Sample records for map heart rate

  1. Nonlinear systems dynamics in cardiovascular physiology: The heart rate delay map and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Hooker, John C.

    1990-01-01

    A preliminary study of the applicability of nonlinear dynamic systems analysis techniques to low body negative pressure (LBNP) studies. In particular, the applicability of the heart rate delay map is investigated. It is suggested that the heart rate delay map has potential as a supplemental tool in the assessment of subject performance in LBNP tests and possibly in the determination of susceptibility to cardiovascular deconditioning with spaceflight.

  2. Heart rate variability as determinism with jump stochastic parameters.

    PubMed

    Zheng, Jiongxuan; Skufca, Joseph D; Bollt, Erik M

    2013-08-01

    We use measured heart rate information (RR intervals) to develop a one-dimensional nonlinear map that describes short term deterministic behavior in the data. Our study suggests that there is a stochastic parameter with persistence which causes the heart rate and rhythm system to wander about a bifurcation point. We propose a modified circle map with a jump process noise term as a model which can qualitatively capture such this behavior of low dimensional transient determinism with occasional (stochastically defined) jumps from one deterministic system to another within a one parameter family of deterministic systems.

  3. A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Mary K., E-mail: mwalker@salud.unm.edu; Boberg, Jason R.; Walsh, Mary T.

    Oral gavage dosing can induce stress and potentially confound experimental measurements, particularly when blood pressure and heart rate are endpoints of interest. Thus, we developed a pill formulation that mice would voluntarily consume and tested the hypothesis that pill dosing would be significantly less stressful than oral gavage. C57Bl/6 male mice were singly housed and on four consecutive days were exposed to an individual walking into the room (week 1, control), a pill being placed into the cage (week 2), and a dose of water via oral gavage (week 3). Blood pressure and heart rate were recorded by radiotelemetry continuouslymore » for 5 h after treatment, and feces collected 6–10 h after treatment for analysis of corticosterone metabolites. Both pill and gavage dosing significantly increased mean arterial pressure (MAP) during the first hour, compared to control. However, the increase in MAP was significantly greater after gavage and remained elevated up to 5 h, while MAP returned to normal within 2 h after a pill. Neither pill nor gavage dosing significantly increased heart rate during the first hour, compared to control; however, pill dosing significantly reduced heart rate while gavage significantly increased heart rate 2–5 h post dosing. MAP and heart rate did not differ 24 h after dosing. Lastly, only gavage dosing significantly increased fecal corticosterone metabolites, indicating a systemic stress response via activation of the hypothalamic–pituitary–adrenal axis. These data demonstrated that this pill dosing method of mice is significantly less stressful than oral gavage. -- Highlights: ► Developed a novel oral dosing method using a pill that mice will readily consume. ► Assessed stress by blood pressure, heart rate, and fecal corticosterone metabolites. ► Demonstrated that pill dosing is significantly less stressful than oral gavage.« less

  4. Phenylephrine-induced elevations in arterial blood pressure are attenuated in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To test the hypothesis that phenylephrine-induced elevations in blood pressure are attenuated in heat-stressed humans, blood pressure was elevated via steady-state infusion of three doses of phenylephrine HCl in 10 healthy subjects in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature by 0.5 degrees C, muscle sympathetic nerve activity (MSNA), heart rate, and cardiac output and decreased total peripheral vascular resistance (TPR; all P < 0.005) but did not change mean arterial blood pressure (MAP; P > 0.05). At the highest dose of phenylephrine, the increase in MAP and TPR from predrug baselines was significantly attenuated during the heat stress [DeltaMAP 8.4 +/- 1.2 mmHg; DeltaTPR 0.96 +/- 0.85 peripheral resistance units (PRU)] compared with normothermia (DeltaMAP 15.4 +/- 1.4 mmHg, DeltaTPR 7.13 +/- 1.18 PRU; all P < 0.001). The sensitivity of baroreflex control of MSNA and heart rate, expressed as the slope of the relationship between MSNA and diastolic blood pressure, as well as the slope of the relationship between heart rate and systolic blood pressure, respectively, was similar between thermal conditions (each P > 0.05). These data suggest that phenylephrine-induced elevations in MAP are attenuated in heat-stressed humans without affecting baroreflex control of MSNA or heart rate.

  5. Developmental Change in Feedback Processing as Reflected by Phasic Heart Rate Changes

    ERIC Educational Resources Information Center

    Crone, Eveline A.; Jennings, J. Richard; Van der Molen, Maurits W.

    2004-01-01

    Heart rate was recorded from 3 age groups (8-10, 12, and 20-26 years) while they performed a probabilistic learning task. Stimuli had to be sorted by pressing a left versus right key, followed by positive or negative feedback. Adult heart rate slowed following negative feedback when stimuli were consistently mapped onto the left or right key…

  6. Systolic MOLLI T1 mapping with heart-rate-dependent pulse sequence sampling scheme is feasible in patients with atrial fibrillation.

    PubMed

    Zhao, Lei; Li, Songnan; Ma, Xiaohai; Greiser, Andreas; Zhang, Tianjing; An, Jing; Bai, Rong; Dong, Jianzeng; Fan, Zhanming

    2016-03-15

    T1 mapping enables assessment of myocardial characteristics. As the most common type of arrhythmia, atrial fibrillation (AF) is often accompanied by a variety of cardiac pathologies, whereby the irregular and usually rapid ventricle rate of AF may cause inaccurate T1 estimation due to mis-triggering and inadequate magnetization recovery. We hypothesized that systolic T1 mapping with a heart-rate-dependent (HRD) pulse sequence scheme may overcome this issue. 30 patients with AF and 13 healthy volunteers were enrolled and underwent cardiovascular magnetic resonance (CMR) at 3 T. CMR was repeated for 3 patients after electric cardioversion and for 2 volunteers after lowering heart rate (HR). A Modified Look-Locker Inversion Recovery (MOLLI) sequence was acquired before and 15 min after administration of 0.1 mmol/kg gadopentetate dimeglumine. For AF patients, both the fixed 5(3)3/4(1)3(1)2 and the HRD sampling scheme were performed at diastole and systole, respectively. The HRD pulse sequence sampling scheme was 5(n)3/4(n)3(n)2, where n was determined by the heart rate to ensure adequate magnetization recovery. Image quality of T1 maps was assessed. T1 times were measured in myocardium and blood. Extracellular volume fraction (ECV) was calculated. In volunteers with repeated T1 mapping, the myocardial native T1 and ECV generated from the 1st fixed sampling scheme were smaller than from the 1st HRD and 2nd fixed sampling scheme. In healthy volunteers, the overall native T1 times and ECV of the left ventricle (LV) in diastolic T1 maps were greater than in systolic T1 maps (P < 0.01, P < 0.05). In the 3 AF patients that had received electrical cardioversion therapy, the myocardial native T1 times and ECV generated from the fixed sampling scheme were smaller than in the 1st and 2nd HRD sampling scheme (all P < 0.05). In patients with AF (HR: 88 ± 20 bpm, HR fluctuation: 12 ± 9 bpm), more T1 maps with artifact were found in diastole than in systole (P < 0.01). The overall native T1 times and ECV of the left ventricle (LV) in diastolic T1 maps were greater than systolic T1 maps, either with fixed or HRD sampling scheme (all P < 0.05). Systolic MOLLI T1 mapping with heart-rate-dependent pulse sequence scheme can improve image quality and avoid T1 underestimation. It is feasible and with further validation may extend clinical applicability of T1 mapping to patients with atrial fibrillation.

  7. Fractal Based Analysis of the Influence of Odorants on Heart Activity

    NASA Astrophysics Data System (ADS)

    Namazi, Hamidreza; Kulish, Vladimir V.

    2016-12-01

    An important challenge in heart research is to make the relation between the features of external stimuli and heart activity. Olfactory stimulation is an important type of stimulation that affects the heart activity, which is mapped on Electrocardiogram (ECG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the ECG signal. This study investigates the relation between the structures of heart rate and the olfactory stimulus (odorant). We show that the complexity of the heart rate is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal heart rate. Also, odorant having higher entropy causes the heart rate having lower approximate entropy. The method discussed here can be applied and investigated in case of patients with heart diseases as the rehabilitation purpose.

  8. Whole body heat stress attenuates the pressure response to muscle metaboreceptor stimulation in humans.

    PubMed

    Cui, Jian; Blaha, Cheryl; Sinoway, Lawrence I

    2016-11-01

    The effects of whole body heat stress on sympathetic and cardiovascular responses to stimulation of muscle metaboreceptors and mechanoreceptors remains unclear. We examined the muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate in 14 young healthy subjects during fatiguing isometric handgrip exercise, postexercise circulatory occlusion (PECO), and passive muscle stretch during PECO. The protocol was performed under normothermic and whole body heat stress (increase internal temperature ~0.6°C via a heating suit) conditions. Heat stress increased the resting MSNA and heart rate. Heat stress did not alter the mean blood pressure (MAP), heart rate, and MSNA responses (i.e., changes) to fatiguing exercise. During PECO, whole body heat stress accentuated the heart rate response [change (Δ) of 5.8 ± 1.5 to Δ10.0 ± 2.1 beats/min, P = 0.03], did not alter the MSNA response (Δ16.4 ± 2.8 to Δ17.3 ± 3.8 bursts/min, P = 0.74), and lowered the MAP response (Δ20 ± 2 to Δ12 ± 1 mmHg, P < 0.001). Under normothermic conditions, passive stretch during PECO evoked significant increases in MAP and MSNA (both P < 0.001). Of note, heat stress prevented the MAP and MSNA responses to stretch during PECO (both P > 0.05). These data suggest that whole body heat stress attenuates the pressor response due to metaboreceptor stimulation, and the sympathetic nerve response due to mechanoreceptor stimulation. Copyright © 2016 the American Physiological Society.

  9. NOS II inhibition attenuates post-suspension hypotension in Sprague-Dawley rats

    NASA Technical Reports Server (NTRS)

    Eatman, D.; Walton, M.; Socci, R. R.; Emmett, N.; Bayorh, M. A.

    2003-01-01

    The reduction in mean arterial pressure observed in astronauts may be related to the impairment of autonomic function and/or excessive production of endothelium-derived relaxing factors. Here, we examined the role of a nitric oxide synthase II (NOS II) inhibitor AMT (2-amino-dihydro-6-methyl-4H-1,3-thiazine) against the post-suspension reduction in mean arterial pressure (MAP) in conscious male Sprague-Dawley rats. Direct MAP and heart rate were determined prior to tail-suspension, daily during the 7-day suspension and every 2 hrs post-suspension. Prior to release from suspension and at 2 and 4 hrs post-suspension, AMT (0.1 mg/kg), or saline, were administered intravenously. During the 7-day suspension, MAP was not altered, nor were there significant changes in heart rate. The reduction in MAP post-suspension in saline-treated rats was associated with significant increases in plasma nitric oxide and prostacyclin. 2-Amino-dihydro-6-methyl4H-1,3-thiazine reduced plasma nitric oxide levels, but not those of prostacyclin, attenuated the observed post-suspension reduction in MAP and modified the baroreflex sensitivity for heart rate. Thus, the post suspension reduction in mean arterial pressure is due, in part, to overproduction of nitric oxide, via the NOS II pathway, and alteration in baroreflex activity.

  10. L-NAME, a nitric oxide synthase inhibitor, as a potential countermeasure to post-suspension hypotension in rats

    NASA Technical Reports Server (NTRS)

    Bayorh, M. A.; Socci, R. R.; Watts, S.; Wang, M.; Eatman, D.; Emmett, N.; Thierry-Palmer, M.

    2001-01-01

    A large number of astronauts returning from spaceflight experience orthostatic hypotension. This hypotension may be due to overproduction of vasodilatory mediators, such as nitric oxide (NO) and prostaglandins. To evaluate the role of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) as a countermeasure against the post-suspension reduction in mean arterial pressure (MAP), we assessed the cardiovascular responses and vascular reactivity to 7-day 30 degrees tail-suspension and a subsequent 6 hr post-suspension period in conscious rats. After a pre-suspension reading, direct MAP and heart rate (HR) were measured daily and every 2 hrs post-suspension. The NO synthase inhibitor L-NAME (20 mg/kg, i.v.), or saline, were administered after the 7th day reading prior to release from suspension and at 2 and 4 hrs post-suspension. At 6 hrs post-suspension, vascular reactivity was assessed. While MAP did not change during the suspension period, it was reduced post-suspension. Heart rate was not significantly altered. L-NAME administration reversed the post-suspension reduction in MAP. In addition, the baroreflex sensitivity for heart rate was modified by L-NAME. Thus, the post-suspension reduction in MAP may be due to overproduction of NO and altered baroreflex activity.

  11. Non-linear Heart Rate and Blood Pressure Interaction in Response to Lower-Body Negative Pressure

    PubMed Central

    Verma, Ajay K.; Xu, Da; Garg, Amanmeet; Cote, Anita T.; Goswami, Nandu; Blaber, Andrew P.; Tavakolian, Kouhyar

    2017-01-01

    Early detection of hemorrhage remains an open problem. In this regard, blood pressure has been an ineffective measure of blood loss due to numerous compensatory mechanisms sustaining arterial blood pressure homeostasis. Here, we investigate the feasibility of causality detection in the heart rate and blood pressure interaction, a closed-loop control system, for early detection of hemorrhage. The hemorrhage was simulated via graded lower-body negative pressure (LBNP) from 0 to −40 mmHg. The research hypothesis was that a significant elevation of causal control in the direction of blood pressure to heart rate (i.e., baroreflex response) is an early indicator of central hypovolemia. Five minutes of continuous blood pressure and electrocardiogram (ECG) signals were acquired simultaneously from young, healthy participants (27 ± 1 years, N = 27) during each LBNP stage, from which heart rate (represented by RR interval), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were derived. The heart rate and blood pressure causal interaction (RR↔SBP and RR↔MAP) was studied during the last 3 min of each LBNP stage. At supine rest, the non-baroreflex arm (RR→SBP and RR→MAP) showed a significantly (p < 0.001) higher causal drive toward blood pressure regulation compared to the baroreflex arm (SBP→RR and MAP→RR). In response to moderate category hemorrhage (−30 mmHg LBNP), no change was observed in the traditional marker of blood loss i.e., pulse pressure (p = 0.10) along with the RR→SBP (p = 0.76), RR→MAP (p = 0.60), and SBP→RR (p = 0.07) causality compared to the resting stage. Contrarily, a significant elevation in the MAP→RR (p = 0.004) causality was observed. In accordance with our hypothesis, the outcomes of the research underscored the potential of compensatory baroreflex arm (MAP→RR) of the heart rate and blood pressure interaction toward differentiating a simulated moderate category hemorrhage from the resting stage. Therefore, monitoring baroreflex causality can have a clinical utility in making triage decisions to impede hemorrhage progression. PMID:29114227

  12. Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/β-catenin signaling in autonomic control of heart rate

    PubMed Central

    Burkhard, Silja Barbara

    2018-01-01

    Development of specialized cells and structures in the heart is regulated by spatially -restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development we used tomo-seq, combining high-throughput RNA-sequencing with tissue-sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development. Using our transcriptome map, we identified spatially restricted Wnt/β-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/β-catenin signaling controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially restricted molecular pathways critical for specific cardiac functions. PMID:29400650

  13. Selective heart rate reduction with ivabradine slows ischaemia-induced electrophysiological changes and reduces ischaemia–reperfusion-induced ventricular arrhythmias

    PubMed Central

    Ng, Fu Siong; Shadi, Iqbal T.; Peters, Nicholas S.; Lyon, Alexander R.

    2013-01-01

    Heart rates during ischaemia and reperfusion are possible determinants of reperfusion arrhythmias. We used ivabradine, a selective If current inhibitor, to assess the effects of heart rate reduction (HRR) during ischaemia–reperfusion on reperfusion ventricular arrhythmias and assessed potential anti-arrhythmic mechanisms by optical mapping. Five groups of rat hearts were subjected to regional ischaemia by left anterior descending artery occlusion for 8 min followed by 10 min of reperfusion: (1) Control n = 10; (2) 1 μM of ivabradine perfusion n = 10; (3) 1 μM of ivabradine + 5 Hz atrial pacing throughout ischaemia–reperfusion n = 5; (4) 1 μM of ivabradine + 5 Hz pacing only at reperfusion; (5) 100 μM of ivabradine was used as a 1 ml bolus upon reperfusion. For optical mapping, 10 hearts (ivabradine n = 5; 5 Hz pacing n = 5) were subjected to global ischaemia whilst transmembrane voltage transients were recorded. Epicardial activation was mapped, and the rate of development of ischaemia-induced electrophysiological changes was assessed. HRR observed in the ivabradine group during both ischaemia (195 ± 11 bpm vs. control 272 ± 14 bpm, p < 0.05) and at reperfusion (168 ± 13 bpm vs. 276 ± 14 bpm, p < 0.05) was associated with reduced reperfusion ventricular fibrillation (VF) incidence (20% vs. 90%, p < 0.05). Pacing throughout ischaemia–reperfusion abolished the protective effects of ivabradine (100% VF), whereas pacing at reperfusion only partially attenuated this effect (40% VF). Ivabradine, given as a bolus at reperfusion, did not significantly affect VF incidence (80% VF). Optical mapping experiments showed a delay to ischaemia-induced conduction slowing (time to 50% conduction slowing: 10.2 ± 1.3 min vs. 5.1 ± 0.7 min, p < 0.05) and to loss of electrical excitability in ivabradine-perfused hearts (27.7 ± 4.3 min vs. 14.5 ± 0.6 min, p < 0.05). Ivabradine administered throughout ischaemia and reperfusion reduced reperfusion VF incidence through HRR. Heart rate during ischaemia is a major determinant of reperfusion arrhythmias. Heart rate at reperfusion alone was not a determinant of reperfusion VF, as neither a bolus of ivabradine nor pacing immediately prior to reperfusion significantly altered reperfusion VF incidence. This anti-arrhythmic effect of heart rate reduction during ischaemia may reflect slower development of ischaemia-induced electrophysiological changes. PMID:23402927

  14. Rapid resetting of rabbit aortic baroreceptors and reflex heart rate responses by directional changes in blood pressure.

    PubMed

    Burke, S L; Dorward, P K; Korner, P I

    1986-09-01

    In both anaesthetized and conscious rabbits, perivascular balloon inflations slowly raised or lowered mean arterial pressure (M.A.P.), at 1-2 mmHg/s, from resting to various plateau pressures. Deflations then returned the M.A.P. to resting. 'Steady-state' curves relating M.A.P. to unitary aortic baroreceptor firing, integrated aortic nerve activity and heart rate were derived during the primary and return pressure changes and they formed typical hysteresis loops. In single units, return M.A.P.-frequency curves were shifted in the same direction as the primary pressure changes by an average 0.37 mmHg per mmHg change in M.A.P. Shifts were linearly related to the changes in M.A.P. between resting and plateau levels for all pressure rises and for falls less than 30 mmHg. They were established within 30 s and were quantitatively similar to the rapid resetting of baroreceptor function curves found 15 min-2 h after a change in resting M.A.P. (Dorward, Andresen, Burke, Oliver & Korner, 1982). Unit threshold pressures were shifted within 20 s to the same extent as the over-all curve shift to which they contributed. In the whole aortic nerve, return M.A.P.-integrated activity curves were shifted to same degree as unit function curves in both anaesthetized and conscious rabbits. Simultaneous shifts of return reflex M.A.P.-heart rate curves were also seen in conscious rabbits within 30 s. During M.A.P. falls, receptor and reflex hysteresis was similar, but during M.A.P. rises, reflex shifts were double baroreceptor shifts, suggesting the involvement of other pressure-sensitive receptors. We conclude that hysteresis shifts in baroreceptor function curves, which follow the reversal of slow ramp changes in blood pressure are a form of rapid resetting. They are accompanied by rapid resetting of reflex heart rate responses. We regard this as an important mechanism in blood pressure control which produces relatively high-gain reflex responses, during slow directional pressure changes, over a wider range of absolute pressure levels than would otherwise be possible.

  15. Origin of Aberrant Blood Pressure and Sympathetic Regulation in Diet-Induced Obesity.

    PubMed

    Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Armitage, James A; Head, Geoffrey A

    2016-08-01

    High fat diet (HFD)-induced hypertension in rabbits is neurogenic and caused by the central action of leptin, which is thought to be dependent on activation of α-melanocortin-stimulating hormone (α-MSH) and neuropeptide Y-positive neurons projecting to the dorsomedial hypothalamus (DMH) and ventromedial hypothalamus (VMH). However, leptin may act directly in these nuclei. Here, we assessed the contribution of leptin, α-MSH, and neuropeptide Y signaling in the DMH and VMH to diet-induced hypertension. Male New Zealand white rabbits were instrumented with a cannula for drug injections into the DMH or VMH and a renal sympathetic nerve activity (RSNA) electrode. After 3 weeks of an HFD (13.3% fat; n=19), rabbits exhibited higher RSNA, mean arterial pressure (MAP), and heart rate compared with control diet-fed animals (4.2% fat; n=15). Intra-VMH injections of a leptin receptor antagonist or SHU9119, a melanocortin 3/4 receptor antagonist, decreased MAP, heart rate, and RSNA compared with vehicle in HFD rabbits (P<0.05) but not in control diet-fed animals. By contrast, α-MSH or neuropeptide Y injected into the VMH had no effect on MAP but produced sympathoexcitation in HFD rabbits (P<0.05) but not in control diet-fed rabbits. The effects of the leptin antagonist, α-MSH, or neuropeptide Y injections into the DMH on MAP or RSNA of HFD rabbits were not different from those after vehicle injection. α-MSH into the DMH of control diet-fed animals did increase MAP, heart rate, and RSNA. We conclude that the VMH is the likely origin of leptin-mediated sympathoexcitation and α-MSH hypersensitivity that contribute to obesity-related hypertension. © 2016 American Heart Association, Inc.

  16. A Functional Melanocortin System May Be Required for Chronic CNS-Mediated Antidiabetic and Cardiovascular Actions of Leptin

    PubMed Central

    da Silva, Alexandre A.; do Carmo, Jussara M.; Freeman, J. Nathan; Tallam, Lakshmi S.; Hall, John E.

    2009-01-01

    OBJECTIVE We recently showed that leptin has powerful central nervous system (CNS)-mediated antidiabetic and cardiovascular actions. This study tested whether the CNS melanocortin system mediates these actions of leptin in diabetic rats. RESEARCH DESIGN AND METHODS A cannula was placed in the lateral ventricle of Sprague-Dawley rats for intracerebroventricular infusions, and arterial and venous catheters were implanted to measure mean arterial pressure (MAP) and heart rate 24 h/day and for intravenous infusions. After recovery from surgery for 8 days, rats were injected with streptozotocin (STZ), and 5 days later, either saline or the melanocortin 3 and 4 receptor (MC3/4R) antagonist SHU-9119 (1 nmol/h) was infused intracerebroventricularly for 17 days. Seven days after starting the antagonist, leptin (0.62 μg/h) was added to the intracerebroventricular infusion for 10 days. Another group of diabetic rats was infused with the MC3/4R agonist MTII (10 ng/h i.c.v.) for 12 days, followed by 7 days at 50 ng/h. RESULTS Induction of diabetes caused hyperphagia, hyperglycemia, and decreases in heart rate (−76 bpm) and MAP (−7 mmHg). Leptin restored appetite, blood glucose, heart rate, and MAP back to pre-diabetic values in vehicle-treated rats, whereas it had no effect in SHU-9119–treated rats. MTII infusions transiently reduced blood glucose and raised heart rate and MAP, which returned to diabetic values 5–7 days after starting the infusion. CONCLUSIONS Although a functional melanocortin system is necessary for the CNS-mediated antidiabetic and cardiovascular actions of leptin, chronic MC3/4R activation is apparently not sufficient to mimic these actions of leptin that may involve interactions of multiple pathways. PMID:19491210

  17. Optical mapping of conduction in early embryonic quail hearts with light-sheet microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ma, Pei; Gu, Shi; Wang, Yves T.; Jenkins, Michael W.; Rollins, Andrew M.

    2016-03-01

    Optical mapping (OM) using fluorescent voltage-sensitive dyes (VSD) to measure membrane potential is currently the most effective method for electrophysiology studies in early embryonic hearts due to its noninvasiveness and large field-of-view. Conventional OM acquires bright-field images, collecting signals that are integrated in depth and projected onto a 2D plane, not capturing the 3D structure of the sample. Early embryonic hearts, especially at looping stages, have a complicated, tubular geometry. Therefore, conventional OM cannot provide a full picture of the electrical conduction circumferentially around the heart, and may result in incomplete and inaccurate measurements. Here, we demonstrate OM of Hamburger and Hamilton stage 14 embryonic quail hearts using a new commercially-available VSD, Fluovolt, and depth sectioning using a custom built light-sheet microscopy system. Axial and lateral resolution of the system is 14µm and 8µm respectively. For OM imaging, the field-of-view was set to 900µm×900µm to cover the entire heart. 2D over time OM image sets at multiple cross-sections through the looping-stage heart were recorded. The shapes of both atrial and ventricular action potentials acquired were consistent with previous reports using conventional VSD (di-4-ANNEPS). With Fluovolt, signal-to-noise ratio (SNR) is improved significantly by a factor of 2-10 (compared with di-4-ANNEPS) enabling light-sheet OM, which intrinsically has lower SNR due to smaller sampling volumes. Electrophysiologic parameters are rate dependent. Optical pacing was successfully integrated into the system to ensure heart rate consistency. This will also enable accurately gated reconstruction of full four dimensional conduction maps and 3D conduction velocity measurements.

  18. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data.

    PubMed

    Marwan, Norbert; Wessel, Niels; Meyerfeldt, Udo; Schirdewan, Alexander; Kurths, Jürgen

    2002-08-01

    The knowledge of transitions between regular, laminar or chaotic behaviors is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods that, however, require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart-rate-variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e., chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our measures to the heart-rate-variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.

  19. Inhibition of the reverse mode of the Na+/Ca2+ exchange by KB-R7943 augments arrhythmogenicity in the canine heart during rapid heart rates.

    PubMed

    Shinada, Takuro; Hirayama, Yoshiyuki; Maruyama, Mitsunori; Ohara, Toshihiko; Yashima, Masaaki; Kobayashi, Yoshinori; Atarashi, Hirotsugu; Takano, Teruo

    2005-07-01

    To test the hypothesis that the reverse mode of the Na+/Ca2+ exchange augmented by a rapid heart rate has an antiarrhythmic effect by shortening the action potential duration, we examined the effects of KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl] isothiourea methanesulfonate), a selective inhibitor of the reverse mode of the Na+/Ca2+ exchange, to attenuate this effect. We recorded the electrocardiogram, monophasic action potential (MAP), and left ventricular pressure in canine beating hearts. In comparison to the control, KB-R7943 significantly increased the QTc value and MAP duration. MAP alternans and left ventricular pressure alternans were observed after changing the cycle length to 300 milliseconds in the control studies. KB-R7943 magnified both types of alternans and produced spatially discordant alternans between right and left ventricles. Early after-depolarizations and nonsustained ventricular tachycardia occurred in the presence of KB-R7943. Our data suggest that the reverse mode of the Na+/Ca2+ exchange may contribute to suppression of arrhythmias by abbreviating action potential duration under pathophysiological conditions. This conclusion is based on further confirmation by future studies of the specificity of KB-R7943 for block of the reverse mode of the Na+/Ca2+ exchange.

  20. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation

    PubMed Central

    Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V.; Beg, Mirza Faisal

    2015-01-01

    Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented. PMID:25740339

  1. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs.

    PubMed

    Dosdall, Derek J; Tabereaux, Paul B; Kim, Jong J; Walcott, Gregory P; Rogers, Jack M; Killingsworth, Cheryl R; Huang, Jian; Robertson, Peter G; Smith, William M; Ideker, Raymond E

    2008-08-01

    Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 x 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 +/- 1.5 vs. 9.2 +/- 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF.

  2. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Cai, Zhengwei; Lin, Shuying; Dubinion, John H; Hall, John E

    2011-05-01

    Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions. LepR(flox/flox)/POMC-Cre mice were heavier, hyperglycemic, hyperinsulinemic, and hyperleptinemic compared with wild-type, LepR(flox/flox), and POMC-Cre mice. Despite exhibiting features of metabolic syndrome, LepR(flox/flox)/POMC-Cre mice had normal MAP and heart rate compared with LepR(flox/flox) but lower MAP and heart rate compared with wild-type mice. After a 5-day control period, leptin was infused (2 μg/kg per minute, IV) for 7 days. In control mice, leptin increased MAP by ≈5 mm Hg despite decreasing food intake by ≈35%. In contrast, leptin infusion in LepR(flox/flox)/POMC-Cre mice reduced MAP by ≈3 mm Hg and food intake by ≈28%. Leptin significantly decreased insulin and glucose levels in control mice but not in LepR(flox/flox)/POMC-Cre mice. Leptin increased oxygen consumption in LepR(flox/flox)/POMC-Cre and wild-type mice. Activation of POMC neurons is necessary for the chronic effects of leptin to raise MAP and reduce insulin and glucose levels, whereas leptin receptors in other areas of the brain other than POMC neurons appear to play a key role in mediating the chronic effects of leptin on appetite and oxygen consumption.

  3. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.

    PubMed

    Zhang, Hanyu; Iijima, Kenichi; Huang, Jian; Walcott, Gregory P; Rogers, Jack M

    2016-07-26

    Cardiac optical mapping uses potentiometric fluorescent dyes to image membrane potential (Vm). An important limitation of conventional optical mapping is that contraction is usually arrested pharmacologically to prevent motion artifacts from obscuring Vm signals. However, these agents may alter electrophysiology, and by abolishing contraction, also prevent optical mapping from being used to study coupling between electrical and mechanical function. Here, we present a method to simultaneously map Vm and epicardial contraction in the beating heart. Isolated perfused swine hearts were stained with di-4-ANEPPS and fiducial markers were glued to the epicardium for motion tracking. The heart was imaged at 750 Hz with a video camera. Fluorescence was excited with cyan or blue LEDs on alternating camera frames, thus providing a 375-Hz effective sampling rate. Marker tracking enabled the pixel(s) imaging any epicardial site within the marked region to be identified in each camera frame. Cyan- and blue-elicited fluorescence have different sensitivities to Vm, but other signal features, primarily motion artifacts, are common. Thus, taking the ratio of fluorescence emitted by a motion-tracked epicardial site in adjacent frames removes artifacts, leaving Vm (excitation ratiometry). Reconstructed Vm signals were validated by comparison to monophasic action potentials and to conventional optical mapping signals. Binocular imaging with additional video cameras enabled marker motion to be tracked in three dimensions. From these data, epicardial deformation during the cardiac cycle was quantified by computing finite strain fields. We show that the method can simultaneously map Vm and strain in a left-sided working heart preparation and can image changes in both electrical and mechanical function 5 min after the induction of regional ischemia. By allowing high-resolution optical mapping in the absence of electromechanical uncoupling agents, the method relieves a long-standing limitation of optical mapping and has potential to enhance new studies in coupled cardiac electromechanics. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Using complexity metrics with R-R intervals and BPM heart rate measures.

    PubMed

    Wallot, Sebastian; Fusaroli, Riccardo; Tylén, Kristian; Jegindø, Else-Marie

    2013-01-01

    Lately, growing attention in the health sciences has been paid to the dynamics of heart rate as indicator of impending failures and for prognoses. Likewise, in social and cognitive sciences, heart rate is increasingly employed as a measure of arousal, emotional engagement and as a marker of interpersonal coordination. However, there is no consensus about which measurements and analytical tools are most appropriate in mapping the temporal dynamics of heart rate and quite different metrics are reported in the literature. As complexity metrics of heart rate variability depend critically on variability of the data, different choices regarding the kind of measures can have a substantial impact on the results. In this article we compare linear and non-linear statistics on two prominent types of heart beat data, beat-to-beat intervals (R-R interval) and beats-per-min (BPM). As a proof-of-concept, we employ a simple rest-exercise-rest task and show that non-linear statistics-fractal (DFA) and recurrence (RQA) analyses-reveal information about heart beat activity above and beyond the simple level of heart rate. Non-linear statistics unveil sustained post-exercise effects on heart rate dynamics, but their power to do so critically depends on the type data that is employed: While R-R intervals are very susceptible to non-linear analyses, the success of non-linear methods for BPM data critically depends on their construction. Generally, "oversampled" BPM time-series can be recommended as they retain most of the information about non-linear aspects of heart beat dynamics.

  5. Using complexity metrics with R-R intervals and BPM heart rate measures

    PubMed Central

    Wallot, Sebastian; Fusaroli, Riccardo; Tylén, Kristian; Jegindø, Else-Marie

    2013-01-01

    Lately, growing attention in the health sciences has been paid to the dynamics of heart rate as indicator of impending failures and for prognoses. Likewise, in social and cognitive sciences, heart rate is increasingly employed as a measure of arousal, emotional engagement and as a marker of interpersonal coordination. However, there is no consensus about which measurements and analytical tools are most appropriate in mapping the temporal dynamics of heart rate and quite different metrics are reported in the literature. As complexity metrics of heart rate variability depend critically on variability of the data, different choices regarding the kind of measures can have a substantial impact on the results. In this article we compare linear and non-linear statistics on two prominent types of heart beat data, beat-to-beat intervals (R-R interval) and beats-per-min (BPM). As a proof-of-concept, we employ a simple rest-exercise-rest task and show that non-linear statistics—fractal (DFA) and recurrence (RQA) analyses—reveal information about heart beat activity above and beyond the simple level of heart rate. Non-linear statistics unveil sustained post-exercise effects on heart rate dynamics, but their power to do so critically depends on the type data that is employed: While R-R intervals are very susceptible to non-linear analyses, the success of non-linear methods for BPM data critically depends on their construction. Generally, “oversampled” BPM time-series can be recommended as they retain most of the information about non-linear aspects of heart beat dynamics. PMID:23964244

  6. Effect of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication.

    PubMed

    Gierthmuehlen, Mortimer; Plachta, Dennis T T

    2016-02-01

    Selective vagal nerve stimulation (sVNS) has been shown to reduce blood pressure without major side effects in rats. This technology might be the key to non-medical antihypertensive treatment in patients with therapy-resistant hypertension. β-blockers are the first-line therapy of hypertension and have in general a bradycardic effect. As VNS itself can also promote bradycardia, it was the aim of this study to investigate the influence of the β1-selective blocker Metoprolol on the effect of sVNS especially with respect to the heart rate. In 10 male Wistar rats, a polyimide multichannel-cuff electrode was placed around the vagal nerve bundle to selectively stimulate the aortic depressor nerve fibers. The stimulation parameters were adapted to the thresholds of individual animals and were in the following ranges: frequency 30-50 Hz, amplitude 0.3-1.8 mA and pulse width 0.3-1.3 ms. Blood pressure responses were detected with a microtip transducer in the carotid artery, and electrocardiography was recorded with s.c. chest electrodes. After IV administration of Metoprolol (2 mg kg(-1) body weight), the animals' mean arterial blood pressure (MAP) and heart rate (HR) decreased significantly. Although the selective electrical stimulation of the baroreceptive fibers reduced MAP and HR, both effects were significantly alleviated by Metoprolol. As a side effect, the rate of stimulation-induced apnea significantly increased after Metoprolol administration. sVNS can lower the MAP under Metoprolol without causing severe bradycardia.

  7. Regulation of Blood Pressure, Appetite, and Glucose by Leptin After Inactivation of Insulin Receptor Substrate 2 Signaling in the Entire Brain or in Proopiomelanocortin Neurons.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Freeman, Nathan J; Alsheik, Ammar J; Adi, Ahmad; Hall, John E

    2016-02-01

    Insulin receptor substrate 2 (IRS2) is one of the 3 major leptin receptor signaling pathways, but its role in mediating the chronic effects of leptin on blood pressure, food intake, and glucose regulation is unclear. We tested whether genetic inactivation of IRS2 in the entire brain (IRS2/Nestin-cre mice) or specifically in proopiomelanocortin (POMC) neurons (IRS2/POMC-cre mice) attenuates the chronic cardiovascular, metabolic, and antidiabetic effects of leptin. Mice were instrumented with telemetry probes for measurement of blood pressure and heart rate and with venous catheters for intravenous infusions. After a 5-day control period, mice received leptin infusion (2 μg/kg per minute) for 7 days. Compared with control IRS2(flox/flox) mice, IRS2/POMC-cre mice had similar body weight and food intake (33±1 versus 35±1 g and 3.6±0.5 versus 3.8±0.2 g per day) but higher mean arterial pressure (MAP) and heart rate (110±2 versus 102±2 mm Hg and 641±9 versus 616±5 bpm). IRS2/Nestin-cre mice were heavier (38±2 g), slightly hyperphagic (4.5±1.0 g per day), and had higher MAP and heart rate (108±2 mm Hg and 659±9 bpm) compared with control mice. Leptin infusion gradually increased MAP despite decreasing food intake by 31% in IRS2(flox/flox) and in Nestin-cre control mice. In contrast, leptin infusion did not change MAP in IRS2/Nestin-cre or IRS2/POMC-cre mice. The anorexic and antidiabetic effects of leptin, however, were similar in all 3 groups. These results indicate that IRS2 signaling in the central nervous system, and particularly in POMC neurons, is essential for the chronic actions of leptin to raise MAP but not for its anorexic or antidiabetic effects. © 2015 American Heart Association, Inc.

  8. Baroreflex dysfunction in sick newborns makes heart rate an unreliable surrogate for blood pressure changes.

    PubMed

    Govindan, Rathinaswamy B; Al-Shargabi, Tareq; Massaro, An N; Metzler, Marina; Andescavage, Nickie N; Joshi, Radhika; Dave, Rhiya; du Plessis, Adre

    2016-06-01

    Cerebral pressure passivity (CPP) in sick newborns can be detected by evaluating coupling between mean arterial pressure (MAP) and cerebral blood flow measured by near infra-red spectroscopy hemoglobin difference (HbD). However, continuous MAP monitoring requires invasive catheterization with its inherent risks. We tested whether heart rate (HR) could serve as a reliable surrogate for MAP in the detection of CPP in sick newborns. Continuous measurements of MAP, HR, and HbD were made and partitioned into 10-min epochs. Spectral coherence (COH) was computed between MAP and HbD (COHMAP-HbD) to detect CPP, between HR and HbD (COHHR-HbD) for comparison, and between MAP and HR (COHMAP-HR) to quantify baroreflex function (BRF). The agreement between COHMAP-HbD and COHHR-HbD was assessed using ROC analysis. We found poor agreement between COHMAP-HbD and COHHR-HbD in left hemisphere (area under the ROC curve (AUC) 0.68) and right hemisphere (AUC 0.71). Baroreflex failure (COHMAP-HR not significant) was present in 79% of epochs. Confining comparison to epochs with intact BRF showed an AUC of 0.85 for both hemispheres. In these sick newborns, HR was an unreliable surrogate for MAP required for the detection of CPP. This is likely due to the prevalence of BRF failure in these infants.

  9. Randomized Comparative Study of Intravenous Infusion of Three Different Fixed Doses of Milrinone in Pediatric Patients with Pulmonary Hypertension Undergoing Open Heart Surgery

    PubMed Central

    Barnwal, Neeraj Kumar; Umbarkar, Sanjeeta Rajendra; Sarkar, Manjula Sudeep; Dias, Raylene J

    2017-01-01

    Background: Pulmonary hypertension secondary to congenital heart disease is a common problem in pediatric patients presenting for open heart surgery. Milrinone has been shown to reduce pulmonary vascular resistance and pulmonary artery pressure in pediatric patients and neonates postcardiac surgery. We aimed to evaluate the postoperative outcome in such patients with three different fixed maintenance doses of milrinone. Methodology: Patients were randomized into three groups. All patients received fixed bolus dose of milrinone 50 μg/kg on pump during rewarming. Following this, patients in low-dose group received infusion of milrinone at the rate of 0.375 μg/kg/min, medium-dose group received 0.5 μg/kg/min, and high-dose group received 0.75 μg/kg/min over 24 h. Heart rate, mean arterial pressure (MAP), mean airway pressure (MaP), oxygenation index (OI), and central venous pressure (CVP) were compared at baseline and 24 h postoperatively. Dose of inotropic requirement, duration of ventilatory support and Intensive Care Unit (ICU) stay were noted. Results: MAP, MaP, OI, and CVP were comparable in all three groups postoperatively. All patients in the low-dose group required low inotropic support while 70% of patients in the high-dose group needed high inotropic support to manage episodes of hypotension (P = 0.000). Duration of ventilatory support and ICU stay in all three groups was comparable (P = 0.412, P = 0.165). Conclusion: Low-dose infusions while having a clinical impact were more beneficial in avoiding adverse events and decreasing inotropic requirement without affecting duration of ventilatory support and duration of ICU stay. PMID:28701597

  10. Randomized comparative study of intravenous infusion of three different fixed doses of milrinone in pediatric patients with pulmonary hypertension undergoing open heart surgery.

    PubMed

    Barnwal, Neeraj Kumar; Umbarkar, Sanjeeta Rajendra; Sarkar, Manjula Sudeep; Dias, Raylene J

    2017-01-01

    Pulmonary hypertension secondary to congenital heart disease is a common problem in pediatric patients presenting for open heart surgery. Milrinone has been shown to reduce pulmonary vascular resistance and pulmonary artery pressure in pediatric patients and neonates postcardiac surgery. We aimed to evaluate the postoperative outcome in such patients with three different fixed maintenance doses of milrinone. Patients were randomized into three groups. All patients received fixed bolus dose of milrinone 50 μg/kg on pump during rewarming. Following this, patients in low-dose group received infusion of milrinone at the rate of 0.375 μg/kg/min, medium-dose group received 0.5 μg/kg/min, and high-dose group received 0.75 μg/kg/min over 24 h. Heart rate, mean arterial pressure (MAP), mean airway pressure (MaP), oxygenation index (OI), and central venous pressure (CVP) were compared at baseline and 24 h postoperatively. Dose of inotropic requirement, duration of ventilatory support and Intensive Care Unit (ICU) stay were noted. MAP, MaP, OI, and CVP were comparable in all three groups postoperatively. All patients in the low-dose group required low inotropic support while 70% of patients in the high-dose group needed high inotropic support to manage episodes of hypotension (P = 0.000). Duration of ventilatory support and ICU stay in all three groups was comparable (P = 0.412, P = 0.165). Low-dose infusions while having a clinical impact were more beneficial in avoiding adverse events and decreasing inotropic requirement without affecting duration of ventilatory support and duration of ICU stay.

  11. A System for Seismocardiography-Based Identification of Quiescent Heart Phases: Implications for Cardiac Imaging

    PubMed Central

    Wick, Carson A.; Su, Jin-Jyh; McClellan, James H.; Brand, Oliver; Bhatti, Pamela T.; Buice, Ashley L.; Stillman, Arthur E.; Tang, Xiangyang; Tridandapani, Srini

    2013-01-01

    Seismocardiography (SCG), a representation of mechanical heart motion, may more accurately determine periods of cardiac quiescence within a cardiac cycle than the electrically derived electrocardiogram (EKG) and, thus, may have implications for gating in cardiac computed tomography. We designed and implemented a system to synchronously acquire echocardiography, EKG, and SCG data. The device was used to study the variability between EKG and SCG and characterize the relationship between the mechanical and electrical activity of the heart. For each cardiac cycle, the feature of the SCG indicating Aortic Valve Closure was identified and its time position with respect to the EKG was observed. This position was found to vary for different heart rates and between two human subjects. A color map showing the magnitude of the SCG acceleration and computed velocity was derived, allowing for direct visualization of quiescent phases of the cardiac cycle with respect to heart rate. PMID:22581141

  12. Impact of vitamin D3 on cardiovascular responses to glucocorticoid excess.

    PubMed

    Ahmed, Mona A

    2013-06-01

    Although the cardiovascular system is not a classical target for 1,25-dihydroxyvitamin D3, both cardiac myocytes and vascular smooth muscle cells respond to this hormone. The present study aimed to elucidate the effect of active vitamin D3 on cardiovascular functions in rats exposed to glucocorticoid excess. Adult male Wistar rats were allocated into three groups: control group, dexamethasone (Dex)-treated group receiving Dex (200 μg/kg) subcutaneously for 12 days, and vitamin D3-Dex-treated group receiving 1,25-(OH)2D3 (100 ng/kg) and Dex (200 μg/kg) subcutaneously for 12 days. Rats were subjected to measurement of systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressures and heart rate. Rate pressure product (RPP) was calculated. Rats' isolated hearts were perfused in Langendorff preparation and studied for basal activities (heart rate, peaked developed tension, time to peak tension, half relaxation time, and myocardial flow rate) and their responses to isoproterenol infusion. Blood samples were collected for determination of plasma level of nitrite, nitric oxide surrogate. Dex-treated group showed significant increase in SBP, DBP, MAP, and RPP, as well as cardiac hypertrophy and enhancement of basal cardiac performance evidenced by increased heart rate, rapid and increased contractility, and accelerated lusitropy, together with impaired contractile and myocardial flow rate responsiveness to beta-adrenergic activation and depressed inotropic and coronary vascular reserves. Such alterations were accompanied by low plasma nitrite. These changes were markedly improved by vitamin D3 treatment. In conclusion, vitamin D3 is an efficacious modulator of the deleterious cardiovascular responses induced by glucocorticoid excess, probably via accentuation of nitric oxide.

  13. Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice.

    PubMed

    Andreev-Andrievskiy, A A; Popova, A S; Borovik, A S; Dolgov, O N; Tsvirkun, D V; Custaud, M; Vinogradova, O L

    2014-06-10

    When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with β1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Mapping conduction velocity of early embryonic hearts with a robust fitting algorithm

    PubMed Central

    Gu, Shi; Wang, Yves T; Ma, Pei; Werdich, Andreas A; Rollins, Andrew M; Jenkins, Michael W

    2015-01-01

    Cardiac conduction maturation is an important and integral component of heart development. Optical mapping with voltage-sensitive dyes allows sensitive measurements of electrophysiological signals over the entire heart. However, accurate measurements of conduction velocity during early cardiac development is typically hindered by low signal-to-noise ratio (SNR) measurements of action potentials. Here, we present a novel image processing approach based on least squares optimizations, which enables high-resolution, low-noise conduction velocity mapping of smaller tubular hearts. First, the action potential trace measured at each pixel is fit to a curve consisting of two cumulative normal distribution functions. Then, the activation time at each pixel is determined based on the fit, and the spatial gradient of activation time is determined with a two-dimensional (2D) linear fit over a square-shaped window. The size of the window is adaptively enlarged until the gradients can be determined within a preset precision. Finally, the conduction velocity is calculated based on the activation time gradient, and further corrected for three-dimensional (3D) geometry that can be obtained by optical coherence tomography (OCT). We validated the approach using published activation potential traces based on computer simulations. We further validated the method by adding artificially generated noise to the signal to simulate various SNR conditions using a curved simulated image (digital phantom) that resembles a tubular heart. This method proved to be robust, even at very low SNR conditions (SNR = 2-5). We also established an empirical equation to estimate the maximum conduction velocity that can be accurately measured under different conditions (e.g. sampling rate, SNR, and pixel size). Finally, we demonstrated high-resolution conduction velocity maps of the quail embryonic heart at a looping stage of development. PMID:26114034

  15. Mapping the Heart

    ERIC Educational Resources Information Center

    Hulse, Grace

    2012-01-01

    In this article, the author describes how her fourth graders made ceramic heart maps. The impetus for this project came from reading "My Map Book" by Sara Fanelli. This book is a collection of quirky, hand-drawn and collaged maps that diagram a child's world. There are maps of her stomach, her day, her family, and her heart, among others. The…

  16. Magnetic resonance-compatible model of isolated working heart from large animal for multimodal assessment of cardiac function, electrophysiology, and metabolism.

    PubMed

    Vaillant, Fanny; Magat, Julie; Bour, Pierre; Naulin, Jérôme; Benoist, David; Loyer, Virginie; Vieillot, Delphine; Labrousse, Louis; Ritter, Philippe; Bernus, Olivier; Dos Santos, Pierre; Quesson, Bruno

    2016-05-15

    To provide a model close to the human heart, and to study intrinsic cardiac function at the same time as electromechanical coupling, we developed a magnetic resonance (MR)-compatible setup of isolated working perfused pig hearts. Hearts from pigs (40 kg, n = 20) and sheep (n = 1) were blood perfused ex vivo in the working mode with and without loaded right ventricle (RV), for 80 min. Cardiac function was assessed by measuring left intraventricular pressure and left ventricular (LV) ejection fraction (LVEF), aortic and mitral valve dynamics, and native T1 mapping with MR imaging (1.5 Tesla). Potential myocardial alterations were assessed at the end of ex vivo perfusion from late-Gadolinium enhancement T1 mapping. The ex vivo cardiac function was stable across the 80 min of perfusion. Aortic flow and LV-dP/dtmin were significantly higher (P < 0.05) in hearts perfused with loaded RV, without differences for heart rate, maximal and minimal LV pressure, LV-dP/dtmax, LVEF, and kinetics of aortic and mitral valves. T1 mapping analysis showed a spatially homogeneous distribution over the LV. Simultaneous recording of hemodynamics, LVEF, and local cardiac electrophysiological signals were then successfully performed at baseline and during electrical pacing protocols without inducing alteration of MR images. Finally, (31)P nuclear MR spectroscopy (9.4 T) was also performed in two pig hearts, showing phosphocreatine-to-ATP ratio in accordance with data previously reported in vivo. We demonstrate the feasibility to perfuse isolated pig hearts in the working mode, inside an MR environment, allowing simultaneous assessment of cardiac structure, mechanics, and electrophysiology, illustrating examples of potential applications. Copyright © 2016 the American Physiological Society.

  17. Scoping review: Hospital nursing factors associated with 30-day readmission rates of patients with heart failure.

    PubMed

    Jun, Jin; Faulkner, Kenneth M

    2018-04-01

    To review the current literature on hospital nursing factors associated with 30-day readmission rates of patients with heart failure. Heart failure is a common, yet debilitating chronic illness with high mortality and morbidity. One in five patients with heart failure will experience unplanned readmission to a hospital within 30 days. Given the significance of heart failure to individuals, families and healthcare system, the Center for Medicare and Medicaid Services has made reducing 30-day readmission rates a priority. Scoping review, which maps the key concepts of a research area, is used. Published primary studies in English assessing factors related to nurses in hospitals and readmission of patients with heart failure were included. Other inclusion criteria were written in English and published in peer-reviewed journals. The search resulted in 2,782 articles. After removing duplicates and reviewing the inclusion and exclusion criteria, five articles were selected. Three nursing workforce factors emerged as follows: (i) nursing staffing, (ii) nursing care and work environment, and (iii) nurses' knowledge of heart failure. This is the first scoping review examining the association between hospital nursing factors and 30-day readmission rates of patients with heart failure. Further studies examining the extent of nursing structural and process factors influencing the outcomes of patients with heart failure are needed. Nurses are an integral part of the healthcare system. Identifying the factors related to nurses in hospitals is important to ensure comprehensive delivery of care to the chronically ill population. Hospital administrators, managers and policymakers can use the findings from this review to implement strategies to reduce 30-day readmission rates of patients with heart failure. © 2018 John Wiley & Sons Ltd.

  18. Work Physiology Evaluation of Laundry Workers

    NASA Astrophysics Data System (ADS)

    Sari, A. D.; Suryoputro, M. R.; Pramaningtyas, M. D.; Putra, P. S.; Maulidyawati, S. B.

    2016-01-01

    This study aimed to assess cardiovascular strain during laundry operations in terms of physical workload, based on heart rate changes and level of pain complaints. Researchers measured resting and working heart rates and calculated cardiovascular load (%CVL), cardiovascular strain (%CVS), reserve heart rate (%RHR), energy expenditure, oxygen consumption, and measure level of pain complain in 6 laundry workers using Nordic Body Map questionnaire (NBM). Based on the result of %CVL and %CVS, the work in laundry was classified as acceptable level. Similarly, a high-level category was recorded for %RHR in moderate of energy expenditure. However, there are very pain level complain for hand using NBM questionnaire. Thus, there is a need to redesign the work content of equipment used and keep the physical workload in acceptable level, as this will increase their productivity and reduce their health risk.

  19. Bolus versus continuous low dose of enalaprilat in congestive heart failure with acute refractory decompensation.

    PubMed

    Podbregar, M; Voga, G; Horvat, M; Zuran, I; Krivec, B; Skale, R; Pareznik, R

    1999-01-01

    The first dose of angiotensin-converting enzyme (ACE) inhibitors may trigger a considerable fall of blood pressure in chronic heart failure. The response may be dose-related. To determine hemodynamic and systemic oxygenation effects of low-dose enalaprilat, we administered intravenous enalaprilat (0.004 mg/kg) as bolus (group B) or continuous 1-hour infusion (group C) in 20 patients with congestive heart failure due to ischemic heart disease with acute decompensation refractory to inotropic, vasodilator and diuretic therapy. Hemodynamic and systemic oxygenation variables were recorded at baseline (+0 min), +30, +60, +120, +180, and +360 min after the start of intervention. Mean arterial pressure (MAP) (p < 0. 001), mean pulmonary artery pressure (MPAP) (p < 0.001), pulmonary artery occlusion pressure (PAOP) (p < 0.001), oxygen extraction ratio (ER) (p < 0.026) decreased regardless of enalaprilat application. Compared to group B, there was in group C prolonged decrease of MAP, MPAP, PAOP, ER and increase of pulmonary artery oxyhemoglobin saturation in regard to baseline values. Cardiac index, heart rate, central venous pressure and oxygen consumption index did not change. A low dose of intravenous enalaprilat (0.004 mg/kg) can be used to safely improve hemodynamics and systemic oxygenation in congestive heart failure due to ischemic heart disease with acute refractory decompensation.

  20. Association of heart rate and blood pressure among European adolescents with usual food consumption: The HELENA study.

    PubMed

    Julián-Almárcegui, C; Vandevijvere, S; Gottrand, F; Beghin, L; Dallongeville, J; Sjöstrom, M; Leclercq, C; Manios, Y; Widhalm, K; Ferreira De Morares, A C; Gónzalez-Gross, M; Stehle, P; Castillo, M J; Moreno, L A; Kersting, M; Vyncke, K; De Henauw, S; Huybrechts, I

    2016-06-01

    In adults, there is some evidence that improving diet reduces blood pressure (BP) and the subsequent risk of cardiovascular diseases (CVDs). However, studies that analyse this association in adolescents are still scarce. The objective of the present study was to examine the associations between heart rate, systolic (SBP), diastolic (DBP) and mean arterial blood pressure (MAP) among European adolescents and usual intake of vegetables, fruits, dairy products, meat, fish, high-sugar foods and savoury snacks. In total, 2283 adolescents from the HELENA-study (12.5-17.5 years old; 1253 girls) were included. Dietary intake was assessed using two computerized 24-hour dietary recalls. Age, sex, body mass index, maternal educational level, physical activity and Tanner stage were considered as confounders. Associations were examined by mixed model analysis stratified by sex. Tests for trend were assessed by tertiles of intake while controlling for the aforementioned confounders. Dairy products and fish intake were negatively associated with BP and heart rate. Significant decreasing trends were observed for heart rate and BP across tertiles of dairy products, fish intake and high-sugar foods intake (p < 0.05). Significant increasing trends were observed for SBP and MAP across tertiles of savoury snack intake (p < 0.05). Significant but small inverse associations between fish and dairy products consumption with blood pressure and heart rate have been found in European adolescents. Dietary intervention studies are needed to explore these associations in the context of the modification of several risk factors for the prevention of cardiovascular diseases. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  1. Design of sports clothing for hot environments.

    PubMed

    Varadaraju, R; Srinivasan, J

    2018-02-22

    The clothing design based on sweat distribution pattern is called as body mapping clothing. Comparisons of three designs of body mapped and one conventional design of T-shirt was done in a wearer testing at a controlled chamber of 33 °C and 60% relativity humidity in a treadmill at 12 km/h for 40 min followed by 10 min resting. It is concluded that with the full body mapped T-shirt the increase in skin temperature is reduced in the chest area, shoulder, the body back by 47%,44% and 55% respectively; the increase in skin micro climate relative humidity is reduced in the chest area, shoulder, the body back by 54%,39.2% and 53% respectively; the increase in heart beat rate is reduced by 5.1%; the subjective perceptions of skin temperature, skin moisture and comfort are better; the wearer will be able to improve the running performance due better comfort level in terms lesser increase skin temperature, skin micro climate relative humidity and heart beat rate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Reducing sojourn points from recurrence plots to improve transition detection: Application to fetal heart rate transitions.

    PubMed

    Zaylaa, Amira; Charara, Jamal; Girault, Jean-Marc

    2015-08-01

    The analysis of biomedical signals demonstrating complexity through recurrence plots is challenging. Quantification of recurrences is often biased by sojourn points that hide dynamic transitions. To overcome this problem, time series have previously been embedded at high dimensions. However, no one has quantified the elimination of sojourn points and rate of detection, nor the enhancement of transition detection has been investigated. This paper reports our on-going efforts to improve the detection of dynamic transitions from logistic maps and fetal hearts by reducing sojourn points. Three signal-based recurrence plots were developed, i.e. embedded with specific settings, derivative-based and m-time pattern. Determinism, cross-determinism and percentage of reduced sojourn points were computed to detect transitions. For logistic maps, an increase of 50% and 34.3% in sensitivity of detection over alternatives was achieved by m-time pattern and embedded recurrence plots with specific settings, respectively, and with a 100% specificity. For fetal heart rates, embedded recurrence plots with specific settings provided the best performance, followed by derivative-based recurrence plot, then unembedded recurrence plot using the determinism parameter. The relative errors between healthy and distressed fetuses were 153%, 95% and 91%. More than 50% of sojourn points were eliminated, allowing better detection of heart transitions triggered by gaseous exchange factors. This could be significant in improving the diagnosis of fetal state. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Multi-complexity measures of heart rate variability and the effect of vasopressor titration: a prospective cohort study of patients with septic shock.

    PubMed

    Brown, Samuel M; Sorensen, Jeffrey; Lanspa, Michael J; Rondina, Matthew T; Grissom, Colin K; Shahul, Sajid; Mathews, V J

    2016-10-10

    Septic shock is a common and often devastating syndrome marked by severe cardiovascular dysfunction commonly managed with vasopressors. Whether markers of heart rate complexity before vasopressor up-titration could be used to predict success of the up-titration is not known. We studied patients with septic shock requiring vasopressor, newly admitted to the intensive care unit. We measured the complexity of heart rate variability (using the ratio of fractal exponents from detrended fluctuation analysis) in the 5 min before all vasopressor up-titrations in the first 24 h of an intensive care unit (ICU) admission. A successful up-titration was defined as one that did not require further up-titration (or decrease in mean arterial pressure) for 60 min. We studied 95 patients with septic shock, with a median APACHE II of 27 (IQR: 20-37). The median number of up-titrations, normalized to 24 h, was 12.2 (IQR: 8-17) with a maximum of 49. Of the up-titrations, the median proportion of successful interventions was 0.28 (IQR: 0.12-0.42). The median of mean arterial pressure (MAP) at the time of a vasopressor up-titration was 66 mmHg; the average infusion rate of norepinephrine at the time of an up-titration was 0.11 mcg/kg/min. The ratio of fractal exponents was not associated with successful up-titration on univariate or multivariate regression. On exploratory secondary analyses, however, the long-term fractal exponent was associated (p = 0.003) with success of up-titration. Independent of heart rate variability, MAP was associated (p < 0.001) with success of vasopressor up-titration, while neither Sequential Organ Failure Assessment (SOFA) nor Acute Physiology and Chronic Health Evaluation II (APACHE II) score was associated with vasopressor titration. Only a third of vasopressor up-titrations were successful among patients with septic shock. MAP and the long-term fractal exponent were associated with success of up-titration. These two, complementary variables may be important to the development of rational vasopressor titration protocols.

  4. Advanced electrophysiologic mapping systems: an evidence-based analysis.

    PubMed

    2006-01-01

    To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation has not been found to be effective for the treatment of complex arrhythmias such as chronic atrial fibrillation or ventricular tachycardia. Advanced nonfluoroscopic mapping systems have been developed for guiding the ablation of these complex arrhythmias. Four nonfluoroscopic advanced mapping systems have been licensed by Health Canada: CARTO EP mapping System (manufactured by Biosense Webster, CA) uses weak magnetic fields and a special mapping/ablation catheter with a magnetic sensor to locate the catheter and reconstruct a 3-dimensional geometry of the heart superimposed with colour-coded electric potential maps to guide ablation. EnSite System (manufactured by Endocardial Solutions Inc., MN) includes a multi-electrode non-contact catheter that conducts simultaneous mapping. A processing unit uses the electrical data to computes more than 3,000 isopotential electrograms that are displayed on a reconstructed 3-dimensional geometry of the heart chamber. The navigational system, EnSite NavX, can be used separately with most mapping catheters. The LocaLisa Intracardiac System (manufactured by Medtronics Inc, MN) is a navigational system that uses an electrical field to locate the mapping catheter. It reconstructs the location of the electrodes on the mapping catheter in 3-dimensional virtual space, thereby enabling an ablation catheter to be directed to the electrode that identifies abnormal electric potential. Polar Constellation Advanced Mapping Catheter System (manufactured by Boston Scientific, MA) is a multielectrode basket catheter with 64 electrodes on 8 splines. Once deployed, each electrode is automatically traced. The information enables a 3-dimensional model of the basket catheter to be computed. Colour-coded activation maps are reconstructed online and displayed on a monitor. By using this catheter, a precise electrical map of the atrium can be obtained in several heartbeats. A systematic search of Cochrane, MEDLINE and EMBASE was conducted to identify studies that compared ablation guided by any of the advanced systems to fluoroscopy-guided ablation of tachycardia. English-language studies with sample sizes greater than or equal to 20 that were published between 2000 and 2005 were included. Observational studies on safety of advanced mapping systems and fluoroscopy were also included. Outcomes of interest were acute success, defined as termination of arrhythmia immediately following ablation; long-term success, defined as being arrhythmia free at follow-up; total procedure time; fluoroscopy time; radiation dose; number of radiofrequency pulses; complications; cost; and the cost-effectiveness ratio. Quality of the individual studies was assessed using established criteria. Quality of the overall evidence was determined by applying the GRADE evaluation system. (3) Qualitative synthesis of the data was performed. Quantitative analysis using Revman 4.2 was performed when appropriate. Quality of the Studies Thirty-four studies met the inclusion criteria. These comprised 18 studies on CARTO (4 randomized controlled trials [RCTs] and 14 non-RCTs), 3 RCTs on EnSite NavX, 4 studies on LocaLisa Navigational System (1 RCT and 3 non-RCTs), 2 studies on EnSite and CARTO, 1 on Polar Constellation basket catheter, and 7 studies on radiation safety. The quality of the studies ranged from moderate to low. Most of the studies had small sample sizes with selection bias, and there was no blinding of patients or care providers in any of the studies. Duration of follow-up ranged from 6 weeks to 29 months, with most having at least 6 months of follow-up. There was heterogeneity with respect to the approach to ablation, definition of success, and drug management before and after the ablation procedure. Evidence is based on a small number of small RCTS and non-RCTS with methodological flaws.Advanced nonfluoroscopy mapping/navigation systems provided real time 3-dimensional images with integration of anatomic and electrical potential information that enable better visualization of areas of interest for ablationAdvanced nonfluoroscopy mapping/navigation systems appear to be safe; they consistently shortened the fluoroscopy duration and radiation exposure.Evidence suggests that nonfluoroscopy mapping and navigation systems may be used as adjuncts to rather than replacements for fluoroscopy in guiding the ablation of complex arrhythmias.Most studies showed a nonsignificant trend toward lower overall failure rate for advanced mapping-guided ablation compared with fluoroscopy-guided mapping.Pooled analyses of small RCTs and non-RCTs that compared fluoroscopy- with nonfluoroscopy-guided ablation of atrial fibrillation and atrial flutter showed that advanced nonfluoroscopy mapping and navigational systems:Yielded acute success rates of 69% to 100%, not significantly different from fluoroscopy ablation.Had overall failure rates at 3 months to 19 months of 1% to 40% (median 25%).Resulted in a 10% relative reduction in overall failure rate for advanced mapping guided-ablation compared to fluoroscopy guided ablation for the treatment of atrial fibrillation.Yielded added benefit over fluoroscopy in guiding the ablation of complex arrhythmia. The advanced systems were shown to reduce the arrhythmia burden and the need for antiarrhythmic drugs in patients with complex arrhythmia who had failed fluoroscopy-guided ablationBased on predominantly observational studies, circumferential PV ablation guided by a nonfluoroscopy system was shown to do the following:Result in freedom from atrial fibrillation (with or without antiarrhythmic drug) in 75% to 95% of patients (median 79%). This effect was maintained up to 28 months.Result in freedom from atrial fibrillation without antiarrhythmic drugs in 47% to 95% of patients (median 63%).Improve patient survival at 28 months after the procedure as compared with drug therapy.Require special skills; patient outcomes are operator dependent, and there is a significant learning curve effect.Complication rates of pulmonary vein ablation guided by an advanced mapping/navigation system ranged from 0% to 10% with a median of 6% during a follow-up period of 6 months to 29 months.The complication rate of the study with the longest follow-up was 8%.The most common complications of advanced catheter-guided ablation were stroke, transient ischemic attack, cardiac tamponade, myocardial infarction, atrial flutter, congestive heart failure, and pulmonary vein stenosis. A small number of cases with fatal atrial-esophageal fistula had been reported and were attributed to the high radiofrequency energy used rather than to the advanced mapping systems. An Ontario-based economic analysis suggests that the cumulative incremental upfront costs of catheter ablation of atrial fibrillation guided by advanced nonfluoroscopy mapping could be recouped in 4.7 years through cost avoidance arising from less need for antiarrhythmic drugs and fewer hospitalization for stroke and heart failure. Expert Opinion Expert consultants to the Medical Advisory Secretariat noted the following: Nonfluoroscopy mapping is not necessary for simple ablation procedures (e.g., typical flutter). However, it is essential in the ablation of complex arrhythmias including these:Symptomatic, drug-refractory atrial fibrillationArrhythmias in people who have had surgery for congenital heart disease (e.g., macro re-entrant tachycardia in people who have had surgery for congenital heart disease).Ventricular tachycardia due to myocardial infarctionAtypical atrial flutterAdvanced mapping systems represent an enabling technology in the ablation of complex arrhythmias. The ablation of these complex cases would not have been feasible or advisable with fluoroscopy-guided ablation and, therefore, comparative studies would not be feasible or ethical in such cases. (ABSTRACT TRUNCATED)

  5. Static magnetic field blood pressure buffering, baroreflex vs. vascular blood pressure control mechanism.

    PubMed

    Gmitrov, Juraj

    2010-02-01

    We compared the effect of static magnetic field (SMF) and verapamil, a potent vascular calcium channel blocking agent, on sudden elevation in blood pressure in conjunction with arterial baroreflex sensitivity (BRS) and microcirculation. Forty-four experiments were performed on conscious rabbits sedated using pentobarbital intravenous (i.v.) infusion (5 mg kg(-1) h(-1)). Mean femoral artery blood pressure (MAP), heart rate, BRS and ear lobe skin microcirculatory blood flow, estimated using microphotoelectric plethysmography (MPPG), were simultaneously measured after a 40 min exposure of the sinocarotid baroreceptors to 350 mT SMF, generated by Nd(2)-Fe(14)-B magnets, or 30 min of verapamil i.v. administration (20 microg kg(-1) min(-1)). BRS was assessed from heart rate and MAP responses to i.v. bolus of nitroprusside and phenylephrine. The decrease in phenylephrine-induced abrupt elevation in MAP (DeltaMAP(AE)) was significantly larger after verapamil than after SMF exposure. DeltaMAP(AE) inversely correlated with verapamil-induced significant increase in DeltaMPPG (r = 0.53, p < 0.000) and with SMF-induced significant increase in DeltaBRS (r = 0.47, p < 0.016). Our results suggest that verapamil-potentiated vascular blood pressure buffering mechanism was more effective than SMF-potentiated baroreflex-mediated blood pressure buffering mechanism, and a potential benefit of both approaches in cardiovascular conditions with abrupt high elevation in blood pressure.

  6. Respiratory sinus arrhythmia: opposite effects on systolic and mean arterial pressure in supine humans

    NASA Technical Reports Server (NTRS)

    Elstad, M.; Toska, K.; Chon, K. H.; Raeder, E. A.; Cohen, R. J.

    2001-01-01

    1. Are arterial blood pressure fluctuations buffered or reinforced by respiratory sinus arrhythmia (RSA)? There is still considerable debate about this simple question. Different results have been obtained, triggering a discussion as to whether or not the baroreflexes are responsible for RSA. We suspected that the measurements of different aspects of arterial pressure (mean arterial pressure (MAP) and systolic pressure (SP)) can explain the conflicting results. 2. Simultaneous recordings of beat-to-beat MAP, SP, left cardiac stroke volume (SV, pulsed ultrasound Doppler), heart rate (HR) and respiration (RE) were obtained in 10 healthy young adults during spontaneous respiration. In order to eliminate HR variations at respiratory frequency we used propranolol and atropine administration in the supine and tilted positions. Respiration-synchronous variation in the recorded variables was quantified by spectral analysis of the recordings of each of these variables, and the phase relations between them were determined by cross-spectral analysis. 3. MAP fluctuations increased after removing heart rate variations in both supine and tilted position, whereas SP fluctuations decreased in the supine position and increased in the head-up tilted position. 4. RSA buffers respiration-synchronous fluctuations in MAP in both positions. However, fluctuations in SP were reinforced by RSA in the supine and buffered in the tilted position.

  7. Carotid baroreflex responsiveness in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.

    2000-01-01

    The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.

  8. Intraspecific scaling of arterial blood pressure in the Burmese python.

    PubMed

    Enok, Sanne; Slay, Christopher; Abe, Augusto S; Hicks, James W; Wang, Tobias

    2014-07-01

    Interspecific allometric analyses indicate that mean arterial blood pressure (MAP) increases with body mass of snakes and mammals. In snakes, MAP increases in proportion to the increased distance between the heart and the head, when the heart-head vertical distance is expressed as ρgh (where ρ is the density of blood, G: is acceleration due to gravity and h is the vertical distance above the heart), and the rise in MAP is associated with a larger heart to normalize wall stress in the ventricular wall. Based on measurements of MAP in Burmese pythons ranging from 0.9 to 3.7 m in length (0.20-27 kg), we demonstrate that although MAP increases with body mass, the rise in MAP is merely half of that predicted by heart-head distance. Scaling relationships within individual species, therefore, may not be accurately predicted by existing interspecific analyses. © 2014. Published by The Company of Biologists Ltd.

  9. Hexamethonium attenuates sympathetic activity and blood pressure in spontaneously hypertensive rats.

    PubMed

    Li, Peng; Gong, Jue-Xiao; Sun, Wei; Zhou, Bin; Kong, Xiang-Qing

    2015-11-01

    Sympathetic activity is enhanced in heart failure and hypertensive rats. The aims of the current study were: i) To investigate the association between renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to intravenous injection of the ganglionic blocker hexamethonium; and ii) to determine whether normal Wistar rats and spontaneously hypertensive rats (SHRs) differ in their response to hexamethonium. RSNA and MAP were recorded in anaesthetized rats. Intravenous injection of four doses of hexamethonium significantly reduced the RSNA, MAP and heart rate (HR) in the Wistar rats and SHRs. There were no significant differences in the RSNA, MAP or HR between Wistar rats and SHRs at the two lowest doses of hexamethonium. However, the two highest doses of hexamethonium resulted in a greater reduction in the RSNA and MAP in SHRs compared with Wistar rats. There was a significant positive correlation between the alterations in RSNA and MAP in response to the intravenous injection of hexamethonium in the Wistar rats and SHRs. There were no significant differences in the timing of the maximal effects on RSNA, MAP or HR or in recovery following hexamethonium treatment. These results suggest that there is an association between the RSNA and MAP response to intravenous injection of hexamethonium and that the alterations in MAP in response to hexamethonium may be used to evaluate basal sympathetic nerve activity.

  10. Sympathetic adaptations to one-legged training

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  11. An easy-to-use technique to characterize cardiodynamics from first-return maps on ΔRR-intervals

    NASA Astrophysics Data System (ADS)

    Fresnel, Emeline; Yacoub, Emad; Freitas, Ubiratan; Kerfourn, Adrien; Messager, Valérie; Mallet, Eric; Muir, Jean-François; Letellier, Christophe

    2015-08-01

    Heart rate variability analysis using 24-h Holter monitoring is frequently performed to assess the cardiovascular status of a patient. The present retrospective study is based on the beat-to-beat interval variations or ΔRR, which offer a better view of the underlying structures governing the cardiodynamics than the common RR-intervals. By investigating data for three groups of adults (with normal sinus rhythm, congestive heart failure, and atrial fibrillation, respectively), we showed that the first-return maps built on ΔRR can be classified according to three structures: (i) a moderate central disk, (ii) a reduced central disk with well-defined segments, and (iii) a large triangular shape. These three very different structures can be distinguished by computing a Shannon entropy based on a symbolic dynamics and an asymmetry coefficient, here introduced to quantify the balance between accelerations and decelerations in the cardiac rhythm. The probability P111111 of successive heart beats without large beat-to-beat fluctuations allows to assess the regularity of the cardiodynamics. A characteristic time scale, corresponding to the partition inducing the largest Shannon entropy, was also introduced to quantify the ability of the heart to modulate its rhythm: it was significantly different for the three structures of first-return maps. A blind validation was performed to validate the technique.

  12. Complexity of the heart rhythm after heart transplantation by entropy of transition network for RR-increments of RR time intervals between heartbeats.

    PubMed

    Makowiec, Danuta; Struzik, Zbigniew; Graff, Beata; Wdowczyk-Szulc, Joanna; Zarczynska-Buchnowiecka, Marta; Gruchala, Marcin; Rynkiewicz, Andrzej

    2013-01-01

    Network models have been used to capture, represent and analyse characteristics of living organisms and general properties of complex systems. The use of network representations in the characterization of time series complexity is a relatively new but quickly developing branch of time series analysis. In particular, beat-to-beat heart rate variability can be mapped out in a network of RR-increments, which is a directed and weighted graph with vertices representing RR-increments and the edges of which correspond to subsequent increments. We evaluate entropy measures selected from these network representations in records of healthy subjects and heart transplant patients, and provide an interpretation of the results.

  13. Energetic Interrelationship between Spontaneous Low-Frequency Fluctuations in Regional Cerebral Blood Volume, Arterial Blood Pressure, Heart Rate, and Respiratory Rhythm

    NASA Astrophysics Data System (ADS)

    Katura, Takusige; Yagyu, Akihiko; Obata, Akiko; Yamazaki, Kyoko; Maki, Atsushi; Abe, Masanori; Tanaka, Naoki

    2007-07-01

    Strong spontaneous fluctuations around 0.1 and 0.3 Hz have been observed in blood-related brain-function measurements such as functional magnetic resonance imaging and optical topography (or functional near-infrared spectroscopy). These fluctuations seem to reflect the interaction between the cerebral circulation system and the systemic circulation system. We took an energetic viewpoint in our analysis of the interrelationships between fluctuations in cerebral blood volume (CBV), mean arterial blood pressure (MAP), heart rate (HR), and respiratory rhythm based on multivariate autoregressive modeling. This approach involves evaluating the contribution of each fluctuation or rhythm to specific ones by performing multivariate spectral analysis. The results we obtained show MAP and HR can account slightly for the fluctuation around 0.1 Hz in CBV, while the fluctuation around 0.3 Hz is derived mainly from the respiratory rhythm. During our presentation, we will report on the effects of posture on the interrelationship between the fluctuations and the respiratory rhythm.

  14. Hysteresis effect implicates calcium cycling as a mechanism of repolarization alternans.

    PubMed

    Walker, Mariah L; Wan, Xiaoping; Kirsch, Glenn E; Rosenbaum, David S

    2003-11-25

    T-wave alternans is due to alternation of membrane repolarization at the cellular level and is a risk factor for sudden cardiac death. Recently, a hysteresis effect has been reported in patients whereby T-wave alternans, once induced by rapid heart rate, persists even when heart rate is subsequently slowed. We hypothesized that alternans hysteresis is an intrinsic property of cardiac myocytes, directly related to an underlying mechanism for repolarization alternans that involves intracellular calcium cycling. Stepwise pacing was used to induce alternans in Langendorff-perfused guinea pig hearts from which optical action potentials were recorded simultaneously at 256 ventricular sites with voltage-sensitive dyes and in whole-cell patch-clamped cardiac myocytes treated with or without BAPTA-AM (1,2-bis[2-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid tetrakis [acetoxymethyl ester]). Alternans hysteresis was observed in every isolated heart: threshold heart rate for alternans was 280+/-12 bpm, but during subsequent deceleration of pacing, alternans persisted to significantly slower heart rates (238+/-5 bpm, P<0.05). Optical mapping showed that this effect also applied to the threshold for spatially discordant alternans (313+/-2.2 bpm during acceleration versus 250+/-6.6 bpm during deceleration, P<0.05). Alternans hysteresis was also observed in isolated cardiac myocytes. Moreover, calcium chelation by BAPTA-AM raised the threshold for alternans and inhibited hysteresis in a dose-dependent manner with no effect on baseline action potential duration. Alternans hysteresis is an intrinsic property of cardiac myocytes that can lead to persistence of arrhythmogenic discordant alternans even after heart rate is slowed. These results also support an important underlying role of calcium cycling in the mechanism of alternans.

  15. New insights into differential baroreflex control of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Fadel, P. J.; Stromstad, M.; Wray, D. W.; Smith, S. A.; Raven, P. B.; Secher, N. H.

    2003-01-01

    Recent data indicate that bilateral carotid sinus denervation in patients results in a chronic impairment in the rapid reflex control of blood pressure during orthostasis. These findings are inconsistent with previous human experimental investigations indicating a minimal role for the carotid baroreceptor-cardiac reflex in blood pressure control. Therefore, we reexamined arterial baroreflex [carotid (CBR) and aortic baroreflex (ABR)] control of heart rate (HR) using newly developed methodologies. In 10 healthy men, 27 +/- 1 yr old, an abrupt decrease in mean arterial pressure (MAP) was induced nonpharmacologically by releasing a unilateral arterial thigh cuff (300 Torr) after 9 min of resting leg ischemia under two conditions: 1) ABR and CBR deactivation (control) and 2) ABR deactivation. Under control conditions, cuff release decreased MAP by 13 +/- 1 mmHg, whereas HR increased 11 +/- 2 beats/min. During ABR deactivation, neck suction was gradually applied to maintain carotid sinus transmural pressure during the initial 20 s after cuff release (suction). This attenuated the increase in HR (6 +/- 1 beats/min) and caused a greater decrease in MAP (18 +/- 2 mmHg, P < 0.05). Furthermore, estimated cardiac baroreflex responsiveness (DeltaHR/DeltaMAP) was significantly reduced during suction compared with control conditions. These findings suggest that the carotid baroreceptors contribute more importantly to the reflex control of HR than previously reported in healthy individuals.

  16. SOD1 Overexpression Preserves Baroreflex Control of Heart Rate with an Increase of Aortic Depressor Nerve Function

    PubMed Central

    Hatcher, Jeffrey; Gu, He; Cheng, Zixi (Jack)

    2016-01-01

    Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2 ∙−), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2 ∙− may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951

  17. The cardiovascular effects of mivacurium in hypertensive patients.

    PubMed

    Plaud, Benoît; Marty, Jean; Debaene, Bertrand; Meistelman, Claude; Pellissier, Daniel; LePage, Jean-Yves; Feiss, Pierre; Scherpereel, Philippe; Bouverne, Marie-Noëlle; Fosse, Sandrine

    2002-08-01

    Hypotension is common after mivacurium injection in healthy patients. This hemodynamic event had not been investigated in hypertensive patients characterized by more intense hemodynamic instability. In this open-label, multicenter, randomized, and controlled study, we sought to determine whether mean arterial blood pressure (MAP) and heart rate variations were larger in hypertensive versus normotensive patients after a bolus dose of mivacurium injected over 10 or 30 s. After the induction of anesthesia with fentanyl and etomidate, normotensive (n = 149) and hypertensive (n = 57) patients received a single dose of mivacurium 0.2 mg/kg injected over 10 or 30 s by random allocation. Heart rate and MAP were recorded electronically. The incidence of hypotension (defined as a 20% MAP decrease from the control value before mivacurium injection) was 21% and 36% (10-s injection) or 11% and 10% (30-s injection) in the Normotensive and Hypertensive groups, respectively. In Hypertensive patients, the maximum decrease in MAP was significantly greater when mivacurium was injected over 10 s compared with 30 s: 20% vs 11%, respectively (P = 0.002). This difference was not observed in Normotensive patients. Hypotension after rapid (e.g., 10 s) mivacurium injection was more frequent and more pronounced in Hypertensive than in Normotensive patients. When mivacurium (0.2 mg/kg) is injected rapidly (e.g., 10 s) the incidence and the intensity of hypotension are greater in hypertensive patients than in healthy patients.

  18. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling.

    PubMed

    Li, Yulin; Li, Zhenya; Zhang, Congcong; Li, Ping; Wu, Yina; Wang, Chunxiao; Bond Lau, Wayne; Ma, Xin-Liang; Du, Jie

    2017-05-23

    Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factor-β signaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factor-β signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive cardiac remodeling. © 2017 American Heart Association, Inc.

  19. Sexual dimorphism in the osmopressor response following water ingestion

    PubMed Central

    Mendonca, Goncalo V.; Teodósio, Carolina; Lucena, Rui; Pereira, Fernando D.

    2016-01-01

    There is conflicting evidence as to whether water drinking elicits a pressor response in healthy young adults. The inclusion of a variable number of women may have contributed to the discrepancies found in past research. Thus, we aimed at exploring whether the osmopressor response follows a sexually dimorphic pattern. In a randomized fashion, 31 healthy adults (16 men; 15 women, aged 18–40 years) ingested 50 and 500 ml of water before completing a resting protocol on two separate days. Arterial blood pressure, heart rate and spectral heart rate variability were measured in the seated position at pre- and post-25 min of water ingestion. Women responded to 500 ml of water with a greater proportion of change in diastolic and mean arterial pressure (MAP) (P<0.05). Conversely, the percent change in systolic blood pressure (SBP) and heart rate was not different between sexes after 500 ml of water. Overall, women demonstrated lower blood pressure, but higher resting heart rate compared with men (P<0.05). In contrast, heart rate variability was similar between sexes before and after ingesting either volume of water. There was a bradycardic effect of water and, irrespectively of sex; this was accompanied by increased high frequency power (HF) (P<0.05). We conclude that women display a greater magnitude of pressor response than men post-water ingestion. Accordingly, we provide direct evidence of sexual dimorphism in the haemodynamic response to water intake in young healthy adults. PMID:27129286

  20. Improved detection of congestive heart failure via probabilistic symbolic pattern recognition and heart rate variability metrics.

    PubMed

    Mahajan, Ruhi; Viangteeravat, Teeradache; Akbilgic, Oguz

    2017-12-01

    A timely diagnosis of congestive heart failure (CHF) is crucial to evade a life-threatening event. This paper presents a novel probabilistic symbol pattern recognition (PSPR) approach to detect CHF in subjects from their cardiac interbeat (R-R) intervals. PSPR discretizes each continuous R-R interval time series by mapping them onto an eight-symbol alphabet and then models the pattern transition behavior in the symbolic representation of the series. The PSPR-based analysis of the discretized series from 107 subjects (69 normal and 38 CHF subjects) yielded discernible features to distinguish normal subjects and subjects with CHF. In addition to PSPR features, we also extracted features using the time-domain heart rate variability measures such as average and standard deviation of R-R intervals. An ensemble of bagged decision trees was used to classify two groups resulting in a five-fold cross-validation accuracy, specificity, and sensitivity of 98.1%, 100%, and 94.7%, respectively. However, a 20% holdout validation yielded an accuracy, specificity, and sensitivity of 99.5%, 100%, and 98.57%, respectively. Results from this study suggest that features obtained with the combination of PSPR and long-term heart rate variability measures can be used in developing automated CHF diagnosis tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Hemodynamic responses to dexmedetomidine in critically injured intubated pediatric burned patients: a preliminary study.

    PubMed

    Shank, Erik S; Sheridan, Robert L; Ryan, Colleen M; Keaney, Timothy J; Martyn, J A Jeevendra

    2013-01-01

    Because of ineffectiveness and tolerance to benzodiazepines and opioids developing with time, drugs acting via other receptor systems (eg, α-2 agonists) have been advocated in burn patients to improve sedation and analgesia. This study in severely burned pediatric subjects examined the hemodynamic consequences of dexmedetomidine (Dex) administration. Eight intubated patients with ≥20 to 79% TBSA burns were studied between 7 and 35 days after injury. After baseline measurements of mean arterial blood pressure and heart rhythm were taken, each patient received a 1.0 µg/kg bolus of Dex followed by an ascending dose infusion protocol (0.7-2.5 µg/kg/hr), with each dose administered for 15 minutes. There was significant hypotension (27±7.5%, average drop in mean arterial pressure [MAP] ± SD), and a decrease in heart rate (HR; 19% ± 7, average drop in HR ± SD). The average HR decreased from 146 beats per minute to 120. No bradycardia (HR < 60) or heart blocks were observed. In three patients, the MAP decreased to <50mm Hg with the bolus dose of Dex. Of the remaining five patients, three patients completed the study receiving the highest infusion dose of Dex (2.5 µg/kg/hr), whereas in 2 patients the infusion part of the study was begun, but the study was stopped due to persistent hypotension (MAP < 50mm Hg). These observations indicate that a bolus dose of Dex (1.0 µg/kg for 10 minutes) and high infusion rates may require fluid resuscitation or vasopressor support to maintain normotension in critically injured pediatric burn patients.

  2. Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques

    PubMed Central

    Lee, Peter; Yan, Ping; Ewart, Paul; Kohl, Peter

    2012-01-01

    Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electro-physiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart. PMID:22886365

  3. A forskolin derivative, colforsin daropate hydrochloride, inhibits the decrease in cortical renal blood flow induced by noradrenaline or angiotensin II in anesthetized rats.

    PubMed

    Ogata, Junichi; Minami, Kouichiro; Segawa, Kayoko; Uezono, Yasuhito; Shiraishi, Munehiro; Yamamoto, Chikako; Sata, Takeyoshi; Sung-Teh, Kim; Shigematsu, Akio

    2004-01-01

    A forskolin derivative, colforsin daropate hydrochloride (CDH), acts directly on adenylate cyclase to increase the intracellular cyclic adenosine monophosphate levels which produce a positive inotropic effect and a lower blood pressure. However, little is known about the effects of CDH on the renal function. We used laser Doppler flowmetry to measure the cortical renal blood flow (RBF) in male Wistar rats given a continuous intravenous infusion of CDH and evaluated the effects of CDH on the noradrenaline (NA) and angiotensin II (AngII) induced increases in blood pressure and reductions in RBF. Continuous intravenous administration of CDH at 0.25 microg/kg/min did not affect the mean arterial pressure (MAP), but increased heart rate and RBF. Continuous intravenous administration of CDH at high doses (0.5-0.75 microg/kg/min) decreased the MAP, with little effect on the RBF. The administration of exogenous NA (1.7 microg/kg) increased the MAP and decreased the RBF. However, a bolus injection of NA did not decrease the RBF during continuous intravenous administration of CDH, and CDH did not affect the NA-induced increase in MAP. The administration of exogenous AngII (100 ng/kg) increased MAP and decreased RBF and heart rate, but a bolus injection of AngII did not decrease RBF during continuous intravenous administration of CDH. These results suggest that CDH plays a protective role against the pressor effects and the decrease in RBF induced by NA or AngII. Copyright 2004 S. Karger AG, Basel

  4. Impaired carotid baroreflex control of arterial blood pressure in multiple sclerosis.

    PubMed

    Huang, Mu; Allen, Dustin R; Keller, David M; Fadel, Paul J; Frohman, Elliot M; Davis, Scott L

    2016-07-01

    Multiple sclerosis (MS), a progressive neurological disease, can lead to impairments in the autonomic control of cardiovascular function. We tested the hypothesis that individuals with relapsing-remitting MS (n = 10; 7 females, 3 males; 13 ± 4 yr from diagnosis) exhibit impaired carotid baroreflex control of blood pressure and heart rate compared with sex, age, and body weight-matched healthy individuals (CON: n = 10; 7 females, 3 males). At rest, 5-s trials of neck pressure (NP; +40 Torr) and neck suction (NS; -60 Torr) were applied to simulate carotid hypotension and hypertension, respectively, while mean arterial pressure (MAP; finger photoplethysmography), heart rate (HR), cardiac output (CO; Modelflow), and total vascular conductance (TVC) were continuously measured. In response to NP, there was a blunted increase in peak MAP responses (MS: 5 ± 2 mmHg) in individuals with MS compared with healthy controls (CON: 9 ± 3 mmHg; P = 0.005), whereas peak HR responses were not different between groups. At the peak MAP response to NP, individuals with MS demonstrated an attenuated decrease in TVC (MS, -10 ± 4% baseline vs. CON, -15 ± 4% baseline, P = 0.012), whereas changes in CO were similar between groups. Following NS, all cardiovascular responses (i.e., nadir MAP and HR and percent changes in CO and TVC) were not different between MS and CON groups. These data suggest that individuals with MS have impaired carotid baroreflex control of blood pressure via a blunted vascular conductance response resulting in a diminished ability to increase MAP in response to a hypotensive challenge. Copyright © 2016 the American Physiological Society.

  5. Impaired carotid baroreflex control of arterial blood pressure in multiple sclerosis

    PubMed Central

    Huang, Mu; Allen, Dustin R.; Keller, David M.; Fadel, Paul J.; Frohman, Elliot M.

    2016-01-01

    Multiple sclerosis (MS), a progressive neurological disease, can lead to impairments in the autonomic control of cardiovascular function. We tested the hypothesis that individuals with relapsing-remitting MS (n = 10; 7 females, 3 males; 13 ± 4 yr from diagnosis) exhibit impaired carotid baroreflex control of blood pressure and heart rate compared with sex, age, and body weight-matched healthy individuals (CON: n = 10; 7 females, 3 males). At rest, 5-s trials of neck pressure (NP; +40 Torr) and neck suction (NS; −60 Torr) were applied to simulate carotid hypotension and hypertension, respectively, while mean arterial pressure (MAP; finger photoplethysmography), heart rate (HR), cardiac output (CO; Modelflow), and total vascular conductance (TVC) were continuously measured. In response to NP, there was a blunted increase in peak MAP responses (MS: 5 ± 2 mmHg) in individuals with MS compared with healthy controls (CON: 9 ± 3 mmHg; P = 0.005), whereas peak HR responses were not different between groups. At the peak MAP response to NP, individuals with MS demonstrated an attenuated decrease in TVC (MS, −10 ± 4% baseline vs. CON, −15 ± 4% baseline, P = 0.012), whereas changes in CO were similar between groups. Following NS, all cardiovascular responses (i.e., nadir MAP and HR and percent changes in CO and TVC) were not different between MS and CON groups. These data suggest that individuals with MS have impaired carotid baroreflex control of blood pressure via a blunted vascular conductance response resulting in a diminished ability to increase MAP in response to a hypotensive challenge. PMID:27075533

  6. Sympathetic Nervous Regulation of Calcium and Action Potential Alternans in the Intact Heart.

    PubMed

    Winter, James; Bishop, Martin J; Wilder, Catherine D E; O'Shea, Christopher; Pavlovic, Davor; Shattock, Michael J

    2018-01-01

    Rationale: Arrhythmogenic cardiac alternans are thought to be an important determinant for the initiation of ventricular fibrillation. There is limited information on the effects of sympathetic nerve stimulation (SNS) on alternans in the intact heart and the conclusions of existing studies, focused on investigating electrical alternans, are conflicted. Meanwhile, several lines of evidence implicate instabilities in Ca handling, not electrical restitution, as the primary mechanism underpinning alternans. Despite this, there have been no studies on Ca alternans and SNS in the intact heart. The present study sought to address this, by application of voltage and Ca optical mapping for the simultaneous study of APD and Ca alternans in the intact guinea pig heart during direct SNS. Objective : To determine the effects of SNS on APD and Ca alternans in the intact guinea pig heart and to examine the mechanism(s) by which the effects of SNS are mediated. Methods and Results : Studies utilized simultaneous voltage and Ca optical mapping in isolated guinea pig hearts with intact innervation. Alternans were induced using a rapid dynamic pacing protocol. SNS was associated with rate-independent shortening of action potential duration (APD) and the suppression of APD and Ca alternans, as indicated by a shift in the alternans threshold to faster pacing rates. Qualitatively similar results were observed with exogenous noradrenaline perfusion. In contrast with previous reports, both SNS and noradrenaline acted to flatten the slope of the electrical restitution curve. Pharmacological block of the slow delayed rectifying potassium current (I Ks ), sufficient to abolish I Ks -mediated APD-adaptation, partially reversed the effects of SNS on pacing-induced alternans. Treatment with cyclopiazonic acid, an inhibitor of the sarco(endo)plasmic reticulum ATPase, had opposite effects to that of SNS, acting to increase susceptibility to alternans, and suggesting that accelerated Ca reuptake into the sarcoplasmic reticulum is a major mechanism by which SNS suppresses alternans in the guinea pig heart. Conclusions : SNS suppresses calcium and action potential alternans in the intact guinea pig heart by an action mediated through accelerated Ca handling and via increased I Ks .

  7. Heat stress attenuates the increase in arterial blood pressure during the cold pressor test.

    PubMed

    Cui, Jian; Shibasaki, Manabu; Low, David A; Keller, David M; Davis, Scott L; Crandall, Craig G

    2010-11-01

    The mechanisms by which heat stress impairs the control of blood pressure leading to compromised orthostatic tolerance are not thoroughly understood. A possible mechanism may be an attenuated blood pressure response to a given increase in sympathetic activity. This study tested the hypothesis that whole body heating attenuates the blood pressure response to a non-baroreflex-mediated sympathoexcitatory stimulus. Ten healthy subjects were instrumented for the measurement of integrated muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate, sweat rate, and forearm skin blood flow. Subjects were exposed to a cold pressor test (CPT) by immersing a hand in an ice water slurry for 3 min while otherwise normothermic and while heat stressed (i.e., increase core temperature ~0.7°C via water-perfused suit). Mean responses from the final minute of the CPT were evaluated. In both thermal conditions CPT induced significant increases in MSNA and MAP without altering heart rate. Although the increase in MSNA to the CPT was similar between thermal conditions (normothermia: Δ14.0 ± 2.6; heat stress: Δ19.1 ± 2.6 bursts/min; P = 0.09), the accompanying increase in MAP was attenuated when subjects were heat stressed (normothermia: Δ25.6 ± 2.3, heat stress: Δ13.4 ± 3.0 mmHg; P < 0.001). The results demonstrate that heat stress can attenuate the pressor response to a sympathoexcitatory stimulus.

  8. Speed and heart-rate profiles in skating and classical cross-country skiing competitions.

    PubMed

    Bolger, Conor M; Kocbach, Jan; Hegge, Ann Magdalen; Sandbakk, Øyvind

    2015-10-01

    To compare the speed and heart-rate profiles during international skating and classical competitions in male and female world-class cross-country skiers. Four male and 5 female skiers performed individual time trials of 15 km (men) and 10 km (women) in the skating and classical techniques on 2 consecutive days. Races were performed on the same 5-km course. The course was mapped with GPS and a barometer to provide a valid course and elevation profile. Time, speed, and heart rate were determined for uphill, flat, and downhill terrains throughout the entire competition by wearing a GPS and a heart-rate monitor. Times in uphill, flat, and downhill terrain were ~55%, 15-20%, and 25-30%, respectively, of the total race time for both techniques and genders. The average speed differences between skating and classical skiing were 9% and 11% for men and women, respectively, and these values were 12% and 15% for uphill, 8% and 13% for flat (all P < .05), and 2% and 1% for downhill terrain. The average speeds for men were 9% and 11% faster than for women in skating and classical, respectively, with corresponding numbers of 11% and 14% for uphill, 6% and 11% for flat, and 4% and 5% for downhill terrain (all P < .05). Heart-rate profiles were relatively independent of technique and gender. The greatest performance differences between the skating and classical techniques and between the 2 genders were found on uphill terrain. Therefore, these speed differences could not be explained by variations in exercise intensity.

  9. Active recovery attenuates the fall in sweat rate but not cutaneous vascular conductance after supine exercise.

    PubMed

    Wilson, Thad E; Carter, Robert; Cutler, Michael J; Cui, Jian; Smith, Michael L; Crandall, Craig G

    2004-02-01

    The purpose of this study was to identify whether baroreceptor unloading was responsible for less efficient heat loss responses (i.e., skin blood flow and sweat rate) previously reported during inactive compared with active recovery after upright cycle exercise (Carter R III, Wilson TE, Watenpaugh DE, Smith ML, and Crandall CG. J Appl Physiol 93: 1918-1929, 2002). Eight healthy adults performed two 15-min bouts of supine cycle exercise followed by inactive or active (no-load pedaling) supine recovery. Core temperature (T(core)), mean skin temperature (T(sk)), heart rate, mean arterial blood pressure (MAP), thoracic impedance, central venous pressure (n = 4), cutaneous vascular conductance (CVC; laser-Doppler flux/MAP expressed as percentage of maximal vasodilation), and sweat rate were measured throughout exercise and during 5 min of recovery. Exercise bouts were similar in power output, heart rate, T(core), and T(sk). Baroreceptor loading and thermal status were similar during trials because MAP (90 +/- 4, 88 +/- 4 mmHg), thoracic impedance (29 +/- 1, 28 +/- 2 Omega), central venous pressure (5 +/- 1, 4 +/- 1 mmHg), T(core) (37.5 +/- 0.1, 37.5 +/- 0.1 degrees C), and T(sk) (34.1 +/- 0.3, 34.2 +/- 0.2 degrees C) were not significantly different at 3 min of recovery between active and inactive recoveries, respectively; all P > 0.05. At 3 min of recovery, chest CVC was not significantly different between active (25 +/- 6% of maximum) and inactive (28 +/- 6% of maximum; P > 0.05) recovery. In contrast, at this time point, chest sweat rate was higher during active (0.45 +/- 0.16 mg.cm(-2).min(-1)) compared with inactive (0.34 +/- 0.19 mg.cm(-2).min(-1); P < 0.05) recovery. After exercise CVC and sweat rate are differentially controlled, with CVC being primarily influenced by baroreceptor loading status while sweat rate is influenced by other factors.

  10. Heart rate variability alters cardiac repolarization and electromechanical dynamics.

    PubMed

    Phadumdeo, Vrishti M; Weinberg, Seth H

    2018-04-07

    Heart rate continuously varies due to autonomic regulation, stochasticity in pacemaking, and circadian rhythm, collectively termed heart rate variability (HRV), during normal physiological conditions. Low HRV is clinically associated with an elevated risk of cardiac arrhythmias. Alternans, a beat-to-beat alternation in action potential duration (APD) and/or intracellular calcium (Ca) transient, is a well-known risk factor associated with cardiac arrhythmias that is typically studied under conditions of a constant pacing rate, i.e., the absence of HRV. In this study, we investigate the effects of HRV on the interplay between APD, Ca, and electromechanical properties, employing a nonlinear discrete-time map model that governs APD and intracellular Ca cycling with a stochastic pacing period. We find that HRV can decrease variation in APD and peak Ca at fast pacing rates for which alternans is present. Further, increased HRV typically disrupts the alternating pattern for both APD and peak Ca and weakens the correlation between APD and peak Ca, thus decoupling Ca-mediated instabilities from repolarization alternation. We find that the efficacy of these effects is regulated by the sarcoplasmic reticulum Ca uptake rate. Overall, these results demonstrate that HRV disrupts arrhythmogenic alternans and suggests that HRV may be a significant factor in preventing life-threatening arrhythmias. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Atrial fibrillation driver mechanisms: Insight from the isolated human heart.

    PubMed

    Csepe, Thomas A; Hansen, Brian J; Fedorov, Vadim V

    2017-01-01

    Although there have been great technological advances in the treatment of atrial fibrillation (AF), current therapies remain limited due to a narrow understanding of AF mechanisms in the human heart. This review will highlight our recent studies on explanted human hearts where we developed and employed a novel functional-structural mapping approach by integrating high-resolution simultaneous endo-epicardial and panoramic optical mapping with 3D gadolinium-enhanced MRI to define the spatiotemporal characteristics of AF drivers and their structural substrates. The results allow us to postulate that the primary mechanism of AF maintenance in human hearts is a limited number of localized intramural microanatomic reentrant AF drivers anchored to heart-specific 3D fibrotically insulated myobundle tracks, which may remain hidden to clinical single-surface electrode mapping. We suggest that ex vivo human heart studies, by using an integrated 3D functional and structural mapping approach, will help to reveal defining features of AF drivers as well as validate and improve clinical approaches to detect and target these AF drivers in patients with cardiac diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors.

    PubMed

    Ronn, Jonas; Jensen, Elisa P; Wewer Albrechtsen, Nicolai J; Holst, Jens Juul; Sorensen, Charlotte M

    2017-12-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Heart Rate Fragmentation: A Symbolic Dynamical Approach.

    PubMed

    Costa, Madalena D; Davis, Roger B; Goldberger, Ary L

    2017-01-01

    Background: We recently introduced the concept of heart rate fragmentation along with a set of metrics for its quantification. The term was coined to refer to an increase in the percentage of changes in heart rate acceleration sign, a dynamical marker of a type of anomalous variability. The effort was motivated by the observation that fragmentation, which is consistent with the breakdown of the neuroautonomic-electrophysiologic control system of the sino-atrial node, could confound traditional short-term analysis of heart rate variability. Objective: The objectives of this study were to: (1) introduce a symbolic dynamical approach to the problem of quantifying heart rate fragmentation; (2) evaluate how the distribution of the different dynamical patterns ("words") varied with the participants' age in a group of healthy subjects and patients with coronary artery disease (CAD); and (3) quantify the differences in the fragmentation patterns between the two sample populations. Methods: The symbolic dynamical method employed here was based on a ternary map of the increment NN interval time series and on the analysis of the relative frequency of symbolic sequences (words) with a pre-defined set of features. We analyzed annotated, open-access Holter databases of healthy subjects and patients with CAD, provided by the University of Rochester Telemetric and Holter ECG Warehouse (THEW). Results: The degree of fragmentation was significantly higher in older individuals than in their younger counterparts. However, the fragmentation patterns were different in the two sample populations. In healthy subjects, older age was significantly associated with a higher percentage of transitions from acceleration/deceleration to zero acceleration and vice versa (termed "soft" inflection points). In patients with CAD, older age was also significantly associated with higher percentages of frank reversals in heart rate acceleration (transitions from acceleration to deceleration and vice versa , termed "hard" inflection points). Compared to healthy subjects, patients with CAD had significantly higher percentages of soft and hard inflection points, an increased percentage of words with a high degree of fragmentation and a decreased percentage of words with a lower degree of fragmentation. Conclusion: The symbolic dynamical method employed here was useful to probe the newly recognized property of heart rate fragmentation. The findings from these cross-sectional studies confirm that CAD and older age are associated with higher levels of heart rate fragmentation. Furthermore, fragmentation with healthy aging appears to be phenotypically different from fragmentation in the context of CAD.

  14. Dynamic mapping of brain and cognitive control of virtual gameplay (study by functional magnetic resonance imaging).

    PubMed

    Rezakova, M V; Mazhirina, K G; Pokrovskiy, M A; Savelov, A A; Savelova, O A; Shtark, M B

    2013-04-01

    Using functional magnetic resonance imaging technique, we performed online brain mapping of gamers, practiced to voluntary (cognitively) control their heart rate, the parameter that operated a competitive virtual gameplay in the adaptive feedback loop. With the default start picture, the regions of interest during the formation of optimal cognitive strategy were as follows: Brodmann areas 19, 37, 39 and 40, i.e. cerebellar structures (vermis, amygdala, pyramids, clivus). "Localization" concept of the contribution of the cerebellum to cognitive processes is discussed.

  15. Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.

    PubMed

    Pangerc, Urška; Jager, Franc

    2015-08-01

    In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).

  16. A comparison of small-area hospitalisation rates, estimated morbidity and hospital access.

    PubMed

    Shulman, H; Birkin, M; Clarke, G P

    2015-11-01

    Published data on hospitalisation rates tend to reveal marked spatial variations within a city or region. Such variations may simply reflect corresponding variations in need at the small-area level. However, they might also be a consequence of poorer accessibility to medical facilities for certain communities within the region. To help answer this question it is important to compare these variable hospitalisation rates with small-area estimates of need. This paper first maps hospitalisation rates at the small-area level across the region of Yorkshire in the UK to show the spatial variations present. Then the Health Survey of England is used to explore the characteristics of persons with heart disease, using chi-square and logistic regression analysis. Using the most significant variables from this analysis the authors build a spatial microsimulation model of morbidity for heart disease for the Yorkshire region. We then compare these estimates of need with the patterns of hospitalisation rates seen across the region. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. KATP channel inhibition blunts electromechanical decline during hypoxia in left ventricular working rabbit hearts

    PubMed Central

    Garrott, Kara; Kuzmiak‐Glancy, Sarah; Wengrowski, Anastasia; Zhang, Hanyu; Rogers, Jack

    2017-01-01

    Key points Heart function is critically dependent upon the balance of energy production and utilization. Sarcolemmal ATP‐sensitive potassium channels (KATP channels) in cardiac myocytes adjust contractile function to compensate for the level of available energy.Understanding the activation of KATP channels in working myocardium during high‐stress situations is crucial to the treatment of cardiovascular disease, especially ischaemic heart disease.Using a new optical mapping approach, we measured action potentials from the surface of excised contracting rabbit hearts to assess when sarcolemmal KATP channels were activated during physiologically relevant workloads and during gradual reductions in myocardial oxygenation.We demonstrate that left ventricular pressure is closely linked to KATP channel activation and that KATP channel inhibition with a low concentration of tolbutamide prevents electromechanical decline when oxygen availability is reduced. As a result, KATP channel inhibition probably exacerbates a mismatch between energy demand and energy production when myocardial oxygenation is low. Abstract Sarcolemmal ATP‐sensitive potassium channel (KATP channel) activation in isolated cells is generally understood, although the relationship between myocardial oxygenation and KATP activation in excised working rabbit hearts remains unknown. We optically mapped action potentials (APs) in excised rabbit hearts to test the hypothesis that hypoxic changes would be more severe in left ventricular (LV) working hearts (LWHs) than Langendorff (LANG) perfused hearts. We further hypothesized that KATP inhibition would prevent those changes. Optical APs were mapped when measuring LV developed pressure (LVDP), coronary flow rate and oxygen consumption in LANG and LWHs. Hearts were paced to increase workload and perfusate was deoxygenated to study the effects of myocardial hypoxia. A subset of hearts was perfused with 1 μm tolbutamide (TOLB) to identify the level of AP duration (APD) shortening attributed to KATP channel activation. During sinus rhythm, APD was shorter in LWHs compared to LANG hearts. APD in both LWHs and LANG hearts dropped steadily during deoxygenation. With TOLB, APDs in LWHs were longer at all workloads and APD reductions during deoxygenation were blunted in both LWHs and LANG hearts. At 50% perfusate oxygenation, APD and LVDP were significantly higher in LWHs perfused with TOLB (199 ± 16 ms; 92 ± 5.3 mmHg) than in LWHs without TOLB (109 ± 14 ms, P = 0.005; 65 ± 6.5 mmHg, P = 0.01). Our results indicate that KATP channels are activated to a greater extent in perfused hearts when the LV performs pressure–volume work. The results of the present study demonstrate the critical role of KATP channels in modulating myocardial function over a wide range of physiological conditions. PMID:28177123

  18. Mechanisms underlying the biphasic effect of vitamin K1 (phylloquinone) on arterial blood pressure.

    PubMed

    Tirapelli, Carlos R; Resstel, Leonardo B M; de Oliveira, Ana M; Corrêa, Fernando M A

    2008-07-01

    Phylloquinone (vitamin K(1), VK(1)) is widely used therapeutically and intravenous administration of this quinone can induce hypotension. We aimed to investigate the mechanisms underlying the effects induced by VK(1) on arterial blood pressure. With this purpose a catheter was inserted into the abdominal aorta of male Wistar rats for blood pressure and heart rate recording. Bolus intravenous injection of VK(1) (0.5-20 mgkg(-1)) produced a transient increase in blood pressure followed by a fall. Both the pressor and depressor response induced by VK(1) were dose-dependent. On the other hand, intravenous injection of VK(1) did not alter heart rate. The nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 and 20 mgkg(-1)) reduced both the increase and decrease in blood pressure induced by VK(1) (5 mgkg(-1)). On the other hand, indometacin (10 mg kg(-1)), a non-selective cyclooxygenase inhibitor, did not alter the increase in mean arterial pressure (MAP) induced by VK(1). However, VK(1)-induced fall in MAP was significantly attenuated by indometacin. We concluded that VK(1) induces a dose-dependent effect on blood pressure that consists of an acute increase followed by a more sustained decrease in MAP. The hypotension induced by VK(1) involves the activation of the nitric oxide (NO) pathway and the release of vasodilator prostanoid(s).

  19. Effect of losartan, an angiotensin II type 1 receptor antagonist on cardiac autonomic functions of rats during acute and chronic inhibition of nitric oxide synthesis.

    PubMed

    Chaswal, M; Das, S; Prasad, J; Katyal, A; Mishra, A K; Fahim, M

    2012-01-01

    We studied the effect of losartan on baroreflex sensitivity (BRS) and heart rate variability (HRV) of adult Wistar rats during acute and chronic inhibition of nitric oxide synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME). Chronic L-NAME administration (50 mg/kg per day for 7 days, orally through gavage) increased mean arterial pressure (MAP), heart rate but significantly decreased BRS. In addition, a significant fall of standard deviation of normal RR intervals, total spectral power, high frequency spectral power and a rise of low frequency to high frequency (LF: HF) ratio was seen. Acute L-NAME administration (30 mg/kg, i.v. bolus dose) also raised MAP and impaired HRV but it was associated with augmented BRS for bradycardia reflex. Losartan treatment (10 mg/kg, i.v.) in both acute and chronic L-NAME treated rats, decreased MAP but the difference was not significant. On the other hand, losartan administration normalized depressed BRS for bradycardia reflex and significantly reduced LF to HF ratio in chronic L-NAME treated rats. But this improvement was not observed in acute L-NAME group. These results indicate importance of mechanisms other than renin-angiotensin system in the pressor response of both acute as well as chronic L-NAME. However, autonomic dysregulation especially following chronic L-NAME appears to be partly angiotensin dependent.

  20. One oxygen breath shortened the time to return of spontaneous circulation in severely asphyxiated piglets.

    PubMed

    Linner, Rikard; Cunha-Goncalves, Doris; Perez-de-Sa, Valeria

    2017-10-01

    Asphyxiated neonates should be resuscitated with air, but it remains unclear if oxygen supplementation is needed in ineffectively ventilated newborn infants. We studied the return of spontaneous circulation (ROSC) with oxygen or air in an experimental model of inadequate ventilation. Asphyxia was induced in 16 newborn piglets until their heart rate was <60 bpm or mean arterial pressure (MAP) <30 mmHg. During the first 10 minutes of resuscitation, they received one breath per minute of oxygen (n = 8) or air (n = 8). Tidal volume was 7.5 mL/kg. If MAP was <30 mmHg for 15 seconds, closed-chest cardiac massage (CCCM) was performed for 45 seconds. From 10 minutes onward, all piglets received normal ventilation with air. ROSC was defined as a heart rate >150 bpm, MAP >40 mmHg and no subsequent CCCM. Before resuscitation, the median arterial pH was 6.73. At 10 minutes, no piglets in the oxygen group needed CCCM, while all did in the air group (p < 0.001). The median time to ROSC was 60 seconds with oxygen and 845 seconds with air (p < 0.001). No brain tissue hyperoxia occurred. When ventilation was inadequate, one oxygen breath reduced time to ROSC in piglets with severe metabolic and respiratory acidosis. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  1. Circadian and estrous cycle-dependent variations in blood pressure and heart rate in female rats.

    PubMed

    Takezawa, H; Hayashi, H; Sano, H; Saito, H; Ebihara, S

    1994-11-01

    To determine whether cardiovascular functions are controlled by the endogenous circadian system and whether they change with the estrous cycle in female rats, we measured mean arterial pressure (MAP), heart rate (HR), and spontaneous activity (ACT) of female rats using an implantable radiotelemetry device and a computerized data-collecting system. Under a 12:12-h light-dark (LD) cycle, these parameters exhibited daily rhythms that were entrained to the photic cycle. The patterns of the daily rhythms varied with estrous cycles, and variations were particularly marked in the proestrous stage. During the dark period of this stage, ACT levels were significantly higher, but HR was significantly lower than in other stages. Although the peak MAP occurred within 2 h after the onset of the dark phase in three of the estrous stages, it occurred around midnight in the proestrous stage. Such estrous cycle-dependent variations were eliminated by ovariectomy. The implantation of 17 beta-estradiol produced a gradual increase in MAP and an abrupt decrease in HR. During constant darkness, all three parameters were free running, maintaining the same internal phase relationships with each other as during LD cycles. These results indicate that daily variations in these parameters were controlled by the endogenous circadian oscillating system, that they vary with the estrous cycle in female rats, and that estrogen may be responsible for these estrous cycle-dependent variations.

  2. Performance characterization of a rotary centrifugal left ventricular assist device with magnetic suspension.

    PubMed

    Jahanmir, Said; Hunsberger, Andrew Z; Heshmat, Hooshang; Tomaszewski, Michael J; Walton, James F; Weiss, William J; Lukic, Branka; Pae, William E; Zapanta, Conrad M; Khalapyan, Tigran Z

    2008-05-01

    The MiTiHeart (MiTiHeart Corporation, Gaithersburg, MD, USA) left ventricular assist device (LVAD), a third-generation blood pump, is being developed for destination therapy for adult heart failure patients of small to medium frame that are not being served by present pulsatile devices. The pump design is based on a novel, patented, hybrid passive/active magnetic bearing system with backup hydrodynamic thrust bearing and exhibits low power loss, low vibration, and low hemolysis. Performance of the titanium alloy prototype was evaluated in a series of in vitro tests with blood analogue to map out the performance envelop of the pump. The LVAD prototype was implanted in a calf animal model, and the in vivo pump performance was evaluated. The animal's native heart imparted a strong pulsatility to the flow rate. These tests confirmed the efficacy of the MiTiHeart LVAD design and confirmed that the pulsatility does not adversely affect the pump performance.

  3. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI.

    PubMed

    Faurie, Julia; Baudet, Mathilde; Assi, Kondo Claude; Auger, Dominique; Gilbert, Guillaume; Tournoux, Francois; Garcia, Damien

    2017-02-01

    Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.

  4. Optogenetic control of the cardiac conduction system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Crocini, Claudia; Ferrantini, Cecilia; Coppini, Raffaele; Loew, Leslie M.; Cerbai, Elisabetta; Poggesi, Corrado; Pavone, Francesco S.; Sacconi, Leonardo

    2016-03-01

    Fatal cardiac arrhythmias are a major medical and social issue in Western countries. Current implantable pacemaker/defibrillators have limited effectiveness and are plagued by frequent malfunctions and complications. Here, we aim at setting up a new method to map and control the electrical activity of whole isolated mouse hearts. We employ a transgenic mouse model expressing Channel Rhodopsin-2 (ChR2) in the heart coupled with voltage optical mapping to monitor and control action potential propagation. The whole heart is loaded with the fluorinated red-shifted voltage sensitive dye (di-4-ANBDQPQ) and imaged with the central portion (128 x 128 pixel) of sCMOS camera operating at frame rate of 1.6 kHz. The wide-field imaging system is implemented with a random access ChR2 activation developed using two orthogonally-mounted acousto-optical deflectors (AODs). AODs rapidly scan different sites of the sample with a commutation time of 4 μs, allowing us to design ad hoc ChR2-stimulation pattern. First, we demonstrate the capability of our system in manipulating the conduction system of the whole mouse heart by changing the electrical propagation features. Then, we explore the efficacy of the random access ChR2 stimulation in inducing arrhythmias as well as to restore the cardiac sinus rhythm during an arrhythmic event. This work shows the potentiality of this new method for studying the mechanisms of arrhythmias and reentry in healthy and diseased hearts, as well as the basis of intra-ventricular dyssynchrony.

  5. Nicotine impairs reflex renal nerve and respiratory activity in deoxycorticosterone acetate-salt rats.

    PubMed

    Whitescarver, S A; Roberts, A M; Stremel, R W; Jimenez, A E; Passmore, J C

    1991-02-01

    Smoking exacerbates the increase in arterial pressure in hypertension. The effect of nicotine on the baroreceptor-mediated reflex responses of renal nerve activity (RNA), heart rate, and respiratory activity (minute diaphragmatic activity [MDA]) after bolus injections of phenylephrine was compared in deoxycorticosterone acetate (DOCA)-salt sensitive and normotensive rats. Osmotic minipumps that dispensed either nicotine (2.4 mg/kg/day) or saline were implanted in DOCA and normotensive rats for 18 days. Anesthetized DOCA-nicotine, DOCA-saline, control-nicotine, and control-saline rats had mean arterial pressures (MAP) of 117 +/- 3, 110 +/- 9, 90 +/- 3, and 89 +/- 5 mm Hg, respectively. Nicotine decreased the sensitivity (p less than 0.05) of baroreceptor reflex control of RNA (% delta RNA/delta MAP) in the DOCA-nicotine rats (-0.92 +/- 0.08) compared with the DOCA-saline (-1.44 +/- 0.16), control-nicotine (-1.45 +/- 0.08), or control-saline (-1.45 +/- 0.21) rats. The reflex decrease in respiratory activity (% delta MDA/delta MAP x 100) was impaired (p less than 0.01) in both control-nicotine (-24.5 +/- 3.3) and DOCA-nicotine (-18.2 +/- 4.6) rats compared with control-saline (-59.2 +/- 9.1) and DOCA-saline (-52.5 +/- 9.9) rats. The reflex decrease in heart rate (absolute delta HR/delta MAP) in both DOCA-nicotine (1.56 +/- 0.17) and control-nicotine (1.54 +/- 0.24) rats was augmented compared with DOCA-saline and control-saline rats (0.91 +/- 0.12 and 0.97 +/- 0.14).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Time-dependent changes in autonomic control of splanchnic vascular resistance and heart rate in ANG II-salt hypertension.

    PubMed

    Kuroki, Marcos T; Guzman, Pilar A; Fink, Gregory D; Osborn, John W

    2012-02-01

    Previous studies suggest that ANG II-induced hypertension in rats fed a high-salt (HS) diet (ANG II-salt hypertension) has a neurogenic component dependent on an enhanced sympathetic tone to the splanchnic veins and independent from changes in sympathetic nerve activity to the kidney or hind limb. The purpose of this study was to extend these findings and test whether altered autonomic control of splanchnic resistance arteries and the heart also contributes to the neurogenic component. Mean arterial pressure (MAP), heart rate (HR), superior mesenteric artery blood flow, and mesenteric vascular resistance (MVR) were measured during 4 control days, 14 days of ANG II delivered subcutaneously (150 ng·kg(-1)·min(-1)), and 4 days of recovery in conscious rats fed a HS (2% NaCl) or low-salt (LS; 0.1% NaCl) diet. Autonomic effects on MAP, HR, and MVR were assessed by acute ganglionic blockade with hexamethonium (20 mg/kg iv) on day 3 of control, days 1, 3, 5, 7, 10, and 13 of ANG II, and day 4 of recovery. MVR increased during ANG II infusion in HS and LS rats but remained elevated only in HS rats. Additionally, the MVR response to hexamethonium was enhanced on days 10 and 13 of ANG II selectively in HS rats. Compared with LS rats, HR in HS rats was higher during the 2nd wk of ANG II, and its response to hexamethonium was greater on days 7, 10, and 13 of ANG II. These results suggest that ANG II-salt hypertension is associated with delayed changes in autonomic control of splanchnic resistance arteries and the heart.

  7. Effects of dexmedetomidine on heart arrhythmia prevention in off-pump coronary artery bypass surgery: A randomized clinical trial.

    PubMed

    Soltani, Ghasem; Jahanbakhsh, Saeed; Tashnizi, Mohammad Abbasi; Fathi, Mehdi; Amini, Shahram; Zirak, Nahid; Sheybani, Shima

    2017-10-01

    Arrhythmia occurring during and after surgery is one of the major complications in open-heart surgery. Dexmedetomidine is an intravenous alpha-2 agonist and very specific short-acting drug to protect the various organs against ischemic injuries and blood reflow. However, the effect of dexmedetomidine for preventing intraoperative heart arrhythmias has not been recognized. This study aimed to determine the effect of dexmedetomidine on the incidence rate of heart arrhythmias and anesthetic required in off-pump coronary artery bypass surgery. This randomized clinical trial was conducted on patients who were candidates for off-pump coronary artery bypass referring to Imam Reza Hospital of Mashhad, Iran, from July 2016 through January 2017. The patients were randomly assigned to two groups of intervention (infusion of 0.5 mcg/kg/h dexmedetomidine together with induction followed by infusion of 0.5 mcg/kg/h by the end of the surgery) or control (saline infusion). Mean arterial pressure (MAP) and heart rate (HR) were measured before induction, during surgery operation and ICU admission. Data were analyzed by SPSS version 18 using Chi Square and independent-samples t-test. A total of 76 patients with a mean age of 59.8 ± 8.2 years (in two groups of 38) were studied. The two groups had no statistically significant difference in terms of background variables. The MAP and HR values before induction, during surgery and ICU admission were significantly higher in the control group than in the intervention group (p=0.001). Out of the studied arrhythmias, the values of PAC (55.2% vs. 15.7%), PVC (81.5% vs. 21.0%), AF (26.3% vs. 7.8%), VTAC (21.0% vs. 2.6%) were significantly lower in dexmedetomidine group (p=0.001). It seems that dexmedetomidine administration during induction and surgery can cause significant reduction in most of the common arrhythmias in off-pump coronary bypass surgery. The use of dexmedetomidine maintains MAP and HR at significantly lower values, and changes compared to the control group as well as reduces the need for anesthetic compounds. The present study has been registered at the Iranian Registry of Clinical Trials (www.IRCT.IR) with a code of IRCT2016072413159N9 before starting the study. This study was fully sponsored by the Research Deputy at Mashhad University of Medical Sciences, Iran (grant number 941413).

  8. Mapping cardiogenic oscillations using synchrotron-based phase contrast CT imaging

    NASA Astrophysics Data System (ADS)

    Thurgood, Jordan; Dubsky, Stephen; Siu, Karen K. W.; Wallace, Megan; Siew, Melissa; Hooper, Stuart; Fouras, Andreas

    2012-10-01

    In many animals, including humans, the lungs encase the majority of the heart thus the motion of each organ affects the other. The effects of the motion of the heart on the lungs potentially provides information with regards to both lung and heart health. We present a novel technique that is capable of measuring the effect of the heart on the surrounding lung tissue through the use of advanced synchrotron imaging techniques and recently developed X-ray velocimetry methods. This technique generates 2D frequency response maps of the lung tissue motion at multiple projection angles from projection X-ray images. These frequency response maps are subsequently used to generate 3D reconstructions of the lung tissue exhibiting motion at the frequency of ventilation and the lung tissue exhibiting motion at the frequency of the heart. This technique has a combined spatial and temporal resolution sufficient to observe the dynamic and complex 3D nature of lung-heart interactions.

  9. Utility and Clinical Profile of Dexmedetomidine in Pediatric Cardiac Catheterization Procedures: A Matched Controlled Analysis.

    PubMed

    Riveros, Ricardo; Makarova, Natalya; Riveros-Perez, Efrain; Chodavarapu, Praneeta; Saasouh, Wael; Yılmaz, Hüseyin Oğuz; Cuko, Evis; Babazade, Rovnat; Kimatian, Stephen; Turan, Alparslan

    2017-12-01

    Dexmedetomidine is increasingly used in children undergoing cardiac catheterization procedures. We compared the percentage of surgical time with hemodynamic instability and the incidence of postoperative agitation between pediatric cardiac catheterization patients who received dexmedetomidine infusion and those who did not and the incidence of postoperative agitation. We matched 653 pediatric patients scheduled for cardiac catheterization. Two separate multivariable linear mixed models were used to assess the association between dexmedetomidine use and intraoperative blood pressure and heart rate instability. A multivariate logistic regression was used for relationship between dexmedetomidine and postoperative agitation. No difference between the study groups was found in the duration of MAP ( P = .867) or heart rate (HR) instabilities ( P = .224). The relationship between dexmedetomidine use and the duration of negative hemodynamic effects does not depend on any of the considered CHD types (all P > .001) or intervention ( P = .453 for MAP and P = .023 for HR). No difference in postoperative agitation was found between the study groups ( P = .590). Our study demonstrated no benefit in using dexmedetomidine infusion compared with other general anesthesia techniques to maintain hemodynamic stability or decrease agitation in pediatric patients undergoing cardiac catheterization procedures.

  10. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

    NASA Astrophysics Data System (ADS)

    Lee, Peter; Calvo, Conrado J.; Alfonso-Almazán, José M.; Quintanilla, Jorge G.; Chorro, Francisco J.; Yan, Ping; Loew, Leslie M.; Filgueiras-Rama, David; Millet, José

    2017-02-01

    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.

  11. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models.

    PubMed

    Lee, Peter; Calvo, Conrado J; Alfonso-Almazán, José M; Quintanilla, Jorge G; Chorro, Francisco J; Yan, Ping; Loew, Leslie M; Filgueiras-Rama, David; Millet, José

    2017-02-27

    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.

  12. Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats.

    PubMed

    Xia, Zhengyuan; Nagareddy, Prabhakara R; Guo, Zhixin; Zhang, Wei; McNeill, John H

    2006-02-01

    Increased oxidative stress and reduced nitric oxide (NO) bioactivity are key features of diabetes mellitus that eventually result in cardiovascular abnormalities. We assessed whether N-acetylcysteine (NAC), an antioxidant and glutathione precursor, could prevent the hyperglycaemia induced increase in oxidative stress, restore NO availability and prevent depression of arterial blood pressure and heart rate in vivo in experimental diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were treated or not treated with NAC in drinking water for 8 weeks, initiated 1 week after induction of diabetes. At termination, plasma levels of free 15-F2t-isoprostane, a specific marker of oxygen free radical induced lipid peroxidation, was increased while the plasma total antioxidant concentration was decreased in untreated diabetic rats as compared to control rats (P<0.05). This was accompanied by a significant reduction of plasma levels of nitrate and nitrite, stable metabolites of NO, (P<0.05, D vs. C) and a reduced endothelial NO synthase protein expression in the heart and in aortic and mesenteric artery tissues. Systolic, diastolic and mean arterial blood pressures (SBP, DBP and MAP) and heart rate (HR) were reduced in diabetic rats (P<0.05 vs. C) and NAC normalised the changes that occurred in the diabetic rats. The protective effects may be attributable to restoration of NO bioavailability in the circulation.

  13. Heart rate sensitive optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Alvarez, Karl; Lopez-Tremoleda, Jordi; Donnan, Rob; Michael-Titus, Adina T.; Tomlins, Peter H.

    2018-02-01

    Optical coherence angiography (OCA) enables visualisation of three-dimensional micro-vasculature from optical coherence tomography data volumes. Typically, various statistical methods are used to discriminate static tissue from blood flow within vessels. In this paper, we introduce a new method that relies upon the beating heart frequency to isolate blood vessels from the surrounding tissue. Vascular blood flow is assumed to be more strongly modulated by the heart-beat compared to surrounding tissue and therefore short-time Fourier transform of sequential measurements can discriminate the two. Furthermore, it is demonstrated that adjacent B-Scans within an OCT data volume can provide the required sampling frequency. As such, the technique can be considered to be a spatially mapped variation of photoplethysmography (PPG), whereby each image voxel operates as a PPG detector. This principle is demonstrated using both a model system and in vivo for monitoring the vascular changes effected by traumatic brain injury in mice. In vivo measurements were acquired at an A-Scan rate of 10kHz to form a 500x500x512 (lateral x lateral x axial) pixel volume, enabling sequential sampling of the mouse heart rate in an expected range of 300-600 bpm. One of the advantages of this new OCA processing method is that it can be used in conjunction with existing algorithms as an additional filter for signal to noise enhancement.

  14. Time-course effects of aerobic exercise training on cardiovascular and renal parameters in 2K1C renovascular hypertensive rats.

    PubMed

    Maia, R C A; Sousa, L E; Santos, R A S; Silva, M E; Lima, W G; Campagnole-Santos, M J; Alzamora, A C

    2015-11-01

    Exercise training (Ex) has been recommended for its beneficial effects in hypertensive states. The present study evaluated the time-course effects of Ex without workload on mean arterial pressure (MAP), reflex bradycardia, cardiac and renal histology, and oxidative stress in two-kidney, one-clip (2K1C) hypertensive rats. Male Fischer rats (10 weeks old; 150-180 g) underwent surgery (2K1C or SHAM) and were subsequently divided into a sedentary (SED) group and Ex group (swimming 1 h/day, 5 days/week for 2, 4, 6, 8, or 10 weeks). Until week 4, Ex decreased MAP, increased reflex bradycardia, prevented concentric hypertrophy, reduced collagen deposition in the myocardium and kidneys, decreased the level of thiobarbituric acid-reactive substances (TBARS) in the left ventricle, and increased the catalase (CAT) activity in the left ventricle and both kidneys. From week 6 to week 10, however, MAP and reflex bradycardia in 2K1C Ex rats became similar to those in 2K1C SED rats. Ex effectively reduced heart rate and prevented collagen deposition in the heart and both kidneys up to week 10, and restored the level of TBARS in the left ventricle and clipped kidney and the CAT activity in both kidneys until week 8. Ex without workload for 10 weeks in 2K1C rats provided distinct beneficial effects. The early effects of Ex on cardiovascular function included reversing MAP and reflex bradycardia. The later effects of Ex included preventing structural alterations in the heart and kidney by decreasing oxidative stress and reducing injuries in these organs during hypertension.

  15. Dynamic three-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo

    1998-07-01

    Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.

  16. Quantitative pharmacokinetic-pharmacodynamic modelling of baclofen-mediated cardiovascular effects using BP and heart rate in rats.

    PubMed

    Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Beaudoin, Marie-Eve; Snow, Debra; Mettetal, Jerome T; Bialecki, Russell A

    2016-10-01

    While the molecular pathways of baclofen toxicity are understood, the relationships between baclofen-mediated perturbation of individual target organs and systems involved in cardiovascular regulation are not clear. Our aim was to use an integrative approach to measure multiple cardiovascular-relevant parameters [CV: mean arterial pressure (MAP), systolic BP, diastolic BP, pulse pressure, heart rate (HR); CNS: EEG; renal: chemistries and biomarkers of injury] in tandem with the pharmacokinetic properties of baclofen to better elucidate the site(s) of baclofen activity. Han-Wistar rats were administered vehicle or ascending doses of baclofen (3, 10 and 30 mg·kg(-1) , p.o.) at 4 h intervals and baclofen-mediated changes in parameters recorded. A pharmacokinetic-pharmacodynamic model was then built by implementing an existing mathematical model of BP in rats. Final model fits resulted in reasonable parameter estimates and showed that the drug acts on multiple homeostatic processes. In addition, the models testing a single effect on HR, total peripheral resistance or stroke volume alone did not describe the data. A final population model was constructed describing the magnitude and direction of the changes in MAP and HR. The systems pharmacology model developed fits baclofen-mediated changes in MAP and HR well. The findings correlate with known mechanisms of baclofen pharmacology and suggest that similar models using limited parameter sets may be useful to predict the cardiovascular effects of other pharmacologically active substances. © 2016 The British Pharmacological Society.

  17. Quantitative pharmacokinetic–pharmacodynamic modelling of baclofen‐mediated cardiovascular effects using BP and heart rate in rats

    PubMed Central

    Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Beaudoin, Marie‐Eve; Snow, Debra

    2016-01-01

    Background and Purpose While the molecular pathways of baclofen toxicity are understood, the relationships between baclofen‐mediated perturbation of individual target organs and systems involved in cardiovascular regulation are not clear. Our aim was to use an integrative approach to measure multiple cardiovascular‐relevant parameters [CV: mean arterial pressure (MAP), systolic BP, diastolic BP, pulse pressure, heart rate (HR); CNS: EEG; renal: chemistries and biomarkers of injury] in tandem with the pharmacokinetic properties of baclofen to better elucidate the site(s) of baclofen activity. Experimental Approach Han‐Wistar rats were administered vehicle or ascending doses of baclofen (3, 10 and 30 mg·kg−1, p.o.) at 4 h intervals and baclofen‐mediated changes in parameters recorded. A pharmacokinetic–pharmacodynamic model was then built by implementing an existing mathematical model of BP in rats. Key Results Final model fits resulted in reasonable parameter estimates and showed that the drug acts on multiple homeostatic processes. In addition, the models testing a single effect on HR, total peripheral resistance or stroke volume alone did not describe the data. A final population model was constructed describing the magnitude and direction of the changes in MAP and HR. Conclusions and Implications The systems pharmacology model developed fits baclofen‐mediated changes in MAP and HR well. The findings correlate with known mechanisms of baclofen pharmacology and suggest that similar models using limited parameter sets may be useful to predict the cardiovascular effects of other pharmacologically active substances. PMID:27448216

  18. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function

    PubMed Central

    Stoyek, Matthew R.; Quinn, T. Alexander; Croll, Roger P.

    2016-01-01

    The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons. PMID:27342878

  19. The effect of exercise intensity on postresistance exercise hypotension in trained men.

    PubMed

    Duncan, Michael J; Birch, Samantha L; Oxford, Samuel W

    2014-06-01

    The occurrence of postresistance exercise hypotension (PEH) after resistance exercise remains unknown. This study examined blood pressure and heart rate (HR) responses to an acute bout of low- and high-intensity resistance exercise, matched for total work, in trained males. Sixteen resistance-trained males (23.1 ± 5.9 years) performed an acute bout of low- (40% of 1 repetition maximum [1RM]) and high-intensity resistance exercise (80% 1RM), matched for total work, separated by 7 days and performed in a counterbalanced order. Systolic blood pressure (SBP) and diastolic blood pressure (DBP), mean arterial pressure (MAP), and HR were assessed before exercise, after completion of each exercise resistance exercise (3 sets of back squat, bench press, and deadlift) and every 10 minutes after resistance exercise for a period of 60 minutes. Results indicated a significant intensity × time interaction for SBP (p = 0.034, partial η(2) = 0.122) and MAP (p = 0.047, partial η(2) = 0.116) whereby SBP and MAP at 50-minute recovery and 60-minute recovery were significantly lower after high-intensity exercise (p = 0.01 for SBP and p = 0.05 for MAP in both cases) compared with low-intensity exercise. There were no significant main effects or interactions in regard to DBP (all p > 0.05). Heart rate data indicated a significant main effect for time (F(9, 135) = 2.479, p = 0.0001, partial η(2) = 0.344). Post hoc multiple comparisons indicated that HR was significantly higher after squat, bench press, and deadlift exercise compared with resting HR and HR at 40-, 50-, and 60-minute recovery (all p = 0.03). The present findings suggest that an acute bout of high intensity, but not low intensity, resistance exercise using compound movements can promote PEH in trained men.

  20. High-resolution myocardial T1 mapping using single-shot inversion recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction

    PubMed Central

    Joseph, Arun A; Kalentev, Oleksandr; Merboldt, Klaus-Dietmar; Voit, Dirk; Roeloffs, Volkert B; van Zalk, Maaike; Frahm, Jens

    2016-01-01

    Objective: To develop a novel method for rapid myocardial T1 mapping at high spatial resolution. Methods: The proposed strategy represents a single-shot inversion recovery experiment triggered to early diastole during a brief breath-hold. The measurement combines an adiabatic inversion pulse with a real-time readout by highly undersampled radial FLASH, iterative image reconstruction and T1 fitting with automatic deletion of systolic frames. The method was implemented on a 3-T MRI system using a graphics processing unit-equipped bypass computer for online application. Validations employed a T1 reference phantom including analyses at simulated heart rates from 40 to 100 beats per minute. In vivo applications involved myocardial T1 mapping in short-axis views of healthy young volunteers. Results: At 1-mm in-plane resolution and 6-mm section thickness, the inversion recovery measurement could be shortened to 3 s without compromising T1 quantitation. Phantom studies demonstrated T1 accuracy and high precision for values ranging from 300 to 1500 ms and up to a heart rate of 100 beats per minute. Similar results were obtained in vivo yielding septal T1 values of 1246 ± 24 ms (base), 1256 ± 33 ms (mid-ventricular) and 1288 ± 30 ms (apex), respectively (mean ± standard deviation, n = 6). Conclusion: Diastolic myocardial T1 mapping with use of single-shot inversion recovery FLASH offers high spatial resolution, T1 accuracy and precision, and practical robustness and speed. Advances in knowledge: The proposed method will be beneficial for clinical applications relying on native and post-contrast T1 quantitation. PMID:27759423

  1. Transthoracic Ultrafast Doppler Imaging of Human Left Ventricular Hemodynamic Function

    PubMed Central

    Osmanski, Bruno-Félix; Maresca, David; Messas, Emmanuel; Tanter, Mickael; Pernot, Mathieu

    2016-01-01

    Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits to rely on a much more effective wall filtering and to increase sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function. PMID:25073134

  2. Afferent vagal stimulation, vasopressin, and nitroprusside alter cerebrospinal fluid kinin.

    PubMed

    Thomas, G R; Thibodeaux, H; Margolius, H S; Webb, J G; Privitera, P J

    1987-07-01

    The effects of afferent vagal stimulation, cerebroventricular vasopressin, and intravenous nitroprusside on cerebrospinal fluid (CSF) kinin levels, mean arterial pressure (MAP), and heart rate (HR) were determined in anesthetized dogs in which a ventriculocisternal perfusion system (VP) was established. Following bilateral vagotomy, stimulation of the central ends of both vagi for 60 min significantly increased MAP and CSF perfusate levels of kinin and norepinephrine (NE). MAP was increased a maximum of 32 +/- 4 mmHg, and the rates of kinin and NE appearance into the CSF perfusate increased from 4.2 +/- 1.4 to 22.1 +/- 6.9 and from 28 +/- 5 to 256 +/- 39 pg/min, respectively. A significant correlation was found between CSF kinin and NE levels in these experiments. In other experiments the addition of arginine vasopressin to the VP system caused a significant increase in CSF perfusate kinin without affecting MAP or HR. Intravenous infusion of nitroprusside lowered MAP without affecting kinin levels in the CSF. However, on cessation of nitroprusside infusion, CSF kinin increased significantly in association with the return in MAP to predrug level. Collectively the data are consistent with the hypothesis that central nervous system kinins have some role in cardiovascular regulation, and furthermore that this role may involve an interaction between brain kinin and central noradrenergic neuronal pathways.

  3. The Aqueous Calyx Extract of Hibiscus sabdariffa Lowers Blood Pressure and Heart Rate via Sympathetic Nervous System Dependent Mechanisms.

    PubMed

    Aliyu, B; Oyeniyi, Y J; Mojiminiyi, F B O; Isezuo, S A; Alada, A R A

    2014-12-29

    The antihypertensive effect of Hibiscus sabdariffa (HS) has been validated in animals and man. This study tested the hypothesis that its hypotensive effect may be sympathetically mediated. The cold pressor test (CPT) and handgrip exercise (HGE) were performed in 20 healthy subjects before and after the oral administration of 15mg/Kg HS. The blood pressure (BP) and heart rate (HR) responses were measured digitally. Mean arterial pressure (MAP; taken as representative BP) was calculated. Results are expressed as mean ±SEM. P<0.05 was considered significant. CPT without HS resulted in a significant rise in MAP and HR (111.1±2.1mmHg and 100.8±2.0/min) from the basal values (97.9±1.9mmHg and 87.8±2.1/min; P<0.0001 respectively). In the presence of HS, CPT-induced changes (ΔMAP=10.1±1.7mmHg; ΔHR= 8.4±1.0/min) were significantly reduced compared to its absence (ΔMAP= 13.2±1.2mmHg; ΔHR= 13.8±1.6/min; P<0.0001 respectively). The HGE done without HS also resulted in an increase in MAP and HR (116.3±2.1mmHg and 78.4±1.2/min) from the basal values (94.8±1.6mmHg and 76.1±1.0/min; p<0.0001 respectively). In the presence of HS the HGE-induced changes (ΔMAP= 11.5±1.0mmHg; ΔHR= 3.3±1.0/min) were significantly decreased compared to its absence (ΔMAP=21.4±1.2mmHg; ΔHR= 12.8±2.0/min; P<0.0001 respectively). The CPT and HGE -induced increases in BP and HR suggest Sympathetic nervous system activation. These increases were significantly dampened by HS suggesting, indirectly, that its hypotensive effect may be due to an attenuation of the discharge of the sympathetic nervous system.

  4. A Comparison of Efficacy of Segmental Epidural Block versus Spinal Anaesthesia for Percutaneous Nephrolithotomy.

    PubMed

    Nandanwar, Avinash S; Patil, Yogita; Wagaskar, Vinayak G; Baheti, Vidyasagar H; Tanwar, Harshwardhan V; Patwardhan, Sujata K

    2015-08-01

    Percutaneous nephrolithotomy (PCNL) is done under general anaesthesia in most of the centres. Associated complications and cost are higher for general anaesthesia than for regional anaesthesia. Present study is designed to compare the efficacy of epidural block versus spinal anaesthesia with regards to intraoperative mean arterial pressure, heart rate, postoperative pain intensity, analgesic requirement, Postoperative complications and patient satisfaction in patients undergoing PCNL. After taking Ethical Committee clearance, patients were randomly allocated into 2 groups using table of randomization (n= 40 each) Group E- Epidural block, Group S- Spinal block. Various parameters like intraoperative mean arterial pressure, heart rate, postoperative pain intensity, analgesic requirement, postoperative complications and patient satisfaction were studied in these groups. Quantitative data was analysed using unpaired t-test and qualitative data was analysed using chi-square test. Twenty four times in Epidural as compared to fifteen times in spinal anaesthesia two or more attempts required. Mean time (min) required to achieve the block of anaesthesia in group E and group S was 15.45±2.8 and 8.52±2.62 min respectively. Mean arterial pressure (MAP) at 5 min, 10 min and 15 min were significantly lower in spinal group as compared to epidural group. After 30 minutes, differences were not significant but still MAP was lower in spinal group. After 30 minutes difference in heart rate between two groups was statistically significant and higher rate recorded in spinal group till the end of 3 hours. Postoperative VAS score was significantly higher in spinal group and 4 hours onwards difference was highly significant. Postoperative Nausea Vomiting (PONV) Score was significantly higher in spinal group as compared to epidural group. For PCNL, segmental epidural block is better than spinal anaesthesia in terms of haemodynamic stability, postoperative analgesia, patient satisfaction and reduced incidence of PONV. Epidural anaesthesia is difficult to execute and takes longer time to act as compared to spinal block which limits its use.

  5. Brain-heart linear and nonlinear dynamics during visual emotional elicitation in healthy subjects.

    PubMed

    Valenza, G; Greco, A; Gentili, C; Lanata, A; Toschi, N; Barbieri, R; Sebastiani, L; Menicucci, D; Gemignani, A; Scilingo, E P

    2016-08-01

    This study investigates brain-heart dynamics during visual emotional elicitation in healthy subjects through linear and nonlinear coupling measures of EEG spectrogram and instantaneous heart rate estimates. To this extent, affective pictures including different combinations of arousal and valence levels, gathered from the International Affective Picture System, were administered to twenty-two healthy subjects. Time-varying maps of cortical activation were obtained through EEG spectral analysis, whereas the associated instantaneous heartbeat dynamics was estimated using inhomogeneous point-process linear models. Brain-Heart linear and nonlinear coupling was estimated through the Maximal Information Coefficient (MIC), considering EEG time-varying spectra and point-process estimates defined in the time and frequency domains. As a proof of concept, we here show preliminary results considering EEG oscillations in the θ band (4-8 Hz). This band, indeed, is known in the literature to be involved in emotional processes. MIC highlighted significant arousal-dependent changes, mediated by the prefrontal cortex interplay especially occurring at intermediate arousing levels. Furthermore, lower and higher arousing elicitations were associated to not significant brain-heart coupling changes in response to pleasant/unpleasant elicitations.

  6. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart

    PubMed Central

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-01-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3–4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation. PMID:23255322

  7. Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise.

    PubMed

    Hureau, Thomas J; Weavil, Joshua C; Thurston, Taylor S; Broxterman, Ryan M; Nelson, Ashley D; Bledsoe, Amber D; Jessop, Jacob E; Richardson, Russell S; Wray, D Walter; Amann, Markus

    2018-04-15

    We investigated the contribution of group III/IV muscle afferents to carotid baroreflex resetting during electrically evoked (no central command) and voluntary (requiring central command) isometric knee extension exercise. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ-opioid receptor-sensitive group III/IV leg muscle afferent feedback. Spontaneous carotid baroreflex control was assessed by loading and unloading the carotid baroreceptors with a variable pressure neck chamber. Group III/IV muscle afferents did not influence spontaneous carotid baroreflex responsiveness at rest or during exercise. Afferent feedback accounted for at least 50% of the exercise-induced increase in the carotid baroreflex blood pressure and heart rate operating points, adjustments that are critical for an appropriate cardiovascular response to exercise. These findings suggest that group III/IV muscle afferent feedback is, independent of central command, critical for the resetting of the carotid baroreflex blood pressure and heart rate operating points, but not for spontaneous baroreflex responsiveness. This study sought to comprehensively investigate the role of metabolically and mechanically sensitive group III/IV muscle afferents in carotid baroreflex responsiveness and resetting during both electrically evoked (EVO, no central command) and voluntary (VOL, requiring central command) isometric single-leg knee-extension (15% of maximal voluntary contraction; MVC) exercise. Participants (n = 8) were studied under control conditions (CTRL) and following lumbar intrathecal fentanyl injection (FENT) to inhibit μ-opioid receptor-sensitive lower limb muscle afferents. Spontaneous carotid baroreflex control of mean arterial pressure (MAP) and heart rate (HR) were assessed following rapid 5 s pulses of neck pressure (NP, +40 mmHg) or suction (NS, -60 mmHg). Resting MAP (87 ± 10 mmHg) and HR (70 ± 8 bpm) were similar between CTRL and FENT conditions (P > 0.4). In terms of spontaneous carotid baroreflex responsiveness, FENT did not alter the change in MAP or HR responses to NP (+13 ± 5 mmHg, P = 0.85; +9 ± 3 bpm; P = 0.99) or NS (-13 ± 5 mmHg, P = 0.99; -24 ± 11 bpm; P = 0.49) at rest or during either exercise protocol, which were of a remarkably similar magnitude to rest. In contrast, FENT administration reduced the exercise-induced resetting of the operating point for MAP and HR during both EVO (116 ± 10 mmHg to 100 ± 15 mmHg and 93 ± 14 bpm to 82 ± 10 bpm) and VOL (107 ± 13 mmHg to 100 ± 17 mmHg and 89 ± 10 bpm to 72 ± 10 bpm) exercise bouts. Together, these findings document that group III/IV muscle afferent feedback is critical for the resetting of the carotid baroreflex MAP and HR operating points, independent of exercise-induced changes in central command, but not for spontaneous carotid baroreflex responsiveness. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  8. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.

    PubMed

    Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior

    2004-10-01

    Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.

  9. Technical Note: A 3-D rendering algorithm for electromechanical wave imaging of a beating heart.

    PubMed

    Nauleau, Pierre; Melki, Lea; Wan, Elaine; Konofagou, Elisa

    2017-09-01

    Arrhythmias can be treated by ablating the heart tissue in the regions of abnormal contraction. The current clinical standard provides electroanatomic 3-D maps to visualize the electrical activation and locate the arrhythmogenic sources. However, the procedure is time-consuming and invasive. Electromechanical wave imaging is an ultrasound-based noninvasive technique that can provide 2-D maps of the electromechanical activation of the heart. In order to fully visualize the complex 3-D pattern of activation, several 2-D views are acquired and processed separately. They are then manually registered with a 3-D rendering software to generate a pseudo-3-D map. However, this last step is operator-dependent and time-consuming. This paper presents a method to generate a full 3-D map of the electromechanical activation using multiple 2-D images. Two canine models were considered to illustrate the method: one in normal sinus rhythm and one paced from the lateral region of the heart. Four standard echographic views of each canine heart were acquired. Electromechanical wave imaging was applied to generate four 2-D activation maps of the left ventricle. The radial positions and activation timings of the walls were automatically extracted from those maps. In each slice, from apex to base, these values were interpolated around the circumference to generate a full 3-D map. In both cases, a 3-D activation map and a cine-loop of the propagation of the electromechanical wave were automatically generated. The 3-D map showing the electromechanical activation timings overlaid on realistic anatomy assists with the visualization of the sources of earlier activation (which are potential arrhythmogenic sources). The earliest sources of activation corresponded to the expected ones: septum for the normal rhythm and lateral for the pacing case. The proposed technique provides, automatically, a 3-D electromechanical activation map with a realistic anatomy. This represents a step towards a noninvasive tool to efficiently localize arrhythmias in 3-D. © 2017 American Association of Physicists in Medicine.

  10. Efficacy of Methylene Blue in an Experimental Model of Calcium Channel Blocker Induced Shock

    PubMed Central

    Jang, David H.; Donovan, Sean; Nelson, Lewis S.; Bania, Theodore C.; Hoffman, Robert S.; Chu, Jason

    2014-01-01

    BACKGROUND Calcium channel blocker poisonings account for a substantial number of reported deaths from cardiovascular drugs. While supportive care is the mainstay of treatment, experimental therapies such as high dose insulin-euglycemia and lipid emulsion have been studied in animal models and used in humans. In the most severe cases even aggressive care is inadequate and deaths occur. In both experimental models and clinical cases of vasodilatory shock, methylene blue improves hemodynamic measures. Methylene blue acts as both a nitric oxide scavenger and inhibits guanylate cyclase that is responsible for the production of cGMP. Excessive cGMP production is associated with refractory vasodilatory shock in sepsis and anaphylaxis. The aim of this study was to determine the efficacy of methylene blue in an animal model of amlodipine-induced shock. METHODS Sprague-Dawley rats were anesthetized, ventilated and instrumented for continuous blood pressure and heart rate monitoring. The dose of amlodipine that produced death within 60 minutes was 17 mg/kg/hour (LD50). Rats were divided into 2 groups: amlodipine followed by methylene blue or amlodipine followed by normal saline (NS) with 15 rats in each group. Rats received methylene blue at 2 mg/kg over 5 mins or an equivalent amount of NS in three intervals from the start of the protocol: Minute 5, 30, and 60. The animals were observed for a total of 2 hours after the start of the protocol. Mortality risk and survival time were analyzed using Fisher’s exact test and Kaplan Meier survival analysis with the log rank test. RESULTS Overall, 1/15 (7%) rats in the saline-treated group survived to 120 minutes compared with 5/15 (33%) rats in the methylene blue-treated group (difference −26%, 95% CI –54%, 0.3%). The median survival time for the NS group was 42 min (95% CI, 28.1,55.9) and the methylene blue group was 109 min (95% CI, 93.9,124.1). Heart rate and MAP differences between groups were analyzed until 60 minutes. Heart rate was significantly higher in the methylene blue-treated group starting 25 min after the start of the amlodipine infusion (95% CI, 30–113) that was analyzed until 60 minutes. MAP was significantly higher in the methylene blue-treated group starting 25 min after the amlodipine infusion (95% CI, 2–30) that was analyzed up until 60 minutes. CONCLUSIONS Methylene blue did not result in a significant difference in mortality risk. There was an increase heart rate, MAP and median survival time in the methylene blue group. PMID:25441767

  11. Accuracy of the Estimated Core Temperature (ECTemp) Algorithm in Estimating Circadian Rhythm Indicators

    DTIC Science & Technology

    2017-04-12

    measurement of CT outside of stringent laboratory environments. This study evaluated ECTempTM, a heart rate-based extended Kalman Filter CT...based CT-estimation algorithms [7, 13, 14]. One notable example is ECTempTM, which utilizes an extended Kalman Filter to estimate CT from...3. The extended Kalman filter mapping function variance coefficient (Ct) was computed using the following equation: = −9.1428 ×

  12. Adaptation of heart rate and blood pressure to short and long duration space missions.

    PubMed

    Verheyden, Bart; Liu, Jiexin; Beckers, Frank; Aubert, André E

    2009-10-01

    To what extent does going to space affect cardiovascular function? Although many studies have addressed this question, the answer remains controversial. Even for such primary parameters as heart rate (HR) and blood pressure (BP) contradictory results have been presented. The purpose of this investigation was to evaluate HR and arterial BP in 11 male astronauts who each took part in nine different space missions aboard the International Space Station (ISS), for up to 6 months. Pre-flight HR and BP readings were obtained in both the standing and supine positions on Earth and were taken as reference values. Our results show that HR and arterial BP in space equal pre-flight supine values. In all subjects, HR and mean arterial BP (MAP) were lower in space compared with pre-flight standing (both p<0.05). HR in space was well maintained at pre-flight supine level for up to 6 months in all astronauts while MAP tended to adapt to a level in between the ground-based standing and supine positions. Also pulse pressure (PP) decreased over the course of long duration spaceflight. In conclusion, our data indicate that weightlessness relaxes the circulation in humans for an extended duration of up to 6 months in space.

  13. Decreased baroreflex sensitivity is linked to the atherogenic index, retrograde inflammation, and oxidative stress in subclinical hypothyroidism.

    PubMed

    Syamsunder, Avupati Naga; Pal, Pravati; Pal, Gopal Krushna; Kamalanathan, Chandrakasan Sadishkumar; Parija, Subhash Chandra; Nanda, Nivedita; Sirisha, Allampalli

    2017-02-01

    Purpose/aim of the study: The present study investigated the link of hyperlipidemia, inflammation and oxidative stress (OS) to cardiovascular (CV) risks in subclinical hypothyroidism (SCH). We enrolled 81 subclinical hypothyroid patients and 80 healthy subjects as control. Their CV and autonomic functions were assessed by spectral analysis of heart rate variability (HRV), continuous blood pressure variability (BPV) measurement and conventional autonomic function testing. Thyroid profile, lipid profile, immunological, inflammatory and OS markers were estimated and correlated with the baro-reflex sensitivity (BRS), the marker of sympathovagal imbalance (SVI) & CV risk. Mean arterial pressure (MAP, P<0.0001), total peripheral resistance (TPR, P<0.0001), ratio of low-frequency to high-frequency power of HRV (LF-HF ratio) (P<0.0001) were significantly higher and BRS (P<0.0001) was significantly lower in SCH group than the control group. BRS significantly correlated with heart rate, MAP, LF-HF ratio, lipid risk factors, anti-thyroperoxidase antibody, thyroid-stimulating hormone, high-sensitive C-reactive protein (hsCRP), malondialdehyde (MDA) and SCH. It was concluded that SVI is associated with SCH. Though dyslipidemia, inflammation and OS contributed to decreased BRS, SCH per se contributed maximally to it. Decreased BRS could be a physiological basis of increased CV risks in patients with SCH.

  14. Acute Radiation Hypotension in the Rabbit: a Model for the Human Radiation Shock Syndrome.

    NASA Astrophysics Data System (ADS)

    Makale, Milan Theodore

    This study has shown that total body irradiation (TBI) of immature (40 to 100 day old) rabbits leads to an acute fall in mean arterial pressure (MAP) 30 to 90 minutes after exposure, which takes no more than about three minutes, and often results in pressures which are less than 50% of the lowest pre-exposure MAP. This is termed acute cardiovascular collapse (ACC). ACC is often accompanied by ECG T-wave elevation, a sharp rise in ear temperature, labored breathing, pupillary constriction, bladder emptying, and loss of abdominal muscle tone. About 73% of 40 to 100 day rabbits exhibit ACC; the others and most older rabbits display gradual pressure reductions (deliberate hypotension) which may be profound, and which may be accompanied by the same changes associated with ACC. ACC and deliberate hypotension occurred in rabbits cannulated in the dorsal aorta, and in non-operated animals. The decline in MAP for all 40 to 100 day cannulated rabbits (deliberate and ACC responders) is 55.4%. The experiments described below only involved 40 to 100 day cannulated TBI rabbits. Heart region irradiation resulted in an average MAP decline of 29.1%, with 1/15 rabbits showing ACC. Heart shielding during TBI reduced the decline in MAP to 19%, with 1/10 rabbits experiencing ACC. These results imply that the heart region, which includes the heart, part of the lungs, neural receptors, roots of the systemic vessels, and the blood, is a sensitive target. Bilateral vagotomy reduced the decline in MAP to 24.9%, and abolished ACC. Atropine (6 mg/kg) reduced the frequency of ACC to 26%, and the decline in MAP to 41.4%. In 11/13 rabbits the voltage generated by left vagal transmission rose after TBI. The vagi appear to participate in radiation hypotension. Heart shielding together with bilateral vagotomy reduced the decline in MAP to only 9.9%, with no ACC responders. The mean right ventricular pressure (MRVP) rose after TBI in 8/10 rabbits. In animals which displayed either ACC or steep deliberate hypotension, the MRVP rose sharply prior to the rapid decline in MAP. This suggests that the pulmonary blood flow was impeded, possibly causing right heart failure (cor pulmonale), and consequent cardiovascular collapse.

  15. Effects of dexmedetomidine on heart arrhythmia prevention in off-pump coronary artery bypass surgery: A randomized clinical trial

    PubMed Central

    Soltani, Ghasem; Jahanbakhsh, Saeed; Tashnizi, Mohammad Abbasi; Fathi, Mehdi; Amini, Shahram; Zirak, Nahid; Sheybani, Shima

    2017-01-01

    Background Arrhythmia occurring during and after surgery is one of the major complications in open-heart surgery. Dexmedetomidine is an intravenous alpha-2 agonist and very specific short-acting drug to protect the various organs against ischemic injuries and blood reflow. However, the effect of dexmedetomidine for preventing intraoperative heart arrhythmias has not been recognized. Objective This study aimed to determine the effect of dexmedetomidine on the incidence rate of heart arrhythmias and anesthetic required in off-pump coronary artery bypass surgery. Methods This randomized clinical trial was conducted on patients who were candidates for off-pump coronary artery bypass referring to Imam Reza Hospital of Mashhad, Iran, from July 2016 through January 2017. The patients were randomly assigned to two groups of intervention (infusion of 0.5 mcg/kg/h dexmedetomidine together with induction followed by infusion of 0.5 mcg/kg/h by the end of the surgery) or control (saline infusion). Mean arterial pressure (MAP) and heart rate (HR) were measured before induction, during surgery operation and ICU admission. Data were analyzed by SPSS version 18 using Chi Square and independent-samples t-test. Results A total of 76 patients with a mean age of 59.8 ± 8.2 years (in two groups of 38) were studied. The two groups had no statistically significant difference in terms of background variables. The MAP and HR values before induction, during surgery and ICU admission were significantly higher in the control group than in the intervention group (p=0.001). Out of the studied arrhythmias, the values of PAC (55.2% vs. 15.7%), PVC (81.5% vs. 21.0%), AF (26.3% vs. 7.8%), VTAC (21.0% vs. 2.6%) were significantly lower in dexmedetomidine group (p=0.001). Conclusion It seems that dexmedetomidine administration during induction and surgery can cause significant reduction in most of the common arrhythmias in off-pump coronary bypass surgery. The use of dexmedetomidine maintains MAP and HR at significantly lower values, and changes compared to the control group as well as reduces the need for anesthetic compounds. Trial Registration The present study has been registered at the Iranian Registry of Clinical Trials (www.IRCT.IR) with a code of IRCT2016072413159N9 before starting the study. Founding This study was fully sponsored by the Research Deputy at Mashhad University of Medical Sciences, Iran (grant number 941413). PMID:29238500

  16. Identifying the Evolutionary Building Blocks of the Cardiac Conduction System

    PubMed Central

    Jensen, Bjarke; Boukens, Bastiaan J. D.; Postma, Alex V.; Gunst, Quinn D.; van den Hoff, Maurice J. B.; Moorman, Antoon F. M.; Wang, Tobias; Christoffels, Vincent M.

    2012-01-01

    The endothermic state of mammals and birds requires high heart rates to accommodate the high rates of oxygen consumption. These high heart rates are driven by very similar conduction systems consisting of an atrioventricular node that slows the electrical impulse and a His-Purkinje system that efficiently activates the ventricular chambers. While ectothermic vertebrates have similar contraction patterns, they do not possess anatomical evidence for a conduction system. This lack amongst extant ectotherms is surprising because mammals and birds evolved independently from reptile-like ancestors. Using conserved genetic markers, we found that the conduction system design of lizard (Anolis carolinensis and A. sagrei), frog (Xenopus laevis) and zebrafish (Danio rerio) adults is strikingly similar to that of embryos of mammals (mouse Mus musculus, and man) and chicken (Gallus gallus). Thus, in ectothermic adults, the slow conducting atrioventricular canal muscle is present, no fibrous insulating plane is formed, and the spongy ventricle serves the dual purpose of conduction and contraction. Optical mapping showed base-to-apex activation of the ventricles of the ectothermic animals, similar to the activation pattern of mammalian and avian embryonic ventricles and to the His-Purkinje systems of the formed hearts. Mammalian and avian ventricles uniquely develop thick compact walls and septum and, hence, form a discrete ventricular conduction system from the embryonic spongy ventricle. Our study uncovers the evolutionary building plan of heart and indicates that the building blocks of the conduction system of adult ectothermic vertebrates and embryos of endotherms are similar. PMID:22984480

  17. A feasiblity study of an ultrasonic test phantom arm

    NASA Astrophysics Data System (ADS)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  18. Investigation of mechanisms and non-pharmacological therapy of cardiac arrhythmias

    NASA Astrophysics Data System (ADS)

    Vago, Hajnalka

    Learning of mechanisms of arrhythmias may contribute substantially to the development of effective pharmacological and non-pharmacological therapeutic methods. Clinical relevance of endothelin-1 (ET-1), a strong vasoconstrictor and arrhythmogenic endogenous substrate, is not clarified yet. In our experimental studies, performed in the in situ canine heart, electrophysiological effects and the role in the pathomechanism of malignant ventricular tachyarrhythmias of endogenous and exogenous ET-1 was investigated. It has been proven in the in vivo ischaemia-reperfusion canine heart model, that during reperfusion ET-1 and big-ET levels increase in the coronary sinus, however there was no correlation between endothelin levels and electrophysiological changes. ET A-receptor antagonist darusentan does not prevent electrophysiological changes and development of ventricular tachyarrhythmias during ischaemia and reperfusion. On the contrary, during ischaemia endogenous ET-1 tends to show balancing effect. It has been proven that administration of high dose intracoronary ET-1 bolus has dual, ischaemic and direct, electrophysiological effect. It has been shown for the first time, that ET-1 causes monophasic action potential (MAP) and T-wave alternant. Our clinical study leads to the conclusion that previous atrial fibrillation, absence of preoperative beta-blocker treatment and combined heart surgery are strong predictors of atrial fibrillation following open heart surgery. The basis of new nonpharmacological therapies is the learning of pathomechanisms of arrhythmias and in some cases heart failure, which is an arrhythmogenic substrate. In our experimental study reliable MAP measurements, suitable for investigation of arrhythmogenesis, were performed for the first time using fractally coated ablation catheters during spontaneous rate and during stimulations. It has been proven that radiofrequency ablation affects significantly MAP parameters. In Hungary, we were the first to apply effectively biatrial pacemaker and biatrial cardioverter defibrillator for the prevention of paroxysmal atrial fibrillation. In the majority of patients frequency of paroxysmal atrial fibrillation decreased significantly due to biatrial stimulation or combined pharmacological and resynchronisation therapy. Parasymphathetic cardiac neurostimulation is a promising new non-pharmacological treatment option in certain types of arrhythmias. In our clinical study we were able to stimulate cardiac parasympathetic nerves innervating atrioventricular node achieving ventricular rate control during atrial tachyarrhythmias with chronically implanted coronary sinus lead. In our study biventricular pacemakers and cardioverter defibrillators were applied successfully in the treatment of drug refractory congestive heart failure combined with inter- and/or intraventricular conduction disturbances. AV sequential left sided chronic pacing using a single lead located in the coronary sinus has not been previously reported. Left sided DDD pacing was effective chronically in the improvement of the functional stage of patient suffering from congestive heart disease combined with left bundle branch block and binodal disease. Parallel with the investigation of pathomechanism of life-threatening ventricular tachyarrhythmias and the most common, clinically relevant atrial fibrillation due to recent technical development, we were able to support nonpharmacological therapeutic modalities, gaining popularity in clinical management, with novel observations.

  19. A new algorithm for segmentation of cardiac quiescent phases and cardiac time intervals using seismocardiography

    NASA Astrophysics Data System (ADS)

    Jafari Tadi, Mojtaba; Koivisto, Tero; Pänkäälä, Mikko; Paasio, Ari; Knuutila, Timo; Teräs, Mika; Hänninen, Pekka

    2015-03-01

    Systolic time intervals (STI) have significant diagnostic values for a clinical assessment of the left ventricle in adults. This study was conducted to explore the feasibility of using seismocardiography (SCG) to measure the systolic timings of the cardiac cycle accurately. An algorithm was developed for the automatic localization of the cardiac events (e.g. the opening and closing moments of the aortic and mitral valves). Synchronously acquired SCG and electrocardiography (ECG) enabled an accurate beat to beat estimation of the electromechanical systole (QS2), pre-ejection period (PEP) index and left ventricular ejection time (LVET) index. The performance of the algorithm was evaluated on a healthy test group with no evidence of cardiovascular disease (CVD). STI values were corrected based on Weissler's regression method in order to assess the correlation between the heart rate and STIs. One can see from the results that STIs correlate poorly with the heart rate (HR) on this test group. An algorithm was developed to visualize the quiescent phases of the cardiac cycle. A color map displaying the magnitude of SCG accelerations for multiple heartbeats visualizes the average cardiac motions and thereby helps to identify quiescent phases. High correlation between the heart rate and the duration of the cardiac quiescent phases was observed.

  20. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue

    PubMed Central

    Lee, Peter; Bollensdorff, Christian; Quinn, T. Alexander; Wuskell, Joseph P.; Loew, Leslie M.; Kohl, Peter

    2011-01-01

    Background Simultaneous optical mapping of multiple electrophysiologically relevant parameters in living myocardium is desirable for integrative exploration of mechanisms underlying heart rhythm generation under normal and pathophysiologic conditions. Current multiparametric methods are technically challenging, usually involving multiple sensors and moving parts, which contributes to high logistic and economic thresholds that prevent easy application of the technique. Objective The purpose of this study was to develop a simple, affordable, and effective method for spatially resolved, continuous, simultaneous, and multiparametric optical mapping of the heart, using a single camera. Methods We present a new method to simultaneously monitor multiple parameters using inexpensive off-the-shelf electronic components and no moving parts. The system comprises a single camera, commercially available optical filters, and light-emitting diodes (LEDs), integrated via microcontroller-based electronics for frame-accurate illumination of the tissue. For proof of principle, we illustrate measurement of four parameters, suitable for ratiometric mapping of membrane potential (di-4-ANBDQPQ) and intracellular free calcium (fura-2), in an isolated Langendorff-perfused rat heart during sinus rhythm and ectopy, induced by local electrical or mechanical stimulation. Results The pilot application demonstrates suitability of this imaging approach for heart rhythm research in the isolated heart. In addition, locally induced excitation, whether stimulated electrically or mechanically, gives rise to similar ventricular propagation patterns. Conclusion Combining an affordable camera with suitable optical filters and microprocessor-controlled LEDs, single-sensor multiparametric optical mapping can be practically implemented in a simple yet powerful configuration and applied to heart rhythm research. The moderate system complexity and component cost is destined to lower the threshold to broader application of functional imaging and to ease implementation of more complex optical mapping approaches, such as multiparametric panoramic imaging. A proof-of-principle application confirmed that although electrically and mechanically induced excitation occur by different mechanisms, their electrophysiologic consequences downstream from the point of activation are not dissimilar. PMID:21459161

  1. Hemodynamic responses to small muscle mass exercise in heart failure patients with reduced ejection fraction

    PubMed Central

    Barrett-O'Keefe, Zachary; Lee, Joshua F.; Berbert, Amanda; Witman, Melissa A. H.; Nativi-Nicolau, Jose; Stehlik, Josef; Richardson, Russell S.

    2014-01-01

    To better understand the mechanisms responsible for exercise intolerance in heart failure with reduced ejection fraction (HFrEF), the present study sought to evaluate the hemodynamic responses to small muscle mass exercise in this cohort. In 25 HFrEF patients (64 ± 2 yr) and 17 healthy, age-matched control subjects (64 ± 2 yr), mean arterial pressure (MAP), cardiac output (CO), and limb blood flow were examined during graded static-intermittent handgrip (HG) and dynamic single-leg knee-extensor (KE) exercise. During HG exercise, MAP increased similarly between groups. CO increased significantly (+1.3 ± 0.3 l/min) in the control group, but it remained unchanged across workloads in HFrEF patients. At 15% maximum voluntary contraction (MVC), forearm blood flow was similar between groups, while HFrEF patients exhibited an attenuated increase at the two highest intensities compared with controls, with the greatest difference at the highest workload (352 ± 22 vs. 492 ± 48 ml/min, HFrEF vs. control, 45% MVC). During KE exercise, MAP and CO increased similarly across work rates between groups. However, HFrEF patients exhibited a diminished leg hyperemic response across all work rates, with the most substantial decrement at the highest intensity (1,842 ± 64 vs. 2,675 ± 81 ml/min; HFrEF vs. control, 15 W). Together, these findings indicate a marked attenuation in exercising limb perfusion attributable to impairments in peripheral vasodilatory capacity during both arm and leg exercise in patients with HFrEF, which likely plays a role in limiting exercise capacity in this patient population. PMID:25260608

  2. Role of nitric oxide of the median preoptic nucleus (MnPO) in the alterations of salivary flow, arterial pressure and heart rate induced by injection of pilocarpine into the MnPO and intraperitoneally.

    PubMed

    Saad, Wilson A; Guarda, I F M S; Camargo, L A A; Santos, T A F B; Guarda, R S; Saad, Willian A; Simões, S; Rodrigues, J Antunes

    2003-07-01

    We investigated the effect of L-NAME, a nitric oxide (NO) inhibitor and sodium nitroprusside (SNP), an NO-donating agent, on pilocarpine-induced alterations in salivary flow, mean arterial blood pressure (MAP) and heart rate (HR) in rats. Male Holtzman rats (250-300 g) were implanted with a stainless steel cannula directly into the median preoptic nucleus (MnPO). Pilocarpine (10, 20, 40, 80, 160 g) injected into the MnPO induced an increase in salivary secretion (P<0.01). Pilocarpine (1, 2, 4, 8, 16 mg/kg) ip also increased salivary secretion (P<0.01). Injection of L-NAME (40 g) into the MnPO prior to pilocarpine (10, 20, 40, 80, 160 g) injected into the MnPO or ip (1, 2, 4, 8, 16 mg/kg) increased salivary secretion (P<0.01). SNP (30 g) injected into the MnPO or ip prior to pilocarpine attenuated salivary secretion (P<0.01). Pilocarpine (40 g) injection into the MnPO increased MAP and decreased HR (P<0.01). Pilocarpine (4 mg/kg body weight) ip produced a decrease in MAP and an increase in HR (P<0.01). Injection of L-NAME (40 g) into the MnPO prior to pilocarpine potentiated the increase in MAP and reduced HR (P<0.01). SNP (30 g) injected into the MnPO prior to pilocarpine attenuated (100%) the effect of pilocarpine on MAP, with no effect on HR. Administration of L-NAME (40 g) into the MnPO potentiated the effect of pilocarpine injected ip. SNP (30 g) injected into the MnPO attenuated the effect of ip pilocarpine on MAP and HR. The present study suggests that in the rat MnPO 1) NO is important for the effects of pilocarpine on salivary flow, and 2) pilocarpine interferes with blood pressure and HR (side effects of pilocarpine), that is attenuated by NO.

  3. Molecular-biological analysis of the effect of methamphetamine on the heart in restrained mice.

    PubMed

    Shinone, Kotaro; Tomita, Masafumi; Inoue, Hiromasa; Nakagawa, Yasuhisa; Ikemura, Mayumi; Nata, Masayuki

    2010-03-01

    In order to investigate the interaction in the heart between the administration of methamphetamine (MAP) and restraint of the body following it, we administrated MAP intraperitoneally to mice and restrained them, and then determined the level of mRNA expression of 22 genes in the heart using quantitative RT-PCR method. The mRNA expressions of Nfkbiz, Nr4a1 and Dusp1 changed significantly after the administration of MAP, suggesting the induction of an inflammatory condition such as damage to the myocardium. Moreover, the serum concentrations of inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1 beta and IL-6 were significantly increased by the administration of MAP. On the other hand, the mRNA expressions of Rgs2 and Rasd1 were changed by both the administration of MAP and body restraint without interaction, which indicated that these insults affected the circulatory system additively or synergistically. From these results, it is likely that the administration of MAP, followed by body restraint, might cause acute myocardial damage due to the direct myocardial toxic effect of MAP, myocardial hypoxia and/or severe hypertension, which is one of the mechanisms for sudden death in MAP abusers who were restrained due to their excited state. (c) 2010. Published by Elsevier Ireland Ltd.

  4. Remifentanil Prevents Withdrawal Movements Caused by Intravenous Injection of Rocuronium

    PubMed Central

    Choi, Byung In; Choi, Seung Ho; Shin, Yang-Sik; Lee, Sung Jin; Yoon, Kyung Bong; Shin, Seo Kyung

    2008-01-01

    Purpose The incidence of pain induced withdrawal movement following intravenous injection of rocuronium is high. This randomized, double-blind, placebo-controlled study was designed to evaluate the effect of pretreatment of remifentanil on the withdrawal movements due to intravenous injection of rocuronium during anesthetic induction. Materials and Methods Ninety adult female patients undergoing thyroidectomy were randomly allocated to three groups. Each patient intravenously received one of three solutions of equal volume (4 mL): normal saline (Group I, n = 30), 0.5 µg/kg remifentanil (Group II, n = 30) or 1 µg/kg remifentanil (Group III, n = 30). Thirty seconds after remifentanil administration, anesthesia was induced with 5 mg/kg IV thiopental. Twenty seconds after thiopental injection, 0.6 mg/kg IV rocuronium was administered (injection rate of 0.5 mL/sec) and patients' withdrawal movements were assessed. Mean arterial pressure (MAP) and heart rate were assessed on arrival in the operation room, before the tracheal intubation and immediately, 1 and 2 min after the tracheal intubation. Results The incidence of withdrawal movements was significantly lower in both of the remifentanil groups (3 and 0% in Group II and III, respectively) than in the saline group (70%). Remifentanil attenuated the increase of heart rate and MAP immediately and 1 min after the tracheal intubation. Conclusion The pretreatment with 0.5 and 1.0 µg/kg remifentanil of bolus doses prevented the withdrawal movements caused by rocuronium injection, and effectively blunted cardiovascular activation following tracheal intubation. PMID:18452256

  5. Clinical phenomapping and outcomes after heart transplantation.

    PubMed

    Bakir, Maral; Jackson, Nicholas J; Han, Simon X; Bui, Alex; Chang, Eleanor; Liem, David A; Ardehali, Abbas; Ardehali, Reza; Baas, Arnold S; Press, Marcella Calfon; Cruz, Daniel; Deng, Mario C; DePasquale, Eugene C; Fonarow, Gregg C; Khuu, Tam; Kwon, Murray H; Kubak, Bernard M; Nsair, Ali; Phung, Jennifer L; Reed, Elaine F; Schaenman, Joanna M; Shemin, Richard J; Zhang, Qiuheng J; Tseng, Chi-Hong; Cadeiras, Martin

    2018-03-22

    Survival after heart transplantation (HTx) is limited by complications related to alloreactivity, immune suppression, and adverse effects of pharmacologic therapies. We hypothesize that time-dependent phenomapping of clinical and molecular data sets is a valuable approach to clinical assessments and guiding medical management to improve outcomes. We analyzed clinical, therapeutic, biomarker, and outcome data from 94 adult HTx patients and 1,557 clinical encounters performed between January 2010 and April 2013. Multivariate analyses were used to evaluate the association between immunosuppression therapy, biomarkers, and the combined clinical end point of death, allograft loss, retransplantation, and rejection. Data were analyzed by K-means clustering (K = 2) to identify patterns of similar combined immunosuppression management, and percentile slopes were computed to examine the changes in dosages over time. Findings were correlated with clinical parameters, human leucocyte antigen antibody titers, and peripheral blood mononuclear cell gene expression of the AlloMap (CareDx, Inc., Brisbane, CA) test genes. An intragraft, heart tissue gene coexpression network analysis was performed. Unsupervised cluster analysis of immunosuppressive therapies identified 2 groups, 1 characterized by a steeper immunosuppression minimization, associated with a higher likelihood for the combined end point, and the other by a less pronounced change. A time-dependent phenomap suggested that patients in the group with higher event rates had increased human leukocyte antigen class I and II antibody titers, higher expression of the FLT3 AlloMap gene, and lower expression of the MARCH8 and WDR40A AlloMap genes. Intramyocardial biomarker-related coexpression network analysis of the FLT3 gene showed an immune system-related network underlying this biomarker. Time-dependent precision phenotyping is a mechanistically insightful, data-driven approach to characterize patterns of clinical care and identify ways to improve clinical management and outcomes. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  6. Acute Effects of Continuous Positive Air way Pressure on Pulse Pressure in Chronic Heart Failure

    PubMed Central

    Quintão, Mônica; Chermont, Sérgio; Marchese, Luana; Brandão, Lúcia; Bernardez, Sabrina Pereira; Mesquita, Evandro Tinoco; Rocha, Nazareth de Novaes; Nóbrega, Antônio Claudio L.

    2014-01-01

    Background Patients with heart failure (HF) have left ventricular dysfunction and reduced mean arterial pressure (MAP). Increased adrenergic drive causes vasoconstriction and vessel resistance maintaining MAP, while increasing peripheral vascular resistance and conduit vessel stiffness. Increased pulse pressure (PP) reflects a complex interaction of the heart with the arterial and venous systems. Increased PP is an important risk marker in patients with chronic HF (CHF). Non-invasive ventilation (NIV) has been used for acute decompensated HF, to improve congestion and ventilation through both respiratory and hemodynamic effects. However, none of these studies have reported the effect of NIV on PP. Objective The objective of this study was to determine the acute effects of NIV with CPAP on PP in outpatients with CHF. Methods Following a double-blind, randomized, cross-over, and placebo-controlled protocol, twenty three patients with CHF (17 males; 60 ± 11 years; BMI 29 ± 5 kg/cm2, NYHA class II, III) underwent CPAP via nasal mask for 30 min in a recumbent position. Mask pressure was 6 cmH2O, whereas placebo was fixed at 0-1 cmH2O. PP and other non invasive hemodynamics variables were assessed before, during and after placebo and CPAP mode. Results CPAP decreased resting heart rate (Pre: 72 ± 9; vs. Post 5 min: 67 ± 10 bpm; p < 0.01) and MAP (CPAP: 87 ± 11; vs. control 96 ± 11 mmHg; p < 0.05 post 5 min). CPAP decreased PP (CPAP: 47 ± 20 pre to 38 ± 19 mmHg post; vs. control: 42 ± 12 mmHg, pre to 41 ± 18 post p < 0.05 post 5 min). Conclusion NIV with CPAP decreased pulse pressure in patients with stable CHF. Future clinical trials should investigate whether this effect is associated with improved clinical outcome. PMID:24676373

  7. 4D blood flow mapping using SPIM-microPIV in the developing zebrafish heart

    NASA Astrophysics Data System (ADS)

    Zickus, Vytautas; Taylor, Jonathan M.

    2018-02-01

    Fluid-structure interaction in the developing heart is an active area of research in developmental biology. However, investigation of heart dynamics is mostly limited to computational uid dynamics simulations using heart wall structure information only, or single plane blood ow information - so there is a need for 3D + time resolved data to fully understand cardiac function. We present an imaging platform combining selective plane illumination microscopy (SPIM) with micro particle image velocimetry (μPIV) to enable 3D-resolved flow mapping in a microscopic environment, free from many of the sources of error and bias present in traditional epi uorescence-based μPIV systems. By using our new system in conjunction with optical heart beat synchronization, we demonstrate the ability obtain non-invasive 3D + time resolved blood flow measurements in the heart of a living zebrafish embryo.

  8. Heart rate profile during exercise in patients with early repolarization.

    PubMed

    Cay, Serkan; Cagirci, Goksel; Atak, Ramazan; Balbay, Yucel; Demir, Ahmet Duran; Aydogdu, Sinan

    2010-09-01

    Both early repolarization and altered heart rate profile are associated with sudden death. In this study, we aimed to demonstrate an association between early repolarization and heart rate profile during exercise. A total of 84 subjects were included in the study. Comparable 44 subjects with early repolarization and 40 subjects with normal electrocardiogram underwent exercise stress testing. Resting heart rate, maximum heart rate, heart rate increment and decrement were analyzed. Both groups were comparable for baseline characteristics including resting heart rate. Maximum heart rate, heart rate increment and heart rate decrement of the subjects in early repolarization group had significantly decreased maximum heart rate, heart rate increment and heart rate decrement compared to control group (all P < 0.05). The lower heart rate increment (< 106 beats/min) and heart rate decrement (< 95 beats/min) were significantly associated with the presence of early repolarization. After adjustment for age and sex, the multiple-adjusted OR of the risk of presence of early repolarization was 2.98 (95%CI 1.21-7.34) (P = 0.018) and 7.73 (95%CI 2.84-21.03) (P < 0.001) for the lower heart rate increment and heart rate decrement compared to higher levels, respectively. Subjects with early repolarization have altered heart rate profile during exercise compared to control subjects. This can be related to sudden death.

  9. Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses?

    PubMed

    Kenny, Glen P; Gagnon, Daniel; Jay, Ollie; McInnis, Natalie H; Journeay, W Shane; Reardon, Francis D

    2008-08-01

    Cutaneous vascular conductance (CVC) and sweat rate are subject to non-thermal baroreflex-mediated attenuation post-exercise. Various recovery modalities have been effective in attenuating these decreases in CVC and sweat rate post-exercise. However, the interaction of recovery posture and preceding exercise intensity on post-exercise thermoregulation remains unresolved. We evaluated the combined effect of supine recovery and exercise intensity on post-exercise cardiovascular and thermal responses relative to an upright seated posture. Seven females performed 15 min of cycling ergometry at low- (LIE, 55% maximal oxygen consumption) or high-(HIE, 85% maximal oxygen consumption) intensity followed by 60 min of recovery in either an upright seated or supine posture. Esophageal temperature, CVC, sweat rate, cardiac output, stroke volume, heart rate, total peripheral resistance, and mean arterial pressure (MAP) were measured at baseline, at end-exercise, and at 2, 5, 12, 20, and every 10 min thereafter until the end of recovery. MAP and stroke volume were maintained during supine recovery to a greater extent relative to an upright seated recovery following HIE (p

  10. Effect of Non-Alignment/Alignment of Attenuation Map Without/With Emission Motion Correction in Cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Dey, Joyoni; Segars, W. Paul; Pretorius, P. Hendrik; King, Michael A.

    2015-08-01

    Purpose: We investigate the differences without/with respiratory motion correction in apparent imaging agent localization induced in reconstructed emission images when the attenuation maps used for attenuation correction (from CT) are misaligned with the patient anatomy during emission imaging due to differences in respiratory state. Methods: We investigated use of attenuation maps acquired at different states of a 2 cm amplitude respiratory cycle (at end-expiration, at end-inspiration, the center map, the average transmission map, and a large breath-hold beyond range of respiration during emission imaging) to correct for attenuation in MLEM reconstruction for several anatomical variants of the NCAT phantom which included both with and without non-rigid motion between heart and sub-diaphragmatic regions (such as liver, kidneys etc). We tested these cases with and without emission motion correction and attenuation map alignment/non-alignment. Results: For the NCAT default male anatomy the false count-reduction due to breathing was largely removed upon emission motion correction for the large majority of the cases. Exceptions (for the default male) were for the cases when using the large-breathhold end-inspiration map (TI_EXT), when we used the end-expiration (TE) map, and to a smaller extent, the end-inspiration map (TI). However moving the attenuation maps rigidly to align the heart region, reduced the remaining count-reduction artifacts. For the female patient count-reduction remained post motion correction using rigid map-alignment due to the breast soft-tissue misalignment. Quantitatively, after the transmission (rigid) alignment correction, the polar-map 17-segment RMS error with respect to the reference (motion-less case) reduced by 46.5% on average for the extreme breathhold case. The reductions were 40.8% for end-expiration map and 31.9% for end-inspiration cases on the average, comparable to the semi-ideal case where each state uses its own attenuation map for correction. Conclusions: Two main conclusions are that even rigid emission motion correction to rigidly align the heart region to the attenuation map helps in average cases to reduce the count-reduction artifacts and secondly, within the limits of the study (ex. rigid correction) when there is lung tissue inferior to the heart as with the NCAT phantom employed in this study end-expiration maps (TE) might best be avoided as they may create more artifacts than the end-inspiration (TI) maps.

  11. Crossover and maximal fat-oxidation points in sedentary healthy subjects: methodological issues.

    PubMed

    Gmada, N; Marzouki, H; Haboubi, M; Tabka, Z; Shephard, R J; Bouhlel, E

    2012-02-01

    Our study aimed to assess the influence of protocol on the crossover point and maximal fat-oxidation (LIPOX(max)) values in sedentary, but otherwise healthy, young men. Maximal oxygen intake was assessed in 23 subjects, using a progressive maximal cycle ergometer test. Twelve sedentary males (aged 20.5±1.0 years) whose directly measured maximal aerobic power (MAP) values were lower than their theoretical maximal values (tMAP) were selected from this group. These individuals performed, in random sequence, three submaximal graded exercise tests, separated by three-day intervals; work rates were based on the tMAP in one test and on MAP in the remaining two. The third test was used to assess the reliability of data. Heart rate, respiratory parameters, blood lactate, the crossover point and LIPOX(max) values were measured during each of these tests. The crossover point and LIPOX(max) values were significantly lower when the testing protocol was based on tMAP rather than on MAP (P<0.001). Respiratory exchange ratios were significantly lower with MAP than with tMAP at 30, 40, 50 and 60% of maximal aerobic power (P<0.01). At the crossover point, lactate and 5-min postexercise oxygen consumption (EPOC(5 min)) values were significantly higher using tMAP rather than MAP (P<0.001). During the first 5 min of recovery, EPOC(5 min) and blood lactate were significantly correlated (r=0.89; P<0.001). Our data show that, to assess the crossover point and LIPOX(max) values for research purposes, the protocol must be based on the measured MAP rather than on a theoretical value. Such a determination should improve individualization of training for initially sedentary subjects. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human Heart Failure

    PubMed Central

    Lou, Qing; Fedorov, Vadim V.; Glukhov, Alexey V.; Moazami, Nader; Fast, Vladimir G.; Efimov, Igor R.

    2011-01-01

    Background Excitation-contraction (EC) coupling is altered in the end-stage heart failure (HF). However, spatial heterogeneity of this remodeling has not been established at the tissue level in failing human heart. The objective is to study functional remodeling of EC coupling and calcium handling in failing and nonfailing human hearts. Methods and Results We simultaneously optically mapped action potentials (AP) and calcium transients (CaT) in coronary-perfused left ventricular wedge preparations from nonfailing (n = 6) and failing (n = 5) human hearts. Our major findings are: (1) CaT duration minus AP duration was longer at sub-endocardium in failing compared to nonfailing hearts during bradycardia (40 beats/min). (2) The transmural gradient of CaT duration was significantly smaller in failing hearts compared with nonfailing hearts at fast pacing rates (100 beats/min). (3) CaT in failing hearts had a flattened plateau at the midmyocardium; and exhibited a “two-component” slow rise at sub-endocardium in three failing hearts. (4) CaT relaxation was slower at sub-endocardium than that at sub-epicardium in both groups. Protein expression of sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) was lower at sub-endocardium than that at sub-epicardium in both nonfailing and failing hearts. SERCA2a protein expression at sub-endocardium was lower in hearts with ischemic cardiomyopathy compared with nonischemic cardiomyopathy. Conclusions For the first time, we present direct experimental evidence of transmural heterogeneity of EC coupling and calcium handling in human hearts. End-stage HF is associated with the heterogeneous remodeling of EC coupling and calcium handling. PMID:21502574

  13. Association of heart rate profile during exercise with the severity of coronary artery disease.

    PubMed

    Cay, Serkan; Ozturk, Sezgin; Biyikoglu, Funda; Yildiz, Abdulkadir; Cimen, Tolga; Uygur, Belma; Tuna, Funda

    2009-05-01

    Coronary artery disease is the leading cause of morbidity and mortality around the world. Autonomic nervous system abnormalities are associated with coronary artery disease and its complications. Exercise stress tests are routinely used for the detection of the presence of coronary artery disease. In this study, we observed the association between heart rate profile during exercise and the severity of coronary artery disease. One hundred and sixty patients with abnormal exercise treadmill test (> or =1 mm horizontal or downsloping ST-segment depression; 119 men, 41 women; mean age = 57 +/- 9 years) were included in the study. Use of any drug affecting heart rate was not permitted. Resting heart rate before exercise, maximum heart rate during exercise, and resting heart rate after exercise (5 min later) were measured and two parameters were calculated: heart rate increment (maximum heart rate - resting heart rate before exercise) and heart rate decrement (maximum heart rate - resting heart rate after exercise). All patients underwent selective coronary angiography and subclassified into two groups according to stenotic lesion severity. Group 1 had at least 50% of stenotic lesion and group 2 had less than 50%. Patients in the first group had increased resting heart rate, decreased maximum heart rate, decreased heart rate increment, and decreased heart rate decrement compared with second group. All patients were classified into tertiles of resting heart rate, heart rate increment, and heart rate decrement level to evaluate whether these parameters were associated with severity of coronary artery stenosis in the study. The multiple-adjusted odds ratio of the risk of severe coronary atherosclerosis was 21.888 (95% confidence interval 6.983-68.606) for the highest tertile of resting heart rate level compared with the lowest tertile. In addition, the multiple-adjusted odds ratio of the risk of severe coronary atherosclerosis was 20.987 (95% confidence interval 6.635-66.387) for the lowest tertile of heart rate increment level compared with the highest tertile and 2.360 (95% confidence interval 1.004-5.544) for the lowest tertile of heart rate decrement level compared with the highest tertile. Altered autonomic nervous system regulation affects heart rate profile, increased resting heart rate, decreased heart rate increment, and decreased heart rate decrement, during exercise and this effect is strongly and independently associated with the severity of coronary artery disease.

  14. Convergent Cross Mapping: Basic concept, influence of estimation parameters and practical application.

    PubMed

    Schiecke, Karin; Pester, Britta; Feucht, Martha; Leistritz, Lutz; Witte, Herbert

    2015-01-01

    In neuroscience, data are typically generated from neural network activity. Complex interactions between measured time series are involved, and nothing or only little is known about the underlying dynamic system. Convergent Cross Mapping (CCM) provides the possibility to investigate nonlinear causal interactions between time series by using nonlinear state space reconstruction. Aim of this study is to investigate the general applicability, and to show potentials and limitation of CCM. Influence of estimation parameters could be demonstrated by means of simulated data, whereas interval-based application of CCM on real data could be adapted for the investigation of interactions between heart rate and specific EEG components of children with temporal lobe epilepsy.

  15. [Metformin and changes in blood pressure and heart rate in lean patients with polycystic ovary syndrome (PCOS)--preliminary study].

    PubMed

    Tomczyk, Rita; Ociepka, Agnieszka; Kiałka, Marta; Milewicz, Tomasz; Migacz, Kamila; Kowalczuk, Aleksandra; Klocek, Marek

    2015-01-01

    The aim of our study was to assess the value of blood pressure and heart rate using the 24-hour blood pressure monitoring (ABPM) before and after treatment with metformin to patients with polycystic ovary syndrome (PCOS) and normal lean. 5 patients received metformin 1500 mg per day in three divided doses. ABPM was performed to each patient with PCOS twice: before and after 6 months of treatment with metformin. In patients with PCOS and normal lean after treatment with metformin we observed: statistically significant lower systolic blood pressure (120.2 ± 22.33 mmHg vs 113.22 ± 21.43 mm Hg, p = 0.0248); lower systolic blood pressure of daily measurements (127.1 ± 32.13 mmHg vs 116.1 ± 22.08 mmHg, p = 0.0062); reduction in average arterial pressure MAP in the measurement of the day (95.52 ± 22.76 mmHg vs 88.36 ± 16.41 mmHg, p = 0.048); oscillometric pressure reduction (96.27 ± 27.93 mmHg vs 87.82 ± 21.61, p = 0.0004 mmHg); oscillometric pressure reduction of daily measurements (102.1 ± 27.93 mmHg vs 91.85 ± 21.61 mmHg, p = 0.0032); oscillometric pressure reduction in the measure- ment of the night (88.81 ± 24.85 mmHg vs 82.22 ± 20.54 mmHg, p = 0.0089). In women after treatment with metformin has also been observed higher average heart rate (65.82 ± 13.48 / min vs. 70.71 ± 16.04 min; p < 0.01). The calculations included 500 measurements. Treatment with metformin in patients with PCOS and normal lean leads to lower blood pressure and increases the frequency of heart rate.

  16. Does Bilevel Positive Airway Pressure Improve Outcome of Acute Respiratory Failure after Open-heart Surgery?

    PubMed Central

    Elgebaly, Ahmed Said

    2017-01-01

    Background: Respiratory failure is of concern in the postoperative period after cardiac surgeries. Invasive ventilation (intermittent positive pressure ventilation [IPPV]) carries the risks and complications of intubation and mechanical ventilation (MV). Aims: Noninvasive positive pressure ventilation (NIPPV) is an alternative method and as effective as IPPV in treating insufficiency of respiration with less complications and minimal effects on respiratory and hemodynamic parameters next to open-heart surgery. Design: This is a prospective, randomized and controlled study. Materials and Methods: Forty-four patients scheduled for cardiac surgery were divided into two equal groups: Group I (IPPV) and Group II (NIPPV). Heart rate (HR), mean arterial pressure (MAP), respiratory rate (RR), oxygen saturation (SpO2), arterial blood gas, weaning time, reintubation, tracheotomy rate, MV time, postoperative hospital stay, and ventilator-associated pneumonia during the period of hospital stay were recorded. Results: There was statistically significant difference in HR between groups with higher in Group I at 30 and 60 min and at 12 and 24 h. According to MAP, it started to increase significantly at hypoxemia, 15 min, 30 min, 4 h, 12 h, and at 24 h which was higher in Group I also. RR, PaO2, and PaCO2 showed significant higher in Group II at 15, 30, and 60 min and 4 h. According to pH, there was a significant difference between groups at 15, 30, and 60 min and at 4, 12, and 24 h postoperatively. SpO2 showed higher significant values in Group I at 15 and 30 min and at 12 h postoperatively. Duration of postoperative supportive ventilation was higher in Group I than that of Group II with statistically significant difference. Complications were statistically insignificant between Group I and Group II. Conclusion: Our study showed superiority of invasive over noninvasive mode of ventilator support. However, NIPPV (bilevel positive airway pressure) was proved to be a safe method. PMID:28994676

  17. Review and Analysis of Existing Mobile Phone Apps to Support Heart Failure Symptom Monitoring and Self-Care Management Using the Mobile Application Rating Scale (MARS).

    PubMed

    Masterson Creber, Ruth M; Maurer, Mathew S; Reading, Meghan; Hiraldo, Grenny; Hickey, Kathleen T; Iribarren, Sarah

    2016-06-14

    Heart failure is the most common cause of hospital readmissions among Medicare beneficiaries and these hospitalizations are often driven by exacerbations in common heart failure symptoms. Patient collaboration with health care providers and decision making is a core component of increasing symptom monitoring and decreasing hospital use. Mobile phone apps offer a potentially cost-effective solution for symptom monitoring and self-care management at the point of need. The purpose of this review of commercially available apps was to identify and assess the functionalities of patient-facing mobile health apps targeted toward supporting heart failure symptom monitoring and self-care management. We searched 3 Web-based mobile app stores using multiple terms and combinations (eg, "heart failure," "cardiology," "heart failure and self-management"). Apps meeting inclusion criteria were evaluated using the Mobile Application Rating Scale (MARS), IMS Institute for Healthcare Informatics functionality scores, and Heart Failure Society of America (HFSA) guidelines for nonpharmacologic management. Apps were downloaded and assessed independently by 2-4 reviewers, interclass correlations between reviewers were calculated, and consensus was met by discussion. Of 3636 potentially relevant apps searched, 34 met inclusion criteria. Most apps were excluded because they were unrelated to heart failure, not in English or Spanish, or were games. Interrater reliability between reviewers was high. AskMD app had the highest average MARS total (4.9/5). More than half of the apps (23/34, 68%) had acceptable MARS scores (>3.0). Heart Failure Health Storylines (4.6) and AskMD (4.5) had the highest scores for behavior change. Factoring MARS, functionality, and HFSA guideline scores, the highest performing apps included Heart Failure Health Storylines, Symple, ContinuousCare Health App, WebMD, and AskMD. Peer-reviewed publications were identified for only 3 of the 34 apps. This review suggests that few apps meet prespecified criteria for quality, content, or functionality, highlighting the need for further refinement and mapping to evidence-based guidelines and room for overall quality improvement in heart failure symptom monitoring and self-care related apps.

  18. The characterisation of blood rotation in a human heart chamber based on statistical analysis of vorticity maps

    NASA Astrophysics Data System (ADS)

    Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Stephen G.; Sanders, Prashanthan; Mazumdar, Jagannath; Abbott, Derek

    2008-12-01

    Modelling of non-stationary cardiac structures is complicated by the complexity of their intrinsic and extrinsic motion. The first known study of haemodynamics due to the beating of heart was made by Leonardo Da Vinci, giving the idea of fluid-solid interaction by describing how vortices develop during cardiac structural interaction with the blood. Heart morphology affects in changes of cardio dynamics during the systolic and diastolic phrases. In a chamber of the heart, vortices are discovered to exist as the result of the unique morphological changes of the cardiac chamber wall by using flow-imaging techniques such as phase contrast magnetic resonance imaging. The first part of this paper attempts to quantify vortex characteristics by means of calculating vorticity numerically and devising two dimensional vortical flow maps. The technique relies on determining the properties of vorticity using a statistical quantification of the flow maps and comparison of these quantities based on different scenarios. As the characteristics of our vorticity maps vary depending on the phase of a cardiac cycle, there is a need for robust quantification method to analyse vorticity. In the second part of the paper, the approach is then utilised for examining vortices within the human right atrium. Our study has shown that a proper quantification of vorticity for the flow field can indicate the strength and number of vortices within a heart chamber.

  19. User Experience May be Producing Greater Heart Rate Variability than Motor Imagery Related Control Tasks during the User-System Adaptation in Brain-Computer Interfaces

    PubMed Central

    Alonso-Valerdi, Luz M.; Gutiérrez-Begovich, David A.; Argüello-García, Janet; Sepulveda, Francisco; Ramírez-Mendoza, Ricardo A.

    2016-01-01

    Brain-computer interface (BCI) is technology that is developing fast, but it remains inaccurate, unreliable and slow due to the difficulty to obtain precise information from the brain. Consequently, the involvement of other biosignals to decode the user control tasks has risen in importance. A traditional way to operate a BCI system is via motor imagery (MI) tasks. As imaginary movements activate similar cortical structures and vegetative mechanisms as a voluntary movement does, heart rate variability (HRV) has been proposed as a parameter to improve the detection of MI related control tasks. However, HR is very susceptible to body needs and environmental demands, and as BCI systems require high levels of attention, perceptual processing and mental workload, it is important to assess the practical effectiveness of HRV. The present study aimed to determine if brain and heart electrical signals (HRV) are modulated by MI activity used to control a BCI system, or if HRV is modulated by the user perceptions and responses that result from the operation of a BCI system (i.e., user experience). For this purpose, a database of 11 participants who were exposed to eight different situations was used. The sensory-cognitive load (intake and rejection tasks) was controlled in those situations. Two electrophysiological signals were utilized: electroencephalography and electrocardiography. From those biosignals, event-related (de-)synchronization maps and event-related HR changes were respectively estimated. The maps and the HR changes were cross-correlated in order to verify if both biosignals were modulated due to MI activity. The results suggest that HR varies according to the experience undergone by the user in a BCI working environment, and not because of the MI activity used to operate the system. PMID:27458384

  20. Atrial fibrillation and sudden cardiac death: catheter-based sensor and mapping system of the heart

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.

    2017-04-01

    Ventricular arrhythmias in the heart and the rapid heartbeat of ventricular tachycardia can lead to sudden cardiac death. This is a major health issue worldwide. What is needed is to develop a catheter based sensor and mapping approach which will provide the mechanisms of ventricular arrhythmia, and effectively prevent and treat the same, potentially save life.

  1. Cardiac surgery during pregnancy: continuous fetal monitoring using umbilical artery Doppler flow velocity indices.

    PubMed

    Mishra, Manisha; Sawhney, Ravindra; Kumar, Anil; Bapna, Kumar Ramesh; Kohli, Vijay; Wasir, Harpreet; Trehan, Naresh

    2014-01-01

    The fetal death rate associated with cardiac surgery with cardiopulmonary bypass (CPB) is as high as 9.5-29%. We report continuous monitoring of fetal heart rate and umbilical artery flow-velocity waveforms by transvaginal ultrasonography and their analyses in relation to events of the CPB in two cases in second trimester of pregnancy undergoing mitral valve replacement. Our findings suggest that the transition of circulation from corporeal to extracorporeal is the most important event during surgery; the associated decrease in mean arterial pressure (MAP) at this stage potentially has deleterious effects on the fetus, which get aggravated with the use of vasopressors. We suggest careful management of CPB at this stage, which include partial controlled CPB at initiation and gradual transition to full CPB; this strategy maintains high MAP and avoids the use of vasopressors. Maternal and fetal monitoring can timely recognize the potential problems and provide window for the required treatment.

  2. Cell-accurate optical mapping across the entire developing heart.

    PubMed

    Weber, Michael; Scherf, Nico; Meyer, Alexander M; Panáková, Daniela; Kohl, Peter; Huisken, Jan

    2017-12-29

    Organogenesis depends on orchestrated interactions between individual cells and morphogenetically relevant cues at the tissue level. This is true for the heart, whose function critically relies on well-ordered communication between neighboring cells, which is established and fine-tuned during embryonic development. For an integrated understanding of the development of structure and function, we need to move from isolated snap-shot observations of either microscopic or macroscopic parameters to simultaneous and, ideally continuous, cell-to-organ scale imaging. We introduce cell-accurate three-dimensional Ca 2+ -mapping of all cells in the entire electro-mechanically uncoupled heart during the looping stage of live embryonic zebrafish, using high-speed light sheet microscopy and tailored image processing and analysis. We show how myocardial region-specific heterogeneity in cell function emerges during early development and how structural patterning goes hand-in-hand with functional maturation of the entire heart. Our method opens the way to systematic, scale-bridging, in vivo studies of vertebrate organogenesis by cell-accurate structure-function mapping across entire organs.

  3. Cell-accurate optical mapping across the entire developing heart

    PubMed Central

    Meyer, Alexander M; Panáková, Daniela; Kohl, Peter

    2017-01-01

    Organogenesis depends on orchestrated interactions between individual cells and morphogenetically relevant cues at the tissue level. This is true for the heart, whose function critically relies on well-ordered communication between neighboring cells, which is established and fine-tuned during embryonic development. For an integrated understanding of the development of structure and function, we need to move from isolated snap-shot observations of either microscopic or macroscopic parameters to simultaneous and, ideally continuous, cell-to-organ scale imaging. We introduce cell-accurate three-dimensional Ca2+-mapping of all cells in the entire electro-mechanically uncoupled heart during the looping stage of live embryonic zebrafish, using high-speed light sheet microscopy and tailored image processing and analysis. We show how myocardial region-specific heterogeneity in cell function emerges during early development and how structural patterning goes hand-in-hand with functional maturation of the entire heart. Our method opens the way to systematic, scale-bridging, in vivo studies of vertebrate organogenesis by cell-accurate structure-function mapping across entire organs. PMID:29286002

  4. The effects of heart rate control in chronic heart failure with reduced ejection fraction.

    PubMed

    Grande, Dario; Iacoviello, Massimo; Aspromonte, Nadia

    2018-07-01

    Elevated heart rate has been associated with worse prognosis both in the general population and in patients with heart failure. Heart rate is finely modulated by neurohormonal signals and it reflects the balance between the sympathetic and the parasympathetic limbs of the autonomic nervous system. For this reason, elevated heart rate in heart failure has been considered an epiphenomenon of the sympathetic hyperactivation during heart failure. However, experimental and clinical evidence suggests that high heart rate could have a direct pathogenetic role. Consequently, heart rate might act as a pathophysiological mediator of heart failure as well as a marker of adverse outcome. This hypothesis has been supported by the observation that the positive effect of beta-blockade could be linked to the degree of heart rate reduction. In addition, the selective heart rate control with ivabradine has recently been demonstrated to be beneficial in patients with heart failure and left ventricular systolic dysfunction. The objective of this review is to examine the pathophysiological implications of elevated heart rate in chronic heart failure and explore the mechanisms underlying the effects of pharmacological heart rate control.

  5. Fluoroless catheter ablation of various right and left sided supra-ventricular tachycardias in children and adolescents.

    PubMed

    Jan, Matevž; Žižek, David; Rupar, Katja; Mazić, Uroš; Kuhelj, Dimitrij; Lakič, Nikola; Geršak, Borut

    2016-11-01

    Electrophysiology study (EPS) and catheter ablation (CA) in children and adolescents carries a potentially harmful effect of radiation exposure when performed with the use of fluoroscopy. Our aim was to evaluate the feasibility, safety and effectiveness of fluoroless EPS and CA of various supra-ventricular tachycardias (SVTs) with the use of the 3D mapping system and intracardiac echocardiography (ICE). Forty-three consecutive children and adolescents (age 13 ± 3 years) underwent fluoroless EPS and CA for various supra-ventricular tachycardias. A three-dimensional (3D) mapping system NavX™ was used for guidance of diagnostic and ablation catheters in the heart. ICE was used as a fundamental imaging tool for transseptal punctures. Acute procedural success rate was 100 %. There were no procedure related complications and short-term follow up (10 ± 3 months) revealed 93 % arrhythmia free survival rate. Fluoroless CA of various SVTs in the paediatric population is feasible, safe and can be performed successfully with 3D mapping system and ICE.

  6. Adverse remodeling of the electrophysiological response to ischemia-reperfusion in human heart failure is associated with remodeling of metabolic gene expression.

    PubMed

    Ng, Fu Siong; Holzem, Katherine M; Koppel, Aaron C; Janks, Deborah; Gordon, Fabiana; Wit, Andrew L; Peters, Nicholas S; Efimov, Igor R

    2014-10-01

    Ventricular arrhythmias occur more frequently in heart failure during episodes of ischemia-reperfusion although the mechanisms underlying this in humans are unclear. We assessed, in explanted human hearts, the remodeled electrophysiological response to acute ischemia-reperfusion in heart failure and its potential causes, including the remodeling of metabolic gene expression. We optically mapped coronary-perfused left ventricular wedge preparations from 6 human end-stage failing hearts (F) and 6 donor hearts rejected for transplantation (D). Preparations were subjected to 30 minutes of global ischemia, followed by 30 minutes of reperfusion. Failing hearts had exaggerated electrophysiological responses to ischemia-reperfusion, with greater action potential duration shortening (P<0.001 at 8-minute ischemia; P=0.001 at 12-minute ischemia) and greater conduction slowing during ischemia, delayed recovery of electric excitability after reperfusion (F, 4.8±1.8 versus D, 1.0±0 minutes; P<0.05), and incomplete restoration of action potential duration and conduction velocity early after reperfusion. Expression of 46 metabolic genes was probed using custom-designed TaqMan arrays, using extracted RNA from 15 failing and 9 donor hearts. Ten genes important in cardiac metabolism were downregulated in heart failure, with SLC27A4 and KCNJ11 significantly downregulated at a false discovery rate of 0%. We demonstrate, for the first time in human hearts, that the electrophysiological response to ischemia-reperfusion in heart failure is accelerated during ischemia with slower recovery after reperfusion. This can enhance spatial conduction and repolarization gradients across the ischemic border and increase arrhythmia susceptibility. This adverse response was associated with downregulation of expression of cardiac metabolic genes. © 2014 American Heart Association, Inc.

  7. Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, III, Robert A. (Inventor)

    1996-01-01

    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.

  8. Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, Robert A., III (Inventor)

    1994-01-01

    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate is presented. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.

  9. BIOPHYSICAL CHARACTERISATION OF THE UNDER-APPRECIATED AND IMPORTANT RELATIONSHIP BETWEEN HEART RATE VARIABILITY AND HEART RATE

    PubMed Central

    Monfredi, Oliver; Lyashkov, Alexey E; Johnsen, Anne-Berit; Inada, Shin; Schneider, Heiko; Wang, Ruoxi; Nirmalan, Mahesh; Wisloff, Ulrik; Maltsev, Victor A; Lakatta, Edward G; Zhang, Henggui; Boyett, Mark R

    2014-01-01

    Heart rate variability (beat-to-beat changes in the RR interval) has attracted considerable attention over the last 30+ years (PubMed currently lists >17,000 publications). Clinically, a decrease in heart rate variability is correlated to higher morbidity and mortality in diverse conditions, from heart disease to foetal distress. It is usually attributed to fluctuation in cardiac autonomic nerve activity. We calculated heart rate variability parameters from a variety of cardiac preparations (including humans, living animals, Langendorff-perfused heart and single sinoatrial nodal cell) in diverse species, combining this with data from previously published papers. We show that regardless of conditions, there is a universal exponential decay-like relationship between heart rate variability and heart rate. Using two biophysical models, we develop a theory for this, and confirm that heart rate variability is primarily dependent on heart rate and cannot be used in any simple way to assess autonomic nerve activity to the heart. We suggest that the correlation between a change in heart rate variability and altered morbidity and mortality is substantially attributable to the concurrent change in heart rate. This calls for re-evaluation of the findings from many papers that have not adjusted properly or at all for heart rate differences when comparing heart rate variability in multiple circumstances. PMID:25225208

  10. Promoting Early Diagnosis of Hemodynamic Instability during Simulated Hemorrhage with the Use of a Real-time Decision-assist Algorithm

    DTIC Science & Technology

    2013-01-01

    vilian trauma systems and in military casualty care rely on standard vital signs (blood pressure, arterial oxygen saturation , heart rate [HR...acting to maintain blood pressure and arterial oxygen saturation (i.e., standard vital signs are not changing) in the presence of re- duced...assessments in austere environments. Profiles of changes in mean arterial pressure (MAP), cardiac output, and venous oxygen saturation during LBNP have been

  11. High Risk Behaviors in Marine Mammals: Linking Behavioral Responses to Anthropogenic Disturbance to Biological Consequences

    DTIC Science & Technology

    2015-09-30

    nitrogen) and metabolic byproducts ( lactic acid ) depends on heart rate, and the latter is correlated to stroke frequency in marine mammals, we are...for development of 3- D safety zones for diving marine mammals To promote the incorporation of data from these studies into US Navy environmental...capillarity), and cardiac risk factors that will be mapped on 3- D physical attributes (e.g., home range, hydrostatic pressure) of the marine

  12. The relationship of hostility, negative affect and ethnicity to cardiovascular responses: an ambulatory study in Singapore.

    PubMed

    Enkelmann, Hwee Chong; Bishop, George D; Tong, Eddie M W; Diong, Siew Maan; Why, Yong Peng; Khader, Majeed; Ang, Jansen

    2005-05-01

    This study tested the hypotheses that ambulatory heart rate and blood pressure would be higher for individuals high but not low in hostility when they experienced negative affect or social stress and that this interaction would be stronger for Indians compared with other Singapore ethnic groups. Ambulatory blood pressure monitoring was done on 108 male Singapore patrol officers as they went about their daily duties. After each BP measurement participants completed a computerized questionnaire including items on emotional experience. Individuals high in hostility showed higher systolic blood pressure when reporting negative affect whereas this was not true for those low in hostility. Ethnic differences were obtained such that Indians showed an increase in mean arterial pressure when angered whereas MAP was negatively related to anger for Malays and unrelated for Chinese. Also a three-way interaction between ethnicity, hostility, and social stress indicated that hostility and social stress interacted in their effects on DBP for Indian participants but not for Chinese or Malays. Finally, a three-way interaction was obtained between ethnicity, hostility and negative affect for heart rate in which heart rate increased with increasing levels of negative affect for Chinese high in hostility and Malays low in hostility but decreased with increasing negative affect for all other participants. These data are consistent with higher CHD rates among individuals high in hostility and also provide additional evidence on ethnic differences in cardiovascular reactivity in Singapore.

  13. The Selective Late Sodium Current Inhibitor Eleclazine, Unlike Amiodarone, Does Not Alter Defibrillation Threshold or Dominant Frequency of Ventricular Fibrillation.

    PubMed

    Silva, Ana F G; Bonatti, Rodolfo; Batatinha, Julio A P; Nearing, Bruce D; Zeng, Dewan; Belardinelli, Luiz; Verrier, Richard L

    2017-03-01

    We examined the effects of the selective late INa inhibitor eleclazine on the 50% probability of successful defibrillation (DFT50) before and after administration of amiodarone to determine its suitability for use in patients with implantable cardioverter defibrillators (ICDs). In 20 anesthetized pigs, transvenous active-fixation cardiac defibrillation leads were fluoroscopically positioned into right ventricular apex through jugular vein. ICDs were implanted subcutaneously. Dominant frequency of ventricular fibrillation was analyzed by fast Fourier transform. The measurements were made before drug administration (control), and at 40 minutes after vehicle, eleclazine (2 mg/kg, i.v., bolus over 15 minutes), or subsequent/single amiodarone administration (10 mg/kg, i.v., bolus over 10 minutes). Eleclazine did not alter DFT50, dominant frequency, heart rate, or mean arterial pressure (MAP). Subsequent amiodarone increased DFT50 (P = 0.006), decreased dominant frequency (P = 0.022), and reduced heart rate (P = 0.031) with no change in MAP. Amiodarone alone increased DFT50 (P = 0.005; NS compared to following eleclazine) and decreased dominant frequency (P = 0.003; NS compared to following eleclazine). Selective late INa inhibition with eleclazine does not alter DFT50 or dominant frequency of ventricular fibrillation when administered alone or in combination with amiodarone. Accordingly, eleclazine would not be anticipated to affect the margin of defibrillation safety in patients with ICDs.

  14. A Comparison of Efficacy of Segmental Epidural Block versus Spinal Anaesthesia for Percutaneous Nephrolithotomy

    PubMed Central

    Nandanwar, Avinash S; Patil, Yogita; Baheti, Vidyasagar H.; Tanwar, Harshwardhan V.; Patwardhan, Sujata K.

    2015-01-01

    Introduction Percutaneous nephrolithotomy (PCNL) is done under general anaesthesia in most of the centres. Associated complications and cost are higher for general anaesthesia than for regional anaesthesia. Present study is designed to compare the efficacy of epidural block versus spinal anaesthesia with regards to intraoperative mean arterial pressure, heart rate, postoperative pain intensity, analgesic requirement, Postoperative complications and patient satisfaction in patients undergoing PCNL. Materials and Methods After taking Ethical Committee clearance, patients were randomly allocated into 2 groups using table of randomization (n= 40 each) Group E- Epidural block, Group S- Spinal block. Various parameters like intraoperative mean arterial pressure, heart rate, postoperative pain intensity, analgesic requirement, postoperative complications and patient satisfaction were studied in these groups. Statistical Analysis Quantitative data was analysed using unpaired t-test and qualitative data was analysed using chi-square test. Results Twenty four times in Epidural as compared to fifteen times in spinal anaesthesia two or more attempts required. Mean time (min) required to achieve the block of anaesthesia in group E and group S was 15.45±2.8 and 8.52±2.62 min respectively. Mean arterial pressure (MAP) at 5 min, 10 min and 15 min were significantly lower in spinal group as compared to epidural group. After 30 minutes, differences were not significant but still MAP was lower in spinal group. After 30 minutes difference in heart rate between two groups was statistically significant and higher rate recorded in spinal group till the end of 3 hours. Postoperative VAS score was significantly higher in spinal group and 4 hours onwards difference was highly significant. Postoperative Nausea Vomiting (PONV) Score was significantly higher in spinal group as compared to epidural group. Conclusion For PCNL, segmental epidural block is better than spinal anaesthesia in terms of haemodynamic stability, postoperative analgesia, patient satisfaction and reduced incidence of PONV. Epidural anaesthesia is difficult to execute and takes longer time to act as compared to spinal block which limits its use. PMID:26436021

  15. [Effect of cooling therapy on the heart rate and mean arterial pressure of rats with the second-degree scald burn in hot and humid environment].

    PubMed

    Li, Ya-jie; Zhang, Li-ying; Luo, Bing-de; Li, Yi-lei; Lin, Ni

    2004-03-01

    To observe the changes of heart rate (HR) and mean arterial pressure MAP after immediate cooling therapy (ICT) in rats with superficial second-degree scald burn in hot and humid environment, and assess the effect of the cooling dressing materials. Twenty-four Wistar rats were randomized equally into 4 groups including normal temperature control (NTC) group, normal temperature cooling therapy (NCT) group, hot and humid control (HHC) group and hot and humid cooling therapy (HCT) group. Different interventions were applied as indicated in the rats with superficial second-degree scald burn, with the dry bulb temperature Tdb at 26.33+/-1.29 degrees celsius; and relative humidity (rh) of 71.05%+/-4.57% for two normal temperature groups, and Tdb at 35.33+/-0.35 degrees Celsius; and rh of 70.81%+/-1.38% for the two hot and humid groups. The exposure time was 120 min in NCT and HCT groups, and the HR and MAP were measured every 20 min. MAP is not influenced by environmental temperature and the cooling therapy (P>0.05), whereas HR was higher in HHC than in NTC group and also in HCT than in NCT group (P=0.003), lower in HCT and NCT groups than in HHC and NTC groups (P=0.002), respectively. HR did not undergo any significant changes during the observation in the 4 groups (P>0.05). HR was higher in HHC and HCT than in NTC and NCT groups at 65, 85, 105 and 125 min after the burns, but compared with the two control groups, cooling therapy decreased HR at 5, 25, 45 and 85 min. Cooling therapy does not affect MAP but efficiently decreases HR, which may prevent further heat injury.

  16. Assessing Heart Rate in Physical Education. Assessment Series: K-12 Physical Education.

    ERIC Educational Resources Information Center

    Buck, Marilyn M.

    This guide discusses the assessment of heart rate and, in particular, the assessment of heart rate using a heart monitor. Part 1, "Foundation for the Use of Heart Rate," reviews literature about heart rate assessment and heart rate monitors, offering an overview of national guidelines for physical activity. It focuses on the importance…

  17. The effect of three weeks green tea extract consumption on blood pressure, heart rate responses to a single bout resistance exercise in hypertensive women.

    PubMed

    Arazi, Hamid; Samami, Nader; Kheirkhah, Jalal; Taati, Behzad

    2014-09-01

    Resistance exercise (RE) may lead to a post-exercise hypotension (PEH) response. Previous studies showed that green tea (GT) and its polyphenols, especially Epigallocatechin-3-gallate (EGCG) may have a favorable effect on blood pressure (BP). We investigated the green tea extract (GTE) effects on BP, heart rate (HR), and rate pressure product (RPP) responses to a low-intensity RE in hypertensive women. Middle-aged women (n = 24, 46.4 ± 6.3 years old; 66.6 ± 9.2 kg; 166.3 ± 4.2 cm) were randomly assigned into three groups of eight persons. GTE consumption group (T) and RE group (R), respectively, ingested GTE (~75 mg EGCG) and placebo (PL; maltodextrin) capsules two times a day for three weeks and then completed 2 circuits of six RE using 50% one repetition maximum (1RM). Patients of control group (C) just ingested PL and rested in a non-exercise control trial. BP, HR and RPP were measured prior and post-exercise at 0, 15, 30, 45, and 60 min. The repeated measures analysis of variance (ANOVA) revealed that there were no significant alterations for arterial BP, HR and RPP of C group. HR of T and R groups was increased immediately after RE. A significant fall of systolic BP (SBP) and diastolic BP (DBP) occurred in both T and R groups for 60 min post-exercise compared to resting values. Mean arterial BP (MAP) and RPP decreased significantly after RE in both exercise groups from 15 to 60 min. During 45 and 60 time points, T group had a lower RPP values than C group. The differences between T and R groups were only MAP at 0 and 15 time points. Three weeks of GTE ingestion did not influenced SBP, DBP and HR but may be have a favorable effect on MAP and RPP responses to an acute RE during 1 h recovery of exercise.

  18. Blood Pressure Responses to Endovascular Stimulation: A Potential Therapy for Autonomic Disorders With Vasodilatation.

    PubMed

    Naksuk, Niyada; Killu, Ammar M; Yogeswaran, Vidhushei; Desimone, Christopher V; Suddendorf, Scott H; Ladewig, Dorothy J; Powers, Joanne M; Weber, Sarah; Madhavan, Malini; Cha, Yong-Mei; Kapa, Suraj; Asirvatham, Samuel J

    2016-09-01

    We have previously shown that sympathetic ganglia stimulation via the renal vein rapidly increases blood pressure. This study further investigated the optimal target sites and effective energy levels for stimulation of the renal vasculatures and nearby sympathetic ganglia for rapid increase in blood pressure. The pre-study protocol for endovascular stimulations included 2 minutes of stimulation (1-150 V and 10 pulses per second) and at least 2 minutes of rest during poststimulation. If blood pressure and/or heart rate were changed during the stimulation, time to return to baseline was allowed prior to the next stimulation. In 11 acute canine studies, we performed 85 renal artery, 30 renal vein, and 8 hepatic vasculature stimulations. The mean arterial pressure (MAP) rapidly increased during stimulation of renal artery (95 ± 18 mmHg vs. 103 ± 15 mmHg; P < 0.0001), renal vein (90 ± 16 mmHg vs. 102 ± 20 mmHg; P = 0.001), and hepatic vasculatures (74 ± 8 mmHg vs. 82 ± 11 mmHg; P = 0.04). Predictors of a significant increase in MAP were energy >10 V focused on the left renal artery, bilateral renal arteries, and bilateral renal veins (especially the mid segment). Overall, heart rate was unchanged, but muscle fasciculation was observed in 22.0% with an output >10 V (range 15-150 V). Analysis after excluding the stimulations that resulted in fasciculation yielded similar results to the main findings. Stimulation of intra-abdominal vasculatures promptly increased the MAP and thus may be a potential treatment option for hypotension in autonomic disorders. Predictors of optimal stimulation include energy delivery and the site of stimulation (for the renal vasculatures), which informs the design of subsequent research. © 2016 Wiley Periodicals, Inc.

  19. The effects of intravenous anesthetics on QT interval during anesthetic induction with sevoflurane.

    PubMed

    Terao, Yoshiaki; Higashijima, Ushio; Toyoda, Tomomi; Ichinomiya, Taiga; Fukusaki, Makoto; Hara, Tetsuya

    2016-12-01

    Sevoflurane is known to prolong the QT interval. This study aimed to determine the effect of the interaction between intravenous anesthetics and sevoflurane on the QT interval. The study included 48 patients who underwent lumbar spine surgery. Patients received 3 μg/kg fentanyl and were then randomly allocated to either Group T, in which they received 5 mg/kg thiamylal, or Group P, in which they received 1.5 mg/kg propofol, at 2 min after administration of fentanyl injection for anesthetic induction. Vecuronium (1.5 mg/kg) and sevoflurane (3 % inhaled concentration) were administered immediately after loss of consciousness and tracheal intubation was performed 3 min after vecuronium injection. Heart rate (HR), mean arterial pressure (MAP), bispectral index score (BIS), and the heart rate-corrected QT (QTc) interval on a 12-lead electrocardiogram were recorded immediately before fentanyl administration (T1), 2 min after fentanyl injection (T2), immediately before intubation (T3), and 2 min after intubation (T4). There were no significant differences between the two groups in baseline patient characteristics. BIS and MAP significantly decreased after anesthesia induction in both groups. At T3, MAP in Group T was higher than in Group P, while HR had reduced in both groups. The QTc interval was prolonged after anesthesia induction in Group T, but did not change at any time point in Group P. The QTc interval after anesthesia induction in Group T was longer than in Group P. We concluded that an injection of propofol could counteract QTc interval prolongation associated with sevoflurane anesthesia induction.

  20. ET-26 hydrochloride (ET-26 HCl) has similar hemodynamic stability to that of etomidate in normal and uncontrolled hemorrhagic shock (UHS) rats.

    PubMed

    Wang, Bin; Chen, Shouming; Yang, Jun; Yang, Linghui; Liu, Jin; Zhang, Wensheng

    2017-01-01

    ET-26 HCl is a promising sedative-hypnotic anesthetic with virtually no effect on adrenocortical steroid synthesis. However, whether or not ET-26 HCl also has a sufficiently wide safety margin and hemodynamic stability similar to that of etomidate and related compounds remains unknown. In this study, the effects of ET-26 HCl, etomidate and propofol on therapeutic index, heart rate (HR), mean arterial pressure (MAP), maximal rate for left ventricular pressure rise (Dmax/t), and maximal rate for left ventricular pressure decline (Dmin/t) were investigated in healthy rats and a rat model of uncontrolled hemorrhagic shock (UHS). 50% effective dose (ED50) and 50% lethal dose (LD50) were determined after single bolus doses of propofol, etomidate, or ET-26 HCl using the Bliss method and the up and down method, respectively. All rats were divided into either the normal group and received either etomidate, ET-26 HCl or propofol, (n = 6 per group) or the UHS group and received either etomidate, ET-26 HCl or propofol, (n = 6 per group). In the normal group, after preparation for hemodynamic and heart-function monitoring, rats were administered a dose of one of the test agents twofold-higher than the established ED50, followed by hemodynamic and heart-function monitoring. Rats in the UHS group underwent experimentally induced UHS with a target arterial pressure of 40 mmHg for 1 hour, followed by administration of an ED50 dose of one of the experimental agents. Blood-gas analysis was conducted on samples obtained during equilibration with the experimental setup and at the end of the experiment. In the normal group, no significant differences in HR, MAP, Dmax/t and Dmin/t (all P > 0.05) were observed at any time point between the etomidate and ET-26 HCl groups, whereas HR, MAP and Dmax/t decreased briefly and Dmin/t increased following propofol administration. In the UHS group, no significant differences in HR, MAP, Dmax/t and Dmin/t were observed before and after administration of etomidate or ET-26 HCl at ED50 doses (all P > 0.05). Administration of propofol resulted in brief, statistically significant reductions in HR and Dmax/t, with a brief increase in Dmin/t (P ˂ 0.05), while no significant differences in MAP were observed among the three groups. The blood-lactate concentrations of rats in the ET-26 HCl group were significantly lower than those in etomidate and propofol groups (P ˂ 0.05). ET-26 HCl provides a similar level of hemodynamic stability to that obtained with etomidate in both healthy rats, and rat models of UHS. ET-26 HCl has the potential to be a novel induction anesthetic for use in critically ill patients.

  1. Rapid multislice T1 mapping of mouse myocardium: Application to quantification of manganese uptake in α-Dystrobrevin knockout mice.

    PubMed

    Jiang, Kai; Li, Wen; Li, Wei; Jiao, Sen; Castel, Laurie; Van Wagoner, David R; Yu, Xin

    2015-11-01

    The aim of this study was to develop a rapid, multislice cardiac T1 mapping method in mice and to apply the method to quantify manganese (Mn(2+)) uptake in a mouse model with altered Ca(2+) channel activity. An electrocardiography-triggered multislice saturation-recovery Look-Locker method was developed and validated both in vitro and in vivo. A two-dose study was performed to investigate the kinetics of T1 shortening, Mn(2+) relaxivity in myocardium, and the impact of Mn(2+) on cardiac function. The sensitivity of Mn(2+)-enhanced MRI in detecting subtle changes in altered Ca(2+) channel activity was evaluated in a mouse model with α-dystrobrevin knockout. Validation studies showed strong agreement between the current method and an established method. High Mn(2+) dose led to significantly accelerated T1 shortening. Heart rate decreased during Mn(2+) infusion, while ejection ratio increased slightly at the end of imaging protocol. No statistical difference in cardiac function was detected between the two dose groups. Mice with α-dystrobrevin knockout showed enhanced Mn(2+) uptake in vivo. In vitro patch-clamp study showed increased Ca(2+) channel activity. The saturation recovery method provides rapid T1 mapping in mouse hearts, which allowed sensitive detection of subtle changes in Mn(2+) uptake in α-dystrobrevin knockout mice. © 2014 Wiley Periodicals, Inc.

  2. Effects of graded load of artificial gravity on cardiovascular functions in humans.

    PubMed

    Iwase, Satoshi; Fu, Qi; Narita, Kenichi; Morimoto, Eiichi; Takada, Hiroki; Mano, Tadaaki

    2002-12-01

    An artificial gravity and ergometric exercise loading device for human use was manufactured. It has the capacity of a max 2 G-load at the heart level, and a max 150 W of work-load. Eight subjects (six completed) were subjected to four repeated trials with or without 20 W ergometric exercise. Anti-G score, defined as the G-load x running time to the endpoint, was significantly higher in the exercise trials than standing trials. Heart rate (HR), mean arterial pressure (MAP), thoracic fluid index (TFI) were significantly superior during the exercise trials. Artificial gravity by centrifuge at 1.2 or 1.4 G with 40 or 60 W of ergometric workload may be an excellent countermeasure against cardiovascular deconditioning after long exposure to microgravity.

  3. Cardiovascular effects of a continuous rate infusion of lidocaine in calves anesthetized with xylazine, midazolam, ketamine and isoflurane.

    PubMed

    Araújo, Marcelo A; Dias, Bianca P; Bovino, Fernanda; Deschk, Maurício; Abimussi, Caio Jx; Oliva, Valéria Nls; Rodrigues, Celso A; Santos, Paulo Sp

    2014-03-01

    To assess the cardiovascular changes of a continuous rate infusion of lidocaine in calves anesthetized with xylazine, midazolam, ketamine and isoflurane during mechanical ventilation. Prospective, randomized, cross-over, experimental trial. A total of eight, healthy, male Holstein calves, aged 10 ± 1 months and weighing 114 ± 11 kg were included in the study. Calves were administered xylazine followed by ketamine and midazolam, orotracheal intubation and maintenance on isoflurane (1.3%) using mechanical ventilation. Forty minutes after induction, lidocaine (2 mg kg⁻¹ bolus) or an equivalent volume of saline (0.9%) was administered IV followed by a continuous rate infusion (100 μg kg⁻¹ minute⁻¹) of lidocaine (treatment L) or saline (treatment C). Heart rate (HR), systolic, diastolic and mean arterial pressures (SAP, DAP and MAP), central venous pressure (CVP), mean pulmonary arterial pressure (mPAP), pulmonary arterial occlusion pressure (PAOP), cardiac output, end-tidal carbon dioxide (Pe'CO2 ) and core temperature (CT) were recorded before lidocaine or saline administration (Baseline) and at 20-minute intervals (T20-T80). Plasma concentrations of lidocaine were measured in treatment L. The HR was significantly lower in treatment L compared with treatment C. There was no difference between the treatments with regards to SAP, DAP, MAP and SVRI. CI was significantly lower at T60 in treatment L when compared with treatment C. PAOP and CVP increased significantly at all times compared with Baseline in treatment L. There was no significant difference between times within each treatment and between treatments with regards to other measured variables. Plasma concentrations of lidocaine ranged from 1.85 to 2.06 μg mL⁻¹ during the CRI. At the studied rate, lidocaine causes a decrease in heart rate which is unlikely to be of clinical significance in healthy animals, but could be a concern in compromised animals. © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  4. Effect of uterine contractions on fetal heart rate in pregnancy: a prospective observational study.

    PubMed

    Sletten, Julie; Kiserud, Torvid; Kessler, Jörg

    2016-10-01

    The new Holter monitoring technology enables long-term electrocardiographic recording of the fetal heart rate without discomfort for the mother. The aim of the study was to assess the feasibility of a fetal Holter monitor. This technology was further used to study fetal heart rate outside the hospital setting during normal daily activities and to test the hypothesis that uterine activity during pregnancy influences fetal heart rate. Prospective observational study including 12 healthy pregnant women at 20-40 weeks of gestation. Data were collected using the Monica AN24 system. Outcome measures were fetal heart rate, maternal heart rate, and uterine activity categorized according to the strength of the electrohysterographic signal. The recordings had a median length of 18.8 h, and fetal heart rate and maternal heart rate were obtained with success rates of 73.1 and 99.9%, respectively. Uterine activity was found to affect fetal heart rate in all participants. Compared with the basal tone and mild levels of uterine activity, moderate and strong levels of uterine activity were associated with increases in fetal heart rate of 4.0 and 5.7 beats/min, respectively. At night, the corresponding increases were 4.9 and 7.6 beats/min. Linear correlations were found between maternal heart rate and fetal heart rate in 11 of the 12 cases, with a mean coefficient beta of 0.189. Both maternal heart rate and fetal heart rate exhibited a diurnal pattern, with lower heart rates being recorded at night. Uterine activity during pregnancy is associated with a graded response in fetal heart rate and may represent a physiological challenge for the development and adaptation of the fetal cardiovascular system. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  5. Beta-Endorphin-Induced Cardiorespiratory Depression is Inhibited by Glycyl-L-Glutamine, a Dipeptide Derived from Beta-Endorphin Processing. Appendix 1

    DTIC Science & Technology

    1993-01-01

    Analysis of controversies. Peptides 6, Suppl. 2: 51- 56, 1985. F16rez, J., Mediavilla, A . and Pazos , A .: Respiratory effects of P-endorphin, D-Ala 2-met...GLYCYL-L-GLUTAMINE, A DIPEPTIDE DERIVED L in FROM P-ENDORPHIN PROCESSING1 Can B. Unal, Medge D. Owen-Kummer and William R. MillingtonQ Division of... a -End, •-endorphin; POMC, proopiomelanocortin; MAP, mean arterial pressure; HR, heart rate; i.c.v., intracerebroventricular; i.c., intracisternal

  6. Heart rate and physical activity patterns in persons with profound intellectual and multiple disabilities.

    PubMed

    Waninge, Aly; van der Putten, Annette A J; Stewart, Roy E; Steenbergen, Bert; van Wijck, Ruud; van der Schans, Cees P

    2013-11-01

    Because physical fitness and health are related to physical activity, it is important to gain an insight into the physical activity levels of persons with profound intellectual and multiple disabilities (PIMD). The purpose of this study was to examine heart rate patterns to measure the activity levels of persons with PIMD and to analyze these heart rate patterns according to participant characteristics, observed level of activity, days, and time of day. The heart rate patterns of 24 participants with PIMD were measured continuously using a heart rate monitor for 8 h · d for a period of 6 days. Physical activity levels were measured with questionnaires. Data were analyzed using multilevel analysis. The results indicate that the participants use only 32% of their heart rate reserve over 6 days. The intensity of heart rate reserve ranged from 1 to 62%. On a given day, wide ranges in heart rates between participants and within persons were observed. Between days, only small ranges in the heart rate were found. The participants could be grouped into 4 classes according to their heart rate. In addition, factors such as time of day, physical activity, and age are significantly related to heart rate patterns. In conclusion, this study is an important first step in exploring activity patterns based on heart rate patterns in persons with PIMD. The participants used relatively small fractions of their heart rate reserves. Time of day and age appear to have a considerable influence on heart rate patterns. The observed classes in heart rate patterns suggest that other probably more personal and psychosocial factors have significant influences on heart rate patterns, as well.

  7. Fast approximate delivery of fluence maps for IMRT and VMAT

    NASA Astrophysics Data System (ADS)

    Balvert, Marleen; Craft, David

    2017-02-01

    In this article we provide a method to generate the trade-off between delivery time and fluence map matching quality for dynamically delivered fluence maps. At the heart of our method lies a mathematical programming model that, for a given duration of delivery, optimizes leaf trajectories and dose rates such that the desired fluence map is reproduced as well as possible. We begin with the single fluence map case and then generalize the model and the solution technique to the delivery of sequential fluence maps. The resulting large-scale, non-convex optimization problem was solved using a heuristic approach. We test our method using a prostate case and a head and neck case, and present the resulting trade-off curves. Analysis of the leaf trajectories reveals that short time plans have larger leaf openings in general than longer delivery time plans. Our method allows one to explore the continuum of possibilities between coarse, large segment plans characteristic of direct aperture approaches and narrow field plans produced by sliding window approaches. Exposing this trade-off will allow for an informed choice between plan quality and solution time. Further research is required to speed up the optimization process to make this method clinically implementable.

  8. Global Bi-ventricular endocardial distribution of activation rate during long duration ventricular fibrillation in normal and heart failure canines.

    PubMed

    Luo, Qingzhi; Jin, Qi; Zhang, Ning; Han, Yanxin; Wang, Yilong; Huang, Shangwei; Lin, Changjian; Ling, Tianyou; Chen, Kang; Pan, Wenqi; Wu, Liqun

    2017-04-13

    The objective of this study was to detect differences in the distribution of the left and right ventricle (LV & RV) activation rate (AR) during short-duration ventricular fibrillation (SDVF, <1 min) and long-duration ventricular fibrillation VF (LDVF, >1 min) in normal and heart failure (HF) canine hearts. Ventricular fibrillation (VF) was electrically induced in six healthy dogs (control group) and six dogs with right ventricular pacing-induced congestive HF (HF group). Two 64-electrode basket catheters deployed in the LV and RV were used for global endocardium electrical mapping. The AR of VF was estimated by fast Fourier transform analysis from each electrode. In the control group, the LV was activated faster than the RV in the first 20 s, after which there was no detectable difference in the AR between them. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the posterior LV was activated fastest, while the anterior was slowest. In the HF group, a detectable AR gradient existed between the two ventricles within 3 min of VF, with the LV activating more quickly than the RV. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the septum of the LV was activated fastest, while the anterior was activated slowest. A global bi-ventricular endocardial AR gradient existed within the first 20 s of VF but disappeared in the LDVF in healthy hearts. However, the AR gradient was always observed in both SDVF and LDVF in HF hearts. The findings of this study suggest that LDVF in HF hearts can be maintained differently from normal hearts, which accordingly should lead to the development of different management strategies for LDVF resuscitation.

  9. Sex Differences in β-Adrenergic Responsiveness of Action Potentials and Intracellular Calcium Handling in Isolated Rabbit Hearts

    PubMed Central

    Hoeker, Gregory S.; Hood, Ashleigh R.; Katra, Rodolphe P.; Poelzing, Steven; Pogwizd, Steven M.

    2014-01-01

    Cardioprotection in females, as observed in the setting of heart failure, has been attributed to sex differences in intracellular calcium handling and its modulation by β-adrenergic signaling. However, further studies examining sex differences in β-adrenergic responsiveness have yielded inconsistent results and have mostly been limited to studies of contractility, ion channel function, or calcium handling alone. Given the close interaction of the action potential (AP) and intracellular calcium transient (CaT) through the process of excitation-contraction coupling, the need for studies exploring the relationship between agonist-induced AP and calcium handling changes in female and male hearts is evident. Thus, the aim of this study was to use optical mapping to examine sex differences in ventricular APs and CaTs measured simultaneously from Langendorff-perfused hearts isolated from naïve adult rabbits during β-adrenergic stimulation. The non-selective β-agonist isoproterenol (Iso) decreased AP duration (APD90), CaT duration (CaD80), and the decay constant of the CaT (τ) in a dose-dependent manner (1–316.2 nM), with a plateau at doses ≥31.6 nM. The Iso-induced changes in APD90 and τ (but not CaD80) were significantly smaller in female than male hearts. These sex differences were more significant at faster (5.5 Hz) than resting rates (3 Hz). Treatment with Iso led to the development of spontaneous calcium release (SCR) with a dose threshold of 31.6 nM. While SCR occurrence was similar in female (49%) and male (53%) hearts, the associated ectopic beats had a lower frequency of occurrence (16% versus 40%) and higher threshold (100 nM versus 31.6 nM) in female than male hearts (p<0.05). In conclusion, female hearts had a decreased capacity to respond to β-adrenergic stimulation, particularly under conditions of increased demand (i.e. faster pacing rates and “maximal” levels of Iso effects), however this reduced β-adrenergic responsiveness of female hearts was associated with reduced arrhythmic activity. PMID:25340795

  10. Computational analysis of microRNA function in heart development.

    PubMed

    Liu, Ganqiang; Ding, Min; Chen, Jiajia; Huang, Jinyan; Wang, Haiyun; Jing, Qing; Shen, Bairong

    2010-09-01

    Emerging evidence suggests that specific spatio-temporal microRNA (miRNA) expression is required for heart development. In recent years, hundreds of miRNAs have been discovered. In contrast, functional annotations are available only for a very small fraction of these regulatory molecules. In order to provide a global perspective for the biologists who study the relationship between differentially expressed miRNAs and heart development, we employed computational analysis to uncover the specific cellular processes and biological pathways targeted by miRNAs in mouse heart development. Here, we utilized Gene Ontology (GO) categories, KEGG Pathway, and GeneGo Pathway Maps as a gene functional annotation system for miRNA target enrichment analysis. The target genes of miRNAs were found to be enriched in functional categories and pathway maps in which miRNAs could play important roles during heart development. Meanwhile, we developed miRHrt (http://sysbio.suda.edu.cn/mirhrt/), a database aiming to provide a comprehensive resource of miRNA function in regulating heart development. These computational analysis results effectively illustrated the correlation of differentially expressed miRNAs with cellular functions and heart development. We hope that the identified novel heart development-associated pathways and the database presented here would facilitate further understanding of the roles and mechanisms of miRNAs in heart development.

  11. Heart transplant

    MedlinePlus

    ... Tests of your kidney and liver Tests to evaluate your heart, such as EKG , echocardiogram , and cardiac ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  12. Sodium Tanshinone IIA Sulfonate Improves Hemodynamic Parameters, Cytokine Release, and Multi-Organ Damage in Endotoxemia Rabbits.

    PubMed

    Ma, Shaolei; Wang, Xian; Wang, Yujie; Zuo, Xiangrong

    2018-05-08

    BACKGROUND The aim of this study was to evaluate the protective effects of sodium tanshinone IIA sulfonate (STS) on hemodynamic parameters, cytokine release, and multiple organ damage in an animal model of lipopolysaccharide (LPS)-induced endotoxemia. MATERIAL AND METHODS Twenty-four rabbits were randomly divided into 3 groups: control (n=8), LPS (n=8), and STS pretreatment + LPS (n=8) groups. With arterial invasive monitoring, hemodynamic variables were observed at 30 min before and at 0, 10, 20, 30, 60, 120, 180, 240, and 300 min after LPS injection. Circulatory inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10), and relevant biochemical markers, including arterial partial pressure of oxygen (PaO2), plasma cardiac troponin I (cTnI), alanine aminotransferase (ALT), and creatinine (Cr), were measured at each time point. At the end of the experiment, all rabbits were sacrificed; histopathological examination of the heart, lung, liver, and kidney tissue was performed and organ injury was semi-quantitatively scored for each organ. RESULTS Mean arterial pressure (MAP) and heart rate (HR) significantly decreased within 30 min and again after 120 min following LPS injection. However, STS pretreatment gradually normalized MAP and HR after 120 min following LPS injection. In addition, STS ameliorated LPS-induced decrease of PaO2, LPS-induced increase of TNF-α, cTnI, and ALT, and enhanced LPS-induced increase of IL-10. Moreover, STS reduced heart, lung, and liver histopathologic injury. CONCLUSIONS STS can significantly stabilize LPS-induced hemodynamic deterioration, regulate inflammatory cytokine secretion, and protect heart, lung, and liver in rabbits.

  13. Dynamic positional fate map of the primary heart-forming region.

    PubMed

    Cui, Cheng; Cheuvront, Tracey J; Lansford, Rusty D; Moreno-Rodriguez, Ricardo A; Schultheiss, Thomas M; Rongish, Brenda J

    2009-08-15

    Here we show the temporal-spatial orchestration of early heart morphogenesis at cellular level resolution, in vivo, and reconcile conflicting positional fate mapping data regarding the primary heart-forming field(s). We determined the positional fates of precardiac cells using a precision electroporation approach in combination with wide-field time-lapse microscopy in the quail embryo, a warm-blooded vertebrate (HH Stages 4 through 10). Contrary to previous studies, the results demonstrate the existence of a "continuous" circle-shaped heart field that spans the midline, appearing at HH Stage 4, which then expands to form a wide arc of progenitors at HH Stages 5-7. Our time-resolved image data show that a subset of these cardiac progenitor cells do not overlap with the expression of common cardiogenic factors, Nkx-2.5 and Bmp-2, until HH Stage 10, when a tubular heart has formed, calling into question when cardiac fate is specified and by which key factors. Sub-groups and anatomical bands (cohorts) of heart precursor cells dramatically change their relative positions in a process largely driven by endodermal folding and other large-scale tissue deformations. Thus, our novel dynamic positional fate maps resolve the origin of cardiac progenitor cells in amniotes. The data also establish the concept that tissue motion contributes significantly to cellular position fate - i.e., much of the cellular displacement that occurs during assembly of a midline heart tube (HH Stage 9) is NOT due to "migration" (autonomous motility), a commonly held belief. Computational analysis of our time-resolved data lays the foundation for more precise analyses of how cardiac gene regulatory networks correlate with early heart tissue morphogenesis in birds and mammals.

  14. Influence of ECG sampling rate in fetal heart rate variability analysis.

    PubMed

    De Jonckheere, J; Garabedian, C; Charlier, P; Champion, C; Servan-Schreiber, E; Storme, L; Debarge, V; Jeanne, M; Logier, R

    2017-07-01

    Fetal hypoxia results in a fetal blood acidosis (pH<;7.10). In such a situation, the fetus develops several adaptation mechanisms regulated by the autonomic nervous system. Many studies demonstrated significant changes in heart rate variability in hypoxic fetuses. So, fetal heart rate variability analysis could be of precious help for fetal hypoxia prediction. Commonly used fetal heart rate variability analysis methods have been shown to be sensitive to the ECG signal sampling rate. Indeed, a low sampling rate could induce variability in the heart beat detection which will alter the heart rate variability estimation. In this paper, we introduce an original fetal heart rate variability analysis method. We hypothesize that this method will be less sensitive to ECG sampling frequency changes than common heart rate variability analysis methods. We then compared the results of this new heart rate variability analysis method with two different sampling frequencies (250-1000 Hz).

  15. QRS/T-wave and calcium alternans in a type I diabetic mouse model for spontaneous postmyocardial infarction ventricular tachycardia: A mechanism for the antiarrhythmic effect of statins.

    PubMed

    Jin, Hongwei; Welzig, Charles M; Aronovitz, Mark; Noubary, Farzad; Blanton, Robert; Wang, Bo; Rajab, Mohammad; Albano, Alfred; Link, Mark S; Noujaim, Sami F; Park, Ho-Jin; Galper, Jonas B

    2017-09-01

    The incidence of sudden arrhythmic death is markedly increased in diabetics. The purpose of this study was to develop a mouse model for postmyocardial infarction (post-MI) ventricular tachycardia (VT) in the diabetic heart and determine the mechanism of an antiarrhythmic effect of statins. ECG transmitters were implanted in wild-type (WT), placebo, and pravastatin-treated type I diabetic Akita mice. MIs were induced by coronary ligation, and Ca 2+ transients were studied by optical mapping, and Ca 2+ transients and sparks in left ventricular myocytes (VM) by the Ionoptix system and confocal microscopy. Burst pacing of Akita mouse hearts resulted in rate-related QRS/T-wave alternans, which was attenuated in pravastatin-treated mice. Post-MI Akita mice developed QRS/T-wave alternans and VT at 2820 ± 879 beats per mouse, which decreased to 343 ± 115 in pravastatin-treated mice (n = 13, P <.05). Optical mapping demonstrated pacing-induced VT originating in the peri-infarction zone and Ca 2+ alternans, both attenuated in hearts of statin-treated mice. Akita VM displayed Ca 2+ alternans, and triggered activity as well as increased Ca 2+ transient decay time (Tau), Ca 2+ sparks, and cytosolic Ca 2+ and decreased SR Ca 2+ stores all of which were in part reversed in cells from statin treated mice. Homogenates of Akita ventricles demonstrated decreased SERCA2a/PLB ratio and increased ratio of protein phosphatase (PP-1) to the PP-1 inhibitor PPI-1 which were reversed in homogenates of pravastatin-treated Akita mice. Pravastatin decreased the incidence of post-MI VT and Ca 2+ alternans in Akita mouse hearts in part by revering abnormalities of Ca 2+ handling via the PP-1/PPI-1 pathway. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  16. Lessons from the Heart: Individualizing Physical Education with Heart Rate Monitors.

    ERIC Educational Resources Information Center

    Kirkpatrick, Beth; Birnbaum, Burton H.

    Learning about the relationship between heart rate and physical activity is an important aspect of fitness education. Use of a heart rate monitor (HRM) helps a student to understand how stretching and large muscle movements gradually increase the heart rate and blood flow, and enables students to measure their exercise heart rates and set goals…

  17. [Measurement of the electric field of the heart in a homogeneous volume conductor].

    PubMed

    Tsukerman, B M; Titomir, L I

    1975-01-01

    The paper describes a technique and some results of experimental measurements of electrical potentials generated by an isolated dog heart in homogeneous conductor, drawing equipotential maps of the field, and calculating the characteristics of the dipole equivalent generator of the heart. The form of potential distribution on a spherical surface around the heart and its ideal orthogonal vectorcardiograms are discussed.

  18. Developing a novel comprehensive framework for the investigation of cellular and whole heart electrophysiology in the in situ human heart: historical perspectives, current progress and future prospects.

    PubMed

    Taggart, Peter; Orini, Michele; Hanson, Ben; Hayward, Martin; Clayton, Richard; Dobrzynski, Halina; Yanni, Joseph; Boyett, Mark; Lambiase, Pier D

    2014-08-01

    Understanding the mechanisms of fatal ventricular arrhythmias is of great importance. In view of the many electrophysiological differences that exist between animal species and humans, the acquisition of basic electrophysiological data in the intact human heart is essential to drive and complement experimental work in animal and in-silico models. Over the years techniques have been developed to obtain basic electrophysiological signals directly from the patients by incorporating these measurements into routine clinical procedures which access the heart such as cardiac catheterisation and cardiac surgery. Early recordings with monophasic action potentials provided valuable information including normal values for the in vivo human heart, cycle length dependent properties, the effect of ischaemia, autonomic nervous system activity, and mechano-electric interaction. Transmural recordings addressed the controversial issue of the mid myocardial "M" cell. More recently, the technique of multielectrode mapping (256 electrodes) developed in animal models has been extended to humans, enabling mapping of activation and repolarisation on the entire left and right ventricular epicardium in patients during cardiac surgery. Studies have examined the issue of whether ventricular fibrillation was driven by a "mother" rotor with inhomogeneous and fragmented conduction as in some animal models, or by multiple wavelets as in other animal studies; results showed that both mechanisms are operative in humans. The simpler spatial organisation of human VF has important implications for treatment and prevention. To link in-vivo human electrophysiological mapping with cellular biophysics, multielectrode mapping is now being combined with myocardial biopsies. This technique enables region-specific electrophysiology changes to be related to underlying cellular biology, for example: APD alternans, which is a precursor of VF and sudden death. The mechanism is incompletely understood but related to calcium cycling and APD restitution. Multielectrode sock mapping during incremental pacing enables epicardial sites to be identified which exhibit marked APD alternans and sites where APD alternans is absent. Whole heart electrophysiology is assessed by activation repolarisation mapping and analysis is performed immediately on-site in order to guide biopsies to specific myocardial sites. Samples are analysed for ion channel expression, Ca(2+)-handling proteins, gap junctions and extracellular matrix. This new comprehensive approach to bridge cellular and whole heart electrophysiology allowed to identify 20 significant changes in mRNA for ion channels Ca(2+)-handling proteins, a gap junction channel, a Na(+)-K(+) pump subunit and receptors (particularly Kir 2.1) between the positive and negative alternans sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Heart rate monitoring mobile applications.

    PubMed

    Chaudhry, Beenish M

    2016-01-01

    Total number of times a heart beats in a minute is known as the heart rate. Traditionally, heart rate was measured using clunky gadgets but these days it can be measured with a smartphone's camera. This can help you measure your heart rate anywhere and at anytime, especially during workouts so you can adjust your workout intensity to achieve maximum health benefits. With simple and easy to use mobile app, 'Unique Heart Rate Monitor', you can also maintain your heart rate history for personal reflection and sharing with a provider.

  20. Robust motion artefact resistant circuit for calculation of Mean Arterial Pressure from pulse transit time.

    PubMed

    Bhattacharya, Tinish; Gupta, Ankesh; Singh, Salam ThoiThoi; Roy, Sitikantha; Prasad, Anamika

    2017-07-01

    Cuff-less and non-invasive methods of Blood Pressure (BP) monitoring have faced a lot of challenges like stability, noise, motion artefact and requirement for calibration. These factors are the major reasons why such devices do not get approval from the medical community easily. One such method is calculating Blood Pressure indirectly from pulse transit time (PTT) obtained from electrocardiogram (ECG) and Photoplethysmogram (PPG). In this paper we have proposed two novel analog signal conditioning circuits for ECG and PPG that increase stability, remove motion artefacts, remove the sinusoidal wavering of the ECG baseline due to respiration and provide consistent digital pulses corresponding to blood pulses/heart-beat. We have combined these two systems to obtain the PTT and then correlated it with the Mean Arterial Pressure (MAP). The aim was to perform major part of the processing in analog domain to decrease processing load over microcontroller so as to reduce cost and make it simple and robust. We have found from our experiments that the proposed circuits can calculate the Heart Rate (HR) with a maximum error of ~3.0% and MAP with a maximum error of ~2.4% at rest and ~4.6% in motion.

  1. Optical mapping at increased illumination intensities

    NASA Astrophysics Data System (ADS)

    Kanaporis, Giedrius; Martišienė, Irma; Jurevičius, Jonas; Vosyliūtė, Rūta; Navalinskas, Antanas; Treinys, Rimantas; Matiukas, Arvydas; Pertsov, Arkady M.

    2012-09-01

    Voltage-sensitive fluorescent dyes have become a major tool in cardiac and neuro-electrophysiology. Achieving high signal-to-noise ratios requires increased illumination intensities, which may cause photobleaching and phototoxicity. The optimal range of illumination intensities varies for different dyes and must be evaluated individually. We evaluate two dyes: di-4-ANBDQBS (excitation 660 nm) and di-4-ANEPPS (excitation 532 nm) in the guinea pig heart. The light intensity varies from 0.1 to 5 mW/mm2, with the upper limit at 5 to 10 times above values reported in the literature. The duration of illumination was 60 s, which in guinea pigs corresponds to 300 beats at a normal heart rate. Within the identified duration and intensity range, neither dye shows significant photobleaching or detectable phototoxic effects. However, light absorption at higher intensities causes noticeable tissue heating, which affects the electrophysiological parameters. The most pronounced effect is a shortening of the action potential duration, which, in the case of 532-nm excitation, can reach ˜30%. At 660-nm excitation, the effect is ˜10%. These findings may have important implications for the design of optical mapping protocols in biomedical applications.

  2. Heart Rate, Life Expectancy and the Cardiovascular System: Therapeutic Considerations.

    PubMed

    Boudoulas, Konstantinos Dean; Borer, Jeffrey S; Boudoulas, Harisios

    2015-01-01

    It has long been known that life span is inversely related to resting heart rate in most organisms. This association between heart rate and survival has been attributed to the metabolic rate, which is greater in smaller animals and is directly associated with heart rate. Studies have shown that heart rate is related to survival in apparently healthy individuals and in patients with different underlying cardiovascular diseases. A decrease in heart rate due to therapeutic interventions may result in an increase in survival. However, there are many factors regulating heart rate, and it is quite plausible that these may independently affect life expectancy. Nonetheless, a fast heart rate itself affects the cardiovascular system in multiple ways (it increases ventricular work, myocardial oxygen consumption, endothelial stress, aortic/arterial stiffness, decreases myocardial oxygen supply, other) which, in turn, may affect survival. In this brief review, the effects of heart rate on the heart, arterial system and survival will be discussed. © 2015 S. Karger AG, Basel.

  3. A method to improve the B0 homogeneity of the heart in vivo.

    PubMed

    Jaffer, F A; Wen, H; Balaban, R S; Wolff, S D

    1996-09-01

    A homogeneous static (B0) magnetic field is required for many NMR experiments such as echo planar imaging, localized spectroscopy, and spiral scan imaging. Although semi-automated techniques have been described to improve the B0 field homogeneity, none has been applied to the in vivo heart. The acquisition of cardiac field maps is complicated by motion, blood flow, and chemical shift artifact from epicardial fat. To overcome these problems, an ungated three-dimensional (3D) chemical shift image (CSI) was collected to generate a time and motion-averaged B0 field map. B0 heterogeneity in the heart was minimized by using a previous algorithm that solves for the optimal shim coil currents for an input field map, using up to third-order current-bounded shims (1). The method improved the B0 homogenelty of the heart in all 11 normal volunteers studied. After application of the algorithm to the unshimmed cardiac field maps, the standard deviation of proton frequency decreased by 43%, the magnitude 1H spectral linewidth decreased by 24%, and the peak-peak gradient decreased by 35%. Simulations of the high-order (second- and third-order) shims in B0 field correction of the heart show that high order shims are important, resulting for nearly half of the improvement in homogeneity for several subjects. The T2* of the left ventricular anterior wall before and after field correction was determined at 4.0 Tesis. Finally, results show that cardiac shimming is of benefit in cardiac 31P NMR spectroscopy and cardiac echo planar imaging.

  4. Resting Heart Rate and Outcomes in Patients with Cardiovascular Disease: Where Do We Currently Stand?

    PubMed Central

    Menown, Ian BA; Davies, Simon; Gupta, Sandeep; Kalra, Paul R; Lang, Chim C; Morley, Chris; Padmanabhan, Sandosh

    2013-01-01

    Background Data from large epidemiological studies suggest that elevated heart rate is independently associated with cardiovascular and all-cause mortality in patients with hypertension and in those with established cardiovascular disease. Clinical trial findings also suggest that the favorable effects of beta-blockers and other heart rate–lowering agents in patients with acute myocardial infarction and congestive heart failure may be, at least in part, due to their heart rate–lowering effects. Contemporary clinical outcome prediction models such as the Global Registry of Acute Coronary Events (GRACE) score include admission heart rate as an independent risk factor. Aims This article critically reviews the key epidemiology concerning heart rate and cardiovascular risk, potential mechanisms through which an elevated resting heart rate may be disadvantageous and evaluates clinical trial outcomes associated with pharmacological reduction in resting heart rate. Conclusions Prospective randomised data from patients with significant coronary heart disease or heart failure suggest that intervention to reduce heart rate in those with a resting heart rate >70 bpm may reduce cardiovascular risk. Given the established observational data and randomised trial evidence, it now appears appropriate to include reduction of elevated resting heart rate by lifestyle +/− pharmacological therapy as part of a secondary prevention strategy in patients with cardiovascular disease. PMID:22954325

  5. Corrected body surface potential mapping.

    PubMed

    Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland

    2007-02-01

    In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.

  6. Etalon (standard) for surface potential distribution produced by electric activity of the heart.

    PubMed

    Szathmáry, V; Ruttkay-Nedecký, I

    1981-01-01

    The authors submit etalon (standard) equipotential maps as an aid in the evaluation of maps of surface potential distributions in living subjects. They were obtained by measuring potentials on the surface of an electrolytic tank shaped like the thorax. The individual etalon maps were determined in such a way that the parameters of the physical dipole forming the source of the electric field in the tank corresponded to the mean vectorcardiographic parameters measured in a healthy population sample. The technique also allows a quantitative estimate of the degree of non-dipolarity of the heart as the source of the electric field.

  7. The mitochondrial uniporter controls fight or flight heart rate increases.

    PubMed

    Wu, Yuejin; Rasmussen, Tyler P; Koval, Olha M; Joiner, Mei-Ling A; Hall, Duane D; Chen, Biyi; Luczak, Elizabeth D; Wang, Qiongling; Rokita, Adam G; Wehrens, Xander H T; Song, Long-Sheng; Anderson, Mark E

    2015-01-20

    Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.

  8. Heart Rate Dynamics During A Treadmill Cardiopulmonary Exercise Test in Optimized Beta-Blocked Heart Failure Patients

    PubMed Central

    Carvalho, Vitor Oliveira; Guimarães, Guilherme Veiga; Ciolac, Emmanuel Gomes; Bocchi, Edimar Alcides

    2008-01-01

    BACKGROUND Calculating the maximum heart rate for age is one method to characterize the maximum effort of an individual. Although this method is commonly used, little is known about heart rate dynamics in optimized beta-blocked heart failure patients. AIM The aim of this study was to evaluate heart rate dynamics (basal, peak and % heart rate increase) in optimized beta-blocked heart failure patients compared to sedentary, normal individuals (controls) during a treadmill cardiopulmonary exercise test. METHODS Twenty-five heart failure patients (49±11 years, 76% male), with an average LVEF of 30±7%, and fourteen controls were included in the study. Patients with atrial fibrillation, a pacemaker or noncardiovascular functional limitations or whose drug therapy was not optimized were excluded. Optimization was considered to be 50 mg/day or more of carvedilol, with a basal heart rate between 50 to 60 bpm that was maintained for 3 months. RESULTS Basal heart rate was lower in heart failure patients (57±3 bpm) compared to controls (89±14 bpm; p<0.0001). Similarly, the peak heart rate (% maximum predicted for age) was lower in HF patients (65.4±11.1%) compared to controls (98.6±2.2; p<0.0001). Maximum respiratory exchange ratio did not differ between the groups (1.2±0.5 for controls and 1.15±1 for heart failure patients; p=0.42). All controls reached the maximum heart rate for their age, while no patients in the heart failure group reached the maximum. Moreover, the % increase of heart rate from rest to peak exercise between heart failure (48±9%) and control (53±8%) was not different (p=0.157). CONCLUSION No patient in the heart failure group reached the maximum heart rate for their age during a treadmill cardiopulmonary exercise test, despite the fact that the percentage increase of heart rate was similar to sedentary normal subjects. A heart rate increase in optimized beta-blocked heart failure patients during cardiopulmonary exercise test over 65% of the maximum age-adjusted value should be considered an effort near the maximum. This information may be useful in rehabilitation programs and ischemic tests, although further studies are required. PMID:18719758

  9. 'Multi-associations': predisposed to misinterpretation of peripheral tissue oxygenation and circulation in neonates.

    PubMed

    Pichler, Gerhard; Pocivalnik, Mirjam; Riedl, Regina; Pichler-Stachl, Elisabeth; Morris, Nicholas; Zotter, Heinz; Müller, Wilhelm; Urlesberger, Berndt

    2011-08-01

    Interpretation of peripheral circulation in ill neonates is crucial but difficult. The aim was to analyse parameters potentially influencing peripheral oxygenation and circulation. In a prospective observational cohort study in 116 cardio-circulatory stable neonates, peripheral muscle near-infrared spectroscopy (NIRS) with venous occlusion was performed. Tissue oxygenation index (TOI), mixed venous oxygenation (SvO(2)), fractional oxygen extraction (FOE), fractional tissue oxygen extraction (FTOE), haemoglobin flow (Hbflow), oxygen delivery (DO(2)), oxygen consumption (VO(2)), and vascular resistance (VR) were assessed. Correlation coefficients between NIRS parameters and demographic parameters (gestational age, birth weight, age, actual weight, diameter of calf, subcutaneous adipose tissue), monitoring parameters (heart rate, arterial oxygen saturation (SaO(2)), mean blood pressure (MAP), core/peripheral temperature, central/peripheral capillary refill time) and laboratory parameters (haemoglobin concentration (Hb-blood), pCO(2)) were calculated. All demographic parameters except for Hbflow and DO(2) correlated with NIRS parameters. Heart rate correlated with TOI, SvO(2), VO(2) and VR. SaO(2) correlated with FOE/FTOE. MAP correlated with Hbflow, DO(2), VO(2) and VR. Core temperature correlated with FTOE. Peripheral temperature correlated with all NIRS parameters except VO(2). Hb-blood correlated with FOE and VR. pCO(2) levels correlated with TOI and SvO(2). The presence of multiple interdependent factors associated with peripheral oxygenation and circulation highlights the difficulty in interpreting NIRS data. Nevertheless, these findings have to be taken into account when analysing peripheral oxygenation and circulation data.

  10. Social stress response in adolescents with bipolar disorder.

    PubMed

    Casement, Melynda D; Goldstein, Tina R; Gratzmiller, Sarah M; Franzen, Peter L

    2018-05-01

    Theoretical models posit that stressors contribute to the onset and maintenance of bipolar disorder in adolescence through disruptions in stress physiology, but physiological response to stressors has not been evaluated in adolescents with bipolar illness. The present study tests the hypothesis that adolescents with bipolar disorder will have greater reactivity to a laboratory social stress task than healthy adolescents. Adolescents with bipolar illness (n = 27) and healthy adolescents (n = 28) completed a modified version of the Trier Social Stress Task. Stress response was assessed using high frequency heart rate variability (HF-HRV), heart rate (HR), mean arterial blood pressure (MAP), salivary cortisol, and subjective stress. Multilevel models were used to test for group differences in resting-state physiology, and stress reactivity and recovery. Adolescents with bipolar disorder had greater reactivity in HF-HRV (z = 3.32), but blunted reactivity in MAP (z = -3.08) and cortisol (z = -2.60), during the stressor compared to healthy adolescents. They also had lower resting HF-HRV (z = -3.49) and cortisol (z = -2.86), and higher resting HR (z = 3.56), than healthy adolescents. These results indicate that bipolar disorder is associated with disruptions in autonomic and endocrine response to stress during adolescence, including greater HF-HRV reactivity. Further research should evaluate whether these individual differences in stress physiology precede and predict the onset of mood episodes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. When an Increase in Central Systolic Pressure Overrides the Benefits of Heart Rate Lowering.

    PubMed

    Messerli, Franz H; Rimoldi, Stefano F; Bangalore, Sripal; Bavishi, Chirag; Laurent, Stephane

    2016-08-16

    An elevated resting heart rate has been unequivocally linked to adverse cardiovascular events. Conversely, a physiologically low heart rate may confer longevity benefits. Moreover, pharmacological heart rate lowering reduces cardiovascular outcomes in patients with heart failure, with the magnitude of the reduction associated with survival benefit. In contrast, pharmacological heart rate lowering paradoxically increases cardiovascular events in hypertension, possibly because it elicits a ventricular-vascular mismatch, leading to increased central systolic blood pressure (BP). By the same hemodynamic mechanism, pharmacological heart rate lowering also engenders an increase in central (aortic) BP in coronary heart disease and, as a consequence, fails to decrease myocardial oxygen consumption. Whether in heart failure, hypertension, or coronary heart disease, or even athletes, heart rate lowering consistently increases central systolic pressure. The increase in central systolic BP is prone to abolish the potential benefits of heart rate lowering interventions, possibly accounting for failure to reduce outcomes in patients with hypertension and coronary artery disease. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Heart rate monitoring mobile applications

    PubMed Central

    2016-01-01

    Total number of times a heart beats in a minute is known as the heart rate. Traditionally, heart rate was measured using clunky gadgets but these days it can be measured with a smartphone’s camera. This can help you measure your heart rate anywhere and at anytime, especially during workouts so you can adjust your workout intensity to achieve maximum health benefits. With simple and easy to use mobile app, ‘Unique Heart Rate Monitor’, you can also maintain your heart rate history for personal reflection and sharing with a provider. PMID:28293594

  13. The heart, macrocirculation and microcirculation in hypertension: a unifying hypothesis.

    PubMed

    Struijker Boudier, Harry A J; Cohuet, Géraldine M S; Baumann, Marcus; Safar, Michel E

    2003-06-01

    Epidemiological studies in the past decade have stressed the importance of both pulse pressure and mean arterial pressure (MAP) as important risk factors in hypertension-related cardiovascular disease. Pulse pressure and MAP are determined by different segments of the cardiovascular system. Pulse pressure is the pulsatile component of the blood pressure curve. It is determined by left ventricular ejection, the cushioning capacity (compliance) of the large arteries, and the timing and intensity of wave reflections from the microcirculation. MAP is the steady component; it is determined by cardiac output and peripheral (micro)vascular resistance. To a large degree, the structural design of the heart and vascular tree determine the pulse pressure and MAP, in addition to the propagation of the pressure wave through the vasculature. Pressure and flow, in contrast, influence the composition and geometry of the heart and vasculature. Hypertensive disease is associated with important structural alterations of the heart, such as hypertrophy and fibrosis, and of the vasculature, such as large artery stiffening, small artery remodelling and microvascular rarefaction. Recent basic research has revealed some of the molecular pathways involved in the remodelling of the cardiovascular system under the influence of physical forces. For correct understanding of the pathophysiology of hypertensive disease, its risks for target-organ damage and its effective treatment, both the pulsatile and steady components of the blood pressure curve must be considered.

  14. Management of supraventricular arrhythmias in adults with congenital heart disease.

    PubMed

    Wasmer, Kristina; Eckardt, Lars

    2016-10-15

    Supraventricular arrhythmias are a frequent complication in adults with congenital heart disease (ACHD). The prevalence increases with time since surgery, complexity of the underlying defect, type of repair and older age at surgery. Arrhythmias are the most frequent reason for hospital admission and along with heart failure the leading cause of death. The arrhythmia-associated increase in morbidity and mortality makes their management a key task in patients with ACHD. Intra-atrial re-entry is the most frequent arrhythmia mechanism. Less common arrhythmia mechanisms are supraventricular tachycardias in the presence of an accessory pathway, atrioventricular nodal re-entrant tachycardia or focal tachycardias. Patient management includes stroke prevention, acute termination and prevention of arrhythmia recurrence. Acute treatment depends on patients' symptoms. In cases of haemodynamic instability, immediate cardioversion is warranted. For stable patients, acute treatment includes rate control and termination by antiarrhythmic drugs or electrical cardioversion. Following a symptomatic arrhythmia, catheter ablation or treatment with antiarrhythmic drugs is recommended to prevent recurrences. Advances in mapping and ablation technology are now associated with high success rates of catheter ablation. In patients with a complex substrate recurrence rates of 50% remain high. However, in the presence of side effects and complications associated with long-term antiarrhythmic drug therapy, redo procedures are encouraged by current guidelines. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Pharmacological heart rate lowering in patients with a preserved ejection fraction-review of a failing concept.

    PubMed

    Meyer, Markus; Rambod, Mehdi; LeWinter, Martin

    2018-07-01

    Epidemiological studies have demonstrated that high resting heart rates are associated with increased mortality. Clinical studies in patients with heart failure and reduced ejection fraction have shown that heart rate lowering with beta-blockers and ivabradine improves survival. It is therefore often assumed that heart rate lowering is beneficial in other patients as well. Here, we critically appraise the effects of pharmacological heart rate lowering in patients with both normal and reduced ejection fraction with an emphasis on the effects of pharmacological heart rate lowering in hypertension and heart failure. Emerging evidence from recent clinical trials and meta-analyses suggest that pharmacological heart rate lowering is not beneficial in patients with a normal or preserved ejection fraction. This has just begun to be reflected in some but not all guideline recommendations. The detrimental effects of pharmacological heart rate lowering are due to an increase in central blood pressures, higher left ventricular systolic and diastolic pressures, and increased ventricular wall stress. Therefore, we propose that heart rate lowering per se reproduces the hemodynamic effects of diastolic dysfunction and imposes an increased arterial load on the left ventricle, which combine to increase the risk of heart failure and atrial fibrillation. Pharmacologic heart rate lowering is clearly beneficial in patients with a dilated cardiomyopathy but not in patients with normal chamber dimensions and normal systolic function. These conflicting effects can be explained based on a model that considers the hemodynamic and ventricular structural effects of heart rate changes.

  16. Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis.

    PubMed

    Woznica, Arielle; Haeussler, Maximilian; Starobinska, Ella; Jemmett, Jessica; Li, Younan; Mount, David; Davidson, Brad

    2012-08-01

    The complex, partially redundant gene regulatory architecture underlying vertebrate heart formation has been difficult to characterize. Here, we dissect the primary cardiac gene regulatory network in the invertebrate chordate, Ciona intestinalis. The Ciona heart progenitor lineage is first specified by Fibroblast Growth Factor/Map Kinase (FGF/MapK) activation of the transcription factor Ets1/2 (Ets). Through microarray analysis of sorted heart progenitor cells, we identified the complete set of primary genes upregulated by FGF/Ets shortly after heart progenitor emergence. Combinatorial sequence analysis of these co-regulated genes generated a hypothetical regulatory code consisting of Ets binding sites associated with a specific co-motif, ATTA. Through extensive reporter analysis, we confirmed the functional importance of the ATTA co-motif in primary heart progenitor gene regulation. We then used the Ets/ATTA combination motif to successfully predict a number of additional heart progenitor gene regulatory elements, including an intronic element driving expression of the core conserved cardiac transcription factor, GATAa. This work significantly advances our understanding of the Ciona heart gene network. Furthermore, this work has begun to elucidate the precise regulatory architecture underlying the conserved, primary role of FGF/Ets in chordate heart lineage specification. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Intervention Mapping Approach in the Design of an Interactive Mobile Health Application to Improve Self-care in Heart Failure.

    PubMed

    Athilingam, Ponrathi; Clochesy, John M; Labrador, Miguel A

    2018-02-01

    Heart failure is a complex syndrome among older adults who may experience and interpret symptoms differently. These differences in symptom interpretation may influence decision-making in symptom management. A well-informed and motivated person may develop the knowledge and skills needed to successfully manage symptoms. Therefore, the patient-centered mobile health application HeartMapp was designed to engage patients with heart failure in self-care management by offering tailored alerts and feedback using mobile phones. The main objective of this article is to describe the six-step intervention mapping approach including (1) the initial needs assessment, (2) proximal program objective, (3) selection of theory-based methods, (4) the translation of objectives into an actual program plan for mobile health intervention, (5) adaptation and implementation plan, and (6) evaluation plan that assisted the team in the development of a conceptual framework and intervention program matrix during the development of HeartMapp. The HeartMapp intervention takes the information, motivation, and behavioral skills model as the theoretical underpinning, with "patient engagement" as the key mediator in achieving targeted and persistent self-care behavioral changes in patients with heart failure. The HeartMapp intervention is proposed to improve self-care management and long-term outcomes.

  18. Changes in Heart Rate Associated with Exenatide Once Weekly: Pooled Analysis of Clinical Data in Patients with Type 2 Diabetes.

    PubMed

    Marso, Steven P; Hardy, Elise; Han, Jenny; Wang, Hui; Chilton, Robert J

    2018-04-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RAs) improve glycemia in patients with type 2 diabetes, but heart rate increases have been observed. A pooled post hoc analysis of 11 randomized clinical trials (N = 4595) of 10-30 weeks' duration from the exenatide once-weekly (QW) development program evaluated heart rate with exenatide QW (intervention group) and exenatide twice daily (BID), liraglutide, and non-GLP-1RAs (insulin, metformin, pioglitazone, and sitagliptin) (comparison groups). The time course and size of heart rate changes from baseline and the relationship of heart rate change with baseline heart rate were studied. A multivariate analysis (9 studies; N = 3903) examined associations between patient characteristics or treatments and heart rate increases. Mean baseline heart rate ± standard deviation was 75.0 ± 8.5 beats per minute (bpm) with exenatide QW (n = 2096), 75.8 ± 8.7 bpm with exenatide BID (n = 606), 75.2 ± 8.9 bpm with liraglutide (n = 450), and 74.5 ± 8.6 bpm with non-GLP-1RAs (n = 1443). Least-squares mean ± standard error changes from baseline to final heart rate were + 2.7 ± 0.2, + 1.0 ± 0.3, and + 3.0 ± 0.4 bpm with exenatide QW, exenatide BID, and liraglutide, respectively, and - 0.8 ± 0.2 bpm with non-GLP-1RAs. The size and direction of heart rate changes in individual patients varied within each treatment group at all time points. At posttreatment follow-up, heart rate reverted to the baseline level after GLP-1RA discontinuation. Heart rate changes correlated negatively with baseline heart rate for all therapies (r = - 0.3 to - 0.4). Baseline heart rate was the strongest predictor of increased heart rate. Small increases in heart rate were associated with exenatide QW, exenatide BID, and liraglutide treatments but reverted to baseline after discontinuation. Increases were more likely in patients with a low baseline heart rate. The clinical relevance of these heart rate increases is unknown but will be clarified by several ongoing and recently completed cardiovascular outcome studies.

  19. Reduced intrinsic heart rate is associated with reduced arrhythmic susceptibility in guinea-pig heart.

    PubMed

    Osadchii, Oleg E

    2014-12-01

    In the clinical setting, patients with slower resting heart rate are less prone to cardiovascular death compared with those with elevated heart rate. However, electrophysiological adaptations associated with reduced cardiac rhythm have not been thoroughly explored. In this study, relationships between intrinsic heart rate and arrhythmic susceptibility were examined by assessments of action potential duration (APD) rate adaptation and inducibility of repolarization alternans in sinoatrial node (SAN)-driven and atrioventricular (AV)-blocked guinea-pig hearts perfused with Langendorff apparatus. Electrocardiograms, epicardial monophasic action potentials, and effective refractory periods (ERP) were assessed in normokalemic and hypokalemic conditions. Slower basal heart rate in AV-blocked hearts was associated with prolonged ventricular repolarization during spontaneous beating, and with attenuated APD shortening at increased cardiac activation rates during dynamic pacing, when compared with SAN-driven hearts. During hypokalemic perfusion, the inducibility of repolarization alternans and tachyarrhythmia by rapid pacing was found to be lower in AV-blocked hearts. This difference was ascribed to prolonged ERP in the setting of reduced basal heart rate, which prevented ventricular capture at critically short pacing intervals required to induce arrhythmia. Reduced basal heart rate is associated with electrophysiological changes that prevent electrical instability upon an abrupt cardiac acceleration.

  20. Effects of acute hypoxia on the determination of anaerobic threshold using the heart rate-work rate relationships during incremental exercise tests.

    PubMed

    Ozcelik, O; Kelestimur, H

    2004-01-01

    Anaerobic threshold which describes the onset of systematic increase in blood lactate concentration is a widely used concept in clinical and sports medicine. A deflection point between heart rate-work rate has been introduced to determine the anaerobic threshold non-invasively. However, some researchers have consistently reported a heart rate deflection at higher work rates, while others have not. The present study was designed to investigate whether the heart rate deflection point accurately predicts the anaerobic threshold under the condition of acute hypoxia. Eight untrained males performed two incremental exercise tests using an electromagnetically braked cycle ergometer: one breathing room air and one breathing 12 % O2. The anaerobic threshold was estimated using the V-slope method and determined from the increase in blood lactate and the decrease in standard bicarbonate concentration. This threshold was also estimated by in the heart rate-work rate relationship. Not all subjects exhibited a heart rate deflection. Only two subjects in the control and four subjects in the hypoxia groups showed a heart rate deflection. Additionally, the heart rate deflection point overestimated the anaerobic threshold. In conclusion, the heart rate deflection point was not an accurate predictor of anaerobic threshold and acute hypoxia did not systematically affect the heart rate-work rate relationships.

  1. When heart goes “BOOM” to fast. Heart rate greater than 80 as mortality predictor in acute myocardial infarction

    PubMed Central

    Davidovic, Goran; Iric-Cupic, Violeta; Milanov, Srdjan; Dimitijevic, Aleksandra; Petrovic-Janicijevic, Mirjana

    2013-01-01

    Many prospective studies established association between high heart rate and increased cardiovascular morbidity and mortality, independently of other risk factors. Heart rate over 80 beats per minute more often leads to atherosclerotic plaque disruption, the main step in developing acute coronary syndrome. Purpose was to investigate the incidence of higher heart rate levels in patients with anterior wall acute myocardial infarction with ST-segment elevation and the influence of heart rate on mortality. Research included 140 patients with anterior wall acute myocardial infarction with ST-segment elevation treated in Coronary Unit, Clinical Center Kragujevac in the period from January 2001-June 2006. Heart rate was calculated as the mean value of baseline and heart rate in the first 30 minutes after admission. Other risk factors were also followed to determine their connection with elevated heart rate. Results showed that the majority of patients survived (over 70%). In a total number of patients, more than 75% had a heart rate levels greater than 80 beats per minute. There was a significant difference in heart rate on addmision between survivors and patients who died, with a greater levels in patients with fatal outcome. Both, univariate and multivariate regression analysis singled out heart rate greater than 80 beats per minute as independent mortality predictor in these patients. Heart rate greater than 80 beats per minute is a major, independent risk factor for morbidity and important predictor of mortality in patients with acute myocardial infarction. PMID:23991346

  2. Comparison of heart rate variability between resting state and external-cuff-inflation-and-deflation state: a pilot study.

    PubMed

    Ji, Lizhen; Liu, Chengyu; Li, Peng; Wang, Xinpei; Yan, Chang; Liu, Changchun

    2015-10-01

    Heart rate variability (HRV) has been widely used in clinical research to provide an insight into the autonomic control of the cardiovascular system. Measurement of HRV is generally performed under a relaxed resting state. The effects of other conditions on HRV measurement, such as running, mountaineering, head-up tilt, etc, have also been investigated. This study aimed to explore whether an inflation-and-deflation process applied to a unilateral upper arm cuff would influence the HRV measurement. Fifty healthy young volunteers aged between 21 and 30 were enrolled in this study. Electrocardiogram (ECG) signals were recorded for each subject over a five minute resting state followed by a five minute external-cuff-inflation-and-deflation state (ECID state). A one minute gap was scheduled between the two measurements. Consecutive RR intervals in the ECG were extracted automatically to form the HRV data for each of the two states. Time domain (SDNN, RMSSD and PNN50), frequency domain (LFn, HFn and LF/HF) and nonlinear (VLI, VAI and SampEn) HRV indices were analyzed and compared between the two states. In addition, the effects of mean artery pressure (MAP) and heart rate (HR) on the aforementioned HRV indices were assessed for the two states, respectively, by Pearson correlation analysis. The results showed no significant difference in all aforementioned HRV indices between the resting and the ECID states (all p  >  0.05). The corresponding HRV indices had significant positive correlation (all p  <  0.01) between the two states. None of the indices showed MAP-related change (all p  >  0.05) for either state. Besides, none of the indices showed HR-related change (all p  >  0.05) for either state except the index of VLI in the resting state. To conclude, this pilot study suggested that the applied ECID process hardly influenced those commonly used HRV indices. It would thus be applicable to simultaneously measure both blood pressure and HRV indices in clinical practice.

  3. Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans.

    PubMed

    Nanthakumar, Kumaraswamy; Jalife, José; Massé, Stéphane; Downar, Eugene; Pop, Mihaela; Asta, John; Ross, Heather; Rao, Vivek; Mironov, Sergey; Sevaptsidis, Elias; Rogers, Jack; Wright, Graham; Dhopeshwarkar, Rajesh

    2007-07-01

    Our objective was to establish a novel model for the study of ventricular fibrillation (VF) in humans. We adopted the established techniques of optical mapping to human ventricles for the first time to determine whether human VF is the result of wave breaks and singularity point formation and is maintained by high-frequency rotors and fibrillatory conduction. We describe the technique of acquiring optical signals in human hearts during VF, their characteristics, and the feasibility of possible analyses that could be performed to elucidate mechanisms of human VF. We used explanted hearts from five cardiomyopathic patients who underwent transplantation. The hearts were Langendorff perfused with Tyrode solution (95% O(2)-5% CO(2)), and the potentiometric dye di-4-ANEPPS was injected as a bolus into the coronary circulation. Fluorescence was excited at 531 +/- 20 nm with a 150-W halogen light source; the emission signal was long-pass filtered at 610 nm and recorded with a mapping camera. Fractional change of fluorescence varied between 2% and 12%. Average signal-to-noise ratio was 40 dB. The mean velocity of VF wave fronts was 0.25 +/- 0.04 m/s. Submillimetric spatial resolution (0.65-0.85 mm), activation mapping, and transformation of the data to phase-based analysis revealed reentrant, colliding, and fractionating wave fronts in human VF. On many occasions the VF wave fronts were as large as the entire vertical length (8 cm) of the mapping field, suggesting that there are a limited number of wave fronts on the human heart during VF. Phase transformation of the optical signals allowed the first demonstration ever of phase singularity point, wave breaks, and rotor formation in human VF. This method provides opportunities for potential analyses toward elucidation of the mechanisms of VF and defibrillation in humans.

  4. Differences in blood pressure by measurement technique in neurocritically ill patients: A technological assessment.

    PubMed

    Lele, Abhijit V; Wilson, Daren; Chalise, Prabhakar; Nazzaro, Jules; Krishnamoorthy, Vijay; Vavilala, Monica S

    2018-01-01

    Blood pressure data may vary by measurement technique. We performed a technological assessment of differences in blood pressure measurement between non-invasive blood pressure (NIBP) and invasive arterial blood pressure (ABP) in neurocritically ill patients. After IRB approval, a prospective observational study was performed to study differences in systolic blood pressure (SBP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP) values measured by NIBP arm, ABP at level of the phlebostatic axis (ABP heart) and ABP at level of the external auditory meatus (ABP brain) at 30 and 45-degree head of bed elevation (HOB) using repeated measure analysis of covariance and correlation coefficients. Overall, 168 patients were studied with median age of 57 ± 15 years, were mostly female (57%), with body mass index ≤30 (66%). Twenty-three percent (n = 39) had indwelling intracranial pressure monitors, and 19.7% (n = 33) received vasoactive agents. ABP heart overestimated ABP brain for SBP (11.5 ± 2.7 mmHg, p < .001), MAP (mean difference 13.3 ± 0.5 mmHg, p < .001) and CPP (13.4 ± 3.2 mmHg, p < .001). ABP heart overestimated NIBP arm for SBP (8 ± 1.5 mmHg, p < .001), MAP (mean difference 8.6 ± 0.8 mmHg, p < .001), and CPP (mean difference 9.8 ± 3.2 mmHg, p < .001). Regardless of HOB elevation, ABP heart overestimates MAP compared to ABP brain and NIBP arm. Using ABP heart data overestimates CPP and may be responsible for not achieving SBP, MAP or CPP targets aimed at the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit

    DTIC Science & Technology

    2015-09-30

    resting heart rate (70 bpm ) (Ponganis et al. 1997) is reached, and e) duration of and heart rate during the ascent tachycardia. If possible, heart rate...Resting heart rates were 54 + 6 beats min-1 ( bpm ), and in dives of 1-3 min, 3-5 min, and > 5 min, dive heart rates (number of beats/dive duration...were 55 + 8, 51 + 6, and 40 + bpm . As illustrated in Figs. 1 and 2, the heart rate profile was characterized by rapid development of a bradycardia

  6. Transcriptional atlas of cardiogenesis maps congenital heart disease interactome.

    PubMed

    Li, Xing; Martinez-Fernandez, Almudena; Hartjes, Katherine A; Kocher, Jean-Pierre A; Olson, Timothy M; Terzic, Andre; Nelson, Timothy J

    2014-07-01

    Mammalian heart development is built on highly conserved molecular mechanisms with polygenetic perturbations resulting in a spectrum of congenital heart diseases (CHD). However, knowledge of cardiogenic ontogeny that regulates proper cardiogenesis remains largely based on candidate-gene approaches. Mapping the dynamic transcriptional landscape of cardiogenesis from a genomic perspective is essential to integrate the knowledge of heart development into translational applications that accelerate disease discovery efforts toward mechanistic-based treatment strategies. Herein, we designed a time-course transcriptome analysis to investigate the genome-wide dynamic expression landscape of innate murine cardiogenesis ranging from embryonic stem cells to adult cardiac structures. This comprehensive analysis generated temporal and spatial expression profiles, revealed stage-specific gene functions, and mapped the dynamic transcriptome of cardiogenesis to curated pathways. Reconciling known genetic underpinnings of CHD, we deconstructed a disease-centric dynamic interactome encoded within this cardiogenic atlas to identify stage-specific developmental disturbances clustered on regulation of epithelial-to-mesenchymal transition (EMT), BMP signaling, NF-AT signaling, TGFb-dependent EMT, and Notch signaling. Collectively, this cardiogenic transcriptional landscape defines the time-dependent expression of cardiac ontogeny and prioritizes regulatory networks at the interface between health and disease. Copyright © 2014 the American Physiological Society.

  7. Post-suspension hypotension is attenuated in Sprague-Dawley rats by prostacyclin synthase inhibition

    NASA Technical Reports Server (NTRS)

    Bayorh, M. A.; Eatman, D.; Walton, M.; Socci, R. R.; Emmett, N.

    2002-01-01

    Cardiovascular deconditioning, sometimes manifested in astronauts during standing postflight, may be related to the impairment of autonomic function and/or excessive production of endothelium-dependent relaxing factors. In the present study, we examined the cardiovascular responses to 7-day 30 degrees tail-suspension and a subsequent 6-h post-suspension period in conscious male Sprague-Dawley rats to determine the role of prostacyclin in the observed post-suspension reduction in mean arterial pressure (MAP). The specific prostacyclin synthase inhibitor U-51605 (0.3 mg/kg), or saline, was administered intravenously prior to release from suspension and at 2 and 4 h post-suspension. During 7 days of suspension, MAP did not change, however, there was a post-suspension reduction in MAP which was associated with significant increases in plasma prostacyclin and nitric oxide. U-51605 attenuated the observed post-suspension hypotension and reduced plasma prostacyclin levels, but not nitric oxide levels. The baroreflex sensitivity for heart rate was modified by U-51605: increased MAP threshold and effective MAP range. Thus, the post-suspension reduction in mean arterial pressure may be due to overproduction of prostacyclin and/or other endothelium-dependent relaxing factors and alteration in baroreflex activity.

  8. Dissociation of muscle sympathetic nerve activity and leg vascular resistance in humans

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Herr, M. D.; Sinoway, L. I.

    2000-01-01

    We examined the hypothesis that the increase in inactive leg vascular resistance during forearm metaboreflex activation is dissociated from muscle sympathetic nerve activity (MSNA). MSNA (microneurography), femoral artery mean blood velocity (FAMBV, Doppler), mean arterial pressure (MAP), and heart rate (HR) were assessed during fatiguing static handgrip exercise (SHG, 2 min) followed by posthandgrip ischemia (PHI, 2 min). Whereas both MAP and MSNA increase during SHG, the transition from SHG to PHI is characterized by a transient reduction in MAP but sustained elevation in MSNA, facilitating separation of these factors in vivo. Femoral artery vascular resistance (FAVR) was calculated (MAP/MBV). MSNA increased by 59 +/- 20% above baseline during SHG (P < 0.05) and was 58 +/- 18 and 78 +/- 18% above baseline at 10 and 20 s of PHI, respectively (P < 0.05 vs. baseline). Compared with baseline, FAVR increased 51 +/- 22% during SHG (P < 0.0001) but returned to baseline levels during the first 30 s of PHI, reflecting the changes in MAP (P < 0.005) and not MSNA. It was concluded that control of leg muscle vascular resistance is sensitive to changes in arterial pressure and can be dissociated from sympathetic factors.

  9. Interaction between graviception and carotid baroreflex function in humans during parabolic flight-induced microgravity.

    PubMed

    Ogoh, Shigehiko; Marais, Michaël; Lericollais, Romain; Denise, Pierre; Raven, Peter B; Normand, Hervé

    2018-05-10

    The aim of the present study was to assess carotid baroreflex (CBR) during acute changes in otolithic activity in humans. To address this question, we designed a set of experiments to identify the modulatory effects of microgravity on CBR function at a tilt angle of -2{degree sign}, which was identified to minimize changes in central blood volume during parabolic flight. During parabolic flight at 0g and 1g, CBR function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid pulse trains of neck pressure (NP) and neck suction (NS) ranging from +40 to -80 Torr; CBR control of HR (carotid-HR) and MAP (carotid-MAP) baroreflex function curves, respectively. The maximal gain (G max ) of both carotid-HR and carotid-MAP baroreflex function curves were augmented during microgravity compared to 1g (carotid-HR, -0.53 to -0.80 beats/min/mmHg, P<0.05; carotid-MAP, -0.24 to -0.30 mmHg/mmHg, P<0.05). These findings suggest that parabolic flight-induced acute change of otolithic activity may modify CBR function and identifies that the vestibular system contributes to blood pressure regulation under fluctuations in gravitational forces.

  10. A study of the 200-metre fast walk test as a possible new assessment tool to predict maximal heart rate and define target heart rate for exercise training of coronary heart disease patients.

    PubMed

    Casillas, Jean-Marie; Joussain, Charles; Gremeaux, Vincent; Hannequin, Armelle; Rapin, Amandine; Laurent, Yves; Benaïm, Charles

    2015-02-01

    To develop a new predictive model of maximal heart rate based on two walking tests at different speeds (comfortable and brisk walking) as an alternative to a cardiopulmonary exercise test during cardiac rehabilitation. Evaluation of a clinical assessment tool. A Cardiac Rehabilitation Department in France. A total of 148 patients (133 men), mean age of 59 ±9 years, at the end of an outpatient cardiac rehabilitation programme. Patients successively performed a 6-minute walk test, a 200 m fast-walk test (200mFWT), and a cardiopulmonary exercise test, with measure of heart rate at the end of each test. An all-possible regression procedure was used to determine the best predictive regression models of maximal heart rate. The best model was compared with the Fox equation in term of predictive error of maximal heart rate using the paired t-test. Results of the two walking tests correlated significantly with maximal heart rate determined during the cardiopulmonary exercise test, whereas anthropometric parameters and resting heart rate did not. The simplified predictive model with the most acceptable mean error was: maximal heart rate = 130 - 0.6 × age + 0.3 × HR200mFWT (R(2) = 0.24). This model was superior to the Fox formula (R(2) = 0.138). The relationship between training target heart rate calculated from measured reserve heart rate and that established using this predictive model was statistically significant (r = 0.528, p < 10(-6)). A formula combining heart rate measured during a safe simple fast walk test and age is more efficient than an equation only including age to predict maximal heart rate and training target heart rate. © The Author(s) 2014.

  11. Long‐term Cardiovascular Risks Associated With an Elevated Heart Rate: The Framingham Heart Study

    PubMed Central

    Ho, Jennifer E.; Larson, Martin G.; Ghorbani, Anahita; Cheng, Susan; Coglianese, Erin E.; Vasan, Ramachandran S.; Wang, Thomas J.

    2014-01-01

    Background Higher heart rate has been associated with an adverse prognosis, but most prior studies focused on individuals with known cardiovascular disease or examined a limited number of outcomes. We sought to examine the association of baseline heart rate with both fatal and nonfatal outcomes during 2 decades of follow‐up. Methods and Results Our study included 4058 Framingham Heart Study participants (mean age 55 years, 56% women). Cox models were performed with multivariable adjustment for clinical risk factors and physical activity. A total of 708 participants developed incident cardiovascular disease (303 heart failure, 343 coronary heart disease, and 216 stroke events), 48 received a permanent pacemaker, and 1186 died. Baseline heart rate was associated with incident cardiovascular disease (hazard ratio [HR] 1.15 per 1 SD [11 bpm] increase in heart rate, 95% CI 1.07 to 1.24, P=0.0002), particularly heart failure (HR 1.32, 95% CI 1.18 to 1.48, P<0.0001). Higher heart rate was also associated with higher all‐cause (HR 1.17, 95% CI 1.11 to 1.24, P<0.0001) and cardiovascular mortality (HR 1.18, 95% CI 1.04 to 1.33, P=0.01). Spline analyses did not suggest a lower threshold beyond which the benefit of a lower heart rate abated or increased. In contrast, individuals with a higher heart rate had a lower risk of requiring permanent pacemaker placement (HR 0.55, 95% CI 0.38 to 0.79, P=0.001). Conclusions Individuals with a higher heart rate are at elevated long‐term risk for cardiovascular events, in particular, heart failure, and all‐cause death. On the other hand, a higher heart rate is associated with a lower risk of future permanent pacemaker implantation. PMID:24811610

  12. Physiological thermoregulation in a crustacean? Heart rate hysteresis in the freshwater crayfish Cherax destructor.

    PubMed

    Goudkamp, Jacqueline E; Seebacher, Frank; Ahern, Mark; Franklin, Craig E

    2004-07-01

    Differential heart rates during heating and cooling (heart rate hysteresis) are an important thermoregulatory mechanism in ectothermic reptiles. We speculate that heart rate hysteresis has evolved alongside vascularisation, and to determine whether this phenomenon occurs in a lineage with vascularised circulatory systems that is phylogenetically distant from reptiles, we measured the response of heart rate to convective heat transfer in the Australian freshwater crayfish, Cherax destructor. Heart rate during convective heating (from 20 to 30 degrees C) was significantly faster than during cooling for any given body temperature. Heart rate declined rapidly immediately following the removal of the heat source, despite only negligible losses in body temperature. This heart rate 'hysteresis' is similar to the pattern reported in many reptiles and, by varying peripheral blood flow, it is presumed to confer thermoregulatory benefits particularly given the thermal sensitivity of many physiological rate functions in crustaceans.

  13. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish

    PubMed Central

    Romano, Shannon N.; Edwards, Hailey E.; Ryan, Kevin J.

    2017-01-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels. PMID:29065151

  14. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish.

    PubMed

    Romano, Shannon N; Edwards, Hailey E; Souder, Jaclyn Paige; Ryan, Kevin J; Cui, Xiangqin; Gorelick, Daniel A

    2017-10-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels.

  15. Accuracy of smartphone apps for heart rate measurement.

    PubMed

    Coppetti, Thomas; Brauchlin, Andreas; Müggler, Simon; Attinger-Toller, Adrian; Templin, Christian; Schönrath, Felix; Hellermann, Jens; Lüscher, Thomas F; Biaggi, Patric; Wyss, Christophe A

    2017-08-01

    Background Smartphone manufacturers offer mobile health monitoring technology to their customers, including apps using the built-in camera for heart rate assessment. This study aimed to test the diagnostic accuracy of such heart rate measuring apps in clinical practice. Methods The feasibility and accuracy of measuring heart rate was tested on four commercially available apps using both iPhone 4 and iPhone 5. 'Instant Heart Rate' (IHR) and 'Heart Fitness' (HF) work with contact photoplethysmography (contact of fingertip to built-in camera), while 'Whats My Heart Rate' (WMH) and 'Cardiio Version' (CAR) work with non-contact photoplethysmography. The measurements were compared to electrocardiogram and pulse oximetry-derived heart rate. Results Heart rate measurement using app-based photoplethysmography was performed on 108 randomly selected patients. The electrocardiogram-derived heart rate correlated well with pulse oximetry ( r = 0.92), IHR ( r = 0.83) and HF ( r = 0.96), but somewhat less with WMH ( r = 0.62) and CAR ( r = 0.60). The accuracy of app-measured heart rate as compared to electrocardiogram, reported as mean absolute error (in bpm ± standard error) was 2 ± 0.35 (pulse oximetry), 4.5 ± 1.1 (IHR), 2 ± 0.5 (HF), 7.1 ± 1.4 (WMH) and 8.1 ± 1.4 (CAR). Conclusions We found substantial performance differences between the four studied heart rate measuring apps. The two contact photoplethysmography-based apps had higher feasibility and better accuracy for heart rate measurement than the two non-contact photoplethysmography-based apps.

  16. A protocol to study ex vivo mouse working heart at human-like heart rate.

    PubMed

    Feng, Han-Zhong; Jin, Jian-Ping

    2018-01-01

    Genetically modified mice are widely used as experimental models to study human heart function and diseases. However, the fast rate of normal mouse heart at 400-600bpm limits its capacity of assessing kinetic parameters that are important for the physiology and pathophysiology of human heart that beats at a much slower rate (75-180bpm). To extend the value of mouse models, we established a protocol to study ex vivo mouse working hearts at a human-like heart rate. In the presence of 300μM lidocaine to lower pacemaker and conductive activities and prevent arrhythmia, a stable rate of 120-130bpm at 37°C is achieved for ex vivo mouse working hearts. The negative effects of decreased heart rate on force-frequency dependence and lidocaine as a myocardial depressant on intracellular calcium can be compensated by using a higher but still physiological level of calcium (2.75mM) in the perfusion media. Multiple parameters were studied to compare the function at the human-like heart rate with that of ex vivo mouse working hearts at the standard rate of 480bpm. The results showed that the conditions for slower heart rate in the presence of 300μM lidocaine did not have depressing effect on left ventricular pressure development, systolic and diastolic velocities and stroke volume with maintained positive inotropic and lusitropic responses to β-adrenergic stimulation. Compared with that at 480bpm, the human-like heart rate increased ventricular filling and end diastolic volume with enhanced Frank-Starling responses. Coronary perfusion was increased from longer relaxation time and interval between beats whereas cardiac efficiency was significantly improved. Although the intrinsic differences between mouse and human heart remain, this methodology for ex vivo mouse hearts to work at human-like heart rate extends the value of using genetically modified mouse models to study cardiac function and human heart diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Distinctive Left Ventricular Activations Associated With ECG Pattern in Heart Failure Patients.

    PubMed

    Derval, Nicolas; Duchateau, Josselin; Mahida, Saagar; Eschalier, Romain; Sacher, Frederic; Lumens, Joost; Cochet, Hubert; Denis, Arnaud; Pillois, Xavier; Yamashita, Seigo; Komatsu, Yuki; Ploux, Sylvain; Amraoui, Sana; Zemmoura, Adlane; Ritter, Philippe; Hocini, Mélèze; Haissaguerre, Michel; Jaïs, Pierre; Bordachar, Pierre

    2017-06-01

    In contrast to patients with left bundle branch block (LBBB), heart failure patients with narrow QRS and nonspecific intraventricular conduction delay (NICD) display a relatively limited response to cardiac resynchronization therapy. We sought to compare left ventricular (LV) activation patterns in heart failure patients with narrow QRS and NICD to patients with LBBB using high-density electroanatomic activation maps. Fifty-two heart failure patients (narrow QRS [n=18], LBBB [n=11], NICD [n=23]) underwent 3-dimensional electroanatomic mapping with a high density of mapping points (387±349 LV). Adjunctive scar imaging was available in 37 (71%) patients and was analyzed in relation to activation maps. LBBB patients typically demonstrated (1) a single LV breakthrough at the septum (38±15 ms post-QRS onset); (2) prolonged right-to-left transseptal activation with absence of direct LV Purkinje activity; (3) homogeneous propagation within the LV cavity; and (4) latest activation at the basal lateral LV. In comparison, both NICD and narrow QRS patients demonstrated (1) multiple LV breakthroughs along the posterior or anterior fascicles: narrow QRS versus LBBB, 5±2 versus 1±1; P =0.0004; NICD versus LBBB, 4±2 versus 1±1; P =0.001); (2) evidence of early/pre-QRS LV electrograms with Purkinje potentials; (3) rapid propagation in narrow QRS patients and more heterogeneous propagation in NICD patients; and (4) presence of limited areas of late activation associated with LV scar with high interindividual heterogeneity. In contrast to LBBB patients, narrow QRS and NICD patients are characterized by distinct mechanisms of LV activation, which may predict poor response to cardiac resynchronization therapy. © 2017 American Heart Association, Inc.

  18. Introducing a novel mechanism to control heart rate in the ancestral Pacific hagfish.

    PubMed

    Wilson, Christopher M; Roa, Jinae N; Cox, Georgina K; Tresguerres, Martin; Farrell, Anthony P

    2016-10-15

    Although neural modulation of heart rate is well established among chordate animals, the Pacific hagfish (Eptatretus stoutii) lacks any cardiac innervation, yet it can increase its heart rate from the steady, depressed heart rate seen in prolonged anoxia to almost double its normal normoxic heart rate, an almost fourfold overall change during the 1-h recovery from anoxia. The present study sought mechanistic explanations for these regulatory changes in heart rate. We provide evidence for a bicarbonate-activated, soluble adenylyl cyclase (sAC)-dependent mechanism to control heart rate, a mechanism never previously implicated in chordate cardiac control. © 2016. Published by The Company of Biologists Ltd.

  19. Cardiovascular responses associated with daily walking in subacute stroke.

    PubMed

    Prajapati, Sanjay K; Mansfield, Avril; Gage, William H; Brooks, Dina; McIlroy, William E

    2013-01-01

    Despite the importance of regaining independent ambulation after stroke, the amount of daily walking completed during in-patient rehabilitation is low. The purpose of this study is to determine if (1) walking-related heart rate responses reached the minimum intensity necessary for therapeutic aerobic exercise (40%-60% heart rate reserve) or (2) heart rate responses during bouts of walking revealed excessive workload that may limit walking (>80% heart rate reserve). Eight individuals with subacute stroke attending in-patient rehabilitation were recruited. Participants wore heart rate monitors and accelerometers during a typical rehabilitation day. Walking-related changes in heart rate and walking bout duration were determined. Patients did not meet the minimum cumulative requirements of walking intensity (>40% heart rate reserve) and duration (>10 minutes continuously) necessary for cardiorespiratory benefit. Only one patient exceeded 80% heart rate reserve. The absence of significant increases in heart rate associated with walking reveals that patients chose to walk at speeds well below a level that has meaningful cardiorespiratory health benefits. Additionally, cardiorespiratory workload is unlikely to limit participation in walking. Measurement of heart rate and walking during in-patient rehabilitation may be a useful approach to encourage patients to increase the overall physical activity and to help facilitate recovery.

  20. Heart rate reduction and longevity in mice.

    PubMed

    Gent, Sabine; Kleinbongard, Petra; Dammann, Philip; Neuhäuser, Markus; Heusch, Gerd

    2015-03-01

    Heart rate correlates inversely with life span across all species, including humans. In patients with cardiovascular disease, higher heart rate is associated with increased mortality, and such patients benefit from pharmacological heart rate reduction. However, cause-and-effect relationships between heart rate and longevity, notably in healthy individuals, are not established. We therefore prospectively studied the effects of a life-long pharmacological heart rate reduction on longevity in mice. We hypothesized, that the total number of cardiac cycles is constant, and that a 15% heart rate reduction might translate into a 15% increase in life span. C57BL6/J mice received either placebo or ivabradine at a dose of 50 mg/kg/day in drinking water from 12 weeks to death. Heart rate and body weight were monitored. Autopsy was performed on all non-autolytic cadavers, and parenchymal organs were evaluated macroscopically. Ivabradine reduced heart rate by 14% (median, interquartile range 12-15%) throughout life, and median life span was increased by 6.2% (p = 0.01). Body weight and macroscopic findings were not different between placebo and ivabradine. Life span was not increased to the same extent as heart rate was reduced, but nevertheless significantly prolonged by 6.2%.

  1. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts.

    PubMed

    Hansen, Brian J; Zhao, Jichao; Csepe, Thomas A; Moore, Brandon T; Li, Ning; Jayne, Laura A; Kalyanasundaram, Anuradha; Lim, Praise; Bratasz, Anna; Powell, Kimerly A; Simonetti, Orlando P; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L; Weiss, Raul; Hummel, John D; Fedorov, Vadim V

    2015-09-14

    The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial-epicardial (Endo-Epi) mapping coupled with high-resolution 3D structural imaging. Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43-72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo-Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7-6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30-100 µM) perfusion. Dual-sided sub-Endo-sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or 'breakthrough' patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. Integrated 3D structural-functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  2. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts

    PubMed Central

    Hansen, Brian J.; Zhao, Jichao; Csepe, Thomas A.; Moore, Brandon T.; Li, Ning; Jayne, Laura A.; Kalyanasundaram, Anuradha; Lim, Praise; Bratasz, Anna; Powell, Kimerly A.; Simonetti, Orlando P.; Higgins, Robert S.D.; Kilic, Ahmet; Mohler, Peter J.; Janssen, Paul M.L.; Weiss, Raul; Hummel, John D.; Fedorov, Vadim V.

    2015-01-01

    Aims The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial–epicardial (Endo–Epi) mapping coupled with high-resolution 3D structural imaging. Methods and results Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43–72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo–Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7–6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30–100 µM) perfusion. Dual-sided sub-Endo–sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or ‘breakthrough’ patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. Conclusions Integrated 3D structural–functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles. PMID:26059724

  3. Abnormal heart rate recovery and deficient chronotropic response after submaximal exercise in young Marfan syndrome patients.

    PubMed

    Peres, Paulo; Carvalho, Antônio C; Perez, Ana Beatriz A; Medeiros, Wladimir M

    2016-10-01

    Marfan syndrome patients present important cardiac structural changes, ventricular dysfunction, and electrocardiographic changes. An abnormal heart rate response during or after exercise is an independent predictor of mortality and autonomic dysfunction. The aim of the present study was to compare heart rate recovery and chronotropic response obtained by cardiac reserve in patients with Marfan syndrome subjected to submaximal exercise. A total of 12 patients on β-blocker therapy and 13 off β-blocker therapy were compared with 12 healthy controls. They were subjected to submaximal exercise with lactate measurements. The heart rate recovery was obtained in the first minute of recovery and corrected for cardiac reserve and peak lactate concentration. Peak heart rate (141±16 versus 155±17 versus 174±8 bpm; p=0.001), heart rate reserve (58.7±9.4 versus 67.6±14.3 versus 82.6±4.8 bpm; p=0.001), heart rate recovery (22±6 versus 22±8 versus 34±9 bpm; p=0.001), and heart rate recovery/lactate (3±1 versus 3±1 versus 5±1 bpm/mmol/L; p=0.003) were different between Marfan groups and controls, respectively. All the patients with Marfan syndrome had heart rate recovery values below the mean observed in the control group. The absolute values of heart rate recovery were strongly correlated with the heart rate reserve (r=0.76; p=0.001). Marfan syndrome patients have reduced heart rate recovery and chronotropic deficit after submaximal exercise, and the chronotropic deficit is a strong determinant of heart rate recovery. These changes are suggestive of autonomic dysfunction.

  4. A randomised, simulated study assessing auscultation of heart rate at birth.

    PubMed

    Voogdt, Kevin G J A; Morrison, Allison C; Wood, Fiona E; van Elburg, Ruurd M; Wyllie, Jonathan P

    2010-08-01

    Heart rate is a primary clinical indicator directing newborn resuscitation. The time taken to assess the heart rate by auscultation in relation to accuracy during newborn resuscitation is not known. To assess both the accuracy and time taken to assess heart rate by stethoscope in simulated resuscitation scenarios. The VitalSim((c)) manikin (Laerdal Medical, Stavanger, Norway) was used in this randomised, single blind study. Four heart rate settings (0, 40, 80, 120 beats per minute (bpm)) were randomly assigned. Participants assessed them by auscultation in three different scenarios. The first scenario was to assess the actual heart rate at birth. In the second scenario, heart rate was assessed during ventilation and assigned to standard ranges (<60, 60-100, >100bpm). In the third scenario, heart rate was assessed after three cycles of compressions and ventilation and assigned to standard ranges. In total 61 midwives, nurses and doctors performed 183 assessments. Mean time to estimate heart rate for scenarios 1, 2 and 3 was: 17.0, 9.8 and 7.8s respectively. Heart rate assessments were inaccurate in 31% (scenario 1), 28% (scenarios 2) and 26% (scenario 3). There was a trend for assessors who were accurate to be quicker and this achieved significance in scenario 2 (p<0.02). Inaccurate assessment would have made a difference to management in 28% of all cases. Mean time to estimate heart rate for the scenarios varied between 7.8 and 17.0s. Twenty-eight percent of all heart rate assessments would have prompted incorrect management during resuscitation or stabilization. Of incorrect assessments, 73% were overestimations. Further research is required to develop a rapid and accurate method for determining heart rate during newborn resuscitation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Apnea of prematurity

    MedlinePlus

    ... The baby may also have a: Drop in heart rate. This heart rate drop is called bradycardia or, sometimes, a "brady." ... hospital. The monitors keep track of their breathing, heart rate, and oxygen levels. Apnea, drop in heart rate, ...

  6. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    PubMed

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  7. Control of heart rate during thermoregulation in the heliothermic lizard Pogona barbata: importance of cholinergic and adrenergic mechanisms.

    PubMed

    Seebacher, F; Franklin, C E

    2001-12-01

    During thermoregulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a beta-adrenergic antagonist. Cholinergic and beta-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3 %) at the commencement of heating, and decreased to 30.7 % at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min(-1)) as the heat source was switched off, and this drop in heart rate coincided with either a drop in beta-adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and beta-adrenergic blockade. The results showed that cholinergic and beta-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling.

  8. Atrial Cardiomyopathy: A Useful Notion in Cardiac Disease Management or a Passing Fad?

    PubMed

    Guichard, Jean-Baptiste; Nattel, Stanley

    2017-08-08

    The term atrial cardiomyopathy, which has been used sporadically in the medical literature, was recently the subject of a detailed Consensus Document prepared by representatives of the European Heart Rhythm Association, Heart Rhythm Society, Asia-Pacific Heart Rhythm Society, and Sociedad Latinoamericana de Estimulación Cardiaca y Electrofisiología. They discussed aspects of the definition, histopathology, atrial-specific physiology, atrial pathology, impact on arrhythmia occurrence, imaging, mapping, and ablation. Here, the authors consider critically the added clinical value of this concept and its meaningfulness. They review evidence implicating atrial cardiomyopathy as an independent contributor to the risk of stroke associated with atrial fibrillation and as a determinant of arrhythmia progression. The issue of classification is considered and the authors discuss how atrial cardiomyopathic properties might guide stroke prevention, rhythm maintenance, and rate control in atrial fibrillation. Carefully designed clinical trials are needed to evaluate these potential applications, and will ultimately define the value of this terminology. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Gender- and age-related differences in heart rate dynamics: are women more complex than men?

    NASA Technical Reports Server (NTRS)

    Ryan, S. M.; Goldberger, A. L.; Pincus, S. M.; Mietus, J.; Lipsitz, L. A.

    1994-01-01

    OBJECTIVES. This study aimed to quantify the complex dynamics of beat-to-beat sinus rhythm heart rate fluctuations and to determine their differences as a function of gender and age. BACKGROUND. Recently, measures of heart rate variability and the nonlinear "complexity" of heart rate dynamics have been used as indicators of cardiovascular health. Because women have lower cardiovascular risk and greater longevity than men, we postulated that there are important gender-related differences in beat-to-beat heart rate dynamics. METHODS. We analyzed heart rate dynamics during 8-min segments of continuous electrocardiographic recording in healthy young (20 to 39 years old), middle-aged (40 to 64 years old) and elderly (65 to 90 years old) men (n = 40) and women (n = 27) while they performed spontaneous and metronomic (15 breaths/min) breathing. Relatively high (0.15 to 0.40 Hz) and low (0.01 to 0.15 Hz) frequency components of heart rate variability were computed using spectral analysis. The overall "complexity" of each heart rate time series was quantified by its approximate entropy, a measure of regularity derived from nonlinear dynamics ("chaos" theory). RESULTS. Mean heart rate did not differ between the age groups or genders. High frequency heart rate power and the high/low frequency power ratio decreased with age in both men and women (p < 0.05). The high/low frequency power ratio during spontaneous and metronomic breathing was greater in women than men (p < 0.05). Heart rate approximate entropy decreased with age and was higher in women than men (p < 0.05). CONCLUSIONS. High frequency heart rate spectral power (associated with parasympathetic activity) and the overall complexity of heart rate dynamics are higher in women than men. These complementary findings indicate the need to account for gender-as well as age-related differences in heart rate dynamics. Whether these gender differences are related to lower cardiovascular disease risk and greater longevity in women requires further study.

  10. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders.

    PubMed

    den Hoed, Marcel; Eijgelsheim, Mark; Esko, Tõnu; Brundel, Bianca J J M; Peal, David S; Evans, David M; Nolte, Ilja M; Segrè, Ayellet V; Holm, Hilma; Handsaker, Robert E; Westra, Harm-Jan; Johnson, Toby; Isaacs, Aaron; Yang, Jian; Lundby, Alicia; Zhao, Jing Hua; Kim, Young Jin; Go, Min Jin; Almgren, Peter; Bochud, Murielle; Boucher, Gabrielle; Cornelis, Marilyn C; Gudbjartsson, Daniel; Hadley, David; van der Harst, Pim; Hayward, Caroline; den Heijer, Martin; Igl, Wilmar; Jackson, Anne U; Kutalik, Zoltán; Luan, Jian'an; Kemp, John P; Kristiansson, Kati; Ladenvall, Claes; Lorentzon, Mattias; Montasser, May E; Njajou, Omer T; O'Reilly, Paul F; Padmanabhan, Sandosh; St Pourcain, Beate; Rankinen, Tuomo; Salo, Perttu; Tanaka, Toshiko; Timpson, Nicholas J; Vitart, Veronique; Waite, Lindsay; Wheeler, William; Zhang, Weihua; Draisma, Harmen H M; Feitosa, Mary F; Kerr, Kathleen F; Lind, Penelope A; Mihailov, Evelin; Onland-Moret, N Charlotte; Song, Ci; Weedon, Michael N; Xie, Weijia; Yengo, Loic; Absher, Devin; Albert, Christine M; Alonso, Alvaro; Arking, Dan E; de Bakker, Paul I W; Balkau, Beverley; Barlassina, Cristina; Benaglio, Paola; Bis, Joshua C; Bouatia-Naji, Nabila; Brage, Søren; Chanock, Stephen J; Chines, Peter S; Chung, Mina; Darbar, Dawood; Dina, Christian; Dörr, Marcus; Elliott, Paul; Felix, Stephan B; Fischer, Krista; Fuchsberger, Christian; de Geus, Eco J C; Goyette, Philippe; Gudnason, Vilmundur; Harris, Tamara B; Hartikainen, Anna-Liisa; Havulinna, Aki S; Heckbert, Susan R; Hicks, Andrew A; Hofman, Albert; Holewijn, Suzanne; Hoogstra-Berends, Femke; Hottenga, Jouke-Jan; Jensen, Majken K; Johansson, Asa; Junttila, Juhani; Kääb, Stefan; Kanon, Bart; Ketkar, Shamika; Khaw, Kay-Tee; Knowles, Joshua W; Kooner, Angrad S; Kors, Jan A; Kumari, Meena; Milani, Lili; Laiho, Päivi; Lakatta, Edward G; Langenberg, Claudia; Leusink, Maarten; Liu, Yongmei; Luben, Robert N; Lunetta, Kathryn L; Lynch, Stacey N; Markus, Marcello R P; Marques-Vidal, Pedro; Mateo Leach, Irene; McArdle, Wendy L; McCarroll, Steven A; Medland, Sarah E; Miller, Kathryn A; Montgomery, Grant W; Morrison, Alanna C; Müller-Nurasyid, Martina; Navarro, Pau; Nelis, Mari; O'Connell, Jeffrey R; O'Donnell, Christopher J; Ong, Ken K; Newman, Anne B; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Psaty, Bruce M; Rao, Dabeeru C; Ring, Susan M; Rossin, Elizabeth J; Rudan, Diana; Sanna, Serena; Scott, Robert A; Sehmi, Jaban S; Sharp, Stephen; Shin, Jordan T; Singleton, Andrew B; Smith, Albert V; Soranzo, Nicole; Spector, Tim D; Stewart, Chip; Stringham, Heather M; Tarasov, Kirill V; Uitterlinden, André G; Vandenput, Liesbeth; Hwang, Shih-Jen; Whitfield, John B; Wijmenga, Cisca; Wild, Sarah H; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wong, Andrew; Wong, Quenna; Jamshidi, Yalda; Zitting, Paavo; Boer, Jolanda M A; Boomsma, Dorret I; Borecki, Ingrid B; van Duijn, Cornelia M; Ekelund, Ulf; Forouhi, Nita G; Froguel, Philippe; Hingorani, Aroon; Ingelsson, Erik; Kivimaki, Mika; Kronmal, Richard A; Kuh, Diana; Lind, Lars; Martin, Nicholas G; Oostra, Ben A; Pedersen, Nancy L; Quertermous, Thomas; Rotter, Jerome I; van der Schouw, Yvonne T; Verschuren, W M Monique; Walker, Mark; Albanes, Demetrius; Arnar, David O; Assimes, Themistocles L; Bandinelli, Stefania; Boehnke, Michael; de Boer, Rudolf A; Bouchard, Claude; Caulfield, W L Mark; Chambers, John C; Curhan, Gary; Cusi, Daniele; Eriksson, Johan; Ferrucci, Luigi; van Gilst, Wiek H; Glorioso, Nicola; de Graaf, Jacqueline; Groop, Leif; Gyllensten, Ulf; Hsueh, Wen-Chi; Hu, Frank B; Huikuri, Heikki V; Hunter, David J; Iribarren, Carlos; Isomaa, Bo; Jarvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kiemeney, Lambertus A; van der Klauw, Melanie M; Kooner, Jaspal S; Kraft, Peter; Iacoviello, Licia; Lehtimäki, Terho; Lokki, Marja-Liisa L; Mitchell, Braxton D; Navis, Gerjan; Nieminen, Markku S; Ohlsson, Claes; Poulter, Neil R; Qi, Lu; Raitakari, Olli T; Rimm, Eric B; Rioux, John D; Rizzi, Federica; Rudan, Igor; Salomaa, Veikko; Sever, Peter S; Shields, Denis C; Shuldiner, Alan R; Sinisalo, Juha; Stanton, Alice V; Stolk, Ronald P; Strachan, David P; Tardif, Jean-Claude; Thorsteinsdottir, Unnur; Tuomilehto, Jaako; van Veldhuisen, Dirk J; Virtamo, Jarmo; Viikari, Jorma; Vollenweider, Peter; Waeber, Gérard; Widen, Elisabeth; Cho, Yoon Shin; Olsen, Jesper V; Visscher, Peter M; Willer, Cristen; Franke, Lude; Erdmann, Jeanette; Thompson, John R; Pfeufer, Arne; Sotoodehnia, Nona; Newton-Cheh, Christopher; Ellinor, Patrick T; Stricker, Bruno H Ch; Metspalu, Andres; Perola, Markus; Beckmann, Jacques S; Smith, George Davey; Stefansson, Kari; Wareham, Nicholas J; Munroe, Patricia B; Sibon, Ody C M; Milan, David J; Snieder, Harold; Samani, Nilesh J; Loos, Ruth J F

    2013-06-01

    Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate-increasing and heart rate-decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets.

  11. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.

    PubMed

    Jarchi, Delaram; Casson, Alexander J

    2017-09-01

    Recently numerous methods have been proposed for estimating average heart rate using photoplethysmography (PPG) during physical activity, overcoming the significant interference that motion causes in PPG traces. We propose a new algorithm framework for extracting instantaneous heart rate from wearable PPG and Electrocardiogram (ECG) signals to provide an estimate of heart rate variability during exercise. For ECG signals, we propose a new spectral masking approach which modifies a particle filter tracking algorithm, and for PPG signals constrains the instantaneous frequency obtained from the Hilbert transform to a region of interest around a candidate heart rate measure. Performance is verified using accelerometry and wearable ECG and PPG data from subjects while biking and running on a treadmill. Instantaneous heart rate provides more information than average heart rate alone. The instantaneous heart rate can be extracted during motion to an accuracy of 1.75 beats per min (bpm) from PPG signals and 0.27 bpm from ECG signals. Estimates of instantaneous heart rate can now be generated from PPG signals during motion. These estimates can provide more information on the human body during exercise. Instantaneous heart rate provides a direct measure of vagal nerve and sympathetic nervous system activity and is of substantial use in a number of analyzes and applications. Previously it has not been possible to estimate instantaneous heart rate from wrist wearable PPG signals.

  12. Software development, nomenclature schemes, and mapping strategies for an international pediatric cardiac surgery database system.

    PubMed

    Jacobs, Jeffrey P

    2002-01-01

    The field of congenital heart surgery has the opportunity to create the first comprehensive international database for a medical subspecialty. An understanding of the demographics of congenital heart disease and the rapid growth of computer technology leads to the realization that creating a comprehensive international database for pediatric cardiac surgery represents an important and achievable goal. The evolution of computer-based data analysis creates an opportunity to develop software to manage an international congenital heart surgery database and eventually become an electronic medical record. The same database data set for congenital heart surgery is now being used in Europe and North America. Additional work is under way to involve Africa, Asia, Australia, and South America. The almost simultaneous publication of the European Association for Cardio-thoracic Surgery/Society of Thoracic Surgeons coding system and the Association for European Paediatric Cardiology coding system resulted in the potential for multiple coding. Representatives of the Association for European Paediatric Cardiology, Society of Thoracic Surgeons, European Association for Cardio-thoracic Surgery, and European Congenital Heart Surgeons Foundation agree that these hierarchical systems are complementary and not competitive. An international committee will map the two systems. The ideal coding system will permit a diagnosis or procedure to be coded only one time with mapping allowing this code to be used for patient care, billing, practice management, teaching, research, and reporting to governmental agencies. The benefits of international data gathering and sharing are global, with the long-term goal of the continued upgrade in the quality of congenital heart surgery worldwide. Copyright 2002 by W.B. Saunders Company

  13. Body height and arterial pressure in seated and supine young males during +2 G centrifugation.

    PubMed

    Arvedsen, Sine K; Eiken, Ola; Kölegård, Roger; Petersen, Lonnie G; Norsk, Peter; Damgaard, Morten

    2015-11-01

    It is known that arterial pressure correlates positively with body height in males, and it has been suggested that this is due to the increasing vertical hydrostatic gradient from the heart to the carotid baroreceptors. Therefore, we tested the hypothesis that a higher gravito-inertial stress induced by the use of a human centrifuge would increase mean arterial pressure (MAP) more in tall than in short males in the seated position. In short (162-171 cm; n = 8) and tall (194-203 cm; n = 10) healthy males (18-41 yr), brachial arterial pressure, heart rate (HR), and cardiac output were measured during +2G centrifugation, while they were seated upright with the legs kept horizontal (+2Gz). In a separate experiment, the same measurements were done with the subjects supine (+2Gx). During +2Gz MAP increased in the short (22 ± 2 mmHg, P < 0.0001) and tall (23 ± 2 mmHg, P < 0.0001) males, with no significant difference between the groups. HR increased more (P < 0.05) in the tall than in the short group (14 ± 2 vs. 7 ± 2 bpm). Stroke volume (SV) decreased in the short group (26 ± 4 ml, P = 0.001) and more so in the tall group (39 ± 5 ml, P < 0.0001; short vs. tall, P = 0.047). During +2Gx, systolic arterial pressure increased (P < 0.001) and SV (P = 0.012) decreased in the tall group only. In conclusion, during +2Gz, MAP increased in both short and tall males, with no difference between the groups. However, in the tall group, HR increased more during +2Gz, which could be caused by a larger hydrostatic pressure gradient from heart to head, leading to greater inhibition of the carotid baroreceptors. Copyright © 2015 the American Physiological Society.

  14. Effects of intravenous and topical laryngeal lidocaine on heart rate, mean arterial pressure and cough response to endotracheal intubation in dogs.

    PubMed

    Thompson, Kate R; Rioja, Eva

    2016-07-01

    To compare the effects of intravenous (IV) and topical laryngeal lidocaine on heart rate (HR), mean arterial pressure (MAP) and cough response to endotracheal intubation (ETI) in dogs. Prospective, randomized, blinded clinical study. Forty-two client-owned dogs (American Society of Anesthesiologists class I and II status) undergoing elective orthopaedic surgery. Dogs were randomized to three groups. Dogs in group SALIV received 0.1 mL kg(-1) IV saline. Dogs in group LIDIV received 2 mg kg(-1) IV 2% lidocaine. Dogs in group LIDTA received 0.4 mg kg(-1) topically sprayed laryngeal 2% lidocaine. All dogs were premedicated with methadone (0.2 mg kg(-1) IV). After 30 minutes, IV propofol was administered to abolish the lateral palpebral reflex and produce jaw relaxation. The allocated treatment was then administered and, after 30 seconds, further propofol was administered to abolish the medial palpebral reflex and facilitate ETI. HR and MAP were measured at four time-points using cardiac auscultation and automated oscillometry, respectively. The cough response at ETI was recorded. One-way anova and post hoc Tukey adjustment were used to analyse parametric data. The Kruskal-Wallis test was used to analyse non-parametric data. Odds ratios were calculated for the cough response. A p-value of ≤0.05 was considered to indicate statistical significance. In response to ETI, changes in MAP differed significantly between groups. In SALIV, MAP increased (4 ± 6 mmHg), whereas it decreased in LIDIV (6 ± 13 mmHg) (p = 0.013) and LIDTA (7 ± 11 mmHg) (p = 0.003). Dogs in SALIV were almost 10 times more likely to cough than dogs in LIDIV (odds ratio 9.75, 95% confidence interval 0.98-96.60; p = 0.05). In propofol-anaesthetized dogs, IV and topical laryngeal lidocaine attenuated the pressor response to ETI, whereas IV lidocaine reduced the cough response. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  15. Perioperative music and its effects on anxiety, hemodynamics, and pain in women undergoing mastectomy.

    PubMed

    Binns-Turner, Pamela G; Wilson, Lynda Law; Pryor, Erica R; Boyd, Gwendolyn L; Prickett, Carol A

    2011-08-01

    There is increasing interest in evaluating the use of nonpharmacologic interventions such as music to minimize potential adverse effects of anxiety-reducing medications. This study used a quasi-experimental design to evaluate the effects of a perioperative music intervention (provided continuously throughout the preoperative, intraoperative, and postoperative periods) on changes in mean arterial pressure (MAP), heart rate, anxiety, and pain in women with a diagnosis of breast cancer undergoing mastectomy. A total of 30 women were assigned randomly to a control group or to the music intervention group. Findings indicated that women in the intervention group had a greater decrease in MAP and anxiety with less pain from the preoperative period to the time of discharge from the recovery room compared with women in the control group. Music is a noninvasive and low-cost intervention that can be easily implemented in the perioperative setting, and these findings suggest that perioperative music can reduce MAP, anxiety, and pain among women undergoing mastectomy for breast cancer.

  16. Effect of pedal rate and power output on rating of perceived exertion during cycle ergometry exercise.

    PubMed

    Hamer, Mark; Boutcher, Yati N; Boutcher, Stephen H

    2005-12-01

    This study examined differentiated rating of perceived exertion (RPE), heart rate, and heart-rate variability during light cycle ergometry exercise at two different pedal rates. 30 healthy men (22.6 +/- 0.9 yr.) were recruited from a student population and completed a continuous 20-min. cycle ergometry exercise protocol, consisting of a 4-min. warm-up (60 rev./min., 30 Watts), followed by four bouts of 4 min. at different combinations of pedal rate (40 or 80 rev./min.) and power output (40 or 80 Watts). The order of the four combinations was counterbalanced across participants. Heart rate was measured using a polar heart-rate monitor, and parasympathetic balance was assessed through time series analysis of heart-rate variability. Measures were compared using a 2 (pedal rate) x 2 (power output) repeated-measures analysis of variance. RPE was significantly greater (p<.05) at 80 versus 40 rev./min. at 40 W. For both power outputs heart rate was significantly increased, and the high frequency component of heart-rate variability was significantly reduced at 80 compared with 40 rev./min. These findings indicate the RPE was greater at higher than at lower pedalling rates for a light absolute power output which contrasts with previous findings based on use of higher power output. Also, pedal rate had a significant effect on heart rate and heart-rate variability at constant power output.

  17. Heart Rate During Sleep: Implications for Monitoring Training Status

    PubMed Central

    Waldeck, Miriam R.; Lambert, Michael I.

    2003-01-01

    Resting heart rate has sometimes been used as a marker of training status. It is reasonable to assume that the relationship between heart rate and training status should be more evident during sleep when extraneous factors that may influence heart rate are reduced. Therefore the aim of the study was to assess the repeatability of monitoring heart rate during sleep when training status remained unchanged, to determine if this measurement had sufficient precision to be used as a marker of training status. The heart rate of ten female subjects was monitored for 24 hours on three occasions over three weeks whilst training status remained unchanged. Average, minimum and maximum heart rate during sleep was calculated. The average heart rate of the group during sleep was similar on each of the three tests (65 ± 9, 63 ± 6 and 67 ± 7 beats·min-1 respectively). The range in minimum heart rate variation during sleep for all subjects over the three testing sessions was from 0 to 10 beats·min-1 (mean = 5 ± 3 beats·min-1) and for maximum heart rate variation was 2 to 31 beats·min-1 (mean = 13 ± 9 beats·min-1). In summary it was found that on an individual basis the minimum heart rate during sleep varied by about 8 beats·min-1. This amount of intrinsic day-to-day variation needs to be considered when changes in heart rate that may occur with changes in training status are interpreted. PMID:24688273

  18. Heart rate variability in patients with systemic lupus erythematosus: a systematic review and methodological considerations.

    PubMed

    Matusik, P S; Matusik, P T; Stein, P K

    2018-07-01

    Aim The aim of this review was to summarize current knowledge about the scientific findings and potential clinical utility of heart rate variability measures in patients with systemic lupus erythematosus. Methods PubMed, Embase and Scopus databases were searched for the terms associated with systemic lupus erythematosus and heart rate variability, including controlled vocabulary, when appropriate. Articles published in English and available in full text were considered. Finally, 11 publications were selected, according to the systematic review protocol and were analyzed. Results In general, heart rate variability, measured in the time and frequency domains, was reported to be decreased in patients with systemic lupus erythematosus compared with controls. In some systemic lupus erythematosus studies, heart rate variability was found to correlate with inflammatory markers and albumin levels. A novel heart rate variability measure, heart rate turbulence onset, was shown to be increased, while heart rate turbulence slope was decreased in systemic lupus erythematosus patients. Reports of associations of changes in heart rate variability parameters with increasing systemic lupus erythematosus activity were inconsistent, showing decreasing heart rate variability or no relationship. However, the low/high frequency ratio was, in some studies, reported to increase with increasing disease activity or to be inversely correlated with albumin levels. Conclusions Patients with systemic lupus erythematosus have abnormal heart rate variability, which reflects cardiac autonomic dysfunction and may be related to inflammatory cytokines but not necessarily to disease activity. Thus measurement of heart rate variability could be a useful clinical tool for monitoring autonomic dysfunction in systemic lupus erythematosus, and may potentially provide prognostic information.

  19. Congenital heart disease infant death rates decrease as gestational age advances from 34 to 40 weeks.

    PubMed

    Cnota, James F; Gupta, Resmi; Michelfelder, Erik C; Ittenbach, Richard F

    2011-11-01

    To describe congenital heart disease death rates in infants born between 34 and 40 weeks, estimate the relationship between gestational age and congenital heart disease infant death rates, and compare congenital heart disease death rates across 1- and 2-week intervals in gestational age. The 2000 to 2003 national linked birth/infant death cohort datasets were obtained. Congenital heart disease deaths were identified by using International Statistical Classification of Diseases, 10th Revision codes. Proportional death rates were calculated by using congenital heart disease deaths and all live births. The relationship between congenital heart disease death rates and gestational age was determined. Death rates were compared across intervals. A total of 14.9 million records were analyzed. Congenital heart disease deaths occurred in 4736 infants (0.04%) born between 34 and 40 weeks. There was a significant, negative linear relationship between congenital heart disease death rate and gestational age (R(2) = 0.97). Comparisons across 1-week intervals varied (P = .02-.23). All 2-week intervals were statistically significant (P < .01). Congenital heart disease death rates decrease as gestational age approaches 40 weeks. These results should be considered before elective delivery for the sole indication of prenatally diagnosed congenital heart disease. Copyright © 2011 Mosby, Inc. All rights reserved.

  20. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  1. Mechanical perturbation control of cardiac alternans

    NASA Astrophysics Data System (ADS)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  2. The predictive value of resting heart rate following osmotherapy in brain injury: back to basics.

    PubMed

    Hasanpour Mir, Mahsa; Yousefshahi, Fardin; Abdollahi, Mohammad; Ahmadi, Arezoo; Nadjafi, Atabak; Mojtahedzadeh, Mojtaba

    2012-12-30

    The importance of resting heart rate as a prognostic factor was described in several studies. An elevated heart rate is an independent risk factor for adverse cardiovascular events and total mortality in patients with coronary artery disease, chronic heart failure, and the general population. Also heart rate is elevated in the Multi Organ Dysfunction Syndrome (MODS) and the mortality due to MODS is highly correlated with inadequate sinus tachycardia.To evaluate the value of resting heart rate in predicting mortality in patients with traumatic brain injury along scoring systems like Acute Physiology and Chronic Health Evaluation(APACHE II), Sequential Organ Failure Assessment (SOFA) and Glasgow Coma Score (GCS). By analyzing data which was collected from an open labeled randomized clinical trial that compared the different means of osmotherapy (mannitol vs bolus or infusion hypertonic saline), heart rate, GCS, APACHE II and SOFA score were measured at baseline and daily for 7 days up to 60 days and the relationship between elevated heart rate and mortality during the first 7 days and 60th day were assessed. After adjustments for confounding factors, although there was no difference in mean heart rate between either groups of alive and expired patients, however, we have found a relative correlation between 60th day mortality rate and resting heart rate (P=0.07). Heart rate can be a prognostic factor for estimating mortality rate in brain injury patients along with APACHE II and SOFA scores in patients with brain injury.

  3. Parenting Behaviors, Parent Heart Rate Variability, and Their Associations with Adolescent Heart Rate Variability.

    PubMed

    Graham, Rebecca A; Scott, Brandon G; Weems, Carl F

    2017-05-01

    Adolescence is a potentially important time in the development of emotion regulation and parenting behaviors may play a role. We examined associations among parenting behaviors, parent resting heart rate variability, adolescent resting heart rate variability and parenting behaviors as moderators of the association between parent and adolescent resting heart rate variability. Ninety-seven youth (11-17 years; 49.5 % female; 34 % African American, 37.1 % Euro-American, 22.6 % other/mixed ethnic background, and 7.2 % Hispanic) and their parents (n = 81) completed a physiological assessment and questionnaires assessing parenting behaviors. Inconsistent discipline and corporal punishment were negatively associated with adolescent resting heart rate variability, while positive parenting and parental involvement were positively associated. Inconsistent discipline and parental involvement moderated the relationship between parent and adolescent resting heart rate variability. The findings provide evidence for a role of parenting behaviors in shaping the development of adolescent resting heart rate variability with inconsistent discipline and parental involvement potentially influencing the entrainment of resting heart rate variability in parents and their children.

  4. Prostaglandins are important in thermoregulation of a reptile (Pogona vitticeps).

    PubMed Central

    Seebacher, Frank; Franklin, Craig E

    2003-01-01

    The effectiveness of behavioural thermoregulation in reptiles is amplified by cardiovascular responses, particularly by differential rates of heart beat in response to heating and cooling (heart-rate hysteresis). Heart-rate hysteresis is ecologically important in most lineages of ectothermic reptile, and we demonstrate that heart-rate hysteresis in the lizard Pogona vitticeps is mediated by prostaglandins. In a control treatment (administration of saline), heart rates during heating were significantly faster than during cooling at any given body temperature. When cyclooxygenase 1 and 2 enzymes were inhibited, heart rates during heating were not significantly different from those during cooling. Administration of agonists showed that thromboxane B(2) did not have a significant effect on heart rate, but prostacyclin and prostaglandin F(2alpha) caused a significant increase (3.5 and 13.6 beats min(-1), respectively) in heart rate compared with control treatments. We speculate that heart-rate hysteresis evolved as a thermoregulatory mechanism that may ultimately be controlled by neurally induced stimulation of nitric oxide production, or maybe via photolytically induced production of vitamin D. PMID:12952634

  5. Prostaglandins are important in thermoregulation of a reptile (Pogona vitticeps).

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2003-08-07

    The effectiveness of behavioural thermoregulation in reptiles is amplified by cardiovascular responses, particularly by differential rates of heart beat in response to heating and cooling (heart-rate hysteresis). Heart-rate hysteresis is ecologically important in most lineages of ectothermic reptile, and we demonstrate that heart-rate hysteresis in the lizard Pogona vitticeps is mediated by prostaglandins. In a control treatment (administration of saline), heart rates during heating were significantly faster than during cooling at any given body temperature. When cyclooxygenase 1 and 2 enzymes were inhibited, heart rates during heating were not significantly different from those during cooling. Administration of agonists showed that thromboxane B(2) did not have a significant effect on heart rate, but prostacyclin and prostaglandin F(2alpha) caused a significant increase (3.5 and 13.6 beats min(-1), respectively) in heart rate compared with control treatments. We speculate that heart-rate hysteresis evolved as a thermoregulatory mechanism that may ultimately be controlled by neurally induced stimulation of nitric oxide production, or maybe via photolytically induced production of vitamin D.

  6. Topography of aortic heart valves. [applied to the development of a prosthetic heart valve

    NASA Technical Reports Server (NTRS)

    Karara, H. M.

    1974-01-01

    The cooperative effort towards the development of a tri-leaflet prosthetic heart valve is described. The photogrammetric studies were conducted on silicone rubber molds. Information on data acquisition and data reduction phases is given, and certain accuracy aspects of the project are explained. The various outputs which are discussed include digital models, profiles, and contour maps.

  7. Behavioral correlates of heart rates of free-living Greater White-fronted Geese

    USGS Publications Warehouse

    Ely, Craig R.; Ward, D.H.; Bollinger, K.S.

    1999-01-01

    We simultaneously monitored the heart rate and behavior of nine free-living Greater White-fronted Geese (Anser albifrons) on their wintering grounds in northern California. Heart rates of wild geese were monitored via abdominally-implanted radio transmitters with electrodes that received electrical impulses of the heart and emitted a radio signal with each ventricular contraction. Post-operative birds appeared to behave normally, readily rejoining flocks and flying up to 15 km daily from night-time roost sites to feed in surrounding agricultural fields. Heart rates varied significantly among individuals and among behaviors, and ranged from less than 100 beats per minute (BPM) during resting, to over 400 BPM during flight. Heart rates varied from 80 to 140 BPM during non-strenuous activities such as walking, feeding, and maintenance activities, to about 180 BPM when birds became alert, and over 400 BPM when birds were startled, even if they did not take flight. Postflight heart rate recovery time averaged < 10 sec. During agonistic encounters, heart rate exceeded 400 BPM; heart rates during social interactions were not predictable solely from postures, as heart rates were context-dependent, and were highest in initial encounters among individuals. Instantaneous measures of physiological parameters, such as heart rate, are often better indicators of the degree of response to external stimuli than visual observations and can be used to improve estimates of energy expenditure based solely on activity data.

  8. Relationship between heart rate and quiescent interval of the cardiac cycle in children using MRI.

    PubMed

    Zhang, Wei; Bogale, Saivivek; Golriz, Farahnaz; Krishnamurthy, Rajesh

    2017-11-01

    Imaging the heart in children comes with the challenge of constant cardiac motion. A prospective electrocardiography-triggered CT scan allows for scanning during a predetermined phase of the cardiac cycle with least motion. This technique requires knowing the optimal quiescent intervals of cardiac cycles in a pediatric population. To evaluate high-temporal-resolution cine MRI of the heart in children to determine the relationship of heart rate to the optimal quiescent interval within the cardiac cycle. We included a total of 225 consecutive patients ages 0-18 years who had high-temporal-resolution cine steady-state free-precession sequence performed as part of a magnetic resonance imaging (MRI) or magnetic resonance angiography study of the heart. We determined the location and duration of the quiescent interval in systole and diastole for heart rates ranging 40-178 beats per minute (bpm). We performed the Wilcoxon signed rank test to compare the duration of quiescent interval in systole and diastole for each heart rate group. The duration of the quiescent interval at heart rates <80 bpm and >90 bpm was significantly longer in diastole and systole, respectively (P<.0001 for all ranges, except for 90-99 bpm [P=.02]). For heart rates 80-89 bpm, diastolic interval was longer than systolic interval, but the difference was not statistically significant (P=.06). We created a chart depicting optimal quiescent intervals across a range of heart rates that could be applied for prospective electrocardiography-triggered CT imaging of the heart. The optimal quiescent interval at heart rates <80 bpm is in diastole and at heart rates ≥90 bpm is in systole. The period of quiescence at heart rates 80-89 bpm is uniformly short in systole and diastole.

  9. The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise.

    PubMed

    Bouts, Alexa M; Brackman, Lauren; Martin, Elizabeth; Subasic, Adam M; Potkanowicz, Edward S

    2018-01-01

    People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50-60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps.

  10. The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise

    PubMed Central

    BOUTS, ALEXA M.; BRACKMAN, LAUREN; MARTIN, ELIZABETH; SUBASIC, ADAM M.; POTKANOWICZ, EDWARD S.

    2018-01-01

    People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50–60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps. PMID:29541341

  11. Arrhythmias (For Parents)

    MedlinePlus

    ... or a heart function test. What's a Normal Heart Rate? Heart rate is measured by counting the number of beats per minute. Someone's normal heart rate depends on things like the person's age and ...

  12. Estimating 'lost heart beats' rather than reductions in heart rate during the intubation of critically-ill children.

    PubMed

    Jones, Peter; Ovenden, Nick; Dauger, Stéphane; Peters, Mark J

    2014-01-01

    Reductions in heart rate occur frequently in children during critical care intubation and are currently considered the gold standard for haemodynamic instability. Our objective was to estimate loss of heart beats during intubation and compare this to reduction in heart rate alone whilst testing the impact of atropine pre-medication. Data were extracted from a prospective 2-year cohort study of intubation ECGs from critically ill children in PICU/Paediatric Transport. A three step algorithm was established to exclude variation in pre-intubation heart rate (using a 95%CI limit derived from pre-intubation heart rate variation of the children included), measure the heart rate over time and finally the estimate the numbers of lost beats. 333 intubations in children were eligible for inclusion of which 245 were available for analysis (74%). Intubations where the fall in heart rate was less than 50 bpm were accompanied almost exclusively by less than 25 lost beats (n = 175, median 0 [0-1]). When there was a reduction of >50 bpm there was a poor correlation with numbers of lost beats (n = 70, median 42 [15-83]). During intubation the median number of lost beats was 8 [1]-[32] when atropine was not used compared to 0 [0-0] when atropine was used (p<0.001). A reduction in heart rate during intubation of <50 bpm reliably predicted a minimal loss of beats. When the reduction in heart rate was >50 bpm the heart rate was poorly predictive of lost beats. A study looking at the relationship between lost beats and cardiac output needs to be performed. Atropine reduces both fall in heart rate and loss of beats. Similar area-under-the-curve methodology may be useful for estimating risk when biological parameters deviate outside normal range.

  13. Predominance of Intrinsic Mechanism of Resting Heart Rate Control and Preserved Baroreflex Sensitivity in Professional Cyclists after Competitive Training.

    PubMed

    Azevedo, Luciene Ferreira; Perlingeiro, Patricia; Hachul, Denise Tessariol; Gomes-Santos, Igor Lucas; Tsutsui, Jeane Mike; Negrao, Carlos Eduardo; De Matos, Luciana D N J

    2016-01-01

    Different season trainings may influence autonomic and non-autonomic cardiac control of heart rate and provokes specific adaptations on heart's structure in athletes. We investigated the influence of transition training (TT) and competitive training (CT) on resting heart rate, its mechanisms of control, spontaneous baroreflex sensitivity (BRS) and relationships between heart rate mechanisms and cardiac structure in professional cyclists (N = 10). Heart rate (ECG) and arterial blood pressure (Pulse Tonometry) were recorded continuously. Autonomic blockade was performed (atropine-0.04 mg.kg-1; esmolol-500 μg.kg-1 = 0.5 mg). Vagal effect, intrinsic heart rate, parasympathetic (n) and sympathetic (m) modulations, autonomic influence, autonomic balance and BRS were calculated. Plasma norepinephrine (high-pressure liquid chromatography) and cardiac structure (echocardiography) were evaluated. Resting heart rate was similar in TT and CT. However, vagal effect, intrinsic heart rate, autonomic influence and parasympathetic modulation (higher n value) decreased in CT (P≤0.05). Sympathetic modulation was similar in both trainings. The autonomic balance increased in CT but still showed parasympathetic predominance. Cardiac diameter, septum and posterior wall thickness and left ventricular mass also increased in CT (P<0.05) as well as diastolic function. We observed an inverse correlation between left ventricular diastolic diameter, septum and posterior wall thickness and left ventricular mass with intrinsic heart rate. Blood pressure and BRS were similar in both trainings. Intrinsic heart rate mechanism is predominant over vagal effect during CT, despite similar resting heart rate. Preserved blood pressure levels and BRS during CT are probably due to similar sympathetic modulation in both trainings.

  14. Metabolic and Cardiovascular Responses to Upright Cycle Exercise with Leg Blood Flow Reduction

    PubMed Central

    Ozaki, Hayao; Brechue, William F.; Sakamaki, Mikako; Yasuda, Tomohiro; Nishikawa, Masato; Aoki, Norikazu; Ogita, Futoshi; Abe, Takashi

    2010-01-01

    The purpose of this study was to examine the metabolic and cardiovascular response to exercise without (CON) or with (BFR) restricted blood flow to the muscles. Ten young men performed upright cycle exercise at 20, 40, and 60% of maximal oxygen uptake, VO2max in both conditions while metabolic and cardiovascular parameters were determined. Pre-exercise VO2 was not different between CON and BFR. Cardiac output (Q) was similar between the two conditions as a 25% reduction in stroke volume (SV) observed in BFR was associated with a 23% higher heart rate (HR) in BFR compared to CON. As a result rate-pressure product (RPP) was higher in the BFR but there was no difference in mean arterial pressure (MAP) or total peripheral resistance (TPR). During exercise, VO2 tended to increase with BFR (~10%) at each workload. Q increased in proportion to exercise intensity and there were no differences between conditions. The increase in SV with exercise was impaired during BFR; being ~20% lower in BFR at each workload. Both HR and RPP were significantly greater at each workload with BFR. MAP and TPR were greater with BFR at 40 and 60% VO2max. In conclusion, the BFR employed impairs exercise SV but central cardiovascular function is maintained by an increased HR. BFR appears to result in a greater energy demand during continuous exercise between 20 and 60% of control VO2max; probably indicated by a higher energy supply and RPP. When incorporating BFR, HR and RPP may not be valid or reliable indicators of exercise intensity. Key points Blood flow reduction (BFR) employed impairs stroke volume (SV) during exercise, but central cardiovascular function is maintained by an increased heart rate (HR). BFR appears to result in a greater energy demand during continuous exercise between 20 and 60% of control VO2max; Probably indicated by a higher energy supply (VO2) and rate-pressure product (HR x systolic blood pressure). PMID:24149689

  15. Six-minute walk test and heart rate variability: lack of association in advanced stages of heart failure.

    PubMed

    Woo, M A; Moser, D K; Stevenson, L W; Stevenson, W G

    1997-09-01

    The 6-minute walk and heart rate variability have been used to assess mortality risk in patients with heart failure, but their relationship to each other and their usefulness for predicting mortality at 1 year are unknown. To assess the relationships between the 6-minute walk test, heart rate variability, and 1-year mortality. A sample of 113 patients in advanced stages of heart failure (New York Heart Association Functional Class III-IV, left ventricular ejection < 0.25) were studied. All 6-minute walks took place in an enclosed, level, measured corridor and were supervised by the same nurse. Heart rate variability was measured by using (1) a standard-deviation method and (2) Poincaré plots. Data on RR intervals obtained by using 24-hour Holter monitoring were analyzed. Survival was determined at 1 year after the Holter recording. The results showed no significant associations between the results of the 6-minute walk and the two measures of heart rate variability. The results of the walk were related to 1-year mortality but not to the risk of sudden death. Both measures of heart rate variability had significant associations with 1-year mortality and with sudden death. However, only heart rate variability measured by using Poincaré plots was a predictor of total mortality and risk of sudden death, independent of left ventricular ejection fraction, serum levels of sodium, results of the 6-minute walk test, and the standard-deviation measure of heart rate variability. Results of the 6-minute walk have poor association with mortality and the two measures of heart rate variability in patients with advanced-stage heart failure and a low ejection fraction. Further studies are needed to determine the optimal clinical usefulness of the 6-minute walk and heart rate variability in patients with advanced-stage heart failure.

  16. Variability in heart rate recovery measurements over 1 year in healthy, middle-aged adults.

    PubMed

    Mellis, M G; Ingle, L; Carroll, S

    2014-02-01

    This study assessed the longer-term (12-month) variability in post-exercise heart rate recovery following a submaximal exercise test. Longitudinal data was analysed for 97 healthy middle-aged adults (74 male, 23 female) from 2 occasions, 12 months apart. Participants were retrospectively selected if they had stable physical activity habits, submaximal treadmill fitness and anthropometric measurements between the 2 assessment visits. A submaximal Bruce treadmill test was performed to at least 85% age-predicted maximum heart rate. Absolute heart rate and Δ heart rate recovery (change from peak exercise heart rate) were recorded for 1 and 2 min post-exercise in an immediate supine position. Heart rate recovery at both time-points was shown to be reliable with intra-class correlation coefficient values ≥ 0.714. Absolute heart rate 1-min post-exercise showed the strongest agreement between repeat tests (r = 0.867, P < 0.001). Lower coefficient of variation (≤ 10.2%) and narrower limits of agreement were found for actual heart rate values rather than Δ heart rate recovery, and for 1-min rather than 2-min post-exercise recovery time points. Log-transformed values generated better variability with acceptable coefficient of variation for all measures (2.2-10%). Overall, 1 min post-exercise heart rate recovery data had least variability over the 12-month period in apparently healthy middle-aged adults. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Elevated resting heart rate is associated with dyslipidemia in middle-aged and elderly Chinese.

    PubMed

    Sun, Ji Chao; Huang, Xiao Lin; Deng, Xin Ru; Lv, Xiao Fei; Lu, Jie Li; Chen, Yu Hong; Bi, Yu Fang; Wang, Wei Qing; Xu, Min; Ning, Guang

    2014-08-01

    To study the relationship between resting heart rate and blood lipid level. A total of 9 415 subjects aged ⋝ 40 years were included in the present study. Their resting heart rate was monitored and their serum levels of triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) were measured to define dyslipidemia according to the 2007 Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults. The subjects were divided into group A with their resting heart rate <70 beats/min, group B with their resting heart rate =70-79 beats/min, group C with their resting heart rate =80-89 beats/min, and group D with their resting heart rate ⋝ 90 beats/min. High TG, TC, and LDL-C were presented across the resting heart rate (Ptrend <0.01). Multiple logistic regression analysis revealed that the risk of high TG and TC was higher in subjects with their resting heart rate ⋝ 90 beats/min than in those with their resting heart rate <70 beats/min (OR=1.42; 95% CI: 1.16-1.74 and OR=1.33; 95% CI: 1.09-1.64, respectively). Elevated resting heart rate is associated with high TG and TC in middle-aged and elderly Chinese subjects. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. Stress and your heart

    MedlinePlus

    ... MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  19. Universal ventricular coordinates: A generic framework for describing position within the heart and transferring data.

    PubMed

    Bayer, Jason; Prassl, Anton J; Pashaei, Ali; Gomez, Juan F; Frontera, Antonio; Neic, Aurel; Plank, Gernot; Vigmond, Edward J

    2018-04-01

    Being able to map a particular set of cardiac ventricles to a generic topologically equivalent representation has many applications, including facilitating comparison of different hearts, as well as mapping quantities and structures of interest between them. In this paper we describe Universal Ventricular Coordinates (UVC), which can be used to describe position within any biventricular heart. UVC comprise four unique coordinates that we have chosen to be intuitive, well defined, and relevant for physiological descriptions. We describe how to determine these coordinates for any volumetric mesh by illustrating how to properly assign boundary conditions and utilize solutions to Laplace's equation. Using UVC, we transferred scalar, vector, and tensor data between four unstructured ventricular meshes from three different species. Performing the mappings was very fast, on the order of a few minutes, since mesh nodes were searched in a KD tree. Distance errors in mapping mesh nodes back and forth between meshes were less than the size of an element. Analytically derived fiber directions were also mapped across meshes and compared, showing  < 5° difference over most of the ventricles. The ability to transfer gradients was also demonstrated. Topologically variable structures, like papillary muscles, required further definition outside of the UVC framework. In conclusion, UVC can aid in transferring many types of data between different biventricular geometries. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  1. Application of simple biomechanical and biochemical tests to heart valve leaflets: implications for heart valve characterization and tissue engineering.

    PubMed

    Huang, Hsiao-Ying S; Balhouse, Brittany N; Huang, Siyao

    2012-11-01

    A simple biomechanical test with real-time displacement and strain mapping is reported, which provides displacement vectors and principal strain directions during the mechanical characterization of heart valve tissues. The maps reported in the current study allow us to quickly identify the approximate strain imposed on a location in the samples. The biomechanical results show that the aortic valves exhibit stronger anisotropic mechanical behavior than that of the pulmonary valves before 18% strain equibiaxial stretching. In contrast, the pulmonary valves exhibit stronger anisotropic mechanical behavior than aortic valves beyond 28% strain equibiaxial stretching. Simple biochemical tests are also conducted. Collagens are extracted at different time points (24, 48, 72, and 120 h) at different locations in the samples. The results show that extraction time plays an important role in determining collagen concentration, in which a minimum of 72 h of extraction is required to obtain saturated collagen concentration. This work provides an easy approach for quantifying biomechanical and biochemical properties of semilunar heart valve tissues, and potentially facilitates the development of tissue engineered heart valves.

  2. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    NASA Technical Reports Server (NTRS)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  3. Heart Rate Response in Spectators of the Montreal Canadiens Hockey Team.

    PubMed

    Khairy, Leia T; Barin, Roxana; Demonière, Fabrice; Villemaire, Christine; Billo, Marie-Josée; Tardif, Jean-Claude; Macle, Laurent; Khairy, Paul

    2017-12-01

    To our knowledge, heart rate responses have not previously been assessed in hockey fans. We quantified heart rate increases in spectators of the Montreal Canadiens, compared televised with live games, explored features associated with peak heart rates, and assessed whether increases correlate with a fan passion score. Healthy adults were enrolled, with half attending live games and half viewing televised games. All subjects completed questionnaires and had continuous Holter monitoring. Intensity of the physical stress response was defined according to previously published heart rate index thresholds as mild (< 1.33), moderate (1.33-1.83), or vigorous (> 1.83). In 20 participants, 35% women, age 46 ± 10 years, the heart rate increased by a median of 92% during the hockey game, from 60 (interquartile range, 54-65) beats per minute at rest to 114 (interquartile range, 103-129) beats per minute (P < 0.001). The heart rate increased by 110% vs 75% during live vs televised games (P < 0.001). Heart rate index (2.16 ± 0.27 vs 1.73 ± 0.15; P < 0.001) and percent maximum predicted heart rate attained (75% ± 8% vs 58% ± 7%; P < 0.001) were significantly higher during live vs televised games. Number of premature beats was nonsignificantly higher during live games (5 vs 1; P = 0.181). The fan passion score was not predictive of the heart rate response (P = 0.753). Peak heart rates most commonly occurred during overtime (40%) and scoring opportunities for (25%) and against (15%). It is exciting to watch the Montreal Canadiens! Viewing a live hockey game is associated with a heart rate response equivalent to vigorous physical stress and a televised game to moderate physical stress. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  4. Conventional heart rate variability analysis of ambulatory electrocardiographic recordings fails to predict imminent ventricular fibrillation

    NASA Technical Reports Server (NTRS)

    Vybiral, T.; Glaeser, D. H.; Goldberger, A. L.; Rigney, D. R.; Hess, K. R.; Mietus, J.; Skinner, J. E.; Francis, M.; Pratt, C. M.

    1993-01-01

    OBJECTIVES. The purpose of this report was to study heart rate variability in Holter recordings of patients who experienced ventricular fibrillation during the recording. BACKGROUND. Decreased heart rate variability is recognized as a long-term predictor of overall and arrhythmic death after myocardial infarction. It was therefore postulated that heart rate variability would be lowest when measured immediately before ventricular fibrillation. METHODS. Conventional indexes of heart rate variability were calculated from Holter recordings of 24 patients with structural heart disease who had ventricular fibrillation during monitoring. The control group consisted of 19 patients with coronary artery disease, of comparable age and left ventricular ejection fraction, who had nonsustained ventricular tachycardia but no ventricular fibrillation. RESULTS. Heart rate variability did not differ between the two groups, and no consistent trends in heart rate variability were observed before ventricular fibrillation occurred. CONCLUSIONS. Although conventional heart rate variability is an independent long-term predictor of adverse outcome after myocardial infarction, its clinical utility as a short-term predictor of life-threatening arrhythmias remains to be elucidated.

  5. Association between heart rate variability and manual pulse rate.

    PubMed

    Hart, John

    2013-09-01

    One model for neurological assessment in chiropractic pertains to autonomic variability, tested commonly with heart rate variability (HRV). Since HRV may not be convenient to use on all patient visits, more user-friendly methods may help fill-in the gaps. Accordingly, this study tests the association between manual pulse rate and heart rate variability. The manual rates were also compared to the heart rate derived from HRV. Forty-eight chiropractic students were examined with heart rate variability (SDNN and mean heart rate) and two manual radial pulse rate measurements. Inclusion criteria consisted of participants being chiropractic students. Exclusion criteria for 46 of the participants consisted of a body mass index being greater than 30, age greater than 35, and history of: a) dizziness upon standing, b) treatment of psychiatric disorders, and c) diabetes. No exclusion criteria were applied to the remaining two participants who were also convenience sample volunteers. Linear associations between the manual pulse rate methods and the two heart rate variability measures (SDNN and mean heart) were tested with Pearson's correlation and simple linear regression. Moderate strength inverse (expected) correlations were observed between both manual pulse rate methods and SDNN (r = -0.640, 95% CI -0.781, -0.435; r = -0.632, 95% CI -0.776, -0.425). Strong direct (expected) relationships were observed between the manual pulse rate methods and heart rate derived from HRV technology (r = 0.934, 95% CI 0.885, 0.962; r = 0.941, 95% CI 0.897, 0.966). Manual pulse rates may be a useful option for assessing autonomic variability. Furthermore, this study showed a strong relationship between manual pulse rates and heart rate derived from HRV technology.

  6. Blood Pressure vs. Heart Rate

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Blood Pressure vs. Heart Rate (Pulse) Updated:Nov 13,2017 Understanding the difference ... your blood moving through your blood vessels, your heart rate is the number of times your heart beats ...

  7. Effects of a constant rate infusion of detomidine on cardiovascular function, isoflurane requirements and recovery quality in horses.

    PubMed

    Schauvliege, Stijn; Marcilla, Miguel Gozalo; Verryken, Kirsten; Duchateau, Luc; Devisscher, Lindsey; Gasthuys, Frank

    2011-11-01

    To examine the influence of a detomidine constant rate infusion (CRI) on cardiovascular function, isoflurane requirements and recovery quality in horses undergoing elective surgery. Prospective, randomized, blinded, clinical trial. Twenty adult healthy horses. After sedation (detomidine, 10 μg kg(-1) intravenously [IV]) and induction of anaesthesia (midazolam 0.06 mg kg(-1) , ketamine 2.2 mg kg(-1) IV), anaesthesia was maintained with isoflurane in oxygen/air (inspiratory oxygen fraction 55%). When indicated, the lungs were mechanically ventilated. Dobutamine was administered when MAP<70 mmHg. The horses were randomly allocated to one of two groups and throughout anaesthesia, received either a detomidine (5 μg kg(-1)  hour(-1) ) (D) or saline (S) CRI, with the anaesthetist unaware of the treatment. Monitoring included end-tidal isoflurane concentration, arterial pH, PaCO(2) , PaO(2) , dobutamine administration rate, heart rate (HR), arterial pressure, cardiac index (CI), systemic vascular resistance (SVR), stroke index and oxygen delivery index (ḊO(2) I). For recovery from anaesthesia, all horses received 2.5 μg kg(-1) detomidine IV. Recovery quality and duration were recorded in each horse. For statistical analysis, anova, Pearson chi-square and Wilcoxon rank sum tests were used as relevant. Heart rate (p=0.0176) and ḊO(2) I (p= 0.0084) were lower and SVR higher (p=0.0126) in group D, compared to group S. Heart rate (p=0.0011) and pH (p=0.0187) increased over time. Significant differences in isoflurane requirements were not detected. Recovery quality and duration were comparable between treatments. A detomidine CRI produced cardiovascular effects typical for α(2) -agonists, without affecting isoflurane requirements, recovery duration or recovery quality. © 2011 The Authors. Veterinary Anaesthesia and Analgesia. © 2011 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  8. The predictive value of resting heart rate following osmotherapy in brain injury: back to basics

    PubMed Central

    2012-01-01

    Background The importance of resting heart rate as a prognostic factor was described in several studies. An elevated heart rate is an independent risk factor for adverse cardiovascular events and total mortality in patients with coronary artery disease, chronic heart failure, and the general population. Also heart rate is elevated in the Multi Organ Dysfunction Syndrome (MODS) and the mortality due to MODS is highly correlated with inadequate sinus tachycardia. To evaluate the value of resting heart rate in predicting mortality in patients with traumatic brain injury along scoring systems like Acute Physiology and Chronic Health Evaluation(APACHE II), Sequential Organ Failure Assessment (SOFA) and Glasgow Coma Score (GCS). Method By analyzing data which was collected from an open labeled randomized clinical trial that compared the different means of osmotherapy (mannitol vs bolus or infusion hypertonic saline), heart rate, GCS, APACHE II and SOFA score were measured at baseline and daily for 7 days up to 60 days and the relationship between elevated heart rate and mortality during the first 7 days and 60th day were assessed. Results After adjustments for confounding factors, although there was no difference in mean heart rate between either groups of alive and expired patients, however, we have found a relative correlation between 60th day mortality rate and resting heart rate (P=0.07). Conclusion Heart rate can be a prognostic factor for estimating mortality rate in brain injury patients along with APACHE II and SOFA scores in patients with brain injury. PMID:23351393

  9. Heart rates increase after hatching in two species of natricine snakes

    PubMed Central

    Aubret, Fabien

    2013-01-01

    Experimental studies have shown heart rates to decrease from embryo to hatchling stage in turtles, remain steady in skinks, and increase in birds. However, no snake species has been studied in this regard. I recorded heart rate evolution trajectories from embryo to juvenile stage in 78 eggs from two species of European Natricine snakes. Unexpectedly, snakes behaved more like birds than turtles or lizards: heart rates increased after hatching in both N. maura and N. natrix, respectively by 43.92 ± 22.84% and 35.92 ± 24.52%. Heart rate shift was not related to an abrupt elevation of metabolism per se (snakes that increased their heart rates the most sharply grew the least after birth), but rather due to a number of smaller eggs that experienced lower than normal heart rates throughout the incubation and recovered a normal heart rate post-birth. This finding is discussed in the light of hatching synchrony benefits. PMID:24287712

  10. Hemodynamic comparison of mild and severe preeclampsia: concept of stroke systemic vascular resistance index.

    PubMed

    Scardo, J; Kiser, R; Dillon, A; Brost, B; Newman, R

    1996-01-01

    Our purpose was to compare baseline hemodynamic parameters of mild and severe preeclampsia. Patients admitted to the Medical University Labor and Delivery Unit with the diagnosis of preeclampsia who had not received prior antihypertensive or magnesium sulfate therapy were recruited for noninvasive hemodynamic monitoring with thoracic electrical bioimpedance. After stabilization in the lateral recumbent position, hemodynamic monitoring was begun. Baseline hemodynamic parameters, mean arterial pressure (MAP), heart rate (HR), systemic vascular resistance index (SVRI), cardiac index (CI), and stroke index (SI) were recorded. Stroke systemic vascular resistance index (SSVRI), the resistance imposed by vasculature on each beat of the heart, was calculated for each patient by multiplying SVRI by HR. For statistical analysis, unpaired Student's t-tests (two-tailed) were utilized (P < 0.01). Forty-one preeclamptic patients (20 mild, 21 severe) were enrolled. Mean gestational age of severe patients was 32.2 +/- 4.0 and of mild patients was 37.0 +/- 3.5. MAP, SBP, diastolic blood pressure, HR, and SSVRI were higher in the severe group. SVRI, CI, cardiac output, and SI did not differ significantly between groups. Severe preclampsia appears to be a more intensely vasoconstricted state than mild preeclampsia. Although CI is inversely proportional to SVRI, increased HR in severe preeclampsia prevents this expected decrease in cardiac output.

  11. Gender-related differences in β-adrenergic receptor-mediated cardiac remodeling.

    PubMed

    Zhu, Baoling; Liu, Kai; Yang, Chengzhi; Qiao, Yuhui; Li, Zijian

    2016-12-01

    Cardiac remodeling is the pathological basis of various cardiovascular diseases. In this study, we found gender-related differences in β-adrenergic receptor (AR)-mediated pathological cardiac remodeling. Cardiac remodeling model was established by subcutaneous injection of isoprenaline (ISO) for 14 days. Heart rate (HR), mean arterial pressure (MAP), and echocardiography were obtained on 7th and 14th days during ISO administration. Myocardial cross-sectional area and the ratio of heart mass to tibia length (HM/TL) were detected to assess cardiac hypertrophy. Picro-Sirius red staining (picric acid + Sirius red F3B) was used to evaluate cardiac fibrosis. Myocardial capillary density was assessed by immunohistochemistry for von Willebrand factor. Further, real-time PCR was used to measure the expression of β1-AR and β2-AR. Results showed that ISO induced cardiac remodeling, the extent of which was different between female and male mice. The extent of increase in cardiac wall thickness, myocardial cross-sectional area, and collagen deposition in females was less than that in males. However, no gender-related difference was observed in HR, MAP, cardiac function, and myocardial capillary density. The distinctive decrease of β2-AR expression, rather than a decrease of β1-AR expression, seemed to result in gender-related differences in cardiac remodeling.

  12. Discovery of novel heart rate-associated loci using the Exome Chip

    PubMed Central

    van den Berg, Marten E.; Warren, Helen R.; Cabrera, Claudia P.; Verweij, Niek; Mifsud, Borbala; Haessler, Jeffrey; Bihlmeyer, Nathan A.; Fu, Yi-Ping; Weiss, Stefan; Lin, Henry J.; Grarup, Niels; Li-Gao, Ruifang; Pistis, Giorgio; Shah, Nabi; Brody, Jennifer A.; Müller-Nurasyid, Martina; Lin, Honghuang; Mei, Hao; Smith, Albert V.; Lyytikäinen, Leo-Pekka; Hall, Leanne M.; van Setten, Jessica; Trompet, Stella; Prins, Bram P.; Isaacs, Aaron; Radmanesh, Farid; Marten, Jonathan; Entwistle, Aiman; Kors, Jan A.; Silva, Claudia T.; Alonso, Alvaro; Bis, Joshua C.; de Boer, Rudolf; de Haan, Hugoline G.; de Mutsert, Renée; Dedoussis, George; Dominiczak, Anna F.; Doney, Alex S. F.; Ellinor, Patrick T.; Eppinga, Ruben N.; Felix, Stephan B.; Guo, Xiuqing; Hagemeijer, Yanick; Hansen, Torben; Harris, Tamara B.; Heckbert, Susan R.; Huang, Paul L.; Hwang, Shih-Jen; Kähönen, Mika; Kanters, Jørgen K.; Kolcic, Ivana; Launer, Lenore J.; Li, Man; Yao, Jie; Linneberg, Allan; Liu, Simin; Macfarlane, Peter W.; Mangino, Massimo; Morris, Andrew D.; Mulas, Antonella; Murray, Alison D.; Nelson, Christopher P.; Orrú, Marco; Padmanabhan, Sandosh; Peters, Annette; Porteous, David J.; Poulter, Neil; Psaty, Bruce M.; Qi, Lihong; Raitakari, Olli T.; Rivadeneira, Fernando; Roselli, Carolina; Rudan, Igor; Sattar, Naveed; Sever, Peter; Sinner, Moritz F.; Soliman, Elsayed Z.; Spector, Timothy D.; Stanton, Alice V.; Stirrups, Kathleen E.; Taylor, Kent D.; Tobin, Martin D.; Uitterlinden, André; Vaartjes, Ilonca; Hoes, Arno W.; van der Meer, Peter; Völker, Uwe; Waldenberger, Melanie; Xie, Zhijun; Zoledziewska, Magdalena; Tinker, Andrew; Polasek, Ozren; Rosand, Jonathan; Jamshidi, Yalda; van Duijn, Cornelia M.; Zeggini, Eleftheria; Jukema, J. Wouter; Asselbergs, Folkert W.; Samani, Nilesh J.; Lehtimäki, Terho; Gudnason, Vilmundur; Wilson, James; Lubitz, Steven A.; Kääb, Stefan; Sotoodehnia, Nona; Caulfield, Mark J.; Palmer, Colin N. A.; Sanna, Serena; Mook-Kanamori, Dennis O.; Deloukas, Panos; Pedersen, Oluf; Rotter, Jerome I.; Dörr, Marcus; O'Donnell, Chris J.; Hayward, Caroline; Arking, Dan E.; Kooperberg, Charles; van der Harst, Pim; Eijgelsheim, Mark; Stricker, Bruno H.; Munroe, Patricia B.

    2017-01-01

    Abstract Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses. Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods. We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants. Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies. PMID:28379579

  13. Discovery of novel heart rate-associated loci using the Exome Chip.

    PubMed

    van den Berg, Marten E; Warren, Helen R; Cabrera, Claudia P; Verweij, Niek; Mifsud, Borbala; Haessler, Jeffrey; Bihlmeyer, Nathan A; Fu, Yi-Ping; Weiss, Stefan; Lin, Henry J; Grarup, Niels; Li-Gao, Ruifang; Pistis, Giorgio; Shah, Nabi; Brody, Jennifer A; Müller-Nurasyid, Martina; Lin, Honghuang; Mei, Hao; Smith, Albert V; Lyytikäinen, Leo-Pekka; Hall, Leanne M; van Setten, Jessica; Trompet, Stella; Prins, Bram P; Isaacs, Aaron; Radmanesh, Farid; Marten, Jonathan; Entwistle, Aiman; Kors, Jan A; Silva, Claudia T; Alonso, Alvaro; Bis, Joshua C; de Boer, Rudolf; de Haan, Hugoline G; de Mutsert, Renée; Dedoussis, George; Dominiczak, Anna F; Doney, Alex S F; Ellinor, Patrick T; Eppinga, Ruben N; Felix, Stephan B; Guo, Xiuqing; Hagemeijer, Yanick; Hansen, Torben; Harris, Tamara B; Heckbert, Susan R; Huang, Paul L; Hwang, Shih-Jen; Kähönen, Mika; Kanters, Jørgen K; Kolcic, Ivana; Launer, Lenore J; Li, Man; Yao, Jie; Linneberg, Allan; Liu, Simin; Macfarlane, Peter W; Mangino, Massimo; Morris, Andrew D; Mulas, Antonella; Murray, Alison D; Nelson, Christopher P; Orrú, Marco; Padmanabhan, Sandosh; Peters, Annette; Porteous, David J; Poulter, Neil; Psaty, Bruce M; Qi, Lihong; Raitakari, Olli T; Rivadeneira, Fernando; Roselli, Carolina; Rudan, Igor; Sattar, Naveed; Sever, Peter; Sinner, Moritz F; Soliman, Elsayed Z; Spector, Timothy D; Stanton, Alice V; Stirrups, Kathleen E; Taylor, Kent D; Tobin, Martin D; Uitterlinden, André; Vaartjes, Ilonca; Hoes, Arno W; van der Meer, Peter; Völker, Uwe; Waldenberger, Melanie; Xie, Zhijun; Zoledziewska, Magdalena; Tinker, Andrew; Polasek, Ozren; Rosand, Jonathan; Jamshidi, Yalda; van Duijn, Cornelia M; Zeggini, Eleftheria; Jukema, J Wouter; Asselbergs, Folkert W; Samani, Nilesh J; Lehtimäki, Terho; Gudnason, Vilmundur; Wilson, James; Lubitz, Steven A; Kääb, Stefan; Sotoodehnia, Nona; Caulfield, Mark J; Palmer, Colin N A; Sanna, Serena; Mook-Kanamori, Dennis O; Deloukas, Panos; Pedersen, Oluf; Rotter, Jerome I; Dörr, Marcus; O'Donnell, Chris J; Hayward, Caroline; Arking, Dan E; Kooperberg, Charles; van der Harst, Pim; Eijgelsheim, Mark; Stricker, Bruno H; Munroe, Patricia B

    2017-06-15

    Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies. © The Author 2017. Published by Oxford University Press.

  14. Social technology restriction alters state-anxiety but not autonomic activity in humans.

    PubMed

    Durocher, John J; Lufkin, Kelly M; King, Michelle E; Carter, Jason R

    2011-12-01

    Social technology is extensively used by young adults throughout the world, and it has been suggested that interrupting access to this technology induces anxiety. However, the influence of social technology restriction on anxiety and autonomic activity in young adults has not been formally examined. Therefore, we hypothesized that restriction of social technology would increase state-anxiety and alter neural cardiovascular regulation of arterial blood pressure. Twenty-one college students (age 18-23 yr) were examined during two consecutive weeks in which social technology use was normal or restricted (randomized crossover design). Mean arterial pressure (MAP), heart rate, and muscle sympathetic nerve activity (MSNA) were measured at rest and during several classic autonomic stressors, including isometric handgrip, postexercise muscle ischemia, cold pressor test, and mental stress. Tertile analysis revealed that restriction of social technology was associated with increases (12 ± 2 au; range 5 to 21; n = 7), decreases (-6 ± 2 au; range -2 to -11; n = 6), or no change (0 ± 0 au; range -1 to 3; n = 8) in state-anxiety. Social technology restriction did not alter MAP (74 ± 1 vs. 73 ± 1 mmHg), heart rate (62 ± 2 vs. 61 ± 2 beats/min), or MSNA (9 ± 1 vs. 9 ± 1 bursts/min) at rest, and it did not alter neural or cardiovascular responses to acute stressors. In conclusion, social technology restriction appears to have an interindividual influence on anxiety, but not autonomic activity. It remains unclear how repeated bouts, or chronic restriction of social technology, influence long-term psychological and cardiovascular health.

  15. The non-peptide CRH1-antagonist CP-154,526 elicits a paradoxical route-dependent activation of the HPA axis.

    PubMed

    Zaretsky, Dmitry V; Zaretskaia, Maria V; Sarkar, Sumit; Rusyniak, Daniel E; DiMicco, Joseph A

    2017-07-13

    The corticotropin-releasing hormone (CRH) plays an important role in mediating physiological response to stress and is thought to be involved in the development of various psychiatric disorders. In this paper, we compare the differences between the effect of intraperitoneal (i.p.) and intraarterial (i.a.) administration of the non-peptide CRH 1 antagonist CP-154,526 (CP) (10 and 20mg/kg) on plasma adrenocorticotropic hormone levels (ACTH), heart rate, MAP, and c-Fos expression in the paraventricular nucleus of the hypothalamus. Intraperitoneal, but not i.a., injection of CP resulted in an increase in plasma ACTH (from 105±13 to 278±51pg/ml after 20mg/kg). This effect was accompanied by a dramatic increase in c-Fos expression in cells immunoreactive for CRH in the paraventricular nucleus of the hypothalamus. When the drug was administered i.p., CP-induced activation of the HPA appears to mask the inhibitory effect of CP on stress-induced ACTH secretion, an effect which was readily apparent when the drug was given i.a. Intraperitoneal administration of CP also increased the baseline MAP which may account for previous reports that treatment with this drug attenuated the increases associated with stress. CP given by either route had no effect on baseline heart rate or stress-induced tachycardia. Thus, in all studies in which CP 154,526 is given, the route of delivery must be given careful consideration. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The effect of GSM and TETRA mobile handset signals on blood pressure, catechol levels and heart rate variability.

    PubMed

    Barker, Anthony T; Jackson, Peter R; Parry, Helen; Coulton, Leslie A; Cook, Greg G; Wood, Steven M

    2007-09-01

    An acute rise in blood pressure has been reported in normal volunteers during exposure to signals from a mobile phone handset. To investigate this finding further we carried out a double blind study in 120 healthy volunteers (43 men, 77 women) in whom we measured mean arterial pressure (MAP) during each of six exposure sessions. At each session subjects were exposed to one of six different radio frequency signals simulating both GSM and TETRA handsets in different transmission modes. Blood catechols before and after exposure, heart rate variability during exposure, and post exposure 24 h ambulatory blood pressure were also studied. Despite having the power to detect changes in MAP of less than 1 mmHg none of our measurements showed any effect which we could attribute to radio frequency exposure. We found a single statistically significant decrease of 0.7 mmHg (95% CI 0.3-1.2 mmHg, P = .04) with exposure to GSM handsets in sham mode. This may be due to a slight increase in operating temperature of the handsets when in this mode. Hence our results have not confirmed the original findings of an acute rise in blood pressure due to exposure to mobile phone handset signals. In light of this negative finding from a large study, coupled with two smaller GSM studies which have also proved negative, we are of the view that further studies of acute changes in blood pressure due to GSM and TETRA handsets are not required.

  17. Dexmedetomidine could enhance surgical satisfaction in Trans-sphenoidal resection of pituitary adenoma.

    PubMed

    Salimi, Alireza; Sharifi, Guive; Bahrani, Houshang; Mohajerani, Seyed A; Jafari, Alireza; Safari, Farhad; Jalessi, Maryam; Mirkheshti, Alireza; Mottaghi, Kamran

    2017-02-01

    Excessive bleeding is an unwanted complication of trans-sphenoidal resection of pituitary adenoma due to increases in intracranial pressure (ICP) and hemodynamic instability. Dexmedetomidine (Dex) anα2-agonists is the drug of choice in intensive care units (ICU) and cardiac surgeries to control abrupt changes in hemodynamic. Severe cardiovascular responses occur during trans-sphenoidal resection (TSR) of the pituitary adenoma despite adequate depth of anesthesia. The aim of this paper was to determine the effect of Dexmedetomidine on bleeding as primary outcome, and surgeon's satisfaction and hemodynamic stability as secondary outcomes in patients undergoing trans-sphenoidal resection of pituitary adenoma. Total numbers of 60 patients between 18-65 years old and candidate for elective trans-sphenoidal resection of pituitary adenoma were randomLy allocated to two groups; Dexmedetomidine infusion (0.6µg/kg/hour) or normal saline infusion. Mean arterial pressure (MAP), heart rate (HR), dose of hypnotics and narcotics during surgery, bleeding, and surgeon's satisfaction were recorded. Propofol maintenance dose (µg/kg/min) and total Fentanyl use (µg) were significantly lower in Dex group compare to control group (P=0.01 and 0.003, respectively). Total bleeding amount during operation in Dex group was significantly lower than control group (P=0.012). Surgeon's satisfaction was significantly higher in Dex group at the end of surgery. MAP and heart rate throughout surgery were significantly lower in Dex group compare to control group (P=0.001). Dexmedetomidine infusion (0.6µg/kg/hour) could reduce bleeding and provide surgeon's satisfaction during trans-sphenoidal resection of pituitary adenoma.

  18. Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the SHIFT study.

    PubMed

    Böhm, Michael; Borer, Jeffrey; Ford, Ian; Gonzalez-Juanatey, Jose R; Komajda, Michel; Lopez-Sendon, Jose; Reil, Jan-Christian; Swedberg, Karl; Tavazzi, Luigi

    2013-01-01

    We analysed the effect of ivabradine on outcomes in heart failure (HF) patients on recommended background therapies with heart rates ≥75 bpm and <75 bpm in the SHIFT trial. A cut-off value of ≥75 bpm was chosen by the EMEA for approval for the use of ivabradine in chronic heart failure. The SHIFT population was divided by baseline heart rate ≥75 or <75 bpm. The effect of ivabradine was analysed for primary composite endpoint (cardiovascular death or HF hospitalization) and other endpoints. In the ≥75 bpm group, ivabradine reduced primary endpoint (HR 0.76, 95 % CI 0.68-0.85, P < 0.0001), all-cause mortality (HR 0.83, 95 % CI, 0.72-0.96, P = 0.0109), cardiovascular mortality (HR 0.83, 95 % CI, (0.71-0.97, P = 0.0166), HF death (HR 0.61, 95 % CI, 0.46-0.81, P < 0.0006), and HF hospitalization (HR 0.70, 95 % CI, 0.61-0.80, P < 0.0001). Risk reduction depended on heart rate after 28 days, with the best protection for heart rates <60 bpm or reductions >10 bpm. None of the endpoints was significantly reduced in the <75 bpm group, though there were trends for risk reductions in HF death and hospitalization for heart rate <60 bpm and reductions >10 bpm. Ivabradine was tolerated similarly in both groups. The effect of ivabradine on outcomes is greater in patients with heart rate ≥75 bpm with heart rates achieved <60 bpm or heart rate reductions >10 bpm predicting best risk reduction. Our findings emphasize the importance of identification of high-risk HF patients by high heart rates and their treatment with heart rate-lowering drugs such as ivabradine.

  19. Effects of ampicillin/sulbactam and enrofloxacin on the blood pressure of isoflurane anesthetized dogs.

    PubMed

    Moorer, Jeremiah D; Towle-Millard, Heather A; Gross, Marjorie E; Payton, Mark E

    2013-01-01

    A blinded, prospective, randomized crossover study was performed to determine the effects of ampicillin Na/sulbactam Na and enrofloxacin on the blood pressure (BP) of healthy anesthetized dogs. Eight dogs were anesthetized three different times. They randomly received enrofloxacin, ampicillin Na/sulbactam Na, and saline. Systolic, diastolic, and mean arterial BPs (SAP, DAP, and MAP, respectively), heart rate (HR), O2 saturation of hemoglobin, end-tidal CO2 (ETCO2) concentration, inspired isoflurane concentration, end-tidal isoflurane (ETiso) concentration, respiratory rate, electrocardiogram, and body temperature were measured for 20 min prior to administration of treatment, during administration over 30 min, and for 30 min after administration. There was no significant difference in the SAP or ETiso. There was no significant change in the arterial pressure values over time in the enrofloxacin and ampicillin Na/sulbactam Na groups. The control group's MAP increased over time and was increased compared with the enrofloxacin group at times 25, 35, 45, and 55. The statistical difference between the enrofloxacin and the control groups was due to an increase in the MAP in the control group, not a decrease in the enrofloxacin group's BP. Neither enrofloxacin nor ampicillin Na/sulbactam Na caused hypotension in healthy dogs anesthetized with isoflurane and fentanyl.

  20. Simultaneous measurement of instantaneous heart rate and chest wall plethysmography in short-term, metronome guided heart rate variability studies: suitability for assessment of autonomic dysfunction.

    PubMed

    Perring, S; Jones, E

    2003-08-01

    Instantaneous heart rate and chest wall motion were measured using a 3-lead ECG and an air pressure chest wall plethysmography system. Chest wall plethysmography traces were found to accurately represent the breathing pattern as measured by spirometry (average correlation coefficient 0.944); though no attempt was made to calibrate plethysmography voltage output to tidal volume. Simultaneous measurements of heart rate and chest wall motion were made for short periods under metronome guided breathing at 6 breaths per minute. The average peak to trough heart rate change per breath cycle (AVEMAX) and maximum correlation between heart rate and breathing cycle (HRBRCORR) were measured. Studies of 44 normal volunteers indicated clear inverse correlation of heart rate variability parameters with age (AVEMAX R = -0.502, P < 0.001) but no significant change in HRBRCORR with age (R = -0.115). Comparison of normal volunteers with diabetics with no history of symptoms associated with autonomic failure indicated significant lower heart rate variability in diabetics (P = 0.005 for AVEMAX) and significantly worse correlation between heart rate and breathing (P < 0.001 for HRBRCORR). Simultaneous measurement of heart rate and breathing offers the possibility of more sensitive diagnosis of autonomic failure in a simple bedside test and gives further insight into the nature of cardio-ventilatory coupling.

  1. Heart Rate Assessment Immediately after Birth.

    PubMed

    Phillipos, Emily; Solevåg, Anne Lee; Pichler, Gerhard; Aziz, Khalid; van Os, Sylvia; O'Reilly, Megan; Cheung, Po-Yin; Schmölzer, Georg M

    2016-01-01

    Heart rate assessment immediately after birth in newborn infants is critical to the correct guidance of resuscitation efforts. There are disagreements as to the best method to measure heart rate. The aim of this study was to assess different methods of heart rate assessment in newborn infants at birth to determine the fastest and most accurate method. PubMed, EMBASE and Google Scholar were systematically searched using the following terms: 'infant', 'heart rate', 'monitoring', 'delivery room', 'resuscitation', 'stethoscope', 'auscultation', 'palpation', 'pulse oximetry', 'electrocardiogram', 'Doppler ultrasound', 'photoplethysmography' and 'wearable sensors'. Eighteen studies were identified that described various methods of heart rate assessment in newborn infants immediately after birth. Studies examining auscultation, palpation, pulse oximetry, electrocardiography and Doppler ultrasound as ways to measure heart rate were included. Heart rate measurements by pulse oximetry are superior to auscultation and palpation, but there is contradictory evidence about its accuracy depending on whether the sensor is connected to the infant or the oximeter first. Several studies indicate that electrocardiogram provides a reliable heart rate faster than pulse oximetry. Doppler ultrasound shows potential for clinical use, however future evidence is needed to support this conclusion. Heart rate assessment is important and there are many measurement methods. The accuracy of routinely applied methods varies, with palpation and auscultation being the least accurate and electrocardiogram being the most accurate. More research is needed on Doppler ultrasound before its clinical use. © 2015 S. Karger AG, Basel.

  2. Heart rate changes during electroconvulsive therapy

    PubMed Central

    2013-01-01

    Background This observational study documented heart rate over the entire course of electrically induced seizures and aimed to evaluate the effects of stimulus electrode placement, patients' age, stimulus dose, and additional predictors. Method In 119 consecutive patients with 64 right unilateral (RUL) and 55 bifrontal (BF) electroconvulsive treatments, heart rate graphs based on beat-to-beat measurements were plotted up to durations of 130 s. Results In RUL stimulation, the initial drop in heart rate lasted for 12.5 ± 2.6 s (mean ± standard deviation). This depended on stimulus train duration, age, and baseline heart rate. In seizures induced with BF electrode placement, a sympathetic response was observed within the first few seconds of the stimulation phase (median 3.5 s). This was also the case with subconvulsive stimulations. The mean peak heart rate in all 119 treatments amounted to 135 ± 20 bpm and depended on baseline heart rate and seizure duration; electrode placement, charge dose, and age were insignificant in regression analysis. A marked decline in heart rate in connection with seizure cessation occurred in 71% of treatments. Conclusions A significant independent effect of stimulus electrode positioning on cardiac action was evident only in the initial phase of the seizures. Electrical stimulation rather than the seizure causes the initial heart rate increase in BF treatments. The data reveal no rationale for setting the stimulus doses as a function of intraictal peak heart rates (‘benchmark method’). The marked decline in heart rate at the end of most seizures is probably mediated by a baroreceptor reflex. PMID:23764036

  3. Field test of a paradigm: hysteresis of heart rate in thermoregulation by a free-ranging lizard (Pogona barbata).

    PubMed Central

    Grigg, G C; Seebacher, F

    1999-01-01

    The discovery that changes in heart rate and blood flow allow some reptiles to heat faster than they cool has become a central paradigm in our understanding of reptilian thermoregulation. However, this hysteresis in heart rate has been demonstrated only in simplistic laboratory heating and cooling trials, leaving its functional significance in free-ranging animals unproven. To test the validity of this paradigm, we measured heart rate and body temperature (Tb) in undisturbed, free-ranging bearded dragons (Pogona barbata), the species in which this phenomenon was first described. Our field data confirmed the paradigm and we found that heart rate during heating usually exceeded heart rate during cooling at any Tb. Importantly, however, we discovered that heart rate was proportionally faster in cool lizards whose Tb was still well below the 'preferred Tb range' compared to lizards whose Tb was already close to it. Similarly, heart rate during cooling was proportionally slower the warmer the lizard and the greater its cooling potential compared to lizards whose Tb was already near minimum operative temperature. Further, we predicted that, if heart rate hysteresis has functional significance, a 'reverse hysteresis' pattern should be observable when lizards risked overheating. This was indeed the case and, during heating on those occasions when Tb reached very high levels (> 40 degrees C), heart rate was significantly lower than heart rate during the immediately following cooling phase. These results demonstrate that physiological control of thermoregulation in reptiles is more complex than has been previously recognized. PMID:10418165

  4. Heart Rate and Oxygen Saturation Change Patterns During 6-min Walk Test in Subjects With Chronic Thromboembolic Pulmonary Hypertension.

    PubMed

    Inagaki, Takeshi; Terada, Jiro; Yahaba, Misuzu; Kawata, Naoko; Jujo, Takayuki; Nagashima, Kengo; Sakao, Seiichiro; Tanabe, Nobuhiro; Tatsumi, Koichiro

    2018-05-01

    The 6-min walk test (6MWT) is commonly performed to assess functional status in patients with chronic thromboembolic pulmonary hypertension. However, changes in heart rate and oxygen saturation (S pO 2 ) patterns during 6MWT in patients with chronic thromboembolic pulmonary hypertension remain unclear. Thirty-one subjects with chronic thromboembolic pulmonary hypertension were retrospectively evaluated to examine the relationships between the change in heart rate (Δheart rate), heart rate acceleration time, slope of heart rate acceleration, heart rate recovery during the first minute after 6MWT (HRR1), change in S pO 2 (ΔS pO 2 ), S pO 2 reduction time, and S pO 2 recovery time during 6MWT, and the severity of pulmonary hemodynamics assessed by right heart catheterization and echocardiography. Subjects with severe chronic thromboembolic pulmonary hypertension had significantly longer heart rate acceleration time (144.9 ± 63.9 s vs 96.0 ± 42.5 s, P = .033), lower Δheart rate (47.4 ± 16.9 vs 61.8 ± 13.6 beats, P = .02), and lower HRR1 (13.3 ± 9.0 beats vs 27.1 ± 9.2 beats, P < .001) compared to subjects with mild chronic thromboembolic pulmonary hypertension. Subjects with severe chronic thromboembolic pulmonary hypertension also had significantly longer S pO 2 reduction time (178.3 ± 70.3 s vs 134.3 ± 58.4 s, P = .03) and S pO 2 recovery time (107.6 ± 35.3 s vs 69.8 ± 32.7 s, P = .004) than did subjects with mild chronic thromboembolic pulmonary hypertension. Multivariate linear regression analysis showed only mean pulmonary arterial pressure independently was associated with heart rate acceleration time and slope of heart rate acceleration. Heart rate and S pO 2 change patterns during 6MWT are predominantly associated with pulmonary hemodynamics in subjects with chronic thromboembolic pulmonary hypertension. Evaluating heart rate and S pO 2 change patterns during 6MWT may serve as a safe and convenient way to follow the change in pulmonary hemodynamics. Copyright © 2018 by Daedalus Enterprises.

  5. Intravenous lipid emulsion alters the hemodynamic response to epinephrine in a rat model.

    PubMed

    Carreiro, Stephanie; Blum, Jared; Jay, Gregory; Hack, Jason B

    2013-09-01

    Intravenous lipid emulsion (ILE) is an adjunctive antidote used in selected critically ill poisoned patients. These patients may also require administration of advanced cardiac life support (ACLS) drugs. Limited data is available to describe interactions of ILE with standard ACLS drugs, specifically epinephrine. Twenty rats with intra-arterial and intravenous access were sedated with isoflurane and split into ILE or normal saline (NS) pretreatment groups. All received epinephrine 15 μm/kg intravenously (IV). Continuous mean arterial pressure (MAP) and heart rate (HR) were monitored until both indices returned to baseline. Standardized t tests were used to compare peak MAP, time to peak MAP, maximum change in HR, time to maximum change in HR, and time to return to baseline MAP/HR. There was a significant difference (p = 0.023) in time to peak MAP in the ILE group (54 s, 95 % CI 44-64) versus the NS group (40 s, 95 % CI 32-48) and a significant difference (p = 0.004) in time to return to baseline MAP in ILE group (171 s, 95 % CI 148-194) versus NS group (130 s, 95 % CI 113-147). There were no significant differences in the peak change in MAP, peak change in HR, time to minimum HR, or time to return to baseline HR between groups. ILE-pretreated rats had a significant difference in MAP response to epinephrine; ILE delayed the peak effect and prolonged the duration of effect of epinephrine on MAP, but did not alter the peak increase in MAP or the HR response.

  6. Heart Disease Death Rates Among Blacks and Whites Aged ≥35 Years - United States, 1968-2015.

    PubMed

    Van Dyke, Miriam; Greer, Sophia; Odom, Erika; Schieb, Linda; Vaughan, Adam; Kramer, Michael; Casper, Michele

    2018-03-30

    Heart disease is the leading cause of death in the United States. In 2015, heart disease accounted for approximately 630,000 deaths, representing one in four deaths in the United States. Although heart disease death rates decreased 68% for the total population from 1968 to 2015, marked disparities in decreases exist by race and state. 1968-2015. The National Vital Statistics System (NVSS) data on deaths in the United States were abstracted for heart disease using diagnosis codes from the eighth, ninth, and tenth revisions of the International Classification of Diseases (ICD-8, ICD-9, and ICD-10) for 1968-2015. Population estimates were obtained from NVSS files. National and state-specific heart disease death rates for the total population and by race for adults aged ≥35 years were calculated for 1968-2015. National and state-specific black-white heart disease mortality ratios also were calculated. Death rates were age standardized to the 2000 U.S. standard population. Joinpoint regression was used to perform time trend analyses. From 1968 to 2015, heart disease death rates decreased for the total U.S. population among adults aged ≥35 years, from 1,034.5 to 327.2 per 100,000 population, respectively, with variations in the magnitude of decreases by race and state. Rates decreased for the total population an average of 2.4% per year, with greater average decreases among whites (2.4% per year) than blacks (2.2% per year). At the national level, heart disease death rates for blacks and whites were similar at the start of the study period (1968) but began to diverge in the late 1970s, when rates for blacks plateaued while rates for whites continued to decrease. Heart disease death rates among blacks remained higher than among whites for the remainder of the study period. Nationwide, the black-white ratio of heart disease death rates increased from 1.04 in 1968 to 1.21 in 2015, with large increases occurring during the 1970s and 1980s followed by small but steady increases until approximately 2005. Since 2005, modest decreases have occurred in the black-white ratio of heart disease death rates at the national level. The majority of states had increases in black-white mortality ratios from 1968 to 2015. The number of states with black-white mortality ratios >1 increased from 16 (40%) to 27 (67.5%). Although heart disease death rates decreased both for blacks and whites from 1968 to 2015, substantial differences in decreases were found by race and state. At the national level and in most states, blacks experienced smaller decreases in heart disease death rates than whites for the majority of the period. Overall, the black-white disparity in heart disease death rates increased from 1968 to 2005, with a modest decrease from 2005 to 2015. Since 1968, substantial increases have occurred in black-white disparities of heart disease death rates in the United States at the national level and in many states. These increases appear to be due to faster decreases in heart disease death rates for whites than blacks, particularly from the late 1970s until the mid-2000s. Despite modest decreases in black-white disparities at the national level since 2005, in 2015, heart disease death rates were 21% higher among blacks than among whites. This study demonstrates the use of NVSS data to conduct surveillance of heart disease death rates by race and of black-white disparities in heart disease death rates. Continued surveillance of temporal trends in heart disease death rates by race can provide valuable information to policy makers and public health practitioners working to reduce heart disease death rates both for blacks and whites and disparities between blacks and whites.

  7. Heart Disease Death Rates Among Blacks and Whites Aged ≥35 Years — United States, 1968–2015

    PubMed Central

    Van Dyke, Miriam; Greer, Sophia; Odom, Erika; Schieb, Linda; Vaughan, Adam; Kramer, Michael; Casper, Michele

    2018-01-01

    Problem/Condition Heart disease is the leading cause of death in the United States. In 2015, heart disease accounted for approximately 630,000 deaths, representing one in four deaths in the United States. Although heart disease death rates decreased 68% for the total population from 1968 to 2015, marked disparities in decreases exist by race and state. Period Covered 1968–2015. Description of System The National Vital Statistics System (NVSS) data on deaths in the United States were abstracted for heart disease using diagnosis codes from the eighth, ninth, and tenth revisions of the International Classification of Diseases (ICD-8, ICD-9, and ICD-10) for 1968–2015. Population estimates were obtained from NVSS files. National and state-specific heart disease death rates for the total population and by race for adults aged ≥35 years were calculated for 1968–2015. National and state-specific black-white heart disease mortality ratios also were calculated. Death rates were age standardized to the 2000 U.S. standard population. Joinpoint regression was used to perform time trend analyses. Results From 1968 to 2015, heart disease death rates decreased for the total U.S. population among adults aged ≥35 years, from 1,034.5 to 327.2 per 100,000 population, respectively, with variations in the magnitude of decreases by race and state. Rates decreased for the total population an average of 2.4% per year, with greater average decreases among whites (2.4% per year) than blacks (2.2% per year). At the national level, heart disease death rates for blacks and whites were similar at the start of the study period (1968) but began to diverge in the late 1970s, when rates for blacks plateaued while rates for whites continued to decrease. Heart disease death rates among blacks remained higher than among whites for the remainder of the study period. Nationwide, the black-white ratio of heart disease death rates increased from 1.04 in 1968 to 1.21 in 2015, with large increases occurring during the 1970s and 1980s followed by small but steady increases until approximately 2005. Since 2005, modest decreases have occurred in the black-white ratio of heart disease death rates at the national level. The majority of states had increases in black-white mortality ratios from 1968 to 2015. The number of states with black-white mortality ratios >1 increased from 16 (40%) to 27 (67.5%). Interpretation Although heart disease death rates decreased both for blacks and whites from 1968 to 2015, substantial differences in decreases were found by race and state. At the national level and in most states, blacks experienced smaller decreases in heart disease death rates than whites for the majority of the period. Overall, the black-white disparity in heart disease death rates increased from 1968 to 2005, with a modest decrease from 2005 to 2015. Public Health Action Since 1968, substantial increases have occurred in black-white disparities of heart disease death rates in the United States at the national level and in many states. These increases appear to be due to faster decreases in heart disease death rates for whites than blacks, particularly from the late 1970s until the mid-2000s. Despite modest decreases in black-white disparities at the national level since 2005, in 2015, heart disease death rates were 21% higher among blacks than among whites. This study demonstrates the use of NVSS data to conduct surveillance of heart disease death rates by race and of black-white disparities in heart disease death rates. Continued surveillance of temporal trends in heart disease death rates by race can provide valuable information to policy makers and public health practitioners working to reduce heart disease death rates both for blacks and whites and disparities between blacks and whites. PMID:29596406

  8. Role of ivabradine and heart rate lowering in chronic heart failure: guideline update.

    PubMed

    Chow, Sheryl L; Page, Robert Lee; Depre, Christophe

    2018-06-14

    This review summarizes the current management of heart failure (HF) in patients with reduced ejection fraction and the potential role of heart rate lowering agents in select populations, as recommended in the updated guidelines. Areas covered: PubMed was searched for studies that evaluated the role of heart rate lowering or ivabradine in HF management. Expert commentary: Targeting heart rate may offer benefit when added to renin-angiotensin aldosterone antagonists, and beta-blockers. Ivabradine is a heart rate lowering agent that acts on the funny current (I f ) in the sinoatrial node, thereby reducing heart rate without directly affecting cardiac contraction and relaxation. Clinical data from a phase 3 trial demonstrated that ivabradine reduced the composite endpoint of cardiovascular death or hospital admission for worsening systolic HF, while maintaining an acceptable safety profile in patients receiving standard of care therapy. These data, in addition to more recently published guidelines, suggest ivabradine as a promising new treatment option for lowering heart rate after optimizing standard therapy in select patients with chronic HF.

  9. Heart rate-induced modifications of concentric left ventricular hypertrophy: exploration of a novel therapeutic concept.

    PubMed

    Klein, Franziska J; Bell, Stephen; Runte, K Elisabeth; Lobel, Robert; Ashikaga, Takamuru; Lerman, Lilach O; LeWinter, Martin M; Meyer, Markus

    2016-10-01

    Lowering the heart rate is considered to be beneficial in heart failure (HF) with reduced ejection fraction (HFrEF). In a dilated left ventricle (LV), pharmacological heart rate lowering is associated with a reduction in LV chamber size. In patients with HFrEF, this structural change is associated with better survival. HF with preserved ejection fraction (HFpEF) is increasingly prevalent but, so far, without any evidence-based treatment. HFpEF is typically associated with LV concentric remodeling and hypertrophy. The effects of heart rate on this structural phenotype are not known. Analogous with the benefits of a low heart rate on a dilated heart, we hypothesized that increased heart rates could lead to potentially beneficial remodeling of a concentrically hypertrophied LV. This was explored in an established porcine model of concentric LV hypertrophy and fibrosis. Our results suggest that a moderate increase in heart rate can be used to reduce wall thickness, normalize LV chamber volumes, decrease myocardial fibrosis, and improve LV compliance. Our results also indicate that the effects of heart rate can be titrated, are reversible, and do not induce HF. These findings may provide the rationale for a novel therapeutic approach for HFpEF and its antecedent disease substrate. Copyright © 2016 the American Physiological Society.

  10. [The influence of individually fitted controlled breathing frequency on the heart rate variability indexes].

    PubMed

    Chuian, O M; Biriukova, O O; Ravaieva, M Iu

    2010-01-01

    We studied the changes in indexes of variability of heart rate and fractal neurodynamics under conditions of controlled breathing on fluctuation frequency of a spectrum of heart rate. It is shown that the controlled breathing, which frequency corresponds to a frequency of localization of the maximum peak of capacity ofa heart rate in low-frequency is a powerful mechanism of management of heart rate and change of a functional condition of an organism as a whole.

  11. Resting Heart Rate as Predictor for Left Ventricular Dysfunction and Heart Failure: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Opdahl, Anders; Venkatesh, Bharath Ambale; Fernandes, Veronica R. S.; Wu, Colin O.; Nasir, Khurram; Choi, Eui-Young; Almeida, Andre L. C.; Rosen, Boaz; Carvalho, Benilton; Edvardsen, Thor; Bluemke, David A.; Lima, Joao A. C.

    2014-01-01

    OBJECTIVE To investigate the relationship between baseline resting heart rate and incidence of heart failure (HF) and global and regional left ventricular (LV) dysfunction. BACKGROUND The association of resting heart rate to HF and LV function is not well described in an asymptomatic multi-ethnic population. METHODS Participants in the Multi-Ethnic Study of Atherosclerosis had resting heart rate measured at inclusion. Incident HF was registered (n=176) during follow-up (median 7 years) in those who underwent cardiac MRI (n=5000). Changes in ejection fraction (ΔEF) and peak circumferential strain (Δεcc) were measured as markers of developing global and regional LV dysfunction in 1056 participants imaged at baseline and 5 years later. Time to HF (Cox model) and Δεcc and ΔEF (multiple linear regression models) were adjusted for demographics, traditional cardiovascular risk factors, calcium score, LV end-diastolic volume and mass in addition to resting heart rate. RESULTS Cox analysis demonstrated that for 1 bpm increase in resting heart rate there was a 4% greater adjusted relative risk for incident HF (Hazard Ratio: 1.04 (1.02, 1.06 (95% CI); P<0.001). Adjusted multiple regression models demonstrated that resting heart rate was positively associated with deteriorating εcc and decrease in EF, even in analyses when all coronary heart disease events were excluded from the model. CONCLUSION Elevated resting heart rate is associated with increased risk for incident HF in asymptomatic participants in MESA. Higher heart rate is related to development of regional and global LV dysfunction independent of subclinical atherosclerosis and coronary heart disease. PMID:24412444

  12. Deriving health utilities from the MacNew Heart Disease Quality of Life Questionnaire.

    PubMed

    Chen, Gang; McKie, John; Khan, Munir A; Richardson, Jeff R

    2015-10-01

    Quality of life is included in the economic evaluation of health services by measuring the preference for health states, i.e. health state utilities. However, most intervention studies include a disease-specific, not a utility, instrument. Consequently, there has been increasing use of statistical mapping algorithms which permit utilities to be estimated from a disease-specific instrument. The present paper provides such algorithms between the MacNew Heart Disease Quality of Life Questionnaire (MacNew) instrument and six multi-attribute utility (MAU) instruments, the Euroqol (EQ-5D), the Short Form 6D (SF-6D), the Health Utilities Index (HUI) 3, the Quality of Wellbeing (QWB), the 15D (15 Dimension) and the Assessment of Quality of Life (AQoL-8D). Heart disease patients and members of the healthy public were recruited from six countries. Non-parametric rank tests were used to compare subgroup utilities and MacNew scores. Mapping algorithms were estimated using three separate statistical techniques. Mapping algorithms achieved a high degree of precision. Based on the mean absolute error and the intra class correlation the preferred mapping is MacNew into SF-6D or 15D. Using the R squared statistic the preferred mapping is MacNew into AQoL-8D. The algorithms reported in this paper enable MacNew data to be mapped into utilities predicted from any of six instruments. This permits studies which have included the MacNew to be used in cost utility analyses which, in turn, allows the comparison of services with interventions across the health system. © The European Society of Cardiology 2014.

  13. Effect of heart rate on the hemodynamics of bileaflet mechanical heart valves' prostheses (St. Jude Medical) in the aortic position and in the opening phase: A computational study.

    PubMed

    Jahandardoost, Mehdi; Fradet, Guy; Mohammadi, Hadi

    2016-03-01

    To date, to the best of the authors' knowledge, in almost all of the studies performed around the hemodynamics of bileaflet mechanical heart valves, a heart rate of 70-72 beats/min has been considered. In fact, the heart rate of ~72 beats/min does not represent the entire normal physiological conditions under which the aortic or prosthetic valves function. The heart rates of 120 or 50 beats/min may lead to hemodynamic complications, such as plaque formation and/or thromboembolism in patients. In this study, the hemodynamic performance of the bileaflet mechanical heart valves in a wide range of normal and physiological heart rates, that is, 60-150 beats/min, was studied in the opening phase. The model considered in this study was a St. Jude Medical bileaflet mechanical heart valve with the inner diameter of 27 mm in the aortic position. The hemodynamics of the native valve and the St. Jude Medical valve were studied in a variety of heart rates in the opening phase and the results were carefully compared. The results indicate that peak values of the velocity profile downstream of the valve increase as heart rate increases, as well as the location of the maximum velocity changes with heart rate in the St. Jude Medical valve model. Also, the maximum values of shear stress and wall shear stresses downstream of the valve are proportional to heart rate in both models. Interestingly, the maximum shear stress and wall shear stress values in both models are in the same range when heart rate is <90 beats/min; however, these values significantly increase in the St. Jude Medical valve model when heart rate is >90 beats/min (up to ~40% growth compared to that of the native valve). The findings of this study may be of importance in the hemodynamic performance of bileaflet mechanical heart valves. They may also play an important role in design improvement of conventional prosthetic heart valves and the design of the next generation of prosthetic valves, such as percutaneous valves. © IMechE 2016.

  14. Heart rate as an independent risk factor in patients with multiple organ dysfunction: a prospective, observational study.

    PubMed

    Hoke, Robert S; Müller-Werdan, Ursula; Lautenschläger, Christine; Werdan, Karl; Ebelt, Henning

    2012-02-01

    To study the association between baseline heart rate and outcome in patients with multiple organ dysfunction (MODS) as well as the course of heart rate over the first 4 days during MODS. Prospective observational study in 89 patients with MODS, defined as an APACHE-II score ≥20. Baseline heart rate (HR(0)) was determined over a 60-minute period at the time of MODS diagnosis. 28-day all-cause mortality was the primary endpoint of the study, a fall of the APACHE-II score by 4 points or more from day 0 to day 4 constituted the secondary endpoint. Hazard ratios for heart rate of 90 beats per minute (bpm) or greater relative to less than 90 bpm were calculated using Cox proportional hazards model and adjusted for confounding variables. Median baseline heart rate was 83 bpm in survivors and 92 bpm in non-survivors (p = 0.048). 28-day mortality was 32 and 61% in patients with HR(0) < 90 bpm and HR(0) ≥ 90 bpm, respectively. The adjusted hazard ratio for 28-day mortality was 2.30 (95% confidence interval 1.21-4.36, p = 0.001) for HR(0) ≥ 90 bpm relative to HR(0) < 90 bpm. No correlation was found between baseline heart rate and the secondary endpoint. From day 0 to day 4, heart rate remained elevated in all patients, as well as in survivors and non-survivors. A heart rate ≥90 bpm at the time of MODS diagnosis is an independent risk factor for increased 28-day mortality. As in patients with cardiovascular conditions such as coronary heart disease or chronic heart failure, heart rate might constitute a target for heart rate-lowering therapy in the narrow initial treatment window of MODS.

  15. Association of heart rate at hospital discharge with mortality and hospitalizations in patients with heart failure.

    PubMed

    Habal, Marlena V; Liu, Peter P; Austin, Peter C; Ross, Heather J; Newton, Gary E; Wang, Xuesong; Tu, Jack V; Lee, Douglas S

    2014-01-01

    Heart failure (HF) is associated with a high burden of morbidity and mortality. Hospital discharge is an opportunity for identification of modifiable prognostic factors in the transition to chronic HF. We examined the association of discharge heart rate with 30-day and 1-year mortality and hospitalization outcomes in a cohort of 9097 patients with HF discharged from hospital. Discharge heart rate was categorized into predefined groups: 40 to 60 (n=1333), 61 to 70 (n=2170), 71 to 80 (n=2631), 81 to 90 (n=1700), and >90 bpm (n=1263). There was a significant increase in all-cause 30-day mortality with adjusted odds ratios of 1.59 (95% confidence interval [CI], 1.18-2.14; P=0.003) for discharge heart rates 81 to 90 bpm and 1.56 (95% CI, 1.13-2.16; P=0.007) for heart rates>90 bpm when compared with the reference group (heart rates, 61-70 bpm). Cardiovascular death risk at 30 days was also higher with adjusted odds ratio 1.59 (discharge heart rates, 81-90 bpm; 95% CI, 1.09-2.33; P=0.017) and 1.65 (discharge heart rates, >90 bpm; 95% CI, 1.09-2.48; P=0.017). One-year all-cause mortality (adjusted odds ratio, 1.41; 95% CI, 1.16-1.72; P<0.001) and cardiovascular death (adjusted odds ratio, 1.47; 95% CI, 1.12-1.92; P=0.005) were higher with discharge heart rates>90 bpm when compared with the reference group (heart rates, 40-60 bpm). Readmissions for HF (adjusted hazard ratio, 1.26; 95% CI, 1.04-1.54; P=0.021) and cardiovascular disease (adjusted hazard ratio, 1.29; 95% CI, 1.08-1.54; P=0.004) within 30 days were also higher with discharge heart rates>90 bpm. Higher discharge heart rates were associated with greater risk of all-cause and cardiovascular mortality≤1-year follow-up and an elevated risk of 30-day readmission for HF and cardiovascular disease.

  16. Heart rate and respiratory rhythm dynamics on ascent to high altitude.

    PubMed Central

    Lipsitz, L. A.; Hashimoto, F.; Lubowsky, L. P.; Mietus, J.; Moody, G. B.; Appenzeller, O.; Goldberger, A. L.

    1995-01-01

    OBJECTIVE--To investigate the alterations in autonomic control of heart rate at high altitude and to test the hypothesis that hypoxaemic stress during exposure to high altitude induces non-linear, periodic heart rate oscillations, similar to those seen in heart failure and the sleep apnoea syndrome. SUBJECTS--11 healthy subjects aged 24-64. MAIN OUTCOME MEASURES--24 hour ambulatory electrocardiogram records obtained at baseline (1524 m) and at 4700 m. Simultaneous heart rate and respiratory dynamics during 2.5 hours of sleep by fast Fourier transform analysis of beat to beat heart rate and of an electrocardiographically derived respiration signal. RESULTS--All subjects had resting hypoxaemia at high altitude, with an average oxyhaemoglobin saturation of 81% (5%). There was no significant change in mean heart rate, but low frequency (0.01-0.05 Hz) spectral power was increased (P < 0.01) at high altitude. Time series analysis showed a complex range of non-linear sinus rhythm dynamics. Striking low frequency (0.04-0.06 Hz) heart rate oscillations were observed during sleep in eight subjects at high altitude. Analysis of the electrocardiographically derived respiration signal indicated that these heart rate oscillations correlated with low frequency respiratory oscillations. CONCLUSIONS--These data suggest (a) that increased low frequency power during high altitude exposure is not simply attributable to increased sympathetic modulation of heart rate, but relates to distinctive cardiopulmonary oscillations at approximately 0.05 Hz and (b) that the emergence of periodic heart rate oscillations at high altitude is consistent with an unstable cardiopulmonary control system that may develop on acute exposure to hypoxaemic stress. PMID:7488453

  17. Heart rate and respiratory rhythm dynamics on ascent to high altitude

    NASA Technical Reports Server (NTRS)

    Lipsitz, L. A.; Hashimoto, F.; Lubowsky, L. P.; Mietus, J.; Moody, G. B.; Appenzeller, O.; Goldberger, A. L.

    1995-01-01

    OBJECTIVE--To investigate the alterations in autonomic control of heart rate at high altitude and to test the hypothesis that hypoxaemic stress during exposure to high altitude induces non-linear, periodic heart rate oscillations, similar to those seen in heart failure and the sleep apnoea syndrome. SUBJECTS--11 healthy subjects aged 24-64. MAIN OUTCOME MEASURES--24 hour ambulatory electrocardiogram records obtained at baseline (1524 m) and at 4700 m. Simultaneous heart rate and respiratory dynamics during 2.5 hours of sleep by fast Fourier transform analysis of beat to beat heart rate and of an electrocardiographically derived respiration signal. RESULTS--All subjects had resting hypoxaemia at high altitude, with an average oxyhaemoglobin saturation of 81% (5%). There was no significant change in mean heart rate, but low frequency (0.01-0.05 Hz) spectral power was increased (P < 0.01) at high altitude. Time series analysis showed a complex range of non-linear sinus rhythm dynamics. Striking low frequency (0.04-0.06 Hz) heart rate oscillations were observed during sleep in eight subjects at high altitude. Analysis of the electrocardiographically derived respiration signal indicated that these heart rate oscillations correlated with low frequency respiratory oscillations. CONCLUSIONS--These data suggest (a) that increased low frequency power during high altitude exposure is not simply attributable to increased sympathetic modulation of heart rate, but relates to distinctive cardiopulmonary oscillations at approximately 0.05 Hz and (b) that the emergence of periodic heart rate oscillations at high altitude is consistent with an unstable cardiopulmonary control system that may develop on acute exposure to hypoxaemic stress.

  18. Atypical Reactivity of Heart Rate Variability to Stress and Depression: Systematic Review of the Literature and Directions for Future Research

    PubMed Central

    Hamilton, Jessica L.; Alloy, Lauren B.

    2017-01-01

    Heart rate variability has received growing attention in the depression literature, with several recent meta-analyses indicating that lower resting heart rate variability is associated with depression. However, the role of fluctuations in heart rate variability (or reactivity) in response to stress in depression remains less clear. The present review provides a systematic examination of the literature on heart rate variability reactivity to a laboratory-induced stressor task and depression, including 26 studies of reactivity in heart rate variability and clinical depression, remitted (or history of) depression, and subthreshold depression (or symptom-level depression) among adults, adolescents, and children. In addition to reviewing the findings of these studies, methodological considerations and conceptual gaps in the literature are addressed. We conclude by highlighting the importance of investigating the potential transactional relationship between heart rate variability reactivity and depression and possible mechanisms underlying this relationship. PMID:27697746

  19. Heart rate differentiates urgency and emergency in hypertensive crisis.

    PubMed

    Al Bannay, Rashed; Böhm, Michael; Husain, Aysha

    2013-08-01

    To study the clinical significance of presenting blood pressure parameters and heart rate in patients with hypertensive crisis. In patients admitted with hypertensive crisis between January 2011 and May 2011, demography, mode of presentation, co-morbidities, blood pressure readings, and heart rate at presentation were documented. Further clustering of hypertensive crisis into emergency or urgency was based on the presence or absence of target organ involvement. The relationship between blood pressure parameters, heart rate, and other variables was analyzed. 189 patients in sinus rhythm were enrolled in this pilot study. The rate of hypertensive urgency was 56 %, whereas the rate of hypertensive emergency was 44 %, respectively. Subjects with hypertensive emergency had a higher mean heart rate (93 ± 22.7 bpm) than those with urgency (81 ± 11.5 bpm) (P = 0.015). Women had higher heart rates (92 ± 18.5 bpm) than men (86 ± 17.6 bpm) (P = 0.014). Heart rates below 100 bpm had a specificity of 94 %, classifying patients as hypertensive urgency. Tachycardia had a powerful statistical association with hypertensive left ventricular failure (P < 0.0001). Other hemodynamic parameters, including systolic blood pressure, diastolic blood pressure, pulse pressure, and mean blood pressure relates neither to urgency nor to emergency. Diabetic patients with HBA1c levels of more than 53 mmol/mol had a heart rate of more than 100 bpm (P = 0.015) during hypertensive crisis. Normal heart rate is characteristic of hypertensive urgency. Tachycardia in this setting is an ominous sign and denotes hypertensive complications in particular left ventricular failure. Among diabetics, elevated heart rate is associated with poor glycemic control.

  20. Use of radiotelemetry to assess perinatal cardiac function in the ovine fetus and newborn.

    PubMed

    Antolic, A; Wood, C E; Keller-Wood, M

    2017-12-01

    The late gestation fetal ECG (fECG) has traditionally been difficult to characterize due to the low fECG signal relative to high maternal noise. Although new technologies have improved the feasibility of its acquisition and separation, little is known about its development in late gestation, a period in which the fetal heart undergoes extensive maturational changes. Here, we describe a method for the chronic implantation of radiotelemetry devices into late gestation ovine fetuses to characterize parameters of the fECG following surgery, throughout late gestation, and in the perinatal period. We found no significant changes in mean aortic pressure (MAP), heart rate (HR), or ECG in the 5 days following implantation; however, HR decreased in the first 24 h following the end of surgery, with associated increases in RR, PR, and QRS intervals. Over the last 14 days of fetal life, fetal MAP significantly increased, and HR significantly decreased, as expected. MAP and HR increased as labor progressed. Although there were no significant changes over time in the ECG during late gestation, the duration of the PR interval initially decreased and then increased as birth approached. These results indicate that although critical maturational changes occur in the late gestation fetal myocardium, the mechanisms that control the cardiac conduction are relatively mature in late gestation. The study demonstrates that radiotelemetry can be successfully used to assess fetal cardiac function, in particular conduction, through the process of labor and delivery, and may therefore be a useful tool for study of peripartum cardiac events. Copyright © 2017 the American Physiological Society.

  1. MR fingerprinting for rapid quantification of myocardial T1 , T2 , and proton spin density.

    PubMed

    Hamilton, Jesse I; Jiang, Yun; Chen, Yong; Ma, Dan; Lo, Wei-Ching; Griswold, Mark; Seiberlich, Nicole

    2017-04-01

    To introduce a two-dimensional MR fingerprinting (MRF) technique for quantification of T 1 , T 2 , and M 0 in myocardium. An electrocardiograph-triggered MRF method is introduced for mapping myocardial T 1 , T 2 , and M 0 during a single breath-hold in as short as four heartbeats. The pulse sequence uses variable flip angles, repetition times, inversion recovery times, and T 2 preparation dephasing times. A dictionary of possible signal evolutions is simulated for each scan that incorporates the subject's unique variations in heart rate. Aspects of the sequence design were explored in simulations, and the accuracy and precision of cardiac MRF were assessed in a phantom study. In vivo imaging was performed at 3 Tesla in 11 volunteers to generate native parametric maps. T 1 and T 2 measurements from the proposed cardiac MRF sequence correlated well with standard spin echo measurements in the phantom study (R 2  > 0.99). A Bland-Altman analysis revealed good agreement for myocardial T 1 measurements between MRF and MOLLI (bias 1 ms, 95% limits of agreement -72 to 72 ms) and T 2 measurements between MRF and T 2 -prepared balanced steady-state free precession (bias, -2.6 ms; 95% limits of agreement, -8.5 to 3.3 ms). MRF can provide quantitative single slice T 1 , T 2 , and M 0 maps in the heart within a single breath-hold. Magn Reson Med 77:1446-1458, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Heat transfer in a microvascular network: the effect of heart rate on heating and cooling in reptiles (Pogona barbata and Varanus varius).

    PubMed

    Seebacher, F

    2000-03-21

    Thermally-induced changes in heart rate and blood flow in reptiles are believed to be of selective advantage by allowing animal to exert some control over rates of heating and cooling. This notion has become one of the principal paradigms in reptilian thermal physiology. However, the functional significance of changes in heart rate is unclear, because the effect of heart rate and blood flow on total animal heat transfer is not known. I used heat transfer theory to determine the importance of heat transfer by blood flow relative to conduction. I validated theoretical predictions by comparing them with field data from two species of lizard, bearded dragons (Pogona barbata) and lace monitors (Varanus varius). Heart rates measured in free-ranging lizards in the field were significantly higher during heating than during cooling, and heart rates decreased with body mass. Convective heat transfer by blood flow increased with heart rate. Rates of heat transfer by both blood flow and conduction decreased with mass, but the mass scaling exponents were different. Hence, rate of conductive heat transfer decreased more rapidly with increasing mass than did heat transfer by blood flow, so that the relative importance of blood flow in total animal heat transfer increased with mass. The functional significance of changes in heart rate and, hence, rates of heat transfer, in response to heating and cooling in lizards was quantified. For example, by increasing heart rate when entering a heating environment in the morning, and decreasing heart rate when the environment cools in the evening a Pogona can spend up to 44 min longer per day with body temperature within its preferred range. It was concluded that changes in heart rate in response to heating and cooling confer a selective advantage at least on reptiles of mass similar to that of the study animals (0. 21-5.6 kg). Copyright 2000 Academic Press.

  3. The effect of respiratory oscillations in heart rate on detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Govindan, Rathinaswamy B.; Kota, Srinivas; Al-Shargabi, Tareq; Swisher, Christopher B.; du Plessis, Adre

    2017-10-01

    Characterization of heart rate using detrended fluctuation analysis (DFA) is impeded by respiratory oscillations. In particular, the short-term exponent measured from 15 to 30 beats is compromised in the DFA. We reconstruct respiratory signal from electrocardiograms and attenuate the respiratory oscillation in the heart rate using a frequency-dependent subtraction approach. We validate this method by applying it to an electrocardiogram signal simulated using a coupled differential equation with the respiratory oscillation modelled using a sine function. The exponent estimated using the proposed approach agreed with the exponent incorporated in the model within a narrow range. In contrast, the exponent obtained from the raw data deviated from the expected value. Furthermore, the exponents obtained for the raw heart rate are smaller than the exponents obtained for the respiration oscillation attenuated heart rate. We apply this approach to heart rate measured from 12 preterm infants that were being treated for prematurity related complications. As observed in the simulated data, we show that compared to the raw heart rate, the respiratory oscillation attenuated heart rate shows higher short-term exponent (p < 0.001).

  4. Heart-Rate and Breath-Rate Monitor

    NASA Technical Reports Server (NTRS)

    Cooper, T. G.

    1983-01-01

    Circuit requiring only four integrated circuits (IC's) measures both heart rate and breath rate. Phase-locked loops lock on heart-rate and respiration-rate input signals. Each loop IC contains two phase comparators. Positive-edge-triggered circuit used in making monitors insensitive to dutycycle variations.

  5. The impact of surfactant replacement therapy on cerebral and systemic circulation and lung function.

    PubMed

    Schipper, J A; Mohammad, G I; van Straaten, H L; Koppe, J G

    1997-03-01

    The influence of surfactant administration on cerebral and systemic circulation and on lung function was evaluated in 12 premature mechanically ventilated infants (mean birth weight 1,560 +/- 770 g, mean gestational age 30.0 +/- 3.2 weeks) with respiratory distress syndrome (RDS) receiving surfactant replacement therapy. We measured mean cerebral blood flow velocity (MCBFV), heart rate (HR), mean arterial pressure (MAP), static compliance (Crs), resistance of respiratory system (Rrs), functional residual capacity (FRC) and fraction of inspired oxygen (FiO2). In addition to a very low compliance and a moderately elevated resistance of the respiratory system a significant drop in MAP, HR, MCBFV and FiO2 was noticed after surfactant administration. After 30 min HR, MAP and MCBFV values returned to baseline levels. We postulate that the drop in MCBFV, MAP, HR and FiO2 with a minor, though not significant improvement of the FRC can most likely be explained by a "relative" hypovolaemia in other organs and parts of the body due to expansion of the lung vascular bed. Compensation for the redistribution of circulatory volume occurred within several minutes. Blood pressure control and treatment of hypovolaemia is mandatory before surfactant is administered. In RDS patients there is a significant drop of MAP, HR, MCBFV and FiO2 after bolus surfactant administration.

  6. Sequential compression device with thigh-high sleeves supports mean arterial pressure during Caesarean section under spinal anaesthesia.

    PubMed

    Adsumelli, R S N; Steinberg, E S; Schabel, J E; Saunders, T A; Poppers, P J

    2003-11-01

    This study investigated the use of a Sequential Compression Device (SCD) with thigh-high sleeves and a preset pressure of 50 mm Hg that recruits blood from the lower limbs intermittently, as a method to prevent spinal hypotension during elective Caesarean section. Possible association of arterial pressure changes with maternal, fetal, haemodynamic, and anaesthetic factors were studied. Fifty healthy parturients undergoing elective Caesarean section under spinal anaesthesia were randomly assigned to either SCD (n=25) or control (n=25) groups. A standardized protocol for pre-hydration and anaesthetic technique was followed. Hypotension was defined as a decrease in any mean arterial pressure (MAP) measurement by more than 20% of the baseline MAP. Systolic (SAP), MAP and diastolic (DAP) arterial pressure, pulse pressure (PP), and heart rate (HR) were noted at baseline and every minute after the spinal block until delivery. A greater than 20% decrease in MAP occurred in 52% of patients in the SCD group vs 92% in the control group (P=0.004, odds ratio 0.094, 95% CI 0.018-0.488). There were no significant differences in SAP, DAP, HR, and PP between the groups. SCD use in conjunction with vasopressor significantly reduced the incidence of a 20% reduction of MAP.

  7. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography

    PubMed Central

    Penzel, Thomas; Kantelhardt, Jan W.; Bartsch, Ronny P.; Riedl, Maik; Kraemer, Jan F.; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave). PMID:27826247

  8. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography.

    PubMed

    Penzel, Thomas; Kantelhardt, Jan W; Bartsch, Ronny P; Riedl, Maik; Kraemer, Jan F; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave).

  9. Respiratory sinus arrhythmia: time domain characterization using autoregressive moving average analysis

    NASA Technical Reports Server (NTRS)

    Triedman, J. K.; Perrott, M. H.; Cohen, R. J.; Saul, J. P.

    1995-01-01

    Fourier-based techniques are mathematically noncausal and are therefore limited in their application to feedback-containing systems, such as the cardiovascular system. In this study, a mathematically causal time domain technique, autoregressive moving average (ARMA) analysis, was used to parameterize the relations of respiration and arterial blood pressure to heart rate in eight humans before and during total cardiac autonomic blockade. Impulse-response curves thus generated showed the relation of respiration to heart rate to be characterized by an immediate increase in heart rate of 9.1 +/- 1.8 beats.min-1.l-1, followed by a transient mild decrease in heart rate to -1.2 +/- 0.5 beats.min-1.l-1 below baseline. The relation of blood pressure to heart rate was characterized by a slower decrease in heart rate of -0.5 +/- 0.1 beats.min-1.mmHg-1, followed by a gradual return to baseline. Both of these relations nearly disappeared after autonomic blockade, indicating autonomic mediation. Maximum values obtained from the respiration to heart rate impulse responses were also well correlated with frequency domain measures of high-frequency "vagal" heart rate control (r = 0.88). ARMA analysis may be useful as a time domain representation of autonomic heart rate control for cardiovascular modeling.

  10. Power spectral analysis of R-R interval variability before and during the sinusoidal heart rate pattern in fetal lambs.

    PubMed

    Suzuki, T; Okamura, K; Kimura, Y; Watanabe, T; Yaegashi, N; Murotsuki, J; Uehara, S; Yajima, A

    2000-05-01

    The appearance of the sinusoidal heart rate pattern found on fetal cardiotocograms has not been fully explained, either physiologically or clinically. In this study we performed power spectral analysis on the sinusoidal heart rate pattern obtained by administration of arginine vasopressin and atropine sulfate to investigate its frequency components in fetal lambs with long-term instrument implantation. Eleven tests were performed in 4 fetal lambs at 120 to 130 days' gestation. An artificial sinusoidal heart rate pattern was obtained by administration of atropine sulfate and arginine vasopressin in 9 tests. An autoregression model was used to compare the spectral patterns before and during the sinusoidal heart rate pattern. Marked decreases in low-frequency (0.025-0.125 cycles/beat) and high-frequency (0.2-0.5 cycles/beat) areas were observed in the presence of the sinusoidal heart rate pattern. However, there were no significant changes in the very-low-frequency area (0.01-0.025 cycles/beat), which corresponds to the frequency of the sinusoidal heart rate pattern. The sinusoidal heart rate pattern may represent a very low-frequency component inherent in fetal heart rate variability that appears when low- and high-frequency components are reduced as a result of strongly suppressed autonomic nervous activity.

  11. Responses of blood pressure and lactate levels to various aquatic exercise movements in postmenopausal women.

    PubMed

    Chien, K-Y; Chen, W-C; Kan, N-W; Hsu, M-C; Lee, S-L

    2015-12-01

    Middle-aged and elderly women represent the main attending group in head-out aquatic exercise (HOAE). Blood pressure (BP) significantly increases both during water immersion and aquatic walking. Based on risk concerns, it is important to evaluate BP responses in postmenopausal women doing HOAE. The aim of this study was to determine BP, lactate levels, and rating of perceived exertion (RPE) changes associated with performing 3 different movements at 3 levels of exercise intensity in water. Twelve postmenopausal women (59.9±0.6 years old) participated in 3 aquatic trials involving running (RU), rocking (RO), and scissor kicks (SK) on separate days. Systolic BP, mean arterial pressure (MAP), lactate levels, RPE, and motion cadence were measured at rest; upon reaching 50%, 65%, and 80% of heart rate reserve for 6 minutes; and 10 and 30 minutes after exercise. Under similar RPE responses at 3 levels of intensity, SK resulted in higher systolic BP, MAP, and lactate levels than RO at 10 minutes after exercise (P<0.05) and the lowest motion cadence (P<0.05). RO resulted in the lowest MAP and diastolic BP responses during exercise (P<0.05). RU resulted in lower responses of lactate levels at high exercise intensity (P<0.05). RO resulted in lower diastolic BP and MAP responses compared with RU and SK during exercise. These findings suggest that RO movement in aquatic exercises is more suitable for people at high risk for cardiovascular disease.

  12. [Analysis of Foetal Heart Rate Data using Complex Software: Comparison of Recurrence Plot of Foetal Heart Rate with the Course of Pregnancy -].

    PubMed

    Jörn, H; Morgenstern, B; Wassenberg, B; Rath, W

    2004-08-01

    Is it useful to further analyse foetal heart rate to improve the prediction of pregnancy complications? The analysis of the foetal heart rate is usually based on the variability of the heart rate, i. e. the more variable the heart rate presents - except a decrease - the better the condition of the foetus is. The same concept is applied in our own analysis which differs only in the presentation of the data. We analysed 25 non-stress-tests from unselected third trimester pregnancies using sophisticated software. The recurrence plot (RP) is able to rearrange data from foetal heart rate monitoring in order to make the heart rate variability visible. We developed criteria for a normal and an abnormal test result describing the structure of the diagram to predict an uneventful and a high-risk pregnancy, respectively. 11 out of 11 patients with uneventful course and outcome of pregnancy showed a coarse and blurred RP pattern. 12 out of 14 (86 %) patients developing either intrauterine growth retardation or preeclampsia and requiring caesarean section because of foetal heart rate abnormalities showed a fine and clear RP pattern. Our preliminary results show that it makes sense to further evaluate foetal heart rate variability in order to predict pregnancy complications. Computer programs including the algorithms needed (calculation of the recurrence plot) are not expensive and easy to handle. A widespread use of these programs represents the basis requirement for large controlled clinical trials.

  13. Maternal exercise, season and sex modify the daily fetal heart rate rhythm.

    PubMed

    Sletten, J; Cornelissen, G; Assmus, J; Kiserud, T; Albrechtsen, S; Kessler, J

    2018-05-13

    The knowledge on biological rhythms is rapidly expanding. We aimed to define the longitudinal development of the daily (24-hour) fetal heart rate rhythm in an unrestricted, out-of-hospital setting and to examine the effects of maternal physical activity, season and fetal sex. We recruited 48 women with low-risk singleton pregnancies. Using a portable monitor for continuous fetal electrocardiography, fetal heart rate recordings were obtained around gestational weeks 24, 28, 32 and 36. Daily rhythms in fetal heart rate and fetal heart rate variation were detected by cosinor analysis; developmental trends were calculated by population-mean cosinor and multilevel analysis. For the fetal heart rate and fetal heart rate variation, a significant daily rhythm was present in 122/123 (99.2%) and 116/121 (95.9%) of the individual recordings respectively. The rhythms were best described by combining cosine waves with periods of 24 and 8 hours. With increasing gestational age, the magnitude of the fetal heart rate rhythm increased, and the peak of the fetal heart rate variation rhythm shifted from a mean of 14:25 (24 weeks) to 20:52 (36 weeks). With advancing gestation, the rhythm-adjusted mean value of the fetal heart rate decreased linearly in females (P < .001) and nonlinearly in males (quadratic function, P = .001). At 32 and 36 weeks, interindividual rhythm diversity was found in male fetuses during higher maternal physical activity and during the summer season. The dynamic development of the daily fetal heart rate rhythm during the second half of pregnancy is modified by fetal sex, maternal physical activity and season. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Diagnostic accuracy of heart-rate recovery after exercise in the assessment of diabetic cardiac autonomic neuropathy.

    PubMed

    Sacre, J W; Jellis, C L; Coombes, J S; Marwick, T H

    2012-09-01

    Poor prognosis associated with blunted post-exercise heart-rate recovery may reflect autonomic dysfunction. This study sought the accuracy of post-exercise heart-rate recovery in the diagnosis of cardiac autonomic neuropathy, which represents a serious, but often unrecognized complication of Type 2 diabetes. Clinical assessment of cardiac autonomic neuropathy and maximal treadmill exercise testing for heart-rate recovery were performed in 135 patients with Type 2 diabetes and negative exercise echocardiograms. Cardiac autonomic neuropathy was defined by abnormalities in ≥ 2 of 7 autonomic function markers, including four cardiac reflex tests and three indices of short-term (5-min) heart-rate variability. Heart-rate recovery was defined at 1-, 2- and 3-min post-exercise. Patients with cardiac autonomic neuropathy (n = 27; 20%) had lower heart-rate recovery at 1-, 2- and 3-min post-exercise (P < 0.01). Heart-rate recovery demonstrated univariate associations with autonomic function markers (r-values 0.20-0.46, P < 0.05). Area under the receiver-operating characteristic curve revealed good diagnostic performance of all heart-rate recovery parameters (range 0.80-0.83, P < 0.001). Optimal cut-offs for heart-rate recovery at 1-, 2- and 3-min post-exercise were ≤ 28 beats/min (sensitivity 93%, specificity 69%), ≤ 50 beats/min (sensitivity 96%, specificity 63%) and ≤ 52 beats/min (sensitivity 70%, specificity 84%), respectively. These criteria predicted cardiac autonomic neuropathy independently of relevant clinical and exercise test information (adjusted odds ratios 7-28, P < 0.05). Post-exercise heart-rate recovery provides an accurate diagnostic test for cardiac autonomic neuropathy in Type 2 diabetes. The high sensitivity and modest specificity suggests heart-rate recovery may be useful to screen for patients requiring clinical autonomic evaluation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  15. A novel 'splice site' HCN4 Gene mutation, c.1737+1 G>T, causes familial bradycardia, reduced heart rate response, impaired chronotropic competence and increased short-term heart rate variability.

    PubMed

    Hategan, Lidia; Csányi, Beáta; Ördög, Balázs; Kákonyi, Kornél; Tringer, Annamária; Kiss, Orsolya; Orosz, Andrea; Sághy, László; Nagy, István; Hegedűs, Zoltán; Rudas, László; Széll, Márta; Varró, András; Forster, Tamás; Sepp, Róbert

    2017-08-15

    The most important molecular determinant of heart rate regulation in sino-atrial pacemaker cells includes hyperpolarization-activated, cyclic nucleotide-gated ion channels, the major isoform of which is encoded by the HCN4 gene. Mutations affecting the HCN4 gene are associated primarily with sick sinus syndrome. A novel c.1737+1 G>T 'splice-site' HCN4 mutation was identified in a large family with familial bradycardia which co-segregated with the disease providing a two-point LOD score of 4.87. Twelve out of the 22 investigated family members [4 males, 8 females average age 36 (SD 6) years] were considered as clinically affected (heart rate<60/min on resting ECG). Minimum [36 (SD 7) vs. 47 (SD 5) bpm, p=0.0087) and average heart rates [62 (SD 8) vs. 73 (SD 8) bpm, p=0.0168) were significantly lower in carriers on 24-hour Holter recordings. Under maximum exercise test carriers achieved significantly lower heart rates than non-carrier family members, and percent heart rate reserve and percent corrected heart rate reserve were significantly lower in carriers. Applying rigorous criteria for chronotropic incompetence a higher number of carriers exhibited chronotropic incompetence. Parameters, characterizing short-term variability of heart rate (i.e. rMSSD and pNN50%) were increased in carrier family members, even after normalization for heart rate, in the 24-hour ECG recordings with the same relative increase in 5-minute recordings. The identified novel 'splice site' HCN4 gene mutation, c.1737+1 G>T, causes familial bradycardia and leads to reduced heart rate response, impaired chronotropic competence and increased short-term heart rate variability in the mutation carriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The effect of heat transfer mode on heart rate responses and hysteresis during heating and cooling in the estuarine crocodile Crocodylus porosus.

    PubMed

    Franklin, Craig E; Seebacher, Frank

    2003-04-01

    The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23 degrees C and (3) heated via convective transfer by increasing water temperature from 23 degrees C to 35 degrees C. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23 degrees C. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (<0.5 degrees C) resulted in Q(10) values greater than 4000, calling into question the usefulness of this measure on heart rate during the initial stages of heating and cooling. In the later phases of heating and cooling, heart rate changed with body temperature, with Q(10) values of 2-3. The magnitude of the heart rate response differed between treatments, with radiant heating during submergence eliciting the smallest response. The heart rate of C. porosus outside of the 'rapid response' periods was found to be a function of the heat load experienced at the animal surface, as well as on the mode of heat transfer. Heart rate increased or decreased rapidly when C. porosus experienced large positive (above 25 W) or negative (below -15 W) heat loads, respectively, in all treatments. For heat loads between -15 W and 20 W, the increase in heart rate was smaller for the 'unnatural' heating by convection in water compared with either treatment using radiant heating. Our data indicate that changes in heart rate constitute a thermoregulatory mechanism that is modulated in response to the thermal environment occupied by the animal, but that heart rate during heating and cooling is, in part, controlled independently of body temperature.

  17. Detection of a Heart Defect in the Fetus

    MedlinePlus

    ... problems : There is a wide range of acceptable fetal heart rates (normal is between 120 and 160 but many ... usually go away shortly after birth. More important fetal heart problems include tachycardia (hear rate too fast) and bradycardia (heart rate too slow). ...

  18. Optimal wavelength selection for noncontact reflection photoplethysmography

    NASA Astrophysics Data System (ADS)

    Corral Martinez, Luis F.; Paez, Gonzalo; Strojnik, Marija

    2011-08-01

    In this work, we obtain backscattered signals from human forehead for wavelengths from 380 to 980 nm. The results reveal bands with strong pulsatile signals that carry useful information. We describe those bands as the most suitable wavelengths in the visible and NIR regions from which heart and respiratory rate parameters can be derived using long distance non-contact reflection photoplethysmography analysis. The latter results show the feasibility of a novel technique for remotely detection of vital signs in humans. This technique, which may include morphological analysis or maps of tissue oxygenation, is a further step to real non-invasive remote monitoring of patients.

  19. Heart Rate Monitors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Under a NASA grant, Dr. Robert M. Davis and Dr. William M. Portnoy came up with a new type of electrocardiographic electrode that would enable long term use on astronauts. Their invention was an insulated capacitive electrode constructed of a thin dielectric film. NASA subsequently licensed the electrode technology to Richard Charnitski, inventor of the VersaClimber, who founded Heart Rate, Inc., to further develop and manufacture personal heart monitors and to produce exercise machines using the technology for the physical fitness, medical and home markets. Same technology is on both the Home and Institutional Model VersaClimbers. On the Home Model an infrared heart beat transmitter is worn under exercise clothing. Transmitted heart rate is used to control the work intensity on the VersaClimber using the heart rate as the speedometer of the exercise. This offers advantages to a full range of users from the cardiac rehab patient to the high level physical conditioning of elite athletes. The company manufactures and markets five models of the 1*2*3 HEART RATE monitors that are used wherever people exercise to accurately monitor their heart rate. Company is developing a talking heart rate monitor that works with portable headset radios. A version of the heart beat transmitter will be available to the manufacturers of other aerobic exercise machines.

  20. Application of Decision Tree in the Prediction of Periventricular Leukomalacia (PVL) Occurrence in Neonates After Neonatal Heart Surgery

    PubMed Central

    Jalali, Ali; Licht, Daniel J.; Nataraj, C.

    2013-01-01

    This paper is concerned with the prediction of the occurrence of Periventricular Leukomalacia (PVL) that occurs in neonates after heart surgery. The data which is collected over a period of 12 hours after the cardiac surgery contains vital measurements as well as blood gas measurements with different resolutions. The decision tree classification technique has been selected as a tool for prediction of the PVL because of its capacity for discovering rules and novel associations in the data. Vital data measured using near-inferred spectroscopy (NIRS) at the sampling rate of 0.25 Hz and blood gas measurement up to 12 times with irregular time intervals for 35 patients collected from Children's Hospital of Philadelphia (CHOP) are used for this study. Vital data contain heart rate (HR), mean arterial pressure (MAP), right atrium pressure (RAP), blood hemoglobin (Hb), hemoglobin oxygen content (HbO2), oxygen saturation (SpO2) and relative cerebral blood flow (rCBF). Features derived from the data include statistical moments (mean, variance, skewness and kurtosis), trend and min and max of the vital data and rate of change, time weighted mean and a custom defined out of range index (ORI) for the blood gas data. A decision tree is developed for the vital data in order to identify the most important vital measurements. In addition, a decision tree is developed for blood gas data to find important factors for the prediction of PVL occurrence. Results show that in blood gas data, maximum rate of change in the concentration of bicarbonate ions in blood (HCO3) and minimum rate of change in the partial pressure of dissolved CO2 in the blood (PaCO2) are the most important factors for prediction of the PVL. Among vital features the kurtosis of HR and Hb are the most important parameters. PMID:23367279

  1. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility.

    PubMed

    Leung, Ting-Kai; Chen, Chien-Ho; Tsai, Shih-Ying; Hsiao, George; Lee, Chi-Ming

    2012-10-31

    The present study examined the effects of BIOCERAMIC on psychological stress-conditioned elevated heart rate, blood pressure and oxidative stress-suppressed cardiac contractility using in vivo and in vitro animal models. We investigated the effects of BIOCERAMIC on the in vivo cardiovascular hemodynamic parameters of rats by monitoring their heart rates, systolic blood pressure, mean blood pressure and diastolic blood pressure. Thereafter, we assayed its effects on the heart rate in an isolated frog heart with and without adrenaline stimulation, and on cardiac contractility under oxidative stress. BIOCERAMIC caused significant decreases in heart rates and systolic and mean blood pressure in the stress-conditioned heart rate rat models (P < 0.05), as well as in the experimental models of an isolated frog heart with and without adrenaline stimulation (P < 0.05), and normalized cardiac contractility under oxidative stress (P < 0.05). BIOCERAMIC may, therefore, normalize the effects of psychological stress and oxidative stress conditions.

  2. Heart rate variability alterations in late life depression: A meta-analysis.

    PubMed

    Brown, Lydia; Karmakar, Chandan; Gray, Richard; Jindal, Ripu; Lim, Terrence; Bryant, Christina

    2018-08-01

    There is strong evidence for a bi-directional relationship between heart-health and depression in later life, but the physiological mechanisms underlying this relationship remain unclear. Heart rate variability is one promising factor that might help explain this relationship. We present results of a meta-analysis that considers heart rate variability alterations in older adults with depression. Literature search of Embase, PsychInfo and Medline revealed five clinical studies and six observational studies that examined the relationship between heart rate variability and depression in adults with a mean age over 60. These studies were included in this meta-analysis. Heart rate variability was reduced among older adults with clinical depression (N = 550), relative to healthy controls (Hedges' g = -0.334, 95%CI [-0.579, -0.090], p = .007). When high-frequency and low-frequency heart rate variability were investigated separately, only low-frequency heart rate variability was significantly reduced in depressed patients (Hedges' g = -0.626, 95%CI [-1.083, -0.169], p = .007). A similar but weaker pattern of results was found in the observational studies. Most findings remained significant among unmedicated depressed older adults. Evidence of effect-size heterogeneity was found in the clinical studies, indicating the need for more well-designed research in the area. Heart rate variability is reduced among older adults with depression, and this effect is not fully attributable to antidepressant medication use. Specifically, low-frequency heart rate variability may be reduced in depressed older adults. Heart rate variability warrants further attention, as it could help inform research into the prevention and treatment of depression in later life. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. FPGA Implementation of Heart Rate Monitoring System.

    PubMed

    Panigrahy, D; Rakshit, M; Sahu, P K

    2016-03-01

    This paper describes a field programmable gate array (FPGA) implementation of a system that calculates the heart rate from Electrocardiogram (ECG) signal. After heart rate calculation, tachycardia, bradycardia or normal heart rate can easily be detected. ECG is a diagnosis tool routinely used to access the electrical activities and muscular function of the heart. Heart rate is calculated by detecting the R peaks from the ECG signal. To provide a portable and the continuous heart rate monitoring system for patients using ECG, needs a dedicated hardware. FPGA provides easy testability, allows faster implementation and verification option for implementing a new design. We have proposed a five-stage based methodology by using basic VHDL blocks like addition, multiplication and data conversion (real to the fixed point and vice-versa). Our proposed heart rate calculation (R-peak detection) method has been validated, using 48 first channel ECG records of the MIT-BIH arrhythmia database. It shows an accuracy of 99.84%, the sensitivity of 99.94% and the positive predictive value of 99.89%. Our proposed method outperforms other well-known methods in case of pathological ECG signals and successfully implemented in FPGA.

  4. Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories.

    PubMed

    Liu, Jun; Wei, Wei; Kuang, Hui; Zhao, Fang; Tsien, Joe Z

    2013-01-01

    Heart physiology is a highly useful indicator for measuring not only physical states, but also emotional changes in animals. Yet changes of heart rate variability during fear conditioning have not been systematically studied in mice. Here, we investigated changes in heart rate and heart rate variability in both short-term and long-term contextual and cued fear conditioning. We found that while fear conditioning could increase heart rate, the most significant change was the reduction in heart rate variability which could be further divided into two distinct stages: a highly rhythmic phase (stage-I) and a more variable phase (stage-II). We showed that the time duration of the stage-I rhythmic phase were sensitive enough to reflect the transition from short-term to long-term fear memories. Moreover, it could also detect fear extinction effect during the repeated tone recall. These results suggest that heart rate variability is a valuable physiological indicator for sensitively measuring the consolidation and expression of fear memories in mice.

  5. Alterations in the heart rate and activity rhythms of three orbital astronauts on a space mission.

    PubMed

    Liu, Zhizhen; Wan, Yufeng; Zhang, Lin; Tian, Yu; Lv, Ke; Li, Yinghui; Wang, Chunhui; Chen, Xiaoping; Chen, Shanguang; Guo, Jinhu

    2015-01-01

    Environmental factors in space are dramatically different from those on Earth. The spaceflight environment has been known to influence human physiology and behavior on orbital missions. In this study, we investigated alterations in the diurnal rhythms of activity and heart rate of three Chinese astronauts on a space mission. An analysis of the heart rate data showed a significant decrease in heart rate amplitudes during flight in all three subjects. The heart rate amplitudes of all the three astronauts were significantly dampened during flight, and the minimum as well as the maximum value of heart rate increased after flight. A phase shift in heart rate was observed in one of the three astronauts after flight. These results demonstrate the influence of spaceflight on heart physiology and function. In addition, a significant decrease in body trunk activity and rhythmicity occurred during flight, demonstrating that the spaceflight environment disturbs motion adaptation and diurnal activity rhythms. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  6. Identification of heart rate–associated loci and their effects on cardiac conduction and rhythm disorders

    PubMed Central

    den Hoed, Marcel; Eijgelsheim, Mark; Esko, Tõnu; Brundel, Bianca J J M; Peal, David S; Evans, David M; Nolte, Ilja M; Segrè, Ayellet V; Holm, Hilma; Handsaker, Robert E; Westra, Harm-Jan; Johnson, Toby; Isaacs, Aaron; Yang, Jian; Lundby, Alicia; Zhao, Jing Hua; Kim, Young Jin; Go, Min Jin; Almgren, Peter; Bochud, Murielle; Boucher, Gabrielle; Cornelis, Marilyn C; Gudbjartsson, Daniel; Hadley, David; Van Der Harst, Pim; Hayward, Caroline; Heijer, Martin Den; Igl, Wilmar; Jackson, Anne U; Kutalik, Zoltán; Luan, Jian’an; Kemp, John P; Kristiansson, Kati; Ladenvall, Claes; Lorentzon, Mattias; Montasser, May E; Njajou, Omer T; O’Reilly, Paul F; Padmanabhan, Sandosh; Pourcain, Beate St.; Rankinen, Tuomo; Salo, Perttu; Tanaka, Toshiko; Timpson, Nicholas J; Vitart, Veronique; Waite, Lindsay; Wheeler, William; Zhang, Weihua; Draisma, Harmen H M; Feitosa, Mary F; Kerr, Kathleen F; Lind, Penelope A; Mihailov, Evelin; Onland-Moret, N Charlotte; Song, Ci; Weedon, Michael N; Xie, Weijia; Yengo, Loic; Absher, Devin; Albert, Christine M; Alonso, Alvaro; Arking, Dan E; de Bakker, Paul I W; Balkau, Beverley; Barlassina, Cristina; Benaglio, Paola; Bis, Joshua C; Bouatia-Naji, Nabila; Brage, Søren; Chanock, Stephen J; Chines, Peter S; Chung, Mina; Darbar, Dawood; Dina, Christian; Dörr, Marcus; Elliott, Paul; Felix, Stephan B; Fischer, Krista; Fuchsberger, Christian; de Geus, Eco J C; Goyette, Philippe; Gudnason, Vilmundur; Harris, Tamara B; Hartikainen, Anna-liisa; Havulinna, Aki S; Heckbert, Susan R; Hicks, Andrew A; Hofman, Albert; Holewijn, Suzanne; Hoogstra-Berends, Femke; Hottenga, Jouke-Jan; Jensen, Majken K; Johansson, Åsa; Junttila, Juhani; Kääb, Stefan; Kanon, Bart; Ketkar, Shamika; Khaw, Kay-Tee; Knowles, Joshua W; Kooner, Angrad S; Kors, Jan A; Kumari, Meena; Milani, Lili; Laiho, Päivi; Lakatta, Edward G; Langenberg, Claudia; Leusink, Maarten; Liu, Yongmei; Luben, Robert N; Lunetta, Kathryn L; Lynch, Stacey N; Markus, Marcello R P; Marques-Vidal, Pedro; Leach, Irene Mateo; McArdle, Wendy L; McCarroll, Steven A; Medland, Sarah E; Miller, Kathryn A; Montgomery, Grant W; Morrison, Alanna C; Müller-Nurasyid, Martina; Navarro, Pau; Nelis, Mari; O’Connell, Jeffrey R; O’Donnell, Christopher J; Ong, Ken K; Newman, Anne B; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Psaty, Bruce M; Rao, Dabeeru C; Ring, Susan M; Rossin, Elizabeth J; Rudan, Diana; Sanna, Serena; Scott, Robert A; Sehmi, Jaban S; Sharp, Stephen; Shin, Jordan T; Singleton, Andrew B; Smith, Albert V; Soranzo, Nicole; Spector, Tim D; Stewart, Chip; Stringham, Heather M; Tarasov, Kirill V; Uitterlinden, André G; Vandenput, Liesbeth; Hwang, Shih-Jen; Whitfield, John B; Wijmenga, Cisca; Wild, Sarah H; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wong, Andrew; Wong, Quenna; Jamshidi, Yalda; Zitting, Paavo; Boer, Jolanda M A; Boomsma, Dorret I; Borecki, Ingrid B; Van Duijn, Cornelia M; Ekelund, Ulf; Forouhi, Nita G; Froguel, Philippe; Hingorani, Aroon; Ingelsson, Erik; Kivimaki, Mika; Kronmal, Richard A; Kuh, Diana; Lind, Lars; Martin, Nicholas G; Oostra, Ben A; Pedersen, Nancy L; Quertermous, Thomas; Rotter, Jerome I; van der Schouw, Yvonne T; Verschuren, W M Monique; Walker, Mark; Albanes, Demetrius; Arnar, David O; Assimes, Themistocles L; Bandinelli, Stefania; Boehnke, Michael; de Boer, Rudolf A; Bouchard, Claude; Caulfield, W L Mark; Chambers, John C; Curhan, Gary; Cusi, Daniele; Eriksson, Johan; Ferrucci, Luigi; van Gilst, Wiek H; Glorioso, Nicola; de Graaf, Jacqueline; Groop, Leif; Gyllensten, Ulf; Hsueh, Wen-Chi; Hu, Frank B; Huikuri, Heikki V; Hunter, David J; Iribarren, Carlos; Isomaa, Bo; Jarvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kiemeney, Lambertus A; van der Klauw, Melanie M; Kooner, Jaspal S; Kraft, Peter; Iacoviello, Licia; Lehtimäki, Terho; Lokki, Marja-Liisa L; Mitchell, Braxton D; Navis, Gerjan; Nieminen, Markku S; Ohlsson, Claes; Poulter, Neil R; Qi, Lu; Raitakari, Olli T; Rimm, Eric B; Rioux, John D; Rizzi, Federica; Rudan, Igor; Salomaa, Veikko; Sever, Peter S; Shields, Denis C; Shuldiner, Alan R; Sinisalo, Juha; Stanton, Alice V; Stolk, Ronald P; Strachan, David P; Tardif, Jean-Claude; Thorsteinsdottir, Unnur; Tuomilehto, Jaako; van Veldhuisen, Dirk J; Virtamo, Jarmo; Viikari, Jorma; Vollenweider, Peter; Waeber, Gérard; Widen, Elisabeth; Cho, Yoon Shin; Olsen, Jesper V; Visscher, Peter M; Willer, Cristen; Franke, Lude; Erdmann, Jeanette; Thompson, John R; Pfeufer, Arne; Sotoodehnia, Nona; Newton-Cheh, Christopher; Ellinor, Patrick T; Stricker, Bruno H Ch; Metspalu, Andres; Perola, Markus; Beckmann, Jacques S; Smith, George Davey; Stefansson, Kari; Wareham, Nicholas J; Munroe, Patricia B; Sibon, Ody C M; Milan, David J; Snieder, Harold; Samani, Nilesh J; Loos, Ruth J F

    2013-01-01

    Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate–increasing and heart rate–decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets. PMID:23583979

  7. Electromechanical Wave Imaging (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines in vivo

    PubMed Central

    Costet, Alexandre; Wan, Elaine; Bunting, Ethan; Grondin, Julien; Garan, Hasan; Konofagou, Elisa

    2016-01-01

    Characterization and mapping of arrhythmias is currently performed through invasive insertion and manipulation of cardiac catheters. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique, which tracks the electromechanical activation that immediately follows electrical activation. Electrical and electromechanical activations were previously found to be linearly correlated in the left ventricle, but the relationship has not yet been investigated in the three other chambers of the heart. The objective of this study was to investigate the relationship between electrical and electromechanical activations and validate EWI in all four chambers of the heart with conventional 3D electroanatomical mapping. Six (n = 6) normal adult canines were used in this study. The electrical activation sequence was mapped in all four chambers of the heart, both endocardially and epicardially using the St Jude's EnSite 3D mapping system (St. Jude Medical, Secaucus, NJ). EWI acquisitions were performed in all four chambers during normal sinus rhythm, and during pacing in the left ventricle. Isochrones of the electromechanical activation were generated from standard echocardiographic imaging views. Electrical and electromechanical activation maps were co-registered and compared, and electrical and electromechanical activation times were plotted against each other and linear regression was performed for each pair of activation maps. Electromechanical and electrical activations were found to be directly correlated with slopes of the correlation ranging from 0.77 to 1.83, electromechanical delays between 9 and 58 ms and R2 values from 0.71 to 0.92. The linear correlation between electrical and electromechanical activations and the agreement between the activation maps indicate that the electromechanical activation follows the pattern of propagation of the electrical activation. This suggests that EWI may be used as a novel non-invasive method to accurately characterize and localize sources of arrhythmias. PMID:27782003

  8. Electromechanical wave imaging (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines in vivo.

    PubMed

    Costet, Alexandre; Wan, Elaine; Bunting, Ethan; Grondin, Julien; Garan, Hasan; Konofagou, Elisa

    2016-11-21

    Characterization and mapping of arrhythmias is currently performed through invasive insertion and manipulation of cardiac catheters. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique, which tracks the electromechanical activation that immediately follows electrical activation. Electrical and electromechanical activations were previously found to be linearly correlated in the left ventricle, but the relationship has not yet been investigated in the three other chambers of the heart. The objective of this study was to investigate the relationship between electrical and electromechanical activations and validate EWI in all four chambers of the heart with conventional 3D electroanatomical mapping. Six (n  =  6) normal adult canines were used in this study. The electrical activation sequence was mapped in all four chambers of the heart, both endocardially and epicardially using the St Jude's EnSite 3D mapping system (St. Jude Medical, Secaucus, NJ). EWI acquisitions were performed in all four chambers during normal sinus rhythm, and during pacing in the left ventricle. Isochrones of the electromechanical activation were generated from standard echocardiographic imaging views. Electrical and electromechanical activation maps were co-registered and compared, and electrical and electromechanical activation times were plotted against each other and linear regression was performed for each pair of activation maps. Electromechanical and electrical activations were found to be directly correlated with slopes of the correlation ranging from 0.77 to 1.83, electromechanical delays between 9 and 58 ms and R 2 values from 0.71 to 0.92. The linear correlation between electrical and electromechanical activations and the agreement between the activation maps indicate that the electromechanical activation follows the pattern of propagation of the electrical activation. This suggests that EWI may be used as a novel non-invasive method to accurately characterize and localize sources of arrhythmias.

  9. An open-source LabVIEW application toolkit for phasic heart rate analysis in psychophysiological research.

    PubMed

    Duley, Aaron R; Janelle, Christopher M; Coombes, Stephen A

    2004-11-01

    The cardiovascular system has been extensively measured in a variety of research and clinical domains. Despite technological and methodological advances in cardiovascular science, the analysis and evaluation of phasic changes in heart rate persists as a way to assess numerous psychological concomitants. Some researchers, however, have pointed to constraints on data analysis when evaluating cardiac activity indexed by heart rate or heart period. Thus, an off-line application toolkit for heart rate analysis is presented. The program, written with National Instruments' LabVIEW, incorporates a variety of tools for off-line extraction and analysis of heart rate data. Current methods and issues concerning heart rate analysis are highlighted, and how the toolkit provides a flexible environment to ameliorate common problems that typically lead to trial rejection is discussed. Source code for this program may be downloaded from the Psychonomic Society Web archive at www.psychonomic.org/archive/.

  10. Estimation of heart rate and heart rate variability from pulse oximeter recordings using localized model fitting.

    PubMed

    Wadehn, Federico; Carnal, David; Loeliger, Hans-Andrea

    2015-08-01

    Heart rate variability is one of the key parameters for assessing the health status of a subject's cardiovascular system. This paper presents a local model fitting algorithm used for finding single heart beats in photoplethysmogram recordings. The local fit of exponentially decaying cosines of frequencies within the physiological range is used to detect the presence of a heart beat. Using 42 subjects from the CapnoBase database, the average heart rate error was 0.16 BPM and the standard deviation of the absolute estimation error was 0.24 BPM.

  11. Validation of heart rate extraction through an iPhone accelerometer.

    PubMed

    Kwon, Sungjun; Lee, Jeongsu; Chung, Gih Sung; Park, Kwang Suk

    2011-01-01

    Ubiquitous medical technology may provide advanced utility for evaluating the status of the patient beyond the clinical environment. The iPhone provides the capacity to measure the heart rate, as the iPhone consists of a 3-axis accelerometer that is sufficiently sensitive to perceive tiny body movements caused by heart pumping. In this preliminary study, an iPhone was tested and evaluated as the reliable heart rate extractor to use for medical purpose by comparing with reference electrocardiogram. By comparing the extracted heart rate from acquired acceleration data with the extracted one from ECG reference signal, iPhone functioning as the reliable heart rate extractor has demonstrated sufficient accuracy and consistency.

  12. Effects of linear ablation at the isthmus between the tricuspid annulus and inferior vena cava for atrial flutter on autonomic nervous activity: analysis of heart rate variability.

    PubMed

    Li, Aiyan; Kuga, Keisuke; Suzuki, Akihiro; Endo, Masae; Niho, Bumpei; Enomoto, Mami; Kanemoto, Miyako; Yamaguchi, Iwao

    2002-01-01

    Heart rate is largely affected by the autonomic nervous system. However, little is known about the anatomic pathway of autonomic nerve fibers innervating the sinus node. The present study: (1) evaluates the effects of cavotricuspid isthmus ablation for common atrial flutter (AFL) on autonomic nervous function by using heart rate variability analysis, and (2) investigates the distribution of autonomic nerve pathways innervating the sinus node. Twelve patients with paroxysmal common atrial flutter who maintained sinus rhythm both before and after radiofrequency ablation were selected for the study. Holter ambulatory recordings were performed before and after (2.3 +/- 1.0 days) radiofrequency ablation of cavotricuspid isthmus. Heart rate and time domain (SDANN, rMSSD, pNN50) and frequency domain (low frequency (LF), high frequency (HF), LF/HF) analysis of heart rate variability were compared before and after ablation. Mean heart rate did not change significantly after ablation (59 +/- 6 vs 61 +/- 9 beats/min); parasympathetic indices of heart rate variability (SDANN, rMSSD, pNN50, HF) did not change significantly (110 +/- 37 vs 117 +/- 20 ms; 32 +/- 21 vs 28 +/- 9 ms; 4.8 +/- 0.9 vs 4.7 +/- 0.71n(ms2)); and sympathetic indices of heart rate variability (LF/HF) did not change significantly (1.1 +/- 0.2 vs 1.2 +/- 0.1). Cavotricuspid isthmus ablation for atrial flutter did not significantly change heart rate and heart rate variability because parasympathetic and sympathetic fibers innervating the sinus node are scarce in this region.

  13. Screening for coronary artery disease in respiratory patients: comparison of single- and dual-source CT in patients with a heart rate above 70 bpm.

    PubMed

    Pansini, Vittorio; Remy-Jardin, Martine; Tacelli, Nunzia; Faivre, Jean-Baptiste; Flohr, Thomas; Deken, Valérie; Duhamel, Alain; Remy, Jacques

    2008-10-01

    To evaluate the assessibility of coronary arteries in respiratory patients with high heart rates. This study was based on the comparative analysis of two paired populations of 54 patients with a heart rate >70 bpm evaluated with dual-source (group 1) and single-source (group 2) CT. The mean heart rate was 89.1 bpm in group 1 and 86.7 bpm in group 2 (P=0.26). The mean number of assessable segments per patient was significantly higher in group 1 compared to group 2 (P

  14. Incessant atrial tachycardias in a dog with tricuspid dysplasia. Clinical management and electrophysiology.

    PubMed

    de Madron, E; Kadish, A; Spear, J F; Knight, D H

    1987-01-01

    In a dog, tricuspid regurgitation due to congenital tricuspid dysplasia resulted in extreme right heart enlargement and right heart failure. Incessant supraventricular tachycardias were present, requiring the intravenous administration of verapamil to reduce the ventricular rate. Oral therapy using a combination of verapamil and quinidine was partially effective in controlling the ventricular rate during the following week. At that time, electrophysiologic studies were performed. They revealed that a succession of several atrial tachycardias with different cycle lengths, including one episode of atrial flutter, was present. Atrial activity was spanning the majority of the cycle length in all these arrhythmias. Epicardial mapping was performed during the atrial flutter. This enabled the detection of a depolarization wave-front traveling counterclockwise from the dorsolateral right atrium toward the right appendage, following the tricuspid valve annulus. No areas of abnormal conduction were detected. Because programmed electric stimulation maneuvers could not be performed, definitive conclusions about the mechanism of the arrhythmia could not be drawn. The two most likely possibilities were circus movement using part of the dilated tricuspid valve annulus as an anatomic barrier or a leading circle type of re-entry.

  15. Human Fetal Heart Rate Dishabituation between Thirty and Thirty-Two Weeks Gestation.

    ERIC Educational Resources Information Center

    Sandman, Curt A.; Wadhwa, Pathik; Hetrick, William; Porto, Manuel; Peeke, Harmon V. S.

    1997-01-01

    Examined the ability of 32-week human fetuses to learn and recall information. Found a significant heart rate habituation pattern for a series of vibroacoustic stimuli. After a single novel stimulus, the heart rate to stimulus 1 reemerged. Uterine contractions were not related to presentation of the novel stimulus or change in heart rate after the…

  16. Rhesus monkey heart rate during exercise

    NASA Technical Reports Server (NTRS)

    Delorge, J.; Thach, J. S., Jr.

    1972-01-01

    Various schedules of reinforcement and their relation to heart rates of rhesus monkeys during exercise are described. All the reinforcement schedules produced 100 per cent or higher increments in the heart rates of the monkeys during exercise. Resting heart rates were generally much lower than those previously reported, which was attributed to the lack of physical restraint of the monkeys during recording.

  17. Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction

    NASA Technical Reports Server (NTRS)

    Makikallio, T. H.; Seppanen, T.; Airaksinen, K. E.; Koistinen, J.; Tulppo, M. P.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.

    1997-01-01

    Dynamics analysis of RR interval behavior and traditional measures of heart rate variability were compared between postinfarction patients with and without vulnerability to ventricular tachyarrhythmias in a case-control study. Short-term fractal correlation of heart rate dynamics was better than traditional measures of heart rate variability in differentiating patients with and without life-threatening arrhythmias.

  18. Design of heart rate monitor based on piezoelectric sensor using an Arduino

    NASA Astrophysics Data System (ADS)

    Setyowati, Veni; Muninggar, Jodelin; Shanti. N. A, Made R. S.

    2017-01-01

    Reading of result heart rate using an acoustic stethoscope needs a particular skill, quiet environment, and hearing sensitivity. This project had the purpose design of a user-friendly automatic heart rate monitor and especially in a noisy area which to eliminate problems and incorrect reading of result. The liquid crystal display shows a heart rate as a result of measurements. The design of the heart rate monitor has two main parts; the signal recorder that a piezoelectric sensor, a filter, and an amplifier as recorder. The second parts was Arduino microcontroller with reinforced. Besides, three supporting buttons provided as the manual switches, the ‘on’, the ‘start’, and ‘reset’ buttons. The values acquired from the heart rate monitor indicate that those were on the Vernier BPS-BTA value range. The measurement error factor of the heart rate monitor then compared to the Vernier BPS-BTA test device was 3.15%. Besides, the value of statistical independent-test indicates that there is no significant difference (P = 0.971) between the heart rate monitor device and the Vernier BPS-BTA. In conclusion, this device was ready to be used because it has almost the same accuracy with the standart device.

  19. Minimal changes in heart rate of incubating American Oystercatchers (Haematopus palliatus) in response to human activity

    USGS Publications Warehouse

    Borneman, Tracy E.; Rose, Eli T.; Simons, Theodore R.

    2014-01-01

    An organism's heart rate is commonly used as an indicator of physiological stress due to environmental stimuli. We used heart rate to monitor the physiological response of American Oystercatchers (Haematopus palliatus) to human activity in their nesting environment. We placed artificial eggs with embedded microphones in 42 oystercatcher nests to record the heart rate of incubating oystercatchers continuously for up to 27 days. We used continuous video and audio recordings collected simultaneously at the nests to relate physiological response of birds (heart rate) to various types of human activity. We observed military and civilian aircraft, off-road vehicles, and pedestrians around nests. With the exception of high-speed, low-altitude military overflights, we found little evidence that oystercatcher heart rates were influenced by most types of human activity. The low-altitude flights were the only human activity to significantly increase average heart rates of incubating oystercatchers (12% above baseline). Although statistically significant, we do not consider the increase in heart rate during high-speed, low-altitude military overflights to be of biological significance. This noninvasive technique may be appropriate for other studies of stress in nesting birds.

  20. Effect of extreme data loss on heart rate signals quantified by entropy analysis

    NASA Astrophysics Data System (ADS)

    Li, Yu; Wang, Jun; Li, Jin; Liu, Dazhao

    2015-02-01

    The phenomenon of data loss always occurs in the analysis of large databases. Maintaining the stability of analysis results in the event of data loss is very important. In this paper, we used a segmentation approach to generate a synthetic signal that is randomly wiped from data according to the Gaussian distribution and the exponential distribution of the original signal. Then, the logistic map is used as verification. Finally, two methods of measuring entropy-base-scale entropy and approximate entropy-are comparatively analyzed. Our results show the following: (1) Two key parameters-the percentage and the average length of removed data segments-can change the sequence complexity according to logistic map testing. (2) The calculation results have preferable stability for base-scale entropy analysis, which is not sensitive to data loss. (3) The loss percentage of HRV signals should be controlled below the range (p = 30 %), which can provide useful information in clinical applications.

  1. Synthesis and biological evaluation of new 2-(4,5-dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives.

    PubMed

    Touzeau, Frédérique; Arrault, Axelle; Guillaumet, Gérald; Scalbert, Elizabeth; Pfeiffer, Bruno; Rettori, Marie-Claire; Renard, Pierre; Mérour, Jean-Yves

    2003-05-08

    2-(4,5-Dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives and tricyclic analogues with a fused additional ring on the nitrogen atom of the benzoxazine moiety have been prepared and evaluated for their cardiovascular effects as potential antihypertensive agents. The imidazoline ring was generated by reaction of the corresponding ethyl ester with ethylenediamine. Affinities for imidazoline binding sites (IBS) I(1) and I(2) and alpha(1) and alpha(2) adrenergic receptors were evaluated as well as the effects on mean arterial blood pressure (MAP) and heart rate (HR) of spontaneously hypertensive rats. With few exceptions the most active compounds on MAP were those with high affinities for IBS and alpha(2) receptor. Among these, compound 4h was the most interesting and is now, together with its enantiomers, under complementary pharmacological evaluation.

  2. Interactive visualization for scar transmurality in cardiac resynchronization therapy

    NASA Astrophysics Data System (ADS)

    Reiml, Sabrina; Toth, Daniel; Panayiotou, Maria; Fahn, Bernhard; Karim, Rashed; Behar, Jonathan M.; Rinaldi, Christopher A.; Razavi, Reza; Rhode, Kawal S.; Brost, Alexander; Mountney, Peter

    2016-03-01

    Heart failure is a serious disease affecting about 23 million people worldwide. Cardiac resynchronization therapy is used to treat patients suffering from symptomatic heart failure. However, 30% to 50% of patients have limited clinical benefit. One of the main causes is suboptimal placement of the left ventricular lead. Pacing in areas of myocardial scar correlates with poor clinical outcomes. Therefore precise knowledge of the individual patient's scar characteristics is critical for delivering tailored treatments capable of improving response rates. Current research methods for scar assessment either map information to an alternative non-anatomical coordinate system or they use the image coordinate system but lose critical information about scar extent and scar distribution. This paper proposes two interactive methods for visualizing relevant scar information. A 2-D slice based approach with a scar mask overlaid on a 16 segment heart model and a 3-D layered mesh visualization which allows physicians to scroll through layers of scar from endocardium to epicardium. These complementary methods enable physicians to evaluate scar location and transmurality during planning and guidance. Six physicians evaluated the proposed system by identifying target regions for lead placement. With the proposed method more target regions could be identified.

  3. Screening of cardiomyocyte fluorescence during cell contraction by multi-dimensional TCSPC

    NASA Astrophysics Data System (ADS)

    Chorvat, D., Jr.; Abdulla, S.; Elzwiei, F.; Mateasik, A.; Chorvatova, A.

    2008-02-01

    Autofluorescence is one of the most versatile non-invasive tools for mapping the metabolic state of living tissues, such as the heart. We present a new approach to the investigation of changes in endogenous fluorescence during cardiomyocyte contraction - by spectrally-resolved, time correlated, single photon counting (TCSPC). Cell contraction is stimulated by external platinum electrodes, incorporated in a home-made bath and triggered by a pulse generator at a frequency of 0.5 Hz (to stabilize sarcoplasmic reticulum loading), or 5 Hz (the rat heart rate). Cell illumination by the laser is synchronized with cell contraction, using TTL logic pulses operated by a stimulator and delayed to study mitochondrial metabolism at maximum contraction (10-110 ms) and/or at steady state (1000-1100 ms at 0.5 Hz). To test the setup, we recorded calcium transients in cells loaded with the Fluo-3 fluorescent probe (excited by 475 nm pulsed picosecond diode laser). We then evaluated recordings of flavin AF (excited by 438 nm pulsed laser) at room and physiological temperatures. Application of the presented approach will shed new insight into metabolic changes in living, contracting myocytes and, therefore, regulation of excitation-contraction coupling and/or ionic homeostasis and, thus, heart excitability.

  4. Opportunity for information search and the effect of false heart rate feedback.

    PubMed

    Barefoot, John C; Straub, Ronald B

    2005-01-01

    The role of information search in the attribution of physiological states was investigated by manipulating the subject's opportunity for information search following the presentation of false information about his heart-rate reactions to photographs of female nudes. Consistent with the self-persuasion hypothesis proposed by Valins, the rated attractiveness of the slides was not affected by the false heart-rate feedback for those subjects who were prevented from visually searching the slides. Those subjects who had ample opportunity to view the slides rated those slides accompanied by false information of a heart-rate change as more attractive than those slides which were not paired with a change in heart rate.

  5. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    PubMed Central

    Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445

  6. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents.

    PubMed

    Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

  7. Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality.

    PubMed

    Eppinga, Ruben N; Hagemeijer, Yanick; Burgess, Stephen; Hinds, David A; Stefansson, Kari; Gudbjartsson, Daniel F; van Veldhuisen, Dirk J; Munroe, Patricia B; Verweij, Niek; van der Harst, Pim

    2016-12-01

    Resting heart rate is a heritable trait correlated with life span. Little is known about the genetic contribution to resting heart rate and its relationship with mortality. We performed a genome-wide association discovery and replication analysis starting with 19.9 million genetic variants and studying up to 265,046 individuals to identify 64 loci associated with resting heart rate (P < 5 × 10 -8 ); 46 of these were novel. We then used the genetic variants identified to study the association between resting heart rate and all-cause mortality. We observed that a genetically predicted resting heart rate increase of 5 beats per minute was associated with a 20% increase in mortality risk (hazard ratio 1.20, 95% confidence interval 1.11-1.28, P = 8.20 × 10 -7 ) translating to a reduction in life expectancy of 2.9 years for males and 2.6 years for females. Our findings provide evidence for shared genetic predictors of resting heart rate and all-cause mortality.

  8. Genome-wide association studies and resting heart rate.

    PubMed

    Kilpeläinen, Tuomas O

    Genome-wide association studies (GWASs) have revolutionized the search for genetic variants regulating resting heart rate. In the last 10years, GWASs have led to the identification of at least 21 novel heart rate loci. These discoveries have provided valuable insights into the mechanisms and pathways that regulate heart rate and link heart rate to cardiovascular morbidity and mortality. GWASs capture majority of genetic variation in a population sample by utilizing high-throughput genotyping chips measuring genotypes for up to several millions of SNPs across the genome in thousands of individuals. This allows the identification of the strongest heart rate associated signals at genome-wide level. While GWASs provide robust statistical evidence of the association of a given genetic locus with heart rate, they are only the starting point for detailed follow-up studies to locate the causal variants and genes and gain further insights into the biological mechanisms underlying the observed associations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The effect of competition on heart rate during kart driving: A field study.

    PubMed

    Matsumura, Kenta; Yamakoshi, Takehiro; Yamakoshi, Yasuhiro; Rolfe, Peter

    2011-09-09

    Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength.

  10. The effect of competition on heart rate during kart driving: A field study

    PubMed Central

    2011-01-01

    Background Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. Findings The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). Conclusions The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength. PMID:21906298

  11. Estimation of physical work load by statistical analysis of the heart rate in a conveyor-belt worker.

    PubMed

    Kontosic, I; Vukelić, M; Pancić, M; Kunisek, J

    1994-12-01

    Physical work load was estimated in a female conveyor-belt worker in a bottling plant. Estimation was based on continuous measurement and on calculation of average heart rate values in three-minute and one-hour periods and during the total measuring period. The thermal component of the heart rate was calculated by means of the corrected effective temperature, for the one-hour periods. The average heart rate at rest was also determined. The work component of the heart rate was calculated by subtraction of the resting heart rate and the heart rate measured at 50 W, using a regression equation. The average estimated gross energy expenditure during the work was 9.6 +/- 1.3 kJ/min corresponding to the category of light industrial work. The average estimated oxygen uptake was 0.42 +/- 0.06 L/min. The average performed mechanical work was 12.2 +/- 4.2 W, i.e. the energy expenditure was 8.3 +/- 1.5%.

  12. Management of heart transplant recipients: reference for primary care physicians.

    PubMed

    Kansara, Pranav; Kobashigawa, Jon A

    2012-07-01

    Heart transplantation is the treatment of choice for a select group of patients with end-stage heart failure. Survival rates have increased and complication rates have decreased due to better immunosuppressive agents, improvement in organ procurement and surgical technique, and overall increase in experience for performing heart transplantation. Involvement from primary care physicians is very important to optimize postoperative management of heart transplant recipients. In this article, we discuss the indications for heart transplantation, physiology of the denervated heart, the standard postoperative care of adult heart transplant recipients, and long-term complications. Primary care physicians must play an increasing role in the management of heart transplant recipients in the age of managed care and increasing survival rates.

  13. Effect of Piper betle on cardiac function, marker enzymes, and oxidative stress in isoproterenol-induced cardiotoxicity in rats.

    PubMed

    Arya, Dharamvir Singh; Arora, Sachin; Malik, Salma; Nepal, Saroj; Kumari, Santosh; Ojha, Shreesh

    2010-11-01

    The present study was designed to investigate the cardioprotective potential of Piper betle (P. betle) against isoproterenol (ISP)-induced myocardial infarction in rats. Rats were randomly divided into eight groups viz. control, ISP, P. betle (75, 150, and 300 mg/kg) and P. betle (75, 150, and 300 mg/kg) + ISP treated group. P. betle leaf extract (75, 150, or 300 mg/kg) or saline was orally administered for 30 days. ISP (85 mg/kg, s.c.) was administered at an interval of 24 h on the 28(th) and 29(th) day and on day 30 the functional and biochemical parameters were measured. ISP administration showed a significant decrease in systolic, diastolic, mean arterial pressure (SAP, DAP, MAP), heart rate (HR), contractility (+LVdP/dt), and relaxation (-LVdP/dt) and increased left ventricular end-diastolic pressure (LVEDP). ISP also caused significant decrease in myocardial antioxidants; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and myocyte injury marker enzymes; creatine phosphokinase-MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH) along with enhanced lipid peroxidation; thiobarbituric acid reacting species (TBARS) in heart. Pre-treatment with P. betle favorably modulated hemodynamic (SAP, DAP, and MAP) and ventricular function parameters (-LVdP/dt and LVEDP). P. betle pre-treatment also restored SOD, CAT, GSH, and GPx, reduced the leakage of CK-MB isoenzyme and LDH along with decreased lipid peroxidation in the heart. Taken together, the biochemical and functional parameters indicate that P. betle 150 and 300 mg/kg has a significant cardioprotective effect against ISP-induced myocardial infarction. Results of the present study suggest the cardioprotective potential of P. betle.

  14. Hemodynamic and neurochemical determinates of renal function in chronic heart failure.

    PubMed

    Gilbert, Cameron; Cherney, David Z I; Parker, Andrea B; Mak, Susanna; Floras, John S; Al-Hesayen, Abdul; Parker, John D

    2016-01-15

    Abnormal renal function is common in acute and chronic congestive heart failure (CHF) and is related to the severity of congestion. However, treatment of congestion often leads to worsening renal function. Our objective was to explore basal determinants of renal function and their response to hemodynamic interventions. Thirty-seven patients without CHF and 59 patients with chronic CHF (ejection fraction; 23 ± 8%) underwent right heart catheterization, measurements of glomerular filtration rate (GFR; inulin) and renal plasma flow (RPF; para-aminohippurate), and radiotracer estimates of renal sympathetic activity. A subset (26 without, 36 with CHF) underwent acute pharmacological intervention with dobutamine or nitroprusside. We explored the relationship between baseline and drug-induced hemodynamic changes and changes in renal function. In CHF, there was an inverse relationship among right atrial mean pressure (RAM) pressure, RPF, and GFR. By contrast, mean arterial pressure (MAP), cardiac index (CI), and measures of renal sympathetic activity were not significant predictors. In those with CHF there was also an inverse relationship among the drug-induced changes in RAM as well as pulmonary artery mean pressure and the change in GFR. Changes in MAP and CI did not predict the change in GFR in those with CHF. Baseline values and changes in RAM pressure did not correlate with GFR in those without CHF. In the CHF group there was a positive correlation between RAM pressure and renal sympathetic activity. There was also an inverse relationship among RAM pressure, GFR, and RPF in patients with chronic CHF. The observation that acute reductions in RAM pressure is associated with an increase in GFR in patients with CHF has important clinical implications. Copyright © 2016 the American Physiological Society.

  15. Impaired Skeletal Muscle Vasodilation during Exercise in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Lee, Joshua F.; Barrett-O’Keefe, Zachary; Nelson, Ashley D.; Garten, Ryan S.; Ryan, John J.; Nativi-Nicolau, Jose N.; Richardson, Russell S.; Wray, D. Walter

    2016-01-01

    Background Exercise intolerance is a hallmark symptom of heart failure patients with preserved ejection fraction (HFpEF), which may be related to an impaired ability to appropriately increase blood flow to the exercising muscle. Methods We evaluated leg blood flow (LBF, ultrasound Doppler), heart rate (HR), stroke volume (SV), cardiac output (CO), and mean arterial blood pressure (MAP, photoplethysmography) during dynamic, single leg knee-extensor (KE) exercise in HFpEF patients (n = 21; 68 ± 2 yrs) and healthy controls (n = 20; 71 ± 2 yrs). Results HFpEF patients exhibited a marked attrition during KE exercise, with only 60% able to complete the exercise protocol. In participants who completed all exercise intensities (0-5-10-15W; HFpEF, n = 13; Controls, n = 16), LBF was not different at 0W and 5W, but was 15-25% lower in HFpEF compared to controls at 10W and 15W (P < 0.001). Likewise, leg vascular conductance (LVC), an index of vasodilation, was not different at 0W and 5W, but was 15-20% lower in HFpEF compared to controls at 10W and 15W (P < 0.05). In contrast to these peripheral deficits, exercise-induced changes in central variables (HR, SV, CO), as well as MAP, were similar between groups. Conclusions These data reveal a marked reduction in LBF and LVC in HFpEF patients during exercise that cannot be attributed to a disease-related alteration in central hemodynamics, suggesting that impaired vasodilation in the exercising skeletal muscle vasculature may play a key role in the exercise intolerance associated with this patient population. PMID:26970959

  16. Prototype early warning system for heart disease detection using Android Application.

    PubMed

    Zennifa, Fadilla; Fitrilina; Kamil, Husnil; Iramina, Keiji

    2014-01-01

    Heart Disease affects approximately 70 million people worldwide where most people do not even know the symptoms. This research examines the prototype of early warning system for heart disease by android application. It aims to facilitate users to early detect heart disease which can be used independently. To build the application in android phone, variable centered intelligence rule system (VCIRS) as decision makers and pulse sensor - Arduino as heart rate detector were applied in this study. Moreover, in Arduino, the heart rate will become an input for symptoms in Android Application. The output of this system is the conclusion statement of users diagnosed with either coronary heart disease, hypertension heart disease, rheumatic heart disease or do not get any kind of heart disease. The result of diagnosis followed by analysis of the value of usage variable rate (VUR) rule usage rate (RUR) and node usage rate (NUR) that shows the value of the rule that will increase when the symptoms frequently appear. This application was compared with the medical analysis from 35 cases of heart disease and it showed concordance between diagnosis from android application and expert diagnosis of the doctors.

  17. Detailing magnetic field strength dependence and segmental artifact distribution of myocardial effective transverse relaxation rate at 1.5, 3.0, and 7.0 T.

    PubMed

    Meloni, Antonella; Hezel, Fabian; Positano, Vincenzo; Keilberg, Petra; Pepe, Alessia; Lombardi, Massimo; Niendorf, Thoralf

    2014-06-01

    Realizing the challenges and opportunities of effective transverse relaxation rate (R2 *) mapping at high and ultrahigh fields, this work examines magnetic field strength (B0 ) dependence and segmental artifact distribution of myocardial R2 * at 1.5, 3.0, and 7.0 T. Healthy subjects were considered. Three short-axis views of the left ventricle were examined. R2 * was calculated for 16 standard myocardial segments. Global and mid-septum R2 * were determined. For each segment, an artifactual factor was estimated as the deviation of segmental from global R2 * value. The global artifactual factor was significantly enlarged at 7.0 T versus 1.5 T (P = 0.010) but not versus 3.0 T. At 7.0 T, the most severe susceptibility artifacts were detected in the inferior lateral wall. The mid-septum showed minor artifactual factors at 7.0 T, similar to those at 1.5 and 3.0 T. Mean R2 * increased linearly with the field strength, with larger changes for global heart R2 * values. At 7.0 T, segmental heart R2 * analysis is challenging due to macroscopic susceptibility artifacts induced by the heart-lung interface and the posterior vein. Myocardial R2 * depends linearly on the magnetic field strength. The increased R2 * sensitivity at 7.0 T might offer means for susceptibility-weighted and oxygenation level-dependent MR imaging of the myocardium. Copyright © 2013 Wiley Periodicals, Inc.

  18. Extracellular Volume Fraction for Characterization of Patients With Heart Failure and Preserved Ejection Fraction.

    PubMed

    Rommel, Karl-Philipp; von Roeder, Maximilian; Latuscynski, Konrad; Oberueck, Christian; Blazek, Stephan; Fengler, Karl; Besler, Christian; Sandri, Marcus; Lücke, Christian; Gutberlet, Matthias; Linke, Axel; Schuler, Gerhard; Lurz, Philipp

    2016-04-19

    Optimal patient characterization in heart failure with preserved ejection fraction (HFpEF) is essential to tailor successful treatment strategies. Cardiac magnetic resonance (CMR)-derived T1 mapping can noninvasively quantify diffuse myocardial fibrosis as extracellular volume fraction (ECV). This study aimed to elucidate the diagnostic performance of T1 mapping in HFpEF by examining the relationship between ECV and invasively measured parameters of diastolic function. It also investigated the potential of ECV to differentiate among pathomechanisms in HFpEF. We performed T1 mapping in 24 patients with HFpEF and 12 patients without heart failure symptoms. Pressure-volume loops were obtained with a conductance catheter during basal conditions and handgrip exercise. Transient pre-load reduction was used to extrapolate the diastolic stiffness constant. Patients with HFpEF showed higher ECV (p < 0.01), elevated load-independent passive left ventricular (LV) stiffness constant (beta) (p < 0.001), and a longer time constant of active LV relaxation (p = 0.02). ECV correlated highly with beta (r = 0.75; p < 0.001). Within the HFpEF cohort, patients with ECV greater than the median showed a higher beta (p = 0.05), whereas ECV below the median identified patients with prolonged active LV relaxation (p = 0.01) and a marked hypertensive reaction to exercise due to pathologic arterial elastance (p = 0.04). On multiple linear regression analyses, ECV independently predicted intrinsic LV stiffness (β = 0.75; p < 0.01). Diffuse myocardial fibrosis, assessed by CMR-derived T1 mapping, independently predicts invasively measured LV stiffness in HFpEF. Additionally, ECV helps to noninvasively distinguish the role of passive stiffness and hypertensive exercise response with impaired active relaxation. (Left Ventricular Stiffness vs. Fibrosis Quantification by T1 Mapping in Heart Failure With Preserved Ejection Fraction [STIFFMAP]; NCT02459626). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. How heart rate variability affects emotion regulation brain networks.

    PubMed

    Mather, Mara; Thayer, Julian

    2018-02-01

    Individuals with high heart rate variability tend to have better emotional well-being than those with low heart rate variability, but the mechanisms of this association are not yet clear. In this paper, we propose the novel hypothesis that by inducing oscillatory activity in the brain, high amplitude oscillations in heart rate enhance functional connectivity in brain networks associated with emotion regulation. Recent studies using daily biofeedback sessions to increase the amplitude of heart rate oscillations suggest that high amplitude physiological oscillations have a causal impact on emotional well-being. Because blood flow timing helps determine brain network structure and function, slow oscillations in heart rate have the potential to strengthen brain network dynamics, especially in medial prefrontal regulatory regions that are particularly sensitive to physiological oscillations.

  20. Children's Heart Rate Reactivity Responses to Three School Tasks.

    ERIC Educational Resources Information Center

    Sharpley, Christopher F.; And Others

    1989-01-01

    Investigated effects of 3 routine classroom arithmetic and reading tasks upon the heart rate reactivity of 30 fifth grade children. Results indicated that some children showed large increases in heart rates during the three tasks, and that these children should be considered at risk for coronary heart disease. (Author/TE)

  1. Problem Behavior and Heart Rate Reactivity in Adopted Adolescents: Longitudinal and Concurrent Relations

    ERIC Educational Resources Information Center

    Bimmel, Nicole; van IJzendoorn, Marinus H.; Bakermans-Kranenburg, Marian J.; Juffer, Femmie; De Geus, Eco J. C.

    2008-01-01

    The present longitudinal study examined resting heart rate and heart rate variability and reactivity to a stressful gambling task in adopted adolescents with aggressive, delinquent, or internalizing behavior problems and adopted adolescents without behavior problems (total N=151). Early-onset delinquent adolescents showed heart rate…

  2. Tachycardia

    MedlinePlus

    ... normal while at rest. It's normal for your heart rate to rise during exercise or as a physiological ... the heart or both while at rest. Your heart rate is controlled by electrical signals sent across heart ...

  3. The Relationship Between Heart Rate Reserve and Oxygen Uptake Reserve in Heart Failure Patients on Optimized and Non-Optimized Beta-Blocker Therapy

    PubMed Central

    Carvalho, Vitor Oliveira; Guimarães, Guilherme Veiga; Bocchi, Edimar Alcides

    2008-01-01

    BACKGROUND The relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in heart failure patients either on non-optimized or off beta-blocker therapy is known to be unreliable. The aim of this study was to evaluate the relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in heart failure patients receiving optimized and non-optimized beta-blocker treatment during a treadmill cardiopulmonary exercise test. METHODS A total of 27 sedentary heart failure patients (86% male, 50±12 years) on optimized beta-blocker therapy with a left ventricle ejection fraction of 33±8% and 35 sedentary non-optimized heart failure patients (75% male, 47±10 years) with a left ventricle ejection fraction of 30±10% underwent the treadmill cardiopulmonary exercise test (Naughton protocol). Resting and peak effort values of both the percentage of oxygen consumption reserve and percentage of heart rate reserve were, by definition, 0 and 100, respectively. RESULTS The heart rate slope for the non-optimized group was derived from the points 0.949±0.088 (0 intercept) and 1.055±0.128 (1 intercept), p<0.0001. The heart rate slope for the optimized group was derived from the points 1.026±0.108 (0 intercept) and 1.012±0.108 (1 intercept), p=0.47. Regression linear plots for the heart rate slope for each patient in the non-optimized and optimized groups revealed a slope of 0.986 (almost perfect) for the optimized group, but the regression analysis for the non-optimized group was 0.030 (far from perfect, which occurs at 1). CONCLUSION The relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in patients on optimized beta-blocker therapy was reliable, but this relationship was unreliable in non-optimized heart failure patients. PMID:19060991

  4. Heart rate and outcome in heart failure with reduced ejection fraction: Differences between atrial fibrillation and sinus rhythm-A CIBIS II analysis.

    PubMed

    Mulder, Bart A; Damman, Kevin; Van Veldhuisen, Dirk J; Van Gelder, Isabelle C; Rienstra, Michiel

    2017-09-01

    Heart rate has been associated with prognosis in patients with heart failure with reduced ejection fraction (HFREF) and sinus rhythm; whether this also holds true in patients with atrial fibrillation (AF) is unknown. To evaluate cardiac rhythm and baseline heart rate and the influence of outcome in patients with HFREF enrolled in the Cardiac Insufficiency Bisoprolol Study II. In total, 2539 patients were stratified according to their baseline heart rhythm (AF or sinus rhythm) and into quartiles of heart rate (≤70 bpm, 71-78 bpm, 79-90 bpm, and >90 bpm). The primary outcome was all-cause mortality. Mean follow-up was 1.3 years. Mean age was 61 years, mean left ventricular ejection fraction was 28%, and 80% were male. A total of 521 (21%) patients had AF at baseline. The risk associated with all-cause mortality for each 5 bpm increase in heart rate in patients with sinus rhythm (hazard ratio [HR]: 1.06, 95% confidence interval [CI]: 1.01-1.11, P = 0.012) was significantly different from those with AF (HR: 1.00, 95% CI: 0.94-1.07, P = 0.90, P for interaction = 0.041). The risk associated with higher heart rate in sinus rhythm was primarily attributable to excess risk in the highest quartile (HR: 1.64, 95% CI: 1.18-2.30, P = 0.003). Allocation to bisoprolol did not modify the interaction between heart rate, rhythm and outcome. In HFREF patients with AF, a higher heart rate is not associated with increased event rates in contrast to HFREF patients with sinus rhythm. © 2017 Wiley Periodicals, Inc.

  5. Heart rate at first postdischarge visit and outcomes in patients with heart failure.

    PubMed

    Kim, Tae-Hun; Kim, Hyungseop; Kim, In-Cheol; Yoon, Hyuck-Jun; Park, Hyoung-Seob; Cho, Yun-Kyeong; Nam, Chang-Wook; Han, Seongwook; Hur, Seung-Ho; Kim, Yoon-Nyun

    2018-07-01

    Heart rate control is important to prevent adverse outcomes in patients with heart failure (HF). However, postdischarge activity may worsen heart rate control, resulting in readmission. This study aimed to explore the implications of the heart rate differences between discharge and the first outpatient visit (D-O diff). We retrospectively identified 458 patients (male: 46%; mean age: 72 years) discharged after HF. The heart rates at admission, discharge and first outpatient visit were analysed. The primary outcome was a composite of cardiovascular (CV) death and readmission of non-fatal myocardial infarction (MI), non-fatal stroke or non-fatal HF over a mean follow-up of 16 months. During follow-up, the clinical outcomes were noted in 223 patients (49%): HF, 199; stroke, 9; MI, 6; CV death, 9. The heart rate at the first outpatient visit (r=-0.311, P<0.001) and D-O diff (r=0.416, P<0.001) showed a better correlation with the time-to-clinical event than the heart rate at admission or discharge. The events group displayed a pronounced heart rate increase (13 beats/min) from discharge to the first outpatient visit compared with the event-free group (a decrease of 2 beats/min). A decrease less than -15 in the D-O diff showed a 4.5-fold risk of clinical outcomes during follow-up (P<0.001). A decreased D-O diff was related to the adverse outcomes of HF. The failure of heart rate control within more than 15 beats/min at the first outpatient visit was an independent factor for CV events. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Heart rate at admission is a predictor of in-hospital mortality in patients with acute coronary syndromes: Results from 58 European hospitals: The European Hospital Benchmarking by Outcomes in acute coronary syndrome Processes study.

    PubMed

    Jensen, Magnus T; Pereira, Marta; Araujo, Carla; Malmivaara, Anti; Ferrieres, Jean; Degano, Irene R; Kirchberger, Inge; Farmakis, Dimitrios; Garel, Pascal; Torre, Marina; Marrugat, Jaume; Azevedo, Ana

    2018-03-01

    The purpose of this study was to investigate the relationship between heart rate at admission and in-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation acute coronary syndrome (NSTE-ACS). Consecutive ACS patients admitted in 2008-2010 across 58 hospitals in six participant countries of the European Hospital Benchmarking by Outcomes in ACS Processes (EURHOBOP) project (Finland, France, Germany, Greece, Portugal and Spain). Cardiogenic shock patients were excluded. Associations between heart rate at admission in categories of 10 beats per min (bpm) and in-hospital mortality were estimated by logistic regression in crude models and adjusting for age, sex, obesity, smoking, hypertension, diabetes, known heart failure, renal failure, previous stroke and ischaemic heart disease. In total 10,374 patients were included. In both STEMI and NSTE-ACS patients, a U-shaped relationship between admission heart rate and in-hospital mortality was found. The lowest risk was observed for heart rates between 70-79 bpm in STEMI and 60-69 bpm in NSTE-ACS; risk of mortality progressively increased with lower or higher heart rates. In multivariable models, the relationship persisted but was significant only for heart rates >80 bpm. A similar relationship was present in both patients with or without diabetes, above or below age 75 years, and irrespective of the presence of atrial fibrillation or use of beta-blockers. Heart rate at admission is significantly associated with in-hospital mortality in patients with both STEMI and NSTE-ACS. ACS patients with admission heart rate above 80 bpm are at highest risk of in-hospital mortality.

  7. Heart Rate Recovery, Physical Activity Level, and Functional Status in Subjects With COPD.

    PubMed

    Morita, Andrea A; Silva, Laís K O; Bisca, Gianna W; Oliveira, Joice M; Hernandes, Nidia A; Pitta, Fabio; Furlanetto, Karina C

    2018-05-15

    A normal heart rate reflects the balance between the sympathetic and parasympathetic autonomic nervous system. When the difference between heart rate at the end of an exercise test and after 1 min of recovery, known as the 1-min heart rate recovery, is ≤ 12 beats/min, this may indicate an abnormal delay. We sought to compare physical activity patterns and subjects' functional status with COPD with or without delayed 1-min heart rate recovery after the 6-min walk test (6MWT). 145 subjects with COPD (78 men, median [interquartile range (IQR)] age 65 [60-73] y, body mass index 25 [21-30] kg/m 2 , FEV 1 45 ± 15% predicted) were underwent the following assessments: spirometry, 6MWT, functional status, and physical activity in daily life (PADL). A delayed heart rate recovery of 1 min was defined as ≤ 12 beats/min. Subjects with delayed 1-min heart rate recovery walked a shorter distance in the 6MWT compared to subjects without delayed heart rate recovery (median [IQR] 435 [390-507] m vs 477 [425-515] m, P = .01; 81 [71-87] vs 87 [79-98]% predicted, P = .002). Regarding PADL, subjects with delayed heart rate recovery spent less time in the standing position (mean ± SD 185 ± 89 min vs 250 ± 107 min, P = .002) and more time in sedentary positions (472 ± 110 min vs 394 ± 129 min, P = .002). Scores based on the self-care domain of the London Chest Activity of Daily Living questionnaire and the activity domain of the Pulmonary Functional Status and Dyspnea questionnaire were also worse in the group with delayed heart rate recovery (6 ± 2 points vs 5 ± 2 points; P = .039 and 29 ± 24 points vs 19 ± 17 points; P = .037, respectively). Individuals with COPD who exhibit delayed 1-min heart rate recovery after the 6MWT exhibited worse exercise capacity as well as a more pronounced sedentary lifestyle and worse functional status than those without delayed heart rate recovery. Despite its assessment simplicity, heart rate recovery after the 6MWT can be further explored as a promising outcome in COPD. Copyright © 2018 by Daedalus Enterprises.

  8. Heritability, linkage, and genetic associations of exercise treadmill test responses.

    PubMed

    Ingelsson, Erik; Larson, Martin G; Vasan, Ramachandran S; O'Donnell, Christopher J; Yin, Xiaoyan; Hirschhorn, Joel N; Newton-Cheh, Christopher; Drake, Jared A; Musone, Stacey L; Heard-Costa, Nancy L; Benjamin, Emelia J; Levy, Daniel; Atwood, Larry D; Wang, Thomas J; Kathiresan, Sekar

    2007-06-12

    The blood pressure (BP) and heart rate responses to exercise treadmill testing predict incidence of cardiovascular disease, but the genetic determinants of hemodynamic and chronotropic responses to exercise are largely unknown. We assessed systolic BP, diastolic BP, and heart rate during the second stage of the Bruce protocol and at the third minute of recovery in 2982 Framingham Offspring participants (mean age 43 years; 53% women). With use of residuals from multivariable models adjusted for clinical correlates of exercise treadmill testing responses, we estimated the heritability (variance-components methods), genetic linkage (multipoint quantitative trait analyses), and association with 235 single-nucleotide polymorphisms in 14 candidate genes selected a priori from neurohormonal pathways for their potential role in exercise treadmill testing responses. Heritability estimates for heart rate during exercise and during recovery were 0.32 and 0.34, respectively. Heritability estimates for BP variables during exercise were 0.25 and 0.26 (systolic and diastolic BP) and during recovery, 0.16 and 0.13 (systolic and diastolic BP), respectively. Suggestive linkage was found for systolic BP during recovery from exercise (locus 1q43-44, log-of-the-odds score 2.59) and diastolic BP during recovery from exercise (locus 4p15.3, log-of-the-odds score 2.37). Among 235 single-nucleotide polymorphisms tested for association with exercise treadmill testing responses, the minimum nominal probability value was 0.003, which was nonsignificant after adjustment for multiple testing. Hemodynamic and chronotropic responses to exercise are heritable and demonstrate suggestive linkage to select loci. Genetic mapping with newer approaches such as genome-wide association may yield novel insights into the physiological responses to exercise.

  9. Genome-wide linkage scan for submaximal exercise heart rate in the HERITAGE family study.

    PubMed

    Spielmann, Nadine; Leon, Arthur S; Rao, D C; Rice, Treva; Skinner, James S; Rankinen, Tuomo; Bouchard, Claude

    2007-12-01

    The purpose of this study was to identify regions of the human genome linked to submaximal exercise heart rates in the sedentary state and in response to a standardized 20-wk endurance training program in blacks and whites of the HERITAGE Family Study. A total of 701 polymorphic markers covering the 22 autosomes were used in the genome-wide linkage scan, with 328 sibling pairs from 99 white nuclear families and 102 pairs from 115 black family units. Steady-state heart rates were measured at the relative intensity of 60% maximal oxygen uptake (HR60) and at the absolute intensity of 50 W (HR50). Baseline phenotypes were adjusted for age, sex, and baseline body mass index (BMI) and training responses (posttraining minus baseline, Delta) were adjusted for age, sex, baseline BMI, and baseline value of the phenotype. Two analytic strategies were used, a multipoint variance components and a regression-based multipoint linkage analysis. In whites, promising linkages (LOD > 1.75) were identified on 18q21-q22 for baseline HR50 (LOD = 2.64; P = 0.0002) and DeltaHR60 (LOD = 2.10; P = 0.0009) and on chromosome 2q33.3 for DeltaHR50 (LOD = 2.13; P = 0.0009). In blacks, evidence of promising linkage for baseline HR50 was detected with several markers within the chromosomal region 10q24-q25.3 (peak LOD = 2.43, P = 0.0004 with D10S597). The most promising regions for fine mapping in the HERITAGE Family Study were found on 2q33 for HR50 training response in whites, on 10q25-26 for baseline HR60 in blacks, and on 18q21-22 for both baseline HR50 and DeltaHR60 in whites.

  10. An experimental study to evaluate the technological limitations in the understanding of the haemodynamic change in pre-eclampsia.

    PubMed

    Sengupta

    1998-08-01

    BACKGROUND: Conventional indices could not define the pathogenesis of pre-eclampsia and its predictability. It has also not been possible to record these indices from the local uteroplacental system where the pathology lies. OBJECTIVE: To investigate the limitations of the currently available blood pressure-flow measuring indices and techniques commonly used in pregnancy.METHOD: Blood pressure and velocity profiles were obtained under various pathophysiological conditions for pregnant and non-pregnant animals and human subjects. The data were analysed using both conventional and computer-based spectral methods. RESULTS: Continuous monitoring of blood pressure and velocity together with their spectral analysis appeared to be a useful sensitive indicator in pregnancy beyond the commonly available conventional analytical method. In high-resistance flow such as in hypertension and in pre-eclampsia, the power amplitude was relatively low at low frequency. Power amplitude remained high at low frequency in normal low-resistance state of pregnancy. CONCLUSION: The results suggest the need to develop a highly sensitive instrumentation whereby any minute variation in mean arterial pressure that is of clinical significance can be measured. Alternatively, analytical advancement, such as use of power spectrum analysers, might prove to be useful and sensitive. Variability of heart rate is an important determinant of the underlying pathophysiology in pregnancy. It is concluded that the heart rate of pre-eclamptics and hypertensives has to increase in order to maintain a constant organic blood flow whereas in normal pregnancy bloow flow can rise even without an incrase in heart rate. Future research should be directed towards blood flow mapping, power spectral analysis and image processing of the blood pressure-flow profile obtained from local and systemic compartments under different pathophysiological conditions of pregnancy.

  11. Localization of cholinergic innervation and neurturin receptors in adult mouse heart and expression of the neurturin gene.

    PubMed

    Mabe, Abigail M; Hoard, Jennifer L; Duffourc, Michelle M; Hoover, Donald B

    2006-10-01

    Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor alpha2 (GFRalpha2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRalpha2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.

  12. Heart Rates of High School Physical Education Students during Team Sports, Individual Sports, and Fitness Activities

    ERIC Educational Resources Information Center

    Laurson, Kelly R.; Brown, Dale D.; Cullen, Robert W.; Dennis, Karen K.

    2008-01-01

    This study examined how activity type influenced heart rates and time spent in target heart rate zones of high school students participating in physical education classes. Significantly higher average heart rates existed for fitness (142 plus or minus 24 beats per minute [bpm]) compared to team (118 plus or minus 24 bpm) or individual (114 plus or…

  13. Making the Most of the "Daphnia" Heart Rate Lab: Optimizing the Use of Ethanol, Nicotine & Caffeine

    ERIC Educational Resources Information Center

    Corotto, Frank; Ceballos, Darrel; Lee, Adam; Vinson, Lindsey

    2010-01-01

    Students commonly test the effects of chemical agents on the heart rate of the crustacean "Daphnia" magna, but the procedure has never been optimized. We determined the effects of three concentrations of ethanol, nicotine, and caffeine and of a control solution on heart rate in "Daphnia." Ethanol at 5% and 10% (v/v) reduced mean heart rate to…

  14. [Mortality from heart attack in Belgrade population during the period 1990-2004].

    PubMed

    Ratkov, Isidora; Sipetić, Sandra; Vlajinac, Hristina; Sekeres, Bojan

    2008-01-01

    In most countries, cardiovascular diseases are the leading disorders, with ischemic heart diseases being the leading cause of death. According to WHO data, every year about 17 million people die of cardiovascular diseases, which is 30% of all deaths. Ischemic heart diseases contribute from one-third to one-half of all deaths due to cardiovascular diseases. Three point eight million men and 3.4 million women in the world die every year from ischemic heart diseases, and in Europe about 2 million. The highest mortality rate from ischemic heart diseases occurs in India, China and Russia. The aim of this descriptive epidemiological study was to determine heart attack mortality in Belgrade population during the period 1990-2004. In the study, we conducted investigation of Belgrade population during the period 1990-2004. Mortality data were obtained from the city institution for statistics. The mortality rates were calculated based on the total Belgrade population obtained from the mean values for the last two register years (1991 and 2002). The mortality rates were standardized using the direct method of standardization according to the world (Segi) standard population. In the Belgrade population during the period 1990-2004, the participation of mortality rate due to heart attack among deaths from cardiovascular diseases was 17% in males and 10% in females. In Belgrade male population, mean standardized mortality rates (per 100,000 habitants) were 50.5 for heart attack, 8.3 for chronic ischemic heart diseases and 4.6 for angina pectoris, while in females the rates were 30.8, 6.7 and 4.2, respectively. Mortality from ischemic heart diseases and from heart attack was higher in males than in females. During the studied 15-year period, on average 755 males and 483 females died due to heart attack every year. Mean standardized mortality rates per 100,000 habitants were 50.0 in male and 31.1 in female population. Males died 1.6 times more frequently from heart attack than females. During the studied period, mean standardized mortality rates from heart attack, in the population aged over 30 increased with age both in male and female population. However, males tended to die from heart attack at an earlier age than females, with death rates for males approximately the same as those for women who were 10 years older. In Belgrade during the period from 1990-2004, we found that there was an increasing trend in mortality rate due to cardiovascular diseases, while the trend of mortality rate from heart attack was constant with insignificant oscillations.

  15. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang

    2015-11-15

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. Copyright © 2015 the American Physiological Society.

  16. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor

    PubMed Central

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H.; Hull, Robert; Davis, Mary

    2015-01-01

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1–30 μg/kg) decreased resting heart rate; at high doses (150–300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03–0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. PMID:26408544

  17. Low Blood Pressure

    MedlinePlus

    ... to low blood pressure are an abnormally low heart rate ( bradycardia ), problems with heart valves , heart attack and ... occurred. Is low blood pressure related to low heart rate? Find out . This content was last reviewed October ...

  18. Children and Arrhythmia

    MedlinePlus

    ... your child has been diagnosed with an abnormal heart rate, you're probably alarmed. That's understandable. But by ... care for your child. About heart rhythms The heart rate is the number of times the heart beats ...

  19. Ultrasound Current Source Density Imaging in live rabbit hearts using clinical intracardiac catheter

    NASA Astrophysics Data System (ADS)

    Li, Qian

    Ultrasound Current Source Density Imaging (UCSDI) is a noninvasive modality for mapping electrical activities in the body (brain and heart) in 4-dimensions (space + time). Conventional cardiac mapping technologies for guiding the radiofrequency ablation procedure for treatment of cardiac arrhythmias have certain limitations. UCSDI can potentially overcome these limitations and enhance the electrophysiology mapping of the heart. UCSDI exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity. When an ultrasound beam intersects a current path in a material, the local resistivity of the material is modulated by the ultrasonic pressure, and a change in voltage signal can be detected based on Ohm's Law. The degree of modulation is determined by the AE interaction constant K. K is a fundamental property of any type of material, and directly affects the amplitude of the AE signal detected in UCSDI. UCSDI requires detecting a small AE signal associated with electrocardiogram. So sensitivity becomes a major challenge for transferring UCSDI to the clinic. This dissertation will determine the limits of sensitivity and resolution for UCSDI, balancing the tradeoff between them by finding the optimal parameters for electrical cardiac mapping, and finally test the optimized system in a realistic setting. This work begins by describing a technique for measuring K, the AE interaction constant, in ionic solution and biological tissue, and reporting the value of K in excised rabbit cardiac tissue for the first time. K was found to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart tissue, K was determined to be 0.041 +/- 0.012 %/MPa, similar to the measurement of K in physiologic saline: 0.034 +/- 0.003 %/MPa. Next, this dissertation investigates the sensitivity limit of UCSDI by quantifying the relation between the recording electrode distance and the measured AE signal amplitude in gel phantoms and excised porcine heart tissue using a clinical intracardiac catheter. Sensitivity of UCSDI with catheter was 4.7 microV/mA (R2 = 0.999) in cylindrical gel (0.9% NaCl), and 3.2 microV/mA (R2 = 0.92) in porcine heart tissue. The AE signal was detectable more than 25 mm away from the source in cylindrical gel (0.9% NaCl). Effect of transducer properties on UCSDI sensitivity is also investigated using simulation. The optimal ultrasound transducer parameters chosen for cardiac imaging are center frequency = 0.5 MHz and f/number = 1.4. Last but not least, this dissertation shows the result of implementing the optimized ultrasound parameters in live rabbit heart preparation, the comparison of different recording electrode configuration and multichannel UCSDI recording and reconstruction. The AE signal detected using the 0.5 MHz transducer was much stronger (2.99 microV/MPa) than the 1.0 MHz transducer (0.42 microV/MPa). The clinical lasso catheter placed on the epicardium exhibited excellent sensitivity without being too invasive. 3-dimensional cardiac activation maps of the live rabbit heart using only one pair of recording electrodes were also demonstrated for the first time. Cardiac conduction velocity for atrial (1.31 m/s) and apical (0.67 m/s) pacing were calculated based on the activation maps. The future outlook of this dissertation includes integrating UCSDI with 2-dimensional ultrasound transducer array for fast imaging, and developing a multi-modality catheter with 4-dimensional UCSDI, multi-electrode recording and echocardiography capacity.

  20. Algorithm for heart rate extraction in a novel wearable acoustic sensor

    PubMed Central

    Imtiaz, Syed Anas; Aguilar–Pelaez, Eduardo; Rodriguez–Villegas, Esther

    2015-01-01

    Phonocardiography is a widely used method of listening to the heart sounds and indicating the presence of cardiac abnormalities. Each heart cycle consists of two major sounds – S1 and S2 – that can be used to determine the heart rate. The conventional method of acoustic signal acquisition involves placing the sound sensor at the chest where this sound is most audible. Presented is a novel algorithm for the detection of S1 and S2 heart sounds and the use of them to extract the heart rate from signals acquired by a small sensor placed at the neck. This algorithm achieves an accuracy of 90.73 and 90.69%, with respect to heart rate value provided by two commercial devices, evaluated on more than 38 h of data acquired from ten different subjects during sleep in a pilot clinical study. This is the largest dataset for acoustic heart sound classification and heart rate extraction in the literature to date. The algorithm in this study used signals from a sensor designed to monitor breathing. This shows that the same sensor and signal can be used to monitor both breathing and heart rate, making it highly useful for long-term wearable vital signs monitoring. PMID:26609401

  1. Caffeine Consumption and Heart Rate and Blood Pressure Response to Regadenoson

    PubMed Central

    Bitar, Abbas; Mastouri, Ronald; Kreutz, Rolf P.

    2015-01-01

    Background Current guidelines recommend that caffeinated products should be avoided for at least 12 hours prior to regadenoson administration. We intended to examine the effect of caffeine consumption and of timing of last dose on hemodynamic effects after regadenoson administration for cardiac stress testing. Methods 332 subjects undergoing regadenoson stress testing were enrolled. Baseline characteristics, habits of coffee/caffeine exposure, baseline vital signs and change in heart rate, blood pressure, percent of maximal predicted heart rate, and percent change in heart rate were prospectively collected. Results Non-coffee drinkers (group 1) (73 subjects) and subjects who last drank coffee >24 hours (group 3) (139 subjects) prior to regadenoson did not demonstrate any difference in systolic blood pressure, heart rate change, maximal predicted heart rate and percent change in heart rate. Systolic blood pressure change (15.2±17.1 vs. 7.2±10.2 mmHg, p = 0.001), heart rate change (32.2±14 vs. 27.3±9.6 bpm, p = 0.038) and maximal predicted heart rate (65.5±15.6 vs. 60.7±8.6%, p = 0.038) were significantly higher in non-coffee drinkers (group 1) compared to those who drank coffee 12–24 hours prior (group 2) (108 subjects). Subjects who drank coffee >24 hours prior (group 3) exhibited higher systolic blood pressure change (13±15.8 vs. 7±10.2, p = 0.007), and heart rate change (32.1±15.3 vs. 27.3±9.6, p = 0.017) as compared to those who drank coffee 12–24 hours prior to testing (group 2). Conclusions Caffeine exposure 12–24 hours prior to regadenoson administration attenuates the vasoactive effects of regadenoson, as evidenced by a blunted rise in heart rate and systolic blood pressure. These results suggest that caffeine exposure within 24 hours may reduce the effects of regadenoson administered for vasodilatory cardiac stress testing. PMID:26098883

  2. Ordinal pattern statistics for the assessment of heart rate variability

    NASA Astrophysics Data System (ADS)

    Graff, G.; Graff, B.; Kaczkowska, A.; Makowiec, D.; Amigó, J. M.; Piskorski, J.; Narkiewicz, K.; Guzik, P.

    2013-06-01

    The recognition of all main features of a healthy heart rhythm (the so-called sinus rhythm) is still one of the biggest challenges in contemporary cardiology. Recently the interesting physiological phenomenon of heart rate asymmetry has been observed. This phenomenon is related to unbalanced contributions of heart rate decelerations and accelerations to heart rate variability. In this paper we apply methods based on the concept of ordinal pattern to the analysis of electrocardiograms (inter-peak intervals) of healthy subjects in the supine position. This way we observe new regularities of the heart rhythm related to the distribution of ordinal patterns of lengths 3 and 4.

  3. Rate of change of heart size before congestive heart failure in dogs with mitral regurgitation.

    PubMed

    Lord, P; Hansson, K; Kvart, C; Häggström, J

    2010-04-01

    The objective of the study was to examine the changes in vertebral heart scale, and left atrial and ventricular dimensions before and at onset of congestive heart failure in cavalier King Charles spaniels with mitral regurgitation. Records and radiographs from 24 cavalier King Charles spaniels with mitral regurgitation were used. Vertebral heart scale (24 dogs), and left atrial dimension and left ventricular end diastolic and end systolic diameters (18 dogs) and their rate of increase were measured at intervals over years to the onset of congestive heart failure. They were plotted against time to onset of congestive heart failure. Dimensions and rates of change of all parameters were highest at onset of congestive heart failure, the difference between observed and chance outcome being highly significant using a two-tailed chi-square test (P<0.001). The left heart chambers increase in size rapidly only in the last year before the onset of congestive heart failure. Increasing left ventricular end systolic dimension is suggestive of myocardial failure before the onset of congestive heart failure. Rate of increase of heart dimensions may be a useful indicator of impending congestive heart failure.

  4. Gender affects sympathetic and hemodynamic response to postural stress

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Hogeman, C. S.; Khan, M.; Kimmerly, D. S.; Sinoway, L. I.

    2001-01-01

    We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.

  5. Noninvasive cardiac activation imaging of ventricular arrhythmias during drug-induced QT prolongation in the rabbit heart.

    PubMed

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; Zhou, Zhaoye; He, Bin

    2013-10-01

    Imaging myocardial activation from noninvasive body surface potentials promises to aid in both cardiovascular research and clinical medicine. To investigate the ability of a noninvasive 3-dimensional cardiac electrical imaging technique for characterizing the activation patterns of dynamically changing ventricular arrhythmias during drug-induced QT prolongation in rabbits. Simultaneous body surface potential mapping and 3-dimensional intracardiac mapping were performed in a closed-chest condition in 8 rabbits. Data analysis was performed on premature ventricular complexes, couplets, and torsades de pointes (TdP) induced during intravenous administration of clofilium and phenylephrine with combinations of various infusion rates. The drug infusion led to a significant increase in the QT interval (from 175 ± 7 to 274 ± 31 ms) and rate-corrected QT interval (from 183 ± 5 to 262 ± 21 ms) during the first dose cycle. All the ectopic beats initiated by a focal activation pattern. The initial beat of TdPs arose at the focal site, whereas the subsequent beats were due to focal activity from different sites or 2 competing focal sites. The imaged results captured the dynamic shift of activation patterns and were in good correlation with the simultaneous measurements, with a correlation coefficient of 0.65 ± 0.02 averaged over 111 ectopic beats. Sites of initial activation were localized to be ~5 mm from the directly measured initiation sites. The 3-dimensional cardiac electrical imaging technique could localize the origin of activation and image activation sequence of TdP during QT prolongation induced by clofilium and phenylephrine in rabbits. It offers the potential to noninvasively investigate the proarrhythmic effects of drug infusion and assess the mechanisms of arrhythmias on a beat-to-beat basis. © 2013 Heart Rhythm Society. All rights reserved.

  6. Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension.

    PubMed

    Boshra, Vivian; Abbas, Amr M

    2017-07-26

    Renovascular hypertension (RVH) is a result of renal artery stenosis, which is commonly due to astherosclerosis. In this study, we aimed to clarify the central and peripheral effects of ghrelin on the renin-angiotensin system (RAS) in a rat model of RVH. RVH was induced in rats by partial subdiaphragmatic aortic constriction. Experiment A was designed to assess the central effect of ghrelin via the intracerebroventricular (ICV) injection of ghrelin (5 μg/kg) or losartan (0.01 mg/kg) in RVH rats. Experiment B was designed to assess the peripheral effect of ghrelin via the subcutaneous (SC) injection of ghrelin (150 μg/kg) or losartan (10 mg/kg) for 7 consecutive days. Mean arterial blood pressure (MAP), heart rate, plasma renin activity (PRA), and oxidative stress markers were measured in all rats. In addition, angiotensin II receptor type 1 (AT1R) concentration was measured in the hypothalamus of rats in Experiment B. RVH significantly increased brain AT1R, PRA, as well as the brain and plasma oxidative stress. Either SC or ICV ghrelin or losartan caused a significant decrease in MAP with no change in the heart rate. Central ghrelin or losartan caused a significant decrease in brain AT1R with significant alleviation of the brain oxidative stress. Central ghrelin caused a significant decrease in PRA, whereas central losartan caused a significant increase in PRA. SC ghrelin significantly decreased PRA and plasma oxidative stress, whereas SC losartan significantly increased PRA and decreased plasma oxidative stress. The hypotensive effect of ghrelin is mediated through the amelioration of oxidative stress, which is induced by RAS centrally and peripherally.

  7. Effects of exercise pressor reflex activation on carotid baroreflex function during exercise in humans

    NASA Technical Reports Server (NTRS)

    Gallagher, K. M.; Fadel, P. J.; Stromstad, M.; Ide, K.; Smith, S. A.; Querry, R. G.; Raven, P. B.; Secher, N. H.

    2001-01-01

    1. This investigation was designed to determine the contribution of the exercise pressor reflex to the resetting of the carotid baroreflex during exercise. 2. Ten subjects performed 3.5 min of static one-legged exercise (20 % maximal voluntary contraction) and 7 min dynamic cycling (20 % maximal oxygen uptake) under two conditions: control (no intervention) and with the application of medical anti-shock (MAS) trousers inflated to 100 mmHg (to activate the exercise pressor reflex). Carotid baroreflex function was determined at rest and during exercise using a rapid neck pressure/neck suction technique. 3. During exercise, the application of MAS trousers (MAS condition) increased mean arterial pressure (MAP), plasma noradrenaline concentration (dynamic exercise only) and perceived exertion (dynamic exercise only) when compared to control (P < 0.05). No effect of the MAS condition was evident at rest. The MAS condition had no effect on heart rate (HR), plasma lactate and adrenaline concentrations or oxygen uptake at rest and during exercise. The carotid baroreflex stimulus-response curve was reset upward on the response arm and rightward to a higher operating pressure by control exercise without alterations in gain. Activation of the exercise pressor reflex by MAS trousers further reset carotid baroreflex control of MAP, as indicated by the upward and rightward relocation of the curve. However, carotid baroreflex control of HR was only shifted rightward to higher operating pressures by MAS trousers. The sensitivity of the carotid baroreflex was unaltered by exercise pressor reflex activation. 4. These findings suggest that during dynamic and static exercise the exercise pressor reflex is capable of actively resetting carotid baroreflex control of mean arterial pressure; however, it would appear only to modulate carotid baroreflex control of heart rate.

  8. The cardiovascular effects of a chimeric opioid peptide based on morphiceptin and PFRTic-NH2.

    PubMed

    Li, Meixing; Zhou, Lanxia; Ma, Guoning; Cao, Shuo; Dong, Shouliang

    2013-01-01

    MCRT (YPFPFRTic-NH(2)) is a chimeric opioid peptide based on morphiceptin and PFRTic-NH(2). In order to assess the cardiovascular effect of MCRT, it was administered by intravenous (i.v.) injection targeting at the peripheral nervous system and by intracerebroventricular (i.c.v.) injection targeting at the central nervous system. Naloxone and L-NAME were injected before MCRT to investigate possible interactions with MCRT. Results show that administration of MCRT by i.v. or i.c.v. injection could induce bradycardia and decrease in mean arterial pressure (MAP) at a greater degree than that with morphiceptin and PFRTic-NH(2). When MCRT and NPFF were coinjected, we observed a dose-dependent weakening of these cardiovascular effects by MCRT. Because naloxone completely abolished the cardiovascular effects of MCRT, we conclude that opioid receptors are involved in regulating the MAP of MCRT regardless of modes of injection. The effect of MCRT on heart rate is completely dependent on opioid receptors when MCRT was administered by i.c.v. instead of i.v. The central nitric oxide (NO) pathway is involved in regulating blood pressure by MCRT under both modes of injection, but the peripheral NO pathway had no effect on lowering blood pressure mediated by MCRT when it was administered by i.c.v. Based on the results from different modes of injection, the regulation of heart rate by MCRT mainly involves in the central NO pathway. Lastly, we observed that the cardiovascular effects of MCRT such as bradycardia and decrease of blood pressure, were stronger than that of its parent peptides. Opioid receptors and the NO pathway are involved in the cardiovascular regulation by MCRT, and their degree of involvement differs between intravenous and intracerebroventricular injection. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Procedural Pain Heart Rate Responses in Massaged Preterm Infants

    PubMed Central

    Diego, Miguel A.; Field, Tiffany; Hernandez-Reif, Maria

    2009-01-01

    Heart rate (HR) responses to the removal of a monitoring lead were assessed in 56 preterm infants who received moderate pressure, light pressure or no massage therapy. The infants who received moderate pressure massage therapy exhibited lower increases in HR suggesting an attenuated pain response. The heart rate of infants who received moderate pressure massage also returned to baseline faster than the heart rate of the other two groups, suggesting a faster recovery rate. PMID:19185352

  10. Tachycardia | Fast Heart Rate

    MedlinePlus

    ... sinoatrial (SA) node --- the heart's natural pacemaker. A series of early beats in the atria speeds up the heart rate. The rapid heartbeat does not allow enough time for the heart to fill before it contracts ...

  11. Deriving temperature and age appropriate heart rate centiles for children with acute infections.

    PubMed

    Thompson, M; Harnden, A; Perera, R; Mayon-White, R; Smith, L; McLeod, D; Mant, D

    2009-05-01

    To describe the reference range for heart rate in children aged 3 months-10 years presenting to primary care with self-limiting infections. Cross-sectional study of children presenting to primary care with suspected acute infection. Heart rate was measured using a pulse oximeter and axillary temperature using an electronic thermometer. Centile charts of heart rates expected at given temperatures for children with self-limiting infections were calculated. Ten general practice surgeries and two out-of-hours centres in England. 1933 children presenting with suspected acute infections were recruited from in-hours general practice surgeries (1050 or 54.3%) or out-of-hours centres (883 or 45.7%). After excluding children who subsequently attended hospital and those without a final diagnosis of acute infection, 1589 children were used to create the centile charts of whom (859 or 54.1%) had upper respiratory tract infections and (215 or 13.5%) non-specific viral illness. Median, 75th, 90th and 97th centiles of heart rate at each temperature level. Heart rate increased by 9.9-14.1 bpm with each 1 degrees C increment in temperature. The 50th, 75th, 90th and 97th centiles of heart rate at each temperature level are presented graphically. Age-specific centile charts of heart rates expected at different temperatures should be used by clinicians in the initial assessment of children with acute infections. The charts will identify children who have a heart rate higher than expected for a given temperature and facilitate the interpretation of changes in heart rate on reassessment. Further research on the predictive value of the centile charts is needed to optimise their diagnostic utility.

  12. Heart Rate and Energy Expenditure in Division I Field Hockey Players During Competitive Play.

    PubMed

    Sell, Katie M; Ledesma, Allison B

    2016-08-01

    Sell, KM and Ledesma, AB. Heart rate and energy expenditure in Division I field hockey players during competitive play. J Strength Cond Res 30(8): 2122-2128, 2016-The purpose of this study was to quantify energy expenditure and heart rate data for Division I female field hockey players during competitive play. Ten female Division I collegiate field hockey athletes (19.8 ± 1.6 years; 166.4 ± 6.1 cm; 58.2 ± 5.3 kg) completed the Yo-Yo intermittent endurance test to determine maximal heart rate. One week later, all subjects wore a heart rate monitor during a series of 3 matches in an off-season competition. Average heart rate (AvHR), average percentage of maximal heart rate (AvHR%), peak exercise heart rate (PExHR), and percentage of maximal heart rate (PExHR%), time spent in each of the predetermined heart rate zones, and caloric expenditure per minute of exercise (kcalM) were determined for all players. Differences between positions (backs, midfielders, and forwards) were assessed. No significant differences in AvHR, AvHR%, PExHR, PExHR%, and %TM were observed between playing positions. The AvHR% and PExHR% for each position fell into zones 4 (77-93% HRmax) and 5 (>93% HRmax), respectively, and significantly more time was spent in zone 4 compared with zones 1, 2, 3, and 5 across all players (p ≤ 0.05). The kcalM reflected very heavy intensity exercise. The results of this study will contribute toward understanding the sport-specific physiological demands of women's field hockey and has specific implications for the duration and schedule of training regimens.

  13. Optimal Body Temperature in Transitional ELBW Infants Using Heart Rate and Temperature as Indicators

    PubMed Central

    Knobel, Robin B.; Holditch-Davis, Diane; Schwartz, Todd A.

    2013-01-01

    Extremely low birth weight (ELBW) infants are vulnerable to cold stress after birth. Therefore, caregivers need to control body temperature optimally to minimize energy expenditure. Objective We explored body temperature in relationship to heart rate in ELBW infants during their first 12 hours to help identify the ideal set point for incubator control of body temperature. Design Within subject, multiple-case design. Setting A tertiary NICU in North Carolina. Participants 10 infants, born less than 29 weeks gestation and weighing 400-1000 grams. Methods Heart rate and abdominal body temperature were measured at 1-minute intervals for 12 hours. Heart rates were considered normal if they were between the 25th and 75th percentile for each infant. Results Abdominal temperatures were low throughout the 12-hour study period (mean 35.17° C-36.68° C). Seven of ten infants had significant correlations between abdominal temperature and heart rate. Heart rates above the 75th percentile were associated with low and high abdominal temperatures; heart rates less than the 25th percentile were associated with very low abdominal temperatures. The extent to which abdominal temperature was abnormally low was related the extent to which the heart rate trended away from normal in six of the ten infants. Optimal temperature control point that maximized normal heart rate observations for each infant was between 36.8° C and 37° C. Conclusions Hypothermia was associated with abnormal heart rates in transitional ELBW infants. We suggest nurses set incubator servo between 36.8° C and 36.9° C to optimally control body temperature for ELBW infants. PMID:20409098

  14. Comparison of Hemodynamic Changes in Unilateral Spinal Anesthesia Versus Epidural Anesthesia Below the T10 Sensory Level in Unilateral Surgeries: a Double-Blind Randomized Clinical Trial

    PubMed Central

    Kiasari, Alieh Zamani; Babaei, Anahita; Alipour, Abbas; Motevalli, Shima; Baradari, Afshin Gholipour

    2017-01-01

    Background: Unilateral spinal anesthesia is used to limit the spread of block. The aim of the present study was to compare hemodynamic changes and complications in unilateral spinal anesthesia and epidural anesthesia below the T10 sensory level in unilateral surgeries. Materials and Methods: In this double-blind randomized clinical trial in total 120 patients were randomly divided into a unilateral spinal anesthesia group (Group S) and an epidural anesthesia group (Group E). Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rates were measured before and immediately after the administration of spinal or epidural anesthesia and then at 5-, 10-, 15-, 20-, 25-, and 30-min intervals. The rates of prescribed ephedrine and intraoperative respiratory arrest were recorded, in addition to postoperative nausea and vomiting, puncture headaches, and back pain during the first 24 h after the surgery. Results: SBP, DBP, and MAP values initially showed a statistically significant downward trend in both groups (p = 0.001). The prevalence of hypotension in Group S was lower than in Group E, and the observed difference was statistically significant (p < 0.0001). The mean heart rate change in Group E was greater than in Group S, although the difference was not statistically significant (p = 0.68). The incidence of prescribed ephedrine in response to a critical hemodynamic situation was 5.1% (n = 3) and 75% (n = 42) in Group S and Group E, respectively (p = 0.0001). The incidence of headaches, back pain, and nausea/vomiting was 15.3%, 15.3%, and 10.2% in Group S and 1.8%, 30.4%, and 5.4% in Group E (p = 0.017, 0.07, and 0.49, respectively). Conclusion: Hemodynamic stability, reduced administration of ephedrine, a simple, low-cost technique, and adequate sensory and motor block are major advantages of unilateral spinal anesthesia. PMID:28974849

  15. Pharmacokinetics, hemodynamic and metabolic effects of epinephrine to prevent post-operative low cardiac output syndrome in children

    PubMed Central

    2014-01-01

    Introduction The response to exogenous epinephrine (Ep) is difficult to predict given the multitude of factors involved such as broad pharmacokinetic and pharmacodynamic between-subject variabilities, which may be more pronounced in children. We investigated the pharmacokinetics and pharmacodynamics of Ep, co-administered with milrinone, in children who underwent open heart surgical repair for congenital defects following cardiopulmonary bypass, including associated variability factors. Methods Thirty-nine children with a high risk of low cardiac output syndrome were prospectively enrolled. Ep pharmacokinetics, hemodynamic and metabolic effects were analyzed using the non-linear mixed effects modeling software MONOLIX. According to the final model, an Ep dosing simulation was suggested. Results Ep dosing infusions ranged from 0.01 to 0.23 μg.kg-1.min-1 in children whose weight ranged from 2.5 to 58 kg. A one-compartment open model with linear elimination adequately described the Ep concentration-time courses. Bodyweight (BW) was the main covariate influencing clearance (CL) and endogenous Ep production rate (q0) via an allometric relationship: CL(BWi) = θCL x (BWi)3/4 and q0(BWi) = θq0 x (BWi )3/4. The increase in heart rate (HR) and mean arterial pressure (MAP) as a function of Ep concentration were well described using an Emax model. The effect of age was significant on HR and MAP basal level parameters. Assuming that Ep stimulated the production rate of plasma glucose, the increases in plasma glucose and lactate levels were well described by turnover models without any significant effect of age, BW or exogenous glucose supply. Conclusions According to this population analysis, the developmental effects of BW and age explained a part of the pharmacokinetic and pharmacodynamics between-subject variabilities of Ep administration in critically ill children. This approach ultimately leads to a valuable Ep dosing simulation which should help clinicians to determine an appropriate a priori dosing regimen. PMID:24456639

  16. In Situ Optical Mapping of Voltage and Calcium in the Heart

    PubMed Central

    Ewart, Paul; Ashley, Euan A.; Loew, Leslie M.; Kohl, Peter; Bollensdorff, Christian; Woods, Christopher E.

    2012-01-01

    Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches. PMID:22876327

  17. Pyridostigmine prevents haemodynamic alterations but does not affect their nycthemeral oscillations in infarcted mice.

    PubMed

    Corrêa, Wesley G; Durand, Marina T; Becari, Christiane; Tezini, Geisa C S V; do Carmo, Jussara M; de Oliveira, Mauro; Prado, Cibele M; Fazan, Rubens; Salgado, Helio C

    2015-01-01

    The increase in acetylcholine yielded by pyridostigmine (PYR), an acetylcholinesterase inhibitor, was evaluated for its effect on the haemodynamic responses-mean arterial pressure (MAP) and heart rate (HR)-and their nycthemeral oscillation in mice before and one week after myocardial infarction (MI). Mice were anesthetized (isoflurane), and a telemetry transmitter was implanted into the carotid artery. After 5 days of recovery, the MAP and HR were recorded for 48 h (10 s every 10 min). Following this procedure, mice were submitted to surgery for sham or coronary artery ligation and received drinking water (VEHICLE) with or without PYR. Five days after surgery, the haemodynamic recordings were recommenced. Sham surgery combined with VEHICLE did not affect basal MAP and HR; nevertheless, these haemodynamic parameters were higher during the night, before and after surgery. MI combined with VEHICLE displayed decreased MAP and increased HR; these haemodynamic parameters were also higher during the night, before and after surgery. Sham surgery combined with PYR displayed similar results for MAP as sham combined with VEHICLE; however, PYR produced bradycardia. Nevertheless, MI combined with PYR exhibited no change in MAP and HR, but these haemodynamic parameters were also higher during the night, before and after surgery. Therefore, MI decreased MAP and increased HR, while PYR prevented these alterations. Neither MI nor PYR affected nycthemeral oscillations of MAP and HR. These findings indicate that the increase in acetylcholine yielded by PYR protected the haemodynamic alterations caused by MI in mice, without affecting the nycthemeral haemodynamic oscillations. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Heart failure - home monitoring

    MedlinePlus

    ... you lose a lot of weight. Checking Your Heart Rate and Pulse Know what your normal pulse rate ... may give you special equipment to check your heart rate. Checking Your Blood Pressure Your provider may ask ...

  19. Apgar score

    MedlinePlus

    ... infant cries well, the respiratory score is 2. Heart rate is evaluated by stethoscope. This is the most important assessment: If there is no heartbeat, the infant scores 0 for heart rate. If heart rate is less than 100 ...

  20. Effect of suprachiasmatic lesions on diurnal heart rate rhythm in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Winget, C. M.

    1977-01-01

    Heart rate and locomotor activity of rats kept under 12L/12D illumination regimen were recorded every six minutes for ten days using implantable radio transmitters. Some of the rats then received bilateral RF lesions into the suprachiasmatic nucleus (SCN). Control sham operations were performed on the rest of the animals. After recovery from surgery, recording of heart rate and locomotor activity was continued for ten days. SCN-lesioned rats showed no significant diurnal fluctuation in heart rate, while normal and sham-operated rats showed the normal diurnal rhythm in that function. The arrhythmic diurnal heart-rate pattern of SCN rats appeared to be correlated with their sporadic activity pattern. The integrity of the suprachiasmatic nucleus is therefore necessary for the generation and/or expression of diurnal rhythmicity in heart rate in the rat.

  1. Can heart rate predict blood pressure response to anti-hypertensive drug therapy?

    PubMed

    Owens, P E; Lyons, S; O'Brien, E

    1998-04-01

    The use of heart rate in clinical practice is limited by its variability under measurement situations. The mean heart rate on ambulatory monitoring provides a more robust statistic for clinical use. We examined the relationship between mean heart rate on initial referral ambulatory blood pressure monitoring (ABPM) to the BP-lowering efficacy of the four main groups of anti-hypertensive medications, in a referral hypertensive population. Patients were retrospectively identified by review of the BP database, and data collected from the initial referral BP monitor off medication, and the subsequent ABPM after treatment with either beta-blockers, diuretics, calcium antagonists or angiotensin-converting enzyme (ACE) inhibitors. The change in mean arterial BP from the initial to the subsequent ABPM (ie, as a result of treatment) was correlated with the mean heart rate on the initial ABPM. A moderate association was found for initial daytime heart rate and BP response to beta-blockers (r = 0.24, P = 0.02), and ACE inhibitors (r = 0.14, P = 0.05). No such association was found for calcium antagonists or diuretics. When the groups were divided into those with a mean daytime heart rate <75 and > or =75 beats per min, BP reduction from beta-blocker and ACE inhibitor therapy was significantly greater in those patients with a higher daytime heart rate. We conclude that average daytime heart rate on pre-treatment ABPM can be useful as a predictor of BP response to beta-blockade or ACE inhibition.

  2. Effects of head-down bed rest on complex heart rate variability: Response to LBNP testing

    NASA Technical Reports Server (NTRS)

    Goldberger, Ary L.; Mietus, Joseph E.; Rigney, David R.; Wood, Margie L.; Fortney, Suzanne M.

    1994-01-01

    Head-down bed rest is used to model physiological changes during spaceflight. We postulated that bed rest would decrease the degree of complex physiological heart rate variability. We analyzed continuous heart rate data from digitized Holter recordings in eight healthy female volunteers (age 28-34 yr) who underwent a 13-day 6 deg head-down bed rest study with serial lower body negative pressure (LBNP) trials. Heart rate variability was measured on a 4-min data sets using conventional time and frequency domain measures as well as with a new measure of signal 'complexity' (approximate entropy). Data were obtained pre-bed rest (control), during bed rest (day 4 and day 9 or 11), and 2 days post-bed rest (recovery). Tolerance to LBNP was significantly reduced on both bed rest days vs. pre-bed rest. Heart rate variability was assessed at peak LBNP. Heart rate approximate entropy was significantly decreased at day 4 and day 9 or 11, returning toward normal during recovery. Heart rate standard deviation and the ratio of high- to low-power frequency did not change significantly. We conclude that short-term bed rest is associated with a decrease in the complex variability of heart rate during LBNP testing in healthy young adult women. Measurement of heart rate complexity, using a method derived from nonlinear dynamics ('chaos theory'), may provide a sensitive marker of this loss of physiological variability, complementing conventional time and frequency domain statistical measures.

  3. Effect of Heart Rate on Arterial Stiffness as Assessed by Pulse Wave Velocity.

    PubMed

    Tan, Isabella; Butlin, Mark; Spronck, Bart; Xiao, Huanguang; Avolio, Alberto

    2017-07-24

    Vascular assessment is becoming increasingly important in the diagnosis of cardiovascular diseases. In particular, clinical assessment of arterial stiffness, as measured by pulse wave velocity (PWV), is gaining increased interest due to the recognition of PWV as an influential factor on the prognosis of hypertension as well as being an independent predictor of cardiovascular and all-cause mortality. Whilst age and blood pressure are established as the two major determinants of PWV, the influence of heart rate on PWV measurements remains controversial with conflicting results being observed in both acute and epidemiological studies. In a majority of studies investigating the acute effects of heart rate on PWV, results were confounded by concomitant changes in blood pressure. Observations from epidemiological studies have also failed to converge, with approximately just half of such studies reporting a significant blood-pressure-independent association between heart rate and PWV. Further to the lack of consensus on the effects of heart rate on PWV, the possible mechanisms contributing to observed PWV changes with heart rate have yet to be fully elucidated, although many investigators have attributed heart-rate related changes in arterial stiffness to the viscoelasticity of the arterial wall. With elevated heart rate being an independent prognostic factor of cardiovascular disease and its association with hypertension, the interaction between heart rate and PWV continues to be relevant in assessing cardiovascular risk. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. iHeartLift: a closed loop system with bio-feedback that uses music tempo variability to improve heart rate variability.

    PubMed

    Ho, Thomas C T; Chen, Xiang

    2011-01-01

    "Musica delenit bestiam feram" translates into "Music soothes the savage beast". There is a hidden truth in this ancient quip passed down from generations. Besides soothing the heart, it also incites the heart to a healthier level of heart rate variability (HRV). In this paper, an approach to use and test music and biofeedback to increase the heart rate variability for people facing daily stress is discussed. By determining the music tempo variability (MTV) of a piece of music and current heart rate variability, iHeartLift is able to compare the 2 trends and locate a musical piece that is suited to increase the user's heart rate variability to a healthier level. With biofeedback, the 2 trends are continuously compared in real-time and the musical piece is changed in accordance with the current comparisons. A study was conducted and it was generally found that HRV can be uplifted by music regardless of language and meaning of musical lyrics but with limitations to musical genre.

  5. Voluntary control of breathing does not alter vagal modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Evans, J. M.; Bruce, E. N.; Eckberg, D. L.; Knapp, C. F.

    1995-01-01

    Variations in respiratory pattern influence the heart rate spectrum. It has been suggested, hence, that metronomic respiration should be used to correctly assess vagal modulation of heart rate by using spectral analysis. On the other hand, breathing to a metronome has been reported to increase heart rate spectral power in the high- or respiratory frequency region; this finding has led to the suggestion that metronomic respiration enhances vagal tone or alters vagal modulation of heart rate. To investigate whether metronomic breathing complicates the interpretation of heart rate spectra by altering vagal modulation, we recorded the electrocardiogram and respiration from eight volunteers during three breathing trials of 10 min each: 1) spontaneous breathing (mean rate of 14.4 breaths/min); 2) breathing to a metronome at the rate of 15, 18, and 21 breaths/min for 2, 6, and 2 min, respectively; and 3) breathing to a metronome at the rate of 18 breaths/min for 10 min. Data were also collected from eight volunteers who breathed spontaneously for 20 min and breathed metronomically at each subject's mean spontaneous breathing frequency for 20 min. Results from the three 10-min breathing trials showed that heart rate power in the respiratory frequency region was smaller during metronomic breathing than during spontaneous breathing. This decrease could be explained fully by the higher breathing frequencies used during trials 2 and 3 of metronomic breathing. When the subjects breathed metronomically at each subject's mean breathing frequency, the heart rate powers during metronomic breathing were similar to those during spontaneous breathing. Our results suggest that vagal modulation of heart rate is not altered and vagal tone is not enhanced during metronomic breathing.

  6. Mapping Pluto Broken Heart

    NASA Image and Video Library

    2015-10-29

    In addition to transmitting new high-resolution images and other data on the familiar close-approach hemispheres of Pluto and Charon, NASA's New Horizons spacecraft is also returning images -- such as this one -- to improve maps of other regions. This image was taken by the New Horizons Long Range Reconnaissance Imager (LORRI) on the morning of July 13, 2015, from a range of 1.03 million miles (1.7 million kilometers) and has a resolution of 5.1 miles (8.3 kilometers) per pixel. It provides fascinating new details to help the science team map the informally named Krun Macula (the prominent dark spot at the bottom of the image) and the complex terrain east and northeast of Pluto's "heart" (Tombaugh Regio). Pluto's north pole is on the planet's disk at the 12 o'clock position of this image. http://photojournal.jpl.nasa.gov/catalog/PIA20037

  7. Running wavelet archetype aids the determination of heart rate from the video photoplethysmogram during motion.

    PubMed

    Addison, Paul S; Foo, David M H; Jacquel, Dominique

    2017-07-01

    The extraction of heart rate from a video-based biosignal during motion using a novel wavelet-based ensemble averaging method is described. Running Wavelet Archetyping (RWA) allows for the enhanced extraction of pulse information from the time-frequency representation, from which a video-based heart rate (HRvid) can be derived. This compares favorably to a reference heart rate derived from a pulse oximeter.

  8. Heart rate reactivity and current post-traumatic stress disorder when data are missing.

    PubMed

    Jeon-Slaughter, Haekyung; Tucker, Phebe; Pfefferbaum, Betty; North, Carol S; de Andrade, Bernardo Borba; Neas, Barbara

    2011-08-01

    This study demonstrates that auxiliary and exclusion criteria variables increase the effectiveness of missing imputation in correcting underestimation of physiologic reactivity in relation to post-traumatic stress disorder (PTSD) caused by deleting cases with missing physiologic data. This study used data from survivors of the 1995 Oklahoma City bombing and imputed missing heart rate data using auxiliary and exclusion criteria variables. Logistic regression was used to examine heart rate reactivity in relation to current PTSD. Of 113 survivors who participated in the bombing study's 7-year follow-up interview, 42 (37%) had missing data on heart rate reactivity due to exclusion criteria (medical illness or use of cardiovascular or psychotropic medications) or non-participation. Logistic regression results based on imputed heart rate data using exclusion criteria and auxiliary (the presence of any current PTSD arousal symptoms) variables showed that survivors with current bombing-related PTSD had significantly higher heart rates at baseline and recovered more slowly back to baseline heart rate during resting periods than survivors without current PTSD, while results based on complete cases failed to show significant correlations between current PTSD and heart rates at any assessment points. Suggested methods yielded an otherwise undetectable link between physiology and current PTSD. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.

  9. Relationships between heart rate and age, bodyweight and breed in 10,849 dogs.

    PubMed

    Hezzell, M J; Dennis, S G; Humm, K; Agee, L; Boswood, A

    2013-06-01

    To evaluate relationships between heart rate and clinical variables in healthy dogs and dogs examined at a referral hospital. Clinical data were extracted from the electronic patient records of a first opinion group (5000 healthy dogs) and a referral hospital (5849 dogs). Univariable and multi-variable general linear models were used to assess associations between heart rate and clinical characteristics. Separate multi-variable models were constructed for first opinion and referral populations. In healthy dogs, heart rate was negatively associated with bodyweight (P<0.001) but was higher in Chihuahuas. The mean difference in heart rate between a 5 and 55 kg dog was 10.5 beats per minute. In dogs presenting to a referral hospital, heart rate was negatively associated with bodyweight (P<0.001) and the following breeds; border collie, golden retriever, Labrador retriever, springer spaniel and West Highland white terrier and positively associated with age, admitting service (emergency and critical care, emergency first opinion and cardiology) and the following breeds; Cavalier King Charles spaniel, Staffordshire bull terrier and Yorkshire terrier. Bodyweight, age, breed and disease status all influence heart rate in dogs, although these factors account for a relatively small proportion of the overall variability in heart rate. © 2013 British Small Animal Veterinary Association.

  10. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    PubMed

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  11. Heart rate and treatment effect in children with disruptive behavior disorders.

    PubMed

    Stadler, Christina; Grasmann, Dörte; Fegert, Jörg M; Holtmann, Martin; Poustka, Fritz; Schmeck, Klaus

    2008-09-01

    To examine whether children with disruptive behavior disorders (DBDs; hyperkinetic conduct disorder, conduct disorder, hyperkinetic disorder) characterized by low heart rate profit less from an intensive cognitive behavioral intervention aimed at reducing impulsive, oppositional and aggressive behavior problems. Basal heart rate was studied in twenty-three children (aged 7-12 years) with DBD at the beginning of intervention comprising an intensive day-care treatment and parent training. The disruptive behavior of the child was assessed before treatment and after termination (12 weeks later). Therapy responders and non-responders were compared in regard to heart rate and other risk factors (cognitive functioning and socio-economic status). Statistical analyses yielded evidence for a significant reduction of disruptive problem behaviors (aggression, delinquency) that is more prominent in DBD children with high heart rate scores compared to patients with low heart rate scores. Heart rate was significantly lower in children who did not profit from therapy. A logistic regression analysis revealed that heart rate is a significant predictor for therapy success whereas other risk factors had no impact on therapy success. Further studies investigating biological and psychosocial predictors of treatment effectiveness are necessary. In addition, it might be helpful to consider different subtypes of aggressive behavior for selecting the best possible treatment options.

  12. Prolongation of heart rate-corrected QT interval is a predictor of cardiac autonomic dysfunction in patients with systemic lupus erythematosus.

    PubMed

    Nomura, Atsushi; Kishimoto, Mitsumasa; Takahashi, Osamu; Deshpande, Gautam A; Yamaguchi, Kenichi; Okada, Masato

    2014-05-01

    Heart rate-corrected QT interval duration (QTc) has been shown to be related to cardiac autonomic dysfunction in patients with diabetes mellitus, although this association has not been previously described in patients with systemic lupus erythematosus (SLE). We retrospectively reviewed the medical records of 91 SLE patients and 144 non-SLE connective tissue disease patients visiting our clinic from November 2010 to April 2011. We compared ambulatory heart rate identified by pulse measured by automated machine in an outpatient waiting area versus resting heart rate identified on prior screening electrocardiogram. Heart rate differences were analyzed in relation to QTc interval and other characteristics. Ambulatory and resting heart rate differences were larger among SLE patients with QTc prolongation (QTc > 430 ms) than those without QTc prolongation (mean difference, 15.9 vs. 9.6, p = 0.001). In multivariate analysis, differences in heart rate were associated with QTc prolongation (OR 1.10, 95 % CI 1.01-1.21; p = 0.038), independent of age, duration of disease, immunosuppressant use, hydroxychloroquine use, diabetes mellitus, cardiac abnormality, anti-Ro/SS-A antibody positivity, or resting heart rate. Cardiac autonomic dysfunction is a common manifestation of SLE and may be related to QTc prolongation.

  13. Paroxysmal supraventricular tachycardia (PSVT)

    MedlinePlus

    PSVT; Supraventricular tachycardia; Abnormal heart rhythm - PSVT; Arrhythmia - PSVT; Rapid heart rate - PSVT; Fast heart rate - PSVT ... Normally, the chambers of the heart (atria and ventricles) contract in ... are caused by an electrical signal that begins in an area ...

  14. Effects of small-dose dexmedetomidine on hyperdynamic responses to electroconvulsive therapy.

    PubMed

    Li, Xiang; Tan, Fang; Jian, Chao-Jun; Guo, Na; Zhong, Zhi-Yong; Hei, Zi-Qing; Zhou, Shao-Li

    2017-08-01

    Acute hemodynamic responses to electroconvulsive therapy (ECT) may increase the risk of cardiovascular complications in vulnerable patients. The aim of the current study was to assess the effect of small-dose dexmedetomidine on hyperdynamic responses to ECT. Seventy-eight patients were enrolled and randomly allocated to receive either 0.2 μg/kg dexmedetomidine (Dex group, n = 39) or saline (Control group, n = 39) prior to ECT. Heart rate (HR) and mean arterial pressure (MAP) were recorded immediately after the administration of dexmedetomidine (T1), and 0, 1, 3, 5 and 10 min after the electrical stimuli ended (T2, T3, T4, T5 and T6). In addition, the peak HR after ECT, seizure duration, recovery time, and incidence rates of post-ECT adverse effects (agitation, headache and nausea) were also recorded. HR and MAP in the Dex group were significantly lower than those in the Control group from T2 to T5. In addition, peak HR was significantly lower in the Dex group compared with that in the Control group. Seizure length and time to spontaneous breathing, eye opening, and obeying commands in the Dex group were similar to those in the Control group. The incidence rates of post-ECT agitation and headache in the Dex group were significantly lower than that in the Control group. The administration of 0.2 μg/kg dexmedetomidine to patients receiving ECT leads to a significant reduction in HR, MAP, and peak HR responses to ECT without altering seizure duration or delaying recovery. Furthermore, dexmedetomidine effectively reduced the incidence rates of post-ECT adverse effects such as agitation and headache. Copyright © 2017. Published by Elsevier Taiwan LLC.

  15. Sustained 35-GHz radiofrequency irradiation induces circulatory failure.

    PubMed

    Frei, M R; Ryan, K L; Berger, R E; Jauchem, J R

    1995-10-01

    The objective of this study was to determine the thermal distribution and concomitant cardiovascular changes produced by whole-body exposure of ketamine-anesthetized rats to radiofrequency radiation of millimeter wave (MMW) length. Rats (n = 13) were implanted with a flow probe on the superior mesenteric artery and with a catheter in the carotid artery for the measurement of arterial blood pressure. Temperature was measured at five sites: left (Tsl) and right subcutaneous (sides toward and away From the MMW source, respectively), colonic (Tc), tympanic, and tail. The animals were exposed until death to MMW (35 GHz) at a power density that resulted in a whole-body specific absorption rate of 13 W/kg. During irradiation, the Tsl increase was significantly greater than the Tc increase. Heart rate increased throughout irradiation. Mean arterial pressure (MAP) as well maintained until Tsl reached 42 degrees C, at which point MAP declined until death. Mesenteric vascular resistance tended to increase during the early stages of irradiation but began to decrease at Tsl > or = 41 degrees C. The declines in both mesenteric vascular resistance and MAP began at Tc < 37.5 degrees C; death occurred at Tc = 40.3 +/- .3 degrees C and Tsl = 48.0 +/- .4 degrees C. These data indicate that circulatory failure and subsequent death may occur when skin temperature is rapidly elevated, even in the presence of relatively normal Tc.

  16. Temporal and inter-task consistency of heart rate reactivity during active psychological challenge: a twin study.

    PubMed

    Turner, J R; Carroll, D; Sims, J; Hewitt, J K; Kelly, K A

    1986-01-01

    Heart rate was monitored while 22 pairs of young male monozygotic and 29 pairs of young male dizygotic twins were exposed to a video game and a mental arithmetic task. The heart rate reactions of the monozygotic twins showed much greater concordance than those of the dizygotic twins. Analysis of the data for the 102 individuals demonstrated reliable inter-task consistency of heart rate reaction. In addition, comparison of the heart rate reactions of ten pairs of monozygotic and ten pairs of dizygotic twins who had been tested more than a year earlier and their present reactivities revealed impressive temporal consistency.

  17. Resonance of about-weekly human heart rate rhythm with solar activity change.

    PubMed

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  18. Bradycardia

    MedlinePlus

    ... Easily tiring during physical activity When a slow heart rate is normal A resting heart rate slower than 60 beats a minute is normal ... often starts in the sinus node. A slow heart rate might occur because the sinus node: Discharges electrical ...

  19. Effect of Stimulation of Neurotransmitter Systems on Heart Rate Variability and β-Adrenergic Responsiveness of Erythrocytes in Outbred Rats.

    PubMed

    Kur'yanova, E V; Tryasuchev, A V; Stupin, V O; Teplyi, D L

    2017-05-01

    We studied heart rate variability and β-adrenergic responsiveness of erythrocytes and changes in these parameters in response to single administration of β-adrenoblocker propranolol (2 mg/kg) in outbred male rats against the background of activation of the noradrenergic, serotonergic, and dopaminergic neurotransmitter systems achieved by 4-fold injections maprotiline (10 mg/kg), 5-hydroxytryptophan (50 mg/kg) combined with fluoxetine (3 mg/kg), and L-DOPA (20 mg/kg) with amantadine (20 mg/kg), respectively. Stimulation of the noradrenergic system moderately enhanced the heart rhythm rigidity and β-adrenergic responsiveness of erythrocytes. In addition, it markedly augmented the moderating effect of subsequently administered propranolol on LF and VLF components in the heart rate variability and reversed the effect of propranolol on β-adrenergic responsiveness of erythrocytes. Stimulation of the serotonergic system dramatically decreased all components in the heart rate variability and pronouncedly enhanced β-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol slightly restored all components in the heart rate variability and decreased β-adrenergic responsiveness of erythrocytes to the control level. Stimulation of the dopaminergic system made the heart rate more rigid due to decrease of all components in the heart rate variability; in addition, it slightly but significantly enhanced β-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol produced no significant effects on all components in the heart rate variability and on β-adrenergic responsiveness of erythrocytes. Stimulation of noradrenergic, serotonergic, and dopaminergic neurotransmitter systems produced unidirectional and consorted effects on heart rate variability and β-adrenergic responsiveness of erythrocytes, although the magnitudes of these effects were different. Probably, the changes in the heart rate variability in rats with stimulated neurotransmitter systems results from modification of the cellular sensitivity in peripheral organs to adrenergic influences. However, the differences in the reactions to β-adrenoblocker attest to specificity of the mechanisms underlying the changes in membrane reception and adrenergic pathways in every experimental model employed in this study.

  20. Heart rate and ischemic stroke: the REasons for Geographic And Racial Differences in Stroke (REGARDS) study.

    PubMed

    O'Neal, Wesley T; Qureshi, Waqas T; Judd, Suzanne E; Meschia, James F; Howard, Virginia J; Howard, George; Soliman, Elsayed Z

    2015-12-01

    The association between resting heart rate and ischemic stroke remains unclear. To examine the association between resting heart rate and ischemic stroke. A total of 24 730 participants (mean age: 64 ± 9·3 years; 59% women; 41% blacks) from the REasons for Geographic And Racial Differences in Stroke (REGARDS) study who were free of stroke at the time of enrollment (2003-2007) were included in this analysis. Resting heart rate was determined from baseline electrocardiogram data. Heart rate was examined as a continuous variable per 10 bpm increase and also as a categorical variable using tertiles ( <61 bpm, 61 to 70 bpm, and >70 bpm). First-time ischemic stroke events were identified during follow-up and adjudicated by physician review. Over a median follow-up of 7·6 years, a total of 646 ischemic strokes occurred. In a Cox regression model adjusted for socio-demographics, cardiovascular risk factors, and potential confounders, each 10 bpm increase in heart rate was associated with a 10% increase in the risk of ischemic stroke (hazard ratio = 1·10, 95% confidence interval = 1·02, 1·18). In the categorical model, an increased risk of ischemic stroke was observed for heart rates in the middle (hazard ratio = 1·29, 95% confidence interval = 1·06, 1·57) and upper (hazard ratio = 1·37, 95% confidence interval = 1·12, 1·67) tertiles compared with the lower tertile. The results were consistent when the analysis was stratified by age, gender, race, exercise habits, hypertension, and coronary heart disease. In REGARDS, high resting heart rates were associated with an increased risk of ischemic stroke compared with low heart rates. Further research is needed to examine whether interventions aimed to reduce heart rate decrease stroke risk. © 2015 World Stroke Organization.

  1. [Congenital heart disease mortality in Spain during a 10 year period (2003-2012)].

    PubMed

    Pérez-Lescure Picarzo, Javier; Mosquera González, Margarita; Latasa Zamalloa, Pello; Crespo Marcos, David

    2018-05-01

    Congenital heart disease is a major cause of infant mortality in developed countries. In Spain, there are no publications at national level on mortality due to congenital heart disease. The aim of this study is to analyse mortality in infants with congenital heart disease, lethality of different types of congenital heart disease, and their variation over a ten-year period. A retrospective observational study was performed to evaluate mortality rate of children under one year old with congenital heart disease, using the minimum basic data set, from 2003 to 2012. Mortality rate and relative risk of mortality were estimated by Poisson regression. There were 2,970 (4.58%) infant deaths in a population of 64,831 patients with congenital heart disease, with 73.8% of deaths occurring during first week of life. Infant mortality rate in patients with congenital heart disease was 6.23 per 10,000 live births, and remained constant during the ten-year period of the study, representing 18% of total infant mortality rate in Spain. The congenital heart diseases with highest mortality rates were hypoplastic left heart syndrome (41.4%), interruption of aortic arch (20%), and total anomalous pulmonary drainage (16.8%). Atrial septal defect (1%) and pulmonary stenosis (1.1%) showed the lowest mortality rate. Congenital heart disease was a major cause of infant mortality with no variations during the study period. The proportion of infants who died in our study was similar to other similar countries. In spite of current medical advances, some forms of congenital heart disease show very high mortality rates. Copyright © 2017 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Comparison of three methods to identify the anaerobic threshold during maximal exercise testing in patients with chronic heart failure.

    PubMed

    Beckers, Paul J; Possemiers, Nadine M; Van Craenenbroeck, Emeline M; Van Berendoncks, An M; Wuyts, Kurt; Vrints, Christiaan J; Conraads, Viviane M

    2012-02-01

    Exercise training efficiently improves peak oxygen uptake (V˙O2peak) in patients with chronic heart failure. To optimize training-derived benefit, higher exercise intensities are being explored. The correct identification of anaerobic threshold is important to allow safe and effective exercise prescription. During 48 cardiopulmonary exercise tests obtained in patients with chronic heart failure (59.6 ± 11 yrs; left ventricular ejection fraction, 27.9% ± 9%), ventilatory gas analysis findings and lactate measurements were collected. Three technicians independently determined the respiratory compensation point (RCP), the heart rate turning point (HRTP) and the second lactate turning point (LTP2). Thereafter, exercise intensity (target heart rate and workload) was calculated and compared between the three methods applied. Patients had significantly reduced maximal exercise capacity (68% ± 21% of predicted V˙O2peak) and chronotropic incompetence (74% ± 7% of predicted peak heart rate). Heart rate, workload, and V˙O2 at HRTP and at RCP were not different, but at LTP2, these parameters were significantly (P < 0.0001) higher. Mean target heart rate and target workload calculated using the LTP2 were 5% and 12% higher compared with those calculated using HRTP and RCP, respectively. The calculation of target heart rate based on LTP2 was 5% and 10% higher in 12 of 48 (25%) and 6 of 48 (12.5%) patients, respectively, compared with the other two methods. In patients with chronic heart failure, RCP and HRTP, determined during cardiopulmonary exercise tests, precede the occurrence of LTP2. Target heart rates and workloads used to prescribe tailored exercise training in patients with chronic heart failure based on LTP2 are significantly higher than those derived from HRTP and RCP.

  3. The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia.

    PubMed

    Clark, Steven L; Hamilton, Emily F; Garite, Thomas J; Timmins, Audra; Warrick, Philip A; Smith, Samuel

    2017-02-01

    Despite intensive efforts directed at initial training in fetal heart rate interpretation, continuing medical education, board certification/recertification, team training, and the development of specific protocols for the management of abnormal fetal heart rate patterns, the goals of consistently preventing hypoxia-induced fetal metabolic acidemia and neurologic injury remain elusive. The purpose of this study was to validate a recently published algorithm for the management of category II fetal heart rate tracings, to examine reasons for the birth of infants with significant metabolic acidemia despite the use of electronic fetal heart rate monitoring, and to examine critically the limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. The potential performance of electronic fetal heart rate monitoring under ideal circumstances was evaluated in an outcomes-blinded examination fetal heart rate tracing of infants with metabolic acidemia at birth (base deficit, >12) and matched control infants (base deficit, <8) under the following conditions: (1) expert primary interpretation, (2) use of a published algorithm that was developed and endorsed by a large group of national experts, (3) assumption of a 30-minute period of evaluation for noncritical category II fetal heart rate tracings, followed by delivery within 30 minutes, (4) evaluation without the need to provide patient care simultaneously, and (5) comparison of results under these circumstances with those achieved in actual clinical practice. During the study period, 120 infants were identified with an arterial cord blood base deficit of >12 mM/L. Matched control infants were not demographically different from subjects. In actual practice, operative intervention on the basis of an abnormal fetal heart rate tracings occurred in 36 of 120 fetuses (30.0%) with metabolic acidemia. Based on expert, algorithm-assisted reviews, 55 of 120 patients with acidemia (45.8%) were judged to need operative intervention for abnormal fetal heart rate tracings. This difference was significant (P=.016). In infants who were born with a base deficit of >12 mM/L in which blinded, algorithm-assisted expert review indicated the need for operative delivery, the decision for delivery would have been made an average of 131 minutes before the actual delivery. The rate of expert intervention for fetal heart rate concerns in the nonacidemic control group (22/120; 18.3%) was similar to the actual intervention rate (23/120; 19.2%; P=1.0) Expert review did not mandate earlier delivery in 65 of 120 patients with metabolic acidemia. The primary features of these 65 cases included the occurrence of sentinel events with prolonged deceleration just before delivery, the rapid deterioration of nonemergent category II fetal heart rate tracings before realistic time frames for recognition and intervention, and the failure of recognized fetal heart rate patterns such as variability to identify metabolic acidemia. Expert, algorithm-assisted fetal heart rate interpretation has the potential to improve standard clinical performance by facilitating significantly earlier recognition of some tracings that are associated with metabolic acidemia without increasing the rate of operative intervention. However, this improvement is modest. Of infants who are born with metabolic acidemia, only approximately one-half potentially could be identified and have delivery expedited even under ideal circumstances, which are probably not realistic in current US practice. This represents the limits of electronic fetal heart rate monitoring performance. Additional technologies will be necessary if the goal of the prevention of neonatal metabolic acidemia is to be realized. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Dynamic changes in scope for heart rate and cardiac autonomic control during warm acclimation in rainbow trout.

    PubMed

    Ekström, Andreas; Hellgren, Kim; Gräns, Albin; Pichaud, Nicolas; Sandblom, Erik

    2016-04-15

    Time course studies are critical for understanding regulatory mechanisms and temporal constraints in ectothermic animals acclimating to warmer temperatures. Therefore, we investigated the dynamics of heart rate and its neuro-humoral control in rainbow trout ( ITALIC! Onchorhynchus mykissL.) acclimating to 16°C for 39 days after being acutely warmed from 9°C. Resting heart rate was 39 beats min(-1)at 9°C, and increased significantly when fish were acutely warmed to 16°C ( ITALIC! Q10=1.9), but then declined during acclimation ( ITALIC! Q10=1.2 at day 39), mainly due to increased cholinergic inhibition while the intrinsic heart rate and adrenergic tone were little affected. Maximum heart rate also increased with warming, although a partial modest decrease occurred during the acclimation period. Consequently, heart rate scope exhibited a complex pattern with an initial increase with acute warming, followed by a steep decline and then a subsequent increase, which was primarily explained by cholinergic inhibition of resting heart rate. © 2016. Published by The Company of Biologists Ltd.

  5. Heart Rate Detection During Sleep Using a Flexible RF Resonator and Injection-Locked PLL Sensor.

    PubMed

    Kim, Sung Woo; Choi, Soo Beom; An, Yong-Jun; Kim, Byung-Hyun; Kim, Deok Won; Yook, Jong-Gwan

    2015-11-01

    Novel nonintrusive technologies for wrist pulse detection have been developed and proposed as systems for sleep monitoring using three types of radio frequency (RF) sensors. The three types of RF sensors for heart rate measurement on wrist are a flexible RF single resonator, array resonators, and an injection-locked PLL resonator sensor. To verify the performance of the new RF systems, we compared heart rates between presleep time and postsleep onset time. Heart rates of ten subjects were measured using the RF systems during sleep. All three RF devices detected heart rates at 0.2 to 1 mm distance from the skin of the wrist over clothes made of cotton fabric. The wrist pulse signals of a flexible RF single resonator were consistent with the signals obtained by a portable piezoelectric transducer as a reference. Then, we confirmed that the heart rate after sleep onset time significantly decreased compared to before sleep. In conclusion, the RF system can be utilized as a noncontact nonintrusive method for measuring heart rates during sleep.

  6. Electronic fetal heart rate monitoring and its relationship to neonatal and infant mortality in the United States.

    PubMed

    Chen, Han-Yang; Chauhan, Suneet P; Ananth, Cande V; Vintzileos, Anthony M; Abuhamad, Alfred Z

    2011-06-01

    To examine the association between electronic fetal heart rate monitoring and neonatal and infant mortality, as well as neonatal morbidity. We used the United States 2004 linked birth and infant death data. Multivariable log-binomial regression models were fitted to estimate risk ratio for association between electronic fetal heart rate monitoring and mortality, while adjusting for potential confounders. In 2004, 89% of singleton pregnancies had electronic fetal heart rate monitoring. Electronic fetal heart rate monitoring was associated with significantly lower infant mortality (adjusted relative risk, 0.75); this was mainly driven by the lower risk of early neonatal mortality (adjusted relative risk, 0.50). In low-risk pregnancies, electronic fetal heart rate monitoring was associated with decreased risk for Apgar scores <4 at 5 minutes (relative risk, 0.54); in high-risk pregnancies, with decreased risk of neonatal seizures (relative risk, 0.65). In the United States, the use of electronic fetal heart rate monitoring was associated with a substantial decrease in early neonatal mortality and morbidity that lowered infant mortality. Copyright © 2011 Mosby, Inc. All rights reserved.

  7. Increased sodium/calcium exchanger activity enhances beta-adrenergic-mediated increase in heart rate: Whole-heart study in a homozygous sodium/calcium exchanger overexpressor mouse model.

    PubMed

    Kaese, Sven; Bögeholz, Nils; Pauls, Paul; Dechering, Dirk; Olligs, Jan; Kölker, Katharina; Badawi, Sascha; Frommeyer, Gerrit; Pott, Christian; Eckardt, Lars

    2017-08-01

    The cardiac sodium/calcium (Na + /Ca 2+ ) exchanger (NCX) contributes to diastolic depolarization in cardiac pacemaker cells. Increased NCX activity has been found in heart failure and atrial fibrillation. The influence of increased NCX activity on resting heart rate, beta-adrenergic-mediated increase in heart rate, and cardiac conduction properties is unknown. The purpose of this study was to investigate the influence of NCX overexpression in a homozygous transgenic whole-heart mouse model (NCX-OE) on sinus and AV nodal function. Langendorff-perfused, beating whole hearts of NCX-OE and the corresponding wild-type (WT) were studied ± isoproterenol (ISO; 0.2 μM). Epicardial ECG, AV nodal Wenckebach cycle length (AVN-WCL), and retrograde AVN-WCL were obtained. At baseline, basal heart rate was unaltered between NCX-OE and WT (WT: cycle length [CL] 177.6 ± 40.0 ms, no. of hearts [n] = 20; NCX-OE: CL 185.9 ± 30.5 ms, n = 18; P = .21). In the presence of ISO, NCX-OE exhibited a significantly higher heart rate compared to WT (WT: CL 133.4 ± 13.4 ms, n = 20; NCX-OE: CL 117.7 ± 14.2 ms, n = 18; P <.001). ISO led to a significant shortening of the anterograde and retrograde AVN-WCL without differences between NCX-OE and WT. This study is the first to demonstrate that increased NCX activity enhances beta-adrenergic increase of heart rate. Mechanistically, increased NCX inward mode activity may promote acceleration of diastolic depolarization in sinus nodal pacemaker cells, thus enhancing chronotropy in NCX-OE. These findings suggest a novel potential therapeutic target for heart rate control in the presence of increased NCX activity, such as heart failure. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  8. T wave alternans during exercise and atrial pacing in humans

    NASA Technical Reports Server (NTRS)

    Hohnloser, S. H.; Klingenheben, T.; Zabel, M.; Li, Y. G.; Albrecht, P.; Cohen, R. J.

    1997-01-01

    INTRODUCTION: Evidence is accumulating that microvolt T wave alternans (TWA) is a marker of increased risk for ventricular tachyarrhythmias. Initially, atrial pacing was used to elevate heart rate and elicit TWA. More recently, a noninvasive approach has been developed that elevates heart rate using exercise. METHODS AND RESULTS: In 30 consecutive patients with a history of ventricular tachyarrhythmias, the spectral method was used to detect TWA during both atrial pacing and submaximal exercise testing. The concordance rate for the presence or absence of TWA using the two measurement methods was 84%. There was a patient-specific heart rate threshold for the detection of TWA that averaged 100 +/- 14 beats/min during exercise compared with 97 +/- 9 beats/min during right atrial pacing (P = NS). Beyond this threshold, there was a significant and comparable increase in level of TWA with decreasing pacing cycle length and increasing exercise heart rates. CONCLUSIONS: The present study is the first to demonstrate that microvolt TWA can be assessed reliably and noninvasively during exercise stress. There is a patient-specific heart rate threshold beyond which TWA continues to increase with increasing heart rates. Heart rate thresholds for the onset of TWA measured during atrial pacing and exercise stress were comparable, indicating that heart rate alone appears to be the main factor of determining the onset of TWA during submaximal exercise stress.

  9. Heart Rate and Outcomes in Hospitalized Patients With Heart Failure With Preserved Ejection Fraction.

    PubMed

    Lam, Phillip H; Dooley, Daniel J; Deedwania, Prakash; Singh, Steven N; Bhatt, Deepak L; Morgan, Charity J; Butler, Javed; Mohammed, Selma F; Wu, Wen-Chih; Panjrath, Gurusher; Zile, Michael R; White, Michel; Arundel, Cherinne; Love, Thomas E; Blackman, Marc R; Allman, Richard M; Aronow, Wilbert S; Anker, Stefan D; Fonarow, Gregg C; Ahmed, Ali

    2017-10-10

    A lower heart rate is associated with better outcomes in patients with heart failure (HF) with reduced ejection fraction (EF). Less is known about this association in patients with HF with preserved ejection fraction (HFpEF). The aims of this study were to examine associations of discharge heart rate with outcomes in hospitalized patients with HFpEF. Of the 8,873 hospitalized patients with HFpEF (EF ≥50%) in the Medicare-linked OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure) registry, 6,286 had a stable heart rate, defined as ≤20 beats/min variation between admission and discharge. Of these, 2,369 (38%) had a discharge heart rate of <70 beats/min. Propensity scores for discharge heart rate <70 beats/min, estimated for each of the 6,286 patients, were used to assemble a cohort of 2,031 pairs of patients with heart rate <70 versus ≥70 beats/min, balanced on 58 baseline characteristics. The 4,062 matched patients had a mean age of 79 ± 10 years, 66% were women, and 10% were African American. During 6 years (median 2.8 years) of follow-up, all-cause mortality was 65% versus 70% for matched patients with a discharge heart rate <70 versus ≥70 beats/min, respectively (hazard ratio [HR]: 0.86; 95% confidence interval [CI]: 0.80 to 0.93; p < 0.001). A heart rate <70 beats/min was also associated with a lower risk for the combined endpoint of HF readmission or all-cause mortality (HR: 0.90; 95% CI: 0.84 to 0.96; p = 0.002), but not with HF readmission (HR: 0.93; 95% CI: 0.85 to 1.01) or all-cause readmission (HR: 1.01; 95% CI: 0.95 to 1.08). Similar associations were observed regardless of heart rhythm or receipt of beta-blockers. Among hospitalized patients with HFpEF, a lower discharge heart rate was independently associated with a lower risk of all-cause mortality, but not readmission. Published by Elsevier Inc.

  10. Heart rate turbulence after ventricular premature beats in healthy Doberman pinschers and those with dilated cardiomyopathy.

    PubMed

    Harris, J D; Little, C J L; Dennis, J M; Patteson, M W

    2017-10-01

    To describe the measurement of heart rate turbulence (HRT) after ventricular premature beats and compare HRT in healthy Doberman pinschers and those with dilated cardiomyopathy (DCM), with and without congestive heart failure (CHF). Sixty-five client-owned Dobermans: 20 healthy (NORMAL), 31 with preclinical DCM and 14 with DCM and CHF (DCM + CHF). A retrospective study of data retrieved from clinical records and ambulatory ECG (Holter) archives, including data collected previously for a large-scale prospective study of Dobermans with preclinical DCM. Holter data were reanalysed quantitatively, including conventional time-domain heart rate variability and the HRT parameters turbulence onset and turbulence slope. Heart rate turbulence could be measured in 58/65 dogs. Six Holter recordings had inadequate ventricular premature contractions (VPCs) and one exhibited VPCs too similar to sinus morphology. Heart rate turbulence parameter, turbulence onset, was significantly reduced in DCM dogs, whereas conventional heart rate variability measures were not. Heart rate variability and HRT markers were reduced in DCM + CHF dogs as expected. Heart rate turbulence can be measured from the majority of good quality standard canine 24-hour Holter recordings with >5 VPCs. Turbulence onset is significantly reduced in Dobermans with preclinical DCM which indicates vagal withdrawal early in the course of disease. Heart rate turbulence is a powerful prognostic indicator in human cardiac disease which can be measured from standard 24-hour ambulatory ECG (Holter) recordings using appropriate computer software. Further studies are warranted to assess whether HRT may be of prognostic value in dogs with preclinical DCM and in other canine cardiac disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats

    PubMed Central

    DiNovo, Karyn. M.; Connolly, Tiffanny M.

    2010-01-01

    The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response). PMID:19923359

  12. Blockade of hyperpolarizing currents produces a dose-dependent effect on heart rate.

    PubMed

    Ziyatdinova, N I; Giniatullin, R A; Svyatova, N V; Zefirov, T L

    2001-03-01

    Intravenous injection of ZD 7288, a new specific hyperpolarizing current blocker, dose-dependently reduces heart rate in adult rats. The autonomic nervous system modulates changes in heart rate caused by hyperpolarizing currents.

  13. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Connell, Linda J.; Graeber, R. Curtis

    1986-01-01

    Experiments were conducted to estimate the magnitude of the masking effect produced in humans by alternate periods of physical activity and rest or sleep on the circadian rhythms of heart rate and core temperature. The heart rate, rectal temperature, and nondominant wrist activity were monitored in 12 male subjects during 6 days of normal routine at home and during 6 days of controlled bed-rest regimen. The comparisons of averaged waveforms for the activity, heart rate, and temperature indicated that about 45 percent of the range of the circadian heart rate rhythm during normal routine and about 14 percent of the range of the circadian temperature rhythm were attributable to the effects of activity. The smaller effect of activity on the temperature rhythm may be partially attributable to the fact that core temperature is being more rigorously conserved than heart rate, at least during moderate exercise.

  14. Comparison of body composition, heart rate variability, aerobic and anaerobic performance between competitive cyclists and triathletes

    PubMed Central

    Arslan, Erşan; Aras, Dicle

    2016-01-01

    [Purpose] The aim of this study was to compare the body composition, heart rate variability, and aerobic and anaerobic performance between competitive cyclists and triathletes. [Subjects] Six cyclists and eight triathletes with experience in competitions voluntarily participated in this study. [Methods] The subjects’ body composition was measured with an anthropometric tape and skinfold caliper. Maximal oxygen consumption and maximum heart rate were determined using the incremental treadmill test. Heart rate variability was measured by 7 min electrocardiographic recording. The Wingate test was conducted to determine anaerobic physical performance. [Results] There were significant differences in minimum power and relative minimum power between the triathletes and cyclists. Anthropometric characteristics and heart rate variability responses were similar among the triathletes and cyclists. However, triathletes had higher maximal oxygen consumption and lower resting heart rates. This study demonstrated that athletes in both sports have similar body composition and aerobic performance characteristics. PMID:27190476

  15. A new method to measure heart rate with EMFi and PVDF materials.

    PubMed

    Kärki, S; Lekkala, J

    2009-01-01

    In this paper we propose a new simple method to measure the heart rate of a person sitting on a chair or lying in a bed. The heart rate is measured with a thin sensor pad consisting of separate electromechanical film (EMFi) and polyvinylidenefluoride (PVDF) transducers located beneath the leg of chair or bed. This study aims to evaluate the operation of the sensor system with measurements, and also to compare the results provided by the two transducer materials. Based on the results obtained here, the heart rates measured with the transducers mainly corresponded to the values of reference ECG signal. Some minor differences between the heart rate values of PVDF and EMFi appeared, especially in supine position, possible due to the material sensitivities to different force directions. However, to conclude, both materials seem to be convenient for this kind of measurement of heart rate.

  16. Accuracy of pulse oximeters in estimating heart rate at rest and during exercise.

    PubMed Central

    Iyriboz, Y; Powers, S; Morrow, J; Ayers, D; Landry, G

    1991-01-01

    Pulse oximeters are being widely used for non-invasive, simultaneous assessment of haemoglobin oxygen saturation. They are reliable, accurate, relatively inexpensive and portable. Pulse oximeters are often used for estimating heart rate at rest and during exercise. However, at present the data available to validate their use as heart rate monitors are not sufficient. We evaluated the accuracy of two oximeters (Radiometer, ear and finger probe; Ohmeda 3700, ear probe) in monitoring heart rate during incremental exercise by comparing the pulse oximeters with simultaneous ECG readings. Data were collected on eight men (713 heart rate readings) during graded cycle ergometer and treadmill exercise to volitional fatigue. Analysis by linear regression revealed that general oximeter readings significantly correlated with those of ECG (r = 0.91, P less than 0.0001). However, comparison of heart rate at each level of work showed that oximeter readings significantly (P less than 0.05) under-estimated rates above 155 beats/min. These results indicate that the use of pulse oximeters as heart rate monitors during strenuous exercise is questionable. This inaccuracy may well originate from the instability of the probes, sweating, other artefacts during exercise, and measurement of different components in the cardiovascular cycle. PMID:1777787

  17. Ventricular arrhythmias and changes in heart rate preceding ventricular tachycardia in patients with an implantable cardioverter defibrillator.

    PubMed

    Lerma, Claudia; Wessel, Niels; Schirdewan, Alexander; Kurths, Jürgen; Glass, Leon

    2008-07-01

    The objective was to determine the characteristics of heart rate variability and ventricular arrhythmias prior to the onset of ventricular tachycardia (VT) in patients with an implantable cardioverter defibrillator (ICD). Sixty-eight beat-to-beat time series from 13 patients with an ICD were analyzed to quantify heart rate variability and ventricular arrhythmias. The episodes of VT were classified in one of two groups depending on whether the sinus rate in the 1 min preceding the VT was greater or less than 90 beats per minute. In a subset of patients, increased heart rate and reduced heart rate variability was often observed up to 20 min prior to the VT. There was a non-significant trend to higher incidence of premature ventricular complexes (PVCs) before VT compared to control recordings. The patterns of the ventricular arrhythmias were highly heterogeneous among different patients and even within the same patient. Analysis of the changes of heart rate and heart rate variability may have predictive value about the onset of VT in selected patients. The patterns of ventricular arrhythmia could not be used to predict onset of VT in this group of patients.

  18. The progressive onset of cholinergic and adrenergic control of heart rate during development in the green iguana, Iguana iguana.

    PubMed

    Sartori, Marina R; Leite, Cleo A C; Abe, Augusto S; Crossley, Dane A; Taylor, Edwin W

    2015-10-01

    The autonomic control of heart rate was studied throughout development in embryos of the green iguana, Iguana iguana by applying receptor agonists and antagonists of the parasympathetic and sympathetic systems. Acetylcholine (Ach) slowed or stopped the heart and atropine antagonized the response to Ach indicating the presence of muscarinic cholinoceptors on the heart of early embryos. However, atropine injections had no impact on heart rate until immediately before hatching, when it increased heart rate by 15%. This cholinergic tonus increased to 34% in hatchlings and dropped to 24% in adult iguanas. Although epinephrine was without effect, injection of propranolol slowed the heart throughout development, indicating the presence of β-adrenergic receptors on the heart of early embryos, possibly stimulated by high levels of circulating catecholamines. The calculated excitatory tonus varied between 33% and 68% until immediately before hatching when it fell to 25% and 29%, a level retained in hatchlings and adults. Hypoxia caused a bradycardia in early embryos that was unaffected by injection of atropine indicating that hypoxia has a direct effect upon the heart. In later embryos and hatchlings hypoxia caused a tachycardia that was unaffected by injection of atropine. Subsequent injection of propranolol reduced heart rate both uncovering a hypoxic bradycardia in late embryos and abolishing tachycardia in hatchlings. Hypercapnia was without effect on heart rate in late stage embryos and in hatchlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    PubMed

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  20. Role of central command in carotid baroreflex resetting in humans during static exercise

    NASA Technical Reports Server (NTRS)

    Ogoh, S.; Wasmund, W. L.; Keller, D. M.; O-Yurvati, A.; Gallagher, K. M.; Mitchell, J. H.; Raven, P. B.

    2002-01-01

    The purpose of the experiments was to examine the role of central command in the exercise-induced resetting of the carotid baroreflex. Eight subjects performed 30 % maximal voluntary contraction (MVC) static knee extension and flexion with manipulation of central command (CC) by patellar tendon vibration (PTV). The same subjects also performed static knee extension and flexion exercise without PTV at a force development that elicited the same ratings of perceived exertion (RPE) as those observed during exercise with PTV in order to assess involvement of the exercise pressor reflex. Carotid baroreflex (CBR) function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid changes in neck pressure and suction during steady state static exercise. Knee extension exercise with PTV (decreased CC activation) reset the CBR-HR and CBR-MAP to a lower operating pressure (P < 0.05) and knee flexion exercise with PTV (increased CC activation) reset the CBR-HR and CBR-MAP to a higher operating pressure (P < 0.05). Comparison between knee extension and flexion exercise at the same RPE with and without PTV found no difference in the resetting of the CBR-HR function curves (P > 0.05) suggesting the response was determined primarily by CC activation. However, the CBR-MAP function curves were reset to operating pressures determined by both exercise pressor reflex (EPR) and central command activation. Thus the physiological response to exercise requires CC activation to reset the carotid-cardiac reflex but requires either CC or EPR to reset the carotid-vasomotor reflex.

  1. [Effect of Music Intervention on Maternal Anxiety and Fetal Heart Rate Pattern During Non-Stress Test].

    PubMed

    Oh, Myung Ok; Kim, Young Jeoum; Baek, Cho Hee; Kim, Ju Hee; Park, No Mi; Yu, Mi Jeong; Song, Han Sol

    2016-06-01

    The purpose of this cross-over experimental study was to examine effects of music intervention on maternal anxiety, fetal heart rate pattern and testing time during non-stress tests (NST) for antenatal fetal assessment. Sixty pregnant women within 28 to 40 gestational weeks were randomly assigned to either the experimental group (n=30) or control group (n=30). Music intervention was provided to pregnant women in the experimental group during NST. Degree of maternal anxiety and fetal heart rate pattern were our primary outcomes. State-trait anxiety inventory, blood pressure, pulse rate, and changes in peripheral skin temperature were assessed to determine the degree of maternal anxiety. Baseline fetal heart rate, frequency of acceleration in fetal heart rate, fetal movement test and testing time for reactive NST were assessed to measure the fetal heart rate pattern. The experimental group showed significantly lower scores in state anxiety than the control group. There were no significant differences in systolic blood pressure and pulse rate between the two groups. Baseline fetal heart rate was significantly lower in the experimental group than in the control group. Frequency of acceleration in fetal heart rate was significantly increased in the experimental group compared to the control group. There were no significant differences in fetal movement and testing time for reactive NST between the two groups. Present results suggest that music intervention could be an effective nursing intervention for alel viating anxiety during non-stress test.

  2. Somatic hospital contacts, invasive cardiac procedures, and mortality from heart disease in patients with severe mental disorder.

    PubMed

    Laursen, Thomas Munk; Munk-Olsen, Trine; Agerbo, Esben; Gasse, Christiane; Mortensen, Preben Bo

    2009-07-01

    Excess mortality from heart disease is observed in patients with severe mental disorder. This excess mortality may be rooted in adverse effects of pharmacological or psychotropic treatment, lifestyle factors, or inadequate somatic care. To examine whether persons with severe mental disorder, defined as persons admitted to a psychiatric hospital with bipolar affective disorder, schizoaffective disorder, or schizophrenia, are in contact with hospitals and undergoing invasive procedures for heart disease to the same degree as the nonpsychiatric general population, and to determine whether they have higher mortality rates of heart disease. A population-based cohort of 4.6 million persons born in Denmark was followed up from 1994 to 2007. Rates of mortality, somatic contacts, and invasive procedures were estimated by survival analysis. Incidence rate ratios of heart disease admissions and heart disease mortality as well as probability of invasive cardiac procedures. The incidence rate ratio of heart disease contacts in persons with severe mental disorder compared with the rate for the nonpsychiatric general population was only slightly increased, at 1.11 (95% confidence interval, 1.08-1.14). In contrast, their excess mortality rate ratio from heart disease was 2.90 (95% confidence interval, 2.71-3.10). Five years after the first contact for somatic heart disease, the risk of dying of heart disease was 8.26% for persons with severe mental disorder (aged <70 years) but only 2.86% in patients with heart disease who had never been admitted to a psychiatric hospital. The fraction undergoing invasive procedures within 5 years was reduced among patients with severe mental disorder as compared with the nonpsychiatric general population (7.04% vs 12.27%, respectively). Individuals with severe mental disorder had only negligible excess rates of contact for heart disease. Given their excess mortality from heart disease and lower rates of invasive procedures after first contact, it would seem that the treatment for heart disease offered to these individuals in Denmark is neither sufficiently efficient nor sufficiently intensive. This undertreatment may explain part of their excess mortality.

  3. Fitbit Charge HR Wireless Heart Rate Monitor: Validation Study Conducted Under Free-Living Conditions.

    PubMed

    Gorny, Alexander Wilhelm; Liew, Seaw Jia; Tan, Chuen Seng; Müller-Riemenschneider, Falk

    2017-10-20

    Many modern smart watches and activity trackers feature an optical sensor that estimates the wearer's heart rate. Recent studies have evaluated the performance of these consumer devices in the laboratory. The objective of our study was to examine the accuracy and sensitivity of a common wrist-worn tracker device in measuring heart rates and detecting 1-min bouts of moderate to vigorous physical activity (MVPA) under free-living conditions. Ten healthy volunteers were recruited from a large university in Singapore to participate in a limited field test, followed by a month of continuous data collection. During the field test, each participant would wear one Fitbit Charge HR activity tracker and one Polar H6 heart rate monitor. Fitbit measures were accessed at 1-min intervals, while Polar readings were available for 10-s intervals. We derived intraclass correlation coefficients (ICCs) for individual participants comparing heart rate estimates. We applied Centers for Disease Control and Prevention heart rate zone cut-offs to ascertain the sensitivity and specificity of Fitbit in identifying 1-min epochs falling into MVPA heart rate zone. We collected paired heart rate data for 2509 1-min epochs in 10 individuals under free-living conditions of 3 to 6 hours. The overall ICC comparing 1-min Fitbit measures with average 10-s Polar H6 measures for the same epoch was .83 (95% CI .63-.91). On average, the Fitbit tracker underestimated heart rate measures by -5.96 bpm (standard error, SE=0.18). At the low intensity heart rate zone, the underestimate was smaller at -4.22 bpm (SE=0.15). This underestimate grew to -16.2 bpm (SE=0.74) in the MVPA heart rate zone. Fitbit devices detected 52.9% (192/363) of MVPA heart rate zone epochs correctly. Positive and negative predictive values were 86.1% (192/223) and 92.52% (2115/2286), respectively. During subsequent 1 month of continuous data collection (270 person-days), only 3.9% of 1-min epochs could be categorized as MVPA according to heart rate zones. This measure was affected by decreasing wear time and adherence over the period of follow-up. Under free-living conditions, Fitbit trackers are affected by significant systematic errors. Improvements in tracker accuracy and sensitivity when measuring MVPA are required before they can be considered for use in the context of exercise prescription to promote better health. ©Alexander Wilhelm Gorny, Seaw Jia Liew, Chuen Seng Tan, Falk Müller-Riemenschneider. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 20.10.2017.

  4. Antihypertensive effects of central ablations in spontaneously hypertensive rats.

    PubMed

    Moreira, Thiago S; Takakura, Ana C; Colombari, Eduardo; Menani, José V

    2009-06-01

    Commissural nucleus of the solitary tract (commNTS) lesions transitorily (first 5 days) reduce mean arterial pressure (MAP) in spontaneously hypertensive rats (SHR), and lesions of the tissue surrounding the anteroventral third ventricle (AV3V region) chronically reduce MAP in other models of hypertension. In the present study, we investigated the effects of combined AV3V+commNTS electrolytic lesions on MAP and heart rate (HR) in conscious SHR. Baseline MAP and HR were recorded in male SHR before and for the next 40 days after sham or AV3V lesions combined with sham or commNTS lesions. The AV3V lesions produced no change in MAP in SHR, while commNTS lesions reduced MAP acutely (121 +/- 2 to 127 +/- 3 mmHg in the 1st and 5th days, respectively, vs. prelesion: 192 +/- 4 mmHg) but not chronically (from 10 to 40 days). However, combined AV3V+commNTS lesions reduced MAP of SHR chronically (119 +/- 2 to 161 +/- 4 mmHg, in the 1st and 40th day, respectively, vs. prelesion levels: 186 +/- 4 mmHg) or sham-lesioned SHR (187 +/- 4 to 191 +/- 6 mmHg). Sympathetic and angiotensinergic blockade produced less reduction in MAP in SHR with AV3V+commNTS-lesions, and there was no relationship between changes on water and food intake, body weight, or urinary excretion produced by AV3V+commNTS lesions with the changes in MAP. The present findings suggest that in the absence of the commNTS, the AV3V region contributes to the hypertension observed in SHR by mechanisms that appear to involve enhanced angiotensinergic and sympathetic activity.

  5. Role of angiotensin in renal sympathetic activation in cirrhotic rats.

    PubMed

    Voigt, M D; Jones, S Y; DiBona, G F

    1999-08-01

    Central nervous system (CNS) renin-angiotensin activity influences the basal level of renal sympathetic nerve activity (RSNA) and its reflex regulation. The effect of type 1 angiotensin II (ANG II)-receptor antagonist treatment (losartan) on cardiac baroreflex regulation of RSNA and renal sodium handling was examined in rats with cirrhosis due to common bile duct ligation (CBDL). Basal levels of heart rate, mean arterial pressure (MAP), RSNA, and urinary sodium excretion were not affected by intracerebroventricular administration of either losartan or vehicle to CBDL rats. After acute intravenous isotonic saline loading (10% body wt) in vehicle-treated CBDL rats, MAP was unchanged and the decrease in RSNA seen in normal rats did not occur. However, in losartan-treated CBDL rats, there were significant concurrent but transient decreases in MAP (-20 +/- 2 mmHg) and RSNA (-25 +/- 3%). The natriuretic response to acute volume loading in losartan-treated CBDL rats was significantly less than that in vehicle-treated CBDL rats only at those time points where there were significant decreases in MAP. Antagonism of CNS ANG II type 1 receptors augments the renal sympathoinhibitory response to acute volume loading in CBDL. However, the natriuretic response to the acute volume loading is not improved, likely due to the strong antinatriuretic influence of the concomitant marked decrease in MAP (renal perfusion pressure) mediated by widespread sympathetic withdrawal from the systemic vasculature.

  6. Combined effects of family history of CVD and heart rate on ischemic stroke incidence among Inner Mongolians in China.

    PubMed

    Zhou, Yipeng; Tian, Yunfan; Zhong, Chongke; Batu, Buren; Xu, Tian; Li, Hongmei; Zhang, Mingzhi; Wang, Aili; Zhang, Yonghong

    2016-05-01

    This study aimed to evaluate the combined effects of family history of cardiovascular diseases (FHCVD) and heart rate on ischemic stroke incidence among Inner Mongolians in China. A prospective cohort study was conducted among 2589 participants aged 20 years and older from Inner Mongolia, China. The participants were divided into four groups according to status of FHCVD and heart rate and followed up from June 2002 to July 2012. Cox proportional hazards models were used to evaluate the combined effects of FHCVD and heart rate on the incidence of ischemic stroke. A total of 76 ischemic stroke occurred during the follow-up period. The observed ischemic stroke cases tended to be older and male, and had higher prevalence of smoking, drinking, hypertension and FHCVD as well as higher systolic and diastolic blood pressures at baseline compared with those who did not experience ischemic stroke. Age- and gender-adjusted hazard ratio (95% confidence interval) of ischemic stroke in the participants with both FHCVD and heart rate ≥ 80 were 2.89 (1.51-5.53), compared with those without FHCVD and heart rate < 80. After multiple adjustment, the association between ischemic stroke risk and both FHCVD and heart rate ≥ 80 remained statistically significant (hazard ratio, 2.47; 95% confidence interval: 1.22-5.01). Our main finding that participants with both FHCVD and faster heart rate have the highest risk of ischemic stroke suggests that faster heart rate may increase the risk of ischemic stroke among people with FHCVD.

  7. Idiosyncratic heart rate response in men during sexual arousal.

    PubMed

    Rowland, David L; Crawford, Sara B

    2011-05-01

    Heart rate, sensitive to sympathetic activation, is known to change during sexual arousal and therefore may be a useful tool for investigating psychosomatic differences between sexually functional and dysfunctional men. However, heart rate during arousal also tends to be highly variable across individual men, making its predictability based on group patterns relatively poor. We wanted to determine whether individual men show idiosyncratic heart rate patterns during sexual arousal, that is, whether they exhibit consistent patterns across similar (though not identical) stimulus situations. Agreement between heart rates under the two conditions, visual sexual stimulation (VSS) and VSS + vibrotactile (VIB), was assessed using the concordance correlation coefficient (CCC).   Thirty-eight men, 25 of whom were diagnosed with premature ejaculation (PE), were monitored for penile response and heart rate under two similar (though not identical) conditions: a 9-minute erotic video (VSS), then a 9-minute erotic video combined with vibrotactile penile stimulation (VSS + VIB). CCC for men with PE was 0.65; for the sexually functional comparison group, CCC was 0.82. For both groups combined, CCC was 0.71. For all groupings, the CCC was relatively high, indicating agreement in heart rate from one session to the next within individual men. Despite high intersubject variation in heart rate patterns, individual men show signature heart rates across similar sexual stimulus sessions. Such stereotypy helps explain previous inconsistent findings and may also serve as a marker for the effectiveness of treatments designed to improve ejaculatory control in men with PE. © 2011 International Society for Sexual Medicine.

  8. Estimating energy expenditure from heart rate in older adults: a case for calibration.

    PubMed

    Schrack, Jennifer A; Zipunnikov, Vadim; Goldsmith, Jeff; Bandeen-Roche, Karen; Crainiceanu, Ciprian M; Ferrucci, Luigi

    2014-01-01

    Accurate measurement of free-living energy expenditure is vital to understanding changes in energy metabolism with aging. The efficacy of heart rate as a surrogate for energy expenditure is rooted in the assumption of a linear function between heart rate and energy expenditure, but its validity and reliability in older adults remains unclear. To assess the validity and reliability of the linear function between heart rate and energy expenditure in older adults using different levels of calibration. Heart rate and energy expenditure were assessed across five levels of exertion in 290 adults participating in the Baltimore Longitudinal Study of Aging. Correlation and random effects regression analyses assessed the linearity of the relationship between heart rate and energy expenditure and cross-validation models assessed predictive performance. Heart rate and energy expenditure were highly correlated (r=0.98) and linear regardless of age or sex. Intra-person variability was low but inter-person variability was high, with substantial heterogeneity of the random intercept (s.d. =0.372) despite similar slopes. Cross-validation models indicated individual calibration data substantially improves accuracy predictions of energy expenditure from heart rate, reducing the potential for considerable measurement bias. Although using five calibration measures provided the greatest reduction in the standard deviation of prediction errors (1.08 kcals/min), substantial improvement was also noted with two (0.75 kcals/min). These findings indicate standard regression equations may be used to make population-level inferences when estimating energy expenditure from heart rate in older adults but caution should be exercised when making inferences at the individual level without proper calibration.

  9. Associated influence of hypertension and heart rate greater than 80 beats per minute on mortality rate in patients with anterior wall STEMI

    PubMed Central

    Davidovic, Goran; Iric-Cupic, Violeta; Milanov, Srdjan

    2013-01-01

    Acute myocardial infarction as a form of coronary heart disease is characterized by permanent damage/loss of anatomical and functional cardiac tissue. Diagnosis of STEMI includes data on anginal pain and persistent ST-segment elavation. According to the numerous epidemiological studies, arterial blood pressure and heart rate are offten increased especially during the first hours of pain due to domination of sympathetic response. We wanted to investigate the associated influence of heart rate greater than 80 beats per minute and hypertension on the mortality in patients with anterior wall STEMI. Research included 140 patients treated in Coronary Unit, Clinical Center Kragujevac form January 2001 to June 2006. Heart rate was calculated as the mean value of baseline and heart rate in the first 30 minutes after admission, recorded on monitor and electrocardiogram. Data for history of hypertension were collected and blood pressure levels were measured in a lying position after 5 minutes of rest, and classified according to the VII JNC recommendations as confirmation of hypertension. Collected data were analyzed in SPSS 13.0 for Windows. Heart rate greater than 80 bpm influences the hospital mortality. Systolic blood pressure levels were higher in the survivors, while for the diastolic there was no difference. History of hypertension was singled out as a significant predictor of mortality without difference between the respondents with heart rate greater and lower than 80 bpm in the survivors and fatal. Increased heart rate and hypertension at admission are significant predictors of mortality in patients with anterior wall STEMI. PMID:23724155

  10. Heart Rate at Hospital Discharge in Patients With Heart Failure Is Associated With Mortality and Rehospitalization

    PubMed Central

    Laskey, Warren K.; Alomari, Ihab; Cox, Margueritte; Schulte, Phillip J.; Zhao, Xin; Hernandez, Adrian F.; Heidenreich, Paul A.; Eapen, Zubin J.; Yancy, Clyde; Bhatt, Deepak L.; Fonarow, Gregg C.

    2015-01-01

    Background Whether heart rate upon discharge following hospitalization for heart failure is associated with long‐term adverse outcomes and whether this association differs between patients with sinus rhythm (SR) and atrial fibrillation (AF) have not been well studied. Methods and Results We conducted a retrospective cohort study from clinical registry data linked to Medicare claims for 46 217 patients participating in Get With The Guidelines®–Heart Failure. Cox proportional‐hazards models were used to estimate the association between discharge heart rate and all‐cause mortality, all‐cause readmission, and the composite outcome of mortality/readmission through 1 year. For SR and AF patients with heart rate ≥75, the association between heart rate and mortality (expressed as hazard ratio [HR] per 10 beats‐per‐minute increment) was significant at 0 to 30 days (SR: HR 1.30, 95% CI 1.22 to 1.39; AF: HR 1.23, 95% CI 1.16 to 1.29) and 31 to 365 days (SR: HR 1.15, 95% CI 1.12 to 1.20; AF: HR 1.05, 95% CI 1.01 to 1.08). Similar associations between heart rate and all‐cause readmission and the composite outcome were obtained for SR and AF patients from 0 to 30 days but only in the composite outcome for SR patients over the longer term. The HR from 0 to 30 days exceeded that from 31 to 365 days for both SR and AF patients. At heart rates <75, an association was significant for mortality only for both SR and AF patients. Conclusions Among older patients hospitalized with heart failure, higher discharge heart rate was associated with increased risks of death and rehospitalization, with higher risk in the first 30 days and for SR compared with AF. PMID:25904590

  11. Heart rate turbulence.

    PubMed

    Cygankiewicz, Iwona

    2013-01-01

    Heart rate turbulence (HRT) is a baroreflex-mediated biphasic reaction of heart rate in response to premature ventricular beats. Heart rate turbulence is quantified by: turbulence onset (TO) reflecting the initial acceleration of heart rate following premature beat and turbulence slope (TS) describing subsequent deceleration of heart rate. Abnormal HRT identifies patients with autonomic dysfunction or impaired baroreflex sensitivity due to variety of disorders, but also may reflect changes in autonomic nervous system induced by different therapeutic modalities such as drugs, revascularization, or cardiac resynchronization therapy. More importantly, impaired HRT has been shown to identify patients at high risk of all-cause mortality and sudden death, particularly in postinfarction and congestive heart failure patients. It should be emphasized that abnormal HRT has a well-established role in stratification of postinfarction and heart failure patients with relatively preserved left ventricular ejection fraction. The ongoing clinical trials will document whether HRT can be used to guide implantation of cardioverter-defibrillators in this subset of patients, not covered yet by ICD guidelines. This review focuses on the current state-of-the-art knowledge regarding clinical significance of HRT in detection of autonomic dysfunction and regarding the prognostic significance of this parameter in predicting all-cause mortality and sudden death. © 2013.

  12. Respiration and heart rate complexity: Effects of age and gender assessed by band-limited transfer entropy

    PubMed Central

    Nemati, Shamim; Edwards, Bradley A.; Lee, Joon; Pittman-Polletta, Benjamin; Butler, James P.; Malhotra, Atul

    2013-01-01

    Aging and disease are accompanied with a reduction of complex variability in the temporal patterns of heart rate. This reduction has been attributed to a break down of the underlying regulatory feedback mechanisms that maintain a homeodynamic state. Previous work has established the utility of entropy as an index of disorder, for quantification of changes in heart rate complexity. However, questions remain regarding the origin of heart rate complexity and the mechanisms involved in its reduction with aging and disease. In this work we use a newly developed technique based on the concept of band-limited transfer entropy to assess the aging-related changes in contribution of respiration and blood pressure to entropy of heart rate at different frequency bands. Noninvasive measurements of heart beat interval, respiration, and systolic blood pressure were recorded from 20 young (21–34 years) and 20 older (68–85 years) healthy adults. Band-limited transfer entropy analysis revealed a reduction in high-frequency contribution of respiration to heart rate complexity (p < 0.001) with normal aging, particularly in men. These results have the potential for dissecting the relative contributions of respiration and blood pressure-related reflexes to heart rate complexity and their degeneration with normal aging. PMID:23811194

  13. Heart rate variability and aerobic fitness.

    PubMed

    De Meersman, R E

    1993-03-01

    Heart rate variability, a noninvasive marker of parasympathetic activity, diminishes with aging and is augmented after exercise training. Whether habitual exercise over time can attenuate this loss is unknown. This cross-sectional investigation compared 72 male runners, aged 15 to 83 to 72 age- and weight-matched sedentary control subjects for the amplitude of their heart rate variability. Heart rate variability was assessed during rest while subjects were breathing at a rate of 6 breaths per minute and at an augmented tidal volume (tidal volume = 30% of vital capacity). Fitness levels were assessed with on-line, open-circuit spirometry while subjects were performing an incremental stress test. Overall results between the two groups showed that the physically active group had significantly higher fitness levels (p < 0.001), which were associated with significantly higher levels of heart rate variability, when compared with their sedentary counterparts (p < 0.001). These findings provide suggestive evidence for habitual aerobic exercise as a beneficial modulator of heart rate variability in an aging population.

  14. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images.

    PubMed

    Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Mulder, Harriët W; Ren, Ben; Kirişli, Hortense A; Metz, Coert; van Burken, Gerard; van Stralen, Marijn; Pluim, Josien P W; van der Steen, Antonius F W; van Walsum, Theo; Bosch, Johannes G

    2015-06-01

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE segmentation is still a challenging task due to the complex anatomy with multiple cavities, the limited TEE field of view, and typical ultrasound artifacts. We propose to segment all cavities within the TEE view with a multi-cavity active shape model (ASM) in conjunction with a tissue/blood classification based on a gamma mixture model (GMM). 3-D TEE image data of twenty patients were acquired with a Philips X7-2t matrix TEE probe. Tissue probability maps were estimated by a two-class (blood/tissue) GMM. A statistical shape model containing the left ventricle, right ventricle, left atrium, right atrium, and aorta was derived from computed tomography angiography (CTA) segmentations by principal component analysis. ASMs of the whole heart and individual cavities were generated and consecutively fitted to tissue probability maps. First, an average whole-heart model was aligned with the 3-D TEE based on three manually indicated anatomical landmarks. Second, pose and shape of the whole-heart ASM were fitted by a weighted update scheme excluding parts outside of the image sector. Third, pose and shape of ASM for individual heart cavities were initialized by the previous whole heart ASM and updated in a regularized manner to fit the tissue probability maps. The ASM segmentations were validated against manual outlines by two observers and CTA derived segmentations. Dice coefficients and point-to-surface distances were used to determine segmentation accuracy. ASM segmentations were successful in 19 of 20 cases. The median Dice coefficient for all successful segmentations versus the average observer ranged from 90% to 71% compared with an inter-observer range of 95% to 84%. The agreement against the CTA segmentations was slightly lower with a median Dice coefficient between 85% and 57%. In this work, we successfully showed the accuracy and robustness of the proposed multi-cavity segmentation scheme. This is a promising development for intraoperative procedure guidance, e.g., in cardiac electrophysiology.

  15. Arduino-based noise robust online heart-rate detection.

    PubMed

    Das, Sangita; Pal, Saurabh; Mitra, Madhuchhanda

    2017-04-01

    This paper introduces a noise robust real time heart rate detection system from electrocardiogram (ECG) data. An online data acquisition system is developed to collect ECG signals from human subjects. Heart rate is detected using window-based autocorrelation peak localisation technique. A low-cost Arduino UNO board is used to implement the complete automated process. The performance of the system is compared with PC-based heart rate detection technique. Accuracy of the system is validated through simulated noisy ECG data with various levels of signal to noise ratio (SNR). The mean percentage error of detected heart rate is found to be 0.72% for the noisy database with five different noise levels.

  16. Lavender fragrance cleansing gel effects on relaxation.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing

    2005-02-01

    Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.

  17. Association between resting heart rate and arterial stiffness in Korean adults.

    PubMed

    Park, Byoung-Jin; Lee, Hye-Ree; Shim, Jae-Yong; Lee, Jung-Hyun; Jung, Dong-Hyuk; Lee, Yong-Jae

    2010-04-01

    Higher resting heart rate, a simple and useful indicator of autonomic balance and metabolic rate, has emerged as an independent predictor for atherosclerotic cardiovascular disease. To determine the association between resting heart rate and arterial stiffness measured by brachial-ankle pulse wave velocity (baPWV). We examined the association between resting heart rate and baPWV in 641 Korean adults (366 men, 275 women) in a health examination program. A high baPWV was defined as greater than 1450 cm/s (>75th percentile). The odds ratios for high baPWVs were calculated using multivariable logistic regression analysis after adjusting for confounding variables across heart rate quartiles (Q1or=69 beats/min). Age-adjusted baPWV mean values increased gradually with heart rate quartile (Q1=1281, Q2=1285, Q3=1354, Q4=1416 cm/s). The odds ratios (95% confidence intervals) for high baPWVs in each heart rate quartile were 1.00, 1.28 (0.57-2.86), 2.63 (1.20-5.79) and 3.66 (1.66-8.05), respectively, after adjusting for age, sex, smoking status, alcohol intake, exercise, body mass index, hypertension medication, diabetes medication, hyperlipidaemia medication, mean arterial blood pressure, fasting plasma glucose, total cholesterol, triglycerides, high-density lipoprotein cholesterol, white blood cell count, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase and uric acid. These findings indicate that a higher resting heart rate is independently associated with arterial stiffness. Accordingly, early detection of increased resting heart rate is important for preservation of arterial function and assessment of cardiovascular risk. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  18. Low resting heart rate is associated with violence in late adolescence: a prospective birth cohort study in Brazil

    PubMed Central

    Murray, Joseph; Hallal, Pedro C; Mielke, Gregore I; Raine, Adrian; Wehrmeister, Fernando C; Anselmi, Luciana; Barros, Fernando C

    2016-01-01

    Abstract Background : Youth violence is a major global public health problem. Three UK and Swedish studies suggest that low resting heart rate predicts male youth violence, but this has not been tested in other social settings nor for females. Methods : A prospective, population-based birth cohort study was conducted in Pelotas, Brazil. Heart rate was measured using a wrist monitor at ages 11, 15 and 18 years. Violent crime and non-violent crime were measured at age 18 in self-reports and official records ( N  = 3618). Confounding variables were assessed in the perinatal period and at age 11, in interviews with mothers and children. Logistic regression was used to estimate associations between quartiles of heart rate at each age, and violent and non-violent crime at age 18, separately for males and females. Results : Lower resting heart rate was a robust correlate of violent and non-violent crime for males. Comparing males in the lowest and top quartiles of heart rate at age 15 years, adjusted odds ratios were 1.9 for violent crime [95% confidence interval (CI) 1.4–2.7] and 1.7 for non-violent crime (95% CI 1.1–2.6). For females, crime outcomes were associated only with low resting heart rate at age 18. Associations were generally linear across the four heart rate quartiles. There was no evidence that associations differed according to socioeconomic status at age 15. Conclusions : Low resting heart rate predicted violent and non-violent crime for males, and was cross-sectionally associated with crime for females. Biological factors may contribute to individual propensity to commit crime, even in a middle-income setting with high rates of violence. PMID:26822937

  19. The modulatory effects of noradrenaline on vagal control of heart rate in the dogfish, Squalus acanthias.

    PubMed

    Agnisola, Claudio; Randall, David J; Taylor, Edwin W

    2003-01-01

    The possible interactions between inhibitory vagal control of the heart and circulating levels of catecholamines in dogfish (Squalus acanthias) were studied using an in situ preparation of the heart, which retained intact its innervation from centrally cut vagus nerves. The response to peripheral vagal stimulation typically consisted of an initial cardiac arrest, followed by an escape beat, leading to renewed beating at a mean heart rate lower than the prestimulation rate (partial recovery). Cessation of vagal stimulation led to a transient increase in heart rate, above the prestimulation rate. This whole response was completely abolished by 10(-4) M atropine (a muscarinic cholinergic antagonist). The degree of vagal inhibition was evaluated in terms of both the initial, maximal cardiac interval and the mean heart rate during partial recovery, both expressed as a percentage of the prestimulation heart rate. The mean prestimulation heart rate of this preparation (36+/-4 beats min(-1)) was not affected by noradrenaline but was significantly reduced by 10(-4) M nadolol (a beta-adrenergic receptor antagonist), suggesting the existence of a resting adrenergic tone arising from endogenous catecholamines. The degree of vagal inhibition of heart rate varied with the rate of stimulation and was increased by the presence of 10(-8) M noradrenaline (the normal in vivo level in routinely active fish), while 10(-7) M noradrenaline (the in vivo level measured in disturbed or deeply hypoxic fish) reduced the cardiac response to vagal stimulation. In the presence of 10(-7) M noradrenaline, 10(-4) M nadolol further reduced the vagal response, while 10(-4) M nadolol + 10(-4) M phentolamine had no effect, indicating a complex interaction between adrenoreceptors, possibly involving presynaptic modulation of vagal inhibition.

  20. SLIME: scattering labeled imaging of microvasculature in excised tissues using OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Yehe; Gu, Shi; Watanabe, Michiko; Rollins, Andrew M.; Jenkins, Michael W.

    2017-02-01

    Abnormal coronary development causes various health problems. However, coronary development remains one of the highly neglected areas in developmental cardiology due to limited technology. Currently, there is not a robust method available to map the microvasculature throughout the entire embryonic heart in 3D. This is a challenging task because it requires both micron level resolution over a large field of view and sufficient imaging depth. Speckle-variance optical coherence tomography (OCT) has reasonable resolution for coronary vessel mapping, but limited penetration depth and sensitivity to bulk motion made it impossible to apply this method to late-stage beating hearts. Some success has been achieved with coronary dye perfusion, but smaller vessels are not efficiently stained and penetration depth is still an issue. To address this problem, we present an OCT imaging procedure using optical clearing and a contrast agent (titanium dioxide) that enables 3D mapping of the coronary microvasculature in developing embryonic hearts. In brief, the hearts of stage 36 quail embryos were perfused with a low viscosity mixture of polyvinyl acetate (PVA) and titanium dioxide through the aorta using micropipette injection. After perfusion, the viscosity of the solution was increased by crosslinking the PVA polymer chains with borate ions. The tissue was then optically cleared. The titanium dioxide particles remaining in the coronaries provided a strong OCT signal, while the rest of the cardiac structures became relatively transparent. Using this technique, we are able to investigate coronary morphologies in different disease models.

  1. Effect of Temperature on Heart Rate Variability in Neonatal ICU Patients With Hypoxic-Ischemic Encephalopathy.

    PubMed

    Massaro, An N; Campbell, Heather E; Metzler, Marina; Al-Shargabi, Tareq; Wang, Yunfei; du Plessis, Adre; Govindan, Rathinaswamy B

    2017-04-01

    To determine whether measures of heart rate variability are related to changes in temperature during rewarming after therapeutic hypothermia for hypoxic-ischemic encephalopathy. Prospective observational study. Level 4 neonatal ICU in a free-standing academic children's hospital. Forty-four infants with moderate to severe hypoxic-ischemic encephalopathy treated with therapeutic hypothermia. Continuous electrocardiogram data from 2 hours prior to rewarming through 2 hours after completion of rewarming (up to 10 hr) were analyzed. Median beat-to-beat interval and measures of heart rate variability were quantified including beat-to-beat interval SD, low and high frequency relative spectral power, detrended fluctuation analysis short and long α exponents (αS and αL), and root mean square short and long time scales. The relationships between heart rate variability measures and esophageal/axillary temperatures were evaluated. Heart rate variability measures low frequency, αS, and root mean square short and long time scales were negatively associated, whereas αL was positively associated, with temperature (p < 0.01). These findings signify an overall decrease in heart rate variability as temperature increased toward normothermia. Measures of heart rate variability are temperature dependent in the range of therapeutic hypothermia to normothermia. Core body temperature needs to be considered when evaluating heart rate variability metrics as potential physiologic biomarkers of illness severity in hypoxic-ischemic encephalopathy infants undergoing therapeutic hypothermia.

  2. Independent and combined effects of resting heart rate and pulse pressure with metabolic syndrome in Chinese rural population: The Henan Rural Cohort study.

    PubMed

    Zhang, Xia; Li, Yuqian; Wang, Fang; Zang, Jianguo; Liu, Xiaotian; Zhang, Honglei; Yang, Kaili; Zhang, Gongyuan; Wang, Chongjian

    2018-06-07

    We examined the independent and cumulative associations of resting heart rate and pulse pressure with metabolic syndrome in Chinese rural population based on epidemiological research. A total of 38,708 participants were derived from the Henan Rural Cohort study. Restricted cubic splines and logistic regression model were used to estimate the odds ratios and 95% confidence intervals of metabolic syndrome risk in relation to resting heart rate and pulse pressure. After adjusting for potential confounders, the odds ratio (95% confidence intervals) of resting heart rate and pulse pressure in the highest quartile with the risk of metabolic syndrome were 1.59 (1.48-1.70) and1.81 (1.67-1.95), respectively. Simultaneously, the cumulative effect analysis indicated that the adjusted the odd ratio of resting heart rate and pulse pressure in the highest quartile was 2.89 (2.40-3.47). Furthermore, there was a significantly additive interaction between resting heart rate and pulse pressure on the risk of metabolic syndrome. Increased resting heart rate and pulse pressure are associated with the higher risk of metabolic syndrome as well as the influences of resting heart rate with pulse pressure might cumulatively increase the risk of metabolic syndrome. However, the potential clinical application remains to be determined. Copyright © 2018. Published by Elsevier B.V.

  3. Resting heart rate, physiological stress and disadvantage in Aboriginal and Torres Strait Islander Australians: analysis from a cross-sectional study.

    PubMed

    Zhang, Alice; Hughes, Jaquelyne T; Brown, Alex; Lawton, Paul D; Cass, Alan; Hoy, Wendy; O'Dea, Kerin; Maple-Brown, Louise J

    2016-02-11

    Lower socioeconomic status has been linked to long-term stress, which can manifest in individuals as physiological stress. The aim was to explore the relationship between low socioeconomic status and physiological stress in Aboriginal and Torres Strait Islander Australians. Using data from the eGFR Study (a cross-sectional study of 634 Indigenous Australians in urban and remote areas of northern and central Australia), we examined associations between resting heart rate and demographic, socioeconomic, and biomedical factors. An elevated resting heart rate has been proposed as a measure of sustained stress activation and was used as a marker of physiological stress. Relationships were assessed between heart rate and the above variables using univariate and multiple regression analyses. We reported a mean resting heart rate of 74 beats/min in the cohort (mean age 45 years). On multiple regression analysis, higher heart rate was found to be independently associated with Aboriginal ethnicity, being a current smoker, having only primary level schooling, higher HbA1c and higher diastolic blood pressure (model R(2) 0.25). Elevated resting heart rate was associated with lower socioeconomic status and poorer health profile in Aboriginal and Torres Strait Islander Australians. Higher resting heart rate may be an indicator of stress and disadvantage in this population at high risk of chronic diseases.

  4. A Randomized Prospective Study Of The Use Of Ipads In Reducing Anxiety During Cast Room Procedures

    PubMed Central

    Ko, Justine S.; Whiting, Zachariah; Nguyen, Cynthia; Liu, Raymond W; Gilmore, Allison

    2016-01-01

    Background Cast room procedures can be a source of anxiety for children. Various techniques, including music therapy, have been evaluated as a way to ease this anxiety. The use of iPads as a form of distraction during cast room procedures has not previously been evaluated and was the purpose of the current study. Methods 146 children and adolescents who underwent cast room procedures during June- August 2015 were randomly assigned to one of three groups: no-iPad, iPad with video, or iPad with game. Patient heart rates were measured using a pulse oximeter in the waiting room, before the procedure, during the procedure, and after the procedure. Mean values for each group were calculated at each time interval and compared both between groups and within groups over time. Results There were no significant differences in baseline (waiting room) heart rate between the no-iPad and iPad groups. When compared with the no-iPad group, there was a trend toward decreased heart rate in the video group (p=0.13) and a significant increase in heart rate in the game group (p=0.026) before the procedure. There were no significant decreases in heart rate within any of the groups when comparing the waiting room heart rates with the during procedure heart rates. There was a significant difference between the no-iPad and video groups (p=0.047) when comparing the change in heart rate from baseline to before the procedure, with a decreased heart rate observed in the video group. Conclusions The results of this study show a significant decrease in heart rate when transitioning from the waiting room to the cast room while watching videos on the iPad. iPad-based video delivery appears to decrease anxiety prior to cast room procedures. iPad-based game play is difficult to assess as elevations in heart rate prior to the procedure are presumed to be related to game play and confound the observed effect it may have on anxiety related to the procedure. PMID:27528849

  5. Orthostatic Hypotension and Elevated Resting Heart Rate Predict Low-Energy Fractures in the Population: The Malmö Preventive Project.

    PubMed

    Hamrefors, Viktor; Härstedt, Maria; Holmberg, Anna; Rogmark, Cecilia; Sutton, Richard; Melander, Olle; Fedorowski, Artur

    2016-01-01

    Autonomic disorders of the cardiovascular system, such as orthostatic hypotension and elevated resting heart rate, predict mortality and cardiovascular events in the population. Low-energy-fractures constitute a substantial clinical problem that may represent an additional risk related to such autonomic dysfunction. To test the association between orthostatic hypotension, resting heart rate and incidence of low-energy-fractures in the general population. Using multivariable-adjusted Cox regression models we investigated the association between orthostatic blood pressure response, resting heart rate and first incident low-energy-fracture in a population-based, middle-aged cohort of 33 000 individuals over 25 years follow-up. The median follow-up time from baseline to first incident fracture among the subjects that experienced a low energy fracture was 15.0 years. A 10 mmHg orthostatic decrease in systolic blood pressure at baseline was associated with 5% increased risk of low-energy-fractures (95% confidence interval 1.01-1.10) during follow-up, whereas the resting heart rate predicted low-energy-fractures with an effect size of 8% increased risk per 10 beats-per-minute (1.05-1.12), independently of the orthostatic response. Subjects with a resting heart rate exceeding 68 beats-per-minute had 18% (1.10-1.26) increased risk of low-energy-fractures during follow-up compared with subjects with a resting heart rate below 68 beats-per-minute. When combining the orthostatic response and resting heart rate, there was a 30% risk increase (1.08-1.57) of low-energy-fractures between the extremes, i.e. between subjects in the fourth compared with the first quartiles of both resting heart rate and systolic blood pressure-decrease. Orthostatic blood pressure decline and elevated resting heart rate independently predict low-energy fractures in a middle-aged population. These two measures of subclinical cardiovascular dysautonomia may herald increased risks many years in advance, even if symptoms may not be detectable. Although the effect sizes are moderate, the easily accessible clinical parameters of orthostatic blood pressure response and resting heart rate deserve consideration as new risk predictors to yield more accurate decisions on primary prevention of low-energy fractures.

  6. NEUROSENSORY LINKS BETWEEN BRONCHOCONSTRICTION AND CARDIAC RHYTHM

    EPA Science Inventory

    Reports in the literature have attributed altered heart rate, heart rate variability, and rhythm to inhaled particulate matter (PM) in humans. Whereas the changes in heart rate are very small, analysis of ECG tracings indicate changes in HRV suggesting altered autonomic balance. ...

  7. Effects of hot-iron branding on heart rate, breathing rate and behaviour of anaesthetised Steller sea lions.

    PubMed

    Walker, K A; Mellish, J E; Weary, D M

    2011-10-01

    This study assessed the heart rate, breathing rate and behavioural responses of 12 juvenile Steller sea lions during hot-iron branding under isoflurane anaesthesia. Physiological and behavioural measures were recorded in four periods: baseline (five minutes), sham branding (one minute), branding (approximately 2.7 minutes) and postbranding (five minutes). No difference in heart rate was noted from baseline to sham branding, but heart rate increased from mean (sem) 78.3 (2.4) bpm in the baseline period to 85.6 (2.5) bpm in the branding period. Heart rate remained elevated in the postbranding period, averaging 84.7 (2.5) bpm. Breathing rate averaged 2.5 (1.0) breaths/minute in the baseline and sham branding periods increased to 8.9 (1.0) breaths/minute during branding, but returned to baseline by the postbranding period. Behaviourally, half of the sea lions exhibited trembling and head and shoulder movements during branding.

  8. CREB1 is a strong genetic predictor of the variation in exercise heart rate response to regular exercise: the HERITAGE Family Study.

    PubMed

    Rankinen, Tuomo; Argyropoulos, George; Rice, Treva; Rao, D C; Bouchard, Claude

    2010-06-01

    A genome-wide linkage scan identified a quantitative trait locus for exercise training-induced changes in submaximal exercise (50 W) heart rate (DeltaHR50) on chromosome 2q33.3-q34 in the HERITAGE Family Study (n=472). To fine-map the region, 1450 tag SNPs were genotyped between 205 and 215 Mb on chromosome 2. The strongest evidence of association with DeltaHR50 was observed with 2 single-nucleotide polymorphisms (SNPs) located in the 5' region of the cAMP-responsive element-binding protein 1 (CREB1) gene (rs2253206: P=1.6x10(-5) and rs2360969: P=4.3x10(-5)). The associations remained significant (P=0.01 and P=0.023, respectively) after accounting for multiple testing. Regression modeling of the 39 most significant SNPs in the single-SNP analysis identified 9 SNPs that collectively explained 20% of the DeltaHR50 variance. CREB1 SNP rs2253206 had the strongest effect (5.45% of variance), followed by SNPs in the FASTKD2 (3.1%), MAP2 (2.6%), SPAG16 (2.1%), ERBB4 (3 SNPs approximately 1.4% each), IKZF2 (1.4%), and PARD3B (1.0%) loci. In conditional linkage analysis, 6 SNPs from the final regression model (CREB1, FASTKD2, MAP2, ERBB4, IKZF2, and PARD3B) accounted for the original linkage signal: The log of the odds score dropped from 2.10 to 0.41 after adjusting for all 6 SNPs. Functional studies revealed that the common allele of rs2253206 exhibits significantly (P<0.05) lower promoter activity than the minor allele. Our data suggest that functional DNA sequence variation in the CREB1 locus is strongly associated with DeltaHR50 and explains a considerable proportion of the quantitative trait locus variance. However, at least 5 additional SNPs seem to be required to fully account for the original linkage signal.

  9. CREB1 is a strong genetic predictor of the variation in exercise heart rate response to regular exercise: the HERITAGE Family Study

    PubMed Central

    Rankinen, Tuomo; Argyropoulos, George; Rice, Treva; Rao, D.C.; Bouchard, Claude

    2011-01-01

    Background A genome-wide linkage scan identified a quantitative trait locus (QTL) for exercise training-induced changes in submaximal exercise (50W) heart rate (ΔHR50) on chromosome 2q33.3-q34 in the HERITAGE Family Study (N=472). Methods and Results To fine map the region, 1,450 tagSNPs were genotyped between 205 and 215 Mb on chromosome 2. The strongest evidence of association with ΔHR50 was observed with two SNPs located in the 5′ region of the cAMP responsive element binding protein 1 (CREB1) gene (rs2253206: p=1.6×10−5 and rs2360969: p=4.3×10−5). The associations remained significant (p=0.01 and p=0.023, respectively) after accounting for multiple testing. Regression modeling of the 39 most significant SNPs in the single-SNP analyses identified nine SNPs that collectively explained 20% of the ΔHR50 variance. CREB1 SNP rs2253206 had the strongest effect (5.45% of variance), followed by SNPs in the FASTKD2 (3.1%), MAP2 (2.6%), SPAG16 (2.1%), ERBB4 (3 SNPs ~1.4% each), IKZF2 (1.4%), and PARD3B (1.0%) loci. In conditional linkage analysis, six SNPs from the final regression model (CREB1, FASTKD2, MAP2, ERBB4, IKZF2, and PARD3B) accounted for the original linkage signal: the LOD score dropped from 2.10 to 0.41 after adjusting for all six SNPs. Functional studies revealed that the common allele of rs2253206 exhibits significantly (p<0.05) lower promoter activity than the minor allele. Conclusions Our data suggest that functional DNA sequence variation in the CREB1 locus is strongly associated with ΔHR50 and explains considerable proportion of the QTL variance. However, at least five additional SNPs seem to be required to fully account for the original linkage signal. PMID:20407090

  10. Evaluation of in-hospital electrocardiography versus 24-hour Holter for rate control in dogs with atrial fibrillation.

    PubMed

    Gelzer, A R; Kraus, M S; Rishniw, M

    2015-07-01

    To determine if the in-clinic ECG-derived heart rate could predict the at-home Holter-derived 24-hour average heart rate (Holter24h ), and whether it is useful to identify slow versus fast atrial fibrillation in dogs. 82 pairs of 1-minute ECGs and 24-hour Holter recordings were acquired in 34 dogs with atrial fibrillation. The initial 24-hour Holter was used to test if the ECG heart rate can identify dogs with "slow" versus "fast" atrial fibrillation based on a Holter24h threshold value of 140 bpm. ECG heart rate overestimated Holter24h by 26 bpm (95% CI: 3 bpm, 48 bpm; P < 0 · 015) with a 95% limit of agreement of -21 to 83 bpm. The in-clinic ECG-derived heart rate Ä155 bpm had a sensitivity of 73% and a specificity of 100% for identifying a Holter24h HR Ä140 bpm; an in-clinic ECG-derived HR <160 bpm had a sensitivity and specificity of 91% each. In-clinic ECG assessment of heart rate in dogs with atrial fibrillation does not reliably predict the heart rate in their home environment. However, an in-clinic heart rate greater than 155 bpm is useful in identifying "fast" atrial fibrillation, allowing clinicians to stratify which case may benefit from antiarrhythmic therapy. © 2015 British Small Animal Veterinary Association.

  11. Atenolol Is Associated with Lower Day of Surgery Heart Rate as compared to Long and Short-acting Metoprolol

    PubMed Central

    Schonberger, Robert B.; Brandt, Cynthia; Feinleib, Jessica; Dai, Feng; Burg, Matthew M.

    2012-01-01

    Objectives We analyzed the association between outpatient beta-blocker type and day-of-surgery heart rate in ambulatory surgical patients. We further investigated whether differences in day of surgery heart rate between atenolol and metoprolol could be explained by once-daily versus twice-daily dosing regimens. Design Retrospective observational study. Setting VA Hospital Participants Ambulatory surgical patients on chronic atenolol or metoprolol. Interventions None. Measurements and Main Results Using a propensity-score matched cohort, we compared day of surgery heart rates of patients prescribed atenolol versus metoprolol. We then differentiated between once-daily and twice-daily metoprolol formulations and compared day of surgery heart rates within a general linear model. Day of surgery heart rates in patients prescribed atenolol vs. any metoprolol formulation were slower by a mean of 5.1 beats/min (66.6 vs. 71.7; 95% CI of difference 1.9 to 8.3, p=0.002), a difference that was not observed in preoperative primary care visits. The general linear model demonstrated that patients prescribed atenolol (typically QD dosing) had a mean day of surgery heart rate 5.6 beats/min lower compared to patients prescribed once-daily metoprolol succinate (68.9 vs. 74.5; 95% CI of difference: −8.6 to −2.6, p<0.001) and 3.8 beats/minute lower compared to patients prescribed twice-daily metoprolol tartrate (68.9 vs. 72.7; 95% CI of difference: −6.1 to −1.6, p<0.001). Day of surgery heart rates were similar between different formulations of metoprolol (95% CI of difference: −1.0 to +4.6, p=0.22). Conclusions Atenolol is associated with lower day of surgery heart rate vs. metoprolol. The heart rate difference is specific to the day of surgery and is not explained by once-daily versus twice-daily dosing regimens. PMID:22889605

  12. Association between resting heart rate, metabolic syndrome and cardiorespiratory fitness in Korean male adults.

    PubMed

    Kang, Seol-Jung; Ha, Gi-Chul; Ko, Kwang-Jun

    2017-06-01

    The present study aimed to investigate the association between metabolic syndrome and cardiorespiratory fitness according to resting heart rate of Korean male adults. A total of 11,876 male adults aged 20-65 years who underwent health examinations from 2010 to 2015 at a National Fitness Centre in South Korea were included. Subjects' resting heart rate, cardiorespiratory fitness (VO 2 max), and metabolic syndrome parameters were collected. The subjects were divided into 5 categories (<60 bpm, 60-69 bpm, 70-79 bpm, 80-89 bpm, and ≥90 bpm) of resting heart rate for further analysis. We found that elevated resting heart rate was positively associated with body mass index, systolic blood pressure, diastolic blood pressure, triglycerides, and fasting blood glucose levels ( p  < 0.001, respectively); in contrast, elevated resting heart rate was inversely associated with VO 2 max ( p  < 0.001). When resting heart rate of subjects was categorized into quintiles and analysed, the results showed that the relative risk of metabolic syndrome was 1.53-fold higher (95% CI, 1.34 to 1.82) in the range of 60-69 beats per minute (bpm), 2.08-fold higher (95% CI, 1.77 to 2.45) in the range of 70-79 bpm, 2.28-fold higher (95% CI, 1.73 to 3.00) in the range of 80-89 bpm, and 2.61-fold higher (95% CI, 1.62 to 4.20) in the range of ≥90 bpm, compared to those <60 bpm; this indicated that as resting heart rate increased, the relative risk of metabolic syndrome also increased. Resting heart rate of male adults was found to be associated with cardiorespiratory fitness; the risk factors for metabolic syndrome and relative risk of metabolic syndrome increased as resting heart rate increased.

  13. Heart rate recovery and heart rate variability are unchanged in patients with coronary artery disease following 12 weeks of high-intensity interval and moderate-intensity endurance exercise training.

    PubMed

    Currie, Katharine D; Rosen, Lee M; Millar, Philip J; McKelvie, Robert S; MacDonald, Maureen J

    2013-06-01

    Decreased heart rate variability and attenuated heart rate recovery following exercise are associated with an increased risk of mortality in cardiac patients. This study investigated the effects of 12 weeks of moderate-intensity endurance exercise (END) and a novel low-volume high-intensity interval exercise protocol (HIT) on measures of heart rate recovery and heart rate variability in patients with coronary artery disease (CAD). Fourteen males with CAD participated in 12 weeks of END or HIT training, each consisting of 2 supervised exercise sessions per week. END consisted of 30-50 min of continuous cycling at 60% peak power output (PPO). HIT involved ten 1-min intervals at 88% PPO separated by 1-min intervals at 10% PPO. Heart rate recovery at 1 min and 2 min was measured before and after training (pre- and post-training, respectively) using a submaximal exercise bout. Resting time and spectral and nonlinear domain measures of heart rate variability were calculated. Following 12 weeks of END and HIT, there was no change in heart rate recovery at 1 min (END, 40 ± 12 beats·min(-1) vs. 37 ± 19 beats·min(-1); HIT, 31 ± 8 beats·min(-1) vs. 35 ± 8 beats·min(-1); p ≥ 0.05 for pre- vs. post-training) or 2 min (END, 44 ± 18 beats·min(-1) vs. 43 ± 19 beats·min(-1); HIT, 42 ± 10 beats·min(-1) vs. 50 ± 6 beats·min(-1); p ≥ 0.05 for pre- vs. post-training). All heart rate variability indices were unchanged following END and HIT training. In conclusion, neither END nor HIT exercise programs elicited training-induced improvements in cardiac autonomic function in patients with CAD. The absence of improvements with training may be attributed to the optimal medical management and normative pretraining state of our sample.

  14. Heart rate is a prognostic risk factor for myocardial infarction: a post hoc analysis in the PERFORM (Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic attack) study population.

    PubMed

    Fox, Kim; Bousser, Marie-Germaine; Amarenco, Pierre; Chamorro, Angel; Fisher, Marc; Ford, Ian; Hennerici, Michael G; Mattle, Heinrich P; Rothwell, Peter M

    2013-10-09

    Elevated resting heart rate is known to be detrimental to morbidity and mortality in cardiovascular disease, though its effect in patients with ischemic stroke is unclear. We analyzed the effect of baseline resting heart rate on myocardial infarction (MI) in patients with a recent noncardioembolic cerebral ischemic event participating in PERFORM. We compared fatal or nonfatal MI using adjusted Cox proportional hazards models for PERFORM patients with baseline heart rate <70 bpm (n=8178) or ≥70 bpm (n=10,802). In addition, heart rate was analyzed as a continuous variable. Other cerebrovascular and cardiovascular outcomes were also explored. Heart rate ≥70 bpm was associated with increased relative risk for fatal or nonfatal MI (HR 1.32, 95% CI 1.03-1.69, P=0.029). For every 5-bpm increase in heart rate, there was an increase in relative risk for fatal and nonfatal MI (11.3%, P=0.0002). Heart rate ≥70 bpm was also associated with increased relative risk for a composite of fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (excluding hemorrhagic death) (P<0001); vascular death (P<0001); all-cause mortality (P<0001); and fatal or nonfatal stroke (P=0.04). For every 5-bpm increase in heart rate, there were increases in relative risk for fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (4.7%, P<0.0001), vascular death (11.0%, P<0.0001), all-cause mortality (8.0%, P<0.0001), and fatal and nonfatal stroke (2.4%, P=0.057). Elevated heart rate ≥70 bpm places patients with a noncardioembolic cerebral ischemic event at increased risk for MI. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Characteristics of Vibration that Alter Cardiovascular Parameters in Mice

    PubMed Central

    Li, Yao; Rabey, Karyne N; Schmitt, Daniel; Norton, John N; Reynolds, Randall P

    2015-01-01

    We hypothesized that short-term exposure of mice to vibration within a frequency range thought to be near the resonant frequency range of mouse tissue and at an acceleration of 0 to 1 m/s2 would alter heart rate (HR) and mean arterial pressure (MAP). We used radiotelemetry to evaluate the cardiovascular response to vibration in C57BL/6 and CD1 male mice exposed to vertical vibration of various frequencies and accelerations. MAP was consistently increased above baseline values at an acceleration near 1 m/s2 and a frequency of 90 Hz in both strains, and HR was increased also in C57BL/6 mice. In addition, MAP increased at 80 Hz in individual mice of both strains. When both strains were analyzed together, mean MAP and HR were increased at 90 Hz at 1 m/s2, and HR was increased at 80 Hz at 1 m/s2. No consistent change in MAP or HR occurred when mice were exposed to frequencies below 80 Hz or above 90 Hz. The increase in MAP and HR occurred only when the mice had conscious awareness of the vibration, given that these changes did not occur when anesthetized mice were exposed to vibration. Tested vibration acceleration levels lower than 0.75 m/s2 did not increase MAP or HR at 80 or 90 Hz, suggesting that a relatively high level of vibration is necessary to increase these parameters. These data are important to establish the harmful frequencies and accelerations of environmental vibration that should be minimized or avoided in mouse facilities. PMID:26224436

  16. Controlled retrospective study of the effects of eyedrops containing phenylephrine hydrochloride and scopolamine hydrobromide on mean arterial blood pressure in anesthetized dogs.

    PubMed

    Martin-Flores, Manuel; Mercure-McKenzie, Tara M; Campoy, Luis; Erb, Hollis N; Ludders, John W; Gleed, Robin D

    2010-12-01

    To determine whether dogs that received eyedrops containing phenylephrine and scopolamine would have a higher mean arterial blood pressure (MAP) when anesthetized than would dogs that did not receive the eyedrops. 37 nondiabetic and 29 diabetic dogs anesthetized for phacoemulsification and 15 nondiabetic dogs anesthetized for corneal ulcer repair (control dogs). Medical records were reviewed to identify study dogs. Dogs undergoing phacoemulsification received 2 types of eyedrops (10% phenylephrine hydrochloride and 0.3% scopolamine hydrobromide) 4 times during a 2-hour period prior to the procedure. Control dogs did not receive these eyedrops. Heart rate and MAP were measured before surgery in all dogs 10 and 5 minutes before, at the time of (t0), and 5 (t5) and 10 (t10) minutes after atracurium administration. MAP was greater in the 2 groups that received the eyedrops than in the control group at t0 and t5; at t10, it was greater only for the nondiabetic dogs that received eyedrops. Nine nondiabetic dogs and 1 diabetic dog anesthetized for phacoemulsification had at least 1 MAP value>131 mm Hg; 73% of MAP values>131 mm Hg were detected within 10 minutes after atracurium administration. At no time did a control dog have an MAP value>131 mm Hg. Anesthetized dogs pretreated with eyedrops containing phenylephrine and scopolamine had higher MAP values than dogs that did not receive the eyedrops, suggesting the drops caused hypertension. Atracurium may interact with the eyedrops and contribute to the hypertension.

  17. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    PubMed

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  18. The South Fork detachment fault, Park County, Wyoming: discussion and reply ( USA).

    USGS Publications Warehouse

    Pierce, W.G.

    1986-01-01

    Blackstone (1985) published an interpretation of South form detachment fault and related features. His interpretation of the area between Castle and Hardpan transverse faults is identical to mine of 1941. Subsequent detailed mapping has shown that the structure between the transverse faults is more complicated than originally envisioned and resurrected by Blackstone. The present paper describes and discusses geologic features that are the basis for my interpretations; also discussed are differences between my interpretations and those of Blackstone. Most data are shown on the geologic map of the Wapiti Quadrangle (Pierce and Nelson, 1969). Blackstone's 'allochthonous' masses are part of the South Form fault. Occurrences of Sundance Formation, which he interpreted as the upper plate of his 'North Fork fault', are related to Heart Mountain fault. Volcaniclastic rocks south of Jim Mountain mapped as Aycross Formation by Torres and Gingerich may be Cathedral Cliffs Formation, emplaced by movement of the Heart Mountain fault. - Author

  19. The effects of gum chewing while walking on physical and physiological functions.

    PubMed

    Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi

    2018-04-01

    [Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21-69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions.

  20. Influence of energy drinks and alcohol on post-exercise heart rate recovery and heart rate variability.

    PubMed

    Wiklund, Urban; Karlsson, Marcus; Oström, Mats; Messner, Torbjörn

    2009-01-01

    Media have anecdotally reported that drinking energy drinks in combination with alcohol and exercise could cause sudden cardiac death. This study investigated changes in the electrocardiogram (ECG) and heart rate variability after intake of an energy drink, taken in combination with alcohol and exercise. Ten healthy volunteers (five men and five women aged 19-30) performed maximal bicycle ergometer exercise for 30 min after: (i) intake of 0.75 l of an energy drink mixed with alcohol; (ii) intake of energy drink; and, (iii) no intake of any drink. ECG was continuously recorded for analysis of heart rate variability and heart rate recovery. No subject developed any clinically significant arrhythmias. Post-exercise recovery in heart rate and heart rate variability was slower after the subjects consumed energy drink and alcohol before exercise, than after exercise alone. The healthy subjects developed blunted cardiac autonomic modulation after exercising when they had consumed energy drinks mixed with alcohol. Although they did not develop any significant arrhythmia, individuals predisposed to arrhythmia by congenital or other rhythm disorders could have an increased risk for malignant cardiac arrhythmia in similar situations.

  1. The effects of gum chewing while walking on physical and physiological functions

    PubMed Central

    Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi

    2018-01-01

    [Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21–69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions. PMID:29706720

  2. Traditional risk factors as determinants of heart rate recovery in patients with diabetes mellitus type 2 without known coronary artery disease

    NASA Astrophysics Data System (ADS)

    Silaban, Sanny; Afif Siregar, A.; Hasan, H.; Aryfa Andra, C.

    2018-03-01

    The impact of Traditional risk factors on heart rate recovery (HRR) has not been studied in patients Diabetes Mellitus type 2 without known coronary artery disease (CAD). For this reason, we sought to determine the association between HRR as cardiac autonomic dysfunction marker and traditonal risk factors. The study was conducted with a cross-sectional study involving 89 patients with Type 2 Diabetes Mellitus without known having coronary artery disease. The data was taken through anamnese and laboratory tests, and subjects who met the criteria were tested for a treadmill exercise to assess heart rate recovery in the first minute. In bivariate analysis Dyslipidemia, Hypertension, smoker, age, duration of DM≥ 5 years, HbA1C ≥7.5, Peak Heart rate, functional capacity and ST depression ischemic have an association with heart rate recovery. In multivariate analysis patients with hyper triglyceride, smoker, overweight, duration of diabetes ≥ five years and HbA1C ≥ 7,5 have lower heart rate recovery significantly. Traditional risk factors are determinant factors for heart rate recovery in patients with Diabetes Mellitus type 2 without known coronary artery disease.

  3. Chest associated to motor physiotherapy improves cardiovascular variables in newborns with respiratory distress syndrome

    PubMed Central

    2011-01-01

    Background We aimed to evaluate the effects of chest and motor physiotherapy treatment on hemodynamic variables in preterm newborns with respiratory distress syndrome. Methods We evaluated heart rate (HR), respiratory rate (RR), systolic (SAP), mean (MAP) and diastolic arterial pressure (DAP), temperature and oxygen saturation (SO2%) in 44 newborns with respiratory distress syndrome. We compared all variables between before physiotherapy treatment vs. after the last physiotherapy treatment. Newborns were treated during 11 days. Variables were measured 2 minutes before and 5 minutes after each physiotherapy treatment. We applied paired Student t test to compare variables between the two periods. Results HR (148.5 ± 8.5 bpm vs. 137.1 ± 6.8 bpm - p < 0.001), SAP (72.3 ± 11.3 mmHg vs. 63.6 ± 6.7 mmHg - p = 0.001) and MAP (57.5 ± 12 mmHg vs. 47.7 ± 5.8 mmHg - p = 0.001) were significantly reduced after 11 days of physiotherapy treatment compared to before the first session. There were no significant changes regarding RR, temperature, DAP and SO2%. Conclusions Chest and motor physiotherapy improved cardiovascular parameters in respiratory distress syndrome newborns. PMID:22029840

  4. Optimization of pharmacotherapy in chronic heart failure: is heart rate adequately addressed?

    PubMed

    Franke, Jennifer; Wolter, Jan Sebastian; Meme, Lillian; Keppler, Jeannette; Tschierschke, Ramon; Katus, Hugo A; Zugck, Christian

    2013-01-01

    The aim of the study is to evaluate the use of beta-blockers in chronic heart failure (CHF) and the extent of heart rate reduction achieved in clinical practice and to determine differences in outcome of patients who fulfilled select inclusion criteria of the SHIFT study according to resting heart rate modulated by beta-blocker therapy. We evaluated an all-comer population of our dedicated CHF outpatient clinic between 2006 and 2010. For inclusion, individually optimized doses of guideline-recommended pharmacotherapy including beta-blockers had to be maintained for at least 3 months and routine follow-up performed at our outpatient CHF-clinic thereafter. Treatment dosages of beta-blockers, and demographic and clinical profiles including resting heart rate were assessed. The outcome of patients who fulfilled select inclusion criteria of the SHIFT study (left-ventricular ejection fraction (LVEF) ≤35 %, sinus rhythm, NYHA II-IV) and were followed-up for at least 1 year was stratified according to resting heart rates: ≥75 versus <75 bpm and ≥70 versus <70 bpm. The composite primary endpoint was defined as all-cause death or hospital admission for worsening heart failure during 12-month follow-up. In total, 3,181 patients were assessed in regard to treatment dosages of beta-blockers, and demographic and clinical profiles including resting heart rate. Of the overall studied population, 443 patients fulfilled all inclusion criteria and entered outcome analysis. Median observation time of survivors was 27.5 months with 1,039.7 observation-years in total. Up-titration to at least half the evidence-based target dose of beta-blockers was achieved in 69 % and full up-titration in 29 % of these patients. Patients with increased heart rates were younger, more often male, exhibited a higher NYHA functional class and lower LVEF. The primary endpoint occurred in 21 % of patients in the ≥70 bpm group versus 9 % of patients in the group with heart rates <70 bpm (p <0.01). Likewise, comparing the groups ≥75 and <75 bpm, the primary endpoint was significantly increased in the group of patients with heart rates ≥75 bpm 27 vs. 12.2 %; p < 0.01). 5-year event-free survival was significantly lower among patients with heart rates ≥70 bpm as compared to those with <70 bpm (log-rank test p < 0.05) and among patients in the ≥75 bpm group versus <75 bpm group (log-rank test p < 0.01). In conclusion, in clinical practice, 53 % of CHF patients have inadequate heart rate control (heart rates ≥75 bpm) despite concomitant beta-blocker therapy. In this non-randomized cohort, adequate heart rate control under individually optimized beta-blocker therapy was associated with improved mid- and long-term clinical outcome up to 5 years. As further up titration of beta-blockers is not achievable in many patients, the administration of a selective heart rate lowering agent, such as ivabradine adjuvant to beta-blockers may pose an opportunity to further modulate outcome.

  5. Small-volume amnioinfusion: a potential stimulus of intrapartum fetal heart rate accelerations.

    PubMed

    Wax, Joseph R; Flaherty, Nina; Pinette, Michael G; Blackstone, Jacquelyn; Cartin, Angelina

    2004-02-01

    We describe a recurrent nonreassuring fetal heart rate pattern in which small-volume amnioinfusions apparently evoked fetal heart rate accelerations suggested fetal well-being, allowing that progressive labor that culminated in the vaginal delivery of a healthy infant.

  6. Terminology and Methodology Related to the Use of Heart Rate Responsivity in Infancy Research

    ERIC Educational Resources Information Center

    Woodcock, James M.

    1971-01-01

    Methodological problems in measuring and interpreting infantile heart rate reactivity in research are discussed. Various ways of describing cardiac activity are listed. Attention is given to the relationship between resting state and heart rate responsivity. (Author/WY)

  7. Examining the Influence of Heartbeat on Expert Marksman Performance

    DTIC Science & Technology

    2016-04-01

    factors, such as heartbeat and heart rate, may play a role on a marksman’s shot as well. For instance, work has been done to determine the effect of... heart rate on expert marksmanship. The results of that work show that an expert marksman’s performance did not change in regard to heart rate. (Pojman...marksmanship phase. (The ECG values are not to be confused with the heart rate, which is the frequency of the cardiac cycle.) The heartbeat on an ECG is

  8. The effect of orthostatic stress on multiscale entropy of heart rate and blood pressure.

    PubMed

    Turianikova, Zuzana; Javorka, Kamil; Baumert, Mathias; Calkovska, Andrea; Javorka, Michal

    2011-09-01

    Cardiovascular control acts over multiple time scales, which introduces a significant amount of complexity to heart rate and blood pressure time series. Multiscale entropy (MSE) analysis has been developed to quantify the complexity of a time series over multiple time scales. In previous studies, MSE analyses identified impaired cardiovascular control and increased cardiovascular risk in various pathological conditions. Despite the increasing acceptance of the MSE technique in clinical research, information underpinning the involvement of the autonomic nervous system in the MSE of heart rate and blood pressure is lacking. The objective of this study is to investigate the effect of orthostatic challenge on the MSE of heart rate and blood pressure variability (HRV, BPV) and the correlation between MSE (complexity measures) and traditional linear (time and frequency domain) measures. MSE analysis of HRV and BPV was performed in 28 healthy young subjects on 1000 consecutive heart beats in the supine and standing positions. Sample entropy values were assessed on scales of 1-10. We found that MSE of heart rate and blood pressure signals is sensitive to changes in autonomic balance caused by postural change from the supine to the standing position. The effect of orthostatic challenge on heart rate and blood pressure complexity depended on the time scale under investigation. Entropy values did not correlate with the mean values of heart rate and blood pressure and showed only weak correlations with linear HRV and BPV measures. In conclusion, the MSE analysis of heart rate and blood pressure provides a sensitive tool to detect changes in autonomic balance as induced by postural change.

  9. [Body composition and heart rate variability in patients with chronic obstructive pulmonary disease pulmonary rehabilitation candidates].

    PubMed

    Curilem Gatica, Cristian; Almagià Flores, Atilio; Yuing Farías, Tuillang; Rodríguez Rodríguez, Fernando

    2014-07-01

    Body composition is a non-invasive method, which gives us information about the distribution of tissues in the body structure, it is also an indicator of the risk of mortality in patients with chronic obstructive pulmonary disease. The heart rate variability is a technique that gives us information of autonomic physiological condition, being recognized as an indicator which is decreased in a number of diseases. The purpose of this study was to assess body composition and heart rate variability. The methodology used is that of Debora Kerr (1988) endorsed by the International Society for advances in Cineantropometría for body composition and heart rate variability of the guidelines described by the American Heart Association (1996). Roscraff equipment, caliper Slimguide and watch Polar RS 800CX was used. , BMI 26.7 ± 3.9 kg / m²; Muscle Mass 26.1 ± 6.3 kg ; Bone Mass 1.3 kg ± 8.1 76 ± 9.9 years Age : 14 candidates for pulmonary rehabilitation patients were evaluated , Adipose mass 16.4 ± 3.6 kg ; FEV1 54 ± 14%. Increased waist circumference and waist hip ratio was associated with a lower overall heart rate variability. The bone component was positively related to the variability of heart rate and patients with higher forced expiratory volume in one second had lower high frequency component in heart rate variability. In these patients, the heart rate variability is reduced globally and is associated with cardiovascular risk parameters. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  10. Heart rate and outcomes in patients with heart failure with preserved ejection fraction: A dose-response meta-analysis.

    PubMed

    Shang, Xiaoke; Lu, Rong; Liu, Mei; Xiao, Shuna; Dong, Nianguo

    2017-10-01

    Although elevated resting heart rate is related to poor outcomes in heart failure (HF) with reduced ejection fraction, the association in HF with preserved ejection fraction (HFpEF) remains inconclusive. Therefore, we conducted a dose-response meta-analysis to examine the prognostic role of heart rate in patients with HFpEF.We searched PubMed and Embase databases until April 2017 and manually reviewed the reference lists of relevant literatures. Random effect models were used to pool the study-specific hazard ratio (HR) of outcomes, including all-cause death, cardiovascular death, and HF hospitalization.Six studies with 7 reports were finally included, totaling 14,054 patients with HFpEF. The summary HR (95% confidence interval [CI]) for every 10 beats/minute increment in heart rate was 1.04 (1.02-1.06) for all-cause death, 1.06 (1.02-1.10) for cardiovascular death, and 1.05 (1.01-1.08) for HF hospitalization. Subgroup analyses indicated that these positive relationships were significant in patients with sinus rhythm but not in those with atrial fibrillation. There was also evidence for nonlinear relationship of heart rate with each of the outcomes (All P for nonlinearity < .05).Higher heart rate in sinus rhythm is a risk factor for adverse outcomes in patients with HFpEF. Future trials are required to determine whether heart rate reduction may improve the prognosis of HFpEF.

  11. Up-regulation of the inward rectifier K+ current (IK1) in the mouse heart accelerates and stabilizes rotors

    PubMed Central

    Noujaim, Sami F; Pandit, Sandeep V; Berenfeld, Omer; Vikstrom, Karen; Cerrone, Marina; Mironov, Sergey; Zugermayr, Michelle; Lopatin, Anatoli N; Jalife, José

    2007-01-01

    Previous studies have suggested an important role for the inward rectifier K+ current (IK1) in stabilizing rotors responsible for ventricular tachycardia (VT) and fibrillation (VF). To test this hypothesis, we used a line of transgenic mice (TG) overexpressing Kir 2.1–green fluorescent protein (GFP) fusion protein in a cardiac-specific manner. Optical mapping of the epicardial surface in ventricles showed that the Langendorff-perfused TG hearts were able to sustain stable VT/VF for 350 ± 1181 s at a very high dominant frequency (DF) of 44.6 ± 4.3 Hz. In contrast, tachyarrhythmias in wild-type hearts (WT) were short-lived (3 ± 9 s), and the DF was 26.3 ± 5.2 Hz. The stable, high frequency, reentrant activity in TG hearts slowed down, and eventually terminated in the presence of 10 μm Ba2+, suggesting an important role for IK1. Moreover, by increasing IK1 density in a two-dimensional computer model having realistic mouse ionic and action potential properties, a highly stable, fast rotor (≈45 Hz) could be induced. Simulations suggested that the TG hearts allowed such a fast and stable rotor because of both greater outward conductance at the core and shortened action potential duration in the core vicinity, as well as increased excitability, in part due to faster recovery of Na+ current. The latter resulted in a larger rate of increase in the local conduction velocity as a function of the distance from the core in TG compared to WT hearts, in both simulations and experiments. Finally, simulations showed that rotor frequencies were more sensitive to changes (doubling) in IK1, compared to other K+ currents. In combination, these results provide the first direct evidence that IK1 up-regulation in the mouse heart is a substrate for stable and very fast rotors. PMID:17095564

  12. Heart murmur detection based on wavelet transformation and a synergy between artificial neural network and modified neighbor annealing methods.

    PubMed

    Eslamizadeh, Gholamhossein; Barati, Ramin

    2017-05-01

    Early recognition of heart disease plays a vital role in saving lives. Heart murmurs are one of the common heart problems. In this study, Artificial Neural Network (ANN) is trained with Modified Neighbor Annealing (MNA) to classify heart cycles into normal and murmur classes. Heart cycles are separated from heart sounds using wavelet transformer. The network inputs are features extracted from individual heart cycles, and two classification outputs. Classification accuracy of the proposed model is compared with five multilayer perceptron trained with Levenberg-Marquardt, Extreme-learning-machine, back-propagation, simulated-annealing, and neighbor-annealing algorithms. It is also compared with a Self-Organizing Map (SOM) ANN. The proposed model is trained and tested using real heart sounds available in the Pascal database to show the applicability of the proposed scheme. Also, a device to record real heart sounds has been developed and used for comparison purposes too. Based on the results of this study, MNA can be used to produce considerable results as a heart cycle classifier. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Accuracy of Heart Rate Watches: Implications for Weight Management

    PubMed Central

    2016-01-01

    Background Wrist-worn monitors claim to provide accurate measures of heart rate and energy expenditure. People wishing to lose weight use these devices to monitor energy balance, however the accuracy of these devices to measure such parameters has not been established. Aim To determine the accuracy of four wrist-worn devices (Apple Watch, Fitbit Charge HR, Samsung Gear S and Mio Alpha) to measure heart rate and energy expenditure at rest and during exercise. Methods Twenty-two healthy volunteers (50% female; aged 24 ± 5.6 years) completed ~1-hr protocols involving supine and seated rest, walking and running on a treadmill and cycling on an ergometer. Data from the devices collected during the protocol were compared with reference methods: electrocardiography (heart rate) and indirect calorimetry (energy expenditure). Results None of the devices performed significantly better overall, however heart rate was consistently more accurate than energy expenditure across all four devices. Correlations between the devices and reference methods were moderate to strong for heart rate (0.67–0.95 [0.35 to 0.98]) and weak to strong for energy expenditure (0.16–0.86 [-0.25 to 0.95]). All devices underestimated both outcomes compared to reference methods. The percentage error for heart rate was small across the devices (range: 1–9%) but greater for energy expenditure (9–43%). Similarly, limits of agreement were considerably narrower for heart rate (ranging from -27.3 to 13.1 bpm) than energy expenditure (ranging from -266.7 to 65.7 kcals) across devices. Conclusion These devices accurately measure heart rate. However, estimates of energy expenditure are poor and would have implications for people using these devices for weight loss. PMID:27232714

  14. Association of educational status with heart rate recovery: a population-based propensity analysis.

    PubMed

    Shishehbor, Mehdi H; Baker, David W; Blackstone, Eugene H; Lauer, Michael S

    2002-12-01

    An abnormally attenuated heart rate recovery after exercise is a predictor of mortality that is thought to reflect decreased parasympathetic activity. Lower educational level may be associated with automatic imbalance. We sought to assess the association of educational level with heart rate recovery. Among 5246 healthy adults from a population-based cohort who underwent exercise testing, 874 (17%) did not graduate from high school, 1823 (35%) completed high school, and 2549 (49%) attended at least some college. An abnormal heart rate recovery was defined as a difference of

  15. Heart-Rate Recovery Index Is Impaired in Behçet's Disease

    PubMed Central

    Kaya, Ergun Baris; Yorgun, Hikmet; Akdogan, Ali; Ates, Ahmet Hakan; Canpolat, Ugur; Sunman, Hamza; Aytemir, Kudret; Tokgozoglu, Lale; Kabakci, Giray; Calguneri, Meral; Ozkutlu, Hilmi; Oto, Ali

    2009-01-01

    Behçet's disease, a multisystemic inflammatory disorder, has been associated with a number of cardiovascular dysfunctions, including ventricular arrhythmias and sudden cardiac death. Heart-rate recovery after exercise can provide both an estimate of impaired parasympathetic tone and a prognosis in regard to all-cause and cardiovascular death. The aim of our study was to evaluate heart-rate recovery in Behçet's disease From January through July 2008, we examined at our outpatient clinic and prospectively enrolled 30 consecutive patients with Behçet's disease and 50 healthy control participants who were matched for age and sex. Basal electrocardiography, echocardiography, and treadmill exercise testing were performed in all patients and control participants. The heart-rate recovery index was calculated in the usual manner, by subtracting the 1st-minute (Rec1), 2nd-minute (Rec2), and 3rd-minute (Rec3) recovery heart rates from the maximal heart rate after exercise stress testing. Patients with Behçet's disease exhibited significantly lower heart-rate recovery numbers, compared with healthy control participants: Rec1, 24.28 ± 8.2 vs 34.4 ± 7.6, P = 0.002; Rec2, 49.28 ± 11.2 vs 57.5 ± 7.0, P < 0.05; and Rec3, 56.2 ± 12.11 vs 67.4 ± 8.7, P = 0.014. To our knowledge, this is the 1st study that shows an impaired heart-rate recovery index (indicative of reduced parasympathetic activity) among patients with Behçet's disease. Given the independent prognostic value of the heart-rate recovery index, our results may explain the increased occurrence of arrhythmias and sudden cardiac death in Behçet's patients. Therefore, this index may be clinically useful in the identification of high-risk patients. PMID:19693299

  16. Effects of depression, anxiety, comorbidity, and antidepressants on resting-state heart rate and its variability: an ELSA-Brasil cohort baseline study.

    PubMed

    Kemp, Andrew H; Brunoni, Andre R; Santos, Itamar S; Nunes, Maria A; Dantas, Eduardo M; Carvalho de Figueiredo, Roberta; Pereira, Alexandre C; Ribeiro, Antonio L P; Mill, José G; Andreão, Rodrigo V; Thayer, Julian F; Benseñor, Isabela M; Lotufo, Paulo A

    2014-12-01

    Increases in resting-state heart rate and decreases in its variability are associated with substantial morbidity and mortality, yet contradictory findings have been reported for the effects of the mood and anxiety disorders and of antidepressants. The authors investigated heart rate and heart rate variability in a large cohort from Brazil, using propensity score weighting, a relatively novel method, to control for numerous potential confounders. A total of 15,105 participants were recruited in the Brazilian Longitudinal Study of Adult Health. Mood and anxiety disorders were ascertained using the Portuguese version of the Clinical Interview Schedule-Revised. Heart rate and its variability were extracted from 10-minute resting-state electrocardiograms. Regressions weighted by propensity scores were carried out to compare participants with and without depressive or anxiety disorders, as well as users and non-users of antidepressants, on heart rate and heart rate variability. Use of antidepressants was associated with increases in heart rate and decreases in its variability. Effects were most pronounced for the tricyclic antidepressants (Cohen's d, 0.72-0.81), followed by serotonin and norepinephrine reuptake inhibitors (Cohen's d, 0.42-0.95) and other antidepressants (Cohen's d, 0.37-0.40), relative to participants not on antidepressants. Only participants with generalized anxiety disorder showed robust, though small, increases in heart rate and decreases in its variability after propensity score weighting. The findings may, in part, underpin epidemiological findings of increased risk for cardiovascular morbidity and mortality. Many factors that have an adverse impact on cardiac activity were controlled for in this study, highlighting the importance of cardiovascular risk reduction strategies. Further study is needed to examine whether, how, and when such effects contribute to morbidity and mortality.

  17. Accuracy of Heart Rate Watches: Implications for Weight Management.

    PubMed

    Wallen, Matthew P; Gomersall, Sjaan R; Keating, Shelley E; Wisløff, Ulrik; Coombes, Jeff S

    2016-01-01

    Wrist-worn monitors claim to provide accurate measures of heart rate and energy expenditure. People wishing to lose weight use these devices to monitor energy balance, however the accuracy of these devices to measure such parameters has not been established. To determine the accuracy of four wrist-worn devices (Apple Watch, Fitbit Charge HR, Samsung Gear S and Mio Alpha) to measure heart rate and energy expenditure at rest and during exercise. Twenty-two healthy volunteers (50% female; aged 24 ± 5.6 years) completed ~1-hr protocols involving supine and seated rest, walking and running on a treadmill and cycling on an ergometer. Data from the devices collected during the protocol were compared with reference methods: electrocardiography (heart rate) and indirect calorimetry (energy expenditure). None of the devices performed significantly better overall, however heart rate was consistently more accurate than energy expenditure across all four devices. Correlations between the devices and reference methods were moderate to strong for heart rate (0.67-0.95 [0.35 to 0.98]) and weak to strong for energy expenditure (0.16-0.86 [-0.25 to 0.95]). All devices underestimated both outcomes compared to reference methods. The percentage error for heart rate was small across the devices (range: 1-9%) but greater for energy expenditure (9-43%). Similarly, limits of agreement were considerably narrower for heart rate (ranging from -27.3 to 13.1 bpm) than energy expenditure (ranging from -266.7 to 65.7 kcals) across devices. These devices accurately measure heart rate. However, estimates of energy expenditure are poor and would have implications for people using these devices for weight loss.

  18. Heart failure and atrial fibrillation: current concepts and controversies.

    PubMed Central

    Van den Berg, M. P.; Tuinenburg, A. E.; Crijns, H. J.; Van Gelder, I. C.; Gosselink, A. T.; Lie, K. I.

    1997-01-01

    Heart failure and atrial fibrillation are very common, particularly in the elderly. Owing to common risk factors both disorders are often present in the same patient. In addition, there is increasing evidence of a complex, reciprocal relation between heart failure and atrial fibrillation. Thus heart failure may cause atrial fibrillation, with electromechanical feedback and neurohumoral activation playing an important mediating role. In addition, atrial fibrillation may promote heart failure; in particular, when there is an uncontrolled ventricular rate, tachycardiomyopathy may develop and thereby heart failure. Eventually, a vicious circle between heart failure and atrial fibrillation may form, in which neurohumoral activation and subtle derangement of rate control are involved. Treatment should aim at unloading of the heart, adequate control of ventricular rate, and correction of neurohumoral activation. Angiotensin converting enzyme inhibitors may help to achieve these goals. Treatment should also include an attempt to restore sinus rhythm through electrical cardioversion, though appropriate timing of cardioversion is difficult. His bundle ablation may be used to achieve adequate rate control in drug refractory cases. PMID:9155607

  19. Accuracy of pulse oximetry in assessing heart rate of infants in the neonatal intensive care unit.

    PubMed

    Singh, Jasbir K S B; Kamlin, C Omar F; Morley, Colin J; O'Donnell, Colm P F; Donath, Susan M; Davis, Peter G

    2008-05-01

    To determine the accuracy of pulse oximetry measurement of heart rate in the neonatal intensive care unit. Stable preterm infants were monitored with a pulse oximeter and an ECG. The displays of both monitors were captured on video. Heart rate data from both monitors, including measures of signal quality, were extracted and analysed using Bland Altman plots. In 30 infants the mean (SD) difference between heart rate measured by pulse oximetry and electrocardiography was -0.4 (12) beats per minute. Accuracy was maintained when the signal quality or perfusion was low. Pulse oximetry may provide a useful measurement of heart rate in the neonatal intensive care unit. Studies of this technique in the delivery room are indicated.

  20. Comparison of the measurement of heart rate in adult free-range chickens (Gallus domesticus) by auscultation and electrocardiography.

    PubMed

    Smith, C F; Gavaghan, B J; McSweeney, D; Powell, V; Lisle, A

    2014-12-01

    To compare the heart rates of adult free-range chickens (Gallus domesticus) measured by auscultation with a stethoscope with those measured simultaneously using electrocardiography (ECG). With each bird in a standing position, estimation of the heart rate was performed by placing a mark on paper for every 4 beats for roosters and 8 beats for hens as detected by auscultation over 30 s, while simultaneous ECG was performed. Heart rates measured by auscultation showed a high correlation (r = 0.97) with those measured by ECG. There was a high correlation between the heart rates of adult free-range chickens measured by auscultation with a stethoscope and those measured simultaneously using ECG. © 2014 Australian Veterinary Association.

Top