fire area (very coarse accuracy mapping). Therefore, the method leads to a potential use for high-resolution forest fire rapid mapping based on satellite imagery using the extent of each early fire detection. It shows the way to an automatic rapid mapping of the fire at high resolution processing as few data as possible.
NASA Astrophysics Data System (ADS)
Pramatana, F.; Prasetyo, L. B.; Rushayati, S. B.
2017-10-01
Bali starling is an endemic and endangered species which tend to decrease of its population in the wild. West Bali National Park (WBNP) is the only habitat of bali starling, however it is threatened nowadays by forest fire. Understanding the sensitivity of habitat to forest & land fire is urgently needed. Geographic Information System (GIS) can be used for mapping the vulnerability of forest fire. This study aims to analyze the contributed factor of forest fire, to develop vulnerability level map of forest fire in WBNP, to estimate habitat vulnerability of bali starling. The variable for mapping forest fire in WBNP were road distance, village distance, land cover, NDVI, NDMI, surface temperature, and slope. Forest fire map in WBNP was created by scoring from each variable, and classified into four classes of forest fire vulnerability which are very low (9 821 ha), low (5 015.718 ha), middle (6 778.656 ha), and high (2 126.006 ha). Bali starling existence in the middle and high vulnerability forest fire class in WBNP, consequently the population and habitat of bali starling is a very vulnerable. Management of population and habitat of bali starling in WBNP must be implemented focus on forest fire impact.
Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping
J. David Nichols; John R. Warren
1987-01-01
The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...
Rule-based mapping of fire-adapted vegetation and fire regimes for the Monongahela National Forest
Melissa A. Thomas-Van Gundy; Gregory J. Nowacki; Thomas M. Schuler
2007-01-01
A rule-based approach was employed in GIS to map fire-adapted vegetation and fire regimes within the proclamation boundary of the Monongahela National Forest. Spatial analyses and maps were generated using ArcMap 9.1. The resulting fireadaptation scores were then categorized into standard fire regime groups. Fire regime group V (200+ yrs) was the most common, assigned...
Sowmya, S V; Somashekar, R K
2010-11-01
Fire is the most spectacular natural disturbance that affects the forest ecosystem composition and diversity. Fire has a devastating effect on the landscape and its impact is felt at every level of the ecosystem and it is possible to map forest fire risk zone and thereby minimize the frequency of fire. There is a need for supranational approaches that analyze wide scenarios of factors involved and global fire effects. Fires can be monitored and analyzed over large areas in a timely and cost effective manner by using satellite imagery. Also Geographical Information System (GIS) can be used effectively to demarcate the fire risk zone map. Bhadra wildlife Sanctuary located in Kamataka, India was selected for this study. Vegetation, slope, distance from roads, settlements parameters were derived for a study area using topographic maps and field information. The Remote Sensing (RS) and Geographical Information System (GIS)-based forest fire risk model of the study area appeared to be highly compatible with the actual fire-affected sites. The temporal satellite data from 1989 to2006 have been analyzed to map the burnt areas. These classes were weighted according to their influence on forest fire. Four categories of fire risk regions such as Low, Moderate, High and Very high fire intensity zones were identified. It is predicted that around 10.31% of the area falls undermoderate risk zone.
NASA Astrophysics Data System (ADS)
Mihai, Bogdan; Savulescu, Ionut
2014-05-01
Forest fires in Romanian Carpathians became a frequent phenomenon during the last decade, although local climate and other environmental features did not create typical conditions. From 2004, forest fires affect in Romania more than 100 hectares/year of different forest types (deciduous and coniferous). Their magnitude and frequency are not known, since a historical forest fire inventory does not exist (only press papers and local witness for some selected events). Forest fires features the summer dry periods but there are dry autumns and early winter periods with events of different magnitudes. The application we propose is based on an empirical modeling of forest fire susceptibility in a typical mountain area from the Southern Carpathians, the Iezer Mountains (2462 m). The study area features almost all the altitudinal vegetation zones of the European temperate mountains, from the beech zone, to the coniferous zone, the subalpine and the alpine zones (Mihai et al., 2007). The analysis combines GIS and remote sensing models (Chuvieco et al., 2012), starting from the ideas that forest fires are featured by the ignition zones and then by the fire propagation zones. The first data layer (ignition zones) is the result of the crossing between the ignition factors: lightning - points of multitemporal occurence and anthropogenic activities (grazing, tourism and traffic) and the ignition zones (forest fuel zonation - forest stands, soil cover and topoclimatic factor zonation). This data is modelled from different sources: the MODIS imagery fire product (Hantson et al., 2012), detailed topographic maps, multitemporal orthophotos at 0.5 m resolution, Landsat multispectral imagery, forestry cadastre maps, detailed soil maps, meteorological data (the WorldClim digital database) as well as the field survey (mapping using GPS and local observation). The second data layer (fire propagation zones) is the result of the crossing between the forest fuel zonation, obtained with the help of forestry data, the wind regime data and the topographic features of the mountain area (elevation, slope declivity, slope aspect). The analysis also consider the insolation degree of mountain slopes, that creates favourable conditions for fire propagation between different canopies. These data layers are integrated within a simple GIS analysis in order to intersect the ignition zones with the fire propagation zones in order to obtain the potential areas to be affected by fire. The digital map show three levels of forest fire susceptibility, differenced on the basis of expert knowledge. The map can be validated from the statistical point of view with the polygons of the forest fire affected areas mapped from Landsat TM, ETM+ and OLI satellite imagery. The mapping results could be integrated within the forest management strategies and especially within the forest cadastre and development maps (updated every ten years). The result can confirm that the data gap in terms of forest fire events can be filled with expert knowledge. References Chuvieco, E, Aguado, I., Jurdao, S., Pettinari, M., Yebra, M., Salas, J., Hantson, S., de la Riva, J., Ibarra, P., Rodrigues, M., Echeverria, M., Azqueta, D., Roman, M., Bastarrika, A., Martinez, S., Recondo, C., Zapico, E., Martinez-Vega F.J. (2012) Integrating geospatial information into fire risk assessment, International Journal of Wildland Fire, 2,2, 69-86. Hantson, S., Padilla, M., Corti., D, Chuvieco, E. (2013) Strenghts and weaknesses of MODIS hotspots to characterize Global fire occurence, Remote Sensing of Environment, 131, 1, 152-159. Mihai, B., Savulescu, I.,Sandric, I. (2007) Change detection analysis (1986/2002) for the alpine, subalpine and forest landscape in Iezer Mountains (Southern Carpathians, Romania), Mountain Research and Development, 27, 250-258.
A study of forest fire danger district division in Lushan Mountain based on RS and GIS
NASA Astrophysics Data System (ADS)
Xiao, Jinxiang; Huang, Shu-E.; Zhong, Anjian; Zhu, Biqin; Ye, Qing; Sun, Lijun
2009-09-01
The study selected 9 factors, average maximum temperature, average temperature, average precipitation, average the longest days of continuous drought and average wind speed during fire prevention period, vegetation type, altitude, slope and aspect as the index of forest fire danger district division, which has taken the features of Lushan Mountain's forest fire history into consideration, then assigned subjective weights to each factor according to their sensitivity to fire or their fire-inducing capability. By remote sensing and GIS, vegetation information layer were gotten from Landsat TM image and DEM with a scale of 1:50000 was abstracted from the digital scanned relief map. Topography info. (elevation, slope, aspect) layers could be gotten after that. A climate resource databank that contained the data from the stations of Lushan Mountain and other nearby 7 stations was built up and extrapolated through the way of grid extrapolation in order to make the distribution map of climate resource. Finally synthetical district division maps were made by weighing and integrating all the single factor special layers,and the study area were divided into three forest fire danger district, include special fire danger district, I-fire danger district and II-fire danger district. It could be used as a basis for developing a forest fire prevention system, preparing the annual investment plan, allocating reasonably the investment of fire prevention, developing the program of forest fire prevention and handle, setting up forest fire brigade, leaders' decisions on forest fire prevention work.
NASA Astrophysics Data System (ADS)
Mahmud, Ahmad Rodzi; Setiawan, Iwan; Mansor, Shattri; Shariff, Abdul Rashid Mohamed; Pradhan, Biswajeet; Nuruddin, Ahmed
2009-12-01
A study in modeling fire hazard assessment will be essential in establishing an effective forest fire management system especially in controlling and preventing peat fire. In this paper, we have used geographic information system (GIS), in combination with other geoinformation technologies such as remote sensing and computer modeling, for all aspects of wild land fire management. Identifying areas that have a high probability of burning is an important component of fire management planning. The development of spatially explicit GIS models has greatly facilitated this process by allowing managers to map and analyze variables contributing to fire occurrence across large, unique geographic units. Using the model and its associated software engine, the fire hazard map was produced. Extensive avenue programming scripts were written to provide additional capabilities in the development of these interfaces to meet the full complement of operational software considering various users requirements. The system developed not only possesses user friendly step by step operations to deliver the fire vulnerability mapping but also allows authorized users to edit, add or modify parameters whenever necessary. Results from the model can support fire hazard mapping in the forest and enhance alert system function by simulating and visualizing forest fire and helps for contingency planning.
The Greek National Observatory of Forest Fires (NOFFi)
NASA Astrophysics Data System (ADS)
Tompoulidou, Maria; Stefanidou, Alexandra; Grigoriadis, Dionysios; Dragozi, Eleni; Stavrakoudis, Dimitris; Gitas, Ioannis Z.
2016-08-01
Efficient forest fire management is a key element for alleviating the catastrophic impacts of wildfires. Overall, the effective response to fire events necessitates adequate planning and preparedness before the start of the fire season, as well as quantifying the environmental impacts in case of wildfires. Moreover, the estimation of fire danger provides crucial information required for the optimal allocation and distribution of the available resources. The Greek National Observatory of Forest Fires (NOFFi)—established by the Greek Forestry Service in collaboration with the Laboratory of Forest Management and Remote Sensing of the Aristotle University of Thessaloniki and the International Balkan Center—aims to develop a series of modern products and services for supporting the efficient forest fire prevention management in Greece and the Balkan region, as well as to stimulate the development of transnational fire prevention and impacts mitigation policies. More specifically, NOFFi provides three main fire-related products and services: a) a remote sensing-based fuel type mapping methodology, b) a semi-automatic burned area mapping service, and c) a dynamically updatable fire danger index providing mid- to long-term predictions. The fuel type mapping methodology was developed and applied across the country, following an object-oriented approach and using Landsat 8 OLI satellite imagery. The results showcase the effectiveness of the generated methodology in obtaining highly accurate fuel type maps on a national level. The burned area mapping methodology was developed as a semi-automatic object-based classification process, carefully crafted to minimize user interaction and, hence, be easily applicable on a near real-time operational level as well as for mapping historical events. NOFFi's products can be visualized through the interactive Fire Forest portal, which allows the involvement and awareness of the relevant stakeholders via the Public Participation GIS (PPGIS) tool.
Defining fire environment zones in the boreal forests of northeastern China.
Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu
2015-06-15
Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.
A synoptic climatology for forest fires in the NE US and future implications for GCM simulations
Yan Qing; Ronald Sabo; Yiqiang Wu; J.Y. Zhu
1994-01-01
We studied surface-pressure patterns corresponding to reduced precipitation, high evaporation potential, and enhanced forest-fire danger for West Virginia, which experienced extensive forest-fire damage in November 1987. From five years of daily weather maps we identified eight weather patterns that describe distinctive flow situations throughout the year. Map patterns...
Space-Based Sensorweb Monitoring of Wildfires in Thailand
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Mclaren, David; Davies, Ashley; Tran, Daniel; Tanpipat, Veerachai; Akaakara, Siri; Ratanasuwan, Anuchit; Mandl, Daniel
2011-01-01
We describe efforts to apply sensorweb technologies to the monitoring of forest fires in Thailand. In this approach, satellite data and ground reports are assimilated to assess the current state of the forest system in terms of forest fire risk, active fires, and likely progression of fires and smoke plumes. This current and projected assessment can then be used to actively direct sensors and assets to best acquire further information. This process operates continually with new data updating models of fire activity leading to further sensing and updating of models. As the fire activity is tracked, products such as active fire maps, burn scar severity maps, and alerts are automatically delivered to relevant parties.We describe the current state of the Thailand Fire Sensorweb which utilizes the MODIS-based FIRMS system to track active fires and trigger Earth Observing One / Advanced Land Imager to acquire imagery and produce active fire maps, burn scar severity maps, and alerts. We describe ongoing work to integrate additional sensor sources and generate additional products.
Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery.
Saglam, Bülent; Bilgili, Ertugrul; Dincdurmaz, Bahar; Kadiogulari, Ali Ihsan; Kücük, Ömer
2008-06-20
Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.
Robert E. Keane
2011-01-01
In the mid 1980s I was asked to create a fire regime map of the Selway-Bitterroot Wilderness Area for the Bitterroot National Forest fire management staff. The well known fire historian Steve Barrett had already completed most of the work by synthesizing all available fire history results by forest habitat type, so I figured it would be easy to create a map of habitat...
Southwestern Oregon's Biscuit Fire: An Analysis of Forest Resources, Fire Severity, and Fire Hazard
David L. Azuma; Glenn A. Christensen
2005-01-01
This study compares pre-fire field inventory data (collected from 1993 to 1997) in relation to post-fire mapped fire severity classes and the Fire and Fuels Extension of the Forest Vegetation Simulator growth and yield model measures of fire hazard for the portion of the Siskiyou National Forest in the 2002 Biscuit fire perimeter of southwestern Oregon. Post-fire...
An application of LANDSAT digital technology to forest fire fuel type mapping
NASA Technical Reports Server (NTRS)
Kourtz, P. H.
1977-01-01
The role of digital classifications suitable as fuel maps was examined. A Taylor enhancement was produced for an 8 million hectare fire control region showing water, muskeg, coniferous, deciduous and mixed stands, clearcut logging, burned areas, regeneration areas, nonforested areas and large forest roads. Use of the map by fire control personnel demonstrated its usefulness for initial attack decision making.
NASA Technical Reports Server (NTRS)
1990-01-01
The Fire Logistics Airborne Mapping Equipment (FLAME) system, mounted in a twin-engine and airplane operated by the U.S. Forest Service (USFS) of the U.S. Department of Agriculture (USDA), is an airborne instrument for detecting and pinpointing forest fires that might escape ground detection. The FLAME equipment rack includes the operator interface, a video monitor, the system's control panel and film output. FLAME's fire detection sensor is an infrared line scanner system that identifies fire boundaries. Sensor's information is correlated with the aircraft's position and altitude at the time the infrared imagery is acquired to fix the fire's location on a map. System can be sent to a fire locale anywhere in the U.S. at the request of a regional forester. USFS felt a need for a more advanced system to deliver timely fire information to fire management personnel in the decade of the 1990s. The Jet Propulsion Laboratory (JPL) conducted a study, jointly sponsored by NASA and USDA, on what advanced technologies might be employed to produce an end-to-end thermal infrared fire detection and mapping system. That led to initiation of the Firefly system, currently in development at JPL and targeted for operational service beginning in 1992. Firefly will employ satellite-reference position fixing and provide performance superior to FLAME.
Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping
NASA Astrophysics Data System (ADS)
Akay, A. E.; Erdoğan, A.
2017-11-01
The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.
Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasischke, E.S.; French, N.H.F.; Harrell, P.
1993-06-01
Normalized difference vegetation index (NDVI) composite image data, produced from AVHRR data collected in 1990, were evaluated for locating and mapping the areal extent of wildfires in the boreal forests of Alaska during that year. A technique was developed to map forest fire boundaries by subtracting a late-summer AVHRR NDVI image from an early summer scene. The locations and boundaries of wildfires within the interior region of Alaska were obtained from the Alaska Fire Service, and compared to the AVHRR-derived fire-boundary map. It was found that AVHRR detected 89.5% of all fires with sizes greater than 2,000ha with no falsemore » alarms and that, for most cases, the general shape of the fire boundary detected by AVHRR matched those mapped by field observers. However, the total area contained within the fire boundaries mapped by AVHRR were only 61% of those mapped by the field observers. However, the AVHRR data used in this study did not span the entire time period during which fires occurred, and it is believed the areal estimates could be improved significantly if an expanded AVHRR data set were used.« less
Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data
NASA Technical Reports Server (NTRS)
Kasischke, Eric S.; French, Nancy H. F.; Harrell, Peter; Christensen, Norman L., Jr.; Ustin, Susan L.; Barry, Donald
1993-01-01
Normalized difference vegetation index (NDVI) composite image data, produced from AVHRR data collected in 1990, were evaluated for locating and mapping the areal extent of wildfires in the boreal forests of Alaska during that year. A technique was developed to map forest fire boundaries by subtracting a late-summer AVHRR NDVI image from an early summer scene. The locations and boundaries of wildfires within the interior region of Alaska were obtained from the Alaska Fire Service, and compared to the AVHRR-derived fire-boundary map. It was found that AVHRR detected 89.5 percent of all fires with sizes greater than 2000 ha with no false alarms and that, for most cases, the general shape of the fire boundary detected by AVHRR matched those mapped by field observers. However, the total area contained within the fire boundaries mapped by AVHRR were only 61 percent of those mapped by the field observers. However, the AVHRR data used in this study did not span the entire time period during which fires occurred, and it is believed the areal estimates could be improved significantly if an expanded AVHRR data set were used.
Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.
2016-08-01
Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.
NASA Astrophysics Data System (ADS)
Peterson, Seth Howard
Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger, and the fire reached the wildland urban interface three hours earlier, when using August LFM.
Estimation of the Forest Fire Risk in Indonesia based on Satellite Remote Sensing
NASA Astrophysics Data System (ADS)
Suzuki, H.; Takahashi, Y.; Hashimoto, A.; Akita, M.; Hasegawa, Y.; Ogino, Y.; Naruse, N.; Takahashi, Y.
2016-12-01
To minimize forest fires in tropical area is extremely important, because the fire has a large impact on global warming, biodiversity, and human society. In the previous study, Shimada and Ishibashi monitored the ground-water lever from the value of Normalized Difference Vegetation Index (NDVI) obtained in Kalimantan Island to predict where the forest fires will happen. We have developed a method to map the forest fire risk by calculating the value of Modified Soil Adjusted Vegetation Index 2 (MSAVI2). Moreover, we investigated the relation between the distance from a road as an artificial factor and the occurrence of the fire.First, calculating the MSAVI2 from Landsat 7 and 8 images of August, 2015 around Martapura in South Sumatra, Indonesia, we mapped the area where the plants were stressed. Next, we checked the degrees of matching between the area of low MSAVI2 and the forest fire points.As a result, half of the fires happened in the area having the MSAVI2 values of 0.20 to 0.35. When we focused on only the area which is over 5 kilometers far from a road, the degrees of matching became higher; it rose up to 62 percent.Those results indicate that the fire risks relate to the dry area calculated as low MSAVI2 in the case with less human activities. We need to consider an effect of artificial factors to estimate the whole risk of forest fire.In conclusion, the map of forest fire risk by calculating the value of MSAVI2 is applicable to an area with less artificial factor, while we have to take the effect of artificial fire factor into the consideration.
Modeling of multi-strata forest fire severity using Landsat TM data
Q. Meng; R.K. Meentemeyer
2011-01-01
Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which...
Real time forest fire warning and forest fire risk zoning: a Vietnamese case study
NASA Astrophysics Data System (ADS)
Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.
2016-12-01
Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher potential risk, the more chance of fire happen. By adding spatial factors to continuous daily updated remote sensing based meteo-data, results are valuable for both mapping forest fire risk zones in short and long-term and real time fire warning in Vietnam. Key words: Near-real-time, forest fire warning, fuzzy regression model, remote sensing.
Modeling Forest Understory Fires in an Eastern Amazonian Landscape
NASA Technical Reports Server (NTRS)
Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.
2004-01-01
Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition sources accurately predicted the location of lss than 80% of the forest fires observed during the ENSO event of 1997- 1998. In this Amazon landscape, forest understory fire is a complex function of several variables that influence both the flammability and ignition exposure of the forest.
John D. Shaw; Sara A. Goeking; James Menlove; Charles E. Werstak
2017-01-01
Integration of Forest Inventory and Analysis (FIA) plot data with Monitoring Trends in Burn Severity (MTBS) data can provide new information about fire effects on forests. This integration allowed broad-scale assessment of the cover types burned in large fires, the relationship between prefire stand conditions and fire severity, and postfire stand conditions. Of the 42...
Thomas R. Whittier; Andrew N. Gray
2016-01-01
Determining how the frequency, severity, and extent of forest fires are changing in response to changes in management and climate is a key concern in many regions where fire is an important natural disturbance. In the USA the only national-scale fire severity classification uses satellite image changedetection to produce maps for large (>400 ha) fires, and is...
NASA Astrophysics Data System (ADS)
Sebastián-López, Ana; Urbieta, Itziar R.; de La Fuente Blanco, David; García Mateo, Rubén.; Moreno Rodríguez, José Manuel; Eftichidis, George; Varela, Vassiliki; Cesari, Véronique; Mário Ribeiro, Luís.; Viegas, Domingos Xavier; Lanorte, Antonio; Lasaponara, Rosa; Camia, Andrea; San Miguel, Jesús
2010-05-01
Forest fires burn at the local scale, but their massive occurrence causes effects which have global dimensions. Furthermore climate change projections associate global warming to a significant increase in forest fire activity. Warmer and drier conditions are expected to increase the frequency, duration and intensity of fires, and greater amounts of fuel associated with forest areas in decline may cause more frequent and larger fires. These facts create the need for establishing strategies for harmonizing fire danger rating, fire risk assessment, and fire prevention policies at a supranational level. Albeit forest fires are a permanent threat for European ecosystems, particularly in the south, there is no commonly accepted fuel classification scheme adopted for operational use by the Member States of the EU. The European Commission (EC) DG Environment and JRC have launched a set of studies following a resolution of the European Parliament on the further development and enhancement of the European Forest Fire Information System (EFFIS), the EC focal point for information on forest fires in Europe. One of the studies that are being funded is the FUELMAP project. The objective of FUELMAP is to develop a novel fuel classification system and a new European fuel map that will be based on a comprehensive classification of fuel complexes representing the various vegetation types across EU27, plus Switzerland, Croatia and Turkey. The overall work plan is grounded on a throughout knowledge of European forest landscapes and the key features of fuel situations occurring in natural areas. The method makes extended use of existing databases available in the Member States and European Institutions. Specifically, our proposed classification combines relevant information on ecoregions, land cover and uses, potential and actual vegetation, and stand structure. GIS techniques are used in order to define the geographic extent of the classification units and for identifying the main driving factors that determine the spatial distribution of the resulting fuel complexes. Furthermore, relevant parameters influencing fire potential and effects such as fuel load, live/dead ratio, and fuels' size classes' distribution are considered. National- and local-scale datasets (vegetation maps, forest inventory plots, fuel maps...) will be also studied and compared. Local ground- truth data will be used to assess the accuracy of the classification and will contribute, along with literature values and experts' opinion, to characterize the fuels' physical properties. The resulting classification aims to support the characterization of the fire potential, serve as input in fire emissions models, and be used to assess the expected impact of fire in the European landscapes. The work plan includes the development of a GIS software tool to automatically update the fuel map from modified (up-to-date) input data layers. The fuel map of Europe is mainly intended to support the implementation of the EFFIS modules that can be enhanced by the use of improved information on forest fuel properties and spatial distribution, though it is also envisaged that the results of the project might be useful for other relevant applications at different spatial scales. To this purpose, the classification will be designed with a hierarchical and flexible structure for describing heterogeneous landscapes. The work is on-going and this presentation shows the first results towards the envisaged European fuel map.
NASA Technical Reports Server (NTRS)
Meng, Ran; Wu, Jin; Schwager, Kathy L.; Zhao, Feng; Dennison, Philip E.; Cook, Bruce D.; Brewster, Kristen; Green, Timothy M.; Serbin, Shawn P.
2017-01-01
As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (less than or equal to 5 m) from very-high-resolution (VHR) data. We assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severity was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal - pre- and post-fire event - WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). This work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the less than 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ran; Wu, Jin; Schwager, Kathy L.
As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less
Meng, Ran; Wu, Jin; Schwager, Kathy L.; ...
2017-01-21
As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less
Linking Fuel Inventories With Atmospheric Data for Assessment of Fire Danger
Christopher W. Woodall; Joseph Charney; Greg Liknes; Brian Potter
2006-01-01
Combining forest fuel maps and real-time atmospheric data may enable creation of more dynamic and comprehensive fire danger assessments. The goal of this study was to combine fuel maps, based on data from the Forest Inventory and Analysis (FIA) program of the U.S. Department of Agriculture Forest Service, with real-time atmospheric data to create a more dynamic index...
What's the fire danger now? Linking fuel inventories with atmospheric data
Christopher W. Woodall; Joseph J. Charney; Greg C. Liknes; Brian E. Potter
2005-01-01
The combination of forest fuel maps with real-time atmospheric data may enable the creation of more dynamic and comprehensive assessments of fire danger. The goal of this study was to combine fuel maps, based on data from the Forest Inventory and Analysis (FIA) program of the USDA Forest Service, with real-time atmospheric data for the creation of a more dynamic index...
NASA Astrophysics Data System (ADS)
Aricak, Burak; Kucuk, Omer; Enez, Korhan
2014-01-01
Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.
Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.
Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale
2016-05-01
Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service in landscape valuations to account for the significant landscape function of reducing the risk of catastrophic large fires. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Forest fire risk assessment-an integrated approach based on multicriteria evaluation.
Goleiji, Elham; Hosseini, Seyed Mohsen; Khorasani, Nematollah; Monavari, Seyed Masoud
2017-11-06
The present study deals with application of the weighted linear combination method for zoning of forest fire risk in Dohezar and Sehezar region of Mazandaran province in northern Iran. In this study, the effective criteria for fires were identified by the Delphi method, and these included ecological and socioeconomic parameters. In this regard, the first step comprised of digital layers; the required data were provided from databases, related centers, and field data collected in the region. Then, the map of criteria was digitized in a geographic information system, and all criteria and indexes were normalized by fuzzy logic. After that, the geographic information system (GIS 10.3) was integrated with the Weighted Linear Combination and the Analytical Network Process, to produce zonation of the forest fire risk map in the Dohezar and Sehezar region. In order to analyze accuracy of the evaluation, the results obtained from the study were compared to records of former fire incidents in the region. This was done using the Kappa coefficient test and a receiver operating characteristic curve. The model showing estimations for forest fire risk explained that the prepared map had accuracy of 90% determined by the Kappa coefficient test and the value of 0.924 by receiver operating characteristic. These results showed that the prepared map had high accuracy and efficacy.
Justin P. Ziegler; Chad M. Hoffman; Paula J. Fornwalt; Carolyn H. Sieg; Michael A. Battaglia; Marin E. Chambers; Jose M. Iniguez
2017-01-01
Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses...
NASA Astrophysics Data System (ADS)
Drosos, Vasileios C.; Giannoulas, Vasileios J.; Daoutis, Christodoulos
2014-08-01
Climatic changes cause temperature rise and thus increase the risk of forest fires. In Greece the forests with the greatest risk to fire are usually those located near residential and tourist areas where there are major pressures on land use changes, while there are no currently guaranteed cadastral maps and defined title deeds because of the lack of National and Forest Cadastre. In these areas the deliberate causes of forest fires are at a percentage more than 50%. This study focuses on the forest opening up model concerning both the prevention and suppression of forest fires. The most urgent interventions that can be done after the fire destructions is also studied in relation to soil protection constructions, in order to minimize the erosion and the torrential conditions. Digital orthophotos were used in order to produce and analyze spatial data using Geographical Information Systems (GIS). Initially, Digital Elevation Models were generated, based on photogrammetry and forest areas as well as the forest road network were mapped. Road density, road distance, skidding distance and the opening up percentage were accurately measured for a forest complex. Finally, conclusions and suggestions have been drawn about the environmental compatibility of forest protection and wood harvesting works. In particular the contribution of modern technologies such as digital photogrammetry, remote sensing and Geographical Information Systems is very important, allowing reliable, effective and fast process of spatial analysis contributing to a successful planning of opening up works and fire protection.
Recent Developments for Satellite-Based Fire Monitoring in Canada
NASA Astrophysics Data System (ADS)
Abuelgasim, A.; Fraser, R.
2002-05-01
Wildfires in Canadian forests are a major source of natural disturbance. These fires have a tremendous impact on the local environment, humans and wildlife, ecosystem function, weather, and climate. Approximately 9000 fires burn 3 million hectares per year in Canada (based on a 10-year average). While only 2 to 3 percent of these wildfires grow larger than 200 hectares in size, they account for almost 97 percent of the annual area burned. This provides an excellent opportunity to monitor active fires using a combination of low and high resolution sensors for the purpose of determining fire location and burned areas. Given the size of Canada, the use of remote sensing data is a cost-effective way to achieve a synoptic overview of large forest fire activity in near-real time. In 1998 the Canada Centre for Remote Sensing (CCRS) and the Canadian Forest Service (CFS) developed a system for Fire Monitoring, Mapping and Modelling (Fire M3;http://fms.nofc.cfs.nrcan.gc.ca/FireM3/). Fire M3 automatically identifies, monitors, and maps large forest fires on a daily basis using NOAA AVHRR data. These data are processed daily using the GEOCOMP-N satellite image processing system. This presentation will describe recent developments to Fire M3, included the addition of a set of algorithms tailored for NOAA-16 (N-16) data. The two fire detection algorithms are developed for N-16 day and night-time daily data collection. The algorithms exploit both the multi-spectral and thermal information from the AVHRR daily images. The set of N-16 day and night algorithms was used to generate daily active fire maps across North America for the 2001 fire season. Such a combined approach for fire detection leads to an improved detection rate, although day-time detection based on the new 1.6 um channel was much less effective (note - given the low detection rate with day time imagery, I don't think we can make the statement about capturing the diurnal cycle). Selected validation sites in western Canada and the United States showed reasonable correspondence with the location of fires mapped by CFS and those mapped by the USDA Forest Service using conventional means.
Mapping relative fire regime condition class for the Western United States
James P. Menakis; Melanie Miller; Thomas Thompson
2004-01-01
In 1999, a coarse-scale map of Fire Regime Condition Classes (FRCC) was developed for the conterminous United States (US) to help address contemporary fire management issues and to quantify changes in fuels from historical conditions. This map and its associated data have been incorporated into national policies (National Fire Plan, Forest Health Initiative) and...
Detecting post-fire salvage logging with Landsat change maps and national fire survey data
Todd A. Schroeder; Michael A. Wulder; Sean P. Healey; Gretchen G. Moisen
2012-01-01
In Canadian boreal forests, wildfire is the predominant agent of natural disturbance often with millions of hectares burning annually. In addition to fire, nearly one quarter of Canada's boreal forest is also managed for industrial wood production. Post-fire logging (or salvage harvesting) is increasingly used to minimize economic losses from fire, notwithstanding...
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.
2017-12-01
Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.
Sustainable Forest Management Support Based on the Spatial Distribution of Fuels for Fire Management
José Germán Flores Garnica; Juan de Dios Benavides Solorio; David Arturo Moreno Gonzalez
2006-01-01
Fire behavior simulation is based mainly on the fuel model-concept. However, there are great difficulties to develop the corresponding maps, therefore it is suggested the generation of four fuel maps (1-hour, 10-hours, 100-hours and alive). These maps will allow a better definition of the spatial variation of forest fuels, even within a zone classified as a given fuel...
Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity
NASA Astrophysics Data System (ADS)
Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O.
2018-02-01
Nowadays Earth observation satellites, in particular Landsat, provide a valuable help to forest managers in post-fire operations; being the base of post-fire damage maps that enable to analyze fire impacts and to develop vegetation recovery plans. Sentinel-2A MultiSpectral Instrument (MSI) records data in similar spectral wavelengths that Landsat 8 Operational Land Imager (OLI), and has higher spatial and temporal resolutions. This work compares two types of satellite-based maps for evaluating fire damage in a large wildfire (around 8000 ha) located in Sierra de Gata (central-western Spain) on 6-11 August 2015. 1) burn severity maps based exclusively on Landsat data; specifically, on differenced Normalized Burn Ratio (dNBR) and on its relative versions (Relative dNBR, RdNBR, and Relativized Burn Ratio, RBR) and 2) burn severity maps based on the same indexes but combining pre-fire data from Landsat 8 OLI with post-fire data from Sentinel-2A MSI data. Combination of both Landsat and Sentinel-2 data might reduce the time elapsed since forest fire to the availability of an initial fire damage map. Interpretation of ortho-photograph Pléiades 1 B data (1:10,000) provided us the ground reference data to measure the accuracy of both burn severity maps. Results showed that Landsat based burn severity maps presented an adequate assessment of the damage grade (κ statistic = 0.80) and its spatial distribution in wildfire emergency response. Further using both Landsat and Sentinel-2 MSI data the accuracy of burn severity maps, though slightly lower (κ statistic = 0.70) showed an adequate level for be used by forest managers.
NASA Astrophysics Data System (ADS)
Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.
2016-05-01
Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.
Economic vulnerability of timber resources to forest fires.
y Silva, Francisco Rodríguez; Molina, Juan Ramón; González-Cabán, Armando; Machuca, Miguel Ángel Herrera
2012-06-15
The temporal-spatial planning of activities for a territorial fire management program requires knowing the value of forest ecosystems. In this paper we extend to and apply the economic valuation principle to the concept of economic vulnerability and present a methodology for the economic valuation of the forest production ecosystems. The forest vulnerability is analyzed from criteria intrinsically associated to the forest characterization, and to the potential behavior of surface fires. Integrating a mapping process of fire potential and analytical valuation algorithms facilitates the implementation of fire prevention planning. The availability of cartography of economic vulnerability of the forest ecosystems is fundamental for budget optimization, and to help in the decision making process. Published by Elsevier Ltd.
Early Forest Fire Detection Using Radio-Acoustic Sounding System
Sahin, Yasar Guneri; Ince, Turker
2009-01-01
Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967
Mapping Fuels on the Okanogan and Wenatchee National Forests
Crystal L. Raymond; Lara-Karena B. Kellogg; Donald McKenzie
2006-01-01
Resource managers need spatially explicit fuels data to manage fire hazard and evaluate the ecological effects of wildland fires and fuel treatments. For this study, fuels were mapped on the Okanogan and Wenatchee National Forests (OWNF) using a rule-based method and the Fuels Characteristic Classification System (FCCS). The FCCS classifies fuels based on their...
Presettlement fire regime and vegetation mapping in Southeastern Coastal Plain forest ecosystems
Andrew D. Bailey; Robert Mickler; Cecil Frost
2007-01-01
Fire-adapted forest ecosystems make up 95 percent of the historic Coastal Plain vegetation types in the Southeastern United States. Fire suppression over the last century has altered the species composition of these ecosystems, increased fuel loads, and increased wildfire risk. Prescribed fire is one management tool used to reduce fuel loading and restore fire-adapted...
High-severity fire: Evaluating its key drivers and mapping its probability across western US forests
Sean A. Parks; Lisa M. Holsinger; Matthew H. Panunto; W. Matt Jolly; Solomon Z. Dobrowski; Gregory K. Dillon
2018-01-01
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the...
Strengthening community participation in reducing GHG emission from forest and peatland fire
NASA Astrophysics Data System (ADS)
Thoha, A. S.; Saharjo, B. H.; Boer, R.; Ardiansyah, M.
2018-02-01
Strengthening community participation is needed to find solutions to encourage community more participate in reducing Green House Gas (GHG) from forest and peatland fire. This research aimed to identify stakeholders that have the role in forest and peatland fire control and to formulate strengthening model of community participation through community-based early warning fire. Stakeholder mapping and action research were used to determine stakeholders that had potential influence and interest and to formulate strengthening model of community participation in reducing GHG from forest and peatland fire. There was found that position of key players in the mapping of stakeholders came from the government institution. The existence of community-based fire control group can strengthen government institution through collaborating with stakeholders having strong interest and influence. Moreover, it was found several local knowledge in Kapuas District about how communities predict drought that have potential value for developing the community-based early warning fire system. Formulated institutional model in this research also can be further developed as a model institution in the preservation of natural resources based on local knowledge. In conclusion, local knowledge and community-based fire groups can be integrated within strengthening model of community participation in reducing GHG from forest and peatland fire.
NASA Astrophysics Data System (ADS)
Mitri, George H.; Gitas, Ioannis Z.
2013-02-01
Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.
Selective Cutting Impact on Carbon Storage in Fremont-Winema National Forest, Oregon
NASA Astrophysics Data System (ADS)
Huybrechts, C.; Cleve, C. T.
2004-12-01
Management personnel of the Fremont-Winema National Forest in southern Oregon were interested in investigating how selective cutting or fuel load reduction treatments affect forest carbon sinks and as an ancillary product, fire risk. This study was constructed with the objective of providing this information to the forest administrators, as well as to satisfy a directive to study carbon management, a component of the 2004 NASA's Application Division Program Plan. During the summer of 2004, a request for decision support tools by the forest management was addressed by a NASA sponsored student-led, student-run internship group called DEVELOP. This full-time10-week program was designed to be an introduction to work done by earth scientists, professional business / client relationships and the facilities available at NASA Ames. Four college and graduate students from varying educational backgrounds designed the study and implementation plan. The team collected data for five consecutive days in Oregon throughout the Fremont-Winema forest and the surrounding terrain, consisting of soil sampling for underground carbon dynamics, fire model and vegetation map validation. The goal of the carbon management component of the project was to model current carbon levels, then to gauge the effect of fuel load reduction treatments. To study carbon dynamics, MODIS derived fraction photosynthetically active radiation (FPAR) maps, regional climate data, and Landsat 5 generated dominant vegetation species and land cover maps were used in conjunction with the NASA - Carnegie-Ames-Stanford-Approach (CASA) model. To address fire risk the dominant vegetation species map was used to estimate fuel load based on species biomass in conjunction with a mosaic of digital elevation models (DEMs) as components to the creation of an Anderson-inspired fuel map, a rate of spread in meters/minute map and a flame length map using ArcMap 9 and FlamMap. Fire risk results are to be viewed qualitatively as maps output spatial distribution of data rather then quantitative assessment of risk. For the first time ever, the resource managers at the Fremont-Winema forest will be taking into consideration the value of carbon as a resource in their decision making process for the 2005 Fremont-Winema forest management plan.
Modeling regional-scale wildland fire emissions with the wildland fire emissions information system
Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard
2014-01-01
As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...
NASA Technical Reports Server (NTRS)
Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.
2004-01-01
"Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.
Sparkle L. Malone; Paula J. Fornwalt; Mike A. Battaglia; Marin E. Chambers; Jose M. Iniguez; Carolyn H. Sieg
2018-01-01
We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11-12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving) trees, in three 4-ha plots following the 2002 Hayman Fire...
NASA Astrophysics Data System (ADS)
Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.
2014-02-01
Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue Department Malaysia can use the end result of this study in preparation for the land and forest fires in the future.
Relating fire-caused change in forest structure to remotely sensed estimates of fire severity
Jamie M. Lydersen; Brandon M. Collins; Jay D. Miller; Danny L. Fry; Scott L. Stephens
2016-01-01
Fire severity maps are an important tool for understanding fire effects on a landscape. The relative differenced normalized burn ratio (RdNBR) is a commonly used severity index in California forests, and is typically divided into four categories: unchanged, low, moderate, and high. RdNBR is often calculated twice--from images collected the year of the fire (initial...
Estimation of carbon emissions from wildfires in Alaskan boreal forests using AVHRR data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasischke, E.S.; French, N.H.F.; Bourgeau-Chavez, L.L
1993-06-01
The objectives of this research study were to evaluate the utility of using AVHRR data for locating and measuring the areal extent of wildfires in the boreal forests of Alaska and to estimate the amount of carbon being released during these fires. Techniques were developed to using the normalized difference vegetation signature derived from AVHRR data to detect and measure the area of fires in Alaska. A model was developed to estimate the amount of biomass/carbon being stored in Alaskan boreal forests, and the amount of carbon released during fires. The AVHRR analysis resulted in detection of > 83% ofmore » all forest fires greater than 2,000 ha in size in the years 1990 and 1991. The areal estimate derived from AVHRR data were 75% of the area mapped by the Alaska Fire Service for these years. Using fire areas and locations for 1954 through 1992, it was determined that on average, 13.0 gm-C-m-2 of boreal forest area is released during fires every year. This estimate is two to six times greater than previous reported estimates. Our conclusions are that the analysis of AVHRR data represents a viable means for detecting and mapping fires in boreal regions on a global basis.« less
NASA Astrophysics Data System (ADS)
Shah-Heydari pour, A.; Pahlavani, P.; Bigdeli, B.
2017-09-01
According to the industrialization of cities and the apparent increase in pollutants and greenhouse gases, the importance of forests as the natural lungs of the earth is felt more than ever to clean these pollutants. Annually, a large part of the forests is destroyed due to the lack of timely action during the fire. Knowledge about areas with a high-risk of fire and equipping these areas by constructing access routes and allocating the fire-fighting equipment can help to eliminate the destruction of the forest. In this research, the fire risk of region was forecasted and the risk map of that was provided using MODIS images by applying geographically weighted regression model with Gaussian kernel and ordinary least squares over the effective parameters in forest fire including distance from residential areas, distance from the river, distance from the road, height, slope, aspect, soil type, land use, average temperature, wind speed, and rainfall. After the evaluation, it was found that the geographically weighted regression model with Gaussian kernel forecasted 93.4% of the all fire points properly, however the ordinary least squares method could forecast properly only 66% of the fire points.
NASA Astrophysics Data System (ADS)
Giannakopoulos, Christos; Karali, Anna; Roussos, Anargyros
2014-05-01
Greece, being part of the eastern Mediterranean basin, is an area particularly vulnerable to climate change and associated forest fire risk. The aim of this study is to assess the vulnerability of Greek forests to fire risk occurrence and identify potential adaptation options within the context of climate change through continuous interaction with local stakeholders. To address their needs, the following tools for the provision of climate information services were developed: 1. An application providing fire risk forecasts for the following 3 days (http://cirrus.meteo.noa.gr/forecast/bolam/index.htm) was developed from NOA to address the needs of short term fire planners. 2. A web-based application providing long term fire risk and other fire related indices changes due to climate change (time horizon up to 2050 and 2100) was developed in collaboration with the WWF Greece office to address the needs of long term fire policy makers (http://www.oikoskopio.gr/map/). 3. An educational tool was built in order to complement the two web-based tools and to further expand knowledge in fire risk modeling to address the needs for in-depth training. In particular, the second product provided the necessary information to assess the exposure to forest fires. To this aim, maps depicting the days with elevated fire risk (FWI>30) both for the control (1961-1990) and the near future period (2021-2050) were created by the web-application. FWI is a daily index that provides numerical ratings of relative fire potential based solely on weather observations. The meteorological inputs to the FWI System are daily noon values of temperature, air relative humidity, 10m wind speed and precipitation during the previous 24 hours. It was found that eastern lowlands are more exposed to fire risk followed by eastern high elevation areas, for both the control and near future period. The next step towards vulnerability assessment was to address sensitivity, ie the human-environmental conditions that can worsen or ameliorate the hazard. In our study static information concerning fire affecting factors, namely the topography and vegetation, was used to create a fire hazard map in order to assess the sensitivity factor. Land cover types for the year 2007 were combined with topographic information deriving from a digital elevation model order to produce these maps. High elevation continental areas were found to be the most sensitive areas followed by the lowland continental areas. Exposure and sensitivity were combined to produce the overall impact of climate change to forest fire risk. The adaptive capacity is defined by the ability of forests to adapt to changing environmental conditions. To assess the adaptive capacity of Greek forests, a Multi-Criteria Analysis (MCA) tool was implemented and used by the stakeholders. The major proposed adaptation measures for Greek forests included fire prevention measures and the inclusion of the private forest covered areas in the fire fighting. Finally, vulnerability of Greek forest to fire was estimated as the overall impact of climate change minus the forests' adaptive capacity and was found to be medium for most areas in the country. Acknowledgement: This work was supported by the EU project CLIM-RUN under contract FP7-ENV-2010-265192.
Dynamic analysis and pattern visualization of forest fires.
Lopes, António M; Tenreiro Machado, J A
2014-01-01
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Dynamic Analysis and Pattern Visualization of Forest Fires
Lopes, António M.; Tenreiro Machado, J. A.
2014-01-01
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns. PMID:25137393
Sarah A. Lewis; Andrew T. Hudak; Roger D. Ottmar; Peter R. Robichaud; Leigh B. Lentile; Sharon M. Hood; James B. Cronan; Penny Morgan
2011-01-01
Wildfire is a major forest disturbance in interior Alaska that can both directly and indirectly alter ecological processes. We used a combination of pre- and post-fire forest floor depths and post-fire ground cover assessments measured in the field, and high-resolution airborne hyperspectral imagery, to map forest floor conditions after the 2004 Taylor Complex in...
Analysing Forst Fores in China
NASA Astrophysics Data System (ADS)
Casanova, Jose-Luis; Sanz, Julia; Garcia, Miguel; Salvador, Pablo; Quin, Xianlin; Li, Zengyuan; Yin, Lingyu; Sun, Guifen; Goldammer, Johann
2016-08-01
Forest fires are a major concern in China because of the economical and biodiversity looses and because the emission of trace gases into the atmosphere. During 12 years LATUV has been working in the development of forest fires products, especially in North China. A catalogue of products has been generated like: forest fire detection, burnt area mapping, gas emissions, severity and burnt biomass.Forest fires can be detected by different platforms and sensor but the rate of false alarms is high because of industrial activity. The gas emissions are important, because of the forest fires inside China and because the forest fires between China and Russia that have a considerable impact in the atmosphere composition in China.The availability of new sensors on board sentinel 2 and sentinel 3 platforms will increase the product catalogue with new products more accurate and increasing the periodicity information.
NASA Astrophysics Data System (ADS)
Saputra, Agus Dwi; Setiabudidaya, Dedi; Setyawan, Dwi; Khakim, M. Yusup Nur; Iskandar, Iskhaq
2017-07-01
Forest fire, classified as a natural hazard or human-induced hazard, has negative impacts on humans. These negative impacts are including economic loss, health problems, transportation disruption and land degradation or even biodiversity loss. During 2015, forest fire had occurred at the Merang-Kepahyang peat forest that has a total area of about 69.837,00 ha. In order to set a rehabilitation plan for recovering the impact of forest fire, information on the total burnscar area and severity level is required. In this study, the total burnscar area and severity level is evaluated using a calculation on the Normalized Burning Ratio (NBR) Index. The calculation is based on the Near Infra Red (NIR) and Short Wave Infra Red (SWIR) of the satellite imageries from LANDSAT. The images of pre-and post-fire are used to evaluate the severity level, which is defined as a difference in NBR Index of pre- and post-fire. It is found that about 42.906,00 ha of the total area of Merang-Kepahyang peat area have been fired in 2015. These burned area are classified into four categories, i.e., unburned, low, extreme and moderate extreme. By overlying the spatial map of burning level with other thematic maps, it is expected that strategy for rehabilitation plan can be well developed.
Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W
2010-09-01
Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth phenology in the Southwest. Our results demonstrate clearly that representative landscape-scale fire histories can be reconstructed accurately from spatially distributed fire-scar samples.
The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest.
Price, Owen F; Gordon, Christopher E
2016-10-01
Fuel load is a primary determinant of fire spread in Australian forests. In east Australian forests, litter and canopy fuel loads and hence fire hazard are thought to be highest at and beyond steady-state fuel loads 15-20 years post-fire. Current methods used to predict fuel loads often rely on course-scale vegetation maps and simple time-since-fire relationships which mask fine-scale processes influencing fuel loads. Here we use Light Detecting and Remote Sensing technology (LiDAR) and field surveys to quantify post-fire mid-story and crown canopy fuel accumulation and fire hazard in Dry Sclerophyll Forests of the Sydney Basin (Australia) at fine spatial-scales (20 × 20 m cell resolution). Fuel cover was quantified in three strata important for crown fire propagation (0.5-4 m, 4-15 m, >15 m) over a 144 km(2) area subject to varying fire fuel ages. Our results show that 1) LiDAR provided a precise measurement of fuel cover in each strata and a less precise but still useful predictor of surface fuels, 2) cover varied greatly within a mapped vegetation class of the same fuel age, particularly for elevated fuel, 3) time-since-fire was a poor predictor of fuel cover and crown fire hazard because fuel loads important for crown fire propagation were variable over a range of fire fuel ages between 2 and 38 years post-fire, and 4) fuel loads and fire hazard can be high in the years immediately following fire. Our results show the benefits of spatially and temporally specific in situ fuel sampling methods such as LiDAR, and are widely applicable for fire management actions which aim to decrease human and environmental losses due to wildfire. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA
Thode, Andrea E.; van Wagtendonk, Jan W.; Miller, Jay D.; Quinn, James F.
2011-01-01
This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.
Mapping forest height in Alaska using GLAS, Landsat composites, and airborne LiDAR
Peterson, Birgit; Nelson, Kurtis
2014-01-01
Vegetation structure, including forest canopy height, is an important input variable to fire behavior modeling systems for simulating wildfire behavior. As such, forest canopy height is one of a nationwide suite of products generated by the LANDFIRE program. In the past, LANDFIRE has relied on a combination of field observations and Landsat imagery to develop existing vegetation structure products. The paucity of field data in the remote Alaskan forests has led to a very simple forest canopy height classification for the original LANDFIRE forest height map. To better meet the needs of data users and refine the map legend, LANDFIRE incorporated ICESat Geoscience Laser Altimeter System (GLAS) data into the updating process when developing the LANDFIRE 2010 product. The high latitude of this region enabled dense coverage of discrete GLAS samples, from which forest height was calculated. Different methods for deriving height from the GLAS waveform data were applied, including an attempt to correct for slope. These methods were then evaluated and integrated into the final map according to predefined criteria. The resulting map of forest canopy height includes more height classes than the original map, thereby better depicting the heterogeneity of the landscape, and provides seamless data for fire behavior analysts and other users of LANDFIRE data.
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph
2011-01-01
Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.
Automated Burned Area Delineation Using IRS AWiFS satellite data
NASA Astrophysics Data System (ADS)
Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.
2014-12-01
India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.
Utilizing random forests imputation of forest plot data for landscape-level wildfire analyses
Karin L. Riley; Isaac C. Grenfell; Mark A. Finney; Nicholas L. Crookston
2014-01-01
Maps of the number, size, and species of trees in forests across the United States are desirable for a number of applications. For landscape-level fire and forest simulations that use the Forest Vegetation Simulator (FVS), a spatial tree-level dataset, or âtree listâ, is a necessity. FVS is widely used at the stand level for simulating fire effects on tree mortality,...
Fire-climate interactions in forests of the American Pacific Coast
Valerie Trouet; Alan H. Taylor; Andrew M. Carleton; Carl N. Skinner
2006-01-01
We investigate relationships between climate and wildfire activity between 1929 and 2004 in Pacific coast forests of the United States. Self-Organizing Mapping (SOM) of annual area burned in National Forests (NF) in California, Oregon, and Washington identifies three contiguous NF groups and a fourth group of NF traversed by major highways. Large fire years in all...
Ponderosa pine forest restoration treatment longevity: Implications of regeneration on fire hazard
Wade T. Tinkham; Chad M. Hoffman; Seth A. Ex; Michael A. Battaglia; Jarred D. Saralecos
2016-01-01
Restoration of pine forests has become a priority for managers who are beginning to embrace ideas of highly heterogeneous forest structures that potentially encourages high levels of regeneration. This study utilizes stem-mapped stands to assess how simulated regeneration timing and magnitude influence longevity of reduced fire behavior by linking growth and...
Hong, Haoyuan; Tsangaratos, Paraskevas; Ilia, Ioanna; Liu, Junzhi; Zhu, A-Xing; Xu, Chong
2018-07-15
The main objective of the present study was to utilize Genetic Algorithms (GA) in order to obtain the optimal combination of forest fire related variables and apply data mining methods for constructing a forest fire susceptibility map. In the proposed approach, a Random Forest (RF) and a Support Vector Machine (SVM) was used to produce a forest fire susceptibility map for the Dayu County which is located in southwest of Jiangxi Province, China. For this purpose, historic forest fires and thirteen forest fire related variables were analyzed, namely: elevation, slope angle, aspect, curvature, land use, soil cover, heat load index, normalized difference vegetation index, mean annual temperature, mean annual wind speed, mean annual rainfall, distance to river network and distance to road network. The Natural Break and the Certainty Factor method were used to classify and weight the thirteen variables, while a multicollinearity analysis was performed to determine the correlation among the variables and decide about their usability. The optimal set of variables, determined by the GA limited the number of variables into eight excluding from the analysis, aspect, land use, heat load index, distance to river network and mean annual rainfall. The performance of the forest fire models was evaluated by using the area under the Receiver Operating Characteristic curve (ROC-AUC) based on the validation dataset. Overall, the RF models gave higher AUC values. Also the results showed that the proposed optimized models outperform the original models. Specifically, the optimized RF model gave the best results (0.8495), followed by the original RF (0.8169), while the optimized SVM gave lower values (0.7456) than the RF, however higher than the original SVM (0.7148) model. The study highlights the significance of feature selection techniques in forest fire susceptibility, whereas data mining methods could be considered as a valid approach for forest fire susceptibility modeling. Copyright © 2018 Elsevier B.V. All rights reserved.
Carbon emissions caused by land-use change in tropical forests of Borneo island
NASA Astrophysics Data System (ADS)
Hirata, R.; Ito, A.
2016-12-01
Tropical forests in Borneo island have disappeared by 1.5%/year during the last decade. Land-use changes have been mainly caused by plantation and wild fire in Borneo island. We estimated regional scale carbon balance of Borneo island by using a terrestrial ecosystem model, VISIT. We took into account a land-use change map developed by using MODIS data. The land-use change map includes when wild fire occurred and when artificial trees (e.g. oil palm) were planted. Southern part of Borneo island was strongly affected by wild fire. Especially in 2002, 2006 and 2015, wild fire was spread widely because of ENSO. Carbon emissions in these years were larger than other year. Carbon emission in northern part of Borneo was mainly caused by conversion from forest to oil palm.
Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil.
Eugenio, Fernando Coelho; dos Santos, Alexandre Rosa; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; dos Santos, Áureo Banhos; Paneto, Greiciane Gaburro; Schettino, Vitor Roberto
2016-05-15
A forest fire risk map is a basic element for planning and protecting forested areas. The main goal of this study was to develop a statistical model for preparing a forest fire risk map using GIS. Such model is based on assigning weights to nine variables divided into two classes: physical factors of the site (terrain slope, land-use/occupation, proximity to roads, terrain orientation, and altitude) and climatic factors (precipitation, temperature, water deficit, and evapotranspiration). In regions where the climate is different from the conditions of this study, the model will require an adjustment of the variables weights according to the local climate. The study area, Espírito Santo State, exhibited approximately 3.81% low risk, 21.18% moderate risk, 30.10% high risk, 41.50% very high risk, and 3.40% extreme risk of forest fire. The areas classified as high risk, very high and extreme, contemplated a total of 78.92% of heat spots. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy
NASA Astrophysics Data System (ADS)
Wu, Yichen; Shiledar, Ashutosh; Luo, Yi; Wong, Jeffrey; Chen, Cheng; Bai, Bijie; Zhang, Yibo; Tamamitsu, Miu; Ozcan, Aydogan
2018-02-01
Forest fires are a major source of particulate matter (PM) air pollution on a global scale. The composition and impact of PM are typically studied using only laboratory instruments and extrapolated to real fire events owing to a lack of analytical techniques suitable for field-settings. To address this and similar field test challenges, we developed a mobilemicroscopy- and machine-learning-based air quality monitoring platform called c-Air, which can perform air sampling and microscopic analysis of aerosols in an integrated portable device. We tested its performance for PM sizing and morphological analysis during a recent forest fire event in La Tuna Canyon Park by spatially mapping the PM. The result shows that with decreasing distance to the fire site, the PM concentration increases dramatically, especially for particles smaller than 2 µm. Image analysis from the c-Air portable device also shows that the increased PM is comparatively strongly absorbing and asymmetric, with an aspect ratio of 0.5-0.7. These PM features indicate that a major portion of the PM may be open-flame-combustion-generated element carbon soot-type particles. This initial small-scale experiment shows that c-Air has some potential for forest fire monitoring.
Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011
NASA Astrophysics Data System (ADS)
Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.
2017-12-01
The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying yearly burned areas allowed to identify areas with high fire recurrence.
Spatio-temporal evolution of forest fires in Portugal
NASA Astrophysics Data System (ADS)
Tonini, Marj; Pereira, Mário G.; Parente, Joana
2017-04-01
A key issue in fire management is the ability to explore and try to predict where and when fires are more likely to occur. This information can be useful to understand the triggering factors of ignitions and for planning strategies to reduce forest fires, to manage the sources of ignition and to identify areas and frame period at risk. Therefore, producing maps displaying forest fires location and their occurrence in time can be of great help for accurately forecasting these hazardous events. In a fire prone country as Portugal, where thousands of events occurs each year, it is involved to drive information about fires over densities and recurrences just by looking at the original arrangement of the mapped ignition points or burnt areas. In this respect, statistical methods originally developed for spatio-temporal stochastic point processes can be employed to find a structure within these large datasets. In the present study, the authors propose an approach to analyze and visualize the evolution in space and in time of forest fires occurred in Portugal during a long frame period (1990 - 2013). Data came from the Portuguese mapped burnt areas official geodatabase (by the Institute for the Conservation of Nature and Forests), which is the result of interpreted satellite measurements. The following statistical analyses were performed: the geographically-weighted summary statistics, to analyze the local variability of the average burned area; the space-time Kernel density, to elaborate smoothed density surfaces representing over densities of fires classed by size and on North vs South region. Finally, we emploied the volume rendering thecnique to visualize the spatio-temporal evolution of these events into a unique map: this representation allows visually inspecting areas and time-step more affected from a high aggregation of forest fires. It results that during the whole investigated period over densities are mainly located in the northern regions, while in the southern areas spread hot-spot are spatially randomly distributed and temporally more concentrated in the frame 2000 - 2004. To conclude, this study let us to identify a multitude of clustering space-time features of forest fires in Portugal, which can be useful for a better planning of educational activities and prevention campaigns as well as for a better allocation of monitoring systems and firefighting. References: Tonini M., Pereira M. G., Parente J. (2016) - Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps. Natural Hazard, doi:10.1007/s11069-016-2637-x Lu B., Harris P., Charlton M., Brunsdon C. (2014) - The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Information Science, Vol. 17: 85-101 Rowlingson B., Diggle P., Bivand M.R. (2012) - Splancs: spatial point pattern analysis code in S-Plus. Computers and Geosciences, Vol. 19: 627-655 Acknowledgements: This work was supported by: (i) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; (ii) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire.
Analyzing wildfire exposure and source–sink relationships on a fire prone forest landscape
Alan A. Ager; Nicole M. Vaillant; Mark A. Finney; Haiganoush K. Preisler
2012-01-01
We used simulation modeling to analyze wildfire exposure to social and ecological values on a 0.6 million ha national forest in central Oregon, USA. We simulated 50,000 wildfires that replicated recent fire events in the area and generated detailed maps of burn probability (BP) and fire intensity distributions. We also recorded the ignition locations and size of each...
The global distribution of ecosystems in a world without fire.
Bond, W J; Woodward, F I; Midgley, G F
2005-02-01
This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.
Before-and-After LIDAR Images from 2014 King Fire in El Dorado National Forest
2015-04-09
New maps of two recent California megafires that combine unique data sets from the U.S. Forest Service and NASA's Jet Propulsion Laboratory in Pasadena, California, are answering some of the urgent questions that follow a huge wildfire. These before-and-after USFS LIght Detection And Ranging (LIDAR) images from the 2014 King fire region in El Dorado National Forest, California are among new maps. They show a small section of the Rubicon River drainage basin, where fire damage was severe. Blue indicates ground level; lighter colors are higher. A road -- bordered by dense trees in the before image at left -- and part of a bridge are in the center, with the bridge appearing green. http://photojournal.jpl.nasa.gov/catalog/PIA19360
Allocating Fire Mitigation Funds on the Basis of the Predicted Probabilities of Forest Wildfire
Ronald E. McRoberts; Greg C. Liknes; Mark D. Nelson; Krista M. Gebert; R. James Barbour; Susan L. Odell; Steven C. Yaddof
2005-01-01
A logistic regression model was used with map-based information to predict the probability of forest fire for forested areas of the United States. Model parameters were estimated using a digital layer depicting the locations of wildfires and satellite imagery depicting thermal hotspots. The area of the United States in the upper 50th percentile with respect to...
Processing Infrared Images For Fire Management Applications
NASA Astrophysics Data System (ADS)
Warren, John R.; Pratt, William K.
1981-12-01
The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.
Web service tools in the era of forest fire management and elimination
NASA Astrophysics Data System (ADS)
Poursanidis, Dimitris; Kochilakis, Giorgos; Chrysoulakis, Nektarios; Varella, Vasiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas
2014-10-01
Wildfires in forests and forested areas in South Europe, North America, Central Asia and Australia are a diachronic threat with crucial ecological, economic and social impacts. Last decade the frequency, the magnitude and the intensity of fires have increased even more because of the climate change. An efficient response to such disasters requires an effective planning, with an early detection system of the ignition area and an accurate prediction of fire propagation to support the rapid response mechanisms. For this reason, information systems able to predict and visualize the behavior of fires, are valuable tools for fire fighting. Such systems, able also to perform simulations that evaluate the fire development scenarios, based on weather conditions, become valuable Decision Support Tools for fire mitigation planning. A Web-based Information System (WIS) developed in the framework of the FLIRE (Floods and fire risk assessment and management) project, a LIFE+ co-funded by the European Commission research, is presented in this study. The FLIRE WIS use forest fuel maps which have been developed by using generalized fuel maps, satellite data and in-situ observations. Furthermore, it leverages data from meteorological stations and weather forecast from numerical models to feed the fire propagation model with the necessary for the simulations inputs and to visualize the model's results for user defined time periods and steps. The user has real-time access to FLIRE WIS via any web browser from any platform (PC, Laptop, Tablet, Smartphone).
NASA Astrophysics Data System (ADS)
Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.
2009-04-01
Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.
NASA Astrophysics Data System (ADS)
Aggarwal, R.; K V, S. B.; Dhakate, P. M.
2017-12-01
Recent times have observed a significant rate of deforestation and forest degradation. One of the major causes of forest degradation is forest fires. Forest fires though have shaped the current forest ecosystem but also have continued to degrade the system by causing loss of flora and fauna. In addition to that, forest fire leads to emission of carbon and other trace gases which contributes to global warming. The hill states in India, particularly Uttarakhand witnesses annual forest fires; which are primarily anthropogenic caused, occurring from March to June. Nainital one of the thirteen districts in Uttarakhand, has been selected as the study site. The region has diverse endemic species of vegetation, ranging from Alpine in North to moist deciduous in South. The increasing forest fire incidents in the region and limited studies on the subject, calls for landscape assessment of the complex Human Environment System (HES). It is in this context, that a greater need for monitoring forest fire incidents has been felt. Remote Sensing and GIS which are robust tool, provides continuous information of an area at various spatial and temporal resolutions. The goal of this study is to map burned area, burned severity and estimate atmospheric gas emissions in forested areas of Nainital by utilizing cloud free MODIS images from 2000- 2017. Multiple spectral indices were generated from pre and post burn dataset of MODIS to conclude the most sensitive band combination. Inter- comparison of results obtained from different spectral indices and the global MODIS MCD45A1 was carried out using linear regression analysis. Additionally, burned area estimation from satellite was compared to figures reported by forest department. There were considerable differences amongst the two which could be primarily due to differences in spatial resolution, and timings of forest fire occurrence and image acquisition. Further, estimation of various atmospheric gases was carried out based on the IPCC guidelines. Such an analysis is critically important for designing of relevant forest fire mitigation strategies. The study signifies that long term MODIS data and the rationing method is an effective technique to map and monitor the burned area, burned severity and atmospheric gas emission in the forested regions of Himalayan.
C.W. Woodall; G.R. Holden; J.S. Vissage
2004-01-01
The large wildland fires that raged during the 2000 and 2002 fire seasons highlighted the need for a nationwide strategic assessment of forest fuels. The lack of a nationally consistent and comprehensive inventory of forest fuels has hindered large-scale assessments- essential for effective fuel hazard management and monitoring reduction treatments. Data from the USDA...
CASA Forest Cover Change Data Sets
NASA Technical Reports Server (NTRS)
Potter, Christopher S.
2012-01-01
Deforestation and forest fires are global land cover changes that can be caused by both natural and human factors. Although monitoring forest fires in near-real time is critical for operational wildfire management, mapping historical wildfires in a spatially explicit fashion is also important for a number of reasons, including climate change studies (e.g., examining the relationship between rising temperatures and frequency of fires), fuel load management (e.g., deciding when and where to conduct controlled burns), and carbon cycle studies (e.g., quantifying how much CO2 is emitted by fires and for emissions reduction efforts under the United Nations programs for Reducing Emissions from Deforestation and Degradation -- REDD).
A. M. S. Smith; L. B. Lenilte; A. T. Hudak; P. Morgan
2007-01-01
The Differenced Normalized Burn Ratio (deltaNBR) is widely used to map post-fire effects in North America from multispectral satellite imagery, but has not been rigorously validated across the great diversity in vegetation types. The importance of these maps to fire rehabilitation crews highlights the need for continued assessment of alternative remote sensing...
Evaluating the ASTER sensor for mapping and characterizing forest fire fuels in northern Idaho
Michael J. Falkowski; Paul Gessler; Penelope Morgan; Alistair M. S. Smith; Andrew T. Hudak
2004-01-01
Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection...
RAMP: a computer system for mapping regional areas
Bradley B. Nickey
1975-01-01
Until 1972, the U.S. Forest Service's Individual Fire Reports recorded locations by the section-township-range system..These earlier fire reports, therefore, lacked congruent locations. RAMP (Regional Area Mapping Procedure) was designed to make the reports more useful for quantitative analysis. This computer-based technique converts locations expressed in...
Pasqualini, Vanina; Oberti, Pascal; Vigetta, Stéphanie; Riffard, Olivier; Panaïotis, Christophe; Cannac, Magali; Ferrat, Lila
2011-07-01
Forest management can benefit from decision support tools, including GIS-based multicriteria decision-aiding approach. In the Mediterranean region, Pinus pinaster forests play a very important role in biodiversity conservation and offer many socioeconomic benefits. However, the conservation of this species is affected by the increase in forest fires and the expansion of Matsucoccus feytaudi. This paper proposes a methodology based on commonly available data for assessing the values and risks of P. pinaster forests and to generating maps to aid in decisions pertaining to fire and phytosanitary risk management. The criteria for assessing the values (land cover type, legislative tools for biodiversity conservation, environmental tourist sites and access routes, and timber yield) and the risks (fire and phytosanitation) of P. pinaster forests were obtained directly or by considering specific indicators, and they were subsequently aggregated by means of GIS-based multicriteria analysis. This approach was tested on the island of Corsica (France), and maps to aid in decisions pertaining to fire risk and phytosanitary risk (M. feytaudi) were obtained for P. pinaster forest management. Study results are used by the technical offices of the local administration-Corsican Agricultural and Rural Development Agency (ODARC)-for planning the conservation of P. pinaster forests with regard to fire prevention and safety and phytosanitary risks. The decision maker took part in the evaluation criteria study (weight, normalization, and classification of the values). Most suitable locations are given to target the public intervention. The methodology presented in this paper could be applied to other species and in other Mediterranean regions.
NASA Astrophysics Data System (ADS)
Pasqualini, Vanina; Oberti, Pascal; Vigetta, Stéphanie; Riffard, Olivier; Panaïotis, Christophe; Cannac, Magali; Ferrat, Lila
2011-07-01
Forest management can benefit from decision support tools, including GIS-based multicriteria decision-aiding approach. In the Mediterranean region, Pinus pinaster forests play a very important role in biodiversity conservation and offer many socioeconomic benefits. However, the conservation of this species is affected by the increase in forest fires and the expansion of Matsucoccus feytaudi. This paper proposes a methodology based on commonly available data for assessing the values and risks of P. pinaster forests and to generating maps to aid in decisions pertaining to fire and phytosanitary risk management. The criteria for assessing the values (land cover type, legislative tools for biodiversity conservation, environmental tourist sites and access routes, and timber yield) and the risks (fire and phytosanitation) of P. pinaster forests were obtained directly or by considering specific indicators, and they were subsequently aggregated by means of GIS-based multicriteria analysis. This approach was tested on the island of Corsica (France), and maps to aid in decisions pertaining to fire risk and phytosanitary risk ( M. feytaudi) were obtained for P. pinaster forest management. Study results are used by the technical offices of the local administration— Corsican Agricultural and Rural Development Agency (ODARC)—for planning the conservation of P. pinaster forests with regard to fire prevention and safety and phytosanitary risks. The decision maker took part in the evaluation criteria study (weight, normalization, and classification of the values). Most suitable locations are given to target the public intervention. The methodology presented in this paper could be applied to other species and in other Mediterranean regions.
Landscape fragmentation, severe drought, and the new Amazon forest fire regime.
Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E
2015-09-01
Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.
NASA Astrophysics Data System (ADS)
Westberg, D. J.; Soja, A. J.; Tchebakova, N.; Parfenova, E. I.; Kukavskaya, E.; de Groot, B.; McRae, D.; Conard, S. G.; Stackhouse, P. W., Jr.
2012-12-01
Estimating the amount of biomass burned during fire events is challenging, particularly in remote and diverse regions, like those of the Former Soviet Union (FSU). Historically, we have typically assumed 25 tons of carbon per hectare (tC/ha) is emitted, however depending on the ecosystem and severity, biomass burning emissions can range from 2 to 75 tC/ha. Ecosystems in the FSU span from the tundra through the taiga to the forest-steppe, steppe and desserts and include the extensive West Siberian lowlands, permafrost-lain forests and agricultural lands. Excluding this landscape disparity results in inaccurate emissions estimates and incorrect assumptions in the transport of these emissions. In this work, we present emissions based on a hybrid ecosystem map and explicit estimates of fuel that consider the depth of burning based on the Canadian Forest Fire Weather Index System. Specifically, the ecosystem map is a fusion of satellite-based data, a detailed ecosystem map and Alexeyev and Birdsey carbon storage data, which is used to build carbon databases that include the forest overstory and understory, litter, peatlands and soil organic material for the FSU. We provide a range of potential carbon consumption estimates for low- to high-severity fires across the FSU that can be used with fire weather indices to more accurately estimate fire emissions. These data can be incorporated at ecoregion and administrative territory scales and are optimized for use in large-scale Chemical Transport Models. Additionally, paired with future climate scenarios and ecoregion cover, these carbon consumption data can be used to estimate potential emissions.
NASA Astrophysics Data System (ADS)
Soulard, C. E.; Acevedo, W.; Yang, Z.; Cohen, W. B.; Stehman, S. V.; Taylor, J. L.
2015-12-01
A wide range of spatial forest disturbance data exist for the conterminous United States, yet inconsistencies between map products arise because of differing programmatic objectives and methodologies. Researchers on the Land Change Research Project (LCRP) are working to assess spatial agreement, characterize uncertainties, and resolve discrepancies between these national level datasets, in regard to forest disturbance. Disturbance maps from the Global Forest Change (GFC), Landfire Vegetation Disturbance (LVD), National Land Cover Dataset (NLCD), Vegetation Change Tracker (VCT), Web-enabled Landsat Data (WELD), and Monitoring Trends in Burn Severity (MTBS) were harmonized using a pixel-based data fusion process. The harmonization process reconciled forest harvesting, forest fire, and remaining forest disturbance across four intervals (1986-1992, 1992-2001, 2001-2006, and 2006-2011) by relying on convergence of evidence across all datasets available for each interval. Pixels with high agreement across datasets were retained, while moderate-to-low agreement pixels were visually assessed and either manually edited using reference imagery or discarded from the final disturbance map(s). National results show that annual rates of forest harvest and overall fire have increased over the past 25 years. Overall, this study shows that leveraging the best elements of readily-available data improves forest loss monitoring relative to using a single dataset to monitor forest change, particularly by reducing commission errors.
Integrating remote sensing and terrain data in forest fire modeling
NASA Astrophysics Data System (ADS)
Medler, Michael Johns
Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy classifications of potential burn patterns were produced from these images. Observed field data values were displayed over the hazard imagery to indicate the effectiveness of the model. Areas that burned without suppression during maximum fire severity are predicted best. Areas with widely spaced trees and grassy understory appear to be misrepresented, perhaps as a consequence of inaccuracies in the initial fire mapping.
Near real-time wildfire mapping using spatially-refined satellite data: The rim fire case study
Patricia Oliva; Wilfrid Schroeder
2015-01-01
Fire incident teams depend on accurate fire diagnostics and predictive data to guide daily positioning and tactics of fire crews. Currently, the U.S. Department of Agriculture - Forest Service National Infrared Operations (NIROPs) nighttime airborne data provides daily information about the fire front and total fire affected area of priority fires to the incident teams...
Comparing the role of fuel breaks across southern California national forests
Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.
2011-01-01
Fuel treatment of wildland vegetation is the primary approach advocated for mitigating fire risk at the wildland-urban interface (WUI), but little systematic research has been conducted to understand what role fuel treatments play in controlling large fires, which factors influence this role, or how the role of fuel treatments may vary over space and time. We assembled a spatial database of fuel breaks and fires from the last 30 years in four southern California national forests to better understand which factors are consistently important for fuel breaks in the control of large fires. We also explored which landscape features influence where fires and fuel breaks are most likely to intersect. The relative importance of significant factors explaining fuel break outcome and number of fire and fuel break intersections varied among the forests, which reflects high levels of regional landscape diversity. Nevertheless, several factors were consistently important across all the forests. In general, fuel breaks played an important role in controlling large fires only when they facilitated fire management, primarily by providing access for firefighting activities. Fire weather and fuel break maintenance were also consistently important. Models and maps predicting where fuel breaks and fires are most likely to intersect performed well in the regions where the models were developed, but these models did not extend well to other regions, reflecting how the environmental controls of fire regimes vary even within a single ecoregion. Nevertheless, similar mapping methods could be adopted in different landscapes to help with strategic location of fuel breaks. Strategic location of fuel breaks should also account for access points near communities, where fire protection is most important.
Monitoring of reforestation on burnt areas in Western Russia using Landsat time series
NASA Astrophysics Data System (ADS)
Vorobev, Oleg; Kurbanov, Eldar
2017-04-01
Forest fires are main disturbance factor for the natural ecosystems, especially in boreal forests. Monitoring for the dynamic of forest cover regeneration in the post-fire period of ecosystem recovery is crucial to both estimation of forest stands and forest management. In this study, on the example of burnt areas of 2010 wildfires in Republic Mari El of Russian Federation we estimated post-fire dynamic of different classes of vegetation cover between 2011-2016 years with the use of time series Landsat satellite images. To validate the newly obtained thematic maps we used 80 test sites with independent field data, as well Canopus-B images of high spatial resolution. For the analysis of the satellite images we referred to Normalized Differenced Vegetation Index (NDVI) and Tasseled Cap transformation. The research revealed that at the post-fire period the area of thematic classes "Reforestation of the middle and low density" has maximum cover (44%) on the investigated burnt area. On the burnt areas of 2010 there is ongoing active process of grass overgrowing (up to 20%), also there are thematic classes of deadwood (15%) and open spaces (10%). The results indicate that there is mostly natural regeneration of tree species pattern corresponding to the pre-fire condition. Forest plantations cover only 2% of the overall burnt area. By the 2016 year the NDVI parameters of young vegetation cover were recovered to the pre-fire level as well. The overall unsupervised classification accuracy of more than 70% shows high degree of agreement between the thematic map and the ground truth data. The research results can be applied for the long term succession monitoring and management plan development for the reforestation activities on the lands disturbed by fire.
Mapping burned areas and burn severity patterns across the Mediterranean region
NASA Astrophysics Data System (ADS)
Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea
2010-05-01
The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: • The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. • The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. • Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. • Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Mapping burn severity, pine beetle infestation, and their interaction at the High Park Fire
NASA Astrophysics Data System (ADS)
Stone, Brandon
North America's western forests are experiencing wildfire and mountain pine beetle (MPB) disturbances that are unprecedented in the historic record, but it remains unclear whether and how MPB infestation influences post-infestation fire behavior. The 2012 High Park Fire burned in an area that's estimated to have begun a MPB outbreak cycle within five years before the wildfire, resulting in a landscape in which disturbance interactions can be studied. A first step in studying these interactions is mapping regions of beetle infestation and post-fire disturbance. We implemented an approach for mapping beetle infestation and burn severity using as source data three 5 m resolution RapidEye satellite images (two pre-fire, one post-fire). A two-tiered methodology was developed to overcome the spatial limitations of many classification approaches through explicit analyses at both pixel and plot level. Major land cover classes were photo-interpreted at the plot-level and their spectral signature used to classify 5 m images. A new image was generated at 25 m resolution by tabulating the fraction of coincident 5 m pixels in each cover class. The original photo interpretation was then used to train a second classification using as its source image the new 25 m image. Maps were validated using k-fold analysis of the original photo interpretation, field data collected immediately post-fire, and publicly available classifications. To investigate the influence of pre-fire beetle infestation on burn severity within the High Park Fire, we fit a log-linear model of conditional independence to our thematic maps after controlling for forest cover class and slope aspect. Our analysis revealed a high co-occurrence of severe burning and beetle infestation within high elevation lodgepole pine stands, but did not find statistically significant evidence that infected stands were more likely to burn severely than similar uninfected stands. Through an inspection of the year-to-year changes in the class fraction signatures of pixels classified as MPB infestation, we were able to observe increases in infection extent and intensity in the year before the fire. The resulting maps will help to increase our understanding of the process that contributed to the High Park Fire, and we believe that the novel classification approach will allow for improved characterization of forest disturbances.
Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular
NASA Astrophysics Data System (ADS)
Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.
2015-12-01
The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.
Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling
Michael J. Falkowski; Paul E. Gessler; Penelope Morgan; Andrew T. Hudak; Alistair M. S. Smith
2005-01-01
Land managers need cost-effective methods for mapping and characterizing forest fuels quickly and accurately. The launch of satellite sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the advanced spaceborne thermal emission and...
Andrew T. Hudak; Benjamin C. Bright; Scott M. Pokswinski; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Carine Klauberg; Carlos A. Silva
2016-01-01
Eglin Air Force Base (AFB) in Florida, in the United States, conserves a large reservoir of native longleaf pine (Pinus palustris Mill.) stands that land managers maintain by using frequent fires. We predicted tree density, basal area, and dominant tree species from 195 forest inventory plots, low-density airborne LiDAR, and Landsat data available across the entirety...
Forest Fire Danger Rating (FFDR) Prediction over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Song, B.; Won, M.; Jang, K.; Yoon, S.; Lim, J.
2016-12-01
Approximately five hundred forest fires occur and inflict the losses of both life and property each year in Korea during the forest fire seasons in the spring and autumn. Thus, an accurate prediction of forest fire is essential for effective forest fire prevention. The meteorology is one of important factors to predict and understand the fire occurrence as well as its behaviors and spread. In this study, we present the Forest Fire Danger Rating Systems (FFDRS) on the Korean Peninsula based on the Daily Weather Index (DWI) which represents the meteorological characteristics related to forest fire. The thematic maps including temperature, humidity, and wind speed produced from Korea Meteorology Administration (KMA) were applied to the forest fire occurrence probability model by logistic regression to analyze the DWI over the Korean Peninsula. The regional data assimilation and prediction system (RDAPS) and the improved digital forecast model were used to verify the sensitivity of DWI. The result of verification test revealed that the improved digital forecast model dataset showed better agreements with the real-time weather data. The forest fire danger rating index (FFDRI) calculated by the improved digital forecast model dataset showed a good agreement with the real-time weather dataset at the 233 administrative districts (R2=0.854). In addition, FFDRI were compared with observation-based FFDRI at 76 national weather stations. The mean difference was 0.5 at the site-level. The results produced in this study indicate that the improved digital forecast model dataset can be useful to predict the FFDRI in the Korean Peninsula successfully.
Study and Evaluation of the Alcublas (Valencia, Spain) forest fire of Summer 2012
NASA Astrophysics Data System (ADS)
Mora Sanchez, Francisco; Lopez-Baeza, Ernesto
This work studies and quantifies the forest fire that took place in the province of Valencia, Spain, that particularly affected the municipality of Alcublas. This fire was one of the most intense and catastrophic fires that extended over the Valencian Community. Besides quantifying the area affected by the fire according to a severity index, the analysis was carried out from different viewpoints, namely land use, municipal, and cadastral. The data used were, on the one hand, two images from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite, respectively before and after the fire. On the other hand, we also used CORINE Land Cover 2006 Land Use data, a digital terrain model (DTM), the cadastre or land registration from Alcublas and the Spanish topographic map at scale 1:25000 (MTN25). The method used consisted of different steps: atmospheric correction of the images with the dark-object subtraction technique, topographic correction of the images with a 5 m resolution DTM and the Minnaert method, and the elimination of the Landsat 7 Scan Line Corrector (SLC-off) effect by using the Delaunay triangulation method. Once the images were corrected, we computed the Normalized Burn Ratio (NBR) to highlight and characterise the areas that were burnt by means of a standard severity index. The estimation of the affected area was done through the difference of the images respectively before and after the fire that was also trimmed off to actually obtain the affected area. Once the forest fire was classified, the total affected area was estimated for each severity index and overlaid the Spanish topographic map (1:25000) thus being able to calculate the affected area for each municipality, land use and cadastrial property. The total burnt area was 19910 ha, the most affected municipality -in extension- was Andilla with 4966 ha. But the most significant one was precisely Alcublas with 60,64% of its area burnt. The area burnt for each land use was also estimated according to its severity by using the CORINE Land Cover Map. The most affected uses were transition forest shrubs (matorral) (11313 ha), sclerophyllous matorral (3966 ha) and coniferous forests (2821 ha). Finally, for the Alcublas cadastre, it was checked that the fire devastated all the natural vegetation of the hilly forests around the village but practically did not affect any urban or rural plot.
Fire behavior simulation in Mediterranean forests using the minimum travel time algorithm
Kostas Kalabokidis; Palaiologos Palaiologou; Mark A. Finney
2014-01-01
Recent large wildfires in Greece exemplify the need for pre-fire burn probability assessment and possible landscape fire flow estimation to enhance fire planning and resource allocation. The Minimum Travel Time (MTT) algorithm, incorporated as FlamMap's version five module, provide valuable fire behavior functions, while enabling multi-core utilization for the...
WebGIS Platform Adressed to Forest Fire Management Methodologies
NASA Astrophysics Data System (ADS)
André Ramos-Simões, Nuno; Neto Paixão, Helena Maria; Granja Martins, Fernando Miguel; Pedras, Celestina; Lança, Rui; Silva, Elisa; Jordán, António; Zavala, Lorena; Soares, Cristina
2015-04-01
Forest fires are one of the natural disasters that causes more damages in nature, as well as high material costs, and sometimes, a significant losses in human lives. In summer season, when high temperatures are attained, fire may rapidly progress and destroy vast areas of forest and also rural and urban areas. The forest fires have effect on forest species, forest composition and structure, soil properties and soil capacity for nutrient retention. In order to minimize the negative impact of the forest fires in the environment, many studies have been developed, e.g. Jordán et al (2009), Cerdà & Jordán (2010), and Gonçalves & Vieira (2013). Nowadays, Remote Sensing (RS) and Geographic Information System (GIS) technologies are used as support tools in fire management decisions, namely during the fire, but also before and after. This study presents the development of a user-friendly WebGIS dedicated to share data, maps and provide updated information on forest fire management for stakeholders in Iberia Peninsula. The WebGIS platform was developed with ArcGIS Online, ArcGIS for Desktop; HyperText Markup Language (HTML) and Javascript. This platform has a database that includes spatial and alphanumeric information, such as: origin, burned areas, vegetation change over time, terrain natural slope, land use, soil erosion and fire related hazards. The same database contains also the following relevant information: water sources, forest tracks and traffic ways, lookout posts and urban areas. The aim of this study is to provide the authorities with a tool to assess risk areas and manage more efficiently forest fire hazards, giving more support to their decisions and helping the populations when facing this kind of phenomena.
Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472
An ecosystem services framework for multidisciplinary research in the Colorado River headwaters
Semmens, D.J.; Briggs, J.S.; Martin, D.A.
2009-01-01
A rapidly spreading Mountain Pine Beetle epidemic is killing lodgepole pine forest in the Rocky Mountains, causing landscape change on a massive scale. Approximately 1.5 million acres of lodgepoledominated forest is already dead or dying in Colorado, the infestation is still spreading rapidly, and it is expected that in excess of 90 percent of all lodgepole forest will ultimately be killed. Drought conditions combined with dramatically reduced foliar moisture content due to stress or mortality from Mountain Pine Beetle have combined to elevate the probability of large fires throughout the Colorado River headwaters. Large numbers of homes in the wildland-urban interface, an extensive water supply infrastructure, and a local economy driven largely by recreational tourism make the potential costs associated with such a fire very large. Any assessment of fire risk for strategic planning of pre-fire management actions must consider these and a host of other important socioeconomic benefits derived from the Rocky Mountain Lodgepole Pine Forest ecosystem. This paper presents a plan to focus U.S. Geological Survey (USGS) multidisciplinary fire/beetle-related research in the Colorado River headwaters within a framework that integrates a wide variety of discipline-specific research to assess and value the full range of ecosystem services provided by the Rocky Mountain Lodgepole Pine Forest ecosystem. Baseline, unburned conditions will be compared with a hypothetical, fully burned scenario to (a) identify where services would be most severely impacted, and (b) quantify potential economic losses. Collaboration with the U.S. Forest Service will further yield a distributed model of fire probability that can be used in combination with the ecosystem service valuation to develop comprehensive, distributed maps of fire risk in the Upper Colorado River Basin. These maps will be intended for use by stakeholders as a strategic planning tool for pre-fire management activities and can be updated and improved adaptively on an annual basis as tree mortality, climatic conditions, and management actions unfold.
Global spatial assessment of WUI and related land cover in Portugal
NASA Astrophysics Data System (ADS)
Tonini, Marj; Parente, Joana; Pereira, Mário G.
2017-04-01
Forest fires as hazardous events are assuming an increasing importance all around the world, especially in relation to climate changes and to urban sprawl, which makes it difficult to outline a border between human infrastructures and wildland areas. This zone, known as the Wildland Urban Interface (WUI), is defined as the area where structures and other human development meet or intermingle with undeveloped wildland (USDA 2001). Its extension is influenced by anthropogenic features, since, as it was proved, the distance to roads and houses negatively influence the probability of forest fires ignitions, while the population density positively affects it. Land use is also a crucial feature to be considered in the analyses of the impact of forest fires, and each natural, semi-natural and artificial land cover can be affected in a different proportion. The aim of the present study is to investigate and mapping the wildland urban interface and its temporal dynamic in Portugal at global scale. Secondly, it aims at providing a quantitative characterization of forest fires occurred in the last few decades (1990 - 2012) in relation to the burned area and the land covers evolution. The National mapping burnt area dataset (by the Institute for the Conservation of Nature and Forests) provided the information allowing to precisely localize forest fires. The land cover classes were derived from the Corinne Land Cover, available for four periods (1990-2000-2006-2012). The following two classes were retained to outline the WUI: 1) artificial surfaces, as representative of the human development; 2) forest and semi-natural area, as representative of undeveloped wildland. First, we investigated the distribution of the burned areas among the different detailed land covers classes. Then, to map the WUI, we considered a buffer distance around artificial surfaces located in proximity of forests and semi-natural areas. The descriptive statistic carried out individually within each district revealed that in the southern part of the country forest fires are highly dispersed, while in the northern regions they tend to be aggregated around the anthropogenic infrastructures. This WUI-model can be replicated to assess the WUI at different periods, namely 1990, 2000, 2006, and to analyses the evolution of the WUI up to 2012. More accurate analyses at large scale for characterizing and mapping WUI using precise data (e.g. the true houses footprints) will be necessary to give practical indications in term of land and fire management. Nevertheless our study is necessary to give precious suggestions as for what is the global distribution on WUI in Portugal and which regions need to be prioritized in term of WUI extension and fires protection. References: Conedera M., Tonini M., Oleggini L., Vega Orozco C., Leuenberger M., Pezzati G.B. (2015) - Geospatial approach for defining the Wildland-Urban Interface in the Alpine environment. Computers, Environment and Urban Systems, Vol. 52: 10-20 Bouillon C., Fernandez R., Sirca C., Fierro G., Casula F., Vila B., Long Fournel M., Pellizzaro G., Arca B., Tedim F., Trebini F., Derudas A., Cane S. (2014) - A tool for mapping rural-urban interfaces on different scales. Advanced in Forest Fire Research, Imprensa da Universidade de Coimbra ED, pp. 611-625 Acknowledgements: This work was supported by: (i) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; (ii) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire.
The relationship of multispectral satellite imagery to immediate fire effects
Andrew T. Hudak; Penelope Morgan; Michael J. Bobbitt; Allstair M. S. Smith; Sarah A. Lewis; Leigh B. Lentile; Peter R. Robichaud; Jess T. Clark; Randy A. McKinley
2007-01-01
The Forest Service Remote Sensing Applications Center (RSAC) and the U.S. Geological Survey Earth Resources Observation and Science (EROS) Data Center produce Burned Area Reflectance Classification (BARC) maps for use by Burned Area Emergency Response (BAER) teams in rapid response to wildfires. BAER teams desire maps indicative of fire effects on soils, but green and...
Carbon changes in conterminous US forests associated with growth and major disturbances: 1992-2001
Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith
2011-01-01
We estimated forest area and carbon changes in the conterminous United States using a remote sensing based land cover change map, forest fire data from the Monitoring Trends in Burn Severity program, and forest growth and harvest data from the USDA Forest Service, Forest Inventory and Analysis Program. Natural and human-associated disturbances reduced the forest...
Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth
2012-01-01
Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...
Z.A Holden; P. Morgan; A.M.S. Smith; M Rollins; P.E. Gessler
2005-01-01
We evaluated the potential of two novel thermally enhanced Landsat Thematic Mapper (TM)-derived spectral indices for discriminating burned areas and for producing fire perimeter data (as a potential surrogate to digital fire atlas data) within two wildland fires (1985 and 1993) in ponderosa pine (Pinus ponderosa) forests of the Gila Wilderness, New...
Forestry timber typing. Tanana demonstration project, Alaska ASVT. [Alaska
NASA Technical Reports Server (NTRS)
Morrissey, L. A.; Ambrosia, V. G.
1982-01-01
The feasibility of using LANDSAT digital data in conjunction with topographic data to delineate commercial forests by stand size and crown closure in the Tanana River basin of Alaska was tested. A modified clustering approach using two LANDSAT dates to generate an initial forest type classification was then refined with topographic data. To further demonstrate the ability of remotely sensed data in a fire protection planning framework, the timber type data were subsequently integrated with terrain information to generate a fire hazard map of the study area. This map provides valuable assistance in initial attack planning, determining equipment accessibility, and fire growth modeling. The resulting data sets were incorporated into the Alaska Department of Natural Resources geographic information system for subsequent utilization.
Remote sensing information for fire management and fire effects assessment
NASA Astrophysics Data System (ADS)
Chuvieco, Emilio; Kasischke, Eric S.
2007-03-01
Over the past decade, much research has been carried out on the utilization of advanced geospatial technologies (remote sensing and geographic information systems) in the fire science and fire management disciplines. Recent advances in these technologies were the focus of a workshop sponsored by the EARSEL special interest group (SIG) on forest fires (FF-SIG) and the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) fire implementation team. Here we summarize the framework and the key findings of papers submitted from this meeting and presented in this special section. These papers focus on the latest advances for near real-time monitoring of active fires, prediction of fire hazards and danger, monitoring of fuel moisture, mapping of fuel types, and postfire assessment of the impacts from fires.
NASA Astrophysics Data System (ADS)
Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio
2015-05-01
Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.
Risk for large-scale fires in boreal forests of Finland under changing climate
NASA Astrophysics Data System (ADS)
Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.
2015-08-01
The target of this work was to assess the impact of projected climate change on the number of large forest fires (over 10 ha fires) and burned area in Finland. For this purpose, we utilized a strong relationship between fire occurrence and the Canadian fire weather index (FWI) during 1996-2014. We used daily data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. Our results also reveal substantial inter-model variability in the rate of the projected increase in forest-fire danger. We moreover showed that the majority of large fires occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is more important cause of fires.
Predicting mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem
NASA Astrophysics Data System (ADS)
Potter, Meredith W.; Kessell, Stephen R.
1980-05-01
A model for predicting community mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem is presented. It applies an algorithm that delineates the size and shape of each patch from grid-based input data and calculates standard diversity measures for the entire mosaic of community patches and their included animal species. The user can print these diversity calculations, maps of the current community-type-age-class mosaic, and maps of habitat utilization by each animal species. Furthermore, the user can print estimates of changes in each resulting from natural disturbance. Although data and resolution level independent, the model is demonstrated and tested with data from the Lewis and Clark National Forest in Montana.
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2013-01-01
Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel...
Structural fire risk of Portugal
NASA Astrophysics Data System (ADS)
Parente, Joana; Pereira, Mário
2017-04-01
Portugal is on the top of the European countries most affected by vegetation fires which underlines the importance of the existence of an updated and coherent fire risk map. This map represent a valuable supporting tool for forest and fire management decisions, focus prevention activities, improve the efficiency of fire detection systems, manage resources and actions of fire fighting with greater effectiveness. Therefore this study proposed a structural fire risk map of the vegetated area of Portugal using a deterministic approach based on the concept of fire risk currently accepted by the scientific community which consists in the combination of the fire hazard and the potential economic damage. The existing fire susceptibility map for Portugal based on the slope, land cover and fire probability, was adopted and updated by the use of a higher resolution digital terrain model, longer burnt area perimeter dataset (1975 - 2013) and the entire set of Corine land cover inventories. Five susceptibility classes were mapped to be in accordance with the Portuguese law and the results confirms the good performance of this model not only in terms of the favourability scores but also in the predictive values. Considering three different scenarios of (maximum, mean, and minimum annual) burnt area, fire hazard were estimate. The vulnerability scores and monetary values of species defined in the literature and by law were used to calculate the potential economic damage. The result was a fire risk map that identifies the areas more prone to be affected by fires in the future and provides an estimate of the economic damage of the fire which will be a valuable tool for forest and fire managers and to minimize the economic and environmental consequences of vegetation fires in Portugal. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF and ISA for providing the fire data.
North American forest disturbance mapped from a decadal Landsat record
Jeffrey G. Masek; Chengquan Huang; Robert Wolfe; Warren Cohen; Forrest Hall; Jonathan Kutler; Peder Nelson
2008-01-01
Forest disturbance and recovery are critical ecosystem processes, but the spatial pattern of disturbance has never been mapped across North America. The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) project has assembled a wall-to-wall record of stand-clearing disturbance (clearcut harvest, fire) for the United States and Canada for the period 1990-...
Utilizing inventory information to calibrate a landscape simulation model
Steven R. Shifley; Frank R., III Thompson; David R. Larsen; David J. Mladenoff; Eric J. Gustafson
2000-01-01
LANDIS is a spatially explicit model that uses mapped landscape conditions as a starting point and projects the patterns in forest vegetation that will result from alternative harvest practices, alternative fire regimes, and wind events. LANDIS was originally developed for Lake States forests, but it is capable of handling the input, output, bookkeeping, and mapping...
[Prediction model of human-caused fire occurrence in the boreal forest of northern China].
Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting
2015-07-01
The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.
Mega-fire Recovery in Dry Conifer Forests of the Interior West
NASA Astrophysics Data System (ADS)
Malone, S. L.; Fornwalt, P.; Chambers, M. E.; Battaglia, M.
2015-12-01
Wildfire is a complex landscape process with great uncertainty in whether trends in size and severity are shifting trajectories for ecosystem recovery that are outside of the historical range of variability. Considering that wildfire size and severity is likely to increase into the future with a drier climate, it is important that we understand wildfire effects and ecosystem recovery. To evaluate how ecosystems recover from wildfire we measured spatial patterns in regeneration and mapped tree refugia within mega-fire perimeters (Hayman, Jasper, Bobcat, and Grizzly Gulch) in ponderosa pine (Pinus ponderosa) dominated forest. On average, high severity fire effects accounted for > 15% of burned area and increased with fire size. Areas with high severity fire effects contained 1 - 15% tree refugia cover, compared to 37 - 70% observed in low severity areas . Large high severity patches with low coverage of tree refugia, were more frequent in larger fires and regeneration distances required to initiate forest recovery far exceeded 1.5 canopy height or 200 m, distances where the vast majority of regeneration is likely to arise. Using a recovery model driven by distance, we estimate recovery times between 300 to > 1000 years for these mega-fires. In Western dry conifer forests, large patches of stand replacing fire are likely to lead to uneven aged forest and very long recovery times.
Risk of large-scale fires in boreal forests of Finland under changing climate
NASA Astrophysics Data System (ADS)
Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.
2016-01-01
The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.
A decision support system for managing forest fire casualties.
Bonazountas, Marc; Kallidromitou, Despina; Kassomenos, Pavlos; Passas, Nikos
2007-09-01
Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns.
NASA Astrophysics Data System (ADS)
Papanikolaou, Dimitrios; Arvanitakis, Spyridon; Papanikolaou, , Ioannis; Lozios, Stylianos; Diakakis, Michalis; Deligiannakis, Georgios; Dimitropoulou, Margarita; Georgiou, Konstantinos
2013-04-01
Wildfires are a major hazard in Greece suffering on average 1,509 wildfires and 36,151 burned hectares of forestlands every year. Since 1998 the Greek Fire Service is responsible for wildfires suppression and response, while prevention and mitigation yearly directives are also being released by the General Secretariat of Civil Protection. The 3013/2002 Act introduced a major transfer of responsibilities from the national to local municipal and regional authorities, which are accompanied by supplementary financial support. Significant new features were established such as the operation of local coordination councils, the foundation of municipality civil protection offices, the establishment of the annually prevention planning for forest fires and the development of local action plans. The University of Athens has developed a Local Action Plan template for municipality administrative levels, integrating scientific techniques and technologies to public government management. The Local Action Plan for Forest Fire Prevention is the main handbook and primary tool of every municipality for reducing the risk of wildfires. Fire prevention and risk analysis are the principal aims of this Plan, which also emphasizes on the important role of the volunteer organizations on forest fire prevention. The 7 chapters of the Action Plan include the legal framework, the risk analysis parameters, the risk analysis using GIS, the prevention planning, the manpower and available equipment of services involved, along with operational planning and evaluation of the previous year's forest fire prevention actions. Multiple information layers, such as vegetation types, road network, power lines and landfills are combined in GIS environment and transformed into qualitative multiparameter as well as quantitative combinational fire hazard maps. These maps are essential in wildfire risk analysis as they display the areas that need the highest attention during the fire season. Moreover, the separate steps of operational planning and the reviewing of precaution, addressing and rehabilitation measures are analyzed. This action plan, risk analysis and maps are of decisive importance not only for prevention and operational planning purposes, but can also prove useful during the crisis and the rehabilitation processes as well. Additionally, we conducted a large questionnaire survey among the municipalities of Greece to assess the existing situation regarding forest fire prevention. Therefore, a network connecting civil protection departments of municipalities was developed, based on an Internet platform, which acted also as a communication tool. Overall, we had feedback either online or offline from 125 municipalities across the country (representing more than one/third of the total municipalities of Greece). 23% of the municipalities have not compiled an action plan yet despite the fact that the 3013/2002 Act of the Greek National Law requires one. Moreover, existing action plans are predominantly catalogues and tables of information regarding authorised personnel and equipment. They lack important information, present no spatial data and display no prevention measures. Indeed, 85% of the municipalities that have action plans do not use risk maps and spatial data, which are of decisive importance for compiling the plans. 74% of the municipalities do not keep a record of forest fires. The jurisdiction area has been modified after the new administrative plan of Kallikratis in 2010 in 74% of the municipalities, however, local action plans were not adapted accordingly in 61% of these. The daily Fire Risk Map of the General Secretariat of Civil Protection has a key role, since 77% of the municipalities take additional measures in case of increased fire risk. According to the civil protection officials, existing action plans suffer from several major problems which emerge due to the fact: that there is no assessment on the fire hazard 67%, there is lack of personnel training 65%, new technologies are not incorporated or used 57% and there is a lack of a template for compiling an action plan 53%. The partnership between the University of Athens with the support of the private sector and the Union of Municipalities of Attica was held under the LIFE+ project "Local Authorities Alliance for Forest Fire Prevention - LIFE08/ENV/GR/000553 " which is implemented with the contribution of the LIFE financial instrument of the European Community.
Mapping fire effects on ash and soil properties. Current knowledge and future perspectives.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerda, Artemi; Strielko, Irina
2014-05-01
Fire has heterogeneous impacts on ash and soil properties, depending on severity, topography of the burned area, type of soil and vegetation affected, and meteorological conditions during and post-fire. The heterogeneous impacts of fire and the complex topography of wildland environments impose the challenge of understand fire effects at diverse scales in space and time. Mapping is fundamental to identify the impacts of fire on ash and soil properties because allow us to recognize the degree of the fire impact, vulnerable areas, soil protection and distribution of ash and soil nutrients, important to landscape recuperation. Several methodologies have been used to map fire impacts on ash soil properties. Burn severity maps are very useful to understand the immediate and long-term impacts of fire on the ecosystems (Wagtendonk et al., 2004; Kokaly et al., 2007). These studies normally are carried out with remote sensing techniques and study large burned areas. On a large scale it is very important to detect the most vulnerable areas (e.g. with risk of runoff increase, flooding, erosion, sedimentation and debris flow) and propose -if necessary- immediate rehabilitation measures. Post-fire rehabilitation measures can be extremely costly. Thus the identification of the most affected areas will reduce the erosion risks and soil degradation (Miller and Yool, 2002; Robichaud et al., 2007; Robichaud, 2009), as the consequent economical, social and ecological impacts. Recently, the United States Department of Agriculture created a field guide to map post-fire burn severity, based on remote sensing and Geographical Information Systems (GIS) technologies. The map produced should reflect the effects of fire on soil properties, and identify areas where fire was more severe (Parsons et al. 2010). Remote sensing studies have made attempts to estimate soil and ash properties after the fire, as hydrophobicity (Lewis et al., 2008), water infiltration (Finnley and Glenn, 2010), forest floor consumption (Lewis et al., 2011), ash cover (Robichaud et al., 2007) and other aspects related with soil as the vegetation factors that affect post-fire erosion risk (Fox et al., 2008). Field studies had also indented to estimate and map the impacts of fire in soil properties. Contrary to remote sensing studies, the mapping of fire effects on ash and soil properties in the field is specially carried out at small scale (e.g. slope or plot). The small scale resolution studies are important because identify small patterns that are normally ignored by remote sensing studies, but fundamental to understand the post-fire evolution of the burned areas. One of the important aspects of the small scale studies of fire effect on ash and soil properties is the great spatial variability, showing that the impact of fire is extremely heterogeneous in space and time (Outeiro et al., 2008; Pereira et al. in press). The small scale mapping of fire effects on soil properties normally is carried out using Geostatistical methods or using deterministic interpolation methods (Robichaud and Miller, 1999; Pereira et al., 2013). Several reports were published on the spatial distribution and mapping of ash and duff thickness (Robichaud and Miller, 1999; Pereira et al., 2013; Pereira et al. in press), fire severity (Pereira et al., 2014), ash chemical characteristics as total nitrogen (Pereira et al., 2010a), and ash extractable elements (Pereira et al., 2010b). Also, previous works mapped fire effects on soil temperature (Gimeno-Garcia et al., 2004), soil hydrophobicity (Woods et al., 2007), total nitrogen (Hirobe et al., 2003), phosphorous (Rodriguez et al., 2009) and major cations (Outeiro et al., 2008). It is important to integrate remote sensing and field based works of fire effects on ash and soil properties in order to have a better validation of the models predicted. The aim of this work is present the current knowledge about mapping fire effects in ash and soil properties at diverse scales and the future perspectives. References Finley, C.D., Glenn, N.F. (2010) Fire and vegetation type effects on soil hydrophobicity and infiltration in the sagebrussh-steppe: II. Hyperspectral analysis. Journal of Arid Environments, 74: 660-666. Fox, D.A., Maselli, F., Carrega, P. (2008) Using SPOT images and field sampling to map burn severity and vegetation factors affecting post-fire erosion risk. Catena, 75: 326-335. Gimeno-Garcia. E., Andreu., V., Rubio, J.L. (2004) Spatial patterns of soil temperatures during experiemntal fires. Geoderma, 118: 17-34. Hirobe, M., Tokushi, N., Wachrinrat, C., Takeda, H. (2003) Fire history influences on the spatial heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical forest in Thailand. Plant and Soil, 249: 309-318. Kokaly, R.F., Rockwell, B.W., Haire, S.L., King, T.V.V. (2007) Characterization of post fire surface cover, soils, and burn severity at the Cerro Grande fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of the Environment, 106: 305-325. Lewis, S.A., Hudak, A.T., Ottmar, R.D., Robichaud, P.R., Lentile, L.B., Hood, S.M., Cronan, J.B., Morgan, P. (2012) Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska. International Journal of Wildland Fire, 20: 255-271. Lewis, S.A., Robichaud, P.R., Frazier, B.E., Wu, J.Q., Laes, D.Y.M. (2008) Using hyperspectral imagery to predict post-wildfire soil repellency. Geomorphology, 98, 192-205. Miller, J.D., Yool, S. (2002) Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of the Environment, 82: 481-496. Outeiro, L., Aspero, F., Ubeda, X. (2008) Geostatistical methods to study spatial variability of soil cation after a prescribed fire and rainfall. Catena, 74: 310-320. Parsons, A., Robichaud, P.R., Lewis, S.A., Napper, C., Clark, J.T. (2010) Field guide for mapping post-fire soil burn severity. Gen. Tech. Rep. RMRS-GTR-243. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 49 p. Pereira, P. Úbeda X., Martin D A (2010b) Mapping wildfire effects on Ca2+ and Mg2+ released from ash. A microplot analysis, EGU General Assembly 2010, Geophysical Research Abstracts, 12,EGU 2010 - 30 Vienna. ISSN: 1607-7962. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4: 153-165. Pereira, P., Úbeda, X., Baltrenaite, E. (2010a) Mapping Total Nitrogen in ash after a Wildfire, a microplot analysis, Ekologija, 56 (3-4), 144-152. Pereira, P., Cerda, A., Ubeda, X., Mataix-Solera, J., Martin, D.A., Jordan, A., Martin, D.A., Mierauskas, P., Arcenegui, V., Zavala, L. (2014) Do fire severity effects change with the time?, What ash tell us, Flamma, 5: 23-27. Robichaud, P.R. (2009) Post-fire stabilization and rehabilitation. In: Cerda, A., Robichaud, P. (eds) Fire Effects on Soils and Restoration Strategies, Science Publishers, 299-320. Robichaud, P.R., Lewis, S.A., Laes, D.Y.M., Hudak, A.T., Kokaly, R.F., Zamudio, J.Z. (2007) Post-fire burn severity mapping with hyperspectral image unmixing. Remote Sensing of the Environment, 108: 467-480. Robichaud, P.R., Miller, S.M. (1999) Spatial interpolation and simulation of post-burn duff thickness after prescribed fire. International Journal of Wildland Fire, 9: 137-143. Rodriguez, A., Duran, J., Fernandez-Palacios, J.M., Gallardo, A. (2009) Short-term wildfire effects on the spatial pattern and scale of labile organic-N and inorganic-N and P pools. Forest Ecology and Management, 257: 739-746. Wagtendonk, J.W., Root, R.R., Key, C.H. (2004) Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of the Environment, 92: 397-408. Woods, S.W., Birkas, A., Ahl, R. (2007) Spatial variability of soil hydrophobicity after wildfires in Montana and Colorado. Geomorphology, 86: 465-479.
NASA Astrophysics Data System (ADS)
Drobyshev, Igor; Bergeron, Yves; Girardin, Martin P.; Gauthier, Sylvie; Ols, Clémentine; Ojal, John
2017-10-01
The length of the fire cycle is a critical factor affecting the vegetation cover in boreal and temperate regions. However, its responses to climate change remain poorly understood. We reanalyzed data from earlier studies of forest age structures at the landscape level, in order to map the evolution of regional fire cycles across Eastern North American boreal and temperate forests, following the termination of the Little Ice Age (LIA). We demonstrated a well-defined spatial pattern of post-LIA changes in the length of fire cycles toward lower fire activity during the 1800s and 1900s. The western section of Eastern North America (west of 77°W) experienced a decline in fire activity as early as the first half of the 1800s. By contrast, the eastern section showed these declines as late as the early 1900s. During a regionally fire-prone period of the 1910s-1920s, forests in the western section of Eastern boreal North America burned more than forests in the eastern section. The climate appeared to dominate over vegetation composition and human impacts in shaping the geographical pattern of the post-LIA change in fire activity. Changes in the atmospheric circulation patterns following the termination of the LIA, specifically changes in Arctic Oscillation and the strengthening of the Continental Polar Trough, were likely drivers of the regional fire dynamics.
Harmonization of forest disturbance datasets of the conterminous USA from 1986 to 2011
Soulard, Christopher E.; Acevedo, William; Cohen, Warren B.; Yang, Zhiqiang; Stehman, Stephen V.; Taylor, Janis L.
2017-01-01
Several spatial forest disturbance datasets exist for the conterminous USA. The major problem with forest disturbance mapping is that variability between map products leads to uncertainty regarding the actual rate of disturbance. In this article, harmonized maps were produced from multiple data sources (i.e., Global Forest Change, LANDFIRE Vegetation Disturbance, National Land Cover Database, Vegetation Change Tracker, and Web-Enabled Landsat Data). The harmonization process involved fitting common class ontologies and determining spatial congruency to produce forest disturbance maps for four time intervals (1986–1992, 1992–2001, 2001–2006, and 2006–2011). Pixels mapped as disturbed for two or more datasets were labeled as disturbed in the harmonized maps. The primary advantage gained by harmonization was improvement in commission error rates relative to the individual disturbance products. Disturbance omission errors were high for both harmonized and individual forest disturbance maps due to underlying limitations in mapping subtle disturbances with Landsat classification algorithms. To enhance the value of the harmonized disturbance products, we used fire perimeter maps to add information on the cause of disturbance.
Harmonization of forest disturbance datasets of the conterminous USA from 1986 to 2011.
Soulard, Christopher E; Acevedo, William; Cohen, Warren B; Yang, Zhiqiang; Stehman, Stephen V; Taylor, Janis L
2017-04-01
Several spatial forest disturbance datasets exist for the conterminous USA. The major problem with forest disturbance mapping is that variability between map products leads to uncertainty regarding the actual rate of disturbance. In this article, harmonized maps were produced from multiple data sources (i.e., Global Forest Change, LANDFIRE Vegetation Disturbance, National Land Cover Database, Vegetation Change Tracker, and Web-Enabled Landsat Data). The harmonization process involved fitting common class ontologies and determining spatial congruency to produce forest disturbance maps for four time intervals (1986-1992, 1992-2001, 2001-2006, and 2006-2011). Pixels mapped as disturbed for two or more datasets were labeled as disturbed in the harmonized maps. The primary advantage gained by harmonization was improvement in commission error rates relative to the individual disturbance products. Disturbance omission errors were high for both harmonized and individual forest disturbance maps due to underlying limitations in mapping subtle disturbances with Landsat classification algorithms. To enhance the value of the harmonized disturbance products, we used fire perimeter maps to add information on the cause of disturbance.
Elizabeth E. Hoy; Nancy H.F. French; Merritt R. Turetsky; Simon N. Trigg; Eric S. Kasischke
2008-01-01
Satellite remotely sensed data of fire disturbance offers important information; however, current methods to study fire severity may need modifications for boreal regions. We assessed the potential of the differenced Normalized Burn Ratio (dNBR) and other spectroscopic indices and image transforms derived from Landsat TM/ETM+ data for mapping fire severity in Alaskan...
Daily black carbon emissions from fires in northern Eurasia for 2002-2015
NASA Astrophysics Data System (ADS)
Hao, Wei Min; Petkov, Alexander; Nordgren, Bryce L.; Corley, Rachel E.; Silverstein, Robin P.; Urbanski, Shawn P.; Evangeliou, Nikolaos; Balkanski, Yves; Kinder, Bradley L.
2016-12-01
Black carbon (BC) emitted from fires in northern Eurasia is transported and deposited on ice and snow in the Arctic and can accelerate its melting during certain times of the year. Thus, we developed a high spatial resolution (500 m × 500 m) dataset to examine daily BC emissions from fires in this region for 2002-2015. Black carbon emissions were estimated based on MODIS (Moderate Resolution Imaging Spectroradiometer) land cover maps and detected burned areas, the Forest Inventory Survey of the Russian Federation, the International Panel on Climate Change (IPCC) Tier-1 Global Biomass Carbon Map for the year 2000, and vegetation specific BC emission factors. Annual BC emissions from northern Eurasian fires varied greatly, ranging from 0.39 Tg in 2010 to 1.82 Tg in 2015, with an average of 0.71 ± 0.37 Tg from 2002 to 2015. During the 14-year period, BC emissions from forest fires accounted for about two-thirds of the emissions, followed by grassland fires (18 %). Russia dominated the BC emissions from forest fires (92 %) and central and western Asia was the major region for BC emissions from grassland fires (54 %). Overall, Russia contributed 80 % of the total BC emissions from fires in northern Eurasia. Black carbon emissions were the highest in the years 2003, 2008, and 2012. Approximately 58 % of the BC emissions from fires occurred in spring, 31 % in summer, and 10 % in fall. The high emissions in spring also coincide with the most intense period of ice and snow melting in the Arctic.
Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico
Robert E. Keane; Scott A. Mincemoyer; Kirsten M. Schmidt; Donald G. Long; Janice L. Garner
2000-01-01
(Please note: This PDF is part of a CD-ROM package only and was not printed on paper.) Fuels and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Gila National Forest in New Mexico. Satellite imagery, terrain modeling, and biophysical simulation were used to create the three...
A Forest Fire Sensor Web Concept with UAVSAR
NASA Astrophysics Data System (ADS)
Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.
2008-12-01
We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.
Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio
2015-05-01
Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.
Combining Radar and Optical Data for Forest Disturbance Studies
NASA Technical Reports Server (NTRS)
Ranson, K. Jon; Smith, David E. (Technical Monitor)
2002-01-01
Disturbance is an important factor in determining the carbon balance and succession of forests. Until the early 1990's researchers have focused on using optical or thermal sensors to detect and map forest disturbances from wild fires, logging or insect outbreaks. As part of a NASA Siberian mapping project, a study evaluated the capability of three different radar sensors (ERS, JERS and Radarsat) and an optical sensor (Landsat 7) to detect fire scars, logging and insect damage in the boreal forest. This paper describes the data sets and techniques used to evaluate the use of remote sensing to detect disturbance in central Siberian forests. Using images from each sensor individually and combined an assessment of the utility of using these sensors was developed. Transformed Divergence analysis and maximum likelihood classification revealed that Landsat data was the single best data type for this purpose. However, the combined use of the three radar and optical sensors did improve the results of discriminating these disturbances.
Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data
NASA Technical Reports Server (NTRS)
Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan
2013-01-01
High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.
NASA Astrophysics Data System (ADS)
Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios
2011-03-01
Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.
Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios
2011-03-01
Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.
Land cover change interacts with drought severity to change fire regimes in Western Amazonia.
Gutiérrez-Vélez, Víctor H; Uriarte, María; DeFries, Ruth; Pinedo-Vásquez, Miguel; Fernandes, Katia; Ceccato, Pietro; Baethgen, Walter; Padoch, Christine
Fire is becoming a pervasive driver of environmental change in Amazonia and is expected to intensify, given projected reductions in precipitation and forest cover. Understanding of the influence of post-deforestation land cover change on fires in Amazonia is limited, even though fires in cleared lands constitute a threat for ecosystems, agriculture, and human health. We used MODIS satellite data to map burned areas annually between 2001 and 2010. We then combined these maps with land cover and climate information to understand the influence of land cover change in cleared lands and dry-season severity on fire occurrence and spread in a focus area in the Peruvian Amazon. Fire occurrence, quantified as the probability of burning of individual 232-m spatial resolution MODIS pixels, was modeled as a function of the area of land cover types within each pixel, drought severity, and distance to roads. Fire spread, quantified as the number of pixels burned in 3 × 3 pixel windows around each focal burned pixel, was modeled as a function of land cover configuration and area, dry-season severity, and distance to roads. We found that vegetation regrowth and oil palm expansion are significantly correlated with fire occurrence, but that the magnitude and sign of the correlation depend on drought severity, successional stage of regrowing vegetation, and oil palm age. Burning probability increased with the area of nondegraded pastures, fallow, and young oil palm and decreased with larger extents of degraded pastures, secondary forests, and adult oil palm plantations. Drought severity had the strongest influence on fire occurrence, overriding the effectiveness of secondary forests, but not of adult plantations, to reduce fire occurrence in severely dry years. Overall, irregular and scattered land cover patches reduced fire spread but irregular and dispersed fallows and secondary forests increased fire spread during dry years. Results underscore the importance of land cover management for reducing fire proliferation in this landscape. Incentives for promoting natural regeneration and perennial crops in cleared lands might help to reduce fire risk if those areas are protected against burning in early stages of development and during severely dry years.
NASA Astrophysics Data System (ADS)
Hatzopoulos, N.; Kim, S. H.; Kafatos, M.; Nghiem, S. V.; Myoung, B.
2016-12-01
Live Fuel Moisture is a dryness measure used by the fire departments to determine how dry is the current situation of the fuels from the forest areas. In order to map Live Fuel Moisture we conducted an analysis with a standardized regressional approach from various vegetation indices derived from remote sensing data of MODIS. After analyzing the results we concluded mapping Live Fuel Moisture using a standardized NDVI product. From the mapped remote sensed product we observed the appearance of extremely high dry fuels to be highly correlated with very dry years based on the overall yearly precipitation. The appearances of the extremely dry mapped fuels tend to have a direct association with fire events and observed to be a post fire indicator. In addition we studied the appearance of extreme dry fuels during critical months when season changes from spring to summer as well as the relation to fire events.
Daolan Zheng; Linda S. Heath; Mark J. Ducey; Brad Quayle
2013-01-01
The relative contributions of double counting of carbon emissions between forest-to-nonforest cover change (FNCC) and forest wildfires are an unknown in estimating net forest carbon exchanges at large scales. This study employed land-cover change maps and forest fire data in the four representative states (Arkansas, California, Minnesota, and Washington) of the US for...
NASA Astrophysics Data System (ADS)
Easterday, K.; Kelly, M.; McIntyre, P. J.
2015-12-01
Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.
NASA Astrophysics Data System (ADS)
Jalilzadeh Shadlouei, A.; Delavar, M. R.
2013-09-01
There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative criterias contributing to forest fires have been designated as follows: vegetation (NDVI), slope, aspect, temperature, humidity and proximity to roadways. By applying these variables on several tentatively selected areas and formation information tables and producing granular decision tree and extraction of rules, the zoning rules (for the areas in question) were extracted. According to them the zoning of the entire area has been conducted. The zoned areas have been classified into 5 categories: high hazard, medium hazard (high), medium hazard (low), low hazard (high), low hazard (low). According to the map, the zoning of most of the areas fall into the low hazard (high) class while the least number of areas have been classified as low hazard (low). Comparing the forest fires in these regions in 2010 with the MODIS data base for forest fires, it is concluded that areas with high hazards of forest fire have been classified with a 64 percent precision. In other word 64 percent of pixels that are in high hazard classification are classified according to MODIS data base. Using this method we obtain a good range of Perception. Manager will reduce forest fire concern using precautionary proceeding on hazardous area.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
High-severity fire: evaluating its key drivers and mapping its probability across western US forests
NASA Astrophysics Data System (ADS)
Parks, Sean A.; Holsinger, Lisa M.; Panunto, Matthew H.; Jolly, W. Matt; Dobrowski, Solomon Z.; Dillon, Gregory K.
2018-04-01
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we used boosted regression trees to model high-severity fire as a function of live fuel, topography, climate, and fire weather. We found that live fuel, on average, was the most important factor driving high-severity fire among ecoregions (average relative influence = 53.1%) and was the most important factor in 14 of 19 ecoregions. Fire weather was the second most important factor among ecoregions (average relative influence = 22.9%) and was the most important factor in five ecoregions. Climate (13.7%) and topography (10.3%) were less influential. We also predicted the probability of high-severity fire, were a fire to occur, using recent (2016) satellite imagery to characterize live fuel for a subset of ecoregions in which the model skill was deemed acceptable (n = 13). These ‘wall-to-wall’ gridded ecoregional maps provide relevant and up-to-date information for scientists and managers who are tasked with managing fuel and wildland fire. Lastly, we provide an example of the predicted likelihood of high-severity fire under moderate and extreme fire weather before and after fuel reduction treatments, thereby demonstrating how our framework and model predictions can potentially serve as a performance metric for land management agencies tasked with reducing hazardous fuel across large landscapes.
Normalized algorithm for mapping and dating forest disturbances and regrowth for the United States
Liming He; Jing M. Chen; Shaoliang Zhang; Gustavo Gomez; Yude Pan; Kevin McCullough; Richard Birdsey; Jeffrey G. Masek
2011-01-01
Forest disturbances such as harvesting, wildfire and insect infestation are critical ecosystem processes affecting the carbon cycle. Because carbon dynamics are related to time since disturbance, forest stand age that can be used as a surrogate for major clear-cut/fire disturbance information has recently been recognized as an important input to forest carbon cycle...
Waring, Richard H; Coops, Nicholas C
A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial resolution <10 km 2 have generally been unsuccessful. We hypothesized that predictions of fires might be improved if depletion of soil water reserves were coupled more directly to maximum leaf area index (LAI max ) and stomatal behavior. In an earlier publication, we used LAI max and a process-based forest growth model to derive and map the maximum available soil water storage capacity (ASW max ) of forested lands in western North America at l km resolution. To map large fires, we used data products acquired from NASA's Moderate Resolution Imaging Spectroradiometers (MODIS) over the period 2000-2009. To establish general relationships that incorporate the major biophysical processes that control evaporation and transpiration as well as the flammability of live and dead trees, we constructed a decision tree model (DT). We analyzed seasonal variation in the relative availability of soil water ( fASW ) for the years 2001, 2004, and 2007, representing respectively, low, moderate, and high rankings of areas burned. For these selected years, the DT predicted where forest fires >1 km occurred and did not occur at ~100,000 randomly located pixels with an average accuracy of 69 %. Extended over the decade, the area predicted burnt varied by as much as 50 %. The DT identified four seasonal combinations, most of which included exhaustion of ASW during the summer as critical; two combinations involving antecedent conditions the previous spring or fall accounted for 86 % of the predicted fires. The approach introduced in this paper can help identify forested areas where management efforts to reduce fire hazards might prove most beneficial.
Vegetation burn severity mapping using Landsat-8 and WorldView-2
Wu, Zhuoting; Middleton, Barry R.; Hetzler, Robert; Vogel, John M.; Dye, Dennis G.
2015-01-01
We used remotely sensed data from the Landsat-8 and WorldView-2 satellites to estimate vegetation burn severity of the Creek Fire on the San Carlos Apache Reservation, where wildfire occurrences affect the Tribe's crucial livestock and logging industries. Accurate pre- and post-fire canopy maps at high (0.5-meter) resolution were created from World- View-2 data to generate canopy loss maps, and multiple indices from pre- and post-fire Landsat-8 images were used to evaluate vegetation burn severity. Normalized difference vegetation index based vegetation burn severity map had the highest correlation coefficients with canopy loss map from WorldView-2. Two distinct approaches - canopy loss mapping from WorldView-2 and spectral index differencing from Landsat-8 - agreed well with the field-based burn severity estimates and are both effective for vegetation burn severity mapping. Canopy loss maps created with WorldView-2 imagery add to a short list of accurate vegetation burn severity mapping techniques that can help guide effective management of forest resources on the San Carlos Apache Reservation, and the broader fire-prone regions of the Southwest.
A feasibility study: Forest Fire Advanced System Technology (FFAST)
NASA Technical Reports Server (NTRS)
Mcleod, R. G.; Martin, T. Z.; Warren, J.
1983-01-01
The National Aeronautics and Space Administration/Jet Propulsion Laboratory and the United States Department of Agriculture Forest Service completed a feasibility study that examined the potential uses of advanced technology in forest fires mapping and detection. The current and future (1990's) information needs in forest fire management were determined through interviews. Analysis shows that integrated information gathering and processing is needed. The emerging technologies that were surveyed and identified as possible candidates for use in an end to end system include ""push broom'' sensor arrays, automatic georeferencing, satellite communication links, near real or real time image processing, and data integration. Matching the user requirements and the technologies yielded a ""strawman'' system configuration. The feasibility study recommends and outlines the implementation of the next phase for this project, a two year, conceptual design phase to define a system that warrants continued development.
Karin L. Riley; Isaac C. Grenfell; Mark A. Finney
2015-01-01
Mapping the number, size, and species of trees in forests across the western United States has utility for a number of research endeavors, ranging from estimation of terrestrial carbon resources to tree mortality following wildfires. For landscape fire and forest simulations that use the Forest Vegetation Simulator (FVS), a tree-level dataset, or âtree listâ, is a...
The Application of a WEPP Technology to a Complex Watershed Analysis
NASA Astrophysics Data System (ADS)
Elliot, William; Miller, Ina Sue; Dobre, Mariana
2017-04-01
Forest restoration activities are essential in many forest stands, where previous management and fire suppression has resulted in stands with high density, diseased trees and excessive fuel loads. Trying to balance the watershed impacts of restoration activities such as thinning, selective harvesting, and prescribed fire against the significant impact of wildfire is challenging. The process is further aggravated by the necessity of a road network if management activities include timber removal. We propose to present an approach to a watershed analysis for a 3400-ha of fuel reduction project within an 18,0000-ha sensitive watershed in the Nez Perce National Forest in Northern Idaho, USA. The FlamMap fire spread model was first used to predict the distribution of potential fire severity on the landscape for the current fuel load, and for a landscape that had been treated by thinning and/or prescribed fire. FlamMap predicts the flame length by 30-m pixel as a function of fuel load and water content, wind speed, and slope steepness and aspect. The flame length distribution was then classified so that the distribution of burn severity (unburned, low, moderate and high severity) was similar to the distributions observed on recent wildfires in the Forest. The flame length classes determined for the current fuel loads were also used for the treated condition flame lengths, where predominantly unburned or low severity fire severities were predicted. The burn severity maps were uploaded to a web site that was developed to provide soil and management files reflecting burn severity and soil texture, formatted for the Geospatial interface to the Water Erosion Prediction Project (GeoWEPP). The study area was divided into 40 sub watersheds under 2.5 km2 each for GeoWEPP analysis. GeoWEPP was run for an undisturbed forest; for the burn severity following wildfire for the current and treated fuel loads; for prescribed fire, either broadcast or jack pot burn; and for thinning either by tractor or by skyline logging. The GeoWEPP erosion estimates by hillslope polygon were merged with the proposed treatment polygons to produce maps of erosion for each condition for each treatment polygon. Road network erosion was estimated using a new online GIS tool to estimate road segment length and steepness, and linking those topographic values to the WEPP model for erosion prediction by road segment. The results were summarized and compared to earlier estimates of sediment delivery using a locally-developed cumulative watershed effects analysis. The results were similar from both tools, in spite of using very different erosion estimation methods, and similar to regional observations of forest watershed sediment delivery ( 12.5 Mg/sq km). The study found that the erosion risk from wildfire was 5 times greater than sediment generated by forest management, justifying the proposed restoration activities to reduce fire risk. Sediment generated from the road network, however, was unacceptably high suggesting that methods improve road erosion prediction and/or to reduce road erosion are warranted.
Akay, Abdullah E; Wing, Michael G; Sivrikaya, Fatih; Sakar, Dursun
2012-03-01
The ability of firefighting vehicles and staff to reach a fire area as quickly as possible is critical in fighting against forest fires. In this study, a Geographical Information System-based decision support system was developed to assist fire managers in determining the fastest and the safest or more reliable access routes from firefighting headquarters to fire areas. The decision support system was tested in the Kahramanmaras Forestry Regional Directoratein the Mediterranean region of Turkey. The study area consisted of forested lands which had been classified according to fire sensitivity. The fire response routing simulations considered firefighting teams located in 20 firefighting headquarter locations. The road network, the locations of the firefighting headquarters, and possible fire locations were mapped for simulation analysis. In alternative application simulations, inaccessible roads which might be closed due to fire or other reasons were indicated in the network analysis so that the optimum route was not only the fastest but also the safest and most reliable path. The selection of which firefighting headquarters to use was evaluated by considering critical response time to potential fire areas based on fire sensitivity levels. Results indicated that new firefighting headquarters should be established in the region in order to provide sufficient firefighting response to all forested lands. In addition, building new fire access roads and increasing the design speed on current roads could also increase firefighting response capabilities within the study area.
Changes of forest cover and disturbance regimes in the mountain forests of the Alps☆
Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D.
2017-01-01
Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25–115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15–40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more strongly affected by fires, but less affected by wind disturbance in the 20th century. More broadly, an increase in growing stock and expanding forest areas since the mid-19th century have - along with climatic changes - contributed to an increasing frequency and size of disturbances in the Alps. Although many areas remain intensively managed, the extent, structure, and dynamics of the forests of the Alps reflect natural drivers more strongly today than at any time in the past millennium. PMID:28860675
Changes of forest cover and disturbance regimes in the mountain forests of the Alps.
Bebi, P; Seidl, R; Motta, R; Fuhr, M; Firm, D; Krumm, F; Conedera, M; Ginzler, C; Wohlgemuth, T; Kulakowski, D
2017-03-15
Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25-115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15-40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more strongly affected by fires, but less affected by wind disturbance in the 20th century. More broadly, an increase in growing stock and expanding forest areas since the mid-19th century have - along with climatic changes - contributed to an increasing frequency and size of disturbances in the Alps. Although many areas remain intensively managed, the extent, structure, and dynamics of the forests of the Alps reflect natural drivers more strongly today than at any time in the past millennium.
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2015-01-01
Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...
Simulating fire regimes in the Amazon in response to climate change and deforestation.
Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato
2011-07-01
Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change and deforestation would boost fire occurrence outside PAs by half during this period. Our modeling results, therefore, confirm the synergy between the two Ds of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries).
Aerial sketchmapping for monitoring forest conditions in Southern Brazil
Y. M. Malheiros de Oliveira; M. A. Doetzer Rosot; N. B. da Luz; W. M. Ciesla; E.W. Johnson; R. Rhea; J.F. Jr. Penteado
2006-01-01
Aerial sketchmapping is a simple, low cost remote sensing method used for detection and mapping of forest damage caused by biotic agents (insects, pathogens and other pests) and abiotic agents (wind, fire, storms, hurricane, ice storms) in North America. This method was introduced to Brazil in 2001/2002 via a USDA Forest Service/EMBRAPA technical exchange program,...
Assessment of vegetation change in a fire-altered forest landscape
NASA Technical Reports Server (NTRS)
Jakubauskas, Mark E.; Lulla, Kamlesh P.; Mausel, Paul W.
1990-01-01
This research focused on determining the degree to which differences in burn severity relate to postfire vegetative cover within a Michigan pine forest. Landsat MSS data from June 1973 and TM data from October 1982 were classified using an unsupervised approach to create prefire and postfire cover maps of the study area. Using a raster-based geographic information system (GIS), the maps were compared, and a map of vegetation change was created. An IR/red band ratio from a June 1980 Landsat scene was classified to create a map of three degres of burn severity, which was then compared with the vegetation change map using a GIS. Classification comparisons of pine and deciduous forest classes (1973 to 1982) revealed that the most change in vegetation occurred in areas subjected to the most intense burn. Two classes of regenerating forest comprised the majority of the change, while the remaining change was associated with shrub vegetation or another forest class.
NASA Technical Reports Server (NTRS)
Brooke, Michael; Williams, Meredith; Fenn, Teresa
2016-01-01
The risk of severe wildfires in Texas has been related to weather phenomena such as climate change and recent urban expansion into wild land areas. During recent years, Texas wild land areas have experienced sequences of wet and dry years that have contributed to increased wildfire risk and frequency. To prevent and contain wildfires, the Texas Forest Service (TFS) is tasked with evaluating and reducing potential fire risk to better manage and distribute resources. This task is made more difficult due to the vast and varied landscape of Texas. The TFS assesses fire risk by understanding vegetative fuel types and fuel loads. To better assist the TFS, NASA Earth observations, including Landsat and Moderate Resolution Imaging Specrtoradiometer (MODIS) data, were analyzed to produce maps of vegetation type and specific vegetation phenology as it related to potential wildfire fuel loads. Fuel maps from 2010-2011 and 2014-2015 fire seasons, created by the Texas Disasters I project, were used and provided alternating, complementary map indicators of wildfire risk in Texas. The TFS will utilize the end products and capabilities to evaluate and better understand wildfire risk across Texas.
High resolution fire risk mapping in Italy
NASA Astrophysics Data System (ADS)
Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko
2014-05-01
The high topographic and vegetation heterogeneity makes Italy vulnerable to forest fires both in the summer and in winter. In particular, northern regions are predominantly characterized by a winter fire regime, mainly due to frequent extremely dry winds from the north, while southern and central regions and the large islands are characterized by a severe summer fire regime, because of the higher temperatures and prolonged lack of precipitation. The threat of wildfires in Italy is not confined to wooded areas as they extend to agricultural areas and urban-forest interface areas. The agricultural and rural areas, in the last century, have been gradually abandoned, especially in areas with complex topography. Many of these areas were subject to reforestation, leading to the spread of pioneer species mainly represented by Mediterranean conifer, which are highly vulnerable to fire. Because of the frequent spread of fire, these areas are limited to the early successional stages, consisting mainly of shrub vegetation; its survival in the competition with the climax species being ensured by the spread of fire itself. Due to the frequency of fire ignition — almost entirely man caused — the time between fires on the same area is at least an order of magnitude less than the time that would allow the establishment of forest climax species far less vulnerable to fire. In view of the limited availability of fire risk management resources, most of which are used in the management of national and regional air services, it is necessary to precisely identify the areas most vulnerable to fire risk. The few resources available can thus be used on a yearly basis to mitigate problems in the areas at highest risk by defining a program of forest management interventions, which is expected to make a significant contribution to the problem in a few years' time. The goal of such detailed planning is to dramatically reduce the costs associated with water bombers fleet management and fire extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2017-12-01
Forest fires are among the most important natural disasters with the damage to the natural habitat and human-life. Mapping damaged forest fires is crucial for assessing ecological effects caused by fire, monitoring land cover changes and modeling atmospheric and climatic effects of fire. In this context, satellite data provides a great advantage to users by providing a rapid process of detecting burning areas and determining the severity of fire damage. Especially, Mediterranean ecosystems countries sets the suitable conditions for the forest fires. In this study, the determination of burnt areas of forest fire in Pedrógão Grande region of Portugal occurred in June 2017 was carried out using Landsat 8 OLI and Sentinel-2A satellite images. The Pedrógão Grande fire was one of the largest fires in Portugal, more than 60 people was killed and thousands of hectares were ravaged. In this study, four pairs of pre-fire and post-fire top of atmosphere (TOA) and atmospherically corrected images were utilized. The red and near infrared (NIR) spectral bands of pre-fire and post-fire images were stacked and multiresolution segmentation algorithm was applied. In the segmentation processes, the image objects were generated with estimated optimum homogeneity criteria. Using eCognition software, rule sets have been created to distinguish unburned areas from burned areas. In constructing the rule sets, NDVI threshold values were determined pre- and post-fire and areas where vegetation loss was detected using the NDVI difference image. The results showed that both satellite images yielded successful results for burned area discrimination with a very high degree of consistency in terms of spatial overlap and total burned area (over 93%). Object based image analysis (OBIA) was found highly effective in delineation of burnt areas.
Keane, Robert E.; Rollins, Matthew; Zhu, Zhi-Liang
2007-01-01
Canopy and surface fuels in many fire-prone forests of the United States have increased over the last 70 years as a result of modern fire exclusion policies, grazing, and other land management activities. The Healthy Forest Restoration Act and National Fire Plan establish a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the USA. The primary index used to prioritize treatment areas across the nation is Fire Regime Condition Class (FRCC) computed as departures of current conditions from the historical fire and landscape conditions. This paper describes a process that uses an extensive set of ecological models to map FRCC from a departure statistic computed from simulated time series of historical landscape composition. This mapping process uses a data-driven, biophysical approach where georeferenced field data, biogeochemical simulation models, and spatial data libraries are integrated using spatial statistical modeling to map environmental gradients that are then used to predict vegetation and fuels characteristics over space. These characteristics are then fed into a landscape fire and succession simulation model to simulate a time series of historical landscape compositions that are then compared to the composition of current landscapes to compute departure, and the FRCC values. Intermediate products from this process are then used to create ancillary vegetation, fuels, and fire regime layers that are useful in the eventual planning and implementation of fuel and restoration treatments at local scales. The complex integration of varied ecological models at different scales is described and problems encountered during the implementation of this process in the LANDFIRE prototype project are addressed.
Hugh D. Safford; Kip M. Van de Water
2014-01-01
In California, fire regimes and related ecosystem processes have been altered by land use practices associated with Euro-American settlement, and climate warming is exacerbating the magnitude and effects of these changes. Because of changing environmental baselines, restoration of narrowly defined historical conditions may no longer be an attainable or sustainable long...
Near real-time monitoring systems for adaptive management and improved forest governance
NASA Astrophysics Data System (ADS)
Musinsky, J.; Tabor, K.; Cano, A.
2012-12-01
The destruction and degradation of the world's forests from deforestation, illegal logging and fire has wide-ranging environmental and economic impacts, including biodiversity loss, the degradation of ecosystem services and the emission of greenhouse gases. In an effort to strengthen local capacity to respond to these threats, Conservation International has developed a suite of near real-time satellite monitoring systems generating daily alerts, maps and reports of forest fire, fire risk, deforestation and degradation that are used by national and sub-national government agencies, NGO's, scientists, communities, and the media to respond to and report on threats to forest resources. Currently, the systems support more than 1000 subscribers from 45 countries, focusing on Madagascar, Indonesia, Bolivia and Peru. This presentation will explore the types of innovative applications users have found for these data, challenges they've encountered in data acquisition and accuracy, and feedback they've given on the usefulness of these systems for REDD+ implementation, protected areas management and improved forest governance.;
Melissa A. Thomas-Van Gundy; Gregory J. Nowacki; Charles V. Cogbill
2015-01-01
Witness trees provide information fundamental for restoration ecology, often serving as baselines for forest composition and structure. Furthermore, when categorized by fire relations, witness trees can shed light on past disturbance regimes. Kriging was applied to witness-tree point data to form a contiguous surface of pyrophilic percentage for four national forests...
Kenneth B. Pierce; Janet L. Ohmann; Michael C. Wimberly; Matthew J. Gregory; Jeremy S. Fried
2009-01-01
Land managers need consistent information about the geographic distribution of wildland fuels and forest structure over large areas to evaluate fire risk and plan fuel treatments. We compared spatial predictions for 12 fuel and forest structure variables across three regions in the western United States using gradient nearest neighbor (GNN) imputation, linear models (...
Preliminary results of the PREFER FP7 Project
NASA Astrophysics Data System (ADS)
Fusilli, Lorenzo; Laneve, Giovanni; De Bonis, Roberto; Sebastian, Ana; Ferrucci, Fabrizio; Oliveira, Sandra
2014-05-01
The need to improve the information and intelligence support for forest fire prevention is widely recognized. Fire prevention is still the most cost-effective strategy when compared to firefighting and extinguishing that are costly, local, and triggered only in response to already ongoing crises. PREFER project, funded under the EU FP7 (G.A. 312931), intends to contribute at responding to such a pragmatic need of southern Europe's forests by: providing timely information products based on the exploitation of all available spacecraft sensors, offering a portfolio of products focused on pre- and post-crisis forest fire emergency, suitable for the users in the different countries of the European Mediterranean area. The PREFER Service portfolio consists of two main services: 1. Information Support to Fire Preparedness/Prevention Phase" (ISP) Service 2. Information Support to Fire Recovery/Reconstruction Phase" (ISR) Service This service is already at an advanced stage having completed the first year of activity. During this time several products have been consolidated: seasonal fuel maps; daily and seasonal fire hazard maps; seasonal risk maps; prescribed fire maps. This paper aims at presenting the preliminary results of the research activity carried out in the framework of the PREFER project, focusing, in particular, on these recalled above. As for Fire Risk and Hazard assessment, many indexes have been developed in the last years. Hardly any of them uses data derived from satellite images. The FPI index is an exception to this rule which, in addition, makes use of meteorological data. In spite of being a very complete index, the FPI still allows room for improvement which justify the interest of PREFER in it. PREFER's innovative approach to FPI will allow taking into account the effect of solar illumination conditions in determining the humidity present in the dead vegetation, and therefore its proneness to burn. PREFER innovation also focus in allowing the index to take into account the influence of water present in the alive vegetation (relevant in determining the fire regime) through the Equivalent Water Thickness. PREFER will use daily FPI forecasts to produce a seasonal fire hazard index by introducing in the model the human factor as captured by the fire occurrence statistics. PREFER will produce also seasonal fire risk maps by combining the seasonal hazard data with vulnerability and exposure maps. Finally, Prescribed Burning (PB) represents the controlled application of fire to vegetation under specific environmental conditions to attain planned resource management objectives. The main objective of the PREFER service for PB is to support the user in the identification of the areas and the time, that is where and when, the PB practice is applicable in a secure way. The main innovation, taking into account the results previously obtained in the frame work of other European projects (FIREPARADOX), will be the integration of the advanced remote sensing techniques that have not yet been developed for the problem under study, aiming at developing an index capable to provide the right time to intervene with the PB in the area of interest.
The role of disappeared disturbances in driving the North American prairie-forest boundary
NASA Astrophysics Data System (ADS)
Heilman, K.; McLachlan, J. S.; Staver, A. C.
2016-12-01
Globally, transitions from savanna to forest are often characterized by abrupt changes in tree density that cannot be fully explained by climate and edaphic factors. In the tropics, fire-vegetation feedbacks drive a bimodal distribution in tree cover that leads to alternative forest and savanna stable states within the same climate space. In temperate North America, the pre-European settlement prairie-forest transition has also been hypothesized to be influenced by widespread fires (anthropogenic or natural). However, large scale evidence for fire disturbance feedbacks on tree density in the temperate zone is currently lacking. We investigate both the pre-European and modern tree density along the North American prairie-forest boundary. We hypothesized that the pre-European distribution of tree density was distinctly bimodal due to intact vegetation-disturbance feedbacks along the prairie-forest boundary before settlement, but that fragmentation and fire suppression has produced a modern prairie-forest boundary that is less abrupt and less bimodal. We estimated tree density from aggregated Public Land Survey (PLS) data collected before the time of European agricultural settlement in Minnesota, Wisconsin, Michigan, Indiana, and Illinois and compared PLS density distributions to tree density estimated from modern USFS Forest Inventory Analysis (FIA) data. PLS tree density follows a bimodal distribution that abruptly shifts from savanna to forest at the boundary. Only 15% of the variance in pre-settlement tree density is explained by historical Mean Annual Precipitation (MAP), suggesting that the bimodality may be due to internal feedbacks in the vegetation-disturbance system, rather than to the past underlying environmental gradient. On the modern landscape, MAP explains 6% of FIA tree density variance, and tree density is not bimodal. Regions that had low tree density savannas in the PLS era have significantly increased in tree density, suggesting that the disappearance of disturbances that accompanied agricultural settlement resulted in closed forests where savannas were once an alternative stable state (p < 0.01). Additionally, the once high tree density forests in the PLS have significantly declined in density, suggesting that logging has contributed to land cover change in North America.
Interactions among wildland fires in a long-established Sierra Nevada natural fire area
Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.
2009-01-01
We investigate interactions between successive naturally occurring fires, and assess to what extent the environments in which fires burn influence these interactions. Using mapped fire perimeters and satellite-based estimates of post-fire effects (referred to hereafter as fire severity) for 19 fires burning relatively freely over a 31-year period, we demonstrate that fire as a landscape process can exhibit self-limiting characteristics in an upper elevation Sierra Nevada mixed conifer forest. We use the term 'self-limiting' to refer to recurring fire as a process over time (that is, fire regime) consuming fuel and ultimately constraining the spatial extent and lessening fire-induced effects of subsequent fires. When the amount of time between successive adjacent fires is under 9 years, and when fire weather is not extreme (burning index <34.9), the probability of the latter fire burning into the previous fire area is extremely low. Analysis of fire severity data by 10-year periods revealed a fair degree of stability in the proportion of area burned among fire severity classes (unchanged, low, moderate, high). This is in contrast to a recent study demonstrating increasing high-severity burning throughout the Sierra Nevada from 1984 to 2006, which suggests freely burning fires over time in upper elevation Sierra Nevada mixed conifer forests can regulate fire-induced effects across the landscape. This information can help managers better anticipate short- and long-term effects of allowing naturally ignited fires to burn, and ultimately, improve their ability to implement Wildland Fire Use programs in similar forest types. ?? 2008 Springer Science+Business Media, LLC.
NASA Astrophysics Data System (ADS)
Boer, Matthias; Bradstock, Ross
2014-05-01
More than half of the global forest carbon stock is held in tropical forests. A relatively large proportion of the tropical forest carbon is stored in plant biomass rather than in the soil, making these stocks particularly vulnerable to disturbances such as droughts, fires and cyclones. The frequencies, duration and intensities of such disturbances may change under future climates with poorly resolved but potentially significant (synergistic) effects on the carbon carrying capacity of tropical forests and thereby on global geochemical cycles. In this study we analyse high-resolution global data sets for tropical forest biomass (Saatchi et al., 2011. PNAS) and fire affected areas (GFED4, Giglio et al.,2013. JGR 118), together with climate data (WorldClim, Hijmans et al., 2005. Int. J. Clim. 25), to quantify the sensitivity of tropical forest carbon stocks in South America, Africa and Asia/Australia to seasonal water deficits and fire. Here, the climatic water deficit (D), calculated as the difference between mean annual potential evapotranspiration and actual evapotranspiration, is used as a measure of seasonal water stress (i.e., evaporative demand not met by available water), while the mean annual burned area fraction (1995-2013) of grid cells is used as a measure of average fire activity. Tropical forest carbon stocks are maximal, as expected, where water deficits are negligible. In those densely forested environments fire tends to be extremely rare as fuels are too wet to burn for most of the time. In all three continents, potential tropical forest carbon stocks are well predicted by a non-linear decreasing function of the mean annual climatic water deficit, with a steep drop in carbon stocks at D of 700-800 mm per year. At this threshold in the climatic water deficit we observe a strong increase in fire activity that is indicative of a critical change in vegetation structure (i.e., tree/grass ratio) and associated shift in the dominant climatic constraint on fire activity from fuel dryness to fuel productivity. By comparing predictions of potential forest carbon stocks (i.e., as a function of D only) with actual carbon stocks, we quantify the sensitivity of those stocks to increasing fire activity. Finally, we map the risk of losses in carbon carrying capacity of tropical forests under scenarios of future climate.
Regional air quality impacts of future fire emissions in Sumatra and Kalimantan
NASA Astrophysics Data System (ADS)
Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.
2015-05-01
Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and subsequent health effects.
Cropland management dynamics as a driver of forest cover change in European Russia (Invited)
NASA Astrophysics Data System (ADS)
Tyukavina, A.; Krylov, A.; Potapov, P.; Turubanova, S.; Hansen, M.; McCarty, J. L.
2013-12-01
The European part of Russia spans over 40% of the European subcontinent and comprises most of Europe's temperate and boreal forests. The region has undergone a socio-economic transition during the last two decades that has resulted in radical changes in land management. Large-scale agriculture land abandonment caused massive afforestation in the Central and Northern parts of the region (Alcantara et al. 2012). Afforestation of former croplands is currently not included in the official forestry statistical reports (Potapov et al. 2012), but is likely to have major impacts on regional carbon budgets (Kuemmerle et al. 2009). We employed a complete archive of Landsat TM and ETM+ imagery and automatic data processing algorithm to create regional time-sequential image composites and multi-temporal metrics for 1985-2012. Spectral metrics were used as independent variables to map forest cover and change with help of supervised machine learning algorithms and trend analysis. Forest cover loss was attributed to fires, harvesting, and wind/disease dynamics, while forest cover gain was disaggregated into reforestation and afforestation using pre-1990 TM imagery as baseline data. Special attention was paid to agricultural abandonment. Fire events of the last decade have been further characterized by ignition place, time, and burning intensity using MODIS fire detection data. Change detection products have been validated using field data collected during summer 2012 and 2013 and high resolution imagery. Massive arable land abandonment caused forest area increase within Central agricultural regions. While total logging area decreased after the USSR breakdown, logging and other forms of clearing increased within the Central and Western parts of the region. Gross forest gain and loss were nearly balanced within region; however, the most populated regions of European Russia featured the highest rate of net forest cover loss during the last decade. The annual burned forest area as well as area of windstorms damage significantly increased, especially in the Central regions. Fires predominantly affected pine forests and drained peatlands prone to summer droughts. Fire date and ignition analysis showed that forest fires are not related to extensive spring-time agricultural burning. References: Alcantara, C., T. Kuemmerle, A. V. Prishchepov & V. C. Radeloff. 2012. Mapping abandoned agriculture with multi-temporal MODIS satellite data. 334-347. Remote Sensing of Environment. Kuemmerle, T., O. Chaskovskyy, J. Knorn, V. C. Radeloff, I. Kruhlov, W. S. Keeton & P. Hostert. 2009. Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, 113, 1194-1207. Potapov, P., S. Turubanova, I. Zhuravleva, M. Hansen, A. Yaroshenko & A. Manisha. 2012. Forest Cover Change within the Russian European North after the Breakdown of Soviet Union (1990-2005) 1-11. International Journal of Forestry Research.
Assessment of post forest fire reclamation in Algarve, Portugal
NASA Astrophysics Data System (ADS)
Andrade, Rita; Panagopoulos, Thomas; Guerrero, Carlos; Martins, Fernando; Zdruli, Pandi; Ladisa, Gaetano
2014-05-01
Fire is a common phenomenon in Mediterranean landscapes and it plays a crucial role in its transformations, making the determination of its impact on the ecosystem essential for land management. During summer of 2012, a wildfire took place in Algarve, Portugal, on an area mainly covered by sclerophyllous vegetation (39.44%, 10080ha), broad-leaved forest (20.80%, 5300ha), agriculture land with significant areas of natural vegetation (17.40%, 4400ha) and transitional woodlands-shrubs (16.17%, 4100ha). The objective of the study was to determine fire severity in order to plan post-fire treatments and to aid vegetation recovery and land reclamation. Satellite imagery was used to estimate burn severity by detecting physical and ecological changes in the landscape caused by fire. Differenced Normalized Burn Ratio (DNBR) was used to measure burn severity with pre and post fire data of four Landsat images acquired in October 2011, February and August 2012 and April 2013. The initial and extended differenced normalized burn ratio (DiNBR and DeNBR) were calculated. The calculated burned area of 24291 ha was 552ha lower than the map data determined with field reports. The 19.5% of that area was burned with high severity, 45% with moderate severity and 28.3% with low severity. Comparing fire severity and regrowth with land use, it is shown in DiNBR that the most severely burned areas were predominantly sclerophyllous vegetation (37.6%) and broad-leaved forests (31.1%). From the DeNRB it was found that the reestablishment of vegetation was slower in mixed forests and higher in sclerophyllous vegetation and in land with significant areas of natural vegetation. Faster recovery was calculated for the land uses of sclerophyllous vegetation (46.7%) and significant regrowth in areas of natural vegetation and lands occupied by agriculture (25.4%). Next steps of the study are field validation and crossing with erosion risk maps before to take land reclamation decisions.
A high-resolution modelling approach on spatial wildfire distribution in the Tyrolean Alps
NASA Astrophysics Data System (ADS)
Malowerschnig, Bodo; Sass, Oliver
2013-04-01
Global warming will cause increasing danger of wildfires in Austria, which can have long-lasting consequences on woodland ecosystems. The protective effect of forest can be severely diminished, leading to natural hazards like avalanches and rockfall. However, data on wildfire frequency and distribution have been sparse and incomplete for Austria. Long-lasting postfire degradation under adverse preconditions (steep slopes, limestone) was a common phenomenon in parts of the Tyrolean Alps several decades ago and should become relevant again under a changing fire frequency. The FIRIA project compiles historical wildfire data, information on fuel loads, fire weather indices (FWI) and vegetation recovery patterns. The governing climatic, topographic and socio-economic factors of forest fire distribution were assessed to trigger a distribution model of currently fire-prone areas in Tyrol. By collecting data from different sources like old newspapers archives and fire-fighter databases, we were able to build up a fire database of wildfire occurrences containing more than 1400 forest fires since the 15th century in Tyrol. For the period from 1993 to 2011, the database is widely complete and covers 482 fires. Using a non-parametrical statistical method it was possible to select the best suited fire weather index (FWI) for the prediction. The testing of 19 FWI's shows that it is necessary to use two discriminative indices to differentiate between summer and winter season. Together with compiled topographic, socio-economic, infrastructure and forest maps, the dataset was the base for a multifactorial analysis, performed by comparing the maximum entropy approach (Maxent) with an ensemble classifier (Random Forests). Both approaches have their background in the spatial habitat distribution and are easy to adapt to the requirements of a wildfire ignition model. The aim of this modelling approach was to determine areas which are particularly prone to wildfire. Due to the pronounced relief curvature we based our model on 100 x 100 m cells to identify individual slopes and their topography. The first provisional result is a map of fire probability under current climate conditions (fire hot-spots). Our modelling approach indicates the fire weather index as the main driver, which is followed closely by socioeconomic (population density) and infrastructure factors (roads density, aerial railways, building density). The leverage of the forest community or its management is rather low; the same applies to topographic influences like aspect or sea level. The derived fire hot-spots are either placed close to the valley ground or around touristic infrastructure, with an overall preference for inner alpine areas and south-facing slopes. In the next step, the impact of climate change on the distribution and frequency of fires will be assessed by calculating a climate change model adapted to the 1x1km INCA dataset and based on different regional climate change models. Finally, a selection of fire-hot-spots from the previous modelling steps will be used for enhanced 3D-modelling approaches of natural hazards after wildfire-driven deforestation.
NASA Astrophysics Data System (ADS)
Chen, D.; Loboda, T. V.; He, T.; Zhang, Y.; Liang, S.
2017-12-01
The Siberian larch forests are a major component of the global boreal biome with wildfire being the most important disturbance agent. However, due to their unique characteristics and remote location, coupled with a limited record of remotely sensed datasets, we know little about the post-fire albedo dynamics in the region as well as the associated climatic impact, especially over a relatively longer temporal span at the regional scale. This is unfortunate as it has been suggested that the fire-induced albedo changes may have a pivotal role in controlling the net climatic impact of the boreal forests. Utilizing a 30-m 24-year stand age distribution map of the Siberian larch forests, combined with the full record of the MODIS albedo product, this study quantified the surface forcing induced by stand-replacing fires in the Siberian larch forests over 2001-2015. The results show that the larch forests experienced stand-replacing fires in the region has a cooling effect lasting for more than 25 years, and the magnitude of the cooling (-9.60 ± 0.03 Wm-2) is much larger than previously expected. Due to the strong cooling of stand-replacing fires, coupled with their wide distribution, the net surface forcing of the Siberian larch forests between 2001 and 2013 is negative (-0.78 Wm-2). In contrast, the forests that did not experience stand-replacing fires since 2000 show a warming effect, which is largely attributable to a lengthening of snow-free duration in the region. These results together indicate that wildfire may play a much bigger role in modulating the climatic impact of the Siberian larch forests than we previously thought, but this role is likely weakened by the considerable warming in the region, thus needs to be evaluated in the context of global climate change.
Burnt area mapping from ERS-SAR time series using the principal components transformation
NASA Astrophysics Data System (ADS)
Gimeno, Meritxell; San-Miguel Ayanz, Jesus; Barbosa, Paulo M.; Schmuck, Guido
2003-03-01
Each year thousands of hectares of forest burnt across Southern Europe. To date, remote sensing assessments of this phenomenon have focused on the use of optical satellite imagery. However, the presence of clouds and smoke prevents the acquisition of this type of data in some areas. It is possible to overcome this problem by using synthetic aperture radar (SAR) data. Principal component analysis (PCA) was performed to quantify differences between pre- and post- fire images and to investigate the separability over a European Remote Sensing (ERS) SAR time series. Moreover, the transformation was carried out to determine the best conditions to acquire optimal SAR imagery according to meteorological parameters and the procedures to enhance burnt area discrimination for the identification of fire damage assessment. A comparative neural network classification was performed in order to map and to assess the burnts using a complete ERS time series or just an image before and an image after the fire according to the PCA. The results suggest that ERS is suitable to highlight areas of localized changes associated with forest fire damage in Mediterranean landcover.
High-resolution global maps of 21st-century forest cover change
Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, Thomas R.; Kommareddy, A.; Egorov, Alexey; Chini, L.; Justice, C.O.; Townshend, J.R.G.
2013-01-01
Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil’s well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.
High-resolution global maps of 21st-century forest cover change.
Hansen, M C; Potapov, P V; Moore, R; Hancher, M; Turubanova, S A; Tyukavina, A; Thau, D; Stehman, S V; Goetz, S J; Loveland, T R; Kommareddy, A; Egorov, A; Chini, L; Justice, C O; Townshend, J R G
2013-11-15
Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.
Space Radar Image of Yellowstone Park, Wyoming
1999-05-01
These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow indicates areas of canopy burn and mixed burn with a biomass of between 12 to 20 tons per hectare; light green is mixed burn and on-burn forest with a biomass of 20 to 35 tons per hectare; and green is non-burned forest with a biomass of greater than 35 tons per hectare. Forest recovery from the fire seems to depend on fire intensity and soil conditions. In areas of severe canopy burn and poor soil conditions, crown biomass was still low in 1994 (indicated by the brown areas at the center left), whereas in areas of mixed burn with nutrient-rich soils, seen west of Yellowstone Lake, crown biomass has increased significantly in six years (indicated by the yellow and light green areas). Imaging fire-affected regions with spaceborne radar illustrates SIR-C/X-SAR's keen abilities to monitor regrowth after a fire. Knowing the amount of carbon accumulated in the atmosphere by regenerating forest in the 20 to 50 years following a fire disturbance is also a significant factor in understanding the global carbon cycle. Measuring crown biomass is necessary to evaluate the effects of past and future fires in specific regions. http://photojournal.jpl.nasa.gov/catalog/PIA01741
NASA Astrophysics Data System (ADS)
Farahmand, A.; Reager, J. T., II; Behrangi, A.; Stavros, E. N.; Randerson, J. T.
2017-12-01
Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and contributing significantly to both carbon emissions and changes in surface albedo. The socioeconomic impacts of wildfire activities are also significant with wildfire activity results in billions of dollars of losses every year. Fire size, area burned and frequency are increasing, thus the likelihood of fire danger, defined by United States National Interagency Fire Center (NFIC) as the demand of fire management resources as a function of how flammable fuels (a function of ignitability, consumability and availability) are from normal, is an important step toward reducing costs associated with wildfires. Numerous studies have aimed to predict the likelihood of fire danger, but few studies use remote sensing data to map fire danger at scales commensurate with regional management decisions (e.g., deployment of resources nationally throughout fire season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared Sounder (AIRS) vapor pressure deficit, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index products and landcover products, along with US Forest Service historical fire activity data to generate probabilistic monthly fire potential maps in the United States. These maps can be useful in not only government operational allocation of fire management resources, but also improving understanding of the Earth System and how it is changing in order to refine predictions of fire extremes.
Utilizing multi-sensor fire detections to map fires in the United States
Howard, Stephen M.; Picotte, Joshua J.; Coan, Michael
2014-01-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 “unknown” or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
Utilizing Multi-Sensor Fire Detections to Map Fires in the United States
NASA Astrophysics Data System (ADS)
Howard, S. M.; Picotte, J. J.; Coan, M. J.
2014-11-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
NASA Astrophysics Data System (ADS)
Loranty, M. M.; Goetz, S. J.; Mack, M. C.; Alexander, H. D.; Beck, P. S.
2011-12-01
High latitude ecosystems are experiencing amplified climate warming, and recent evidence suggests concurrent intensification of fire disturbance regimes. In central Alaskan boreal forests, severe burns consume more of the soil organic layer, resulting in increased establishment of deciduous seedlings and altered post-fire stand composition with increased deciduous dominance. Quantifying differences in ecosystem carbon (C) dynamics between forest successional trajectories in response to burn severity is essential for understanding potential changes in regional or global feedbacks between boreal forests and climate. We used the Biome BioGeochemical Cycling model (Biome-BGC) to quantify differences in C stocks and fluxes associated with alternate post-fire successional trajectories related to fire severity. A version of Biome-BGC that allows alternate competing vegetation types was calibrated against a series of aboveground biomass observations from chronosequences of stands with differing post-fire successional trajectories characterized by the proportion of deciduous biomass. The model was able to reproduce observed patterns of biomass accumulation after fire, with stands dominated by deciduous species sequestering more C at a faster rate than stands dominated by conifers. Modeled C fluxes suggest that stands dominated by deciduous species are a stronger sink of atmospheric C soon after disturbance than coniferous stands. These results agree with the few available C flux observations. We use a historic database in conjunction with a map of deciduous canopy cover to explore the consequences of ongoing and potential future changes in the fire regime on central Alaskan C balance.
Evolving forest fire burn severity classification algorithms for multispectral imagery
NASA Astrophysics Data System (ADS)
Brumby, Steven P.; Harvey, Neal R.; Bloch, Jeffrey J.; Theiler, James P.; Perkins, Simon J.; Young, Aaron C.; Szymanski, John J.
2001-08-01
Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of 70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared photography.
Young, John A.; Mahan, Carolyn G.; Forder, Melissa
2017-01-01
Many eastern forest communities depend on fire for regeneration or are enhanced by fire as a restoration practice. However, the use of prescribed fire in the mesic forested environments and the densely populated regions of the eastern United States has been limited. The objective of our research was to develop a science-based approach to prioritizing the use of prescribed fire in appropriate forest types in the eastern United States based on a set of desired management outcomes. Through a process of expert elicitation and data analysis, we assessed and integrated recent vegetation community mapping results along with other available spatial data layers into a spatial prioritization tool for prescribed fire planning at Shenandoah National Park (Virginia, USA). The integration of vegetation spatial data allowed for development of per-pixel priority rankings and exclusion areas enabling precise targeting of fire management activities on the ground, as well as a park-wide ranking of fire planning compartments. We demonstrate the use and evaluation of this approach through implementation and monitoring of a prescribed burn and show that progress is being made toward desired conditions. Integration of spatial data into the fire planning process has served as a collaborative tool for the implementation of prescribed fire projects, which assures projects will be planned in the most appropriate areas to meet objectives that are supported by current science.
Risk analysis procedure for post-wildfire natural hazards in British Columbia
NASA Astrophysics Data System (ADS)
Jordan, Peter
2010-05-01
Following a severe wildfire season in 2003, and several subsequent damaging debris flow and flood events, the British Columbia Forest Service developed a procedure for analysing risks to public safety and infrastructure from such events. At the same time, the Forest Service undertook a research program to determine the extent of post-wildfire hazards, and examine the hydrologic and geomorphic processes contributing to the hazards. The risk analysis procedure follows the Canadian Standards Association decision-making framework for risk management (which in turn is based on international standards). This has several steps: identification of risk, risk analysis and estimation, evaluation of risk tolerability, developing control or mitigation strategies, and acting on these strategies. The Forest Service procedure deals only with the first two steps. The results are passed on to authorities such as the Provincial Emergency Program and local government, who are responsible for evaluating risks, warning residents, and applying mitigation strategies if appropriate. The objective of the procedure is to identify and analyse risks to public safety and infrastructure. The procedure is loosely based on the BAER (burned area emergency response) program in the USA, with some important differences. Our procedure focuses on identifying risks and warning affected parties, not on mitigation activities such as broadcast erosion control measures. Partly this is due to limited staff and financial resources. Also, our procedure is not multi-agency, but is limited to wildfires on provincial forest land; in British Columbia about 95% of forest land is in the publicly-owned provincial forest. Each fire season, wildfires are screened by size and proximity to values at risk such as populated areas. For selected fires, when the fire is largely contained, the procedure begins with an aerial reconnaissance of the fire, and photography with a hand-held camera, which can be used to make a preliminary map of vegetation burn severity if desired. The next steps include mapping catchment boundaries, field traverses to collect data on soil burn severity and water repellency, identification of unstable hillslopes and channels, and inspection of values at risk from hazards such as debris flows or flooding. BARC (burned area reflectance classification) maps based on satellite imagery are prepared for some fires, although these are typically not available for several weeks. Our objective is to make a preliminary risk analysis report available about two weeks after the fire is contained. If high risks to public safety or infrastructure are identified, the risk analysis reports may make recommendations for mitigation measures to be considered; however, acting on these recommendations is the responsibility of local land managers, local government, or landowners. Mitigation measures for some fires have included engineering treatments to reduce the hydrologic impact of logging roads, protective structures such as dykes or berms, and straw mulching to reduce runoff and erosion on severely burned areas. The Terrace Mountain Fire, with burned 9000 hectares in the Okanagan Valley in 2009, is used as an example of the application of the procedure.
NASA Astrophysics Data System (ADS)
Hernandez, A. J.
2015-12-01
The Landsat archive is increasingly being used to detect trends in the occurrence of forest disturbance. Beyond information about the amount of area affected, forest managers need to know if and how disturbance regimes change. The National Forest System (NFS) has developed a comprehensive plan for carbon monitoring that requires a detailed temporal mapping of forest disturbances across 75 million hectares. A long-term annual time series that shows the timing, extent, and type of disturbance beginning in 1990 and ending in 2011 has been prepared for several USFS Regions, including the Northern Region. Our mapping starts with an automated detection of annual disturbances using a time series of historical Landsat imagery. Automated detections are meticulously inspected, corrected and labeled using various USFS ancillary datasets. The resulting maps of verified disturbance show the timing and types are fires, harvests, insect activity, disease, and abiotic (wind, drought, avalanche) damage. Also, the magnitude of each change event is modeled in terms of the proportion of canopy cover lost. The sequence of disturbances for every pixel since 1990 has been consistently mapped and is available across the entirety of NFS. Our datasets contain sufficient information to describe the frequency of stand replacement, as well as how often disturbance results in only a partial loss of canopy. This information provides empirical insight into how an initial disturbance may predispose a stand to further disturbance, and it also show a climatic signal in the occurrence of processes such as fire and insect epidemics. Thus, we have the information to model the likelihood of occurrence of certain disturbances after a given event (i.e. if we have a fire in the past what does that do to the likelihood of occurrence of insects in the future). Here, we explore if previous disturbance history is a reliable predictor of additional disturbance in the future and we present results of applying logistic regression to obtain predicted probabilities of occurrence of additional disturbance types. We describe responses in additional disturbance and prominent trends for each major forest type.
Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah
2016-12-01
Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this paper can be useful for better understanding erosion processes at the micro-scale and macro-scale in any region having similar vegetation attributes to the forests of northern Iran.
NASA Astrophysics Data System (ADS)
Klauberg Silva, C.; Hudak, A. T.; Bright, B. C.; Dickinson, M. B.; Kremens, R.; Paugam, R.; Mell, W.
2016-12-01
Biomass burning has impacts on air pollution at local to regional scales and contributes to greenhouse gases and affects carbon balance at the global scale. Therefore, is important to accurately estimate and manage carbon pools (fuels) and fluxes (gases and particulate emissions having public health implications) associated with wildland fires. Fire radiative energy (FRE) has been shown to be linearly correlated with biomass burned in small-scale experimental fires but not at the landscape level. Characterization of FRE density (FRED) flux in J m-2 from a landscape-level fire presents an undersampling problem. Specifically, airborne acquisitions of long-wave infrared radiation (LWIR) from a nadir-viewing LWIR camera mounted on board fixed-wing aircraft provide only samples of FRED from a landscape-level fire, because of the time required to turn the plane around between passes, and a fire extent that is broader than the camera field of view. This undersampling in time and space produces apparent firelines in an image of observed FRED, capturing the fire spread only whenever and wherever the scene happened to be imaged. We applied ordinary kriging to images of observed FRED from five prescribed burns collected in forested and non-forested management units burned at Eglin Air Force Base in Florida USA in 2011 and 2012. The three objectives were to: 1. more realistically map FRED, 2. more accurately estimate total FRED as predicted from fuel consumption measurements, and 3. compare the sampled and kriged FRED maps to modeled estimates of fire rate of spread (ROS). Observed FRED was integrated from LWIR images calibrated to units of fire radiative flux density (FRFD) in W m-2. Iterating the kriging analysis 2-10 times (depending on the burn unit) led to more accurate FRED estimates, both in map form and in terms of total FRED, as corroborated by independent estimates of fuel consumption and ROS.
Is Managed Wildfire Protecting Yosemite National Park from Drought?
NASA Astrophysics Data System (ADS)
Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Kelly, M.; Tague, N.
2016-12-01
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the Western US. This project explores the potential of managed wildfire - a forest management strategy in which fires caused by lightning are allowed to burn naturally as long as certain safety parameters are met - to reverse the effects of fire suppression. The Illilouette Creek Basin in Yosemite National Park has experienced 40 years of managed wildfire, reducing forest cover and increasing meadow and shrubland areas. We have collected evidence from field measurements and remote sensing which suggest that managed wildfire increases landscape and hydrologic heterogeneity, and likely improves resilience to disturbances such as fire and drought. Vegetation maps created from aerial photos show an increase in landscape heterogeneity following the introduction of managed wildfire. Soil moisture observations during the drought years of 2013-2016 suggest that transitions from dense forest to shrublands or meadows can increase summer soil moisture. In the winter of 2015-2016, snow depth measurements showed deeper spring snowpacks in burned areas compared to dense forests. Our study provides a unique view of relatively long-term effects of managed wildfire on vegetation change, ecohydrology, and drought resistance. Understanding these effects is increasingly important as the use of managed wildfire becomes more widely accepted, and as the likelihood of both drought and wildfire increases.
Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships
NASA Astrophysics Data System (ADS)
Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott
2018-02-01
Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.
Modeling of natural risks in GIS, decision support in the Civil Protection and Emergency Planning
NASA Astrophysics Data System (ADS)
Santos, M.; Martins, L.; Moreira, S.; Costa, A.; Matos, F.; Teixeira, M.; Bateira, C.
2012-04-01
The assessment of natural hazards in Civil Protection is essential in the prevention and mitigation of emergency situations. This paper presents the results of the development of mapping susceptibility to landslides, floods, forest fires and soil erosion, using GIS (Geographic Information System) tools in two municipalities - Santo Tirso and Trofa - in the district of Oporto, in the northwest of Portugal. The mapping of natural hazards fits in the legislative plan of the Municipal Civil Protection (Law No. 65/2007 of 12 November) and it provides the key elements to planning and preparing an appropriate response in case some of the processes / phenomena occur, thus optimizing the procedures for protection and relief provided by the Municipal Civil Protection Service. Susceptibility mapping to landslides, floods, forest fires and soil erosion was performed with GIS tools resources. The methodology used to compile the mapping of landslides, forest fires and soil erosion was based on the modeling of different conditioning factors and validated with field work and event log. The mapping of susceptibility to floods and flooding was developed through mathematical parameters (statistical, hydrologic and hydraulic), supported by field work and the recognition of individual characteristics of each sector analysis and subsequently analyzed in a GIS environment The mapping proposal was made in 1:5000 scale which allows not only the identification of large sets affected by the spatial dynamics of the processes / phenomena, but also a more detailed analysis, especially when combined with geographic information systems (GIS) thus allowing to study more specific situations that require a quick response. The maps developed in this study are fundamental to the understanding, prediction and prevention of susceptibility and risks present in the municipalities, being a valuable tool in the process of Emergency Planning, since it identifies priority areas of intervention for farther detail analysis, promote and safeguard mechanisms to prevent injury and it anticipates the possibility of potential interventions that can minimize the risk.
Chen, Xuexia; Liu, Shuguang; Zhu, Zhiliang; Vogelmann, James E.; Li, Zhengpeng; Ohlen, Donald O.
2011-01-01
The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fire-induced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High Plateaus. We also estimated that 8054 Mg AFBC were released from 2.24 km2 burned forest area in the Longston fire. These results demonstrate that an AFBC spatial map and estimated biomass carbon consumption can readily be generated using existing database. The methodology provides a consistent, practical, and inexpensive way for estimating AFBC at 30-m resolution over large areas throughout the United States.
Targeting Forest Management through Fire and Erosion Modeling
NASA Astrophysics Data System (ADS)
Elliot, William J.; Miller, Mary Ellen; MacDonald, Lee H.
2013-04-01
Forests deliver a number of ecosystem services, including clean water. When forests are disturbed by wildfire, the timing and quantity of runoff can be altered, and the quality can be severely degraded. A modeling study for about 1500 km2 in the Upper Mokelumne River Watershed in California was conducted to determine the risk of wildfire and the associated potential sediment delivery should a wildfire occur, and to calculate the potential reduction in sediment delivery that might result from fuel reduction treatments. The first step was to predict wildfire severity and probability of occurrence under current vegetation conditions with FlamMap fire prediction tool. FlamMap uses current vegetation, topography, and wind characteristics to predict the speed, flame length, and direction of a simulated flame front for each 30-m pixel. As the first step in the erosion modeling, a geospatial interface for the WEPP model (GeoWEPP) was used to delineate approximately 6-ha hillslope polygons for the study area. The flame length values from FlamMap were then aggregated for each hillslope polygon to yield a predicted fire intensity. Fire intensity and pre-fire vegetation conditions were used to estimate fire severity (either unburned, low, moderate or high). The fire severity was combined with soil properties from the STATSGO database to build the vegetation and soil files needed to run WEPP for each polygon. Eight different stochastic climates were generated to account for the weather variability within the basin. A modified batching version of GeoWEPP was used to predict the first-year post-fire sediment yield from each hillslope and subwatershed. Estimated sediment yields ranged from 0 to more than 100 Mg/ha, and were typical of observed values. The polygons that generated the greatest amount of sediment or that were critical for reducing fire spread were identified, and these were "treated" by reducing the amount of fuel available for a wildfire. The erosion associated with these fuel treatments was estimated using WEPP. FlamMap and WEPP were run a second time to determine the extent to which the imposed treatments reduced fire intensity, fire severity, and the predicted sediment yields. The results allowed managers to quantify the net reduction in sediment delivery due to the prescribed treatments. The modeling also identified those polygons with the greatest net decline in sediment delivery, with the expectation that these polygons would have the highest priority for fuel reduction treatments. An economic value can be assigned to the predicted net change in sediment delivered to a reservoir or a specified decline in water quality. The estimated avoided costs due to the reduction in sediment delivery can help justify the optimized fuel treatments.
A statistical procedure for fire risk mapping in Italy
NASA Astrophysics Data System (ADS)
Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko
2015-04-01
The high topographic and vegetation heterogeneity makes Italy vulnerable to forest fires both in the summer and in winter. In particular, northern regions are predominantly characterized by a winter fire regime, mainly due to frequent extremely dry winds from the north, while southern and central regions and the large islands are characterized by a severe summer fire regime, because of the higher temperatures and prolonged lack of precipitation. The threat of wildfires in Italy is not confined to wooded areas as they extend to agricultural areas and urban-forest interface areas. In view of the limited availability of fire risk management resources, most of which are used in the management of national and regional air services, it is necessary to precisely identify the areas most vulnerable to fire risk. The few resources available can thus be used on a yearly basis to mitigate problems in the areas at highest risk by defining a program of forest management interventions, which is expected to make a significant contribution to the problem in a few years' time. Given the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a statistical procedure was defined in order to assess areas at risk based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behavior. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November-April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. The analysis consists on the subdivision of the territory in classes based on the named information layers (elevation, slope, rainfall height, temperature, etc.) with a recursive algorithm that ensures the equal numerosity of each class. The number of fires occurred in each class is then assessed basing on time series in the last decade, in order to have an estimation of the fire hazard with a contant statistical confidence. The analysis was carried out at a spatial resolution of 500 m on the whole Italian territory by using a dataset of fires occurrences that spans from 2007 to 2013.
Ecosystem Carbon Emissions from 2015 Forest Fires in Interior Alaska
NASA Technical Reports Server (NTRS)
Potter, Christopher S.
2018-01-01
In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon-Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town of Tanana on the Yukon River were carried out in July of 2017 in both unburned and 2015 burned forested areas (nearly adjacent to one-another) to visually verify locations of different Landsat burn severity classes (low, moderate, or high). Results: Field measurements indicated that the loss of surface organic layers in boreal ecosystem fires is a major factor determining post-fire soil temperature changes, depth of thawing, and carbon losses from the mineral topsoil layer. Measurements in forest sites showed that soil temperature profiles to 30 cm depth at burned forest sites increased by an average of 8o - 10o C compared to unburned forest sites. Sampling and laboratory analysis indicated a 65% reduction in soil carbon content and a 58% reduction in soil nitrogen content in severely burned sample sites compared to soil mineral samples from nearby unburned spruce forests. Conclusions: Combined with nearly unprecedented forest areas severely burned in the Interior region of Alaska in 2015, total ecosystem fire emission of carbon to the atmosphere exceeded most previous estimates for the state.
NASA Astrophysics Data System (ADS)
Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Tague, N.
2015-12-01
A century of fire suppression in the Western United States has drastically altered the historically fire-adapated ecology in California's Sierra Nevada Mountains. Fire suppression is understood to have increased the forest cover, as well as the stem density, canopy cover and water demand of montane forests, reducing resilience of the forests to drought, and increasing the risk of catastrophic fire by drying the landscape and increasing fuel loads. The potential to reverse these trends by re-introducing fire into the Sierra Nevada is highly promising, but the likely effects on vegetation structure and water balance are poorly quantified. The Illilouette Creek Basin in Yosemite National Park represents a unique experiment in the Sierra Nevada, in which managers have moved from fire suppression to allowing a near-natural fire regime to prevail since 1972. Changes in vegetation structure in the Illilouette since the restoration of natural burning provides a unique opportunity to examine how frequent, mixed severity fires can reshape the Sierra Nevada landscape. We characterize these changes from 1969 to the present using a combination of Landsat products and high-resolution aerial imagery. We describe how the landscape structure has changed in terms of vegetation composition and its spatial organization, and explore the drivers of different post-fire vegetation type transitions (e.g. forest to shrubland vs. forest to meadow). By upscaling field data using vegetation maps and Landsat wetness indices, we explore how these vegetation transitions have impacted the water balance of the Illilouette Creek Basin, potentially increasing its resilience in the face of drought, climate change, and catastrophic fire. In a region that is adapted to frequent disturbance from fire, this work helps us understand how allowing such natural disturbances to take place can increase the sustainability of diverse landscapes in the long term.
Nelson, Andrew; Chomitz, Kenneth M.
2011-01-01
Protected areas (PAs) cover a quarter of the tropical forest estate. Yet there is debate over the effectiveness of PAs in reducing deforestation, especially when local people have rights to use the forest. A key analytic problem is the likely placement of PAs on marginal lands with low pressure for deforestation, biasing comparisons between protected and unprotected areas. Using matching techniques to control for this bias, this paper analyzes the global tropical forest biome using forest fires as a high resolution proxy for deforestation; disaggregates impacts by remoteness, a proxy for deforestation pressure; and compares strictly protected vs. multiple use PAs vs indigenous areas. Fire activity was overlaid on a 1 km map of tropical forest extent in 2000; land use change was inferred for any point experiencing one or more fires. Sampled points in pre-2000 PAs were matched with randomly selected never-protected points in the same country. Matching criteria included distance to road network, distance to major cities, elevation and slope, and rainfall. In Latin America and Asia, strict PAs substantially reduced fire incidence, but multi-use PAs were even more effective. In Latin America, where there is data on indigenous areas, these areas reduce forest fire incidence by 16 percentage points, over two and a half times as much as naïve (unmatched) comparison with unprotected areas would suggest. In Africa, more recently established strict PAs appear to be effective, but multi-use tropical forest protected areas yield few sample points, and their impacts are not robustly estimated. These results suggest that forest protection can contribute both to biodiversity conservation and CO2 mitigation goals, with particular relevance to the REDD agenda. Encouragingly, indigenous areas and multi-use protected areas can help to accomplish these goals, suggesting some compatibility between global environmental goals and support for local livelihoods. PMID:21857950
Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.
Yang, Jian; He, Hong S; Shifley, Stephen R
2008-07-01
Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.
NASA Astrophysics Data System (ADS)
San Jose, Roberto; Perez, Juan Luis; Gonzalez-Barras, Rosa M.; Pecci, Julia; Palacios, Marino
2014-05-01
Forest fires continue to be a very dangerous and extreme violent episode jeopardizing the human lives and owns. Spain is plagued by forest and brush fires every summer, when extremely dry weather sets in along with high temperatures. The use of fire behavior models requires the availability of high resolution environmental and fuel data; in absence of realistic data, errors on the simulated fire spread con be compounded to produce o decrease of the spatial and temporal accuracy of predicted data. In this work we have carried out a sensitivity analysis of different components of the fire model and particularly the fuel moisture content (FMC) such as microphysics and solar radiation model. Three different real fire models have been used: Murcia (September, 7, 2010 19h09 and 9 hours duration), Gabiel (March, 7, 2007, 22h15 and 38 hours duration) and Culla (Marzo, 7, 2007, 23h36 and 37 hours duration). We use the 100 m European Corine Land Cover map. We use the WRF-Fire model developed by NCAR (USA). The WRF mode is run using the GFS global data and over the Iberian Peninsula with 15 km spatial resolution. We apply the nesting approach over the fires areas (located in the South East of the Iberian Peninsula) with 3 km, 1 km and 200 m spatial resolution. The Fire module included into WRF is run with 20 m spatial resolution and the landuse is interpolated from the Corine 100 m land use map. The results show that the Thompson et al. microphysics scheme and the RRTM solar radiation scheme are those with the best combination using a specific counting score to classify the goodness of the results compare with the real burned area. Those pixels not burned by the simulations but burned by the observational data sets are penalized double compare with the vice versa process. The NDVI obtained by satellite on the day of starting the fire is included in the simulations and a substantial improving in the final score is obtained.
Faber-Langendoen, D.; Aaseng, N.; Hop, K.; Lew-Smith, M.; Drake, J.
2007-01-01
Question: How can the U.S. National Vegetation Classification (USNVC) serve as an effective tool for classifying and mapping vegetation, and inform assessments and monitoring? Location: Voyageurs National Park, northern Minnesota, U.S.A and environs. The park contains 54 243 ha of terrestrial habitat in the sub-boreal region of North America. Methods: We classified and mapped the natural vegetation using the USNVC, with 'alliance' and 'association' as base units. We compiled 259 classification plots and 1251 accuracy assessment test plots. Both plot and type ordinations were used to analyse vegetation and environmental patterns. Color infrared aerial photography (1:15840 scale) was used for mapping. Polygons were manually drawn, then transferred into digital form. Classification and mapping products are stored in publicly available databases. Past fire and logging events were used to assess distribution of forest types. Results and Discussion: Ordination and cluster analyses confirmed 49 associations and 42 alliances, with three associations ranked as globally vulnerable to extirpation. Ordination provided a useful summary of vegetation and ecological gradients. Overall map accuracy was 82.4%. Pinus banksiana - Picea mariana forests were less frequent in areas unburned since the 1930s. Conclusion: The USNVC provides a consistent ecological tool for summarizing and mapping vegetation. The products provide a baseline for assessing forests and wetlands, including fire management. The standardized classification and map units provide local to continental perspectives on park resources through linkages to state, provincial, and national classifications in the U.S. and Canada, and to NatureServe's Ecological Systems classification. ?? IAVS; Opulus Press.
PREFER: a European service providing forest fire management support products
NASA Astrophysics Data System (ADS)
Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George
2015-06-01
PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.
NASA Astrophysics Data System (ADS)
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Conceptual design study: Forest Fire Advanced System Technology (FFAST)
NASA Technical Reports Server (NTRS)
Nichols, J. D.; Warren, J. R.
1986-01-01
An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
NASA Astrophysics Data System (ADS)
Patias, Petros; Giagkas, Fotis; Georgiadis, Charalampos; Mallinis, Giorgos; Kaimaris, Dimitris; Tsioukas, Vassileios
2017-09-01
Within the field of forestry, forest road mapping and inventory plays an important role in management activities related to wood harvesting industry, sentiment and water run-off modelling, biodiversity distribution and ecological connectivity, recreation activities, future planning of forest road networks and wildfire protection and fire-fighting. Especially in countries of the Mediterranean Rim, knowledge at regional and national scales regarding the distribution and the characteristics of rural and forest road network is essential in order to ensure an effective emergency management and rapid response of the fire-fighting mechanism. Yet, the absence of accurate and updated geodatabases and the drawbacks related to the use of traditional cartographic methods arising from the forest environment settings, and the cost and efforts needed, as thousands of meters need to be surveyed per site, trigger the need for new data sources and innovative mapping approaches. Monitoring the condition of unpaved forest roads with unmanned aerial vehicle technology is an attractive option for substituting objective, laboursome surveys. Although photogrammetric processing of UAV imagery can achieve accuracy of 1-2 centimeters and dense point clouds, the process is commonly based on the establishment of control points. In the case of forest road networks, which are linear features, there is a need for a great number of control points. Our aim is to evaluate low-cost UAV orthoimages generated over forest areas with GCP's captured from existing national scale aerial orthoimagery, satellite imagery available through a web mapping service (WMS), field surveys using Mobile Mapping System and GNSS receiver. We also explored the direct georeferencing potential through the GNSS onboard the low cost UAV. The results suggest that the GNSS approach proved to most accurate, while the positional accuracy derived using the WMS and the aerial orthoimagery datasets deemed satisfactory for the specific task at hand. The direct georeferencing procedure seems to be insufficient unless an onboard GNSS with improved specifications or Real-Time Kinematic (RTK) capabilities is used.
Lorz, C; Fürst, C; Galic, Z; Matijasic, D; Podrazky, V; Potocic, N; Simoncic, P; Strauch, M; Vacik, H; Makeschin, F
2010-12-01
We assessed the probability of three major natural hazards--windthrow, drought, and forest fire--for Central and South-Eastern European forests which are major threats for the provision of forest goods and ecosystem services. In addition, we analyzed spatial distribution and implications for a future oriented management of forested landscapes. For estimating the probability of windthrow, we used rooting depth and average wind speed. Probabilities of drought and fire were calculated from climatic and total water balance during growing season. As an approximation to climate change scenarios, we used a simplified approach with a general increase of pET by 20%. Monitoring data from the pan-European forests crown condition program and observed burnt areas and hot spots from the European Forest Fire Information System were used to test the plausibility of probability maps. Regions with high probabilities of natural hazard are identified and management strategies to minimize probability of natural hazards are discussed. We suggest future research should focus on (i) estimating probabilities using process based models (including sensitivity analysis), (ii) defining probability in terms of economic loss, (iii) including biotic hazards, (iv) using more detailed data sets on natural hazards, forest inventories and climate change scenarios, and (v) developing a framework of adaptive risk management.
Four Decades of Forest Persistence, Clearance and Logging on Borneo
Gaveau, David L. A.; Sloan, Sean; Molidena, Elis; Yaen, Husna; Sheil, Doug; Abram, Nicola K.; Ancrenaz, Marc; Nasi, Robert; Quinones, Marcela; Wielaard, Niels; Meijaard, Erik
2014-01-01
The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km−2, and the lowest density in Brunei, at 0.18 km km−2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo. PMID:25029192
Four decades of forest persistence, clearance and logging on Borneo.
Gaveau, David L A; Sloan, Sean; Molidena, Elis; Yaen, Husna; Sheil, Doug; Abram, Nicola K; Ancrenaz, Marc; Nasi, Robert; Quinones, Marcela; Wielaard, Niels; Meijaard, Erik
2014-01-01
The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km-2, and the lowest density in Brunei, at 0.18 km km-2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.
Mapping standing dead trees (snags) in the aftermath of the 2013 Rim Fire using airborne LiDAR data.
NASA Astrophysics Data System (ADS)
Casas Planes, Á.; Garcia-Alonso, M.; Koltunov, A.; Ustin, S.; Falk, M.; Ramirez, C.; Siegel, R.
2014-12-01
Abundance and spatial distribution of standing dead trees (snags) are key indicators of forest biodiversity and ecosystem health and represent a critical component of habitat for various wildlife species, including the great grey owl and the black-backed woodpecker. In this work we assess the potential of light detection and ranging (LiDAR) to discriminate snags from the live trees and map their distribution. The study area encompasses the burn perimeter of the Rim Fire, the third largest wildfire in California's recorded history (~104.000 ha) and represents a heterogeneous mosaic of mixed conifer forests, hardwood, and meadows. The snags mapping procedure is based on a 3D single tree detection using a Watershed algorithm and the extraction of height and intensity metrics within each segment. Variables selected using Gaussian processes form a feature space for a classifier to distinguish between dead trees and live trees. Finally, snag density and snag diameter classes that are relevant for avian species are mapped. This work shows the use of LiDAR metrics to quantify ecological variables related to the vertical heterogeneity of the forest canopy that are important in the identification of snags, for example, fractional cover. We observed that intensity-related variables are critical to the successful identification of snags and their distribution. Our study highlights the importance of high-density LiDAR for characterizing the forest structural variables that contribute to the assessment of wildlife habitat suitability.
Early warning of active fire hotspots through NASA FIRMS fire information system
NASA Astrophysics Data System (ADS)
Ilavajhala, S.; Davies, D.; Schmaltz, J. E.; Murphy, K. J.
2014-12-01
Forest fires and wildfires can threaten ecosystems, wildlife, property, and often, large swaths of populations. Early warning of active fire hotspots plays a crucial role in planning, managing, and mitigating the damaging effects of wildfires. The NASA Fire Information for Resource Management System (FIRMS) has been providing active fire location information to users in easy-to-use formats for the better part of last decade, with a view to improving the alerting mechanisms and response times to fight forest and wildfires. FIRMS utilizes fires flagged as hotspots by the MODIS instrument flying aboard the Aqua and Terra satellites and sends early warning of detected hotspots via email in near real-time or as daily and weekly summaries. The email alerts can also be customized to send alerts for a particular region of interest, a country, or a specific protected area or park. In addition, a web mapping component, named "Web Fire Mapper" helps query and visualize hotspots. A newer version of Web Fire Mapper is being developed to enhance the existing visualization and alerting capabilities. Plans include supporting near real-time imagery from Aqua and Terra satellites to provide a more helpful context while viewing fires. Plans are also underway to upgrade the email alerts system to provide mobile-formatted messages and short text messages (SMS). The newer version of FIRMS will also allow users to obtain geo-located image snapshots, which can be imported into local GIS software by stakeholders to help further analyses. This talk will discuss the FIRMS system, its enhancements and its role in helping map, alert, and monitor fire hotspots by providing quick data visualization, querying, and download capabilities.
Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian
2016-06-01
Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods. The likely fire-induced shift toward greater deciduous hardwood cover may affect climate-vegetation feedbacks via surface albedo, Bowen ratio, and carbon cycling. © 2015 John Wiley & Sons Ltd.
Utility of remotely sensed imagery for assessing the impact of salvage logging after forest fires
Sarah A. Lewis; Peter R. Robichaud; Andrew T. Hudak; Brian Austin; Robert J. Liebermann
2012-01-01
Remotely sensed imagery provides a useful tool for land managers to assess the extent and severity of post-wildfire salvage logging disturbance. This investigation uses high resolution QuickBird and National Agricultural Imagery Program (NAIP) imagery to map soil exposure after ground-based salvage operations. Three wildfires with varying post-fire salvage activities...
Huang, Shengli; Ramirez, Carlos; Conway, Scott; Kennedy, Kama; Kohler, Tanya; Liu, Jinxun
2016-01-01
High-resolution site index (SI) and mean annual increment (MAI) maps are desired for local forest management. We integrated field inventory, Landsat, and ecological variables to produce 30 m SI and MAI maps for the Tahoe National Forest (TNF) where different tree species coexist. We converted species-specific SI using adjustment factors. Then, the SI map was produced by (i) intensifying plots to expand the training sets to more climatic, topographic, soil, and forest reflective classes, (ii) using results from a stepwise regression to enable a weighted imputation that minimized the effects of outlier plots within classes, and (iii) local interpolation and strata median filling to assign values to pixels without direct imputations. The SI (reference age is 50 years) map had an R2 of 0.7637, a root-mean-square error (RMSE) of 3.60, and a mean absolute error (MAE) of 3.07 m. The MAI map was similarly produced with an R2 of 0.6882, an RMSE of 1.73, and a MAE of 1.20 m3·ha−1·year−1. Spatial patterns and trends of SI and MAI were analyzed to be related to elevation, aspect, slope, soil productivity, and forest type. The 30 m SI and MAI maps can be used to support decisions on fire, plantation, biodiversity, and carbon.
A project for monitoring trends in burn severity
Eidenshink, Jeffery C.; Schwind, Brian; Brewer, Ken; Zhu, Zhu-Liang; Quayle, Brad; Howard, Stephen M.
2007-01-01
Jeff Eidenshink, Brian Schwind, Ken Brewer, Zhi-Liang Zhu, Brad Quayle, and Elected officials and leaders of environmental agencies need information about the effects of large wildfires in order to set policy and make management decisions. Recently, the Wildland Fire Leadership Council (WFLC), which implements and coordinates the National Fire Plan (NFP) and Federal Wildland Fire Management Policies (National Fire Plan 2004), adopted a strategy to monitor the effectiveness of the National Fire Plan and the Healthy Forests Restoration Act (HFRA). One component of this strategy is to assess the environmental impacts of large wildland fires and identify the trends of burn severity on all lands across the United States. To that end, WFLC has sponsored a six-year project, Monitoring Trends in Burn Severity (MTBS), which requires the U.S. Department of Agriculture Forest Service (USDA-FS) and the U.S. Geological Survey (USGS) to map and assess the burn severity for all large current and historical fires. Using Landsat data and the differenced Normalized Burn Ratio (dNBR) algorithm, the USGS Center for Earth Resources Observation and Science (EROS) and USDA-FS Remote Sensing Applications Center will map burn severity of all fires since 1984 greater than 202 ha (500ac) in the east, and 404 ha (1,000 ac) in the west. The number of historical fires from this period combined with current fires occurring during the course of the project will exceed 9,000. The MTBS project will generate burn severity data, maps, and reports, which will be available for use at local, state, and national levels to evaluate trends in burn severity and help develop and assess the effectiveness of land management decisions. Additionally, the information developed will provide a baseline from which to monitor the recovery and health of fire-affected landscapes over time. Spatial and tabular data quantifying burn severity will augment existing information used to estimate risk associated with a range of current and future resource threats. The annual report of 2004 fires has been completed. All data and results will be distributed to the public on a Web site. A Project for Monitoring Trends in Burn Severity
Gaps in Data and Modeling Tools for Understanding Fire and Fire Effects in Tundra Ecosystems
NASA Astrophysics Data System (ADS)
French, N. H.; Miller, M. E.; Loboda, T. V.; Jenkins, L. K.; Bourgeau-Chavez, L. L.; Suiter, A.; Hawkins, S. M.
2013-12-01
As the ecosystem science community learns more about tundra ecosystems and disturbance in tundra, a review of base data sets and ecological field data for the region shows there are many gaps that need to be filled. In this paper we will review efforts to improve our knowledge of the occurrence and impacts of fire in the North American tundra region completed under a NASA Terrestrial Ecology grant. Our main source of information is remote sensing data from satellite sensors and ecological data from past and recent field data collections by our team, collaborators, and others. Past fire occurrence is not well known for this region compared with other North American biomes. In this presentation we review an effort to use a semi-automated detection algorithm to identify past fire occurrence using the Landsat TM/ETM+ archives, pointing out some of the still-unaddressed issues for a full understanding of fire regime for the region. For this task, fires in Landsat scenes were mapped using the Random Forest classifier (Breiman 2001) to automatically detect potential burn scars. Random Forests is an ensemble classifier that employs machine learning to build a large collection of decision trees that are grown from a random selection of user supplied training data. A pixel's classification is then determined by which class receives the most 'votes' from each tree. We also review the use fire location records and existing modeling methods to quantify emissions from these fires. Based on existing maps of vegetation fuels, we used the approach developed for the Wildland Fire Emissions Information System (WFEIS; French et al. 2011) to estimate emissions across the tundra region. WFEIS employs the Consume model (http://www.fs.fed.us/pnw/fera/research/smoke/consume/index.shtml) to estimate emissions by applying empirically developed relationships between fuels, fire conditions (weather-based fire indexes), and emissions. Here again, we will review the gaps in data and modeling capability for accurate estimation of fire emissions in this region. Initial evaluation of Landsat for tundra fire characterization (Loboda et al. 2013) and successful use of the rich archive of Synthetic Aperture Radar imagery for many fire-disturbed sites in the region will be additional topics covered in this poster presentation. References: Breiman, L. 2001. Random forests. Machine Learning, 45:5-32. French, N.H.F., W.J. de Groot, L.K. Jenkins, B.. Rogers, et al. 2011. Model comparisons for estimating carbon emissions from North American wildland fire. J. Geophys. Res. 116:G00K05, doi:10.1029/2010JG001469. Loboda, T L, N H F French, C. Hight-Harf, L. Jenkins, M.E. Miller. 2013. Mapping fire extent and burn severity in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation to wildland fire. Remote Sens. Enviro. 134:194-209.
NASA Astrophysics Data System (ADS)
Casas Planes, Á.; Garcia, M.; Siegel, R.; Koltunov, A.; Ramirez, C.; Ustin, S.
2015-12-01
Occupancy and habitat suitability models for snag-dependent wildlife species are commonly defined as a function of snag basal area. Although critical for predicting or assessing habitat suitability, spatially distributed estimates of snag basal area are not generally available across landscapes at spatial scales relevant for conservation planning. This study evaluates the use of airborne laser scanning (ALS) to 1) identify individual conifer snags and map their basal area across a recently burned forest, and 2) map habitat suitability for a wildlife species known to be dependent on snag basal area, specifically the black-backed woodpecker (Picoides arcticus). This study focuses on the Rim Fire, a megafire that took place in 2013 in the Sierra Nevada Mountains of California, creating large patches of medium- and high-severity burned forest. We use forest inventory plots, single-tree ALS-derived metrics and Gaussian processes classification and regression to identify conifer snags and estimate their stem diameter and basal area. Then, we use the results to map habitat suitability for the black-backed woodpecker using thresholds for conifer basal area from a previously published habitat suitability model. Local maxima detection and watershed segmentation algorithms resulted in 75% detection of trees with stem diameter larger than 30 cm. Snags are identified with an overall accuracy of 91.8 % and conifer snags are identified with an overall accuracy of 84.8 %. Finally, Gaussian process regression reliably estimated stem diameter (R2 = 0.8) using height and crown area. This work provides a fast and efficient methodology to characterize the extent of a burned forest at the tree level and a critical tool for early wildlife assessment in post-fire forest management and biodiversity conservation.
Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.
2007-01-01
Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.
Regime Shifts and Weakened Environmental Gradients in Open Oak and Pine Ecosystems
Hanberry, Brice B.; Dey, Dan C.; He, Hong S.
2012-01-01
Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and conservation that rely on historical relationships and ecological principles based on disturbance across the landscape will need to incorporate modern interactions among species for resources into management plans and projections. PMID:22848467
Regime shifts and weakened environmental gradients in open oak and pine ecosystems.
Hanberry, Brice B; Dey, Dan C; He, Hong S
2012-01-01
Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and conservation that rely on historical relationships and ecological principles based on disturbance across the landscape will need to incorporate modern interactions among species for resources into management plans and projections.
Classification Model for Forest Fire Hotspot Occurrences Prediction Using ANFIS Algorithm
NASA Astrophysics Data System (ADS)
Wijayanto, A. K.; Sani, O.; Kartika, N. D.; Herdiyeni, Y.
2017-01-01
This study proposed the application of data mining technique namely Adaptive Neuro-Fuzzy inference system (ANFIS) on forest fires hotspot data to develop classification models for hotspots occurrence in Central Kalimantan. Hotspot is a point that is indicated as the location of fires. In this study, hotspot distribution is categorized as true alarm and false alarm. ANFIS is a soft computing method in which a given inputoutput data set is expressed in a fuzzy inference system (FIS). The FIS implements a nonlinear mapping from its input space to the output space. The method of this study classified hotspots as target objects by correlating spatial attributes data using three folds in ANFIS algorithm to obtain the best model. The best result obtained from the 3rd fold provided low error for training (error = 0.0093676) and also low error testing result (error = 0.0093676). Attribute of distance to road is the most determining factor that influences the probability of true and false alarm where the level of human activities in this attribute is higher. This classification model can be used to develop early warning system of forest fire.
Fire-probability maps for the Brazilian Amazonia
NASA Astrophysics Data System (ADS)
Cardoso, M.; Nobre, C.; Obregon, G.; Sampaio, G.
2009-04-01
Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.
Fire-probability maps for the Brazilian Amazonia
NASA Astrophysics Data System (ADS)
Cardoso, Manoel; Sampaio, Gilvan; Obregon, Guillermo; Nobre, Carlos
2010-05-01
Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.
Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.
2011-01-01
As wildfires have increased in frequency and extent, so have the number of homes developed in the wildland-urban interface. In California, the predominant approach to mitigating fire risk is construction of fuel breaks, but there has been little empirical study of their role in controlling large fires.We constructed a spatial database of fuel breaks on the Los Padres National Forest in southern California to better understand characteristics of fuel breaks that affect the behaviour of large fires and to map where fires and fuel breaks most commonly intersect. We evaluated whether fires stopped or crossed over fuel breaks over a 28-year period and compared the outcomes with physical characteristics of the sites, weather and firefighting activities during the fire event. Many fuel breaks never intersected fires, but others intersected several, primarily in historically fire-prone areas. Fires stopped at fuel breaks 46% of the time, almost invariably owing to fire suppression activities. Firefighter access to treatments, smaller fires and longer fuel breaks were significant direct influences, and younger vegetation and fuel break maintenance indirectly improved the outcome by facilitating firefighter access. This study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities.
S. M. Stein; J. Menakis; M. A. Carr; S. J. Comas; S. I. Stewart; H. Cleveland; L. Bramwell; V. C. Radeloff
2013-01-01
Fire has historically played a fundamental ecological role in many of America's wildland areas. However, the rising number of homes in the wildland-urban interface (WUI), associated impacts on lives and property from wildfire, and escalating costs of wildfire management have led to an urgent need for communities to become "fire-adapted." We present maps...
Multiscale assessment of water limitations on forest carbon cycling in the western United States
NASA Astrophysics Data System (ADS)
Berner, L. T.; Law, B. E.
2016-12-01
Water is a key environmental constraint on carbon uptake, storage, and release by forests in the western United States. Climate in this region is becoming warmer and drier, thus highlighting the need to better understand how forest carbon cycling responds to variation in water availability. Here, we describe how forest carbon cycling varied spatially along local to regional gradients in climatic water availability. We examined local variation in net primary productivity (NPP) and aboveground biomass (AGB) using 12 intensive field plots in Oregon's Cascade Mountains. Regional analysis of forest NPP and AGB was based on federal forest inventories (>8,000 plots) in Washington, Oregon, and California, multiple biomass maps and MODIS NPP (2003-2012). We also quantified annual forest AGB mortality due to bark beetles and fires across the region from 2003-2012 by combining several disturbance and biomass data sets. Over each spatial extent, forest NPP and AGB increased curvilinearly with average growing-year climate moisture index, computed as the cumulative difference between precipitation and potential evapotranspiration from October-September and averaged over preceding decades. Thus, climatic water availability strongly constrains forest carbon uptake and storage, particularly in the driest areas, but also in the wettest. Forest AGB mortality rates from bark beetles and fires peaked in moderately dry forests and then declining rapidly in the wettest areas. Annual forest AGB mortality from bark beetles was about twice as high as from fires. Bark beetle impacts were most pronounced in the Rock Mountains, while fire impacts were most pronounced in western portion of the region. Our multiscale analysis based on field inventory and remote sensing data sets demonstrates that climatic water availability is a key environmental constraint on forest carbon cycling in the western US. Consequently, continued warming and drying can be expected to have substantial impacts on forest carbon cycling in this region over the coming century.
NASA Astrophysics Data System (ADS)
Steyaert, L. T.; Hall, F. G.; Loveland, T. R.
1997-12-01
A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km × 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, l km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.
Steyaert, L.T.; Hall, F.G.; Loveland, Thomas R.
1997-01-01
A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, 1 km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.
Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.
2003-01-01
Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.
Contribution of climate and fires to vegetation composition in the boreal forest of China
NASA Astrophysics Data System (ADS)
Venevsky, S.; Wu, C.; Sitch, S.
2017-12-01
Climate is well known as an important determinant of biogeography. Although climate is directly important for vegetation composition in the boreal forests, these ecosystems are strongly sensitive to an indirect effect of climate via fire disturbance. However, the driving balance of fire disturbance and climate on composition is poorly understood. In this study we quantitatively analyzed their individual contributions for the boreal forests of the Heilongjiang province, China and their response to climate change using four warming scenarios (+1.5, 2, 3, and 4°C). This study employs the statistical methods of Redundancy Analysis (RDA) and variation partitioning combined with simulation results from a Dynamic Global Vegetation Model, SEVER-DGVM, and remote sensing datasets of global land cover (GLC2000) and the Global Fire Emissions Database (GFED3). Results show that the vegetation distribution for the present day is mainly determined directly by climate (35%) rather than fire (1%-10.9%). However, with a future global warming of 1.5°C, local vegetation composition will be determined by fires rather than climate (36.3% > 29.3%). Above a 1.5°C warming, temperature will be more important than fires in regulating vegetation distribution although other factors like precipitation can also contribute. The spatial pattern in vegetation composition over the region, as evaluated by Moran's Eigenvector Map (MEM), has a significant impact on local vegetation coverage, i.e. composition at any individual location is highly related to that in its neighborhood. It represents the largest contribution to vegetation distribution in all scenarios, but will not change the driving balance between climate and fires. Our results are highly relevant for forest and wildfires' management.
Old Fire/Grand Prix Fire, California
2003-11-19
On November 18, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the Old Fire/Grand Prix fire east of Los Angeles. The image is being processed by NASA's Wildfire Response Team and will be sent to the United States Department of Agriculture's Forest Service Remote Sensing Applications Center (RSAC) which provides interpretation services to Burned Area Emergency Response (BAER) teams to assist in mapping the severity of the burned areas. The image combines data from the visible and infrared wavelength regions to highlight the burned areas. http://photojournal.jpl.nasa.gov/catalog/PIA04879
Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V; Miranda, Pedro L S; de Lemos Filho, José Pires
2015-02-01
The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.
Fire history of southeastern Glacier National Park: Missouri River Drainage
Barrett, Stephen W.
1993-01-01
In 1982, Glacier National Park (GNP) initiated long-term studies to document the fire history of all forested lands in the 410,000 ha. park. To date, studies have been conducted for GNP west of the Continental Divide (Barrett et al. 1991), roughly half of the total park area. These and other fire history studies in the Northern Rockies (Arno 1976, Sneck 1977, Arno 1980, Romme 1982, Romme and Despain 1989, Barrett and Arno 1991, Barrett 1993a, Barrett 1993b) have shown that fire history data can be an integral element of fire management planning, particularly wen natiral fire plans are being developed for parks and wilderness. The value of site specific fire history data is apparent when considering study results for lodgepole pin (Pinus contorta var. latifolia) forests. Lodgepole pine is a major subalpine type in the Northern Rockies and such stands experiences a wide range of presettlement fire patterns. On relatively warm-dry sites at lower elevations, such as in GNP's North Fork drainage (Barrett et al. 1991), short to moderately long interval (25-150 yr) fires occurred in a mixed severity pattern ranging from non-lethal underburns to total stand replacement (Arno 1976, Sneck 1977, Barrett and Arno 1991). Markedly different fire history occurred at high elevation lodgepole pine stands on highly unproductive sites, such as on Yellowstone National Park's (YNP) subalpine plateau. Romme (1982) found that, on some sites, stand replacing fires recurred after very long intervals (300-400 yr), and that non-lethal surface fires were rare. For somewhat more productive sites in the Absaroka Mountains in YNP, Barrett (1993a) estimated a 200 year mean replacement interval, in a pattern similar to that found in steep mountain terrain elsewhere, such as in the Middle Fork Flathead River drainage (Barrett et al. 1991, Sneck 1977). Aside from post-1900 written records (ayres 1900; fire atlas data on file, GNP Archives Div. and GNP Resources Mgt. Div.), little fire history information existed for GNP's east-side forests, which are dominated primarily by lodgepole pine. In fall 1992, the park initiated a study to determine the fire history of the Missouri River drainage portion of southeastern GNP. Given the known variation in pre-1900 fire patterns for lodgepole pine, this study was seen as a potentially important contribution to GNP's Fire Management Plan, and to the expanding data base of fire history studies in the region. Resource managers sought this information to assist their development of appropriate fire management strategies for the east-side forests, and the fire history data also would be a useful interactive component of the park's Geographic Information System (GIS). Primary objectives were to: 1) determine pre-1900 fire periodicities, severities, burning patterns, and post-fire succession for major forest types, and 2) document and map the forest age class mosaic, reflecting the history of stand replacing fires at the landscape level of analysis. Secondary objectives were to interpret the possible effects of modern fire suppression on area forests, and to determine fire regime patterns relative to other lodgepole pine ecosystems in the Northern Rockies.
NASA Astrophysics Data System (ADS)
Scipioni, A.; Tagliaferri, F.
2009-04-01
Objective of the document is to define lines of development and distribution of the services to support detection, prevention and planning of the agricultural-forest-rural land against fire. The services will be a valid support on hand of the Regional and National Administrations involved in the agricultural-forest-rural activities (Ministry of Agricultural and Forestry Policies, National Forest Police, ecc..), through the employment of the SIAN "National Agricultural Informative System", that is the integrated national information system for the entire agriculture, forestry and fisheries Administration. The services proposals would be distributed through the GIS (Geographic Information Systems) of the SIAN: the GIS database is a single nation-wide digital graphic database consisting of: - Ortophotos: Aerial images of approz. 45 km2 each with ground resolution of 50 cm; - Cadastral maps: Land maps; - Thematic layers: Land use and crops identification The GIS services can take full advantage of the benefits of SIAN architectural model designed for best integration and interoperability with other Central and Local P.A. bodies whose main items are: - Integration of information from different sources; - Maintainance of the internal coeherence of any integrated information; - Flexibility with respect to technical or organizational changes The "innovative "services described below could be useful to support the development of institutional tasks of public Agencies and Administrations (es. Regions or Civil Protection agencies) according to than previewed from the D.Lgs. 173/98. Services of support to the management of the phenomenon of wildland fires The activities outlined in below figure, don't have a linear and defined temporal sequence, but a dynamic and time integration. It guarantees not only the integrated use of the various information, but also the value of every product, for level of accuracy, coherence and timeliness of the information. Description of four main services proposed. • rapid alert: individuation and fast location of fires, also eventually in their starting phase (fire start), carried out through use of satellite data to high and most very high cycle (every 15 minute) to concur and organize a more effective fighti to spread fire; • perimeter of the area burned by the fire, with generation of polygons (compatible scale with the cadastre maps and data) through photo interpretation of spectral images, colours and infrared, at highest resolution (50 cm), and through fine aerial missions purposely planned during summery season, in substitution or in integrate way of the relief in field for: big fires, zones difficult to reach, isolated uneven area (reference scale from 200 to 400 kmq) • validation activity: services for quality control and validation of the activities of covered detail and relief perimeter of the area burned by the fire carried out through the employment end integration of the acquired data from land/aerial/satellite reliefs in application of law 353/2000. Data supplied to the municipalities, the regions and the prefecture for institutional adoptions. • damage statistics: Services of support to the generation of statistics through analysis of the damage and the vegetation resumption in relation to the type of forest with the use of different platform: satellite, aerial and land observation, for a temporal analysis.
Landsat imagery evidences great recent land cover changes induced by wild fires in central Siberia*
NASA Astrophysics Data System (ADS)
Antamoshkina, O. A.; Trofimova, N. V.; Antamoshkin, O. A.
2016-04-01
The article discusses the methods of satellite image classification to determine general types of forest ecosystems, as well as the long-term monitoring of ecosystems changes using satellite imagery of medium spatial resolution and the daily data of space monitoring of active fires. The area of interest of this work is 100 km footprint of the Zotino Tall Tower Observatory (ZOTTO), located near the Zotino settlement, Krasnoyarsk region. The study area is located in the middle taiga subzone of Western Siberia, are presented by the left and right banks of the Yenisei river. For Landsat satellite imagery supervised classification by the maximum likelihood method was made using ground-based studies over the last fifteen years. The results are the identification of the 10 aggregated classes of land surface and composition of the study area thematic map. Operational satellite monitoring and analysis of spatial information about ecosystem in the 100-kilometer footprint of the ZOTTO tall tower allows to monitor the dynamics of forest disturbance by fire and logging over a long time period and to estimate changes in forest ecosystems of the study area. Data on the number and area of fires detected in the study region for the 2000-2014 received in the work. Calculations show that active fires have burned more than a quarter of the footprint area over the study period. Fires have a significant impact on the redistribution of classes of land surface. Area of all types of vegetation ecosystems declined dramatically under the influence of fires, whereas industrial logging does not impact seriously on it. The results obtained in our work indicate the highest occurrence of fires for lichen forest types within study region, probably due to their high natural fire danger, which is consistent with other studies. The least damage the fire caused to the wetland ecosystem due to high content of moisture and the presence of a large number of fire breaks in the form of open water.
Utilizing NASA EOS Data for Fire Management in el Departmento del Valle del Cauco, Colombia
NASA Astrophysics Data System (ADS)
Brenton, J. C.; Bledsoe, N.; Alabdouli, K.
2012-12-01
In the last few years, fire incidence in Colombian wild areas has increased, damaging pristine forests into savannas and sterile lands. Fire poses a significant threat to biodiversity, rural communities and established infrastructure. These events issue an urgent need to address this problem. NASA Earth Observing System (EOS) can play a significant role in the monitoring fires and natural disasters. SERVIR, the Regional Visualization and Monitoring Network, constitutes a platform for the observation, forecasting and modeling of environmental processes in Central America. A project called "The GIS for fire management in Guatemala (SIGMA-I)" has been already conducted to address the same problem in another Latin American country, Guatemala. SIGMA-I was developed by the Inter-agency work among the National protected areas council (CONAP), National Forestry Institution (INAB), the National Coordinator for Disaster Reduction / National Forest Fire Prevention and Control System (CONRED/SIPECIF), and the Ministry of the Environment and National Resources (MARN) in Guatemala under the guidance and assistance of SERVIR. With SIGMA-I as an example, we proposed to conduct a similar project for the country of Colombia. First, a pilot study in the area of the watershed of the Cali River, Colombia was conducted to ensure that the data was available and that the maps and models were accurate. The proposed study will investigate the technical resources required: 1.) A fire map with a compilation of ignition data (hot spots) utilizing Fire Information for Resource Management System (FIRMS) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD14 and MYD14 2.) A map of fire scars derived from medium resolution satellite data (ASTER) during the period 2003-2011 for the entire country, and a map of fire scar recurrence and statistics derived from the datasets produced. 3.) A pattern analysis and ignition cause model derived from a matrix of variables statistically exploring the demographic and environmental factors of fire risk, such as land surface temperature, precipitation, and NDVI .4.) A dynamic fire risk evaluation able to generate a dynamic map of ignition risk based on statistical analysis factors. This study aims to research integrating MODIS, Landsat and ASTER data along with in-situ data on environmental parameters from the Corporation of the Cauca Valley River (CVC) along with other data on social, economical and cultural variables obtained by researchers of the Wild Fire Observatory (OCIF) from the "Universidad Autónoma de Occidente" in order to create an ignition cause model, dynamic fire risk evaluation system and compile any and all geospatial data generated for the region. In this way the research will help predict and forecast fire vulnerabilities in the region. The team undertook this project through SERVIR with the guidance of the scientist, Victor Hugo Ramos, who was the leader and principal investigator on the SIGMA-I.
NASA Astrophysics Data System (ADS)
Keyser, A.; Westerling, A. L.; Jones, G.; Peery, M. Z.
2017-12-01
Sierra Nevada forests have experienced an increase in very large fires with significant areas of high burn severity, such as the Rim (2013) and King (2014) fires, that have impacted habitat of endangered species such as the California spotted owl. In order to support land manager forest management planning and risk assessment activities, we used historical wildfire histories from the Monitoring Trends in Burn Severity project and gridded hydroclimate and land surface characteristics data to develope statistical models to simulate the frequency, location and extent of high severity burned area in Sierra Nevada forest wildfires as functions of climate and land surface characteristics. We define high severity here as BA90 area: the area comprising patches with ninety percent or more basal area killed within a larger fire. We developed a system of statistical models to characterize the probability of large fire occurrence, the probability of significant BA90 area present given a large fire, and the total extent of BA90 area in a fire on a 1/16 degree lat/lon grid over the Sierra Nevada. Repeated draws from binomial and generalized pareto distributions using these probabilities generated a library of simulated histories of high severity fire for a range of near (50 yr) future climate and fuels management scenarios. Fuels management scenarios were provided by USFS Region 5. Simulated BA90 area was then downscaled to 30 m resolution using a statistical model we developed using Random Forest techniques to estimate the probability of adjacent 30m pixels burning with ninety percent basal kill as a function of fire size and vegetation and topographic features. The result is a library of simulated high resolution maps of BA90 burned areas for a range of climate and fuels management scenarios with which we estimated conditional probabilities of owl nesting sites being impacted by high severity wildfire.
NASA Astrophysics Data System (ADS)
Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard
2016-04-01
Climate change will lead to a dramatic increase in damage from forest fires in Europe by the end of this century. In the Mediterranean region, the average annual area affected by forest fires has quadrupled since the 1960s (WWF, 2012). The number of forest fires is also on the increase in Central and Northern Europe. The Austrian forest fire database shows a total of 584 fires for the period 2012 to 2014, while even large areas of Sweden were hit by forest fires in August 2014, which were brought under control only after two weeks of intense fire-fighting efforts supported by European civil protection modules. Based on these facts, the improvements in forest fire control are a major international issue in the quest to protect human lives and resources as well as to reduce the negative environmental impact of these fires to a minimum. Within this paper the development of a multi-functional airborne management support system within the frame of the Austrian national safety and security research programme (KIRAS) is described. The main goal of the developments is to assist crisis management tasks of civil emergency teams and armed forces in disaster management by providing multi spectral, near real-time airborne image data products. As time, flexibility and reliability as well as objective information are crucial aspects in emergency management, the used components are tailored to meet these requirements. An airborne multi-functional management support system was developed as part of the national funded project AIRWATCH, which enables real-time monitoring of natural disasters based on optical and thermal images. Airborne image acquisition, a broadband line of sight downlink and near real-time processing solutions allow the generation of an up-to-date geo-referenced situation map. Furthermore, this paper presents ongoing developments for innovative extensions and research activities designed to optimize command operations in national and international fire-fighting missions. The ongoing development focuses on the following topics: (1) Development of a multi-level management solution to coordinate and guide different airborne and terrestrial deployed firefighting modules as well as related data processing and data distribution activities. (2) Further, a targeted control of the thermal sensor based on a rotating mirror system to extend the "area performance" (covered area per hour) in time critical situations for the monitoring requirements during forest fire events. (3) Novel computer vision methods for analysis of thermal sensor signatures, which allow an automatic classification of different forest fire types and situations. (4) A module for simulation-based decision support for planning and evaluation of resource usage and the effectiveness of performed fire-fighting measures. (5) Integration of wearable systems to assist ground teams in rescue operations as well as a mobile information system into innovative command and fire-fighting vehicles. In addition, the paper gives an outlook on future perspectives including a first concept for the integration of the near real-time multilevel forest fire fighting management system into an "EU Civil Protection Team" to support the EU civil protection modules and the Emergency Response Coordination Centre in Brussels. Keywords: Airborne sensing, multi sensor imaging, near real-time fire monitoring, simulation-based decision support, forest firefighting management, firefighting impact analysis.
Carbon and Aerosol Emissions from Biomass Fires in Mexico
NASA Astrophysics Data System (ADS)
Hao, W. M.; Flores Garnica, G.; Baker, S. P.; Urbanski, S. P.
2009-12-01
Biomass burning is an important source of many atmospheric greenhouse gases and photochemically reactive trace gases. There are limited data available on the spatial and temporal extent of biomass fires and associated trace gas and aerosol emissions in Mexico. Biomass burning is a unique source of these gases and aerosols, in comparison to industrial and biogenic sources, because the locations of fires vary considerably both daily and seasonally and depend on human activities and meteorological conditions. In Mexico, the fire season starts in January and about two-thirds of the fires occur in April and May. The amount of trace gases and aerosols emitted by fires spatially and temporally is a major uncertainty in quantifying the impact of fire emissions on regional atmospheric chemical composition. To quantify emissions, it is necessary to know the type of vegetation, the burned area, the amount of biomass burned, and the emission factor of each compound for each ecosystem. In this study biomass burning experiments were conducted in Mexico to measure trace gas emissions from 24 experimental fires and wildfires in semiarid, temperate, and tropical ecosystems from 2005 to 2007. A range of representative vegetation types were selected for ground-based experimental burns to characterize fire emissions from representative Mexico fuels. A third of the country was surveyed each year, beginning in the north. The fire experiments in the first year were conducted in Chihuahua, Nuevo Leon, and Tamaulipas states in pine forest, oak forest, grass, and chaparral. The second-year fire experiments were conducted on pine forest, oak forest, shrub, agricultural, grass, and herbaceous fuels in Jalisco, Puebla, and Oaxaca states in central Mexico. The third-year experiments were conducted in pine-oak forests of Chiapas, coastal grass, and low subtropical forest on the Yucatan peninsula. FASS (Fire Atmosphere Sampling System) towers were deployed for the experimental fires. Each FASS system contains 4 electro-polished stainless steel canisters to sample trace gas emissions, with a corresponding set of Teflon filters in the sampling ports to collect PM2.5 particulates. In addition, biomass burning was sampled by aircraft with canisters and real-time instruments as part of the MILAGRO field campaign. We present the emission factors of CO2, CO, CH4, C2-C4 compounds, and PM2.5 for prescribed fires of the major vegetation types in Mexico, as well as for regional wildfires in southern and central Mexico. We will also present a high-resolution vegetation map in Mexico based on the Landsat satellites and the fuel consumption models for various components and sizes of fuels.
Mark H. Huff; Roger D. Ottmar; Ernesto Alvarado; Robert E. Vihnanek; John F. Lehmkuhl; Paul F. Hessburg; Richard L. Everett
1995-01-01
We compared the potential fire behavior and smoke production of historical and current time periods based on vegetative conditions in forty-nine 5100- to 13 5OO-hectare watersheds in six river basins in eastern Oregon and Washington. Vegetation composition, structure, and patterns were attributed and mapped from aerial photographs taken from 1932 to 1959 (historical)...
Multi-scale data to assess and monitor sudden oak death
Lisa M. Levien; Chris S. Fischer; Lianne C. Mahon; Jeff A. Mai
2002-01-01
The USDA Forest Service (FS) and California Department of Forestry and Fire Protection (CDF) are monitoring Sudden Oak Death (SOD) under the umbrella of the larger California Land Cover Mapping and Monitoring Program (LCMMP). The LCMMP is a statewide cooperative effort among the FS and CDF focused on mapping and monitoring Californiaâs vegetation and land cover.
NASA Astrophysics Data System (ADS)
Dragozi, E.; Gitas, Ioannis Z.; Stavrakoudis, Dimitris G.; Minakou, C.
2015-06-01
Forest fires greatly influence the stability and functions of the forest ecosystems. The ever increasing need for accurate and detailed information regarding post-fire effects (burn severity) has led to several studies on the matter. In this study the combined use of Very High Resolution (VHR) satellite data (GeoEye), Objectbased image analysis (OBIA) and Composite Burn Index (CBI) measurements in estimating burn severity, at two different time points (2011 and 2012) is assessed. The accuracy of the produced maps was assessed and changes in burn severity between the two dates were detected using the post classification comparison approach. It was found that the produced burn severity map for 2011 was approximately 10% more accurate than that of 2012. This was mainly attributed to the increased heterogeneity of the study area in the second year, which led to an increased number of mixed class objects and consequently made it more difficult to spectrally discriminate between the severity classes. Following the post-classification analysis, the severity class changes were mainly attributed to the trees' ability to survive severe fire damage and sprout new leaves. Moreover, the results of the study suggest that when classifying CBI-based burn severity using VHR imagery it would be preferable to use images captured soon after the fire.
[Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].
Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai
2012-07-01
Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.
NASA Astrophysics Data System (ADS)
Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta
2013-04-01
Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land-use and land-cover changes in the periods analyzed, it was determined that between years 1984 and 2006 most of the burned area remained pre-fire cover type (above 80% of the area). However, in areas that experienced change, the most important transitions were recorded in wooded areas, especially conifers, which became shrubs or sparsely vegetated areas, followed by non-irrigated crops, which were replaced by grasslands or industrial areas, and sparse vegetation which changed to shrubs. Finally, the analysis of land-use changes over burned areas situated shrubland as the most favored type of cover, either as a result of a vegetative degradation process after intense burning of wooded areas, especially conifers, or as stage of natural increase in areas previously covered by sparsely vegetation.
Wu, Zhiwei; He, Hong S; Liu, Zhihua; Liang, Yu
2013-06-01
Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are not only related to fuel loads but also to a wide range of other spatially related factors such as topography, weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal forest in northeastern China. We derived a fuel load map from a stand map and a burn probability map based on historical fire records and potential wildfire spread pattern. The burn probability map was validated using historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to compare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread, and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should be considered for each fuel reduction treatment. Published by Elsevier B.V.
Estimating release of carbon from 1990 and 1991 forest fires in Alaska
NASA Technical Reports Server (NTRS)
Kaisischke, Eric S.; French, Nancy H. F.; Bourgeau-Chavez, Laura L.; Christensen, N. L., Jr.
1995-01-01
An improved method to estimate the amounts of carbon released during fires in the boreal forest zone of Alaska in 1990 and 1991 is described. This method divides the state into 64 distinct physiographic regions and estimates areal extent of five different land covers: two forest types, peat land, tundra, and nonvegetated. The areal extent of each cover type was estimated from a review of topographic maps of each region and observations on the distribution of foreat types within the state. Using previous observations and theoretical models for the two forest types found in interior Alaska, models of biomass accumulation as a function of stand age were developed. Stand age distributions for each region were determined using a statistical distribution based on fire frequency, which was from available long-term historical records. Estimates of the degree of biomass combusted were based on recent field observations as well as research reported in the literature. The location and areal extent of fires in this region for 1990 and 1991 were based on both field observations and analysis of satellite (advanced very high resolution radiometer (AVHRR)) data sets. Estimates of average carbon release for the two study years ranged between 2.54 and 3.00 kg/sq m, which are 2.2 to 2.6 times greater than estimates used in other studies of carbon release through biomass burning in boreal forests. Total average annual carbon release for the two years ranged between 0.012 and 0.018 Pg C/yr, with the lower value resulting from the AVHRR estimates of fire location and area.
Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains, USA.
Reilly, Matthew J; Elia, Mario; Spies, Thomas A; Gregory, Matthew J; Sanesi, Giovanni; Lafortezza, Raffaele
2018-03-01
Wildfires pose a unique challenge to conservation in fire-prone regions, yet few studies quantify the cumulative effects of wildfires on forest dynamics (i.e., changes in structural conditions) across landscape and regional scales. We assessed the contribution of wildfire to forest dynamics in the eastern Cascade Mountains, USA from 1985 to 2010 using imputed maps of forest structure (i.e., tree size and canopy cover) and remotely sensed burn severity maps. We addressed three questions: (1) How do dynamics differ between the region as a whole and the unburned portion of the region? (2) How do dynamics vary among vegetation zones differing in biophysical setting and historical fire frequency? (3) How have forest structural conditions changed in a network of late successional reserves (LSRs)? Wildfires affected 10% of forests in the region, but the cumulative effects at this scale were primarily slight losses of closed-canopy conditions and slight gains in open-canopy conditions. In the unburned portion of the region (the remaining 90%), closed-canopy conditions primarily increased despite other concurrent disturbances (e.g., harvest, insects). Although the effects of fire were largely dampened at the regional scale, landscape scale dynamics were far more variable. The warm ponderosa pine and cool mixed conifer zones experienced less fire than the region as a whole despite experiencing the most frequent fire historically. Open-canopy conditions increased slightly in the mixed conifer zone, but declined across the ponderosa pine zone even with wildfires. Wildfires burned 30% of the cold subalpine zone, which experienced the greatest increase in open-canopy conditions and losses of closed-canopy conditions. LSRs were more prone to wildfire than the region as a whole, and experienced slight declines in late seral conditions. Despite losses of late seral conditions, wildfires contributed to some conservation objectives by creating open habitats (e.g., sparse early seral and woodland conditions) that otherwise generally decreased in unburned landscapes despite management efforts to increase landscape diversity. This study demonstrates the potential for wildfires to contribute to regional scale conservation objectives, but implications for management and biodiversity at landscape scales vary geographically among biophysical settings, and are contingent upon historical dynamics and individual species habitat preferences. © 2017 by the Ecological Society of America.
NASA Technical Reports Server (NTRS)
Brass, J. A.; Likens, W. C.; Thornhill, R. R.
1983-01-01
The potential of using LANDSAT satellite imagery to map and inventory pinyon-juniper desert forest types in Douglas and Carson City Counties, Nevada was demonstrated. Specific map and statistical products produced include land cover, mechanical operations capability, big game winter range habitat, fire hazard, and forest harvestability. The Nevada Division of Forestry determined that LANDSAT can produce a reliable and low-cost resource data. Added benefits become apparent when the data are linked to a geographical information system (GIS) containing existing ownership, planning, elevation, slope, and aspect information.
Studying the effects of fuel treatment based on burn probability on a boreal forest landscape.
Liu, Zhihua; Yang, Jian; He, Hong S
2013-01-30
Fuel treatment is assumed to be a primary tactic to mitigate intense and damaging wildfires. However, how to place treatment units across a landscape and assess its effectiveness is difficult for landscape-scale fuel management planning. In this study, we used a spatially explicit simulation model (LANDIS) to conduct wildfire risk assessments and optimize the placement of fuel treatments at the landscape scale. We first calculated a baseline burn probability map from empirical data (fuel, topography, weather, and fire ignition and size data) to assess fire risk. We then prioritized landscape-scale fuel treatment based on maps of burn probability and fuel loads (calculated from the interactions among tree composition, stand age, and disturbance history), and compared their effects on reducing fire risk. The burn probability map described the likelihood of burning on a given location; the fuel load map described the probability that a high fuel load will accumulate on a given location. Fuel treatment based on the burn probability map specified that stands with high burn probability be treated first, while fuel treatment based on the fuel load map specified that stands with high fuel loads be treated first. Our results indicated that fuel treatment based on burn probability greatly reduced the burned area and number of fires of different intensities. Fuel treatment based on burn probability also produced more dispersed and smaller high-risk fire patches and therefore can improve efficiency of subsequent fire suppression. The strength of our approach is that more model components (e.g., succession, fuel, and harvest) can be linked into LANDIS to map the spatially explicit wildfire risk and its dynamics to fuel management, vegetation dynamics, and harvesting. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.
2016-02-01
Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (5-year interval) airborne lidar data set for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved and/or coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change was estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 yr-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 Mg ha-1 yr-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 yr-1. This rate reduces by almost a third when fire probability is increased to 0.01 (fire return rate of 100 years), as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space deployment of lidar instruments in the near future could open the way for rolling out wide-scale forest carbon stock monitoring to inform management and governance responses to future environmental change.
NASA Technical Reports Server (NTRS)
Ranson, Jon K.; Kovacs, Katalin; Kharuk, Viatcheslav; Burke, Erin
2006-01-01
Fires are a common occurrence in the Siberian boreal forest. The MOD14 Thermal anomalies product of the Terra MODIS Moderate Resolution Spectroradiometer) product set is designed to detect thermal anomalies (i.e. hotspots or fires) on the Earth's surface. Recent field studies showed a dependence of fire occurrence on topography. In this study MODIS thermal anomaly data and SRTM topography data were merged and analyzed to evaluate if forest fires are more likely to occur at certain combinations of elevation, slope and aspect. Using the satellite data over a large area can lead to better understanding how topography and forest fires are related. The study area covers a 2.5 Million krn(exp 2) portion of the Central Siberian southern taiga from 72 deg to 110 deg East and from 50 deg to 60 deg North. About 57% of the study area is forested and 80% of the forest grows between 200 and 1000 m. Forests with pine (Pinus sylvestris), larch (Larix sibirica, L. gmelinii), Siberian pine (Pinus sibirica), spruce (Picea obovata.) and fir (Abies sibirica) cover most of the landscape. Deciduous stands with birch (Betula pendula, B. pubescens) and aspen (Populus tremula) cover the areas of lower elevation in this region. The climate of this area is distinctly continental with long, cold winters and short hot summers. The tree line in this part of the world is around 1500 m in elevation with alpine tundra, snow and ice fields and rock outcrops extending up to over 3800 m. A 500 m resolution landcover map was developed using 2001 MODIS MOD13 Normalized Vegetation Index (NDVI) and Middle Infrared (MIR) products for seven 16-day periods. The classification accuracy was over 87%. The SRTM version 2 data, which is distributed in 1 degree by 1 degree tiles were mosaiced using the ENVI software. In this study, only those MODIS pixels were used that were flagged as "nominal or high confidence fire" by the MODIS fire product team. Using MODIS data from the years 2000 to 2005 along with the improved Shuttle Radar Topographic Mission (SRTM) version 2 data at 100 m resolution, the distribution of hot spots was examined by elevation, slope and aspect as well as by forest type. The results show that more forest area burns at lower elevations but a larger percentage of the available forest area burns at higher elevations. This is probably because steep slopes occur at higher elevations. Fires are only more common on slopes with a southern exposure if the slope is steeper than 15 degrees. The next step in this study will be to monitor areas where the risk of fire is high (steep slopes with a southern exposure) and to refine this method by incorporating anthropogenic features for more accurate fire disturbance monitoring.
Duguy, Beatriz; Alloza, José Antonio; Baeza, M Jaime; De la Riva, Juan; Echeverría, Maite; Ibarra, Paloma; Llovet, Juan; Cabello, Fernando Pérez; Rovira, Pere; Vallejo, Ramon V
2012-12-01
Forest fires represent a major driver of change at the ecosystem and landscape levels in the Mediterranean region. Environmental features and vegetation are key factors to estimate the ecological vulnerability to fire; defined as the degree to which an ecosystem is susceptible to, and unable to cope with, adverse effects of fire (provided a fire occurs). Given the predicted climatic changes for the region, it is urgent to validate spatially explicit tools for assessing this vulnerability in order to support the design of new fire prevention and restoration strategies. This work presents an innovative GIS-based modelling approach to evaluate the ecological vulnerability to fire of an ecosystem, considering its main components (soil and vegetation) and different time scales. The evaluation was structured in three stages: short-term (focussed on soil degradation risk), medium-term (focussed on changes in vegetation), and coupling of the short- and medium-term vulnerabilities. The model was implemented in two regions: Aragón (inland North-eastern Spain) and Valencia (eastern Spain). Maps of the ecological vulnerability to fire were produced at a regional scale. We partially validated the model in a study site combining two complementary approaches that focused on testing the adequacy of model's predictions in three ecosystems, all very common in fire-prone landscapes of eastern Spain: two shrublands and a pine forest. Both approaches were based on the comparison of model's predictions with values of NDVI (Normalized Difference Vegetation Index), which is considered a good proxy for green biomass. Both methods showed that the model's performance is satisfactory when applied to the three selected vegetation types.
[Application of spatially explicit landscape model in soil loss study in Huzhong area].
Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang
2004-10-01
Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.
Bajocco, Sofia; Dragoz, Eleni; Gitas, Ioannis; Smiraglia, Daniela; Salvati, Luca; Ricotta, Carlo
2015-01-01
Traditionally fuel maps are built in terms of ‘fuel types’, thus considering the structural characteristics of vegetation only. The aim of this work is to derive a phenological fuel map based on the functional attributes of coarse-scale vegetation phenology, such as seasonality and productivity. MODIS NDVI 250m images of Sardinia (Italy), a large Mediterranean island with high frequency of fire incidence, were acquired for the period 2000–2012 to construct a mean annual NDVI profile of the vegetation at the pixel-level. Next, the following procedure was used to develop the phenological fuel map: (i) image segmentation on the Fourier components of the NDVI profiles to identify phenologically homogeneous landscape units, (ii) cluster analysis of the phenological units and post-hoc analysis of the fire-proneness of the phenological fuel classes (PFCs) obtained, (iii) environmental characterization (in terms of land cover and climate) of the PFCs. Our results showed the ability of coarse-resolution satellite time-series to characterize the fire-proneness of Sardinia with an adequate level of accuracy. The remotely sensed phenological framework presented may represent a suitable basis for the development of fire distribution prediction models, coarse-scale fuel maps and for various biogeographic studies. PMID:25822505
Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands
NASA Astrophysics Data System (ADS)
Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.
2012-04-01
Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using BEHAVE fire behavior prediction system (Andrews, 1989) and experimental fuel data. Fire behavior was simulated by setting different weather scenarios representing the most frequent summer meteorological conditions. The simulation outputs (fireline intensity, rate of spread, flame length) were then analyzed for clustering the different fuel types in relation to their potential fire behavior. The results of this analysis can be used to produce fire behavior fuel maps that are important tools in evaluating fire hazard and risk for land management planning, locating and rating fuel treatments, and aiding in environmental assessments and fire danger programs modeling. This work is supported by FUME Project FP7-ENV-2009-1, Grant Agreement Number 243888 and Proterina-C Project, EU Italia-Francia Marittimo 2007-2013 Programme.
NASA Astrophysics Data System (ADS)
Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.
2016-12-01
The two most extensive biomes in Brazil, the Amazon Forest and the Cerrado (the Brazilian savanna), are subject to many fire events every dry season. Both biomes are well-known for their ecological and environmental importance but, due to the intensive human occupation over the last decades, they have been experiencing high deforestation rates with much of their natural landscape being converted to agriculture and pasture uses. The Cerrado, as a savanna, has naturally evolved adapted to fire. According to some researchers, this biome has been exposed to fire for the last 25 million years, forging the diversification of many C4 grass species, for example. The Amazon forest does not have similar characteristics and studies have shown that forest areas that have been already burned become more prone to recurrent burns. Forest patches that are close to open areas have their edges exposed to higher insolation and greater turbulence, drying the understory vegetation and litter, turning those areas more susceptible to fire events. In cases where grass species become established in the understory they can be a renewable source of fuel for recurrent burns. This study aimed to identify and map fire scars present in the region of Alto Teles Pires river basin, State of Mato Grosso - Brazil, during 10 years (2002-2011). This region is located in the transition zone between the two biomes and is known for its high deforestation rates. By taking advantage of the Landsat 5TM imagery collection present in Google Earth Engine platform as well as applying Spectral Mixture Analysis (SMA) techniques over them it was possible to estimate fractions of Green Vegetation (GV), Non-Photosynthetic Vegetation (NPV), and Soil targets, which are the surfaces that compose the vast majority of the landscape in the study region. Iteratively running SMA analysis over the imagery using burned vegetation endmembers allowed us to further identify fire scars present in the region, returning excellent accuracy. Burned vegetation endmembers were extracted from Landsat 5TM imagery that cover burned control areas that are part of the Projeto Fogo, a project that has been under development for the last 27 year in an ecological reserve (Roncador Ecological Reserve) close to Brasilia, Distrito Federal, Brazil.
Burnt area detection and hotspot analysis of wildfires in Margalla Hills National Park
NASA Astrophysics Data System (ADS)
Khalid, Noora; Ullah, Saleem
2016-07-01
Wildfires have been a growing source for the forest degradation and reduction in carbon sequestration which cause climate change and global warming. Thus, severely affect the ecosystem when not checked. Studies have revealed that land managements that do not use fire reduce the fire incidents by as much as 69 percent. This study focuses on mapping the areas burnt by forest fires owing to both natural and anthropogenic causes and identifying the fire prone areas in biodiversity spot of Islamabad, Margalla Hills National Park. The methodology employed based on using remotely sensed data with the integration of GIS techniques to estimate the area in hectares turned to ashes which ensued from forest fires during summers of 2008, 2010 and 2011 by applying Normalized Burn Ratio. Moreover hotspot analysis has also been used to pin point the locations with frequent fire incidents in the past using Global Positioning System (GPS) acquired coordinates from the fire surveys and official burned area statistics. The results revealed that wildfires destroyed some common regions in three years towards west which comprise of dense woodland comprising mainly Acacia Modesta, Dalbergia sissoo and Pinus longifolia. The calculated burnt area was 516 hectares, 122 hectares and 45 hectares for 2008, 2010 and 2011 respectively. Although a decline in burnt area has been observed owing to responsible management of authorities and development of fire pickets, still measures need to be taken to eradicate the core causes in charge of these fires and to promote reforestation. This study will allow policy makers and regulatory authorities to identify risk prone areas which will assist them in formulating a strategy to suppress fire incidents.
Australia fires and burn scars as seen from STS-62
1994-03-05
STS062-106-042 (4-18 March 1994) --- This view of southern Australia about 100 miles northwest of Melbourne shows areas of protected reserves of natural forests in the midst of agricultural crop lands. The green patch seen here has been recently burned as indicated by the irregular large scar. The impact of winds on the scar is clearly visible. This nature preserve is reported to be the home to a large number of animals including the koala bears. Similar views were shot by the STS-60 crewmembers last month. These photographs will assist earth scientists in mapping the impact of forest fires and in moniotring the recovery of burned areas.
Forest fire advanced system technology (FFAST) conceptual design study
NASA Technical Reports Server (NTRS)
Nichols, J. David; Warren, John R.
1987-01-01
The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
NASA Astrophysics Data System (ADS)
Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.
2017-12-01
Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.
Haiganoush Preisler; Alan Ager
2013-01-01
For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...
Historical reconstructions of California wildfires vary by data source
Syphard, Alexandra D.; Keeley, Jon E.
2016-01-01
Historical data are essential for understanding how fire activity responds to different drivers. It is important that the source of data is commensurate with the spatial and temporal scale of the question addressed, but fire history databases are derived from different sources with different restrictions. In California, a frequently used fire history dataset is the State of California Fire and Resource Assessment Program (FRAP) fire history database, which circumscribes fire perimeters at a relatively fine scale. It includes large fires on both state and federal lands but only covers fires that were mapped or had other spatially explicit data. A different database is the state and federal governments’ annual reports of all fires. They are more complete than the FRAP database but are only spatially explicit to the level of county (California Department of Forestry and Fire Protection – Cal Fire) or forest (United States Forest Service – USFS). We found substantial differences between the FRAP database and the annual summaries, with the largest and most consistent discrepancy being in fire frequency. The FRAP database missed the majority of fires and is thus a poor indicator of fire frequency or indicators of ignition sources. The FRAP database is also deficient in area burned, especially before 1950. Even in contemporary records, the huge number of smaller fires not included in the FRAP database account for substantial cumulative differences in area burned. Wildfires in California account for nearly half of the western United States fire suppression budget. Therefore, the conclusions about data discrepancies and the implications for fire research are of broad importance.
Carbon emissions from spring 1998 fires in tropical Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairns, M.A.; Hao, W.M.; Alvarado, E.
1999-04-01
The authors used NOAA-AVHRR satellite imagery, biomass density maps, fuel consumption estimates, and a carbon emission factor to estimate the total carbon (C) emissions from the Spring 1998 fires in tropical Mexico. All eight states in southeast Mexico were affected by the wildfires, although the activity was concentrated near the common border of Oaxaca, Chiapas, and Veracruz. The fires burned approximately 482,000 ha and the land use/land cover classes most extensively impacted were the tall/medium selvas (tropical evergreen forests), open/fragmented forests, and perturbed areas. The total prompt emissions were 4.6 TgC during the two-month period of the authors` study, contributingmore » an additional 24% to the region`s average annual net C emissions from forestry and land-use change. Mexico in 1998 experienced its driest Spring since 1941, setting the stage for the widespread burning.« less
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Wang, Min; Klich, Donna V.; Welch, Ronald M.; Nolf, Scott; Connors, Vickie S.
1997-01-01
Fires play a crucial role in several ecosystems. They are routinely used to burn forests in order to accommodate the needs of the expanding population, clear land for agricultural purposes, eliminate weeds and pests, regenerate nutrients in grazing and crop lands and produce energy for cooking and heating purposes. Most of the fires on earth are related to biomass burning in the tropics, although they are not confined to these latitudes. The boreal and tundra regions also experience fires on a yearly basis. The current study examines global fire patterns, Aerosol Optical Thickness (AOT) and carbon monoxide concentrations during April 9-19, 1994. Recently, global Advanced Very High Resolution Radiometer (AVHRR) data at nadir ground spatial resolution of 1 km are made available through the NASA/NOAA Pathfinder project. These data from April 9-19, 1994 are used to map fires over the earth. In summary, our analysis shows that fires from biomass burning appear to be the dominant factor for increased tropospheric CO concentrations as measured by the MAPS. The vertical transport of CO by convective activities, along with horizontal transport due to the prevailing winds, are responsible for the observed spatial distribution of CO.
Spatio-temporal clustering of wildfires in Portugal
NASA Astrophysics Data System (ADS)
Costa, R.; Pereira, M. G.; Caramelo, L.; Vega Orozco, C.; Kanevski, M.
2012-04-01
Several studies have shown that wildfires in Portugal presenthigh temporal as well as high spatial variability (Pereira et al., 2005, 2011). The identification and characterization of spatio-temporal clusters contributes to a comprehensivecharacterization of the fire regime and to improve the efficiency of fire prevention and combat activities. The main goalsin this studyare: (i) to detect the spatio-temporal clusters of burned area; and, (ii) to characterize these clusters along with the role of human and environmental factors. The data were supplied by the National Forest Authority(AFN, 2011) and comprises: (a)the Portuguese Rural Fire Database, PRFD, (Pereira et al., 2011) for the 1980-2007period; and, (b) the national mapping burned areas between 1990 and 2009. In this work, in order to complement the more common cluster analysis algorithms, an alternative approach based onscan statistics and on the permutation modelwas used. This statistical methodallows the detection of local excess events and to test if such an excess can reasonably have occurred by chance.Results obtained for different simulations performed for different spatial and temporal windows are presented, compared and interpreted.The influence of several fire factors such as (climate, vegetation type, etc.) is also assessed. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005:"Synoptic patterns associated with large summer forest fires in Portugal".Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 AFN, 2011: AutoridadeFlorestalNacional (National Forest Authority). Available at http://www.afn.min-agricultura.pt/portal.
NASA Astrophysics Data System (ADS)
Gould, G.; Adam, J. C.; Barber, M. E.; Wagenbrenner, J. W.; Robichaud, P. R.; Wang, L.; Cherkauer, K. A.
2012-12-01
Across the western U.S., there is clear concern for increases in wildfire occurrence, severity, and post-fire runoff erosion due to projected climate changes. The aim of this study was to advance our capability to simulate post-fire runoff erosion at scales larger than a single hillslope to examine the relative contribution of sediment being released to larger streams and rivers in response to wildfire. We applied the Variable Capacity Infiltration-Water Erosion Prediction Project (VIC-WEPP), a newly-developed physically-based modeling framework that combines large-scale hydrology with hillslope-scale runoff erosion, over the Salmon River basin (SRB) in central Idaho. We selected the SRB for this study because of recent research that suggested that forest wildfires are likely contributing the majority of coarser sands that settle in downstream navigation channels and in reservoirs, causing adverse impacts to aquatic life, navigation, and flood storage. Using the Normalized Burn Ratio (NBR), burn intensity and severity maps show the regularity of wildfire occurrence in the SRB. These maps compare pre-fire images to next growing season images from the Landsat Thematic Mapper multispectral scanning sensor. Rather than implementing WEPP over all hillslopes within the SRB, we applied a representative hillslope approach. A monofractal scaling method downscales globally available 30 arc second digital elevation model (DEM) data to a 30 m resolution for simulations. This information determined the distribution of slope gradients within each VIC grid cell. This study applied VIC-WEPP over the 1979-2010 period and compared an ensemble of future climate simulations for the period of 2041-2070. For future scenarios, we only considered meteorological impacts on post-fire erosion and did not incorporate changes in future fire occurrence or severity. We ran scenarios for a variety of land cover and soil parameter sets, particularly those that relate to pre and post-fire characteristics, such as vegetative cover, interrill and rill erodibility factors, and saturated hydraulic conductivity. Evaluation of runoff erosion at experimental sites, observed by the U.S. Forest Service, involved using Disturbed WEPP which showed reasonable first post-fire year annual erosion predictions. We evaluated VIC-WEPP by comparing sediment observations downstream of the SRB with simulated yields for both pre and post-fire conditions. Generation of maps showing erosion over the SRB for each of the scenarios show specific areas within the SRB to be high, moderate, or low runoff-induced post-fire erosion regions. Our methodology will enable forest managers in the region to incorporate the impacts of changes in meteorological events on runoff erosion into their strategic management plans.
Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia
NASA Technical Reports Server (NTRS)
Ransom, K. J.; Sun, G.; Kharuk, V. I.; Howl, J.
2011-01-01
The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas.
Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat
NASA Astrophysics Data System (ADS)
Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.
2018-02-01
We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme
class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.
Tinker, D.B.; Romme, W.H.; Despain, Don G.
2003-01-01
A measure of the historic range of variability (HRV) in landscape structure is essential for evaluating current landscape patterns of Rocky Mountain coniferous forests that have been subjected to intensive timber harvest. We used a geographic information system (GIS) and FRAGSTATS to calculate key landscape metrics on two ???130,000-ha landscapes in the Greater Yellowstone Area, USA: one in Yellowstone National Park (YNP), which has been primarily shaped by natural fires, and a second in the adjacent Targhee National Forest (TNF), which has undergone intensive clearcutting for nearly 30 years. Digital maps of the current and historical landscape in YNP were developed from earlier stand age maps developed by Romme and Despain. Maps of the TNF landscape were adapted from United States Forest Service Resource Information System (RIS) data. Key landscape metrics were calculated at 20-yr intervals for YNP for the period from 1705-1995. These metrics were used to first evaluate the relative effects of small vs. large fire events on landscape structure and were then compared to similar metrics calculated for both pre- and post-harvest landscapes of the TNF. Large fires, such as those that burned in 1988, produced a structurally different landscape than did previous, smaller fires (1705-1985). The total number of patches of all types was higher after 1988 (694 vs. 340-404 before 1988), and mean patch size was reduced by almost half (186 ha vs. 319-379 ha). The amount of unburned forest was less following the 1988 fires (63% vs. 72-90% prior to 1988), yet the number of unburned patches increased by nearly an order of magnitude (230 vs. a maximum of 41 prior to 1988). Total core area and mean core area per patch decreased after 1988 relative to smaller fires (???73,700 ha vs. 87,000-110,000 ha, and 320 ha vs. 2,123 ha, respectively). Notably, only edge density was similar (17 m ha-1 after 1988) to earlier landscapes (9.8-14.2 m ha-1). Three decades of timber harvesting dramatically altered landscape structure in the TNF. Total number of patches increased threefold (1,481 after harvest vs. 437 before harvest), and mean patch size decreased by ???70% (91.3 ha vs. 309 ha). None of the post-harvest landscape metrics calculated for the TNF fell within the HRV as defined in YNP, even when the post-1988 landscape was considered. In contrast, pre-harvest TNF landscape metrics were all within, or very nearly within, the HRV for YNP While reference conditions such as those identified by this study are useful for local and regional landscape evaluation and planning, additional research is necessary to understand the consequences of changes in landscape structure for population, community, ecosystem, and landscape function.
NASA Astrophysics Data System (ADS)
Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob
2013-04-01
A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in the burnt area; in agricultural fields, rill formation occurred during the post-harvest period and before the full development of winter pasture. After this period, post-fire management operations (clear-cutting, deep plowing and replanting) disturbed the soil profiles and left little protective vegetation and litter cover. Relatively mild rainstorms provoked most of the erosion features in the burnt area, but none were observed in the agricultural fields which were fully covered by pasture at this time. The present results indicate that forest fires and especially post-fire management operations can lead to much higher erosion rates than agricultural practices. Different timings of soil losses throughout a year would be linked with different periods when soils are exposed: typically 2-3 years following fire and plowing/terracing as opposed to 2- 3 months following the harvest of annual crops (October-December). Assuming a recurrence period of forest fires of c. 25 years, burnt forests in the region would suffer similar long-term erosion rates as agricultural fields under comparable conditions, casting doubt on the role of forest plantations for soil protection in this region.
An approach to the real time risk evaluation system of boreal forest fire
NASA Astrophysics Data System (ADS)
Nakau, K.; Fukuda, M.; Kimura, K.; Hayasaka, H.; Tani, H.; Kushida, K.
2005-12-01
Huge boreal forest fire may cause massive impacts not only on global warming gas emission but also local communities. Thus, it is important to control forest fire. We collected data about boreal forest fire as satellite imagery and fire observation simultaneously in Alaska and east Siberia in summer fire seasons for these three years. Fire observation data was collected from aircraft flying between Japan and Europe. Fire detection results were compared with observed data to evaluate the accuracy and earliness of automatic detection. NOAA and MODIS satellite images covering Alaska and East Siberia are collected. We are also developing fire expansion simulation model to forecast the possible fire expansion area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed. To identify the risk of boreal forest fire and public concern about forest fire, we collected local news paper in Fairbanks, AK and discuss the statistics of articles related to forest fire on the newspaper.
NASA Technical Reports Server (NTRS)
R.Neigh, Christopher S.; Bolton, Douglas K.; Williams, Jennifer J.; Diabate, Mouhamad
2014-01-01
Forests are the largest aboveground sink for atmospheric carbon (C), and understanding how they change through time is critical to reduce our C-cycle uncertainties. We investigated a strong decline in Normalized Difference Vegetation Index (NDVI) from 1982 to 1991 in Pacific Northwest forests, observed with the National Ocean and Atmospheric Administration's (NOAA) series of Advanced Very High Resolution Radiometers (AVHRRs). To understand the causal factors of this decline, we evaluated an automated classification method developed for Landsat time series stacks (LTSS) to map forest change. This method included: (1) multiple disturbance index thresholds; and (2) a spectral trajectory-based image analysis with multiple confidence thresholds. We produced 48 maps and verified their accuracy with air photos, monitoring trends in burn severity data and insect aerial detection survey data. Area-based accuracy estimates for change in forest cover resulted in producer's and user's accuracies of 0.21 +/- 0.06 to 0.38 +/- 0.05 for insect disturbance, 0.23 +/- 0.07 to 1 +/- 0 for burned area and 0.74 +/- 0.03 to 0.76 +/- 0.03 for logging. We believe that accuracy was low for insect disturbance because air photo reference data were temporally sparse, hence missing some outbreaks, and the annual anniversary time step is not dense enough to track defoliation and progressive stand mortality. Producer's and user's accuracy for burned area was low due to the temporally abrupt nature of fire and harvest with a similar response of spectral indices between the disturbance index and normalized burn ratio. We conclude that the spectral trajectory approach also captures multi-year stress that could be caused by climate, acid deposition, pathogens, partial harvest, thinning, etc. Our study focused on understanding the transferability of previously successful methods to new ecosystems and found that this automated method does not perform with the same accuracy in Pacific Northwest forests. Using a robust accuracy assessment, we demonstrate the difficulty of transferring change attribution methods to other ecosystems, which has implications for the development of automated detection/attribution approaches. Widespread disturbance was found within AVHRR-negative anomalies, but identifying causal factors in LTSS with adequate mapping accuracy for fire and insects proved to be elusive. Our results provide a background framework for future studies to improve methods for the accuracy assessment of automated LTSS classifications.
Fire intensity impacts on post-fire temperate coniferous forest net primary productivity
NASA Astrophysics Data System (ADS)
Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.
2018-02-01
Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.
Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data
USDA-ARS?s Scientific Manuscript database
Land surface temperature (LST) is a critical parameter in environmental studies and resource management. The MODIS LST data product has been widely used in various studies, such as drought monitoring, evapotranspiration mapping, soil moisture estimation and forest fire detection. However, cloud cont...
Recent changes in annual area burned in interior Alaska: The impact of fire management
Calef, M.P.; Varvak, Anna; McGuire, A. David; Chapin, F. S.; Reinhold, K. B.
2015-01-01
The Alaskan boreal forest is characterized by frequent extensive wildfires whose spatial extent has been mapped for the past 70 years. Simple predictions based on this record indicate that area burned will increase as a response to climate warming in Alaska. However, two additional factors have affected the area burned in this time record: the Pacific decadal oscillation (PDO) switched from cool and moist to warm and dry in the late 1970s and the Alaska Fire Service instituted a fire suppression policy in the late 1980s. In this paper a geographic information system (GIS) is used in combination with statistical analyses to reevaluate the changes in area burned through time in Alaska considering both the influence of the PDO and fire management. The authors found that the area burned has increased since the PDO switch and that fire management drastically decreased the area burned in highly suppressed zones. However, the temporal analysis of this study shows that the area burned is increasing more rapidly in suppressed zones than in the unsuppressed zone since the late 1980s. These results indicate that fire policies as well as regional climate patterns are important as large-scale controls on fires over time and across the Alaskan boreal forest.
Fire Patterns and Drivers of Fires in the West African Tropical Forest
NASA Astrophysics Data System (ADS)
Dwomoh, F. K.; Wimberly, M. C.
2015-12-01
The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.
Climate change and the future of natural disturbances in the central hardwood region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Virginia H; Hughes, M. Joseph; Hayes, Daniel J
The spatial patterns and ecological processes of the southeastern upland hardwood forests have evolved to reflect past climatic conditions and natural disturbance regimes. Changes in climate can lead to disturbances that exceed their natural range of variation, and the impacts of these changes will depend on the vulnerability or resiliency of these ecosystems. Global Circulation Models generally project annual increases in temperature across the southeastern United States over the coming decades, but changes in precipitation are less consistent. Even more unclear is how climate change might affect future trends in the severity and frequency of natural disturbances, such as severemore » storms, fires, droughts, floods, and insect outbreaks. Here, we use a time-series satellite data record to map the spatial pattern and severity of broad classes of natural disturbances the southeast region. The data derived from this map allow analysis of regional-scale trends in natural and anthropogenic disturbances in the region over the last three decades. Throughout the region, between 5% and 25% of forest land is affected by some sort of disturbance each year since 1985. The time series reveals periodic droughts that themselves are widespread and of low severity but are associated with more localized, high-severity disturbances such as fire and insect outbreaks. The map also reveals extensive anthropogenic disturbance across the region in the form of forest conversion related to resource extraction and urban and residential development. We discuss how changes in climate and disturbance regimes might affect southeastern forests in the future via altering the exposure, sensitivity and adaptive capacity of these ecosystems. Changes in climate are highly likely to expose southeastern forests to more frequent and severe disturbances, but ultimately how vulnerable or resilient southeastern forests are to these changes will depend on their sensitivity and capacity to adapt to these novel conditions.« less
Terrestrial ecosystems: national inventory of vegetation and land use
Gergely, Kevin J.; McKerrow, Alexa
2013-11-12
The Gap Analysis Program (GAP)/Landscape Fire and Resource Management Planning Tools (LANDFIRE) National Terrestrial Ecosystems Data represents detailed data on the vegetation and land-use patterns of the United States, including Alaska, Hawaii, and Puerto Rico. This national dataset combines detailed land cover data generated by the GAP with LANDFIRE data (http://www.landfire.gov/). LANDFIRE is an interagency vegetation, fire, and fuel characteristics mapping program sponsored by the U.S. Department of the Interior (DOI) and the U.S. Department of Agriculture Forest Service.
Yang, Guang; Shu, Li-Fu; Di, Xue-Ying
2012-11-01
By using Delta and WGEN downscaling methods and Canadian Forest Fire Weather Index, this paper analyzed the variation characteristics of summer fire in Great Xing' an Mountains forest region of Heilongjiang Province in 1966-2010, estimated the change trends of the summer fire danger in 2010-2099, compared the differences of the forest fire in summer, spring, and autumn, and proposed the prevention and control strategies of the summer fire based on the fire environment. Under the background of climate warming, the summer forest fire in the region in 2000-2010 showed a high incidence trend. In foreseeable future, the summer forest fire across the region in 2010-2099, as compared to that in the baseline period 1961-1990, would be increased by 34%, and the increment would be obviously greater than that of spring and autumn fire. Relative to that in 1961-1990, the summer fire in 2010-2099 under both SRES A2a and SRES B2a scenarios would have an increasing trend, and, with the lapse of time, the trend would be more evident, and the area with high summer fire would become wider and wider. Under the scenario of SRES A2a, the summer fire by the end of the 21st century would be doubled, as compared to that in 1961-1990, and the area with high summer fire would be across the region. In the characteristics of fire source, attributes of forest fuel, and fire weather conditions, the summer forest fire was different from the spring and autumn forest fire, and thus, the management of fire source and forest fuel load as well as the forest fire forecast (mid-long term forecast in particular) in the region should be strengthened to control the summer forest fire.
Fire ecology of western Montana forest habitat types
William C. Fischer; Anne F. Bradley
1987-01-01
Provides information on fire as an ecological factor for forest habitat types in western Montana. Identifies Fire Groups of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.
Mapping aspen in the Interior West
Charles E. Werstak
2012-01-01
Quaking aspen (Populus tremuloides Michx.) is a critical species that supports wildlife and livestock, watershed function, the forest products industry, landscape diversity, and recreation opportunities in the Interior West (Bartos and Campbell 1998). Studies have indicated that changes in fire regimes, an increase in herbivore presence in young aspen stands, and...
Scholl, Andrew E; Taylor, Alan H
2010-03-01
Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.
Monitoring a boreal wildfire using multi-temporal Radarsat-1 intensity and coherence images
Rykhus, Russell P.; Lu, Zhong
2011-01-01
Twenty-five C-band Radarsat-1 synthetic aperture radar (SAR) images acquired from the summer of 2002 to the summer of 2005 are used to map a 2003 boreal wildfire (B346) in the Yukon Flats National Wildlife Refuge, Alaska under conditions of near-persistent cloud cover. Our analysis is primarily based on the 15 SAR scenes acquired during arctic growing seasons. The Radarsat-1 intensity data are used to map the onset and progression of the fire, and interferometric coherence images are used to qualify burn severity and monitor post-fire recovery. We base our analysis of the fire on three test sites, two from within the fire and one unburned site. The B346 fire increased backscattered intensity values for the two burn study sites by approximately 5–6 dB and substantially reduced coherence from background levels of approximately 0.8 in unburned background forested areas to approximately 0.2 in the burned area. Using ancillary vegetation information from the National Land Cover Database (NLCD) and information on burn severity from Normalized Burn Ratio (NBR) data, we conclude that burn site 2 was more severely burned than burn site 1 and that C-band interferometric coherence data are useful for mapping landscape changes due to fire. Differences in burn severity and topography are determined to be the likely reasons for the observed differences in post-fire intensity and coherence trends between burn sites.
Structure and Evolution of Mediterranean Forest Research: A Science Mapping Approach.
Nardi, Pierfrancesco; Di Matteo, Giovanni; Palahi, Marc; Scarascia Mugnozza, Giuseppe
2016-01-01
This study aims at conducting the first science mapping analysis of the Mediterranean forest research in order to elucidate its research structure and evolution. We applied a science mapping approach based on co-term and citation analyses to a set of scientific publications retrieved from the Elsevier's Scopus database over the period 1980-2014. The Scopus search retrieved 2,698 research papers and reviews published by 159 peer-reviewed journals. The total number of publications was around 1% (N = 17) during the period 1980-1989 and they reached 3% (N = 69) in the time slice 1990-1994. Since 1995, the number of publications increased exponentially, thus reaching 55% (N = 1,476) during the period 2010-2014. Within the thirty-four years considered, the retrieved publications were published by 88 countries. Among them, Spain was the most productive country, publishing 44% (N = 1,178) of total publications followed by Italy (18%, N = 482) and France (12%, N = 336). These countries also host the ten most productive scientific institutions in terms of number of publications in Mediterranean forest subjects. Forest Ecology and Management and Annals of Forest Science were the most active journals in publishing research in Mediterranean forest. During the period 1980-1994, the research topics were poorly characterized, but they become better defined during the time slice 1995-1999. Since 2000s, the clusters become well defined by research topics. Current status of Mediterranean forest research (20092014) was represented by four clusters, in which different research topics such as biodiversity and conservation, land-use and degradation, climate change effects on ecophysiological responses and soil were identified. Basic research in Mediterranean forest ecosystems is mainly conducted by ecophysiological research. Applied research was mainly represented by land-use and degradation, biodiversity and conservation and fire research topics. The citation analyses revealed highly cited terms in the Mediterranean forest research as they were represented by fire, biodiversity, carbon sequestration, climate change and global warming. Finally, our analysis also revealed the multidisciplinary role of climate change research. This study provides a first holistic view of the Mediterranean forest research that could be useful for researchers and policy makers as they may evaluate and analyze its historical evolution, as well as its structure and scientific production. We concluded that Mediterranean forest research represents an active scientific field.
NASA Astrophysics Data System (ADS)
Gu, H.; Zhou, Y.; Williams, C. A.
2016-12-01
Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and flux. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes for harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with inventory-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.
NASA Astrophysics Data System (ADS)
Ren, J.; Robichaud, P. J. L.; Adam, J. C.
2017-12-01
Sedimentation is important issue to most rivers and reservoirs especially in watersheds with extensive agricultural or wildfire activity. These human and natural induced disturbances have the potential to increase runoff-induced erosion and sediment load to rivers; downstream sedimentation can decrease the life expectancy of reservoir and consequently the dam. This is particularly critical in snowmelt-dominant regions because, as rising temperatures reduce snowpack as a natural reservoir, humans will become more reliant on reservoir storage. In the Northwest U.S., the Columbia River Basin (CRB) has more than 60 dams, which were built for irrigation, hydropower, and flood control, all of which are affected by sediment to varying degrees. Determining what dams are most likely to be affected by sedimentation caused by post-fire erosion is important for future management of reservoirs, especially as climate change is anticipated to exacerbate wildfire and its impacts. The objective of this study is to create a sedimentation vulnerability map for reservoirs in the CRB. There are four attributes of a watershed that determine erosion potential; soil type, topography, vegetation (such as forests, shrubs, and grasslands), and precipitation (although precipitation was excluded in this analysis). In this study, a rating system was developed on a scale of 0-90 (with 90 having the greatest erosion potential). The different layers in a Graphical Information System were combined to create an erosion vulnerability map. Results suggest that areas with agriculture have more erosion without a wildfire but that forested areas are most vulnerable to erosion rates following a fire, particularly a high severity fire. Sedimentation in dams is a growing problem that needs to be addressed especially with the likely reduction in snowpack, this vulnerability map will help determine which reservoirs in the CRB are prone to high sedimentation. This information can inform managers where post-fire erosion mitigation efforts might be prioritized.
Time fluctuation analysis of forest fire sequences
NASA Astrophysics Data System (ADS)
Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.
2013-04-01
Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value depends on the threshold which helps to understand the time pattern of the studied events. Our findings detected the presence of overdensity of events in particular time periods and showed that the forest fire sequences in Portugal can be considered as a multifractal process with a degree of time-clustering of the events. Key words: time sequences, Morisita index, fractals, multifractals, box-counting, Ripley's K-function, Allan Factor, variography, forest fires, point process. Acknowledgements This work was partly supported by the SNFS Project No. 200021-140658, "Analysis and Modelling of Space-Time Patterns in Complex Regions". References - Kanevski M. (Editor). 2008. Advanced Mapping of Environmental Data: Geostatistics, Machine Learning and Bayesian Maximum Entropy. London / Hoboken: iSTE / Wiley. - Telesca L. and Pereira M.G. 2010. Time-clustering investigation of fire temporal fluctuations in Portugal, Nat. Hazards Earth Syst. Sci., vol. 10(4): 661-666. - Vega Orozco C., Tonini M., Conedera M., Kanevski M. (2012) Cluster recognition in spatial-temporal sequences: the case of forest fires, Geoinformatica, vol. 16(4): 653-673.
Odion, Dennis C.; Hanson, Chad T.; Arsenault, André; Baker, William L.; DellaSala, Dominick A.; Hutto, Richard L.; Klenner, Walt; Moritz, Max A.; Sherriff, Rosemary L.; Veblen, Thomas T.; Williams, Mark A.
2014-01-01
There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to “restore” forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America. PMID:24498383
Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A
2014-01-01
There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America.
NASA Astrophysics Data System (ADS)
Hudak, A. T.; Dickinson, M. B.; Kremens, R.; Loudermilk, L.; O'Brien, J.; Satterberg, K.; Strand, E. K.; Ottmar, R. D.
2013-12-01
Longleaf pine stand structure and function are dependent on frequent fires, so fire managers maintain healthy longleaf pine ecosystems by frequently burning surface fuels with prescribed fires. Eglin Air Force Base (AFB) in the Florida panhandle boasts the largest remnant of longleaf pine forest, providing a productive setting for fire scientists to make multi-scale measurements of fuels, fire behavior, and fire effects in collaboration with Eglin AFB fire managers. Data considered in this analysis were collected in five prescribed burn units: two forested units burned in 2011 and a forested unit and two grassland units burned in 2012. Our objective was to demonstrate the linear relationship between biomass and fire energy that has been shown in the laboratory, but using two independent remotely sensed airborne datasets collected at the unit level: 1) airborne lidar flown over the burn units immediately prior to the burns, and 2) thermal infrared image time series flown over the burn units at 2-3 minute intervals. Airborne lidar point cloud data were reduced to 3 m raster metrics of surface vegetation height and cover, which were in turn used to map surface fuel loads at 3 m resolution. Plot-based measures of prefire surface fuels were used for calibration/validation. Preliminary results based on 2011 data indicate airborne lidar can explain ~30% of variation in surface fuel loads. Multi-temporal thermal infrared imagery (WASP) collected at 3 m resolution were calibrated to units of fire radiative power (FRP), using simultaneous FRP measures from ground-based radiometers, and then temporally integrated to estimate fire radiative energy (FRE) release at the unit level. Prior to AGU, FRP and FRE will be compared to estimates of the same variables derived from ground-based FLIR thermal infrared imaging cameras, each deployed with a nadir view from a tripod, at three sites per burn unit. A preliminary proof-of-concept, comparing FRE derived from a tripod-based FLIR (3.2 MW), to another FLIR deployed with an oblique view from atop a 36 m boom lift (2.1 MW), demonstrated reasonable agreement. Unit-level estimates of FRE will also be compared to estimates of surface fuel consumption (~5 Mg/ha) that were summarized at the unit level from pre- and post-fire clip plots of surface fuel biomass. At AGU, we will also compare predictions of surface fuel loads to estimates of energy release, as mapped at 3 m resolution from these independent remotely sensed data sources. These results will serve to demonstrate our ability to remotely measure and relate fuel loads to fire behavior at a landscape level.
1989-01-01
This Uruguayan Decree sets forth regulations on the prevention and fighting of forest fires. Among other things, it does the following: 1) requires all public and private organizations, as well as all persons, to assist personally in and provide vehicles, machines, and tools for the fighting of forest fires; 2) requires the owners of property containing forests to maintain instruction in fighting fires for an adequate number of employees; 3) requires all forests to be kept cleared of vegetation capable of spreading fires and to have fire walls; 4) requires owners of forests larger than 30 hectares in size to present to the Forest Directorate an annual plan for forest fire defense; and 5) requires owners of forests larger than 30 hectares in size to maintain specified equipment for fighting fires. Persons violating the provisions of this Decree are subject to fines.
Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013
Tyukavina, Alexandra; Hansen, Matthew C.; Potapov, Peter V.; Stehman, Stephen V.; Smith-Rodriguez, Kevin; Okpa, Chima; Aguilar, Ricardo
2017-01-01
Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil’s national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000–2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000–2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives. PMID:28439536
Fire ecology of forests and woodlands in Utah
Anne F. Bradley; Nonan V. Noste; William C. Fischer
1992-01-01
Provides information on fire as an ecological factor in forest habitat types, and in pinyon-juniper woodland and oak-maple brushland communities occurring in Utah. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.
Fire ecology of the forest habitat types of eastern Idaho and western Wyoming
Anne F. Bradley; William C. Fischer; Nonan V. Noste
1992-01-01
Provides information on fire as an ecological factor in the forest habitat types occurring in eastern Idaho and western Wyoming. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.
NASA Astrophysics Data System (ADS)
Gu, H.; Zhou, Y.; Williams, C. A.
2017-12-01
Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and fluxes. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes with time following harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with FIA-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.
Martins, V; Miranda, A I; Carvalho, A; Schaap, M; Borrego, C; Sá, E
2012-01-01
The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical module, which takes into account the most suitable parameters for Portuguese forest fire characteristics and the burnt area by large forest fires. To better evaluate the influence of forest fires on air quality the LOTOS-EUROS system has been applied with and without forest fire emissions. Hourly concentration results have been compared to measure data at several monitoring locations with better modeling quality parameters when forest fire emissions were considered. Moreover, hourly estimates, with and without fire emissions, can reach differences in the order of 20%, showing the importance and the influence of this type of emissions on air quality. Copyright © 2011 Elsevier B.V. All rights reserved.
Fire and forest history at Mount Rushmore.
Brown, Peter M; Wienk, Cody L; Symstad, Amy J
2008-12-01
Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a catastrophic wildfire occurs and adversely impacts the ecological and aesthetic setting of the Mount Rushmore sculpture.
Techniques for spatio-temporal analysis of vegetation fires in the topical belt of Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brivio, P.A.; Ober, G.; Koffi, B.
1995-12-31
Biomass burning of forests and savannas is a phenomenon of continental or even global proportions, capable of causing large scale environmental changes. Satellite space observations, in particular from NOAA-AVHRR GAC data, are the only source of information allowing one to document burning patterns at regional and continental scale and over long periods of time. This paper presents some techniques, such as clustering and rose-diagram, useful in the spatial-temporal analysis of satellite derived fires maps to characterize the evolution of spatial patterns of vegetation fires at regional scale. An automatic clustering approach is presented which enables one to describe and parameterizemore » spatial distribution of fire patterns at different scales. The problem of geographical distribution of vegetation fires with respect to some location of interest, point or line, is also considered and presented. In particular rose-diagrams are used to relate fires patterns to some reference point, as experimental sites of tropospheric chemistry measurements. Different temporal data-sets in the tropical belt of Africa, covering both Northern and Southern Hemisphere dry seasons, using these techniques were analyzed and showed very promising results when compared with data from rain chemistry studies at different sampling sites in the equatorial forest.« less
Chen, Xuexia; Vogelmann, James E.; Rollins, Matt; Ohlen, Donald; Key, Carl H.; Yang, Limin; Huang, Chengquan; Shi, Hua
2011-01-01
It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas.
Multi-stage approach to estimate forest biomass in degraded area by fire and selective logging
NASA Astrophysics Data System (ADS)
Santos, E. G.; Shimabukuro, Y. E.; Arai, E.; Duarte, V.; Jorge, A.; Gasparini, K.
2017-12-01
The Amazon forest has been the target of several threats throughout the years. Anthropogenic disturbances in the region can significantly alter this environment, affecting directly the dynamics and structure of tropical forests. Monitoring these threats of forest degradation across the Amazon is of paramount to understand the impacts of disturbances in the tropics. With the advance of new technologies such as Light Detection and Ranging (LiDAR) the quantification and development of methodologies to monitor forest degradation in the Amazon is possible and may bring considerable contributions to this topic. The objective of this study was to use remote sensing data to assess and estimate the aboveground biomass (AGB) across different levels of degradation (fire and selective logging) using multi-stage approach between airborne LiDAR and orbital image. The study area is in the northern part of the state of Mato Grosso, Brazil. It is predominantly characterized by agricultural land and remnants of the Amazon Forest intact and degraded by either anthropic or natural reasons (selective logging and/or fire). More specifically, the study area corresponds to path/row 226/69 of OLI/Landsat 8 image. With a forest mask generated from the multi-resolution segmentation, agriculture and forest areas, forest biomass was calculated from LiDAR data and correlated with texture images, vegetation indices and fraction images by Linear Spectral Unmixing of OLI/Landsat 8 image and extrapolated to the entire scene 226/69 and validated with field inventories. The results showed that there is a moderate to strong correlation between forest biomass and texture data, vegetation indices and fraction images. With that, it is possible to extract biomass information and create maps using optical data, specifically by combining vegetation indices, which contain forest greening information with texture data that contains forest structure information. Then it was possible to extrapolate the biomass to the entire scene (226/69) from the optical data and to obtain an overview of the biomass distribution throughout the area.
Fire ecology of Montana forest habitat types east of the Continental Divide
William C. Fischer; Bruce D. Clayton
1983-01-01
Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.
Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.
Harvey, Jill E; Smith, Dan J; Veblen, Thomas T
2017-09-01
This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management of these complex ecosystems. © 2017 by the Ecological Society of America.
Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.
2018-01-01
Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
Vegetation fire proneness in Europe
NASA Astrophysics Data System (ADS)
Pereira, Mário; Aranha, José; Amraoui, Malik
2015-04-01
Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by the project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems (NORTE-07-0124-FEDER-000044), financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the Portuguese Foundation for Science and Technology (FCT/MEC).
Margolis, Ellis; Malevich, Steven B.
2016-01-01
Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.
Lessons from the fires of 2000: Post-fire heterogeneity in ponderosa pine forests
Kotliar, Natasha B.; Haire, Sandra L.; Key, Carl H.; Omni, Phillip N.; Joyce, Linda A.
2003-01-01
We evaluate burn-severity patterns for six burns that occurred in the southern Rocky Mountains and the Colorado Plateau in 2000. We compare the results of two data sources: Burned Area Rehabilitations Teams (BAER) and a spatial burnseverity model derived from satellite imagery (the Normalized Burn Ratio; NBR). BAER maps tended to overestimate area of severe burns and underestimate area of moderate-severity burns relative to NBR maps. Low elevation and more southern ponderosa pine burns were predominantly understory burns, whereas burns at higher elevations and farther north had a greater component of high-severity burns. Thus, much, if not most, of the area covered by these burns appears to be consistent with historic burns and contributes to healthy functioning ecosystems.
Effects of forest fire and logging on forest degradation in Mongolia
Yeong Dae Park; Don Koo Lee; Jamsran Tsogtbaatar; John A. Stanturf
2010-01-01
Forests in Mongolia have been severely degraded by forest fire and exploitive logging. This study investigate changes in vegetation and soil properties after forest fire or clearfelling. Microclimate conditions such as temperature and relative humidity (RH) changed drastically after forest fire or logging; temperature increased 1.6-1.7 ºC on average, whereas...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Lloyd A.; Paresol, Bernard
This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report “SRS 2010 Vegetation Inventory GeoStatistical Mapping Report”, (Edwards & Parresol 2013).
NASA Astrophysics Data System (ADS)
Panov, Alexey; Chi, Xuguang; Winderlich, Jan; Prokushkin, Anatoly; Bryukhanov, Alexander; Korets, Mikhail; Ponomarev, Evgenii; Timokhina, Anastasya; Andreae, Meinrat O.; Heimann, Martin
2014-05-01
Calculations of direct emissions of greenhouse gases from boreal wildfires remain uncertain due to problems with emission factors, available carbon, and imprecise estimates of burned areas. Even more varied and sparse are accurate in situ calculations of temporal changes in boreal forest carbon dynamics following fire. Linking simultaneous instrumental atmospheric observations, GIS-based estimates of burned areas, and ecosystem carbon uptake calculations is vital to fill this knowledge gap. Since 2006 the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a research platform for large-scale climatic observations is operational in Central Siberia (60°48'N, 89°21'E). The data of ongoing greenhouse gases measurements at the tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over central Northern Eurasia. We present our contribution to reducing uncertainties in estimates of fire influence on atmospheric composition and post-fire ecosystem carbon uptake deduced from the large-scale fires that happened in 2012 in the tall tower footprint area. The burned areas were estimated from Landsat ETM 5,8 satellite images, while fires were detected from Terra/Aqua MODIS satellite data. The magnitude of ecological change caused by fires ("burn severity") was measured and mapped with a Normalized Burn Ratio (NBR) index and further calibrated by a complementary field based Composite Burn Index (CBI). Measures of fire radiative power (FRP) index provided information on fire heat release intensity and on the amount and completeness of biomass combustion. Based on the analyzed GIS data, the system of study plots was established in the 5 dominating ecosystem types for a long-term post-fire monitoring. On the plots the comprehensive estimation of ecosystem parameters and carbon pools and their mapping was organized with a laser-based field instrumentation system. The work was supported financially by ISTC Project # 2757p, project of RFBR # 13-05-98053, and grant of president of RF for young scientists MK-1691.2014.5.
NASA Astrophysics Data System (ADS)
Margolis, Ellis Quinn
Fire history and fire-climate relationships of upper elevation forests of the southwestern United States are imperative for informing management decisions in the face of increased crown fire occurrence and climate change. I used dendroecological techniques to reconstruct fires and stand-replacing fire patch size in the Madrean Sky Islands and Mogollon Plateau. Reconstructed patch size (1685-1904) was compared with contemporary patch size (1996-2004). Reconstructed fires at three sites had stand-replacing patches totaling > 500 ha. No historical stand-replacing fire patches were evident in the mixed conifer/aspen forests of the Sky Islands. Maximum stand-replacing fire patch size of modern fires (1129 ha) was greater than that reconstructed from aspen (286 ha) and spruce-fir (521 ha). Undated spruce-fir patches may be evidence of larger (>2000ha) stand-replacing fire patches. To provide climatological context for fire history I used correlation and regionalization analyses to document spatial and temporal variability in climate regions, and El-Nino Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO) teleconnections using 273 tree-ring chronologies (1732-1979). Four regions were determined by common variability in annual ring width. The component score time series replicate spatial variability in 20th century droughts (e.g., 1950's) and pluvials (e.g., 1910's). Two regions were significantly correlated with instrumental SOI and AMO, and three with PDO. Sub-regions within the southwestern U.S. varied geographically between the instrumental (1900-1979) and the pre-instrumental periods (1732-1899). Mapped correlations between ENSO, PDO and AMO, and tree-ring indices illustrate detailed sub-regional variability in the teleconnections. I analyzed climate teleconnections, and fire-climate relationships of historical upper elevation fires from 16 sites in 8 mountain ranges. I tested for links between Palmer Drought Severity Index and tree-ring reconstructed ENSO, PDO and AMO phases (1905-1978 and 1700-1904). Upper elevation fires (115 fires, 84 fire years, 1623-1904) were compared with climate indices. ENSO, PDO, and AMO affected regional PDSI, but AMO and PDO teleconnections changed between periods. Fire occurrence was significantly related to inter-annual variability in PDSI, precipitation, ENSO, and phase combinations of ENSO and PDO, but not AMO (1700-1904). Reduced upper elevation fire (1785-1840) was coincident with a cool AMO phase.
Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire
NASA Astrophysics Data System (ADS)
Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.
2017-12-01
Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.
Land-Cover Trends of the Sierra Nevada Ecoregion, 1973-2000
Raumann, Christian G.; Soulard, Christopher E.
2007-01-01
The U.S. Geological Survey has developed and is implementing the Land Cover Trends project to estimate and describe the temporal and spatial distribution and variability of contemporary land-use and land-cover change in the United States. As part of the Land Cover Trends project, the purpose of this study was to assess land-use/land-cover change in the Sierra Nevada ecoregion for the period 1973 to 2000 using a probability sampling technique and satellite imagery. We randomly selected 36 100-km2 sample blocks to derive thematic images of land-use/land-cover for five dates of Landsat imagery (1973, 1980, 1986, 1992, 2000). We visually interpreted as many as 11 land-use/land-cover classes using a 60-meter minimum mapping unit from the five dates of imagery yielding four periods for analysis. Change-detection results from post-classification comparison of our mapped data showed that landscape disturbance from fire was the dominant change from 1973-2000. The second most-common change was forest disturbance resulting from harvest of timber resources by way of clear-cutting. The rates of forest regeneration from temporary fire and harvest disturbances coincided with the rates of disturbance from the previous period. Relatively minor landscape changes were caused by new development and reservoir drawdown. Multiple linear regression analysis suggests that land ownership and the proportion of forest and developed cover types were significant determinants of the likelihood of direct human-induced change occurring in sampling units. Driving forces of change include land ownership, land management such as fire suppression policy, and demand for natural resources.
Global analysis of the persistence of the spectral signal associated with burned areas
NASA Astrophysics Data System (ADS)
Melchiorre, A.; Boschetti, L.
2015-12-01
Systematic global burned area maps at coarse spatial resolution (350 m - 1 km) have been produced in the past two decades from several Earth Observation (EO) systems (including MODIS, Spot-VGT, AVHRR, MERIS), and have been extensively used in a variety of applications related to emissions estimation, fire ecology, and vegetation monitoring (Mouillot et al. 2014). There is however a strong need for moderate to high resolution (10-30 m) global burned area maps, in order to improve emission estimations, in particular on heterogeneous landscapes and for local scale air quality applications, for fire management and environmental restoration, and in support of carbon accounting (Hyer and Reid 2009; Mouillot et al. 2014; Randerson et al. 2012). Fires causes a non-permanent land cover change: the ash and charcoal left by the fire can be visible for a period ranging from a few weeks in savannas and grasslands ecosystems, to over a year in forest ecosystems (Roy et al. 2010). This poses a major challenge for designing a global burned area mapping system from moderate resolution (10-30 m) EO data, due to the low revisit time frequency of the satellites (Boschetti et al. 2015). As a consequence, a quantitative assessment of the permanence of the spectral signature of burned areas at global scale is a necessary step to assess the feasibility of global burned area mapping with moderate resolution sensors. This study presents a global analysis of the post-fire reflectance of burned areas, using the MODIS MCD45A1 global burned area product to identify the location and timing of burning, and the MO(Y)D09 global surface reflectance product to retrieve the time series of reflectance values after the fire. The result is a spatially explicit map of persistence of burned area signal, which is then summarized by landcover type, and by fire zone using the subcontinental regions defined by Giglio et al. (2006).
Estimation of Forest Fuel Load from Radar Remote Sensing
NASA Technical Reports Server (NTRS)
Saatchi, Sassan; Despain, Don G.; Halligan, Kerry; Crabtree, Robert
2007-01-01
Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar imagery acquired over a large area of the Yellowstone National Park (YNP) by the AIRSAR sensor, to estimate the distribution of forest biomass and canopy fuel loads. Semi-empirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, canopy fuel weight, canopy bulk density, and foliage moisture content. These estimates when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy, and when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R(sup 2) = 85 for the canopy fuel weight, R(sup 2)=.84 for canopy bulk density and R(sup 2) = 0.78 for the foliage biomass.
Relation of weather forecasts to the prediction of dangerous forest fire conditions
R. H. Weidman
1923-01-01
The purpose of predicting dangerous forest-fire conditions, of course, is to reduce the great cost and damage caused by forest fires. In the region of Montana and northern Idaho alone the average cost to the United States Forest Service of fire protection and suppression is over $1,000,000 a year. Although the causes of forest fires will gradually be reduced by...
Developing a regional canopy fuels assessment strategy using multi-scale lidar
Peterson, Birgit E.; Nelson, Kurtis
2011-01-01
Accurate assessments of canopy fuels are needed by fire scientists to understand fire behavior and to predict future fire occurrence. A key descriptor for canopy fuels is canopy bulk density (CBD). CBD is closely linked to the structure of the canopy; therefore, lidar measurements are particularly well suited to assessments of CBD. LANDFIRE scientists are exploring methods to integrate airborne and spaceborne lidar datasets into a national mapping effort. In this study, airborne lidar, spaceborne lidar, and field data are used to map CBD in the Yukon Flats Ecoregion, with the airborne lidar serving as a bridge between the field data and the spaceborne observations. The field-based CBD was positively correlated with airborne lidar observations (R2=0.78). Mapped values of CBD using the airborne lidar dataset were significantly correlated with spaceborne lidar observations when analyzed by forest type (R2=0.62, evergreen and R2=0.71, mixed). Though continued research is necessary to validate these results, they do support the feasibility of airborne and, most importantly, spaceborne lidar data for canopy fuels assessment.
NASA Astrophysics Data System (ADS)
Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.
2015-09-01
Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (five year interval) airborne lidar dataset for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved/coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change were estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 year-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a~tree-ring based analysis (1.19 and 1.13 Mg ha-1 year-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire occurrence) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 year-1. This rate reduces by almost a third when fire probability is increased to 0.01, as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space deployment of lidar instruments in the near future could open the way for rolling out wide-scale forest carbon stock monitoring to inform management and governance responses to future environmental change.
Using Landsat to Diagnose Trends in Disturbance Magnitude Across the National Forest System
NASA Astrophysics Data System (ADS)
Hernandez, A. J.; Healey, S. P.; Stehman, S. V.; Ramsey, R. D.
2014-12-01
The Landsat archive is increasingly being used to detect trends in the occurrence of forest disturbance. Beyond information about the amount of area affected, forest managers need to know if and how disturbance severity is changing. For example, the United States National Forest System (NFS) has developed a comprehensive plan for carbon monitoring, which requires a detailed temporal mapping of forest disturbance magnitudes across 75 million hectares. To meet this need, we have prepared multitemporal models of percent canopy cover that were calibrated with extensive field data from the USFS Forest Inventory and Analysis Program (FIA). By applying these models to pre- and post-event Landsat images at the site of known disturbances, we develop maps showing first-order estimates of disturbance magnitude on the basis of cover removal. However, validation activities consistently show that these initial estimates under-estimate disturbance magnitude. We have developed an approach, which quantifies this under-prediction at the landscape level and uses empirical validation data to adjust change magnitude estimates derived from initial disturbance maps. In an assessment of adjusted magnitude trends of NFS' Northern Region from 1990 to the present, we observed significant declines since 1990 (p < .01) in harvest magnitude, likely related to known reduction of clearcutting practices in the region. Fire, conversely, did not show strongly significant trends in magnitude, despite an increase in the overall area affected. As Landsat is used to provide increasingly precise maps of the timing and location of historical forest disturbance, a logical next step is to use the archive to generate widely interpretable and objective estimates of disturbance magnitude.
Ecosystem processes at the watershed scale: mapping and modeling ecohydrological controls
Lawrence E. Band; T. Hwang; T.C. Hales; James Vose; Chelcy Ford
2012-01-01
Mountain watersheds are sources of a set of valuable ecosystem services as well as potential hazards. The former include high quality freshwater, carbon sequestration, nutrient retention, and biodiversity, whereas the latter include flash floods, landslides and forest fires. Each of these ecosystem services and hazards represents different elements of the integrated...
Aerial photo interpretation of understories in two Oregon oak stands.
H. Gyde Lund; George R. Fahnestock; John F. Wear
1967-01-01
Aerial color photography has shown promise for evaluating understory vegetation as a forest-fire fuel. Mapping understory vegetation from special aerial photography produced results reasonably similar to those obtained by an independent ground check. Differences in the methods used in the exploratory work prevented strict comparability, but agreement was close enough...
NASA Technical Reports Server (NTRS)
1992-01-01
NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.
NASA Astrophysics Data System (ADS)
Marzaeva, S. I.; Galtseva, O. V.
2018-05-01
The forest fires spread in the pine forests have been numerically simulated using a three-dimensional mathematical model. The model was integrated with respect to the vertical coordinate because horizontal sizes of forest are much greater than the heights of trees. In this paper, the assignment and theoretical investigations of the problems of crown forest fires spread pass the firebreaks were carried out. In this context, a study ( mathematical modeling) of the conditions of forest fire spreading that would make it possible to obtain a detailed picture of the change in the temperature and component concentration fields with time, and determine as well as the limiting condition of fire propagation in forest with these fire breaks.
Mexican forest fires and their decadal variations
NASA Astrophysics Data System (ADS)
Velasco Herrera, Graciela
2016-11-01
A high forest fire season of two to three years is regularly observed each decade in Mexican forests. This seems to be related to the presence of the El Niño phenomenon and to the amount of total solar irradiance. In this study, the results of a multi-cross wavelet analysis are reported based on the occurrence of Mexican forest fires, El Niño and the total solar irradiance for the period 1970-2014. The analysis shows that Mexican forest fires and the strongest El Niño phenomena occur mostly around the minima of the solar cycle. This suggests that the total solar irradiance minima provide the appropriate climatological conditions for the occurrence of these forest fires. The next high season for Mexican forest fires could start in the next solar minimum, which will take place between the years 2017 and 2019. A complementary space analysis based on MODIS active fire data for Mexican forest fires from 2005 to 2014 shows that most of these fires occur in cedar and pine forests, on savannas and pasturelands, and in the central jungles of the Atlantic and Pacific coasts.
Meteorological factors in the Quartz Creek forest fire
H. T. Gisborne
1927-01-01
It is not often that a large forest fire occurs conveniently near a weather station specially equipped for measuring forest-fire weather. The 13,000-acre Quartz Creek fire on the Kaniksu National Forest during the summer of 1936 was close enough to the Priest River Experimental Forest of the Northern Rocky Mountain Forest Experiment Station for the roar of the flumes...
Understorey fire frequency and the fate of burned forests in southern Amazonia.
Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C
2013-06-05
Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.
Understorey fire frequency and the fate of burned forests in southern Amazonia
Morton, D. C.; Le Page, Y.; DeFries, R.; Collatz, G. J.; Hurtt, G. C.
2013-01-01
Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km2 between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169
Fire ecology of the forest habitat types of northern Idaho
Jane Kapler Smith; William C. Fischer
1997-01-01
Provides information on fire ecology in forest habitat and community types occurring in northern Idaho. Identifies fire groups based on presettlement fire regimes and patterns of succession and stand development after fire. Describes forest fuels and suggests considerations for fire management.
Fire ecology of the forest habitat types of central Idaho
M. F. Crane; William C. Fischer
1986-01-01
Discusses fire as an ecological factor for forest habitat types occurring in central Idaho. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Considerations for fire management are suggested.
Short- and long-term effects of fire on carbon in US dry temperate forest systems
Hurteau, Matthew D.; Brooks, Matthew L.
2011-01-01
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.
Satellite Analysis of the Severe 1987 Forest Fires in Northern China and Southeastern Siberia
NASA Technical Reports Server (NTRS)
Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.
1994-01-01
Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.
Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia
NASA Technical Reports Server (NTRS)
Cahoon, Donald R, Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.
1994-01-01
Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.
Alan H. Taylor; Carl N. Skinner
2003-01-01
Fire exclusion in mixed conifer forests has increased the risk of fire due to decades of fuel accumulation. Restoration of fire into altered forests is a challenge because of a poor understanding of the spatial and temporal dynamics of fire regimes. In this study the spatial and temporal characteristics of fire regimes and forest age structure are reconstructed in a...
Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA
Jessica L. Hudec; David L. Peterson
2012-01-01
Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...
NASA Astrophysics Data System (ADS)
Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier
2017-06-01
Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.
A second-order impact model for forest fire regimes.
Maggi, Stefano; Rinaldi, Sergio
2006-09-01
We present a very simple "impact" model for the description of forest fires and show that it can mimic the known characteristics of wild fire regimes in savannas, boreal forests, and Mediterranean forests. Moreover, the distribution of burned biomasses in model generated fires resemble those of burned areas in numerous large forests around the world. The model has also the merits of being the first second-order model for forest fires and the first example of the use of impact models in the study of ecosystems.
Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States
Busing, Richard T.; Solomon, Allen M.
2006-01-01
This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.
Assessment of Post Forest Fire Landslides in Uttarakhand Himalaya, India
NASA Astrophysics Data System (ADS)
Sharma, N.; Singh, R. B.
2017-12-01
According to Forest Survey of India-State Forest Report (2015), the total geographical area of Uttarakhand is 53, 483 covers km2 out of which 24,402 km2 area covers under total forest covers. As noticed during last week of April, 2016 forest of Uttarakhand mountains was gutted down due to major incidences of fire. This incident caused huge damage to different species of flora-fauna, human being, livestock, property and destruction of mountain ecosystem. As per media reports, six people were lost their lives and recorded several charred carcasses of livestock's due to this incident. The forest fire was affected the eleven out of total thirteen districts which roughly covers the 0.2% (approx.) of total vegetation covers.The direct impact of losses are easy to be estimated but indirect impacts of this forest fire are yet to be occurred. The threat of post Forest fire induced landslides during rainfall is themain concern. Since, after forest fire top soil and rocks are loose due to loss of vegetation as binding and protecting agent against rainfall. Therefore, the pore water pressure and weathering will be very high during rainy season which can cause many landslides in regions affected by forest fire. The demarcation of areas worse affected by forest fire is necessary for issuing alerts to habitations and important infrastructures. These alerts will be based upon region specific probable rainfall forecasting through Indian Meteorological Department (IMD). The main objective is to develop a tool for detecting early forest fire and to create awareness amongst mountain community, researchers and concerned government agencies to take an appropriate measures to minimize the incidences of Forest fire and impact of post forest fire landslides in future through implementation of sustainable mountain strategy.
NASA Astrophysics Data System (ADS)
Sampath, A.; Bhatt, U. S.; Bieniek, P.; York, A.; Peng, P.; Brettschneider, B.; Thoman, R.; Jandt, R.; Ziel, R.; Branson, G.; Strader, M. H.; Alden, M. S.
2017-12-01
The summer 2004 and 2015 wildfires in Alaska were the two largest fire seasons on record since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned while the 2015 wildfire season resulted in 5.2 million acres burned. In addition to the logistical cost of fighting fires and the loss of infrastructure, wildfires also lead to dangerous air quality in Alaska. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Advanced weather/climate outlooks for allocating staff and resources from days to a season are particularly needed by fire managers. However, there are no operational seasonal products currently for the Alaska region. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Earlier insight of both lightening and fuel conditions would assist fire managers in planning resource allocation for the upcoming season. For fuel conditions, the state-of-the-art NMME (1982-2017) climate predictions were used to compute the Canadian Forest Fire Weather Index System (CFFWIS). The CFFWIS is used by fire managers to forecast forest fires in Alaska. NMME forecast (March and May) based Buildup Index (BUI) values were underestimated compared to BUI based on reanalysis and station data, demonstrating the necessity for bias correction. Post processing of NMME data will include bias correction using the quantile mapping technique. This study will provide guidance as to the what are the best available products for anticipating the fire season.
Mapping forest canopy fuels in Yellowstone National Park using lidar and hyperspectral data
NASA Astrophysics Data System (ADS)
Halligan, Kerry Quinn
The severity and size of wildland fires in the forested western U.S have increased in recent years despite improvements in fire suppression efficiency. This, along with increased density of homes in the wildland-urban interface, has resulted in high costs for fire management and increased risks to human health, safety and property. Crown fires, in comparison to surface fires, pose an especially high risk due to their intensity and high rate of spread. Crown fire models require a range of quantitative fuel parameters which can be difficult and costly to obtain, but advances in lidar and hyperspectral sensor technologies hold promise for delivering these inputs. Further research is needed, however, to assess the strengths and limitations of these technologies and the most appropriate analysis methodologies for estimating crown fuel parameters from these data. This dissertation focuses on retrieving critical crown fuel parameters, including canopy height, canopy bulk density and proportion of dead canopy fuel, from airborne lidar and hyperspectral data. Remote sensing data were used in conjunction with detailed field data on forest parameters and surface reflectance measurements. A new method was developed for retrieving Digital Surface Model (DSM) and Digital Canopy Models (DCM) from first return lidar data. Validation data on individual tree heights demonstrated the high accuracy (r2 0.95) of the DCMs developed via this new algorithm. Lidar-derived DCMs were used to estimate critical crown fire parameters including available canopy fuel, canopy height and canopy bulk density with linear regression model r2 values ranging from 0.75 to 0.85. Hyperspectral data were used in conjunction with Spectral Mixture Analysis (SMA) to assess fuel quality in the form of live versus dead canopy proportions. Severity and stage of insect-caused forest mortality were estimated using the fractional abundance of green vegetation, non-photosynthetic vegetation and shade obtained from SMA. Proportion of insect attack was estimated with a linear model producing an r2 of 0.6 using SMA and bark endmembers from image and reference libraries. Fraction of red attack, with a possible link to increased crown fire risk, was estimated with an r2 of 0.45.
Ager, Alan A; Day, Michelle A; Vogler, Kevin
2016-07-01
We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results revealed that attainment of multiple restoration objectives was constrained due to the joint spatial patterns of ecological conditions and socioeconomic values. We also found that current restoration projects are substantially suboptimal, perhaps the result of compromises in the collaborative planning process used by federal planners, or operational constraints on forest management activities. The juxtaposition of ecological settings with human values generated sharp tradeoffs, especially with respect to community wildfire protection versus generating revenue to support restoration and fire protection activities. The analysis and methods can be leveraged by ongoing restoration programs in many ways including: 1) integrated prioritization of restoration activities at multiple scales on public and adjoining private lands, 2) identification and mapping of conflicts between ecological restoration and socioeconomic objectives, 3) measuring the efficiency of ongoing restoration projects compared to the optimal production possibility frontier, 4) consideration of fire transmission among public and private land parcels as a prioritization metric, and 5) finding socially optimal regions along the production frontier as part of collaborative restoration planning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paulo Barbosa; Andrea Camia; Jan Kucera; Giorgio Libertá; Ilaria Palumbo; Jesus San-Miguel-Ayanz; Guido Schmuck
2009-01-01
An analysis on the number of forest fires and burned area distribution as retrieved by the European Forest Fire Information System (EFFIS) database is presented. On average, from 2000 to 2005 about...
Natural and social factors influencing forest fire occurrence at a local spatial scale
Maria Luisa Chas-Amil; Julia M. Touza; Jeffrey P. Prestemon; Colin J. McClean
2012-01-01
Development of efficient forest fire policies requires an understanding of the underlying reasons behind forest fire ignitions. Globally, there is a close relationship between forest fires and human activities, i.e., fires understood as human events due to negligence (e.g., agricultural burning escapes), and deliberate actions (e.g., pyromania, revenge, land use change...
Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla
2011-01-01
Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...
Fire risk in east-side forests.
Valerie. Rapp
2002-01-01
Wildfire was a natural part of ecosystems in east-side Oregon and Washington before the 20th century. The fire regimes, or characteristic patterns of firehow often, how hot, how big, what time of yearhelped create and maintain various types of forests.Forests are dynamic, and fire interacts with other ecological processes. Fires, forests...
NASA Astrophysics Data System (ADS)
French, N. H.; Erickson, T.; McKenzie, D.
2008-12-01
A major goal of the North American Carbon Program is to resolve uncertainties in understanding and managing the carbon cycle of North America. As carbon modeling tools become more comprehensive and spatially oriented, accurate datasets to spatially quantify carbon emissions from fire are needed, and these data resources need to be accessible to users for decision-making. Under a new NASA Carbon Cycle Science project, Drs. Nancy French and Tyler Erickson, of the Michigan Technological University, Michigan Tech Research Institute (MTRI), are teaming with specialists with the USDA Forest Service Fire and Environmental Research Applications (FERA) team to provide information for mapping fire-derived carbon emissions to users. The project focus includes development of a web-based system to provide spatially resolved fire emissions estimates for North America in a user-friendly environment. The web-based Decision Support System will be based on a variety of open source technologies. The Fuel Characteristic Classification System (FCCS) raster map of fuels and MODIS-derived burned area vector maps will be processed using the Geographic Data Abstraction Library (GDAL) and OGR Simple Features Library. Tabular and spatial project data will be stored in a PostgreSQL/PostGIS, a spatially enabled relational database server. The browser-based user interface will be created using the Django web page framework to allow user input for the decision support system. The OpenLayers mapping framework will be used to provide users with interactive maps within the browser. In addition, the data products will be made available in standard open data formats such as KML, to allow for easy integration into other spatial models and data systems.
NASA Astrophysics Data System (ADS)
Hoffman, K.; Lertzman, K. P.; Starzomski, B. M.
2016-12-01
Anthropogenic burning is considered to have little impact on coastal temperate rainforest fire regimes in the Pacific Northwest (PNW) of North America, yet few long-term fire histories have been reconstructed in these forests. We use a multidisciplinary approach to reconstruct the ecological impact, scale, and legacies of historic fire regime variability in high-latitude coastal temperate rainforests located in British Columbia, Canada. We map seven centuries of fire activity with fire scars and records of stand establishment, and examine patterns in the distribution and composition of vegetation to assess whether fire was historically used as a tool for resource management. We conduct a paired study of 20 former Indigenous habitation and control sites across a 100 km2 island group to relate historic fire activity with long-term patterns of human land use and contemporary lightning strike densities. Fires were significantly associated with the locations of former Indigenous habitation sites, low and mixed in severity, and likely intentionally used to influence the composition and structure of vegetation, thus increasing the productivity of culturally important plants such as western redcedar, berry-producing shrubs, and bracken fern. Centuries of repeated anthropogenic burning have resulted in a mosaic of vegetation types in different stages of succession. These data are directly relevant to the management of contemporary forests as they do not support the widespread contention that old growth coastal temperate rainforests in this region are pristine landscapes where fire is rare, but more likely the result of long-term human land use practices.
NASA Astrophysics Data System (ADS)
Galgamuwe Arachchige, Pabodha Galgamuwa
Recurrent, landscape-level fires played an integral part in the development and persistence of eastern oak (Quercus spp.) forests of the United States. These periodic surface fires helped secure a competitive position for oaks in the regeneration pool by maintaining a desirable species composition and forest structure. This historical fire regime was altered with the European settlement of North America, and fire suppression within forestlands became a standard practice since 1930s. With decades of fire suppression, mature oak-dominated woodlands have widely converted to shade-tolerant tree species. Prescribed fire has successfully been used to enhance oak regeneration in eastern forests. However, oak woodland restoration within the forest-prairie ecotone of the Central plains has not been systematically studied. Fuel beds under shade-tolerant species are often less conducive to fire. Therefore, monitoring fuel loading (FL) and its changes are essential to inform management decisions in an oak regeneration project. Rapid expansion of eastern redcedar (Juniperus virginiana/ERC) is another ecological issue faced by land managers throughout North America's midcontinent forest-prairie ecotone. Hence, it is worthy to monitor ERC expansion and effects on deciduous forests, to inform oak ecosystem restoration interventions within this region. Therefore, the main objectives of this dissertation were three-fold: (1) understand the effects of prescribed burning and mechanical thinning to encourage oak regeneration; (2) investigate the initial effects of an oak regeneration effort with prescribed fire and mechanical thinning on FL; and (3) monitor the spatio-temporal dynamics of ERC expansion in the forest-prairie ecotone of Kansas, and understand its effects on deciduous forests. The first two studies were conducted on a 90-acre oak dominated woodland, north of Manhattan, Kansas. The experimental design was a 2 (burn) x 2 (thin) factorial in a repeated measures design. The design structure allowed four treatment combinations: burn only (B), thin only (T), burn and thin combined (BT), and a control (C). Burning and thinning treatments were administered in spring 2015. Changes in the FL estimates after the burn treatment revealed that the BT treatment combination consumed more fuel and burned more intensely compared to the B treatment. This observation was reflected in vegetation responses. The thinning reduced the canopy cover significantly, but under enhanced light environments, both oaks and competitive species thrived when no burn was incorporated. In contrast, burn treatments controlled the competitive vegetation. Hence, the most promising results were obtained when both fire and thinning were utilized. The remote sensing study documented the expansion of ERC in three areas of eastern Kansas over 30 years. The use of multi-seasonal layer-stacks with a Support Vector Machines (SVM) supervised classification was found to be the most effective approach to map ERC distribution. Total ERC cover increased by more than 6000 acres in all three study areas investigated in this study between 1986 and 2017. Much of the ERC expansion was into deciduous woodlands. Therefore, ERC control measures should be incorporated into oak woodland restoration efforts within the forest-prairie ecotone of Kansas.
Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.
2015-01-01
Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... uncharacteristicly high-severity wild fires, which can lead to loss of entire stands during one fire event. About 67..., fire, and wind. The purpose of the project is to restore forest health, move forests toward an uneven-aged forest structure with all age classes represented, and restore frequent, periodic surface fire as...
Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos
NASA Astrophysics Data System (ADS)
Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.
2014-08-01
Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.
NASA Astrophysics Data System (ADS)
Waigl, C. F.; Prakash, A.; Stuefer, M.; Ichoku, C. M.
2016-12-01
The aim of this work is to present and evaluate an algorithm that generates near real-time fire detections suitable for use by fire and related hazard management agencies in Alaska. Our scheme offers benefits over available global products and is sensitive to low-intensity residual burns while at the same time avoiding common sources of false detections as they are observed in the Alaskan boreal forest, such as refective river banks and old fire scars. The algorithm is based on I-band brightness temperature data form the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NOAA's NPP Suomi spacecraft. Using datasets covering the entire 2015 Alaska fire season, we first evaluate the performance of two global fire products: MOD14/MYD14, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the more recent global VIIRS I-band product. A comparison with the fire perimeter and properties data published by the Alaska Interagency Coordination Center (AICC) shows that both MODIS and VIIRS fire products successfully detect all fires larger than approx. 1000 hectares, with the VIIRS I-band product only moderately outperforming MOD14/MYD14. For smaller fires, the VIIRS I-band product offers higher detection likelihood, but still misses one fifth of the fire events overall. Furthermore, some daytime detections are missing, possibly due to processing difficulties or incomplete data transfer. Second, as an alternative, we present a simple algorithm that uses the normalized difference between the 3.74µm and 11.45 µm VIIRS-I band at-sensor brightness temperatures to map both low- and high-intensity burn areas. Such an approach has the advantage that it makes use of data that is available via the direct readout station operated by Geographic Information Network of Alaska (GINA). We apply this scheme to known Alaskan boreal forest fires and validate it using GIS data produced by fire management agencies, fire detections from near simultanous Landsat imagery, and sub-pixel analysis. We find that our VIIRS derived fire product more accurately captures the fire spread, can differentiate well between low- and high-intensity burn areas, and has fewer errors of omission compared to the MODIS and VIIRS global fire products.
Alternative characterization of forest fire regimes: incorporating spatial patterns
Brandon M. Collins; Jens T. Stevens; Jay D. Miller; Scott L. Stephens; Peter M. Brown; Malcolm P. North
2017-01-01
ContextThe proportion of fire area that experienced stand-replacing fire effects is an important attribute of individual fires and fire regimes in forests, and this metric has been used to group forest types into characteristic fire regimes. However, relying on proportion alone ignores important spatial characteristics...
NASA Astrophysics Data System (ADS)
Zegrar, Ahmed
2010-05-01
The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), witch leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region named TLEMCEN in the north west of Algeria. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a GIS according to a very determined logic allowed classifying the zones in degree of risk of fire in semi arid zone witch forest zone not encouraging the regeneration but permitting the installation of cash of steppe which encourages the desertification.
Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada
NASA Astrophysics Data System (ADS)
Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.
2017-09-01
Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.
Electrical Resistivity Tomography for coal fire mapping over Jharia coal field, India
NASA Astrophysics Data System (ADS)
Pal, S. K.; Kumar, S.; Bharti, A. K.; Pathak, V. K.; Kumar, R.
2016-12-01
Over the decades, coal fires are serious global concern posing grievous hazards to the valuable energy resources, local environments and human life. The coal seam and coal mine fires may be initiated due to improper mining activities, exothermic reactions, lighting, forest fire and other anthropic activities, which burn the coal and may continue underground for decades. The burning of concealed coal seams is a complex process involving numerous ill-defined parameters. Generally, the coal exhibits resistivity of 100 to 500Ωm at normal temperature conditions. During the pyrolysis process, at temperatures greater than 6500C coal became a good conductor with a resistivity of approximately 1 Ωm. The present study deals with the mapping of coal fire over Jharia coal field, India using Electrical Resistivity Tomography (ERT). A state-of-the-art 61-channel 64 electrode FlashRES-Universal ERT data acquisition system has been used for data acquisition in the field. The ERT data have been collected using Gradient array and processed in FlashRES Universal survey data checking program for removing noisy data. Then, filtered output data have been inverted using a 2.5D resistivity inversion program. Low resistivity anomalies over 80m-125m and 320m-390m along the profile are inferred to be active coal fire in seam- XVI at a depth of 25m -35m(Figure 1). High resistivity anomaly over 445m - 510m at a depth of 25m -35m has been delineated, due to void associated with complete combustion of seam- XVI coal, followed by char and ash formation resulting from the coal seam fire. Results prove the efficacy of the ERT study comprising Gradient array for coal fire mapping over, Jharia coal field, India.
NASA Astrophysics Data System (ADS)
Cheng, C. H.; Huang, Y. H.; Chung-Yu, L.; Menyailo, O.
2016-12-01
Fire is one of the most important disturbances in ecosystems. Fire rapidly releases stored carbon into atmosphere and also plays critical roles on soil properties, light and moisture regimes, and plant structures and communities. With the interventions of climate change and human activities, fire regimes become more severe and frequent. In many parts of world, forest fire regimes can be further altered by grass invasion because the invasive grasses create a positive feedback cycle through their rapid recovery after fires and their high flammability during dry periods and allow forests to be burned repeatedly in a relatively short time. For such invasive grass-fire cycle, a great change of native vegetation community can occur. In this study, we examined a C4 invasive grass () fire-induced forest/grassland gradient to quantify the changes of net primary production (NPP) and net ecosystem production (NEP) from an unburned forest to repeated fire grassland. Our results demonstrated negative effects of repeated fires on NPP and NEP. Within 4 years of the onset of repeated fires on the unburned forest, NPP declined by 14%, mainly due to the reduction in aboveground NPP but offset by increase of belowground NPP. Subsequent fires cumulatively caused reductions in both aboveground and belowground NPP. A total of 40% reduction in the long-term repeated fire induced grassland was found. Soil respiration rate were not significantly different along the forest/grassland gradient. Thus, a great reduction in NEP were shown in grassland, which shifted from 4.6 Mg C ha-1 yr-1 in unburnt forest to -2.6 Mg C ha-1 yr-1. Such great losses are critical within the context of forest carbon cycling and long-term sustainability. Forest management practices that can effectively reduce the likelihood of repeated fires and consequent likelihood of establishment of the grass fire cycle are essential for protecting the forest.
Pellegrini, Adam F A; Franco, Augusto C; Hoffmann, William A
2016-03-01
Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought-fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire-driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2-million km(2) Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait-based differences in fire tolerance is critical for determining the climate-carbon-fire feedback in tropical savanna and forest biomes. © 2015 John Wiley & Sons Ltd.
Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA
Brandon M. Collins; Gary B. Roller
2013-01-01
There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire....
NASA Astrophysics Data System (ADS)
Gorsevski, Virginia B.
The Imatong Mountain region of South Sudan makes up the northern most part of the Afromontane conservation 'biodiversity hotspot' due to the numerous species of plants and animals found here, some of which are endemic. At the same time, this area (including the nearby Dongotana Hills and the Agoro-Agu region of northern Uganda) has witnessed decades of armed conflict resulting from the Sudan Civil War and the presence of the Ugandan Lord's Resistance Army (LRA). The objective of my research was to investigate the impact of war on land use and land cover using a combination of satellite remote sensing data and semi-structured interviews with local informants. Specifically, I sought to (1) assess and compare changes in forest cover and location during both war and peace; (2) compare trends in fire activity with human population patterns; and (3) investigate the underlying causes influencing land use patterns related to war. I did this by using a Disturbance Index (DI), which isolates un-vegetated spectral signatures associated with deforestation, on Landsat TM and ETM+ data in order to compare changes in forest cover during conflict and post-conflict years, mapping the location and frequency of fires in subsets of the greater study area using MODIS active fire data, and by analyzing and summarizing information derived from interviews with key informants. I found that the rate of forest recovery was significantly higher than the rate of disturbance both during and after wartime in and around the Imatong Central Forest Reserve (ICFR) and that change in net forest cover remained largely unchanged for the two time periods. In contrast, the nearby Dongotana Hills experienced relatively high rates of disturbance during both periods; however, post war period losses were largely offset by gains in forest cover, potentially indicating opposing patterns in human population movements and land use activities within these two areas. For the Agoro-Agu Forest Reserve (AFR) region northern Uganda, the rate of forest recovery was much higher during the second period, coinciding with the time people began leaving overcrowded Internally Displaced Persons (IDP) camps. I also found that fire activity largely corresponded to coarse-scale human population trends on the South Sudan and northern Uganda side of the border in that post-war fire activity decreased for all areas in South Sudan and northern Uganda except for areas near the larger towns and villages of South Sudan, where people have begun to resettle. Fires occurred most frequently in woodlands on the South Sudan side, while the greatest increase in post-war, northern Ugandan fires occurred in croplands and the forested area around the Agoro-Agu reserve, Interviews with key informants revealed that while some people fled the area during the war, many others remained in the forest to hide; however, their impact on the forests during and after the conflict has been minimal; in contrast, those interviewed believed that wildlife has been largely depleted due to the widespread access to firearms and lack of regulations and enforcement. This study demonstrates the utility of using a multi-disciplinary approach to examine aspects of forest dynamics and fire activity related to human activities and conflict and as such contributes to the nascent but growing body of research on armed conflict and the environment.
Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers
NASA Astrophysics Data System (ADS)
Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.
2017-12-01
Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.
Effects of fire on small mammal communities in frequent-fire forests in California
Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.
2015-01-01
Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.
D. Craig Rudolph; Charles A. Ely
2000-01-01
Transect surveys were used to examine the influence of fire on lepidopteran communities (Papilionoidea and Hesperioidea) in forested habitats in eastern Texas. Lepidopteran abundance was greater in pine forests where prescribed fire maintained an open mid- and understory compared to forests where fire had less impact on forest structure. Ahundance of nectar sources...
van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.
2011-01-01
The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.
Latent resilience in ponderosa pine forest: effects of resumed frequent fire.
Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S
2013-09-01
Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.
Angela White; Patricia Manley; Gina Tarbill; T. W. Richardson; R. E. Russell; H. D. Safford; S. Z. Dobrowski
2016-01-01
Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire...
NASA Astrophysics Data System (ADS)
Zegrar, Ahmed
The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), who leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region of Tlemcen. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. we identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a SIG according to a very determined logic allowed to classify the zones in degree of risk of fire in a middle arid in a forest zone not encouraging the regeneration on the other hand permitting the installation of cash of steppe which encourages the desertification.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Y. J.; Fraser, R. H.; Jin, J.-Z.; Park, W. M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.
Human relationships to fire prone ecosystems: Mapping values at risk on contested landscapes
Kari Gunderson; Steve Carver; Brett H. Davis
2011-01-01
A key problem in developing a better understanding of different responses to landscape level management actions, such as fuel treatments, is being able to confidently record and accurately spatially delineate the meanings stakeholders ascribe to the landscape. To more accurately understand these relationships with the Bitterroot National Forest, Montana, U.S.A., local...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Feng R.; Meng, Ran; Huang, Chengquan
Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less
Zhao, Feng R.; Meng, Ran; Huang, Chengquan; ...
2016-10-29
Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less
Thirty-Two Years of Forest Service Research at the Southern Forest Fire Laboratory in Macon, GA
USDA Forest Service
1991-01-01
When completed in 1959, the Southern Forest Fire Laboratory was the world?s first devoted entirely to the study of forest fires, Since then the scientists at the Laboratory have: 1) performed basic and applied research on critical fire problems of national interest, 2) conducted special regional research on fire problems peculiar to the 13 Southern States, and 3)...
Amanda B. Stan; Peter Z. Fule; Kathryn B. Ireland; Jamie S. Sanderlin
2014-01-01
Forests on tribal lands in the western United States have seen the return of low-intensity surface fires for several decades longer than forests on non-tribal lands. We examined the surface fire regime in a ponderosa pinedominated (Pinus ponderosa) forest on the Hualapai tribal lands in the south-western United States. Using fire-scarred trees, we inferred temporal (...
Simulations of Forest Fires by the Cellular Automata Model "ABBAMPAU"
NASA Astrophysics Data System (ADS)
di Gregorio, S.; Bendicenti, E.
2003-04-01
Forest fires represent a serious environmental problem, whose negative impact is becoming day by day more worrisome. Forest fires are very complex phenomena; that need an interdisciplinary approach. The adopted method to modelling involves the definition of local rules, from which the global behaviour of the system can emerge. The paradigm of Cellular Automata was applied and the model ABBAMPAU was projected to simulate the evolution of forest fires. Cellular Automata features (parallelism and a-centrism) seem to match the system "forest fire"; the parameters, describing globally a forest fire, i.e. propagation rate, flame length and direction, fireline intensity, fire duration time et c. are mainly depending on some local characteristics i.e. vegetation type (live and dead fuel), relative humidity, fuel moisture, heat, territory morphology (altitude, slope), et c.. The only global characteristic is given by wind velocity and direction, but wind velocity and direction is locally altered according to the morphology; therefore wind has also to be considered at local level. ABBAMPAU accounts for the following aspects of the phenomenon: effects of combustion in surface and crown fire inside the cell, crown fire triggering off; surface and crown fire spread, determination of the local wind rate and direction. A validation of ABBAMPAU was tested on a real case of forest fire, in the territory of Villaputzu, Sardinia island, August 22nd, 1998. First simulations account for the main characteristics of the phenomenon and agree with the observations. The results show that the model could be applied for the forest fire preventions, the productions of risk scenarios and the evaluation of the forest fire environmental impact.
Space Radar Image of Yellowstone Park, Wyoming
NASA Technical Reports Server (NTRS)
1994-01-01
These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow indicates areas of canopy burn and mixed burn with a biomass of between 12 to 20 tons per hectare; light green is mixed burn and on-burn forest with a biomass of 20 to 35 tons per hectare; and green is non-burned forest with a biomass of greater than 35 tons per hectare. Forest recovery from the fire seems to depend on fire intensity and soil conditions. In areas of severe canopy burn and poor soil conditions, crown biomass was still low in 1994 (indicated by the brown areas at the center left), whereas in areas of mixed burn with nutrient-rich soils, seen west of Yellowstone Lake, crown biomass has increased significantly in six years (indicated by the yellow and light green areas). Imaging fire-affected regions with spaceborne radar illustrates SIR-C/X-SAR's keen abilities to monitor regrowth after a fire. Knowing the amount of carbon accumulated in the atmosphere by regenerating forest in the 20 to 50 years following a fire disturbance is also a significant factor in understanding the global carbon cycle. Measuring crown biomass is necessary to evaluate the effects of past and future fires in specific regions. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) are part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm), and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes that are caused by nature and those changes that are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.
Mapping Disturbance Dynamics in Wet Sclerophyll Forests Using Time Series Landsat
NASA Astrophysics Data System (ADS)
Haywood, A.; Verbesselt, J.; Baker, P. J.
2016-06-01
In this study, we characterised the temporal-spectral patterns associated with identifying acute-severity disturbances and low-severity disturbances between 1985 and 2011 with the objective to test whether different disturbance agents within these categories can be identified with annual Landsat time series data. We analysed a representative State forest within the Central Highlands which has been exposed to a range of disturbances over the last 30 years, including timber harvesting (clearfell, selective and thinning) and fire (wildfire and prescribed burning). We fitted spectral time series models to annual normal burn ratio (NBR) and Tasseled Cap Indices (TCI), from which we extracted a range of disturbance and recovery metrics. With these metrics, three hierarchical random forest models were trained to 1) distinguish acute-severity disturbances from low-severity disturbances; 2a) attribute the disturbance agents most likely within the acute-severity class; 2b) and attribute the disturbance agents most likely within the low-severity class. Disturbance types (acute severity and low-severity) were successfully mapped with an overall accuracy of 72.9 %, and the individual disturbance types were successfully attributed with overall accuracies ranging from 53.2 % to 64.3 %. Low-severity disturbance agents were successfully mapped with an overall accuracy of 80.2 %, and individual agents were successfully attributed with overall accuracies ranging from 25.5 % to 95.1. Acute-severity disturbance agents were successfully mapped with an overall accuracy of 95.4 %, and individual agents were successfully attributed with overall accuracies ranging from 94.2 % to 95.2 %. Spectral metrics describing the disturbance magnitude were more important for distinguishing the disturbance agents than the post-disturbance response slope. Spectral changes associated with planned burning disturbances had generally lower magnitudes than selective harvesting. This study demonstrates the potential of landsat time series mapping for fire and timber harvesting disturbances at the agent level and highlights the need for distinguishing between agents to fully capture their impacts on ecosystem processes.
Fire-mediated dieback and compositional cascade in an Amazonian forest.
Barlow, Jos; Peres, Carlos A
2008-05-27
The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.
Kip Van de Water; Malcolm North
2011-01-01
Fire plays an important role in shaping many Sierran coniferous forests, but longer fire return intervals and reductions in area burned have altered forest conditions. Productive, mesic riparian forests can accumulate high stem densities and fuel loads, making them susceptible to high-severity fire. Fuels treatments applied to upland forests, however, are...
Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete
2015-01-01
Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.
Fire regime in a Mexican forest under indigenous resource management.
Fulé, Peter Z; Ramos-Gómez, Mauro; Cortés-Montaño, Citlali; Miller, Andrew M
2011-04-01
The Rarámuri (Tarahumara) people live in the mountains and canyons of the Sierra Madre Occidental of Chihuahua, Mexico. They base their subsistence on multiple-use strategies of their natural resources, including agriculture, pastoralism, and harvesting of native plants and wildlife. Pino Gordo is a Rarámuri settlement in a remote location where the forest has not been commercially logged. We reconstructed the forest fire regime from fire-scarred trees, measured the structure of the never-logged forest, and interviewed community members about fire use. Fire occurrence was consistent throughout the 19th and 20th centuries up to our fire scar collection in 2004. This is the least interrupted surface-fire regime reported to date in North America. Studies from other relict sites such as nature reserves in Mexico or the USA have all shown some recent alterations associated with industrialized society. At Pino Gordo, fires recurred frequently at the three study sites, with a composite mean fire interval of 1.9 years (all fires) to 7.6 years (fires scarring 25% or more of samples). Per-sample fire intervals averaged 10-14 years at the three sites. Approximately two-thirds of fires burned in the season of cambial dormancy, probably during the pre-monsoonal drought. Forests were dominated by pines and contained many large living trees and snags, in contrast to two nearby similar forests that have been logged. Community residents reported using fire for many purposes, consistent with previous literature on fire use by indigenous people. Pino Gordo is a valuable example of a continuing frequent-fire regime in a never-harvested forest. The Rarámuri people have actively conserved this forest through their traditional livelihood and management techniques, as opposed to logging the forest, and have also facilitated the fire regime by burning. The data contribute to a better understanding of the interactions of humans who live in pine forests and the fire regimes of these ecosystems, a topic that has been controversial and difficult to assess from historical or paleoecological evidence.
Disturbance and productivity interactions mediate stability of forest composition and structure.
O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P
2017-04-01
Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We demonstrate that the very different ecological process of fire exclusion can produce similar changes by shifting selective pressures from disturbance-mediated to productivity-mediated controls. Restoring disturbance-adapted species composition and structure to intermediate productivity forests may help to buffer them against projected increasing temperatures, lengthening fire seasons, and more frequent and prolonged moisture stress. Fewer management options are available to promote adaptation in forest assemblages historically constrained by underlying site productivity. © 2016 by the Ecological Society of America.
Saab, Victoria A.; Powell, Hugo D.W.; Kotliar, Natasha B.; Newlon, Karen R.; Saab, Victoria A.; Powell, Hugo D.W.
2005-01-01
Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fi r (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species’ responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is urgent if we are to develop fire management strategies that reduce fire risk and maintain habitat for avifauna and other wildlife of the Rocky Mountains.
Saab, V.A.; Powell, Hugo D.W.; Kotliar, N.B.; Newlon, K.R.
2005-01-01
Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fir (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species' responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is urgent if we are to develop fire management strategies that reduce fire risk and maintain habitat for avifauna and other wildlife of the Rocky Mountains.
Podur, Justin J; Martell, David L
2009-07-01
Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.
Mathematical modeling of forest fire initiation in three dimensional setting
Valeriy Perminov
2007-01-01
In this study, the assignment and theoretical investigations of the problems of forest fire initiation were carried out, including development of a mathematical model for description of heat and mass transfer processes in overterrestrial layer of atmosphere at crown forest fire initiation, taking into account their mutual influence. Mathematical model of forest fire...
Measurements of forest fire danger
Leo Shames
1938-01-01
Although the annual destruction of life and property attributable to forest fires is enormous, scientific methods of forest fire control in the United States are of comparatively recent origin. In one important phase of control, that of determining how large a network of observers is necessary for the purpose of discovering forest fires in their infancy, accurate means...
Fire regimes and approaches for determining fire history
James K. Agee
1996-01-01
Fire has been an important evolutionary influence in forests, affecting species composition, structure, and functional aspects of forest biology. Restoration of wildland forests of the future will depend in part on restoring fire to an appropriate role in forest ecosystems. This may include the "range of natural variability" or other concepts associated with...
Strategy for increasing the participation of masyarakat peduli api in forest fire control
NASA Astrophysics Data System (ADS)
Ni’mah, N. L. K.; Herdiansyah, H.; Soesilo, T. E. B.; Mutia, E. F.
2018-03-01
Forest fires have negative impact on ecology, health, and damage economic activities. One of conservation areas facing the threat of forest fire is Gunung Ciremai National Park. This research aims to formulate a strategy to increase the participation of Masyarakat Peduli Api in the effort of forest fire control. This research use quantitative method with SWOT analysis. Expert consisting of representatives from the national park, Ministry of Environment and Forestry, and BPBD Kuningan Regency. An alternative strategy based on SWOT analysis is in quadrant 1 with coordinate point (0,39; 1,23). The position shows that sustainability of national park management through forest fire control can be done with an aggressive strategy. That is maximizing the strength that is owned with its potential as an ecotourism area to increase community motivation to engage in forest fire control activities. Provision of tourism management licenses will create employment opportunities and increase income for the community so it is expected to increase community participation to prevent the occurrence of forest fires rather than forest fire prevention.
Effects of prescribed fire on wintering, bark-foraging birds in northern Arizona
Theresa L. Pope
2006-01-01
Forest management practices of the past century have led to an increase in unnatural and destructive crown fires in ponderosa pine (Pinus ponderosa) forests of the southwest. To combat large fires, forest managers are attempting to simulate past fire regimes of low-intensity surface fires using prescribed fire. While there have been many studies...
Disturbance and productivity interactions mediate stability of forest composition and structure
Christopher D. O' Connor; Donald A. Falk; Ann M. Lynch; Thomas W. Swetnam; Craig P. Wilcox
2017-01-01
Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with...
NASA Astrophysics Data System (ADS)
Park, S. H.; Park, W.; Jung, H. S.
2018-04-01
Forest fires are a major natural disaster that destroys a forest area and a natural environment. In order to minimize the damage caused by the forest fire, it is necessary to know the location and the time of day and continuous monitoring is required until fire is fully put out. We have tried to improve the forest fire detection algorithm by using a method to reduce the variability of surrounding pixels. We focused that forest areas of East Asia, part of the Himawari-8 AHI coverage, are mostly located in mountainous areas. The proposed method was applied to the forest fire detection in Samcheok city, Korea on May 6 to 10, 2017.
NASA Astrophysics Data System (ADS)
Bourgeau-Chavez, L. L.; Jenkins, L. K.; Kasischke, E. S.; Turetsky, M.; Benscoter, B.; Banda, E. J.; Boren, E. J.; Endres, S. L.; Billmire, M.
2013-12-01
North American boreal peatland sites of Alaska, Alberta Canada, and the southern limit of the boreal ecoregion (Michigan's Upper Peninsula) are the focus of an ongoing project to better understand the fire weather, hydrology, and climatic controls on boreal peatland fires. The overall goal of the research project is to reduce uncertainties of the role of northern high latitude ecosystems in the global carbon cycle and to improve carbon emission estimates from boreal fires. Boreal peatlands store tremendous reservoirs of soil carbon that are likely to become increasingly vulnerable to fire as climate change lowers water tables and exposes C-rich peat to burning. Increasing fire activity in peatlands could cause these ecosystems to become net sources of C to the atmosphere, which is likely to have large influences on atmospheric carbon concentrations through positive feedbacks that enhance climate warming. Remote sensing is key to monitoring, understanding and quantifying changes occurring in boreal peatlands. Remote sensing methods are being developed to: 1) map and classify peatland cover types; 2) characterize seasonal and inter-annual variations in the moisture content of surface peat (fuel) layers; 3) map the extent and seasonal timing of fires in peatlands; and 4) discriminate different levels of fuel consumption/burn severity in peat fires. A hybrid radar and optical infrared methodology has been developed to map peatland types (bog vs. fen) and level of biomass (open herbaceous, shrubby, forested). This methodology relies on multi-season data to detect phenological changes in hydrology which characterize the different ecosystem types. Landsat data are being used to discriminate burn severity classes in the peatland types using standard dNBR methods as well as individual bands. Cross referencing the peatland maps and burn severity maps will allow for assessment of the distribution of upland and peatland ecosystems affected by fire and quantitative analysis of emissions. Radar imagery from multiple platforms (L-band PALSAR, C-band ERS-2, Envisat, and Radarsat-2) is being used to develop soil moisture extraction algorithms to monitor changes (drying - wetting) through time and to develop a standard method for soil moisture assessment. Using data from the 1990s (ERS-1 and 2) through the present (Radarsat-2) will allow for determination of patterns of wetting and drying across the landscape. All the remote sensing analysis is supported with field work which has been coordinated with that of Canadian scientists. Field collection includes vegetation and hydrology data to validate peatland distribution maps, collection of water table depths and peat moisture content data to aid in algorithm development for radar organic soil moisture retrieval, and characterization of variations in depth of burning and carbon consumption during peatland fires to use in burn severity mapping and fire emissions modeling.
Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential
NASA Astrophysics Data System (ADS)
İnan, M.; Bilici, E.; Akay, A. E.
2017-11-01
Forest fire incidences are one of the most detrimental disasters that may cause long terms effects on forest ecosystems in many parts of the world. In order to minimize environmental damages of fires on forest ecosystems, the forested areas with high fire risk should be determined so that necessary precaution measurements can be implemented in those areas. Assessment of forest fire fuel load can be used to estimate forest fire risk. In order to estimate fuel load capacity, forestry parameters such as number of trees, tree height, tree diameter, crown diameter, and tree volume should be accurately measured. In recent years, with the advancements in remote sensing technology, it is possible to use airborne LIDAR for data estimation of forestry parameters. In this study, the capabilities of using LIDAR based point cloud data for assessment of the forest fuel load potential was investigated. The research area was chosen in the Istanbul Bentler series of Bahceköy Forest Enterprise Directorate that composed of mixed deciduous forest structure.
Temporal scaling behavior of forest and urban fires
NASA Astrophysics Data System (ADS)
Wang, J.; Song, W.; Zheng, H.; Telesca, L.
2009-04-01
It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.
Zald, Harold S J; Dunn, Christopher J
2018-04-26
Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing fire resilience for multiple objectives in multi-owner landscapes. © 2018 by the Ecological Society of America.
Wang, Yungang; Huang, Jiaoyan; Zananski, Tiffany J; Hopke, Philip K; Holsen, Thomas M
2010-11-15
The impact of Canadian forest fires in Quebec on May 31, 2010 on PM(2.5), carbonaceous species, and atmospheric mercury species was observed at three rural sites in northern New York. The results were compared with previous studies during a 2002 Quebec forest fire episode. MODIS satellite images showed transport of forest fire smoke from southern Quebec, Canada to northern New York on May 31, 2010. Back-trajectories were consistent with this regional transport. During the forest fire event, as much as an 18-fold increase in PM(2.5) concentration was observed. The concentrations of episode-related OC, EC, BC, UVBC, and their difference (Delta-C), reactive gaseous mercury (RGM), and particle-bound mercury (PBM) were also significantly higher than those under normal conditions, suggesting a high impact of Canadian forest fire emissions on air quality in northern New York. PBM, RGM, and Delta-C are all emitted from forest fires. The correlation coefficient between Delta-C and other carbonaceous species may serve as an indicator of forest fire smoke. Given the marked changes in PBM, it may serve as a more useful tracer of forest fires over distances of several hundred kilometers relative to GEM. However, the Delta-C concentration changes are more readily measured.
Web-GIS platform for forest fire danger prediction in Ukraine: prospects of RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, N. V.; Zharikova, M. V.
2016-10-01
There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).
Donald A. Haines; William A. Main; John S. Crosby
1973-01-01
Describes factors that contribute to forest fires on two of the State of Missouri's Protection Districts and the Clark National Forest. Includes an analysis of fire cause, annual distribution, weather, and activity by day of week; also discusses multiple-fire day.
Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H
2010-10-01
Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.
Ruiliang Pu; Zhanqing Li; Peng Gong; Ivan Csiszar; Robert Fraser; Wei-Min Hao; Shobha Kondragunta; Fuzhong Weng
2007-01-01
Fires in boreal and temperate forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have been surveyed extensively by U.S. and Canadian forest services, most fire records are limited to seasonal statistics without information on temporal evolution and spatial expansion. Such dynamic information is crucial for modeling fire...
Fire History of a Forest, Savanna, and Fen Mosaic at White Ranch State Forest
Daniel C. Dey; Ricahrd P. Guyette; Michael C. Stambaugh
2004-01-01
We present the fire history of a 1-km2 area that is a mosaic of oak forest, savanna, and fen on the White Ranch State Forest, Howell County, Missouri. We dated 135 fire scars on 35 cross-sections of post oak ( Quercus stellata) trees and constructed a fire chronology dating from 1705 to 1997. Mean fire return intervals by periods were 3.7 years (...
Design and realization of disaster assessment algorithm after forest fire
NASA Astrophysics Data System (ADS)
Xu, Aijun; Wang, Danfeng; Tang, Lihua
2008-10-01
Based on GIS technology, this paper mainly focuses on the application of disaster assessment algorithm after forest fire and studies on the design and realization of disaster assessment based on GIS. After forest fire through the analysis and processing of multi-sources and heterogeneous data, this paper integrates the foundation that the domestic and foreign scholars laid of the research on assessment for forest fire loss with the related knowledge of assessment, accounting and forest resources appraisal so as to study and approach the theory framework and assessment index of the research on assessment for forest fire loss. The technologies of extracting boundary, overlay analysis, and division processing of multi-sources spatial data are available to realize the application of the investigation method of the burnt forest area and the computation of the fire area. The assessment provides evidence for fire cleaning in burnt areas and new policy making on restoration in terms of the direct and the indirect economic loss and ecological and environmental damage caused by forest fire under the condition of different fire danger classes and different amounts of forest accumulation, thus makes forest resources protection operated in a faster, more efficient and more economical way. Finally, this paper takes Lin'an city of Zhejiang province as a test area to confirm the method mentioned in the paper in terms of key technologies.
NASA Astrophysics Data System (ADS)
Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.
2015-12-01
In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.
InSAR detects increase in surface subsidence caused by an Arctic tundra fire
Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun
2014-01-01
Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.
Kotliar, N.B.; Hejl, S.J.; Hutto, R.L.; Saab, V.; Melcher, Cynthia; McFadzen, M.E.; George, T.L.; Dobkin, D.S.
2002-01-01
Historically, fire was one of the most widespread natural disturbances in the western United States. More recently, however, significant anthropogenic activities, especially fire suppression and silvicultural practices, have altered fire regimes; as a result, landscapes and associated communities have changed as well. Herein, we review current knowledge of how fire and postfire salvaging practices affect avian communities in conifer-dominated forests of the western United States. Specifically, we contrast avian communities in (1) burned vs. unburned forest, and (2) unsalvaged vs. salvage-logged burns. We also examine how variation in burn characteristics (e.g., severity, age, size) and salvage logging can alter avian communities in burns.Of the 41 avian species observed in three or more studies comparing early postfire and adjacent unburned forests, 22% are consistently more abundant in burned forests, 34% are usually more abundant in unburned forests, and 44% are equally abundant in burned and unburned forests or have varied responses. In general, woodpeckers and aerial foragers are more abundant in burned forest, whereas most foliage-gleaning species are more abundant in unburned forests. Bird species that are frequently observed in stand-replacement burns are less common in understory burns; similarly, species commonly observed in unburned forests often decrease in abundance with increasing burn severity. Granivores and species common in open-canopy forests exhibit less consistency among studies. For all species, responses to tire may be influenced by a number of factors including burn severity, fire size and shape, proximity to unburned forests, pre-and post-fire cover types, and time since fire. In addition, postfire management can alter species’ responses to burns. Most cavity-nesting species do not use severely salvaged burns, whereas some cavity-nesters persist in partially salvaged burns. Early post fire specialists, in particular, appear to prefer unsalvaged burns. We discuss several alternatives to severe salvage-logging that will help provide habitat for cavity nesters.We provide an overview of critical research questions and design considerations crucial for evaluating the effects of prescribed fire and other anthropogenic disturbances, such as forest fragmentation. Management of native avifaunas may be most successful if natural disturbance regimes, including fire, are permitted to occur when possible. Natural fires could be augmented with practices, such as prescribed fire (including high-severity fire), that mimic inherent disturbance regimes.
Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley
2016-01-01
Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests was also affected by finer scale topographic conditions associated with sheltered sites. Past wildfires only had a small influence on current ALC density, which may be a result of long times since fire and/or prevalence of non-stand replacing fire. Our results indicate that forest ALC density depends on a suite of multi-scale environmental drivers mediated by complex mountain topography, and that these relationships are dependent on stand age. The high and context-dependent spatial variability of forest ALC density has implications for quantifying forest carbon stores, establishing upper bounds of potential carbon sequestration, and scaling field data to landscape and regional scales. PMID:27041818
Viedma, Olga; Moreno, José M; Güngöroglu, Cumhur; Cosgun, Ufuk; Kavgacı, Ali
2017-07-15
During the last decades, contrasted trends in forest fires among countries around the Mediterranean basin have been observed. In the northern/western countries, Land Use-Land Cover (LULC) changes led to more hazardous landscapes, with consequent increases in fires. This contrasted with fire trends in southern/eastern countries. The recent incidence of large fires in some of the latter prompted the question of whether they are now following the path of their neighbors decades earlier. In this study, we investigated recent LULC changes in southwestern Turkey, focusing on those that could affect fire, and the factors driving them. To this end, LULC maps at different time steps (1975, 1990, 2000 and 2010) were obtained from Landsat images, together with relevant socioeconomic data. Generalized linear mixed models (GLMMs) were applied to assess the effects of socioeconomic and geophysical factors on the dominant LULC changes over time. Over the whole period studied, the most important LULC changes were deforestation followed by afforestation. Deforestation was positively related to high livestock density and proximity to villages and increased forest interfaces with other LULC types. We found no evidence that LULC changes were making the landscape more hazardous as there was a net decrease in fuels biomass and the landscape became more fragmented over time. However, despite the area being heavily used and relatively fragmented, large fires can occur driven by severe weather. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nancy H.F. French; Eric S. Kasischke; Ronald J. Hall; Karen A. Murphy; David L. Verbyla; Elizabeth E. Hoy; Jennifer L. Allen
2008-01-01
There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes -- such as post-fire forest succession -- and land management...
Donald A. Haines; William A. Main; Eugene F. McNamara
1978-01-01
Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.
21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.
Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan
2018-02-13
Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.
Baker, William L
2015-01-01
Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests.
Fire Impact on Phytomass and Carbon Emissions in the Forests of Siberia
NASA Astrophysics Data System (ADS)
Ivanova, Galina A.; Zhila, Sergei V.; Ivanov, Valery A.; Kovaleva, Nataly M.; Kukavskaya, Elena A.; Platonova, Irina A.; Conard, Susan G.
2014-05-01
Siberian boreal forests contribute considerably to the global carbon budget, since they take up vast areas, accumulate large amount of carbon, and are sensitive to climatic changes. Fire is the main forest disturbance factor, covering up to millions of hectares of boreal forests annually, of which the majority is in Siberia. Carbon emissions released from phytomass burning influence atmospheric chemistry and global carbon cycling. Changing climate and land use influence the number and intensity of wildfires, forest state, and productivity, as well as global carbon balance. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation phytomass were estimated on sites in light-conifer forests of the Central Siberia as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). This study focuses on collecting quantitative data and modeling the influence of fires of varying intensity on fire emissions, carbon budget, and ecosystem processes in coniferous stands. Fires have a profound impact on forest-atmospheric carbon exchange and transform forests from carbon sinks to carbon sources lasting long after the time of burning. Our long-term experiments allowed us to identify vegetation succession patterns in taiga Scots pine stands after fires of known behavior. Estimating fire contributions to the carbon budget requires consideration of many factors, including vegetation type and fire type and intensity. Carbon emissions were found to depend on fire intensity and weather. In the first several years after fire, the above-ground phytomass appeared to be strongly controlled by fire intensity. However, the influence of burning intensity on organic matter accumulation was found to decrease with time.
Short-term responses of birds to prescribed fire in fire-suppressed forests of California
Bagne Karen; Kathryn Purcell
2011-01-01
Prescribed fire is one tool for restoring fire-suppressed forests, but application of fire during spring coincides with breeding and arrival of migrant birds. We examined effects of low-severity prescribed fires on counts of birds in a managed forest in the Sierra Nevada of California immediately, 1 year, and 3â6 years after fire was applied in spring. Of 26 species...
James K. Agee; John F. (comps.) Lehmkuhl
2009-01-01
The Fire and Fire Surrogate (FFS) project is a large long-term metastudy established to assess the effectiveness and ecological impacts of burning and fire "surrogates" such as cuttings and mechanical fuel treatments that are used instead of fire, or in combination with fire, to restore dry forests. One of the 13 national FFS sites is the Northeastern...
Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests
Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens
2006-01-01
Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...
A soil burn severity index for understanding soil-fire relations in tropical forests
Theresa B. Jain; William A. Gould; Russell T. Graham; David S. Pilliod; Leigh B. Lentile; Grizelle Gonzalez
2008-01-01
Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and...
NASA Astrophysics Data System (ADS)
Sasaki, A.; Suzuki, K.
2015-12-01
This is the continuous study to clarify the geo-environmental changes on the post-fire alpine slopes of Mount Shirouma-dake in the northern Japanese Alps. The fire occurred at May 9, 2009 on the alpine slopes of Mount Shirouma-dake, and the fire spread to the Pinus pumila communities and grasslands. Although the grass had a little damage by the fire, the P. pumila received nearly impact of the fire. In the P. pumila communities where the leaf burnt, forest floor is exposed and become easy to be affected by atmospheric condition such as rain, wind, snow, and etc. First, we illustrated a map of micro-landforms, based on geomorphological fieldworks. We observed these micro-landforms repeatedly for fifth years after the fire. As the results of the observation, it is clear that remarkable changes of these micro-landforms have not occurred but some litters on the forest-floor in the P. pumila communities are flushed out to surroundings. The litter layer on the forest-floor in the P. pumila communities were 3-4 cm thick in August of 2011, but it became 0.5 cm thick in September of 2014. The P. pumila communities established on the slopes consists of angular and sub-angular gravel with openwork texture, which are covered by thin soil layer. Therefore, it is necessary to pay attention to soil erosion following the outflow of the litter. In addition, we observe the ground temperature and soil moisture, under the fired P. pumila communities and the no fired P. pumila communities after the fire, to find influence of the fire. The ground temperature sensors were installed into at 1 cm, 10 cm, and 40 cm depth. The soil moisture sensors were installed into at 1 cm and 10 cm depth. The 1 cm depth of the soil on the post-fire slopes, diurnal freeze-thaw cycles occurred in October and November of 2011, 2012, 2013, and 2014 but it had not occurred in 2009 and 2010. In addition, the period of seasonal frost at 10 cm and 40 cm depth on the post-fire slopes are extended for two weeks. These thermal condition changes are triggered by decrease in the thickness of the litter layer on the fired P. pumila communities.
Glare-reducing goggles for lookouts.
Richard E. McArdle; William G. Morris; Thornton T. Munger
1936-01-01
Detection of forest fires while they are still small is so important in forest protection that studies of the visibility of forest fire smokes from lookout points has been one of the principal phases of the fire studies program of the Pacific Northwest Forest Experiment Station. One phase of fire detection is the personal efficiency of the lookout. The Station has...
Influence of wildfires in the boreal forests of Eastern Siberia on atmospheric aerosol parameters
NASA Astrophysics Data System (ADS)
Tomshin, Oleg A.; Solovyev, Vladimir S.
2017-11-01
The results of studies of the dynamics of forest fires in the boreal forests of Yakutia (Eastern Siberia) for 2001-2016 are presented. Variations of aerosol optical thickness (AOT), aerosol index (AI) and total carbon monoxide content during May-September were studied depending on the different forest fire activity level. It is shown that the seasonal variations of AOT, AI and CO in the most fire-dangerous years differ significantly from the fire seasons when forest fire activity was medium or low.
NASA Astrophysics Data System (ADS)
Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas
2017-08-01
Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.
NASA Astrophysics Data System (ADS)
Meddens, A. J.; Hicke, J. A.; Edburg, S. L.; Lawrence, D. M.
2013-12-01
Wildfires and bark beetle outbreaks cause major forest disturbances in the western US, affecting ecosystem productivity and thereby impacting forest carbon cycling and future climate. Despite the large spatial extent of tree mortality, quantifying carbon flux dynamics following fires and bark beetles over larger areas is challenging because of forest heterogeneity, varying disturbance severities, and field observation limitations. The objective of our study is to estimate these dynamics across the western US using the Community Land Model (version CLM4.5-BGC). CLM4.5-BGC is a land ecosystem model that mechanistically represents the exchanges of energy, water, carbon, and nitrogen with the atmosphere. The most recent iteration of the model has been expanded to include vertically resolved soil biogeochemistry and includes improved nitrogen cycle representations including nitrification and denitrification and biological fixation as well as improved canopy processes including photosynthesis. Prior to conducting simulations, we modified CLM4.5-BGC to include the effects of bark beetle-caused tree mortality on carbon and nitrogen stocks and fluxes. Once modified, we conducted paired simulations (with and without) fire- and bark beetle-caused tree mortality by using regional data sets of observed mortality as inputs. Bark beetle-caused tree mortality was prescribed from a data set derived from US Forest Service aerial surveys from 1997 to 2010. Annual tree mortality area was produced from observed tree mortality caused by bark beetles and was adjusted for underestimation. Fires were prescribed using the Monitoring Trends in Burn Severity (MTBS) database from 1984 to 2010. Annual tree mortality area was produced from forest cover maps and inclusion of moderate- and high-severity burned areas. Simulations show that maximum yearly reduction of net ecosystem productivity (NEP) caused by bark beetles is approximately 20 Tg C for the western US. Fires cause similar reductions in NEP, although the temporal pattern is different. The reductions in NEP from these major disturbances are similar to the variation in NEP caused by climatic conditions. When less favorable climatic conditions and these disturbances are co-occurring, forests switch from a carbon sink to a carbon source across the western US. This work increases understanding of the role of natural disturbances in the forest carbon budget of the western US.
Prediction of forest fires occurrences with area-level Poisson mixed models.
Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo
2015-05-01
The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jamie Lydersen; Malcolm North; Brandon M. Collins
2014-01-01
The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ã2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...
Estimation of forest fuel load from radar remote sensing
Saatchi, S.; Halligan, K.; Despain, Don G.; Crabtree, R.L.
2007-01-01
Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2 = 85 for the canopy fuel weight, R 2 = 0.84 for canopy bulk density, and R2 =0.78 for the foliage biomass. ?? 2007 IEEE.
NASA Astrophysics Data System (ADS)
Kinder, B.; Hao, W. M.; Larkin, N. K.; McCarty, G.; O'neal, K. J.; Gonzalez, O.; Luxenberg, J.; Rosenblum, M.; Petkov, A.
2011-12-01
Black carbon and other short-lived climate forcers exert a warming effect on the climate but remain in the atmosphere for short time periods when compared to carbon dioxide. Black carbon is a significant contributor to increasing temperatures in the Arctic region, which has warmed at twice the global rate over the past 100 years. Black carbon warms the Arctic by absorbing incoming solar radiation while in the atmosphere and, when deposited onto Arctic ice, leading to increased atmospheric temperatures and snow and ice melt. Black carbon remains in the atmosphere for a short time period ranging from days to weeks; therefore, local atmospheric conditions at the time of burning determine the amount of black carbon transport to the Arctic. Most black carbon transport and deposition in the Arctic results from the occurrence of wildfires, prescribed forest fires, and agricultural burning at latitudes greater than 40 degrees north latitude. Wildfire affects some 10-15 million hectares of forest, forest steppe, and grasslands in Russia each year. In addition to wildfire, there is widespread cropland burning in Russia occurring in the fall following harvest and in the spring prior to tilling. Agricultural burning is common practice for crop residue removal as well as suppression of weeds, insects and residue-borne diseases. The goal of the United States Department of Agriculture (USDA) Black Carbon Initiative is to assess black carbon emissions from agricultural burning and wildfires in Russia and explore practical options and opportunities for reducing emissions from these two sources. The emissions assessment combines satellite-derived burned area measurements of forest and agricultural fires, burn severity information, ancillary geospatial data, vegetation and land cover maps, fuels data, fire emissions data, fire/weather relationship information, and smoke transport models to estimate black carbon transport and deposition in the Arctic. The assessment addresses necessary improvements to fire and burned area detection algorithms to improve agricultural burned area mapping accuracy. Efforts to explore practical options for reducing black carbon emissions from wildfires and agricultural burning in Russia have been focused on designing community-based fire prevention and education programs in Siberia and the Russia Far East, two regions prone to frequent human-caused fires. The initiative also seeks to identify practical alternatives to reduce black carbon emissions from agricultural burning and to help promote these alternatives through outreach to farmers and other agricultural organizations. This submission will explore the initial findings and results of the emissions assessment and discuss the progress and challenges associated with implementation of local-level fire prevention and mitigation efforts in Russia. The results of this initiative will help inform future policy and management tools to address black carbon emissions from wildfires and agricultural burning in Russia and perhaps additional interested countries.
The forest fire season at different elevations in Idaho
J. A. Larsen
1925-01-01
In any fire-ridden forest region, such as north Idaho, there is great need for a tangible basis by which to judge the length and the intensity of the fire season in different forest types and at different elevations. The major and natural forest types, such as the western yellow pine forests, the western white-pine forests, and the subalpine forests occur in...
Seed invasion filters and forest fire severity
Tom R. Cottrell; Paul F. Hessburg; Jonathan A. Betz
2008-01-01
Forest seed dispersal is altered after fire. Using seed traps, we studied impacts of fire severity on timing of seed dispersal, total seed rain, and seed rain richness in patches of high and low severity fire and unburned Douglas-fir (Pseudotsuga menziesii) forests in the Fischer and Tyee fire complexes in the eastern Washington Cascades. Unburned...
Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)
Stanley G. Kitchen
2012-01-01
Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...
NASA Technical Reports Server (NTRS)
2002-01-01
The Hayman forest fire, started on June 8, is continuing to burn in the Pike National Forest, 57 km (35 miles) south-southwest of Denver. According to the U.S. Forest Service, the fire has consumed more than 90,000 acres and has become Colorado's worst fire ever. In this ASTER image, acquired Sunday, June 16, 2002 at 10:30 am MST, the dark blue area is burned vegetation and the green areas are healthy vegetation. Red areas are active fires, and the blue cloud at the top center is smoke. Meteorological clouds are white. The image covers an area of 32.2 x 35.2 km (20.0 x 21.8 miles), and displays ASTER bands 8-3-2 in red, green and blue.
This image was acquired on June 16, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 32.2 x 35.2 km (20.0 x 21.8 miles) Location: 39.2 deg. North lat., 105.3 deg. West long. Orientation: North at top Image Data: ASTER bands 8, 3, and 2. Original Data Resolution: 15 m Date Acquired: June 16, 2002Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient
NASA Astrophysics Data System (ADS)
Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.
2013-03-01
Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.
Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.
2013-01-01
While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.
Jason J. Moghaddas; Scott L. Stephens
2007-01-01
Mixed conifer forests cover 7.9 million acres of Californiaâs total land base. Forest structure in these forests has been influenced by harvest practices and silvicultural systems implemented since the beginning of the California Gold Rush in 1849. Today, the role of fire in coniferous forests, both in shaping past stand structure and its ability to shape future...
MODIS NDVI Response Following Fires in Siberia
NASA Technical Reports Server (NTRS)
Ranson, K. Jon; Sun, G.; Kovacs, K.; Kharuk, V. I.
2003-01-01
The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.
A heuristic expert system for forest fire guidance in Greece.
Iliadis, Lazaros S; Papastavrou, Anastasios K; Lefakis, Panagiotis D
2002-07-01
Forests and forestlands are common inheritance for all Greeks and a piece of the national wealth that must be handed over to the next generations in the best possible condition. After 1974, Greece faces a severe forest fire problem and forest fire forecasting is the process that will enable the Greek ministry of Agriculture to reduce the destruction. This paper describes the basic design principles of an Expert System that performs forest fire forecasting (for the following fire season) and classification of the prefectures of Greece into forest fire risk zones. The Expert system handles uncertainty and uses heuristics in order to produce scenarios based on the presence or absence of various qualitative factors. The initial research focused on the construction of a mathematical model which attempted to describe the annual number of forest fires and burnt area in Greece based on historical data. However this has proven to be impossible using regression analysis and time series. A closer analysis of the fire data revealed that two qualitative factors dramatically affect the number of forest fires and the hectares of burnt areas annually. The first is political stability and national elections and the other is drought cycles. Heuristics were constructed that use political stability and drought cycles, to provide forest fire guidance. Fuzzy logic was applied to produce a fuzzy expected interval for each prefecture of Greece. A fuzzy expected interval is a narrow interval of values that best describes the situation in the country or a part of the country for a certain time period. A successful classification of the prefectures of Greece in forest fire risk zones was done by the system, by comparing the fuzzy expected intervals to each other. The system was tested for the years 1994 and 1995. The testing has clearly shown that the system can predict accurately, the number of forest fires for each prefecture for the following year. The average accuracy was as high as 85.25% for 1995 and 80.89% for 1994. This makes the Expert System a very important tool for forest fire prevention planning.
Synergy between land use and climate change increases future fire risk in Amazon forests
NASA Astrophysics Data System (ADS)
Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem
2017-12-01
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.
Scott L. Stephens; Carl N. Skinner; Samantha J. Gill
2003-01-01
Conifer forests in northwestern Mexico have not experienced systematic fire suppression or logging, making them unique in western North America. Fire regimes of Pinus jeffreyi Grev. & Balf. mixed conifer forests in the Sierra San Pedro Martir, Baja California, Mexico, were determined by identifying 105 fire dates from 1034 fire scars in 105 specimens. Fires were...
Harold S.J. Zald; Andrew N. Gray; Malcolm North; Ruth A. Kern
2008-01-01
Fire is a driver of ecosystem patterns and processes in forests globally, but natural fire regimes have often been altered by decades of active fire management. Following almost a century of fire suppression, many Western U.S. forests have greater fuel levels, higher tree densities, and are now dominated by fire-sensitive, shade-tolerant species. These fuel-loaded...
Theresa B. Jain; William A. Gould; Russell T. Graham; David S. Pilliod; Leigh B. Lentile; Grizelle Gonzalez
2008-01-01
Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and...
NASA Astrophysics Data System (ADS)
Petroliagkis, Thomas I.; Camia, Andrea; Liberta, Giorgio; Durrant, Tracy; Pappenberger, Florian; San-Miguel-Ayanz, Jesus
2014-05-01
The European Forest Fire Information System (EFFIS) has been established by the Joint Research Centre (JRC) and the Directorate General for Environment (DG ENV) of the European Commission (EC) to support the services in charge of the protection of forests against fires in the EU and neighbour countries, and also to provide the EC services and the European Parliament with information on forest fires in Europe. Within its applications, EFFIS provides current and forecast meteorological fire danger maps up to 6 days. Weather plays a key role in affecting wildfire occurrence and behaviour. Meteorological parameters can be used to derive meteorological fire weather indices that provide estimations of fire danger level at a given time over a specified area of interest. In this work, we investigate the suitability of critical thresholds of fire danger to provide an early warning for megafires (fires > 500 ha) over Europe. Past trends of fire danger are analysed computing daily fire danger from weather data taken from re-analysis fields for a period of 31 years (1980 to 2010). Re-analysis global data sets coming from the construction of high-quality climate records, which combine past observations collected from many different observing and measuring platforms, are capable of describing how Fire Danger Indices have evolved over time at a global scale. The latest and most updated ERA-Interim dataset of the European Centre for Medium-Range Weather Forecast (ECMWF) was used to extract meteorological variables needed to compute daily values of the Canadian Fire Weather Index (CFWI) over Europe, with a horizontal resolution of about 75x75 km. Daily time series of CFWI were constructed and analysed over a total of 1,071 European NUTS3 centroids, resulting in a set of percentiles and critical thresholds. Such percentiles could be used as thresholds to help fire services establish a measure of the significance of CFWI outputs as they relate to levels of fire potential, fuel conditions and fire danger. Median percentile values of fire days accumulated over the 31-year period were compared to median values of all days from that period. As expected, the CWFI time series exhibit different values on fire days than on all days. In addition, a percentile analysis was performed in order to determine the behaviour of index values corresponding to fire events falling into the megafire category. This analysis resulted in a set of critical thresholds based on percentiles. By utilising such thresholds, an initial framework of an early warning system has being established. By lowering the value of any of these thresholds, the number of hits could be increased until all extremes were captured (resulting in zero misses). However, in doing so, the number of false alarms tends to increase significantly. Consequently, an optimal trade-off between hits and false alarms has to be established when setting different (critical) CFWI thresholds.
The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California
David Perry; Paul Hessburg; Carl Skinner; Thomas Spies; Scott Stephens; Alan Henry Taylor; Jerry Franklin; Brenda McComb; Greg Riegel
2011-01-01
Forests characterized by mixed-severity fires occupy a broad moisture gradient between lower elevation forests typified by low-severity fires and higher elevation forests in which high-severity, stand replacing fires are the norm. Mixed-severity forest types are poorly documented and little understood but likely occupy significant areas in the western United States. By...
Sawyer S. Scherer; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Matthew B. Russell
2016-01-01
Prescribed fire is increasingly being viewed as a valuable tool for mitigating the ecological consequences of long-term fire suppression within fire-adapted forest ecosystems. While the use of burning treatments in northern temperate conifer forests has at times received considerable attention, the long-term (>10 years) effects on forest structure and...
Forest health in the Blue Mountains: a management strategy for fire-adapted ecosystems.
R.W. Mutch; S.F. Arno; J.K. Brown; C.E. Carlson; R.D. Ottmar; J.L. Peterson
1993-01-01
The fire-adapted forests of the Blue Mountains are suffering from a forest health problem of catastrophic proportions. Contributing to the decline of forest health are such factors as the extensive harvesting of the western larch and ponderosa pine overstory during the 1900s, attempted exclusion of fire from a fire-dependent ecosystem, and the continuing drought. The...
Climatic stress increases forest fire severity across the western United States
van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorraine
2013-01-01
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).
Clement, Charles R; Santos, Ronaldo P; Desmouliere, Sylvain J M; Ferreira, Evandro J L; Neto, João Tomé Farias
2009-01-01
The Arc of Fire across southern Amazonia seasonally attracts worldwide attention as forests are cut and burned for agricultural expansion. These forests contain numerous wild relatives of native South American crops, such as peach palm. Our prospecting expeditions examined critical areas for wild peach palm in the Arc of Fire in Mato Grosso, Pará, Maranhão and Tocantins, as well as areas not previously examined in Amazonas and Amapá states. Recent digitization of the RADAM Brasil project permitted comparison among RADAM's parataxonomists' observations, previous botanical collections and our prospecting. Mapping on soils and vegetation types enabled us to hypothesize a set of ecological preferences. Wild peach palm is best adapted to Ultisols (Acrisols) in open forests across the Arc of Fire and westward into the more humid western Amazonia. Populations are generally small (fewer than 10 plants) on slopes above watercourses. In northern Mato Grosso and southern Pará soybean fields and pastures now occupy numerous areas where RADAM identified wild peach palm. The controversial BR-163 Highway is already eroding wild peach palm as deforestation expands. Many of these populations are now isolated by increasing forest fragmentation, which will lead to decreased reproduction via inbreeding depression and eventual extinction even without complete deforestation. Federal conservation areas are less numerous in the Arc of Fire than in other parts of Brazilian Amazonia, although there are indigenous lands; these conservation areas contain viable populations of wild peach palm and require better protection than they are currently receiving. Ex situ conservation of these populations is not viable given the relative lack of importance of domesticated peach palm and the difficulty of maintaining even economically interesting genetic resources.
NASA Astrophysics Data System (ADS)
Langan, Liam; Scheiter, Simon; Higgins, Steven
2017-04-01
It remains poorly understood why the position of the forest-savanna biome boundary, in a domain defined by precipitation and temperature, differs in South America, Africa and Australia. Process based Dynamic Global Vegetation Models (DGVMs) are a valuable tool to investigate the determinants of vegetation distributions, however, many DGVMs fail to predict the spatial distribution or indeed presence of the South American savanna biome. Evidence suggests fire plays a significant role in mediating forest-savanna biome boundaries, however, fire alone appear to be insufficient to predict these boundaries in South America. We hypothesize that interactions between precipitation, constraints on tree rooting depth and fire, affect the probability of savanna occurrence and the position of the savanna-forest boundary. We tested our hypotheses at tropical forest and savanna sites in Brazil and Venezuela using a novel DGVM, aDGVM2, which allows plant trait spectra, constrained by trade-offs between traits, to evolve in response to abiotic and biotic conditions. Plant hydraulics is represented by the cohesion-tension theory, this allowed us to explore how soil and plant hydraulics control biome distributions and plant traits. The resulting community trait distributions are emergent properties of model dynamics. We showed that across much of South America the biome state is not determined by climate alone. Interactions between tree rooting depth, fire and precipitation affected the probability of observing a given biome state and the emergent traits of plant communities. Simulations where plant rooting depth varied in space provided the best match to satellite derived biomass estimates and generated biome distributions that reproduced contemporary biome maps well. Future projections showed that biomass distributions, biome distributions and plant trait spectra will change, however, the magnitude of these changes are highly dependent on the applied atmospheric forcings.
Clement, Charles R.; Santos, Ronaldo P.; Desmouliere, Sylvain J. M.; Ferreira, Evandro J. L.; Neto, João Tomé Farias
2009-01-01
Background The Arc of Fire across southern Amazonia seasonally attracts worldwide attention as forests are cut and burned for agricultural expansion. These forests contain numerous wild relatives of native South American crops, such as peach palm. Methodology/Principal Findings Our prospecting expeditions examined critical areas for wild peach palm in the Arc of Fire in Mato Grosso, Pará, Maranhão and Tocantins, as well as areas not previously examined in Amazonas and Amapá states. Recent digitization of the RADAM Brasil project permitted comparison among RADAM's parataxonomists' observations, previous botanical collections and our prospecting. Mapping on soils and vegetation types enabled us to hypothesize a set of ecological preferences. Wild peach palm is best adapted to Ultisols (Acrisols) in open forests across the Arc of Fire and westward into the more humid western Amazonia. Populations are generally small (fewer than 10 plants) on slopes above watercourses. In northern Mato Grosso and southern Pará soybean fields and pastures now occupy numerous areas where RADAM identified wild peach palm. The controversial BR-163 Highway is already eroding wild peach palm as deforestation expands. Conclusions/Significance Many of these populations are now isolated by increasing forest fragmentation, which will lead to decreased reproduction via inbreeding depression and eventual extinction even without complete deforestation. Federal conservation areas are less numerous in the Arc of Fire than in other parts of Brazilian Amazonia, although there are indigenous lands; these conservation areas contain viable populations of wild peach palm and require better protection than they are currently receiving. Ex situ conservation of these populations is not viable given the relative lack of importance of domesticated peach palm and the difficulty of maintaining even economically interesting genetic resources. PMID:19238213
Saranya, K R L; Reddy, C Sudhakar; Rao, P V V Prasada; Jha, C S
2014-05-01
Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest resource management. There is no comprehensive data existing on forest fires on a regular basis in Biosphere Reserves of India. The present work have been carried out to locate and estimate the spatial extent of forest burnt areas using Resourcesat-1 data and fire frequency covering decadal fire events (2004-2013) in Similipal Biosphere Reserve. The anomalous quantity of forest burnt area was recorded during 2009 as 1,014.7 km(2). There was inconsistency in the fire susceptibility across the different vegetation types. The spatial analysis of burnt area shows that an area of 34.2 % of dry deciduous forests, followed by tree savannah, shrub savannah, and grasslands affected by fires in 2013. The analysis based on decadal time scale satellite data reveals that an area of 2,175.9 km(2) (59.6 % of total vegetation cover) has been affected by varied rate of frequency of forest fires. Fire density pattern indicates low count of burnt area patches in 2013 estimated at 1,017 and high count at 1,916 in 2004. An estimate of fire risk area over a decade identifies 12.2 km(2) is experiencing an annual fire damage. Summing the fire frequency data across the grids (each 1 km(2)) indicates 1,211 (26 %) grids are having very high disturbance regimes due to repeated fires in all the 10 years, followed by 711 grids in 9 years and 418 in 8 years and 382 in 7 years. The spatial database offers excellent opportunities to understand the ecological impact of fires on biodiversity and is helpful in formulating conservation action plans.
Climate change and forest fires.
Flannigan, M D; Stocks, B J; Wotton, B M
2000-11-15
This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration.
Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.
Earles, J Mason; North, Malcolm P; Hurteau, Matthew D
2014-06-01
Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.
Digital aerial sketchmapping and downlink communications: a new tool for fire managers
Everett Hinkley; Tom Zajkowski; Charlie Schrader-Patton
2010-01-01
Aerial sketchmapping is the geolocating of features that are seen on the ground below an aircraft and the subsequent recording of those features. Traditional aerial sketchmapping methods required hand-sketching on hardcopy maps or photos and the translation of that information to a digital file. In 1996, the U.S. Department of Agriculture (USDA) Forest Service embarked...
Sapkota, Lok Mani; Shrestha, Rajendra Prasad; Jourdain, Damien; Shivakoti, Ganesh P
2015-01-01
The attributes of social ecological systems affect the management of commons. Strengthening and enhancing social capital and the enforcement of rules and sanctions aid in the collective action of communities in forest fire management. Using a set of variables drawn from previous studies on the management of commons, we conducted a study across 20 community forest user groups in Central Siwalik, Nepal, by dividing the groups into two categories based on the type and level of their forest fire management response. Our study shows that the collective action in forest fire management is consistent with the collective actions in other community development activities. However, the effectiveness of collective action is primarily dependent on the complex interaction of various variables. We found that strong social capital, strong enforcement of rules and sanctions, and users' participation in crafting the rules were the major variables that strengthen collective action in forest fire management. Conversely, users' dependency on a daily wage and a lack of transparency were the variables that weaken collective action. In fire-prone forests such as the Siwalik, our results indicate that strengthening social capital and forming and enforcing forest fire management rules are important variables that encourage people to engage in collective action in fire management.
Barlow, Jos; Peres, Carlos A
2004-01-01
Over the past 20 years the combined effects of El Niño-induced droughts and land-use change have dramatically increased the frequency of fire in humid tropical forests. Despite the potential for rapid ecosystem alteration and the current prevalence of wildfire disturbance, the consequences of such fires for tropical forest biodiversity remain poorly understood. We provide a pan-tropical review of the current state of knowledge of these fires, and include data from a study in a seasonally dry terra firme forest of central Brazilian Amazonia. Overall, this study supports predictions that rates of tree mortality and changes in forest structure are strongly linked to burn severity. The potential consequences for biomass loss and carbon emissions are explored. Despite the paucity of data on faunal responses to tropical forest fires, some trends are becoming apparent; for example, large canopy frugivores and understorey insectivorous birds appear to be highly sensitive to changes in forest structure and composition during the first 3 years after fires. Finally, we appraise the management implications of fires and evaluate the viability of techniques and legislation that can be used to reduce forest flammability, prevent anthropogenic ignition sources from coming into contact with flammable forests and aid the post-fire recovery process. PMID:15212091
Fire, climate change, and forest resilience in interior Alaska
Jill F. Johnstone; F. Stuart Chapin; Teresa N. Hollingsworth; Michelle C. Mack; Vladimir Romanovsky; Merritt Turetsky
2010-01-01
In the boreal forests of interior Alaska, feedbacks that link forest soils, fire characteristics, and plant traits have supported stable cycles of forest succession for the past 6000 years. This high resilience of forest stands to fire disturbance is supported by two interrelated feedback cycles: (i) interactions among disturbance regime and plant-soil-microbial...
Development of the Brican TD100 Small Uas and Payload Trials
NASA Astrophysics Data System (ADS)
Eggleston, B.; McLuckie, B.; Koski, W. R.; Bird, D.; Patterson, C.; Bohdanov, D.; Liu, H.; Mathews, T.; Gamage, G.
2015-08-01
The Brican TD100 is a high performance, small UAS designed and made in Brampton Ontario Canada. The concept was defined in late 2009 and it is designed for a maximum weight of 25 kg which is now the accepted cut-off defining small civil UASs. A very clean tractor propeller layout is used with a lightweight composite structure and a high aspect ratio wing to obtain good range and endurance. The design features and performance of the initial electrically powered version are discussed and progress with developing a multifuel engine version is described. The system includes features enabling operation beyond line of sight (BLOS) and the proving missions are described. The vehicle has been used for aerial photography and low cost mapping using a professional grade Nikon DSLR camera. For forest fire research a FLIR A65 IR camera was used, while for georeferenced mapping a new Applanix AP20 system was calibrated with the Nikon camera. The sorties to be described include forest fire research, wildlife photography of bowhead whales in the Arctic and surveys of endangered caribou in a remote area of Labrador, with all these applications including the DSLR camera.
The impact of anthropogenic climate change on wildfire across western US forests
NASA Astrophysics Data System (ADS)
Williams, P.; Abatzoglou, J. T.
2016-12-01
Increased forest fire activity across the western United States (US) in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality, and substantial fire suppression expenditures. The increase in forest fire activity has likely been enabled by a number of factors including the legacy of fire suppression and human settlement, changes in suppression policies, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western US. Anthropogenic increases in temperature and vapor pressure deficit have significantly enhanced fuel aridity across western US forests over the past several decades. Comparing observational climate records to records recalculated after removal of modeled anthropogenic trends, we find that anthropogenic climate change accounted for approximately 55% of observed increases in the eight-metric mean fuel aridity during 1979-2015 across western US forests. This implicates anthropogenic climate change as an important driver of observed increases in fuel aridity, and also highlights the importance of natural multi-decadal climate variability in influencing trends in forest fire potential on the timescales of human lives. Based on a very strong (R2 = 0.76) and mechanistically reasonable relationship between interannual variability in the eight-metric mean fuel aridity and forest-fire area in the western US, we estimate that anthropogenic increases in fuel aridity contributed to an additional 4.2 million ha (95% confidence range: 2.7-6.5 million ha) of forest fire area during 1984-2015, nearly doubling the total forest fire area expected in the absence of anthropogenic climate change. The relationship between annual forest fire area and fuel aridity is exponential and the proportion of total forest area burned in a given year has grown rapidly over the past 32 years. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a chronic driver of increased forest fire activity and should continue to do so where fuels are not limiting.
Fire Impact on Surface Fuels and Carbon Emissions in Scots pine Logged Sites of Siberia
NASA Astrophysics Data System (ADS)
Ivanova, G. A.; Kukavskaya, E. A.; Bogorodskaya, A. V.; Ivanov, V. A.; Zhila, S. V.; Conard, S. G.
2012-04-01
Forest fire and large-scale forest harvesting are the two major disturbances in the Russian boreal forests. Non-recovered logged sites total about a million hectares. Logged sites are characterized by higher fire hazard than forest sites due great amounts of logging slash, which dries out much more rapidly compared to understory fuels. Moreover, most logging sites can be easily accessed by local population. Both legal and illegal logging are also increasing rapidly in many forest areas of Siberia. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation biomass were estimated on logged vs. unlogged sites in the Central Siberia region in 2009-2012 as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). Dead down woody fuels are significantly less at unburned/logged area of dry southern regions compared to more humid northern regions. Fuel consumption was typically less in spring fires than during summer fires. Fire-caused carbon emissions on logged sites appeared to be twice that on unlogged sites. Soil respiration is less at logged areas compared to undisturbed forest. After fire soil respiration decreases both at logged and unlogged areas. arbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions and as a result of anticipated increases in future forest harvesting in Siberia.
Climatic stress increases forest fire severity across the western United States
Phillip J. van Mantgem; Jonathan C.B. Nesmith; MaryBeth Keifer; Eric E. Knapp; Alan Flint; Lorriane Flint
2013-01-01
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after...
Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...
Reintroducing fire in regenerated dry forests following stand-replacing wildfire.
David W. Peterson; Paul F. Hessburg; Brion Salter; Kevin M. James; Matthew C. Dahlgreen; John A. Barnes
2007-01-01
Prescribed fire use may be effective for increasing fire resilience in young coniferous forests by reducing surface fuels, modifying overstory stand structure, and promoting development of large trees of fire resistant species. Questions remain, however, about when and how to reintroduce fire in regenerated forests, and to what end. We studied the effects of spring...
Lessons learned from prescribed fire in ponderosa pine forests of the southern Sierra Nevada
Karen E. Bagne; Kathryn L. Purcell
2009-01-01
Prescribed fire is a commonly used management tool in fire-suppressed ponderosa pine (Pinus ponderosa) forests, but effects of these fires on birds are largely unstudied. We investigated both direct and indirect impacts on breeding birds in ponderosa pine forests of the southern Sierra Nevada where fires were applied in the spring. Following...
Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.
2011-01-01
Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297
Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K
2011-08-01
Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.
75 FR 3193 - Information Collection; Annual Wildfire Summary Report
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... addressed to Tim Melchert, Fire and Aviation Management, National Interagency Fire Center, Forest Service... Forest Service State and Private Forestry Cooperative Fire Program. The program provides supplemental funding for State and local fire fighting agencies. The Forest Service works cooperatively with State and...
Shape selection in Landsat time series: a tool for monitoring forest dynamics.
Moisen, Gretchen G; Meyer, Mary C; Schroeder, Todd A; Liao, Xiyue; Schleeweis, Karen G; Freeman, Elizabeth A; Toney, Chris
2016-10-01
We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a smoothed rendition of the trajectory constrained to behave in an ecologically sensible manner, reflecting one of seven possible 'shapes'. It also provides parameters summarizing the patterns of each change including year of onset, duration, magnitude, and pre- and postchange rates of growth or recovery. Through a case study featuring fire, harvest, and bark beetle outbreak, we illustrate how resultant fitted values and parameters can be fed into empirical models to map disturbance causal agent and tree canopy cover changes coincident with disturbance events through time. We provide our code in the r package ShapeSelectForest on the Comprehensive R Archival Network and describe our computational approaches for running the method over large geographic areas. We also discuss how this methodology is currently being used for forest disturbance and attribute mapping across the conterminous United States. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Vegetation Change in Interior Alaska Over the Last Four Decades
NASA Astrophysics Data System (ADS)
Huhman, H.; Dewitz, J.; Cristobal, J.; Prakash, A.
2017-12-01
The Arctic has become a generally warmer place over the past decades leading to earlier snowmelt, permafrost degradation and changing plant communities. One area in particular, vegetation change, is responding relatively rapidly to climate change, impacting the surrounding environment with changes to forest fire regime, forest type, forest resiliency, habitat availability for subsistence flora and fauna, hydrology, among others. To quantify changes in vegetation in the interior Alaska boreal forest over the last four decades, this study uses the National Land Cover Database (NLCD) decision-tree based classification methods, using both C5 and ERDAS Imagine software, to classify Landsat Surface Reflectance Images into the following NLCD-consistent vegetation classes: planted, herbaceous, shrubland, and forest (deciduous, evergreen and mixed). The results of this process are a total of four vegetation cover maps, that are freely accessible to the public, one for each decade in the 1980's, 1990's, 2000's, and a current map for 2017. These maps focus on Fairbanks, Alaska and the surrounding area covering approximately 36,140 square miles. The maps are validated with over 4,000 ground truth points collected through organizations such as the Landfire Project and the Long Term Ecological Research Network, as well as vegetation and soil spectra collected from the study area concurrent with the Landsat satellite over-passes with a Spectral Evolution PSR+ 3500 spectro-radiometer (0.35 - 2.5 μm). We anticipate these maps to be viewed by a wide user-community and may aid in preparing the residents of Alaska for changes in their subsistence food sources and will contribute to the scientific community in understanding the variety of changes that can occur in response to changing vegetation.
Wylie, B.K.; Zhang, L.; Bliss, Norman B.; Ji, Lei; Tieszen, Larry L.; Jolly, W. M.
2008-01-01
High-latitude ecosystems are exposed to more pronounced warming effects than other parts of the globe. We develop a technique to monitor ecological changes in a way that distinguishes climate influences from disturbances. In this study, we account for climatic influences on Alaskan boreal forest performance with a data-driven model. We defined ecosystem performance anomalies (EPA) using the residuals of the model and made annual maps of EPA. Most areas (88%) did not have anomalous ecosystem performance for at least 6 of 8 years between 1996 and 2004. Areas with underperforming EPA (10%) often indicate areas associated with recent fires and areas of possible insect infestation or drying soil related to permafrost degradation. Overperforming areas (2%) occurred in older fire recovery areas where increased deciduous vegetation components are expected. The EPA measure was validated with composite burn index data and Landsat vegetation indices near and within burned areas.
NASA Astrophysics Data System (ADS)
Helbig, M.; Pappas, C.; Sonnentag, O.
2016-02-01
Boreal forests cover vast areas of the permafrost zones of North America, and changes in their composition and structure can lead to pronounced impacts on the regional and global climate. We partition the variation in regional boreal tree cover changes between 2000 and 2014 across the Taiga Plains, Canada, into its main causes: permafrost thaw, wildfire disturbance, and postfire regrowth. Moderate Resolution Imaging Spectroradiometer Percent Tree Cover (PTC) data are used in combination with maps of historic fires, and permafrost and drainage characteristics. We find that permafrost thaw is equally important as fire history to explain PTC changes. At the southern margin of the permafrost zone, PTC loss due to permafrost thaw outweighs PTC gain from postfire regrowth. These findings emphasize the importance of permafrost thaw in controlling regional boreal forest changes over the last decade, which may become more pronounced with rising air temperatures and accelerated permafrost thaw.
Multi-season climate synchronized forest fires throughout the 20th century, Northern Rockies, USA
Penelope Morgan; Emily K. Heyerdahl; Carly E. Gibson
2008-01-01
We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12 070 086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the...
Increasing resiliency in frequent fire forests: Lessons from the Sierra Nevada and western Australia
Scott L. Stephens
2014-01-01
This paper will primarily focus on the management and restoration of forests adapted to frequent, low-moderate intensity fire regimes. These are the forest types that are most at risk from large, high-severity wildfires and in many regions their fire regimes are changing. Fire as a landscape process can exhibit self-limiting characteristics in some forests which can...
Jens T. Stevens; Hugh D. Safford; Malcolm P. North; Jeremy S. Fried; Andrew N. Gray; Peter M. Brown; Christopher R. Dolanc; Solomon Z. Dobrowski; Donald A. Falk; Calvin A. Farris; Jerry F. Franklin; Peter Z. Fulé; R. Keala Hagmann; Eric E. Knapp; Jay D. Miller; Douglas F. Smith; Thomas W. Swetnam; Alan H. Taylor; Julia A. Jones
2016-01-01
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests...
Paul F. Hessburg; James K. Agee; Jerry F. Franklin
2005-01-01
Prior to Euro-American settlement, dry ponderosa pine and mixed conifer forests (hereafter, the "dry forests") of the Inland Northwest were burned by frequent low- or mixed-severity fires. These mostly surface fires maintained low and variable tree densities, light and patchy ground fuels, simplified forest structure, and favored fire-tolerant trees, such as...
NASA Astrophysics Data System (ADS)
Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.
2013-04-01
Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.
NASA Astrophysics Data System (ADS)
Syphard, A. D.; Keeley, J. E.; Brennan, T. J.
2010-12-01
Wildfires are an important natural process in southern California, but they also present a major hazard for human life and property. The region leads the nation in fire-related losses, and since 2001, wildfires have damaged or destroyed more than 10,000 homes. As human ignitions have increased along with urban development and population growth, fire frequency has also surged, and most home losses occur in large fires when ignitions coincide with Santa Ana windstorms. As the region accommodates more growth in the future, the wildfire threat promises to continue. We will thus explore how a broader, more comprehensive approach to fire management could improve upon traditional approaches for reducing community vulnerability. The traditional approach to mitigating fire risk, in addition to fire suppression, has been to reduce fuel through construction of fuel breaks. Despite increasing expenditure on these treatments, there has been little empirical study of their role in controlling large fires. We will present the results of a study in which we constructed and analyzed a spatial database of fuel breaks in southern California national forests. Our objective was to better understand characteristics of fuel breaks that affect the behavior of large fires and to map where fires and fuel breaks most commonly intersect. We found that fires stopped at fuel breaks 22-47% of the time, depending on the forest, and the reason fires stopped was invariably related to firefighter access and management activities. Fire weather and fuel break condition were also important. The study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities. While fuel breaks have played a role in controlling wildfires at the Wildland Urban Interface, we are evaluating alternative approaches for reducing community vulnerability, including land use planning. Recent research shows that the amount and spatial arrangement of human infrastructure, such as roads and housing developments, strongly influences wildfire patterns. Therefore, we hypothesize that the spatial arrangement and location of housing development is likely to affect the susceptibility of lives and property to fire. In other words, potential for urban loss may be greatest at specific housing densities, spatial patterns of development, and locations of development. If these risk factors can be identified, mapped, and modeled, it is possible that vulnerability to wildfire could be substantially minimized through careful planning for future development - especially because future development will likely increase the region’s fire risk. To address these possibilities, we are evaluating past housing loss in relation to land use planning, in conjunction with other variables that influence fire patterns. We are also exploring alternative future scenarios to identify optimum land use planning strategies for minimizing fire risk.
Forest structure and fire hazard in dry forests of the Western United States
David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt
2005-01-01
Fire, in conjunction with landforms and climate, shapes the structure and function of forests throughout the Western United States, where millions of acres of forest lands contain accumulations of flammable fuel that are much higher than historical conditions owing to various forms of fire exclusion. The Healthy Forests Restoration Act mandates that public land...
Fire effects on temperate forest soil C and N storage.
Nave, Lucas E; Vance, Eric D; Swanston, Christopher W; Curtis, Peter S
2011-06-01
Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N storage and is also the subject of enormous management efforts. In the present article, we use meta-analysis to quantify fire effects on temperate forest soil C and N storage. Across a combined total of 468 soil C and N response ratios from 57 publications (concentrations and pool sizes), fire had significant overall effects on soil C (-26%) and soil N (-22%). The impacts of fire on forest floors were significantly different from its effects on mineral soils. Fires reduced forest floor C and N storage (pool sizes only) by an average of 59% and 50%, respectively, but the concentrations of these two elements did not change. Prescribed fires caused smaller reductions in forest floor C and N storage (-46% and -35%) than wildfires (-67% and -69%), and the presence of hardwoods also mitigated fire impacts. Burned forest floors recovered their C and N pools in an average of 128 and 103 years, respectively. Among mineral soils, there were no significant changes in C or N storage, but C and N concentrations declined significantly (-11% and -12%, respectively). Mineral soil C and N concentrations were significantly affected by fire type, with no change following prescribed burns, but significant reductions in response to wildfires. Geographic variation in fire effects on mineral soil C and N storage underscores the need for region-specific fire management plans, and the role of fire type in mediating C and N shifts (especially in the forest floor) indicates that averting wildfires through prescribed burning is desirable from a soils perspective.
NASA Astrophysics Data System (ADS)
Kane, V. R.; McGaughey, R. J.; Asner, G. P.; Kane, J. T.; Churchill, D.; Vaughn, N.
2016-12-01
Most natural forests are structured as mosaics of tree clumps and openings. These mosaics reflect both the underlying patterns of the biophysical environment and the finer scale patterns of disturbance and regrowth. We have developed methods to quantify and map patterns of tree clumps and openings at scales from within stands to landscapes using airborne LiDAR. While many studies have used LiDAR data to identify individual trees, we also identify clumps as adjacent trees with similar heights within a stand that likely established at a similar time following a disturbance. We characterize openings by both size class and shape complexity. Spatial statistics are used to identify patterns of tree clumps and openings at the local (0.81 ha) scale, and these patterns are then mapped across entire landscapes. We use LiDAR data acquired over Sequoia National Park, California, USA, to show how forest structure varies with patterns of productivity driven by the biophysical environment. We then show how clump and opening patterns vary with different fire histories and how recent drought mortality correlates with different tree clump and opening structural mosaics. We also demonstrate that nesting sites for the California spotted owl, a species of concern, are associated with clumps of large (>32 and especially >48 m) trees but that the surrounding foraging areas consist of a heterogeneous pattern of forest structure. These methods are especially useful for studying clumps of large trees, which dominate above ground forest biomass, and the effects of disturbance on the abundance and pattern of large trees as key forest structures.
Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene
2016-03-01
A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessing fire risk in Portugal during the summer fire season
NASA Astrophysics Data System (ADS)
Dacamara, C. C.; Pereira, M. G.; Trigo, R. M.
2009-04-01
Since 1998, Instituto de Meteorologia, the Portuguese Weather Service has relied on the Canadian Fire Weather Index (FWI) System (van Wagner, 1987) to produce daily forecasts of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behavior. The first three components, i.e. the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC) respectively rate the average moisture content of surface litter, decomposing litter, and organic (humus) layers of the soil. Wind effects are then added to FFMC leading to the Initial Spread Index (ISI) that rates fire spread. The remaining two fuel moisture codes (DMC and DC) are in turn combined to produce the Buildup Index (BUI) that is a rating of the total amount of fuel available for combustion. BUI is finally combined with ISI to produce the Fire Weather Index (FWI) that represents the rate of fire intensity. Classes of fire danger and levels of preparedness are commonly defined on an empirical way for a given region by calibrating the FWI System against wildfire activity as defined by the recorded number of events and by the observed burned area over a given period of time (Bovio and Camia, 1998). It is also a well established fact that distributions of burned areas are heavily skewed to the right and tend to follow distributions of the exponential-type (Cumming, 2001). Based on the described context, a new procedure is presented for calibrating the FWI System during the summer fire season in Portugal. Two datasets were used covering a 28-year period (1980-2007); i) the official Portuguese wildfire database which contains detailed information on fire events occurred in the 18 districts of Continental Portugal and ii) daily values of the six components of the FWI System as derived from reanalyses (Uppala et al., 2005) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Calibration of the FWI System is then performed in two steps; 1) a truncated Weibull distribution is fitted to the sample of burned areas and 2) the quality of the fitted statistical model is improved by incorporating components of the FWI System as covariates. Obtained model allows estimating on a daily basis the probability of occurrence of fires larger than a given threshold as well as producing maps of fire risk. Results as obtained from a prototype currently being developed will be presented and discussed. In particular, it will be shown that results provide additional evidence of the known fact that the extent of burned area in Portugal is controlled by two main atmospheric factors (Pereira et al. 2005): i) a long-term control related to the regime of temperature and precipitation in spring and ii) a short-term control exerted by the occurrence of very intense dry spells in days of extreme synoptic situations. Bovio, G., and A. Camia. 1998. An analysis of large forest fire danger conditions in Europe. In Proc. 3rd Int. Conf. on Forest Fire Research & 14th Conf. on Fire and Forest Meteorology, Viegas, D.X. (Ed.), Luso, 16-20 Nov., ADAI, 975-994. Cumming, S.G., 2001. Parametric models of the fire size distribution. Can J. For. Res., 31, 1297-1303. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C. and Leite, S.M., 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agr. and For. Meteorol., 129 (1-2), 11-25. Uppala, S.M. et al., 2005: The ERA-40 re-analysis. Quart. J. R. Meteorol. Soc., 131, 2961-3012. Van Wagner, C.E., 1987. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Forest Technical Report 35, Ottawa, 37 pp.
Forest fire laboratory at Riverside and fire research in California: past, present, and future
Carl C. Wilson; James B. Davis
1988-01-01
The need for protection from uncontrolled fire in California was identified by Abbott Kinney, Chairman of the State Board of Forestry, more than 75 years before the construction of the Riverside Forest Fire Laboratory. With the organization of the USDA Forest Service the need for an effective fire protection organization became apparent. In response, a...
The Missoula Fire Sciences Laboratory: A 50-year dedication to understanding wildlands and fire
Diane M. Smith
2012-01-01
In 1960, the USDA Forest Service established the Northern Forest Fire Laboratory (now the Missoula Fire Sciences Laboratory) to find scientific solutions for better managing the nation's wildland resources and to research ways to improve forest fire prevention and suppression. This new state-of-the-art research facility did not emerge from a vacuum, however. This...
Lightning fires in southwestern forests
Jack S. Barrows
1978-01-01
Lightning is the leading cause of fires in southwestern forests. On all protected private, state and federal lands in Arizona and New Mexico, nearly 80 percent of the forest, brush and range fires are ignited by lightning. The Southwestern region leads all other regions of the United States both in total number of lightning fires and in the area burned by these fires...
1954 forest fire weather in western Oregon and Washington.
Owen P. Cramer
1954-01-01
For the second successive fire season forest fire weather in western Oregon and Washington was far below normal severity. The low danger is reflected in record low numbers of fires reported by forestry offices of both States and by the U. S. Forest Service for their respective protection areas. Although spring and fall fire weather was near normal, a rain-producing...
Post-fire surface fuel dynamics in California forests across three burn severity classes
Bianca N. I. Eskelson; Vicente J. Monleon
2018-01-01
Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...
Synergy between land use and climate change increases future fire risk in Amazon forests
Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...
2017-12-20
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less
Massad, Tara Joy; Balch, Jennifer K; Mews, Cândida Lahís; Porto, Pábio; Marimon Junior, Ben Hur; Quintino, Raimundo Mota; Brando, P M; Vieira, Simone A; Trumbore, Susan E
2015-07-01
Understanding tropical forest diversity is a long-standing challenge in ecology. With global change, it has become increasingly important to understand how anthropogenic and natural factors interact to determine diversity. Anthropogenic increases in fire frequency are among the global change variables affecting forest diversity and functioning, and seasonally dry forest of the southern Amazon is among the ecosystems most affected by such pressures. Studying how fire will impact forests in this region is therefore important for understanding ecosystem functioning and for designing effective conservation action. We report the results of an experiment in which we manipulated fire, nutrient availability, and herbivory. We measured the effects of these interacting factors on the regenerative capacity of the ecotone between humid Amazon forest and Brazilian savanna. Regeneration density, diversity, and community composition were severely altered by fire. Additions of P and N + P reduced losses of density and richness in the first year post-fire. Herbivory was most important just after germination. Diversity was positively correlated with herbivory in unburned forest, likely because fire reduced the number of reproductive individuals. This contrasts with earlier results from the same study system in which herbivory was related to increased diversity after fire. We documented a significant effect of fire frequency; diversity in triennially burned forest was more similar to that in unburned than in annually burned forest, and the community composition of triennially burned forest was intermediate between unburned and annually burned areas. Preventing frequent fires will therefore help reduce losses in diversity in the southern Amazon's matrix of human-altered landscapes.
Synergy between land use and climate change increases future fire risk in Amazon forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick; Morton, Douglas; Hartin, Corinne
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less
Baker, William L.
2015-01-01
Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984–2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984–2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046–2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests. PMID:26351850
NASA Astrophysics Data System (ADS)
Berner, Logan T.; Law, Beverly E.; Meddens, Arjan J. H.; Hicke, Jeffrey A.
2017-06-01
High temperatures and severe drought contributed to extensive tree mortality from fires and bark beetles during the 2000s in parts of the western continental United States. Several states in this region have greenhouse gas (GHG) emission targets and would benefit from information on the amount of carbon stored in tree biomass killed by disturbance. We quantified mean annual tree mortality from fires, bark beetles, and timber harvest from 2003-2012 for each state in this region. We estimated tree mortality from fires and beetles using tree aboveground carbon (AGC) stock and disturbance data sets derived largely from remote sensing. We quantified tree mortality from harvest using data from US Forest Service reports. In both cases, we used Monte Carlo analyses to track uncertainty associated with parameter error and temporal variability. Regional tree mortality from harvest, beetles, and fires (MORTH+B+F) together averaged 45.8 ± 16.0 Tg AGC yr-1 (±95% confidence interval), indicating a mortality rate of 1.10 ± 0.38% yr-1. Harvest accounted for the largest percentage of MORTH+B+F (˜50%), followed by beetles (˜32%), and fires (˜18%). Tree mortality from harvest was concentrated in Washington and Oregon, where harvest accounted for ˜80% of MORTH+B+F in each state. Tree mortality from beetles occurred widely at low levels across the region, yet beetles had pronounced impacts in Colorado and Montana, where they accounted for ˜80% of MORTH+B+F. Tree mortality from fires was highest in California, though fires accounted for the largest percentage of MORTH+B+F in Arizona and New Mexico (˜50%). Drought and human activities shaped regional variation in tree mortality, highlighting opportunities and challenges to managing GHG emissions from forests. Rising temperatures and greater risk of drought will likely increase tree mortality from fires and bark beetles during coming decades in this region. Thus, sustained monitoring and mapping of tree mortality is necessary to inform forest and GHG management.
Hayman Fire case study: Summary [RMRS-GTR-114
Russell T. Graham
2003-01-01
Historically, wildfires burned Western forests creating and maintaining a variety of forest compositions and structures (Agee 1993). Prior to European settlement lightning along with Native Americans ignited fires routinely across many forested landscapes. After Euro-American settlement, fires continued to be quite common with fires ignited by settlers, railroads, and...