A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia
A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicalitymore » and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS 2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.« less
A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy
Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia; ...
2017-09-01
A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicalitymore » and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS 2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.« less
Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.; ...
2014-12-11
In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.
In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shivaram, Niranjan; Champenois, Elio G.; Cryan, James P.
We demonstrate a technique in velocity map imaging (VMI) that allows spatial gating of the laser focal overlap region in time resolved pump-probe experiments. This significantly enhances signal-to-noise ratio by eliminating background signal arising outside the region of spatial overlap of pump and probe beams. This enhancement is achieved by tilting the laser beams with respect to the surface of the VMI electrodes which creates a gradient in flight time for particles born at different points along the beam. By suitably pulsing our microchannel plate detector, we can select particles born only where the laser beams overlap. Furthermore, this spatialmore » gating in velocity map imaging can benefit nearly all photo-ion pump-probe VMI experiments especially when extreme-ultraviolet light or X-rays are involved which produce large background signals on their own.« less
Shivaram, Niranjan; Champenois, Elio G.; Cryan, James P.; ...
2016-12-19
We demonstrate a technique in velocity map imaging (VMI) that allows spatial gating of the laser focal overlap region in time resolved pump-probe experiments. This significantly enhances signal-to-noise ratio by eliminating background signal arising outside the region of spatial overlap of pump and probe beams. This enhancement is achieved by tilting the laser beams with respect to the surface of the VMI electrodes which creates a gradient in flight time for particles born at different points along the beam. By suitably pulsing our microchannel plate detector, we can select particles born only where the laser beams overlap. Furthermore, this spatialmore » gating in velocity map imaging can benefit nearly all photo-ion pump-probe VMI experiments especially when extreme-ultraviolet light or X-rays are involved which produce large background signals on their own.« less
Soft X-ray spectroscopy of nanoparticles by velocity map imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostko, O.; Xu, B.; Jacobs, M. I.
Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less
Soft X-ray spectroscopy of nanoparticles by velocity map imaging
Kostko, O.; Xu, B.; Jacobs, M. I.; ...
2017-05-05
Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less
Leithner, Doris; Mahmoudi, Scherwin; Wichmann, Julian L; Martin, Simon S; Lenga, Lukas; Albrecht, Moritz H; Booz, Christian; Arendt, Christophe T; Beeres, Martin; D'Angelo, Tommaso; Bodelle, Boris; Vogl, Thomas J; Scholtz, Jan-Erik
2018-02-01
To investigate the impact of traditional (VMI) and noise-optimized virtual monoenergetic imaging (VMI+) algorithms on quantitative and qualitative image quality, and the assessment of stenosis in carotid and intracranial dual-energy CTA (DE-CTA). DE-CTA studies of 40 patients performed on a third-generation 192-slice dual-source CT scanner were included in this retrospective study. 120-kVp image-equivalent linearly-blended, VMI and VMI+ series were reconstructed. Quantitative analysis included evaluation of contrast-to-noise ratios (CNR) of the aorta, common carotid artery, internal carotid artery, middle cerebral artery, and basilar artery. VMI and VMI+ with highest CNR, and linearly-blended series were rated qualitatively. Three radiologists assessed artefacts and suitability for evaluation at shoulder height, carotid bifurcation, siphon, and intracranial using 5-point Likert scales. Detection and grading of stenosis were performed at carotid bifurcation and siphon. Highest CNR values were observed for 40-keV VMI+ compared to 65-keV VMI and linearly-blended images (P < 0.001). Artefacts were low in all qualitatively assessed series with excellent suitability for supraaortic artery evaluation at shoulder and bifurcation height. Suitability was significantly higher in VMI+ and VMI compared to linearly-blended images for intracranial and ICA assessment (P < 0.002). VMI and VMI+ showed excellent accordance for detection and grading of stenosis at carotid bifurcation and siphon with no differences in diagnostic performance. 40-keV VMI+ showed improved quantitative image quality compared to 65-keV VMI and linearly-blended series in supraaortic DE-CTA. VMI and VMI+ provided increased suitability for carotid and intracranial artery evaluation with excellent assessment of stenosis, but did not translate into increased diagnostic performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Martin, Simon S; Albrecht, Moritz H; Wichmann, Julian L; Hüsers, Kristina; Scholtz, Jan-Erik; Booz, Christian; Bodelle, Boris; Bauer, Ralf W; Metzger, Sarah C; Vogl, Thomas J; Lehnert, Thomas
2017-02-01
To evaluate objective and subjective image quality of a noise-optimized virtual monoenergetic imaging (VMI+) reconstruction technique in dual-energy computed tomography (DECT) angiography prior to transcatheter aortic valve replacement (TAVR). Datasets of 47 patients (35 men; 64.1 ± 10.9 years) who underwent DECT angiography of heart and vascular access prior to TAVR were reconstructed with standard linear blending (F_0.5), VMI+, and traditional monoenergetic (VMI) algorithms in 10-keV intervals from 40-100 keV. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of 564 arterial segments were evaluated. Subjective analysis was rated by three blinded observers using a Likert scale. Mean SNR and CNR were highest in 40 keV VMI+ series (SNR, 27.8 ± 13.0; CNR, 26.3 ± 12.7), significantly (all p < 0.001) superior to all VMI series, which showed highest values at 70 keV (SNR, 18.5 ± 7.6; CNR, 16.0 ± 7.4), as well as linearly-blended F_0.5 series (SNR, 16.8 ± 7.3; CNR, 13.6 ± 6.9). Highest subjective image quality scores were observed for 40, 50, and 60 keV VMI+ reconstructions (all p > 0.05), significantly superior to all VMI and standard linearly-blended images (all p < 0.01). Low-keV VMI+ reconstructions significantly increase CNR and SNR compared to VMI and standard linear-blending image reconstruction and improve subjective image quality in preprocedural DECT angiography in the context of TAVR planning. • VMI+ combines increased contrast with reduced image noise. • VMI+ shows substantially less image noise than traditional VMI. • 40-keV reconstructions show highest SNR/CNR of the aortic and iliofemoral access route. • Observers overall prefer 60 keV VMI+ images. • VMI+ DECT imaging helps improve image quality for TAVR planning.
Martin, Simon S; Wichmann, Julian L; Weyer, Hendrik; Albrecht, Moritz H; D'Angelo, Tommaso; Leithner, Doris; Lenga, Lukas; Booz, Christian; Scholtz, Jan-Erik; Bodelle, Boris; Vogl, Thomas J; Hammerstingl, Renate
2017-10-01
The aim of this study was to investigate the impact of noise-optimized virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with cutaneous malignant melanoma at thoracoabdominal dual-energy computed tomography (DECT). Seventy-six patients (48 men; 66.6±13.8years) with metastatic cutaneous malignant melanoma underwent DECT of the thorax and abdomen. Images were post-processed with standard linear blending (M_0.6), traditional virtual monoenergetic (VMI), and VMI+ technique. VMI and VMI+ images were reconstructed in 10-keV intervals from 40 to 100keV. Attenuation measurements were performed in cutaneous melanoma lesions, as well as in regional lymph node, subcutaneous and in-transit metastases to calculate objective signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Five-point scales were used to evaluate overall image quality and lesion delineation by three radiologists with different levels of experience. Objective indices SNR and CNR were highest at 40-keV VMI+ series (5.6±2.6 and 12.4±3.4), significantly superior to all other reconstructions (all P<0.001). Qualitative image parameters showed highest values for 50-keV and 60-keV VMI+ reconstructions (median 5, respectively; P≤0.019) regarding overall image quality. Moreover, qualitative assessment of lesion delineation peaked in 40-keV VMI+ (median 5) and 50-keV VMI+ (median 4; P=0.055), significantly superior to all other reconstructions (all P<0.001). Low-keV noise-optimized VMI+ reconstructions substantially increase quantitative and qualitative image parameters, as well as subjective lesion delineation compared to standard image reconstruction and traditional VMI in patients with cutaneous malignant melanoma at thoracoabdominal DECT. Copyright © 2017 Elsevier B.V. All rights reserved.
Velocity map imaging using an in-vacuum pixel detector.
Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan; Jungmann, Julia; Visschers, Jan; Vrakking, Marc J J
2009-10-01
The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256 x 256 square pixels, 55 x 55 microm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 micros. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.
Lenga, L; Czwikla, R; Wichmann, J L; Leithner, D; Albrecht, M H; D'Angelo, T; Arendt, C T; Booz, C; Hammerstingl, R; Vogl, T J; Martin, S S
2018-06-05
To investigate the impact of noise-optimised virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with malignant lymphoma at dual-energy computed tomography (DECT) examinations of the abdomen. Thirty-five consecutive patients (mean age, 53.8±18.6 years; range, 21-82 years) with histologically proven malignant lymphoma of the abdomen were included retrospectively. Images were post-processed with standard linear blending (M_0.6), traditional VMI, and VMI+ technique at energy levels ranging from 40 to 100 keV in 10 keV increments. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were objectively measured in lymphoma lesions. Image quality, lesion delineation, and image noise were rated subjectively by three blinded observers using five-point Likert scales. Quantitative image quality parameters peaked at 40-keV VMI+ (SNR, 15.77±7.74; CNR, 18.27±8.04) with significant differences compared to standard linearly blended M_0.6 (SNR, 7.96±3.26; CNR, 13.55±3.47) and all traditional VMI series (p<0.001). Qualitative image quality assessment revealed significantly superior ratings for image quality at 60-keV VMI+ (median, 5) in comparison with all other image series (p<0.001). Assessment of lesion delineation showed the highest rating scores for 40-keV VMI+ series (median, 5), while lowest subjective image noise was found for 100-keV VMI+ reconstructions (median, 5). Low-keV VMI+ reconstructions led to improved image quality and lesion delineation of malignant lymphoma lesions compared to standard image reconstruction and traditional VMI at abdominal DECT examinations. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate.
Süssmann, F; Zherebtsov, S; Plenge, J; Johnson, Nora G; Kübel, M; Sayler, A M; Mondes, V; Graf, C; Rühl, E; Paulus, G G; Schmischke, D; Swrschek, P; Kling, M F
2011-09-01
High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camera software allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈10(13) W/cm(2)) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO(2) nanospheres. © 2011 American Institute of Physics
Wichmann, Julian L; Gillott, Matthew R; De Cecco, Carlo N; Mangold, Stefanie; Varga-Szemes, Akos; Yamada, Ricardo; Otani, Katharina; Canstein, Christian; Fuller, Stephen R; Vogl, Thomas J; Todoran, Thomas M; Schoepf, U Joseph
2016-02-01
The aim of this study was to evaluate the impact of a noise-optimized virtual monochromatic imaging algorithm (VMI+) on image quality and diagnostic accuracy at dual-energy computed tomography angiography (CTA) of the lower extremity runoff. This retrospective Health Insurance Portability and Accountability Act-compliant study was approved by the local institutional review board. We evaluated dual-energy CTA studies of the lower extremity runoff in 48 patients (16 women; mean age, 63.3 ± 13.8 years) performed on a third-generation dual-source CT system. Images were reconstructed with standard linear blending (F_0.5), VMI+, and traditional monochromatic (VMI) algorithms at 40 to 120 keV in 10-keV intervals. Vascular attenuation and image noise in 18 artery segments were measured; signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used to subjectively evaluate vascular attenuation and image noise. In a subgroup of 21 patients who underwent additional invasive catheter angiography, diagnostic accuracy for the detection of significant stenosis (≥50% lumen restriction) of F_0.5, 50-keV VMI+, and 60-keV VMI data sets were assessed. Objective image quality metrics were highest in the 40- and 50-keV VMI+ series (SNR: 20.2 ± 10.7 and 19.0 ± 9.5, respectively; CNR: 18.5 ± 10.3 and 16.8 ± 9.1, respectively) and were significantly (all P < 0.001) higher than in the corresponding VMI data sets (SNR: 8.7 ± 4.1 and 10.8 ± 5.0; CNR: 8.0 ± 4.0 and 9.6 ± 4.9) and F_0.5 series (SNR: 10.7 ± 4.4; CNR: 8.3 ± 4.1). Subjective assessment of attenuation was highest in the 40- and 50-keV VMI and VMI+ image series (range, 4.84-4.91), superior to F_0.5 (4.07; P < 0.001). Corresponding subjective noise assessment was superior for 50-keV VMI+ (4.71; all P < 0.001) compared with VMI (2.60) and F_0.5 (4.11). Sensitivity and specificity for detection of 50% or greater stenoses were highest in VMI+ reconstructions (92% and 95%, respectively), significantly higher compared with standard F_0.5 (87% and 90%; both P ≤ 0.02). Image reconstruction using low-kiloelectron volt VMI+ improves image quality and diagnostic accuracy compared with traditional VMI technique and standard linear blending for evaluation of the lower extremity runoff using dual-energy CTA.
NASA Astrophysics Data System (ADS)
Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe
2018-01-01
A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.
Ohira, Shingo; Kanayama, Naoyuki; Wada, Kentaro; Karino, Tsukasa; Nitta, Yuya; Ueda, Yoshihiro; Miyazaki, Masayoshi; Koizumi, Masahiko; Teshima, Teruki
2018-04-02
The objective of this study was to assess the accuracy of the quantitative measurements obtained using dual-energy computed tomography with metal artifact reduction software (MARS). Dual-energy computed tomography scans (fast kV-switching) are performed on a phantom, by varying the number of metal rods (Ti and Pb) and reference iodine materials. Objective and subjective image analyses are performed on retroreconstructed virtual monochromatic images (VMIs) (VMI at 70 keV). The maximum artifact indices for VMI-Ti and VMI-Pb (5 metal rods) with MARS (without MARS) were 17.4 (166.7) and 34.6 (810.6), respectively; MARS significantly improved the mean subjective 5-point score (P < 0.05). The maximum differences between the measured Hounsfield unit and theoretical values for 5 mg/mL iodine and 2-mm core rods were -42.2% and -68.5%, for VMI-Ti and VMI-Pb (5 metal rods), respectively, and the corresponding differences in the iodine concentration were -64.7% and -73.0%, respectively. Metal artifact reduction software improved the objective and subjective image quality; however, the quantitative values were underestimated.
Influence of long-range Coulomb interaction in velocity map imaging.
Barillot, T; Brédy, R; Celep, G; Cohen, S; Compagnon, I; Concina, B; Constant, E; Danakas, S; Kalaitzis, P; Karras, G; Lépine, F; Loriot, V; Marciniak, A; Predelus-Renois, G; Schindler, B; Bordas, C
2017-07-07
The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.
Femtosecond Photoelectron Imaging of Dissociating and Autoionizing States in Oxygen
NASA Astrophysics Data System (ADS)
Plunkett, Alexander; Sandhu, Arvinder
2017-04-01
Time-resolved photoelectron spectra from molecular oxygen have been recorded with high energy and time resolution using a velocity map imaging (VMI) spectrometer. High harmonics were used to prepare neutral Rydberg states converging to the c4Σu- ionic state. These states display both autoionization and predissociation. A femtosecond laser pulse centered at 780 nm was used to probe the system, ionizing both the excited molecular states and the predissociated neutral atomic fragments. Electrons were collected in the 0-3 eV range using a VMI spectrometer and their spectra were reconstructed using a Fast Onion-peeling algorithm. By looking at IR modification to the electron spectrum, new features are observed which could originate from long-range columbic interactions or previously unobserved molecular decay channels. Ongoing studies extend this technique to other systems exhibiting non-adiabatic dynamics. This work was supported by the U. S. Army Research Laboratory and the U. S. Army Research Office under Grant No. W911NF-14-1-0383.
Nagayama, Yasunori; Nakaura, Takeshi; Oda, Seitaro; Utsunomiya, Daisuke; Funama, Yoshinori; Iyama, Yuji; Taguchi, Narumi; Namimoto, Tomohiro; Yuki, Hideaki; Kidoh, Masafumi; Hirata, Kenichiro; Nakagawa, Masataka; Yamashita, Yasuyuki
2018-04-01
To evaluate the image quality and lesion conspicuity of virtual-monochromatic-imaging (VMI) with dual-layer DECT (DL-DECT) for reduced-iodine-load multiphasic-hepatic CT. Forty-five adults with renal dysfunction who had undergone hepatic DL-DECT with 300-mgI/kg were included. VMI (40-70-keV, DL-DECT-VMI) was generated at each enhancement phase. As controls, 45 matched patients undergoing standard 120-kVp protocol (120-kVp, 600-mgI/kg, and iterative reconstruction) were included. We compared the size-specific dose estimate (SSDE), image noise, CT attenuation, and contrast-to-noise ratio (CNR) between protocols. Two radiologists scored the image quality and lesion conspicuity. SSDE was significantly lower in DL-DECT group (p < 0.01). Image noise of DL-DECT-VMI was almost constant at each keV (differences of ≤15%) and equivalent to or lower than of 120-kVp. As the energy decreased, CT attenuation and CNR gradually increased; the values of 55-60 keV images were almost equivalent to those of standard 120-kVp. The highest scores for overall quality and lesion conspicuity were assigned at 40-keV followed by 45 to 55-keV, all of which were similar to or better than of 120-kVp. For multiphasic-hepatic CT with 50% iodine-load, DL-DECT-VMI at 40- to 55-keV provides equivalent or better image quality and lesion conspicuity without increasing radiation dose compared with standard 120-kVp protocol. • 40-55-keV yields optimal image quality for half-iodine-load multiphasic-hepatic CT with DL-DECT. • DL-DECT protocol decreases radiation exposure compared with 120-kVp scans with iterative reconstruction. • 40-keV images maximise conspicuity of hepatocellular carcinoma especially at hepatic-arterial phase.
NASA Astrophysics Data System (ADS)
Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia
2017-09-01
Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.
NASA Astrophysics Data System (ADS)
Pathak, Shashank; Robatjazi, Seyyed Javad; Wright Lee, Pearson; Raju Pandiri, Kanaka; Rolles, Daniel; Rudenko, Artem
2017-04-01
J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan KS, USA We report on the development of a versatile experimental setup for XUV-IR pump-probe experiments using a 10 kHz high-harmonic generation (HHG) source and two different charged-particle momentum imaging spectrometers. The HHG source, based on a commercial KM Labs eXtreme Ultraviolet Ultrafast Source, is capable of delivering XUV radiation of less than 30 fs pulse duration in the photon energy range of 17 eV to 100 eV. It can be coupled either to a conventional velocity map imaging (VMI) setup with an atomic, molecular, or nanoparticle target; or to a novel double-sided VMI spectrometer equipped with two delay-line detectors for coincidence studies. An overview of the setup and results of first pump-probe experiments including studies of two-color double ionization of Xe and time-resolved dynamics of photoionized CO2 molecule will be presented. This project is supported in part by National Science Foundation (NSF-EPSCOR) Award No. IIA-1430493 and in part by the Chemical science, Geosciences, and Bio-Science division, Office of Basic Energy Science, Office of science, U.S. Department of Energy. K.
Velocity map imaging using an in-vacuum pixel detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan
The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256x256 square pixels, 55x55 {mu}m{sup 2}) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 {mu}s. Results of the first time application of the Medipix2 detector to VMImore » are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.« less
May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang
2017-09-01
The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P < 0.05). Comparable objective results were found in 60-keV VMI, WAI, and the 70-kV SE examinations. Overall subjective image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.
NASA Astrophysics Data System (ADS)
Tkáč, Ondřej; Saha, Ashim K.; Loreau, Jérôme; Ma, Qianli; Dagdigian, Paul J.; Parker, David H.; van der Avoird, Ad; Orr-Ewing, Andrew J.
2015-12-01
Differential cross sections (DCSs) are reported for rotationally inelastic scattering of ND3 with H2, measured using a crossed molecular beam apparatus with velocity map imaging (VMI). ND3 molecules were quantum-state selected in the ground electronic and vibrational levels and, optionally, in the j±k = 11- rotation-inversion level prior to collisions. Inelastic scattering of state-selected ND3 with H2 was measured at the mean collision energy of 580 cm-1 by resonance-enhanced multiphoton ionisation spectroscopy and VMI of ND3 in selected single final j'±k' levels. Comparison of experimental DCSs with close-coupling quantum-mechanical scattering calculations serves as a test of a recently reported ab initio potential energy surface. Calculated integral cross sections reveal the propensities for scattering into various final j'±k' levels of ND3 and differences between scattering by ortho and para H2. Integral and differential cross sections are also computed at a mean collision energy of 430 cm-1 and compared to our recent results for inelastic scattering of state-selected ND3 with He.
Embattled All Male Admissions Policy at VMI: Will the Fort Fall?
ERIC Educational Resources Information Center
Stokes, Jerome W. D.; Groves, Allen W.
1990-01-01
In March 1989, the Justice Department began investigating the admissions policy of the Virginia Military Institute (VMI). Summarizes the legal theories advanced by both the VMI Foundation and Virginia's woman attorney general in defense of VMI's all-male tradition. Compares past single-sex admission cases with the VMI arguments. (MLF)
A mathematical model for the virus medical imaging technique
NASA Astrophysics Data System (ADS)
Fioranelli, Massimo; Sepehri, Alireza
In this paper, we introduce a mathematical model for the virus medical imaging (VMI). In this method, first, by proposing a mathematical model, we show that there are two types of viruses that each of them produce one type of signal. Some of these signals can be received by males and others by females. Then, we will show that in the VMI technique, viruses can communicate with cells, interior to human’s body via two ways. (1) Viruses can form a wire that passes the skin and reaches to a special cell. (2) Viruses can communicate with viruses interior to body in the wireless form and send some signals for controlling evolutions of cells interior to human’s body.
Hop, Kevin D.; Strassman, Andrew C.; Hall, Mark; Menard, Shannon; Largay, Ery; Sattler, Stephanie; Hoy, Erin E.; Ruhser, Janis; Hlavacek, Enrika; Dieck, Jennifer
2017-01-01
The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program classifies, describes, and maps existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Northeast Temperate Network, and NPS Appalachian National Scenic Trail (APPA) have completed vegetation classification and mapping of APPA for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of APPA and to determine how best to map the vegetation types by using aerial imagery. Analyses of data from 1,618 vegetation plots were used to describe USNVC associations of APPA. Data from 289 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Data from 269 validation sites were collected to assess vegetation mapping prior to submitting the vegetation map for accuracy assessment (AA). Data from 3,265 AA sites were collected, of which 3,204 were used to test accuracy of the vegetation map layer. The collective of these datasets affirmed 280 USNVC associations for the APPA vegetation mapping project.To map the vegetation and land cover of APPA, 169 map classes were developed. The 169 map classes consist of 150 that represent natural (including ruderal) vegetation types in the USNVC, 11 that represent cultural (agricultural and developed) vegetation types in the USNVC, 5 that represent natural landscapes with catastrophic disturbance or some other modification to natural vegetation preventing accurate classification in the USNVC, and 3 that represent nonvegetated water (non-USNVC). Features were interpreted from viewing 4-band digital aerial imagery using digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems (GIS). (Digital aerial imagery was collected each fall during 2009–11 to capture leaf-phenology change of hardwood trees across the latitudinal range of APPA.) The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in GIS. Polygon units were mapped to either a 0.5-hectare (ha) or 0.25-ha minimum mapping unit, depending on vegetation type or scenario; however, polygon units were mapped to 0.1 ha for alpine vegetation.A geodatabase containing various feature-class layers and tables provide locations and support data to USNVC vegetation types (vegetation map layer), vegetation plots, verification sites, validation sites, AA sites, project boundary extent and zones, and aerial image centers and flight lines. The feature-class layer and related tables of the vegetation map layer provide 30,395 polygons of detailed attribute data covering 110,919.7 ha, with an average polygon size of 3.6 ha; the vegetation map coincides closely with the administrative boundary for APPA.Summary reports generated from the vegetation map layer of the map classes representing USNVC natural (including ruderal) vegetation types apply to 28,242 polygons (92.9% of polygons) and cover 106,413.0 ha (95.9%) of the map extent for APPA. The map layer indicates APPA to be 92.4% forest and woodland (102,480.8 ha), 1.7% shrubland (1866.3 ha), and 1.8% herbaceous cover (2,065.9 ha). Map classes representing park-special vegetation (undefined in the USNVC) apply to 58 polygons (0.2% of polygons) and cover 404.3 ha (0.4%) of the map extent. Map classes representing USNVC cultural types apply to 1,777 polygons (5.8% of polygons) and cover 2,516.3 ha (2.3%) of the map extent. Map classes representing nonvegetated water (non-USNVC) apply to 332 polygons (1.1% of polygons) and cover 1,586.2 ha (1.4%) of the map extent.
Clinical value of the VMI supplemental tests: a modified replication study.
Avi-Itzhak, Tamara; Obler, Doris Richard
2008-10-01
To carry out a modified replication of the study performed by Kulp and Sortor evaluating the clinical value of the information provided by Beery's visual-motor supplemental tests of Visual Perception (VP) and Motor Coordination (MC) in normally developed children. The objectives were to (a) estimate the correlations among the three tests scores; (b) assess the predictive power of the VP and MC scores in explaining the variance in Visual-Motor Integration (VMI) scores; and (c) examine whether poor performance on the VMI is related to poor performance on VP or MC. METHODS.: A convenience sample of 71 children ages 4 and 5 years (M = 4.62 +/- 0.43) participated in the study. The supplemental tests significantly (F = 9.59; dF = 2; p < or = 0. 001) explained 22% of the variance in VMI performance. Only VP was significantly related to VMI (beta = 0.39; T = 3.49) accounting for the total amount of explained variance. Using the study population norms, 11 children (16% of total sample) did poorly on the VMI; of those 11, 73% did poorly on the VP, and none did poorly on the MC. None of these 11 did poorly on both the VP and MC. Nine percent of total sample who did poorly on the VP performed within the norm on the VMI. Thirteen percent who performed poorly on the MC performed within the norm on the VMI. Using the VMI published norms, 14 children (20% of total sample) who did poorly on the VP performed within the norm on the VMI. Forty-eight percent who did poorly on MC performed within the norm on the VMI. Findings supported Kulp and Sortor's conclusions that each area should be individually evaluated during visual-perceptual assessment of children regardless of performance on the VMI.
Visual-Motor Integration in Children With Mild Intellectual Disability: A Meta-Analysis.
Memisevic, Haris; Djordjevic, Mirjana
2018-01-01
Visual-motor integration (VMI) skills, defined as the coordination of fine motor and visual perceptual abilities, are a very good indicator of a child's overall level of functioning. Research has clearly established that children with intellectual disability (ID) have deficits in VMI skills. This article presents a meta-analytic review of 10 research studies involving 652 children with mild ID for which a VMI skills assessment was also available. We measured the standardized mean difference (Hedges' g) between scores on VMI tests of these children with mild ID and either typically developing children's VMI test scores in these studies or normative mean values on VMI tests used by the studies. While mild ID is defined in part by intelligence scores that are two to three standard deviations below those of typically developing children, the standardized mean difference of VMI differences between typically developing children and children with mild ID in this meta-analysis was 1.75 (95% CI [1.11, 2.38]). Thus, the intellectual and adaptive skill deficits of children with mild ID may be greater (perhaps especially due to their abstract and conceptual reasoning deficits) than their relative VMI deficits. We discuss the possible meaning of this relative VMI strength among children with mild ID and suggest that their stronger VMI skills may be a target for intensive academic interventions as a means of attenuating problems in adaptive functioning.
Hop, Kevin D.; Strassman, Andrew C.; Nordman, Carl; Pyne, Milo; White, Rickie; Jakusz, Joseph; Hoy, Erin E.; Dieck, Jennifer
2016-01-01
The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Gulf Coast Network, and NPS Natchez Trace Parkway (NATR; also referred to as Parkway) have completed vegetation classification and mapping of NATR for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of NATR and to determine how best to map them by using aerial imagery. Analyses of data from 589 vegetation plots had been used to describe an initial 99 USNVC associations in the Parkway; this classification work was completed prior to beginning this NATR vegetation mapping project. Data were collected during this project from another eight quick plots to support new vegetation types not previously identified at the Parkway. Data from 120 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Furthermore, data from 900 accuracy assessment (AA) sites were collected (of which 894 were used to test accuracy of the vegetation map layer). The collective of all these datasets resulted in affirming 122 USNVC associations at NATR.To map the vegetation and open water of NATR, 63 map classes were developed. including the following: 54 map classes represent natural (including ruderal) vegetation types in the USNVC, 5 map classes represent cultural (agricultural and developed) vegetation types in the USNVC, 3 map classes represent nonvegetation open-water bodies (non-USNVC), and 1 map class represents landscapes that had received tornado damage a few months prior to the time of aerial imagery collection. Features were interpreted from viewing 4-band digital aerial imagery by means of digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems. (The aerial imagery was collected during mid-October 2011 for the northern reach of the Parkway and mid-November 2011 for the southern reach of the Parkway to capture peak leaf-phenology of trees.) The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in geographic information systems. Polygon units were mapped to either a 0.5 hectare (ha) or 0.25 ha minimum mapping unit, depending on vegetation type or scenario.A geodatabase containing various feature-class layers and tables present the locations of USNVC vegetation types (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial image centers. The feature-class layer and related tables for the vegetation map provide 13,529 polygons of detailed attribute data covering 21,655.5 ha, with an average polygon size of 1.6 ha; the vegetation map coincides closely with the administrative boundary for NATR.Summary reports generated from the vegetation map layer of the map classes representing USNVC natural (including ruderal) vegetation types apply to 12,648 polygons (93.5% of polygons) and cover 18,542.7 ha (85.6%) of the map extent for NATR. The map layer indicates the Parkway to be 70.5% forest and woodland (15,258.7 ha), 0.3% shrubland (63.0 ha), and 14.9% herbaceous cover (3,221.0 ha). Map classes representing USNVC cultural types apply to 678 polygons (5.0% of polygons) and cover 2,413.9 ha (11.1%) of the map extent.
Fang, Ying; Zhang, Ying
2017-01-01
Visual motor integration (VMI) is a vital ability in childhood development, which is associated with the performance of many functional skills. By using the Beery Developmental Test Package and Executive Function Tasks, the present study explored the VMI development and its factors (visual perception, motor coordination, and executive function) among 151 Chinese preschoolers from 4 to 6 years. Results indicated that the VMI skills of children increased quickly at 4 years and peaked at 5 years and decreased at around 5 to 6 years. Motor coordination and cognitive flexibility were related to the VMI development of children from 4 to 6 years. Visual perception was associated with the VMI development at early 4 years and inhibitory control was also associated with it among 4-year-old and the beginning of 5-year-old children. Working memory had no impact on the VMI. In conclusion, the development of VMI skills among children in preschool was not stable but changed dynamically in this study. Meanwhile the factors of the VMI worked in different age range for preschoolers. These findings may give some guidance to researchers or health professionals on improving children's VMI skills in their early childhood. PMID:29457030
Visual-motor integration performance in children with severe specific language impairment.
Nicola, K; Watter, P
2016-09-01
This study investigated (1) the visual-motor integration (VMI) performance of children with severe specific language impairment (SLI), and any effect of age, gender, socio-economic status and concomitant speech impairment; and (2) the relationship between language and VMI performance. It is hypothesized that children with severe SLI would present with VMI problems irrespective of gender and socio-economic status; however, VMI deficits will be more pronounced in younger children and those with concomitant speech impairment. Furthermore, it is hypothesized that there will be a relationship between VMI and language performance, particularly in receptive scores. Children enrolled between 2000 and 2008 in a school dedicated to children with severe speech-language impairments were included, if they met the criteria for severe SLI with or without concomitant speech impairment which was verified by a government organization. Results from all initial standardized language and VMI assessments found during a retrospective review of chart files were included. The final study group included 100 children (males = 76), from 4 to 14 years of age with mean language scores at least 2SD below the mean. For VMI performance, 52% of the children scored below -1SD, with 25% of the total group scoring more than 1.5SD below the mean. Age, gender and the addition of a speech impairment did not impact on VMI performance; however, children living in disadvantaged suburbs scored significantly better than children residing in advantaged suburbs. Receptive language scores of the Clinical Evaluation of Language Fundamentals was the only score associated with and able to predict VMI performance. A small subgroup of children with severe SLI will also have poor VMI skills. The best predictor of poor VMI is receptive language scores on the Clinical Evaluation of Language Fundamentals. Children with poor receptive language performance may benefit from VMI assessment and multidisciplinary management. © 2016 John Wiley & Sons Ltd.
Lim, C Y; Tan, P C; Koh, C; Koh, E; Guo, H; Yusoff, N D; See, C Q; Tan, T
2015-03-01
Visual-motor integration (VMI) is important in children's development because it is associated with the performance of many functional skills. Deficits in VMI have been linked to difficulties in academic performance and functional tasks. Clinical assessment experience of occupational therapists in Singapore suggested that there is a potential difference between the VMI performance of Singaporean and American children. Cross-cultural studies also implied that culture has an influence on a child's VMI performance, as it shapes the activities that a child participates in. The purpose of this study was to (1) explore if there was a difference between the VMI performance of Singaporean and American preschoolers, and (2) determine if there were ethnic differences in the VMI performance of Singaporean preschoolers. The Beery-VMI, which was standardized in America, is commonly used by occupational therapists in Singapore to assess the VMI ability of children. We administered the Beery-VMI (fifth edition) full form test (excluding the supplemental tests) to 385 preschoolers (mean age = 63.3 months) from randomly selected schools in Singapore. We compared the scores of Singaporean preschoolers with those of the American standardization norms using the one-sample t-test. Scores of different ethnic groups among the Singapore population were also compared using a one-way anova, followed by the Bonferroni post-hoc test. Singaporean preschoolers and the standardization sample of American children performed significantly differently in all age groups (P < 0.05). Among the Singapore population, the scores were also significantly different (P < 0.05) between the (i) Chinese and Malay and (ii) Chinese and Indians ethnic groups. Preschoolers from different cultural and ethnic groups had different VMI performance. Certain cultural beliefs and practices may affect VMI performance. Clinicians should exercise caution when using an assessment in communities and cultures outside the ones on which it was standardized. © 2014 John Wiley & Sons Ltd.
Singh, Digar; Lee, Choong H
2018-01-01
Notwithstanding its mitosporic nature, an improbable morpho-transformation state i. e., sclerotial development (SD), is vaguely known in Aspergillus oryzae . Nevertheless an intriguing phenomenon governing mold's development and stress response, the effects of exogenous factors engendering SD, especially the volatile organic compounds (VOCs) mediated interactions (VMI) pervasive in microbial niches have largely remained unexplored. Herein, we examined the effects of intra-species VMI on SD in A. oryzae RIB 40, followed by comprehensive analyses of associated growth rates, pH alterations, biochemical phenotypes, and exometabolomes. We cultivated A. oryzae RIB 40 (S1 VMI : KACC 44967) opposite a non-SD partner strain, A. oryzae (S2: KCCM 60345), conditioning VMI in a specially designed "twin plate assembly." Notably, SD in S1 VMI was delayed relative to its non-conditioned control (S1) cultivated without partner strain (S2) in twin plate. Selectively evaluating A. oryzae RIB 40 (S1 VMI vs. S1) for altered phenotypes concomitant to SD, we observed a marked disparity for corresponding growth rates (S1 VMI < S1) 7days , media pH (S1 VMI > S1) 7days , and biochemical characteristics viz ., protease (S1 VMI > S1) 7days , amylase (S1 VMI > nS1) 3-7 days , and antioxidants (S1 VMI > S1) 7days levels. The partial least squares-discriminant analysis (PLS-DA) of gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) datasets for primary metabolites exhibited a clustered pattern (PLS1, 22.04%; PLS2, 11.36%), with 7 days incubated S1 VMI extracts showed higher abundance of amino acids, sugars, and sugar alcohols with lower organic acids and fatty acids levels, relative to S1. Intriguingly, the higher amino acid and sugar alcohol levels were positively correlated with antioxidant activity, likely impeding SD in S1 VMI . Further, the PLS-DA (PLS1, 18.11%; PLS2, 15.02%) based on liquid chromatography-mass spectrometry (LC-MS) datasets exhibited a notable disparity for post-SD (9-11 days) sample extracts with higher oxylipins and 13-desoxypaxilline levels in S1 VMI relative to S1, intertwining Aspergillus morphogenesis and secondary metabolism. The analysis of VOCs for the 7 days incubated samples displayed considerably higher accumulation of C-8 compounds in the headspace of twin-plate experimental sets (S1 VMI :S2) compared to those in non-conditioned controls (S1 and S2-without respective partner strains), potentially triggering altered morpho-transformation and concurring biochemical as well as metabolic states in molds.
Novel method of finding extreme edges in a convex set of N-dimension vectors
NASA Astrophysics Data System (ADS)
Hu, Chia-Lun J.
2001-11-01
As we published in the last few years, for a binary neural network pattern recognition system to learn a given mapping {Um mapped to Vm, m=1 to M} where um is an N- dimension analog (pattern) vector, Vm is a P-bit binary (classification) vector, the if-and-only-if (IFF) condition that this network can learn this mapping is that each i-set in {Ymi, m=1 to M} (where Ymithere existsVmiUm and Vmi=+1 or -1, is the i-th bit of VR-m).)(i=1 to P and there are P sets included here.) Is POSITIVELY, LINEARLY, INDEPENDENT or PLI. We have shown that this PLI condition is MORE GENERAL than the convexity condition applied to a set of N-vectors. In the design of old learning machines, we know that if a set of N-dimension analog vectors form a convex set, and if the machine can learn the boundary vectors (or extreme edges) of this set, then it can definitely learn the inside vectors contained in this POLYHEDRON CONE. This paper reports a new method and new algorithm to find the boundary vectors of a convex set of ND analog vectors.
Wu, Xia; Tan, Kai; Tang, Zichao; Lu, Xin
2014-03-14
We have combined photoelectron velocity-map imaging (VMI) spectroscopy and theoretical calculations to elucidate the geometry and energy properties of Aux(-)(Solv)n clusters with x = 1, 2; n = 1, 2; and Solv = H2O and CH3OH. Besides the blue-shifted vertical electron detachment energies (VDEs) of the complexes Au1,2(-)(Solv)n with the increase of the solvation number (n), we independently probed two distinct Au(-)(CH3OH)2 isomers, which combined with MP2/aug-cc-pVTZ(pp) calculations represent a competition between O···H-O hydrogen bonds (HBs) and Au···H-O nonconventional hydrogen bonds (NHBs). Complementary calculations provide the total binding energies of the low-energy isomers. Moreover, the relationship between the total binding energies and total VDEshift is discussed. We found that the Au1,2(-) anions exhibit halide-analogous behavior in microsolvation. These findings also demonstrate that photoelectron velocity map imaging spectroscopy with the aid of the ab initio calculations is an effective tool for investigating weak-interaction complexes.
Making the invisible visible: improving conspicuity of noncalcified gallstones using dual-energy CT.
Uyeda, Jennifer W; Richardson, Ian J; Sodickson, Aaron D
2017-12-01
To determine whether virtual monochromatic imaging (VMI) increases detectability of noncalcified gallstones on dual-energy CT (DECT) compared with conventional CT imaging. This retrospective IRB-approved, HIPAA-compliant study included consecutive patients who underwent DECT of the abdomen in the Emergency Department during a 30-month period (July 1, 2013-December 31, 2015), with a comparison US or MR within 1-year. 51 patients (36F, 15M; mean age 52 years) fulfilled the inclusion criteria. All DECT were acquired on a dual-source 128 × 2 slice scanner using either 80/Sn140 or 100/Sn140 kVp pairs. Source images at high and low kVp were used for DE post-processing with VMI. Within 3 mm reconstructed images, regions of interest of 0.5 cm 2 were placed on noncalcified gallstones and bile to record hounsfield units (HU) at VMI energy levels ranging between 40 and 190 keV. Noncalcified gallstones uniformly demonstrated lowest HU at 40 keV and increase at higher keV; the HU of bile varied at higher keV. Few of the noncalcified stones are visible at 70 keV (simulating a conventional 120 kVp scan), with measured contrast (bile-stone HU difference) <10 HU in 78%, 10-20 HU in 20%, and >20 HU in 2%. Contrast was maximal at 40 keV, where 100% demonstrated >20 HU difference from surrounding bile, 75% >44 HU difference, and 50% >60 HU difference. A paired t test demonstrated a significant difference (p < 0.0001) between this stone-bile contrast at 40 vs. 70 keV and 70 vs. 190 keV. Low keV virtual monochromatic imaging increased conspicuity of noncalcified gallstones, improving their detectability.
Singh, Digar; Lee, Choong H.
2018-01-01
Notwithstanding its mitosporic nature, an improbable morpho-transformation state i. e., sclerotial development (SD), is vaguely known in Aspergillus oryzae. Nevertheless an intriguing phenomenon governing mold's development and stress response, the effects of exogenous factors engendering SD, especially the volatile organic compounds (VOCs) mediated interactions (VMI) pervasive in microbial niches have largely remained unexplored. Herein, we examined the effects of intra-species VMI on SD in A. oryzae RIB 40, followed by comprehensive analyses of associated growth rates, pH alterations, biochemical phenotypes, and exometabolomes. We cultivated A. oryzae RIB 40 (S1VMI: KACC 44967) opposite a non-SD partner strain, A. oryzae (S2: KCCM 60345), conditioning VMI in a specially designed “twin plate assembly.” Notably, SD in S1VMI was delayed relative to its non-conditioned control (S1) cultivated without partner strain (S2) in twin plate. Selectively evaluating A. oryzae RIB 40 (S1VMI vs. S1) for altered phenotypes concomitant to SD, we observed a marked disparity for corresponding growth rates (S1VMI < S1)7days, media pH (S1VMI > S1)7days, and biochemical characteristics viz., protease (S1VMI > S1)7days, amylase (S1VMI > nS1)3–7days, and antioxidants (S1VMI > S1)7days levels. The partial least squares—discriminant analysis (PLS-DA) of gas chromatography—time of flight—mass spectrometry (GC-TOF-MS) datasets for primary metabolites exhibited a clustered pattern (PLS1, 22.04%; PLS2, 11.36%), with 7 days incubated S1VMI extracts showed higher abundance of amino acids, sugars, and sugar alcohols with lower organic acids and fatty acids levels, relative to S1. Intriguingly, the higher amino acid and sugar alcohol levels were positively correlated with antioxidant activity, likely impeding SD in S1VMI. Further, the PLS-DA (PLS1, 18.11%; PLS2, 15.02%) based on liquid chromatography—mass spectrometry (LC-MS) datasets exhibited a notable disparity for post-SD (9–11 days) sample extracts with higher oxylipins and 13-desoxypaxilline levels in S1VMI relative to S1, intertwining Aspergillus morphogenesis and secondary metabolism. The analysis of VOCs for the 7 days incubated samples displayed considerably higher accumulation of C-8 compounds in the headspace of twin-plate experimental sets (S1VMI:S2) compared to those in non-conditioned controls (S1 and S2—without respective partner strains), potentially triggering altered morpho-transformation and concurring biochemical as well as metabolic states in molds. PMID:29670599
Thomas, Alyssa R; Lacadie, Cheryl; Vohr, Betty; Ment, Laura R; Scheinost, Dustin
2017-01-01
Adolescents born preterm (PT) with no evidence of neonatal brain injury are at risk of deficits in visual memory and fine motor skills that diminish academic performance. The association between these deficits and white matter microstructure is relatively unexplored. We studied 190 PTs with no brain injury and 92 term controls at age 16 years. The Rey-Osterrieth Complex Figure Test (ROCF), the Beery visual-motor integration (VMI), and the Grooved Pegboard Test (GPT) were collected for all participants, while a subset (40 PTs and 40 terms) underwent diffusion-weighted magnetic resonance imaging. PTs performed more poorly than terms on ROCF, VMI, and GPT (all P < 0.01). Mediation analysis showed fine motor skill (GPT score) significantly mediates group difference in ROCF and VMI (all P < 0.001). PTs showed a negative correlation (P < 0.05, corrected) between fractional anisotropy (FA) in the bilateral middle cerebellar peduncles and GPT score, with higher FA correlating to lower (faster task completion) GPT scores, and between FA in the right superior cerebellar peduncle and ROCF scores. PTs also had a positive correlation (P < 0.05, corrected) between VMI and left middle cerebellar peduncle FA. Novel strategies to target fine motor skills and the cerebellum may help PTs reach their full academic potential. © The Author 2017. Published by Oxford University Press.
Functional Role of Internal and External Visual Imagery: Preliminary Evidences from Pilates
Montuori, Simone; Sorrentino, Pierpaolo; Belloni, Lidia; Sorrentino, Giuseppe
2018-01-01
The present study investigates whether a functional difference between the visualization of a sequence of movements in the perspective of the first- (internal VMI-I) or third- (external VMI-E) person exists, which might be relevant to promote learning. By using a mental chronometry experimental paradigm, we have compared the time or execution, imagination in the VMI-I perspective, and imagination in the VMI-E perspective of two kinds of Pilates exercises. The analysis was carried out in individuals with different levels of competence (expert, novice, and no-practice individuals). Our results showed that in the Expert group, in the VMI-I perspective, the imagination time was similar to the execution time, while in the VMI-E perspective, the imagination time was significantly lower than the execution time. An opposite pattern was found in the Novice group, in which the time of imagination was similar to that of execution only in the VMI-E perspective, while in the VMI-I perspective, the time of imagination was significantly lower than the time of execution. In the control group, the times of both modalities of imagination were significantly lower than the execution time for each exercise. The present data suggest that, while the VMI-I serves to train an already internalised gesture, the VMI-E perspective could be useful to learn, and then improve, the recently acquired sequence of movements. Moreover, visual imagery is not useful for individuals that lack a specific motor experience. The present data offer new insights in the application of mental training techniques, especially in field of sports. However, further investigations are needed to better understand the functional role of internal and external visual imagery. PMID:29849565
Circular dichroism in photoelectron images from aligned nitric oxide molecules
Sen, Ananya; Pratt, S. T.; Reid, K. L.
2017-05-03
We have used velocity map photoelectron imaging to study circular dichroism of the photoelectron angular distributions (PADs) of nitric oxide following two-color resonanceenhanced two-photon ionization via selected rotational levels of the A 2Σ +, v' = 0 state. By using a circularly polarized pump beam and a counter-propagating, circularly polarized probe beam, cylindrical symmetry is preserved in the ionization process, and the images can be reconstructed using standard algorithms. The VMI set up enables individual ion rotational states to be resolved with excellent collection efficiency, rendering the measurements considerably simpler to perform than previous measurements conducted with a conventional photoelectronmore » spectrometer. The results demonstrate that circular dichroism is observed even when cylindrical symmetry is maintained, and serve as a reminder that dichroism is a general feature of the multiphoton ionization of atoms and molecules. Furthermore, the observed PADs are in good agreement with calculations based on parameters extracted from previous experimental results obtained by using a time-offlight electron spectrometer.« less
Circular dichroism in photoelectron images from aligned nitric oxide molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Ananya; Pratt, S. T.; Reid, K. L.
We have used velocity map photoelectron imaging to study circular dichroism of the photoelectron angular distributions (PADs) of nitric oxide following two-color resonanceenhanced two-photon ionization via selected rotational levels of the A 2Σ +, v' = 0 state. By using a circularly polarized pump beam and a counter-propagating, circularly polarized probe beam, cylindrical symmetry is preserved in the ionization process, and the images can be reconstructed using standard algorithms. The VMI set up enables individual ion rotational states to be resolved with excellent collection efficiency, rendering the measurements considerably simpler to perform than previous measurements conducted with a conventional photoelectronmore » spectrometer. The results demonstrate that circular dichroism is observed even when cylindrical symmetry is maintained, and serve as a reminder that dichroism is a general feature of the multiphoton ionization of atoms and molecules. Furthermore, the observed PADs are in good agreement with calculations based on parameters extracted from previous experimental results obtained by using a time-offlight electron spectrometer.« less
Viral MicroRNAs Identified in Human Dental Pulp.
Zhong, Sheng; Naqvi, Afsar; Bair, Eric; Nares, Salvador; Khan, Asma A
2017-01-01
MicroRNAs (miRs) are a family of noncoding RNAs that regulate gene expression. They are ubiquitous among multicellular eukaryotes and are also encoded by some viruses. Upon infection, viral miRs (vmiRs) can potentially target gene expression in the host and alter the immune response. Although prior studies have reported viral infections in human pulp, the role of vmiRs in pulpal disease is yet to be explored. The purpose of this study was to examine the expression of vmiRs in normal and diseased pulps and to identify potential target genes. Total RNA was extracted and quantified from normal and inflamed human pulps (N = 28). Expression profiles of vmiRs were then interrogated using miRNA microarrays (V3) and the miRNA Complete Labeling and Hyb Kit (Agilent Technologies, Santa Clara, CA). To identify vmiRs that were differentially expressed, we applied a permutation test. Of the 12 vmiRs detected in the pulp, 4 vmiRs (including those from herpesvirus and human cytomegalovirus) were differentially expressed in inflamed pulp compared with normal pulp (P < .05). Using bioinformatics, we identified potential target genes for the differentially expressed vmiRs. They included key mediators involved in the detection of microbial ligands, chemotaxis, proteolysis, cytokines, and signal transduction molecules. These data suggest that miRs may play a role in interspecies regulation of pulpal health and disease. Further research is needed to elucidate the mechanisms by which vmiRs can potentially modulate the host response in pulpal disease. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Construct the stable vendor managed inventory partnership through a profit-sharing approach
NASA Astrophysics Data System (ADS)
Li, S.; Yu, Z.; Dong, M.
2015-01-01
In real life, the vendor managed inventory (VMI) model is not always a stable supply chain partnership. This paper proposes a cooperative game based profit-sharing method to stabilize the VMI partnership. Specifically, in a B2C setting, we consider a VMI program including a manufacturer and multiple online retailers. The manufacturer provides the finished product at the equal wholesale price to multiple online retailers. The online retailers face the same customer demand information. We offer the model to compute the increased profits generated by information sharing for total possible VMI coalitions. Using the solution concept of Shapley value, the profit-sharing scheme is produced to fairly divide the total increased profits among the VMI members. We find that under a fair allocation scheme, the higher inventory cost of one VMI member increases the surplus of the other members. Furthermore, the manufacturer is glad to increase the size of VMI coalition, whereas, the retailers are delighted to limit the size of the alliance. Finally, the manufacturer can select the appropriate retailer to boost its surplus, which has no effect on the surplus of the other retailers. The numerical examples indicate that the grand coalition is stable under the proposed allocation scheme.
Roscioli, Joseph R; Nesbitt, David J
2011-01-01
The dynamics of HCI scattering from a room-temperature -CH3 terminated self-assembled monolayer (SAM) is probed via state-resolved spectroscopy coupled to a velocity-map imaging (VMI) apparatus. The resulting velocity maps provide new insight into the HCl scattering trajectories, revealing for the first time correlations between internal and translational degrees of freedom. Velocity maps at low J are dominated by signatures of both the incident beam (17.3(3) kcal mol(-1)) and a room-temperature trapping-desorption component (TD). At high J, however, the maps contain a large, continuous feature associated primarily with impulsive scattering (IS). Trajectories resulting from these strongly inelastic interactions are readily isolated in the map, and provide a new glimpse into purely impulsive scattering dynamics. Specifically, within the purely-IS HCI region of the velocity maps, the rotational distribution is found to be remarkably Boltzmann like, but with a temperature (472 K) significantly higher than the SAM surface (300 K). By way of contrast, the translational degree of freedom of the impulsively-scattered flux is clearly non-Boltzmann in character, with a strong propensity for in-plane scattering in the forward direction, and yet still exhibiting out-of-plane velocity distributions reasonably well characterized by a temperature of 690 K. These first data establish the prospects for a new class of experimental tools aimed at exploring energy transfer and reactive scattering events on SAMs, liquid, and metal interfaces with quantum state resolved information on correlated internal and translational distributions.
Boison, Joe; Lee, Stephen; Gedir, Ron
2009-01-01
A liquid chromatographic-mass spectrometric (LC-MS) method was developed and validated for the determination and confirmation of virginiamycin (VMY) M1 residues in porcine liver, kidney, and muscle tissues at concentrations > or =2 ng/g. Porcine liver, kidney, or muscle tissue is homogenized with methanol-acetonitrile. After centrifugation, the supernatant is diluted with phosphate buffer and cleaned up on a C18 solid-phase extraction cartridge. VMY in the eluate is partitioned into chloroform and the aqueous upper layer is removed by aspiration. After evaporating the chloroform in the residual mixture to dryness, the dried extract is reconstituted in mobile phase and VMY is quantified by LC-MS. Any samples eliciting quantifiable levels of VMY M1 (i.e., at concentrations > or =2 ng/g) are subjected to confirmatory analysis by LC-MSIMS. VMY S1, a minor component of the VMY complex, is monitored but not quantified or confirmed.
Novel applications of X-ray photoelectron spectroscopy on unsupported nanoparticles
NASA Astrophysics Data System (ADS)
Kostko, Oleg; Xu, Bo; Jacobs, Michael I.; Ahmed, Musahid
X-ray photoelectron spectroscopy (XPS) is a powerful technique for chemical analysis of surfaces. We will present novel results of XPS on unsupported, gas-phase nanoparticles using a velocity-map imaging (VMI) spectrometer. This technique allows for probes of both the surfaces of nanoparticles via XPS as well as their interiors via near edge X-ray absorption fine structure (NEXAFS) spectroscopy. A recent application of this technique has confirmed that arginine's guanidinium group exists in a protonated state even in strongly basic solution. Moreover, the core-level photoelectron spectroscopy can provide information on the effective attenuation length (EAL) of low kinetic energy electrons. This contradictory value is important for determining the probing depth of XPS and in photolithography. A new method for determining EALs will be presented.
Coutinho, Franzina; Bosisio, Marie-Elaine; Brown, Emma; Rishikof, Stephanie; Skaf, Elise; Zhang, Xiaoting; Perlman, Cynthia; Kelly, Shannon; Freedin, Erin; Dahan-Oliel, Noemi
2017-05-01
The aim of this randomized controlled trial was to assess the effectiveness of interventions using iPad applications compared to traditional occupational therapy on visual-motor integration (VMI) in school-aged children with poor VMI skills. Twenty children aged 4y0m to 7y11m with poor VMI skills were randomly assigned to the experimental group (interventions using iPad apps targeting VMI skills) or control group (traditional occupational therapy intervention sessions targeting VMI skills). The intervention phase consisted of two 40-min sessions per week, over a period of 10 weeks. Participants were required to attend a minimum of 8 and a maximum of 12 sessions. The subjects were tested using the Beery-VMI and the visual-motor subscale of the M-FUN, at baseline and follow-up. Results from a 2-way mixed design ANOVA yielded significant results for the main effect of time for the M-FUN total raw score, as well as in the subscales Amazing Mazes, Hidden Forks, Go Fishing and VM Behavior. However, gains did not differ between intervention types over time. No significant results were found for the Beery-VMI. This study supports the need for further research into the use of iPads for the development of VMI skills in the pediatric population. Implications for Rehabilitation This is the first study to look at the use of iPads with school-aged children with poor visual-motor skills. There is limited literature related to the use of iPads in pediatric occupational therapy, while they are increasingly being used in practice. When compared to the traditional occupational therapy interventions, participants in the iPad intervention appeared to be more interested, engaged and motivated to participate in the therapy sessions. Using iPad apps as an adjunct to therapy in intervention could be effective in improving VMI skills over time.
A Motor-Skills Programme to Enhance Visual Motor Integration of Selected Pre-School Learners
ERIC Educational Resources Information Center
Africa, Eileen K.; van Deventer, Karel J.
2017-01-01
Pre-schoolers are in a window period for motor skill development. Visual-motor integration (VMI) is the foundation for academic and sport skills. Therefore, it must develop before formal schooling. This study attempted to improve VMI skills. VMI skills were measured with the "Beery-Buktenica developmental test of visual-motor integration 6th…
Ringer, Lymor; Sirajuddin, Paul; Heckler, Mary; Ghosh, Anup; Suprynowicz, Frank; Yenugonda, Venkata M; Brown, Milton L; Toretsky, Jeffrey A; Uren, Aykut; Lee, YiChien; MacDonald, Tobey J; Rodriguez, Olga; Glazer, Robert I; Schlegel, Richard
2011-01-01
Medulloblastoma is the most prevalent of childhood brain malignancies, constituting 25% of childhood brain tumors. Craniospinal radiotherapy is a standard of care, followed by a 12 mo regimen of multi-agent chemotherapy. For children less than 3 y of age, irradiation is avoided due to its destructive effects on the developing nervous system. Long-term prognosis is worst for these youngest children and more effective treatment strategies with a better therapeutic index are needed. VMY-1-103, a novel dansylated analog of purvalanol B, was previously shown to inhibit cell cycle progression and proliferation in prostate and breast cancer cells more effectively than purvalanol B. In the current study, we have identified new mechanisms of action by which VMY-1-103 affected cellular proliferation in medulloblastoma cells. VMY-1-103, but not purvalanol B, significantly decreased the proportion of cells in s phase and increased the proportion of cells in G2/M. VMY-1-103 increased the sub G1 fraction of apoptotic cells, induced paRp and caspase-3 cleavage and increased the levels of the Death Receptors DR4 and DR5, Bax and Bad while decreasing the number of viable cells, all supporting apoptosis as a mechanism of cell death. p21CIp1/WaF1 levels were greatly suppressed. Importantly, we found that while both VMY and flavopiridol inhibited intracellular CDK1 catalytic activity, VMY-1-103 was unique in its ability to severely disrupt the mitotic spindle apparatus, significantly delaying metaphase and disrupting mitosis. Our data suggest that VMY-1-103 possesses unique antiproliferative capabilities and that this compound may form the basis of a new candidate drug to treat medulloblastoma. PMID:21885916
Ji, Xiuling; Zhang, Chunjing; Fang, Yuan; Zhang, Qi; Lin, Lianbing; Tang, Bing; Wei, Yunlin
2015-02-01
As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0-9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.
Balsamo, Lyn M; Sint, Kyaw J; Neglia, Joseph P; Brouwers, Pim; Kadan-Lottick, Nina S
2016-04-01
Assess the association between fine motor (FM) and visual-motor integration (VMI) skills and academic achievement in pediatric acute lymphoblastic leukemia (ALL) survivors. In this 28-site cross-sectional study of 256 children in first remission, a mean of 8.9 ± 2.2 years after treatment for standard-risk precursor-B ALL, validated measures of FM, VMI, reading, math, and intelligence were administered at mean follow-up age of 12.8 ± 2.5 years. VMI was significantly associated with written math calculation ability (p < .0069) after adjusting for intelligence (p < .0001). VMI was more strongly associated with math in those with lower intelligence (p = .0141). Word decoding was also significantly associated with VMI but with no effect modification by intelligence. FM skills were not associated with either reading or math achievement. These findings suggest that VMI is associated with aspects of math and reading achievement in leukemia survivors. These skills may be amenable to intervention. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Tse, Linda F. L.; Siu, Andrew M. H.; Li-Tsang, Cecilia W. P.
2017-01-01
Visual-motor integration (VMI) is the ability to coordinate visual perception and motor skills. Although Chinese children have superior performance in VMI than U.S. norms, there is limited information regarding the performance of its basic composition of VMI in regard to visual and motor aspects. This study aimed to examine the differences in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhou; Chang, Yih Chung; Gao, Hong
2014-06-21
We present a generally applicable experimental method for the direct measurement of nascent spin-orbit state distributions of atomic photofragments based on the detection of vacuum ultraviolet (VUV)-excited autoionizing-Rydberg (VUV-EAR) states. The incorporation of this VUV-EAR method in the application of the newly established VUV-VUV laser velocity-map-imaging-photoion (VMI-PI) apparatus has made possible the branching ratio measurement for correlated spin-orbit state resolved product channels, CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}), formed by VUV photoexcitation of CO{sub 2} to the 4s(1{sub 0}{sup 1}) Rydberg state at 97,955.7 cm{sup −1}. The total kinetic energy releasemore » (TKER) spectra obtained from the O{sup +} VMI-PI images of O({sup 3}P{sub 0,1,2}) reveal the formation of correlated CO(ã{sup 3}Π; v = 0–2) with well-resolved v = 0–2 vibrational bands. This observation shows that the dissociation of CO{sub 2} to form the spin-allowed CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel has no potential energy barrier. The TKER spectra for the spin-forbidden CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel were found to exhibit broad profiles, indicative of the formation of a broad range of rovibrational states of CO(Χ{sup ~1}Σ{sup +}) with significant vibrational populations for v = 18–26. While the VMI-PI images for the CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel are anisotropic, indicating that the predissociation of CO{sub 2} 4s(1{sub 0}{sup 1}) occurs via a near linear configuration in a time scale shorter than the rotational period, the angular distributions for the CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel are close to isotropic, revealing a slower predissociation process, which possibly occurs on a triplet surface via an intersystem crossing mechanism.« less
Moskowitz, Beverly; Paoletti, Andrew; Brusilovskiy, Eugene; Zylstra, Sheryl Eckberg; Murray, Tammy
2015-01-01
We determined whether a widely used assessment of visual–motor skills, the Beery–Buktenica Developmental Test of Visual–Motor Integration (VMI), is appropriate for use as an outcome measure for handwriting interventions. A two-group pretest–posttest design was used with 207 kindergarten, first-grade, and second-grade students. Two well-established handwriting measures and the VMI were administered pre- and postintervention. The intervention group participated in the Size Matters Handwriting Program for 40 sessions, and the control group received standard instruction. Paired and independent-samples t tests were used to analyze group differences. The intervention group demonstrated significant improvements on the handwriting measures, with change scores having mostly large effect sizes. We found no significant difference in change scores on the VMI, t(202) = 1.19, p = .23. Results of this study suggest that the VMI may not detect changes in handwriting related to occupational therapy intervention. PMID:26114468
Pfeiffer, Beth; Moskowitz, Beverly; Paoletti, Andrew; Brusilovskiy, Eugene; Zylstra, Sheryl Eckberg; Murray, Tammy
2015-01-01
We determined whether a widely used assessment of visual-motor skills, the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI), is appropriate for use as an outcome measure for handwriting interventions. A two-group pretest-posttest design was used with 207 kindergarten, first-grade, and second-grade students. Two well-established handwriting measures and the VMI were administered pre- and postintervention. The intervention group participated in the Size Matters Handwriting Program for 40 sessions, and the control group received standard instruction. Paired and independent-samples t tests were used to analyze group differences. The intervention group demonstrated significant improvements on the handwriting measures, with change scores having mostly large effect sizes. We found no significant difference in change scores on the VMI, t(202)=1.19, p=.23. Results of this study suggest that the VMI may not detect changes in handwriting related to occupational therapy intervention. Copyright © 2015 by the American Occupational Therapy Association, Inc.
ERIC Educational Resources Information Center
Nye, Barbara A.
Data from a statewide screening of Tennessee Head Start children on the Developmental Test of Visual-Motor Integration (VMI) are analyzed in this report for two purposes: to determine whether sex, race, and residence have a significant influence on visual motor development as measured by the VMI, and to develop VMI norms for the Tennessee Head…
Inter-Rater and Test-Retest Reliability of the Beery VMI in Schoolchildren
Harvey, Erin M.; Leonard-Green, Tina K.; Mohan, Kathleen M.; Kulp, Marjean Taylor; Davis, Amy L.; Miller, Joseph M.; Twelker, J. Daniel; Campus, Irene; Dennis, Leslie K.
2017-01-01
Purpose To assess inter-rater and test-retest reliability of the 6th Edition Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI) and test-retest reliability of the VMI Visual Perception Supplemental Test (VMIp) in school-age children. Methods Subjects were 163 Native American 3rd – 8th grade students with no significant refractive error (astigmatism < 1.00 D, myopia: < 0.75 D, hyperopia: < 2.50 D, anisometropia < 1.50 D) or ocular abnormalities. The VMI and VMIp were administered twice, on separate days. All VMI tests were scored by two trained scorers and a subset of 50 tests were also scored by an experienced scorer. Scorers strictly applied objective scoring criteria. Analyses included inter-rater and test-retest assessments of bias, 95% limits of agreement, and intraclass correlation analysis. Results Trained scorers had no significant scoring bias compared to the experienced scorer. One of the two trained scorers tended to provide higher scores than the other (mean difference in standardized scores = 1.54). Inter-rater correlations were strong (0.75 to 0.88). VMI and VMIp test-retest comparisons indicated no significant bias (subjects did not tend to score better on retest). Test-retest correlations were moderate (0.54 to 0.58). The 95% LOAs for the VMI were −24.14 to 24.67 (scorer 1) and −26.06 to 26.58 (scorer 2) and the 95% LOAs for the VMIp were −27.11 to 27.34. Conclusions The 95% LOA for test-retest differences will be useful for determining if the VMI and VMIp have sufficient sensitivity for detecting change with treatment in both clinical and research settings. Further research on test-retest reliability reporting 95% LOAs for children across different age ranges are recommended, particularly if the test is to be used to detect changes due to intervention or treatment. PMID:28422801
ERIC Educational Resources Information Center
Emam, Mahmoud Mohamed; Kazem, Ali Mahdi
2016-01-01
Visual motor integration (VMI) is the ability of the eyes and hands to work together in smooth, efficient patterns. In Oman, there are few effective methods to assess VMI skills in children in inclusive settings. The current study investigated the performance of preschool and early school years responders and non-responders on a VMI test. The full…
Yenugonda, Venkata Mahidhar; Ghosh, Anup; Divito, Kyle; Trabosh, Valerie; Patel, Yesha; Brophy, Amanda; Grindrod, Scott; Lisanti, Michael P; Rosenthal, Dean; Brown, Milton L; Avantaggiati, Maria Laura; Rodriguez, Olga
2010-01-01
The 2,6,9-trisubstituted purine group of cyclin dependent kinase inhibitors have the potential to be clinically relevant inhibitors of cancer cell proliferation. We have recently designed and synthesized a novel dansylated analog of purvalanol B, termed VMY-1-103, that inhibited cell cycle progression in breast cancer cell lines more effectively than did purvalanol B and allowed for uptake analyses by fluorescence microscopy. ErbB-2 plays an important role in the regulation of signal transduction cascades in a number of epithelial tumors, including prostate cancer (PCa). Our previous studies demonstrated that transgenic expression of activated ErbB-2 in the mouse prostate initiated PCa and either the overexpression of ErbB-2 or the addition of the ErbB-2/ErbB-3 ligand, heregulin (HRG), induced cell cycle progression in the androgen-responsive prostate cancer cell line, LNCaP. In the present study, we tested the efficacy of VMY-1-103 in inhibiting HRG-induced cell proliferation in LNCaP prostate cancer cells. At concentrations as low as 1 µM, VMY-1-103 increased both the proportion of cells in G1 and p21CIP1 protein levels. At higher concentrations (5 µM or 10 µM), VMY-1-103 induced apoptosis via decreased mitochondrial membrane polarity and induction of p53 phosphorylation, caspase-3 activity and PARP cleavage. Treatment with 10 µM Purvalanol B failed to either influence proliferation or induce apoptosis. Our results demonstrate that VMY-1-103 was more effective in inducing apoptosis in PCa cells than its parent compound, purvalanol B, and support the testing of VMY-1-103 as a potential small molecule inhibitor of prostate cancer in vivo. PMID:20574155
Alignment of the hydrogen molecule under intense laser fields
Lopez, Gary V.; Fournier, Martin; Jankunas, Justin; ...
2017-06-01
Alignment, dissociation and ionization of H 2 molecules in the ground or the electronically excited E,F state of the H 2 molecule are studied and contrasted using the Velocity Mapping Imaging (VMI) technique. Photoelectron images from nonresonant 7-, 8- and 9-photon radiation ionization of H 2 show that the intense laser fields create ponderomotive shifts in the potential energy surfaces and distort the velocity of the emitted electrons that are produced from ionization. Photofragment images of H+ due to the dissociation mechanism that follows the 2-photon excitation into the (E,F; v = 0, J = 0, 1) electronic state showmore » a strong dependence on laser intensity, which is attributed to the high polarizability of the H 2 (E,F) state. For transitions from the J = 0 state, particularly, we observe marked structure in the angular distribution, which we explain as the interference between the prepared J = 0 and Stark-mixed J = 2 rovibrational states of H 2, as the laser intensity increases. Quantification of these effects allows us to extract the molecular polarizability of the H 2 (E,F) state, and yields a value of 103 ± 37 A.U.« less
Alignment of the hydrogen molecule under intense laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Gary V.; Fournier, Martin; Jankunas, Justin
Alignment, dissociation and ionization of H 2 molecules in the ground or the electronically excited E,F state of the H 2 molecule are studied and contrasted using the Velocity Mapping Imaging (VMI) technique. Photoelectron images from nonresonant 7-, 8- and 9-photon radiation ionization of H 2 show that the intense laser fields create ponderomotive shifts in the potential energy surfaces and distort the velocity of the emitted electrons that are produced from ionization. Photofragment images of H+ due to the dissociation mechanism that follows the 2-photon excitation into the (E,F; v = 0, J = 0, 1) electronic state showmore » a strong dependence on laser intensity, which is attributed to the high polarizability of the H 2 (E,F) state. For transitions from the J = 0 state, particularly, we observe marked structure in the angular distribution, which we explain as the interference between the prepared J = 0 and Stark-mixed J = 2 rovibrational states of H 2, as the laser intensity increases. Quantification of these effects allows us to extract the molecular polarizability of the H 2 (E,F) state, and yields a value of 103 ± 37 A.U.« less
Photodetachment Studies Of Atomic Negative Ions Through Velocity-Map Imaging Spectroscopy
NASA Astrophysics Data System (ADS)
Chartkunchand, Kiattichart
The technique of velocity-map imaging (VMI) spectroscopy as been adapted to a keV-level negative ion beamline for studies of photon-negative ion collisions. The design and operation of the VMI spectrometer takes into consideration the use of continuous, fast-moving (5 keV to 10 keV) ion beams, as well as a continuous wave (CW) laser as the source of photons. The VMI spectrometer has been used in photodetachment studies of the Group 14 negative ions Ge--, Sn--, and Pb-- at a photon wavelength of 532 nm. Measurements of the photoelectron angular distributions and asymmetry parameters for Ge-- and Sn-- were benchmarked against those measured previously [W. W. Williams, D. L. Carpenter, A. M. Covington, and J. S. Thompson, Phys. Rev. A 59, 4368 (1999), V. T. Davis, J. Ashokkumar, and J. S. Thompson, Phys. Rev. A 65, 024702 (2002)], while fine-structure-resolved asymmetry parameters for Pb-- were measured for the first time. Definitive evidence of a "forbidden" 4S 3/2→1D2 transition was observed in both the Ge-- and Sn-- photoelectron kinetic energy spectra. This transition is explained in terms of the inadequacy of the single-configuration description for the 1D2 excited state in the corresponding neutral. Near-threshold photodetachment studies of S-- were carried out in order to measure the spectral dependence of the photoelectron angular distribution. The resulting asymmetry parameters were measured at several photon wavelengths in the range of 575 nm (2.156 eV photon energy) to 615 nm (2.016 eV photon energy). Comparison of the measurements to a qualitative model of p-electron photodetachment [D. Hanstorp, C. Bengtsson, and D. J. Larson, Phys. Rev. A 40, 670 (1989)] were made. Deviations of the measured asymmetry parameters from the Hanstorp model near photodetachment thresholds suggests a reduced degree of suppression of d partial-waves than predicted by models. Measurement of the electron affinity of terbium was performed along with a determination of the structure of Tb--. The energy scale for the Tb-- photoelectron kinetic energy spectrum was calibrated to the photoelectron kinetic energy spectrum of Cs-- , whose electron affinity is well-known [T. A. Patterson, H. Hotop, A. Kasdan, D. W. Norcross, and W. C. Lineberger, Phys. Rev. Lett. 32 , 189 (1974)]. Comparison to a previous experimental measurement of the electron affinity of terbium [S. S. Duvvuri, Ph. D. dissertation, University of Nevada, Reno (2006)] and to theoretical calculations of the electron affinity [S. M. O'Malley and D. R. Beck, Phys. Rev. A 79, 012511 (2009)] were made. In contrast to the [Xe]4f106 s2 5I8 ground state configuration proposed in the experimental study and the [Xe]4f 85d6s26p 9G7 ground state configuration proposed in the theoretical study, the present study suggests a Tb-- ground state of [Xe]4f96s 26p 7I3 and an electron affinity of 0.13 +/- 0.07 eV for terbium.
Doney, Robyn; Lucas, Barbara R; Watkins, Rochelle E; Tsang, Tracey W; Sauer, Kay; Howat, Peter; Latimer, Jane; Fitzpatrick, James P; Oscar, June; Carter, Maureen; Elliott, Elizabeth J
2016-08-01
Visual-motor integration (VMI) skills are essential for successful academic performance, but to date no studies have assessed these skills in a population-based cohort of Australian Aboriginal children who, like many children in other remote, disadvantaged communities, consistently underperform academically. Furthermore, many children in remote areas of Australia have prenatal alcohol exposure (PAE) and Fetal Alcohol Spectrum Disorder (FASD), which are often associated with VMI deficits. VMI, visual perception, and fine motor coordination were assessed using The Beery-Buktenica Developmental Test of Visual-Motor Integration, including its associated subtests of Visual Perception and Fine Motor Coordination, in a cohort of predominantly Australian Aboriginal children (7.5-9.6 years, n=108) in remote Western Australia to explore whether PAE adversely affected test performance. Cohort results were reported, and comparisons made between children i) without PAE; ii) with PAE (no FASD); and iii) FASD. The prevalence of moderate (≤16th percentile) and severe (≤2nd percentile) impairment was established. Mean VMI scores were 'below average' (M=87.8±9.6), and visual perception scores were 'average' (M=97.6±12.5), with no differences between groups. Few children had severe VMI impairment (1.9%), but moderate impairment rates were high (47.2%). Children with FASD had significantly lower fine motor coordination scores and higher moderate impairment rates (M=87.9±12.5; 66.7%) than children without PAE (M=95.1±10.7; 23.3%) and PAE (no FASD) (M=96.1±10.9; 15.4%). Aboriginal children living in remote Western Australia have poor VMI skills regardless of PAE or FASD. Children with FASD additionally had fine motor coordination problems. VMI and fine motor coordination should be assessed in children with PAE, and included in FASD diagnostic assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Miller, Haylie L.; Bugnariu, Nicoleta; Patterson, Rita M.; Wijayasinghe, Indika; Popa, Dan O.
2018-01-01
Visuomotor integration (VMI), the use of visual information to guide motor planning, execution, and modification, is necessary for a wide range of functional tasks. To comprehensively, quantitatively assess VMI, we developed a paradigm integrating virtual environments, motion-capture, and mobile eye-tracking. Virtual environments enable tasks to be repeatable, naturalistic, and varied in complexity. Mobile eye-tracking and minimally-restricted movement enable observation of natural strategies for interacting with the environment. This paradigm yields a rich dataset that may inform our understanding of VMI in typical and atypical development. PMID:29876370
Padilla, Nelly; Forsman, Lea; Broström, Lina; Hellgren, Kerstin; Åden, Ulrika
2018-01-01
Objectives This exploratory study aimed to investigate associations between neonatal brain volumes and visual–motor integration (VMI) and fine motor skills in children born extremely preterm (EPT) when they reached 6½ years of age. Setting Prospective population-based cohort study in Stockholm, Sweden, during 3 years. Participants All children born before gestational age, 27 weeks, during 2004–2007 in Stockholm, without major morbidities and impairments, and who underwent MRI at term-equivalent age. Main outcome measures Brain volumes were calculated using morphometric analyses in regions known to be involved in VMI and fine motor functions. VMI was assessed with The Beery-Buktenica Developmental Test of Visual–Motor Integration—sixth edition and fine motor skills were assessed with the manual dexterity subtest from the Movement Assessment Battery for Children—second edition, at 6½ years. Associations between the brain volumes and VMI and fine motor skills were evaluated using partial correlation, adjusted for total cerebral parenchyma and sex. Results Out of 107 children born at gestational age <27 weeks, 83 were assessed at 6½ years and 66/83 were without major brain lesions or cerebral palsy and included in the analyses. A representative subsample underwent morphometric analyses: automatic segmentation (n=34) and atlas-based segmentation (n=26). The precentral gyrus was associated with both VMI (r=0.54, P=0.007) and fine motor skills (r=0.54, P=0.01). Associations were also seen between fine motor skills and the volume of the cerebellum (r=0.42, P=0.02), brainstem (r=0.47, P=0.008) and grey matter (r=−0.38, P=0.04). Conclusions Neonatal brain volumes in areas known to be involved in VMI and fine motor skills were associated with scores for these two functions when children born EPT without major brain lesions or cerebral palsy were evaluated at 6½ years of age. Establishing clear associations between early brain volume alterations and later VMI and/or fine motor skills could make early interventions possible. PMID:29455171
Electron Anisotropy as a Signature of Mode Specific Isomerization in Vinylidene
NASA Astrophysics Data System (ADS)
Gibson, Stephen T.; Laws, Benjamin A.; Mabbs, Richard; Neumark, Daniel; Lineberger, Carl; Field, Robert W.
2016-06-01
he nature of the isomerization process that turns vinylidene into acetylene has been awaiting advances in experimental methods, to better define fractionation widths beyond those available in the seminal 1989 photoelectron spectrum measurement. This has proven a challenge. The technique of velocity-map imaging (VMI) is one avenue of approach. Images of electrons photodetached from vinylidene negative-ions, at various wavelengths, 1064 nm shown, provide more detail, including unassigned structure, but only an incremental improvement in the instrument line width. Intriguingly, the VMIs demonstrate a mode dependent variation in the electron anisotropy. Most notable in the figure, the inner-ring transition clusters are discontinuously, more isotropic. Electron anisotropy may provide an alternative key to examine the character of vinylidene transitions, mediating the necessity for an extreme resolution measurement. Vibrational dependent anisotropy has previously been observed in diatomic photoelectron spectra, associated with the coupling of electronic and nuclear motions. Research supported by the Australian Research Council Discovery Project Grant DP160102585. K. M. Ervin, J. Ho, and W. C. Lineberger, J. Chem. Phys. 91, 5974 (1989). doi:10.1063/1.457415 M. van Duzor et al. J. Chem. Phys. 133, 174311 (2010). doi:10.1063/1.3493349
All Male State-Funded Military Academies: Anachronism or Necessary Anomaly?
ERIC Educational Resources Information Center
Russo, Charles J.; Scollay, Susan J.
1993-01-01
The United States Court of Appeals for the Fourth District, although stopping short of ordering the Virginia Military Institute (VMI) to admit women, ordered VMI to implement a program which comports with the requirements of equal protection. Offers an analysis of the Fourth Circuit's ruling, a discussion of important educational questions, and a…
Imai, Yuko; Itsuki, Kyohei; Okamura, Yasushi; Inoue, Ryuji; Mori, Masayuki X
2012-01-01
Activation of transient receptor potential (TRP) canonical TRPC3/C6/C7 channels by diacylglycerol (DAG) upon stimulation of phospholipase C (PLC)-coupled receptors results in the breakdown of phosphoinositides (PIPs). The critical importance of PIPs to various ion-transporting molecules is well documented, but their function in relation to TRPC3/C6/C7 channels remains controversial. By using an ectopic voltage-sensing PIP phosphatase (DrVSP), we found that dephosphorylation of PIPs robustly inhibits currents induced by carbachol (CCh), 1-oleolyl-2-acetyl-sn-glycerol (OAG) or RHC80267 in TRPC3, TRPC6 and TRPC7 channels, though the strength of the DrVSP-mediated inhibition (VMI) varied among the channels with a rank order of C7 > C6 > C3. Pharmacological and molecular interventions suggest that depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is most likely the critical event for VMI in all three channels. When the PLC catalytic signal was vigorously activated through overexpression of the muscarinic type-I receptor (M1R), the inactivation of macroscopic TRPC currents was greatly accelerated in the same rank order as the VMI, and VMI of these currents was attenuated or lost. VMI was also rarely detected in vasopressin-induced TRPC6-like currents in A7r5 vascular smooth muscle cells, indicating that the inactivation by PI(4,5)P2 depletion underlies the physiological condition. Simultaneous fluorescence resonance energy transfer (FRET)-based measurement of PI(4,5)P2 levels and TRPC6 currents confirmed that VMI magnitude reflects the degree of PI(4,5)P2 depletion. These results demonstrate that TRPC3/C6/C7 channels are differentially regulated by depletion of PI(4,5)P2, and that the bimodal signal produced by PLC activation controls these channels in a self-limiting manner. PMID:22183723
Bolk, Jenny; Padilla, Nelly; Forsman, Lea; Broström, Lina; Hellgren, Kerstin; Åden, Ulrika
2018-02-17
This exploratory study aimed to investigate associations between neonatal brain volumes and visual-motor integration (VMI) and fine motor skills in children born extremely preterm (EPT) when they reached 6½ years of age. Prospective population-based cohort study in Stockholm, Sweden, during 3 years. All children born before gestational age, 27 weeks, during 2004-2007 in Stockholm, without major morbidities and impairments, and who underwent MRI at term-equivalent age. Brain volumes were calculated using morphometric analyses in regions known to be involved in VMI and fine motor functions. VMI was assessed with The Beery-Buktenica Developmental Test of Visual-Motor Integration-sixth edition and fine motor skills were assessed with the manual dexterity subtest from the Movement Assessment Battery for Children-second edition, at 6½ years. Associations between the brain volumes and VMI and fine motor skills were evaluated using partial correlation, adjusted for total cerebral parenchyma and sex. Out of 107 children born at gestational age <27 weeks, 83 were assessed at 6½ years and 66/83 were without major brain lesions or cerebral palsy and included in the analyses. A representative subsample underwent morphometric analyses: automatic segmentation (n=34) and atlas-based segmentation (n=26). The precentral gyrus was associated with both VMI (r=0.54, P=0.007) and fine motor skills (r=0.54, P=0.01). Associations were also seen between fine motor skills and the volume of the cerebellum (r=0.42, P=0.02), brainstem (r=0.47, P=0.008) and grey matter (r=-0.38, P=0.04). Neonatal brain volumes in areas known to be involved in VMI and fine motor skills were associated with scores for these two functions when children born EPT without major brain lesions or cerebral palsy were evaluated at 6½ years of age. Establishing clear associations between early brain volume alterations and later VMI and/or fine motor skills could make early interventions possible. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
VMI-VI and BG-II KOPPITZ-2 for Youth with HFASDs and Typical Youth
ERIC Educational Resources Information Center
McDonald, Christin A.; Volker, Martin A.; Lopata, Christopher; Toomey, Jennifer A.; Thomeer, Marcus L.; Lee, Gloria K.; Lipinski, Alanna M.; Dua, Elissa H.; Schiavo, Audrey M.; Bain, Fabienne; Nelson, Andrew T.
2014-01-01
The visual-motor skills of 90 youth with high-functioning autism spectrum disorders (HFASDs) and 51 typically developing (TD) youth were assessed using the Beery-Buktenica Developmental Test of Visual-Motor Integration, Sixth Edition (VMI-VI) and Koppitz Developmental Scoring System for the Bender-Gestalt Test-Second Edition (KOPPITZ-2).…
ERIC Educational Resources Information Center
Schooler, Douglas L.; Anderson, Robert L.
1979-01-01
Analyzes preschoolers' scores on the Developmental Test of Visual Motor Integration (VMI), the Slosson Intelligence Test (SIT), and the ABC Inventory (ABCI). Separate ANOVAs reveal no race effect on the VMI. Race differences favoring Whites are found for SIT and ABCI. There were no effects for sex on any measure. (Author)
Final report on APMP.T-K7.1 key comparison of water triple point cells, bilateral NMIJ-VMI
NASA Astrophysics Data System (ADS)
Yamazawa, Kazuaki; Nakano, Tohru; Thanh Binh, Pham
2018-01-01
APMP.T-K7.1, was held from July 2014 to May 2015 to compare the national realizations of the water triple point between NMIJ (Japan) and VMI (Vietnam). To reach the objective, VMI sent a transfer cell to NMIJ and stated a value for the temperature difference of the transfer cell, relative to the corresponding national standard, representing 273.16 K. This report presents the results of the TPW comparison, gives detailed information about the measurements made at the NMIJ and at the VMI, and aims to link the results of APMP.T-K7.1 to APMP.T-K7 and CCT-K7. The results of this key comparison are also represented in the form of degrees of equivalence for the purposes of the MRA. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Astrophysics Data System (ADS)
Xu, Tongyi; Liang, Ming; Li, Chuan; Yang, Shuai
2015-10-01
A two-terminal mass (TTM) based vibration absorber with variable moment of inertia (VMI) for passive vehicle suspension is proposed. The VMI of the system is achieved by the motion of sliders embedded in a hydraulic driven flywheel. The moment of inertia increases in reaction to strong vertical vehicle oscillations and decreases for weak vertical oscillations. The hydraulic mechanism of the system converts the relative linear motion between the two terminals of the suspension into rotating motion of the flywheel. In the case of stronger vehicle vertical oscillation, the sliders inside the flywheel move away from the center of the flywheel because of the centrifugal force, hence yielding higher moment of inertia. The opposite is true in the case of weaker vehicle oscillation. As such, the moment of inertia adjusts itself adaptively in response to the road conditions. The performance of the proposed TTM-VMI absorber has been analyzed via dynamics modeling and simulation and further examined by experiments. In comparison to its counterpart with constant moment of inertia, the proposed VMI system offers faster response, better road handling and safety, improved ride comfort, and reduced suspension deflection except in the case of sinusoidal excitations.
Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}
NASA Astrophysics Data System (ADS)
Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.
2017-06-01
NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585
Predicting Handwriting Legibility in Taiwanese Elementary School Children.
Lee, Tzu-I; Howe, Tsu-Hsin; Chen, Hao-Ling; Wang, Tien-Ni
This study investigates handwriting characteristics and potential predictors of handwriting legibility among typically developing elementary school children in Taiwan. Predictors of handwriting legibility included visual-motor integration (VMI), visual perception (VP), eye-hand coordination (EHC), and biomechanical characteristics of handwriting. A total of 118 children were recruited from an elementary school in Taipei, Taiwan. A computerized program then assessed their handwriting legibility. The biomechanics of handwriting were assessed using a digitizing writing tablet. The children's VMI, VP, and EHC were assessed using the Beery-Buktenica Developmental Test of Visual-Motor Integration. Results indicated that predictive factors of handwriting legibility varied in different age groups. VMI predicted handwriting legibility for first-grade students, and EHC and stroke force predicted handwriting legibility for second-grade students. Kinematic factors such as stroke velocity were the only predictor for children in fifth and sixth grades. Copyright © 2016 by the American Occupational Therapy Association, Inc.
NASA Astrophysics Data System (ADS)
Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.
2015-05-01
Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.
Aspects of birth history and outcome in diplegics attending specialised educational facilities.
Bischof, Faith; Rothberg, Alan; Ratcliffe, Ingrid
2012-03-21
We aimed to study functional mobility and visual performance in spastic diplegic children and adolescents attending specialised schools. Spastic diplegia (SD) was confirmed by clinical examination. Birth and related history were added to explore relationships between SD, birth weight (BW) and duration of pregnancy. Place of birth, BW, gestational age (GA) and length of hospital stay were obtained by means of parental recall. Outcome measures included the functional mobility scale (FMS) and Beery tests of visuomotor integration (VMI) and visual perception (VIS). Forty participants were included (age 7 years 5 months - 19 years 6 months). Term and preterm births were almost equally represented. Functional mobility assessments showed that 20 were walking independently in school and community settings and the remainder used walking aids or wheelchairs. There were no significant correlations between BW or GA and outcomes (FMS, VIS-Z scores or VMI-Z scores) and Z scores were low. VIS scores correlated significantly with chronological age (p=0.024). There were also significant correlations between VIS and VMI scores and school grade appropriateness (p=0.004;p=0.027 respectively). Both term and preterm births were represented, and outcomes were similar regardless of GA. VIS and VMI were affected in both groups. Half of the group used assistive mobility devices and three-fifths were delayed in terms of their educational level. These problems require specialised teaching strategies, appropriate resources and a school environment that caters for mobility limitations.
Thai Elephant-Assisted Therapy Programme in Children with Down Syndrome.
Satiansukpong, Nuntanee; Pongsaksri, Maethisa; Sasat, Daranee
2016-06-01
The objectives of this study were to examine the effects of the Thai Elephant-Assisted Therapy Programme for children with Down syndrome (DS) (TETP-D) on balance, postural control and visual motor integration (VMI). A quasi-experimental design with blind control was used. Sixteen children with DS from grades 1 to 6, in a Thailand, public school were recruited for this study. The participants were divided voluntarily into two groups: control and experimental. These both groups received regular school activities, but the experimental group had added treatment, which consisted of TETP-D twice a week for 2 months. The balance subtest of the Bruininks-Oseretsky Test of Motor Proficiency 2, the postural control record form and Beery VMI were applied as outcome measure 1 week before and after the TETP-D. The results showed no significant difference in balance or postural control. However, a significant difference of VMI was shown between the two groups (z = 13.5, p = .04). Children with DS benefited from the TETP-D as it improved their VMI. The TETP-D could improve balance and postural control if provided within a suitable frequency and duration. Further research is needed to test this hypothesis. The limitations of this study are the significant differences in some aspects of the groups at pre-test such as gender and supine flexion of postural control. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Li, Yiming; Lee, Sean; Stephens, Joni; Mateo, Luis R; Zhang, Yun Po; DeVizio, William
2012-02-01
To investigate whether the long-term use (6 months) of an arginine-calcium carbonate-MFP toothpaste would affect calculus formation and/or gingivitis when compared to a calcium carbonate-MFP toothpaste. This was a double-blind clinical study. Eligible adult subjects (120) entered a 2-month pre-test phase of the study. After receiving an evaluation of oral tissue and a dental prophylaxis, the subjects were provided with a regular fluoride toothpaste, a soft-bristled adult toothbrush with instructions to brush their teeth for 1-minute twice daily (morning and evening) for 2 months. The subjects were then examined for baseline calculus using the Volpe-Manhold Calculus Index (VMI) and gingivitis using the Löe-Silness Gingival Index (GI), along with an oral tissue examination. Qualifying subjects were randomized to two treatment groups: (1) Colgate Sensitive Pro-Relief toothpaste containing 8.0% arginine, 1450 ppm MFP and calcium carbonate (Test group), or (2) Colgate Cavity Protection toothpaste containing 1450 ppm MFP and calcium carbonate (Control group). Subjects were stratified by the VMI score and gender. After a dental prophylaxis (VMI=0), the subjects entered a 6-month test phase. Each received the assigned toothpaste and a soft-bristled adult toothbrush for home use with instructions of brushing teeth for 1 minute twice daily (morning and evening). The examinations of VMI, Löe-Silness GI and oral tissues were conducted after 3 and 6 months. Prior to each study visit, subjects refrained from brushing their teeth as well as eating and drinking for 4 hours. 99 subjects complied with the study protocol and completed the 6-month test phase. No within-treatment comparison was performed for the VMI because it was brought down to zero after the prophylaxis at the baseline of the test phase. For the Löe-Silness GI, subjects of the Test group exhibited a significant difference from baseline at the 3- and 6-month examinations. The 3-month Löe-Silness GI of the Control group was significantly different from that of the baseline; however, its 6-month Löe-Silness GI was not statistically significantly different from the baseline values. After 3 and 6 months, there were no significant differences between the Test and Control groups with respect to the mean VMI scores; there were no statistically significant differences between the two groups with respect to the Löe-Silness GI results after 3 and 6 months of product use.
Attention and Visual Motor Integration in Young Children with Uncorrected Hyperopia.
Kulp, Marjean Taylor; Ciner, Elise; Maguire, Maureen; Pistilli, Maxwell; Candy, T Rowan; Ying, Gui-Shuang; Quinn, Graham; Cyert, Lynn; Moore, Bruce
2017-10-01
Among 4- and 5-year-old children, deficits in measures of attention, visual-motor integration (VMI) and visual perception (VP) are associated with moderate, uncorrected hyperopia (3 to 6 diopters [D]) accompanied by reduced near visual function (near visual acuity worse than 20/40 or stereoacuity worse than 240 seconds of arc). To compare attention, visual motor, and visual perceptual skills in uncorrected hyperopes and emmetropes attending preschool or kindergarten and evaluate their associations with visual function. Participants were 4 and 5 years of age with either hyperopia (≥3 to ≤6 D, astigmatism ≤1.5 D, anisometropia ≤1 D) or emmetropia (hyperopia ≤1 D; astigmatism, anisometropia, and myopia each <1 D), without amblyopia or strabismus. Examiners masked to refractive status administered tests of attention (sustained, receptive, and expressive), VMI, and VP. Binocular visual acuity, stereoacuity, and accommodative accuracy were also assessed at near. Analyses were adjusted for age, sex, race/ethnicity, and parent's/caregiver's education. Two hundred forty-four hyperopes (mean, +3.8 ± [SD] 0.8 D) and 248 emmetropes (+0.5 ± 0.5 D) completed testing. Mean sustained attention score was worse in hyperopes compared with emmetropes (mean difference, -4.1; P < .001 for 3 to 6 D). Mean Receptive Attention score was worse in 4 to 6 D hyperopes compared with emmetropes (by -2.6, P = .01). Hyperopes with reduced near visual acuity (20/40 or worse) had worse scores than emmetropes (-6.4, P < .001 for sustained attention; -3.0, P = .004 for Receptive Attention; -0.7, P = .006 for VMI; -1.3, P = .008 for VP). Hyperopes with stereoacuity of 240 seconds of arc or worse scored significantly worse than emmetropes (-6.7, P < .001 for sustained attention; -3.4, P = .03 for Expressive Attention; -2.2, P = .03 for Receptive Attention; -0.7, P = .01 for VMI; -1.7, P < .001 for VP). Overall, hyperopes with better near visual function generally performed similarly to emmetropes. Moderately hyperopic children were found to have deficits in measures of attention. Hyperopic children with reduced near visual function also had lower scores on VMI and VP than emmetropic children.
Jessup, Ashley B; Grimley, Mary Beth; Meyer, Echo; Passmore, Gregory P; Belger, Ayşenil; Hoffman, William H; Çalıkoğlu, Ali S
2015-09-01
To evaluate the effects of diabetic ketoacidosis (DKA) on neurocognitive functions in children and adolescents presenting with new-onset type 1 diabetes. Newly diagnosed patients were divided into two groups: those with DKA and those without DKA (non-DKA). Following metabolic stabilization, the patients took a mini-mental status exam prior to undergoing a baseline battery of cognitive tests that evaluated visual and verbal cognitive tasks. Follow-up testing was performed 8-12 weeks after diagnosis. Patients completed an IQ test at follow-up. There was no statistical difference between the DKA and non-DKA groups neither in alertness at baseline testing nor in an IQ test at follow-up. The DKA group had significantly lower baseline scores than the non-DKA group for the visual cognitive tasks of design recognition, design memory and the composite visual memory index (VMI). At follow-up, Design Recognition remained statistically lower in the DKA group, but the design memory and the VMI tasks returned to statistical parity between the two groups. No significant differences were found in verbal cognitive tasks at baseline or follow-up between the two groups. Direct correlations were present for the admission CO2 and the visual cognitive tasks of VMI, design memory and design recognition. Direct correlations were also present for admission pH and VMI, design memory and picture memory. Pediatric patients presenting with newly diagnosed type 1 diabetes and severe but uncomplicated DKA showed a definite trend for lower cognitive functioning when compared to the age-matched patients without DKA.
Inventory Control System by Using Vendor Managed Inventory (VMI)
NASA Astrophysics Data System (ADS)
Sabila, Alzena Dona; Mustafid; Suryono
2018-02-01
The inventory control system has a strategic role for the business in managing inventory operations. Management of conventional inventory creates problems in the stock of goods that often runs into vacancies and excess goods at the retail level. This study aims to build inventory control system that can maintain the stability of goods availability at the retail level. The implementation of Vendor Managed Inventory (VMI) method on inventory control system provides transparency of sales data and inventory of goods at retailer level to supplier. Inventory control is performed by calculating safety stock and reorder point of goods based on sales data received by the system. Rule-based reasoning is provided on the system to facilitate the monitoring of inventory status information, thereby helping the process of inventory updates appropriately. Utilization of SMS technology is also considered as a medium of collecting sales data in real-time due to the ease of use. The results of this study indicate that inventory control using VMI ensures the availability of goods ± 70% and can reduce the accumulation of goods ± 30% at the retail level.
NASA Astrophysics Data System (ADS)
Sutradhar, S.; Samanta, B. R.; Samanta, A. K.; Reisler, H.
2017-07-01
The 205-230 nm photodissociation of vibrationally excited CO2 at temperatures up to 1800 K was studied using Resonance Enhanced Multiphoton Ionization (REMPI) and time-sliced Velocity Map Imaging (VMI). CO2 molecules seeded in He were heated in an SiC tube attached to a pulsed valve and supersonically expanded to create a molecular beam of rotationally cooled but vibrationally hot CO2. Photodissociation was observed from vibrationally excited CO2 with internal energies up to about 20 000 cm-1, and CO(X1Σ+), O(3P), and O(1D) products were detected by REMPI. The large enhancement in the absorption cross section with increasing CO2 vibrational excitation made this investigation feasible. The internal energies of heated CO2 molecules that absorbed 230 nm radiation were estimated from the kinetic energy release (KER) distributions of CO(X1Σ+) products in v″ = 0. At 230 nm, CO2 needs to have at least 4000 cm-1 of rovibrational energy to absorb the UV radiation and produce CO(X1Σ+) + O(3P). CO2 internal energies in excess of 16 000 cm-1 were confirmed by observing O(1D) products. It is likely that initial absorption from levels with high bending excitation accesses both the A1B2 and B1A2 states, explaining the nearly isotropic angular distributions of the products. CO(X1Σ+) product internal energies were estimated from REMPI spectroscopy, and the KER distributions of the CO(X1Σ+), O(3P), and O(1D) products were obtained by VMI. The CO product internal energy distributions change with increasing CO2 temperature, suggesting that more than one dynamical pathway is involved when the internal energy of CO2 (and the corresponding available energy) increases. The KER distributions of O(1D) and O(3P) show broad internal energy distributions in the CO(X1Σ+) cofragment, extending up to the maximum allowed by energy but peaking at low KER values. Although not all the observations can be explained at this time, with the aid of available theoretical studies of CO2 VUV photodissociation and O + CO recombination, it is proposed that following UV absorption, the two lowest lying triplet states, a3B2 and b3A2, and the ground electronic state are involved in the dynamical pathways that lead to product formation.
NASA Astrophysics Data System (ADS)
Liedberg, Hans
2012-01-01
The Comité Consulatif de Thermométrie (CCT) has organized several key comparisons to compare realizations of the ITS-90 in different National Metrology Institutes. To keep the organization, time scale and data processing of such a comparison manageable, the number of participants in a CCT key comparison (CCT KC) is limited to a few laboratories in each major economic region. Subsequent regional key comparisons are linked to the applicable CCT KC by two or more linking laboratories. For the temperature range from 83.8058 K (triple point of Ar) to 933.473 K (freezing point of Al), a key comparison, CCT-K3, was carried out from 1997 to 2001 among representative laboratories in North America, Europe and Asia. Following CCT-K3, the Asia-Pacific Metrology Program Key Comparison 3 (APMP.T-K3) was organized for National Metrology Institutes in the Asia/Pacific region. NMIA (Australia) and KRISS (South Korea) provided the link between CCT-K3 and APMP.T-K3. APMP.T-K3, which took place from February 2000 to June 2003, covered the temperature range from -38.8344 °C (triple point of Hg) to 419.527 °C (freezing point of Zn), using a standard platinum resistance thermometer (SPRT) as the artefact. In June 2007 the Vietnam Metrology Institute (VMI) requested a bilateral comparison to link their SPRT calibration capabilities to APMP.T-K3, and in October 2007 the National Metrology Institute of South Africa (NMISA) agreed to provide the link to APMP.T-K3. Like APMP.T-K3, the comparison was restricted to the Hg to Zn temperature range to reduce the chance of drift in the SPRT artefact. The comparison was carried out in a participant-pilot-participant topology (with NMISA as the pilot and VMI as the participant). VMI's results in the comparison were linked to the Average Reference Values of CCT-K3 via NMISA's results in APMP.T-K3. The resistance ratios measured by VMI and NMISA at Zn, Sn, Ga and Hg fixed points agree within their combined uncertainties, and VMI's results also agree with the CCT-K3 reference values at these fixed points. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Shah, Reshma P.; Spruyt, Karen; Kragie, Brigette C.; Greeley, Siri Atma W.; Msall, Michael E.
2012-01-01
OBJECTIVE To assess performance on an age-standardized neuromotor coordination task among sulfonylurea-treated KCNJ11-related neonatal diabetic patients. RESEARCH DESIGN AND METHODS Nineteen children carrying KCNJ11 mutations associated with isolated diabetes (R201H; n = 8), diabetes with neurodevelopmental impairment (V59M or V59A [V59M/A]; n = 8), or diabetes not consistently associated with neurodevelopmental disability (Y330C, E322K, or R201C; n = 3) were studied using the age-standardized Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI). RESULTS Although R201H subjects tested in the normal range (median standard score = 107), children with V59M/A mutations had significantly lower than expected VMI standard scores (median = 49). The scores for all three groups were significantly different from each other (P = 0.0017). The age of sulfonylurea initiation was inversely correlated with VMI scores in the V59M/A group (P < 0.05). CONCLUSIONS Neurodevelopmental disability in KCNJ11-related diabetes includes visuomotor problems that may be ameliorated by early sulfonylurea treatment. Comprehensive longitudinal assessment on larger samples will be imperative. PMID:22855734
Visual perceptual and handwriting skills in children with Developmental Coordination Disorder.
Prunty, Mellissa; Barnett, Anna L; Wilmut, Kate; Plumb, Mandy
2016-10-01
Children with Developmental Coordination Disorder demonstrate a lack of automaticity in handwriting as measured by pauses during writing. Deficits in visual perception have been proposed in the literature as underlying mechanisms of handwriting difficulties in children with DCD. The aim of this study was to examine whether correlations exist between measures of visual perception and visual motor integration with measures of the handwriting product and process in children with DCD. The performance of twenty-eight 8-14year-old children who met the DSM-5 criteria for DCD was compared with 28 typically developing (TD) age and gender-matched controls. The children completed the Developmental Test of Visual Motor Integration (VMI) and the Test of Visual Perceptual Skills (TVPS). Group comparisons were made, correlations were conducted between the visual perceptual measures and handwriting measures and the sensitivity and specificity examined. The DCD group performed below the TD group on the VMI and TVPS. There were no significant correlations between the VMI or TVPS and any of the handwriting measures in the DCD group. In addition, both tests demonstrated low sensitivity. Clinicians should execute caution in using visual perceptual measures to inform them about handwriting skill in children with DCD. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Esposito, Maria; Ruberto, Maria; Gimigliano, Francesca; Marotta, Rosa; Gallai, Beatrice; Parisi, Lucia; Lavano, Serena Marianna; Roccella, Michele; Carotenuto, Marco
2013-01-01
Background Migraine without aura (MoA) is a painful syndrome, particularly in childhood; it is often accompanied by severe impairments, including emotional dysfunction, absenteeism from school, and poor academic performance, as well as issues relating to poor cognitive function, sleep habits, and motor coordination. Materials and methods The study population consisted of 71 patients affected by MoA (32 females, 39 males) (mean age: 9.13±1.94 years); the control group consisted of 93 normally developing children (44 females, 49 males) (mean age: 8.97±2.03 years) recruited in the Campania school region. The entire population underwent a clinical evaluation to assess total intelligence quotient level, visual-motor integration (VMI) skills, and motor coordination performance, the later using the Movement Assessment Battery for Children (M-ABC). Children underwent training using the Wii-balance board and Nintendo Wii Fit Plus™ software (Nintendo Co, Ltd, Kyoto, Japan); training lasted for 12 weeks and consisted of three 30-minute sessions per week at their home. Results The two starting populations (MoA and controls) were not significantly different for age (P=0.899) and sex (P=0.611). M-ABC and VMI performances at baseline (T0) were significantly different in dexterity, balance, and total score for M-ABC (P<0.001) and visual (P=0.003) and motor (P<0.001) tasks for VMI. After 3 months of Wii training (T1), MoA children showed a significant improvement in M-ABC global performance (P<0.001), M-ABC dexterity (P<0.001), M-ABC balance (P<0.001), and VMI motor task (P<0.001). Conclusion Our study reported the positive effects of the Nintendo Wii Fit Plus™ system as a rehabilitative device for the visuomotor and balance skills impairments among children affected by MoA, even if further research and longer follow-up are needed. PMID:24453490
Esposito, Maria; Ruberto, Maria; Gimigliano, Francesca; Marotta, Rosa; Gallai, Beatrice; Parisi, Lucia; Lavano, Serena Marianna; Roccella, Michele; Carotenuto, Marco
2013-01-01
Migraine without aura (MoA) is a painful syndrome, particularly in childhood; it is often accompanied by severe impairments, including emotional dysfunction, absenteeism from school, and poor academic performance, as well as issues relating to poor cognitive function, sleep habits, and motor coordination. The study population consisted of 71 patients affected by MoA (32 females, 39 males) (mean age: 9.13±1.94 years); the control group consisted of 93 normally developing children (44 females, 49 males) (mean age: 8.97±2.03 years) recruited in the Campania school region. The entire population underwent a clinical evaluation to assess total intelligence quotient level, visual-motor integration (VMI) skills, and motor coordination performance, the later using the Movement Assessment Battery for Children (M-ABC). Children underwent training using the Wii-balance board and Nintendo Wii Fit Plus™ software (Nintendo Co, Ltd, Kyoto, Japan); training lasted for 12 weeks and consisted of three 30-minute sessions per week at their home. The two starting populations (MoA and controls) were not significantly different for age (P=0.899) and sex (P=0.611). M-ABC and VMI performances at baseline (T0) were significantly different in dexterity, balance, and total score for M-ABC (P<0.001) and visual (P=0.003) and motor (P<0.001) tasks for VMI. After 3 months of Wii training (T1), MoA children showed a significant improvement in M-ABC global performance (P<0.001), M-ABC dexterity (P<0.001), M-ABC balance (P<0.001), and VMI motor task (P<0.001). Our study reported the positive effects of the Nintendo Wii Fit Plus™ system as a rehabilitative device for the visuomotor and balance skills impairments among children affected by MoA, even if further research and longer follow-up are needed.
NASA Astrophysics Data System (ADS)
Sue-Ann, Goh; Ponnambalam, S. G.
This paper focuses on the operational issues of a Two-echelon Single-Vendor-Multiple-Buyers Supply chain (TSVMBSC) under vendor managed inventory (VMI) mode of operation. To determine the optimal sales quantity for each buyer in TSVMBC, a mathematical model is formulated. Based on the optimal sales quantity can be obtained and the optimal sales price that will determine the optimal channel profit and contract price between the vendor and buyer. All this parameters depends upon the understanding of the revenue sharing between the vendor and buyers. A Particle Swarm Optimization (PSO) is proposed for this problem. Solutions obtained from PSO is compared with the best known results reported in literature.
The integrated model for solving the single-period deterministic inventory routing problem
NASA Astrophysics Data System (ADS)
Rahim, Mohd Kamarul Irwan Abdul; Abidin, Rahimi; Iteng, Rosman; Lamsali, Hendrik
2016-08-01
This paper discusses the problem of efficiently managing inventory and routing problems in a two-level supply chain system. Vendor Managed Inventory (VMI) policy is an integrating decisions between a supplier and his customers. We assumed that the demand at each customer is stationary and the warehouse is implementing a VMI. The objective of this paper is to minimize the inventory and the transportation costs of the customers for a two-level supply chain. The problem is to determine the delivery quantities, delivery times and routes to the customers for the single-period deterministic inventory routing problem (SP-DIRP) system. As a result, a linear mixed-integer program is developed for the solutions of the SP-DIRP problem.
Optimizing national immunization program supply chain management in Thailand: an economic analysis.
Riewpaiboon, A; Sooksriwong, C; Chaiyakunapruk, N; Tharmaphornpilas, P; Techathawat, S; Rookkapan, K; Rasdjarmrearnsook, A; Suraratdecha, C
2015-07-01
This study aimed to conduct an economic analysis of the transition of the conventional vaccine supply and logistics systems to the vendor managed inventory (VMI) system in Thailand. Cost analysis of health care program. An ingredients based approach was used to design the survey and collect data for an economic analysis of the immunization supply and logistics systems covering procurement, storage and distribution of vaccines from the central level to the lowest level of vaccine administration facility. Costs were presented in 2010 US dollar. The total cost of the vaccination program including cost of vaccine procured and logistics under the conventional system was US$0.60 per packed volume procured (cm(3)) and US$1.35 per dose procured compared to US$0.66 per packed volume procured (cm(3)) and US$1.43 per dose procured under the VMI system. However, the findings revealed that the transition to the VMI system and outsourcing of the supply chain system reduced the cost of immunization program at US$6.6 million per year because of reduction of un-opened vaccine wastage. The findings demonstrated that the new supply chain system would result in efficiency improvement and potential savings to the immunization program compared to the conventional system. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Farhan, Hesso; Reiterer, Veronika; Kriz, Alexander; Hauri, Hans-Peter; Pavelka, Margit; Sitte, Harald H.; Freissmuth, Michael
2015-01-01
Summary The C-terminus of GABA transporter 1 (GAT1, SLC6A1) is required for trafficking of the protein through the secretory pathway to reach its final destination, i.e. the rim of the synaptic specialization. We identified a motif of three hydrophobic residues (569VMI571) that was required for export of GAT1 from the ER-Golgi intermediate compartment (ERGIC). This conclusion was based on the following observations: (i) GAT1-SSS, the mutant in which 569VMI571 was replaced by serine residues, was exported from the ER in a COPII-dependent manner but accumulated in punctate structures and failed to reach the Golgi; (ii) under appropriate conditions (imposing a block at 15°C, disruption of COPI), these structures also contained ERGIC53; (iii) the punctae were part of a dynamic compartment, because it was accessible to a second anterograde cargo [the temperature-sensitive variant of vesicular stomatitis virus G protein (VSV-G)] and because GAT1-SSS could be retrieved from the punctate structures by addition of a KKxx-based retrieval motif, which supported retrograde transport to the ER. To the best of our knowledge, the VMI-motif of GAT1 provides the first example of a cargo-based motif that specifies export from the ERGIC. PMID:18285449
Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae
NASA Astrophysics Data System (ADS)
Sharma, Honey; Mittal, H. M.
2018-03-01
The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.
Memisevic, Haris; Sinanovic, Osman
2013-12-01
The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.
Anti-calculus activity of a toothpaste with microgranules.
Chesters, R K; O'Mullane, D M; Finnerty, A; Huntington, E; Jones, P R
1998-09-01
The objective of the trial was to determine the efficacy of the proven anticalculus active system (zinc citrate trihydrate [ZCT] and triclosan), when the ZCT is delivered from microgranules incorporated in a silica-based toothpaste containing 1450 ppm F as sodium fluoride. A monadic, single-blind, two phase design clinical trial was used to compare the effect of the test and a negative control fluoridated toothpaste on the formation of supragingival calculus. Male and female calculus-forming volunteers, aged 18 or over, were recruited for the study following a 2-week screening phase. All subjects were given a scale and polish of their eight lower anterior teeth at the start of both the pre-test and test phases. Subjects were supplied with a silica-based 1450 F ppm fluoridated toothpaste with no anti-calculus active for use during an 8-week pre-test phase. Calculus was assessed at the end of the pre-test and test phases using the Volpe-Manhold index (VMI). Subjects were stratified according to their pre-test VMI score (8-10, 10.5-12, > 12) and gender and then allocated at random to test or negative control toothpaste groups. Subjects with < 8 mm of calculus were excluded from further participation. The outcome variable was the mean VMI score for the test and negative control groups. The test toothpaste caused a statistically significant 30% reduction in calculus compared with the control paste after a 13-week use. No adverse events were reported during the study. The incorporation of the ZCT in microgranules did not adversely affect the anticalculus activity of the new formulation.
Motor performance in children with Noonan syndrome.
Croonen, Ellen A; Essink, Marlou; van der Burgt, Ineke; Draaisma, Jos M; Noordam, Cees; Nijhuis-van der Sanden, Maria W G
2017-09-01
Although problems with motor performance in daily life are frequently mentioned in Noonan syndrome, the motor performance profile has never been systematically investigated. The aim of this study was to examine whether a specific profile in motor performance in children with Noonan syndrome was seen using valid norm-referenced tests. The study assessed motor performance in 19 children with Noonan syndrome (12 females, mean age 9 years 4 months, range 6 years 1 month to 11 years and 11 months, SDS 1 year and 11 months). More than 60% of the parents of the children reported pain, decreased muscle strength, reduced endurance, and/or clumsiness in daily functioning. The mean standard scores on the Visual Motor Integration (VMI) test and Movement Assessment Battery for Children 2, Dutch version (MABC-2-NL) items differed significantly from the reference scores. Grip strength, muscle force, and 6 min Walking Test (6 MWT) walking distance were significantly lower, and the presence of generalized hypermobility was significantly higher. All MABC-2-NL scores (except manual dexterity) correlated significantly with almost all muscle strength tests, VMI total score, and VMI visual perception score. The 6 MWT was only significantly correlated to grip strength. This is the first study that confirms that motor performance, strength, and endurance are significantly impaired in children with Noonan syndrome. Decreased functional motor performance seems to be related to decreased visual perception and reduced muscle strength. Research on causal relationships and the effectiveness of interventions is needed. Physical and/or occupational therapy guidance should be considered to enhance participation in daily life. © 2017 Wiley Periodicals, Inc.
U.S. Seeks Reversal to Let VMI Stay All Male.
ERIC Educational Resources Information Center
Jaschik, Scott
1995-01-01
The Clinton administration has asked the Supreme Court to force Virginia Military Institute, currently all male, to admit women rather than have the state create a similar leadership program for women at another institution. The case parallels litigation in South Carolina involving the Citadel. (MSE)
Evaluation of the LWVD Luminosity for Use in the Spectral-Based Volume Sensor Algorithms
2010-04-29
VMI Vibro-Meter, Inc. VS Volume Sensor VSCS Volume Sensor Communications Specification VSDS Volume Sensor Detection Suite VSNP Volume Sensor Nodal Panel...using the VSCS communications protocol. Appendix A gives a complete listing of the SBVS EVENT parameters and the EVENT algorithm descriptions. See
Women at VMI and the Citadel: History Reenacted.
ERIC Educational Resources Information Center
Goree, Cathryn T.
1997-01-01
Presents a historical process model for the full integration of women into a male institution based on historical studies of several institutions. Draws analogies to current decisions at Virginia Military Institute and the Citadel, including predictions about ways in which the presence of women will affect the student life of these institutions.…
The Association between Graphomotor Tests and Participation of Typically Developing Young Children
ERIC Educational Resources Information Center
Rosenberg, Limor
2015-01-01
This study aimed to explore the association between graphomotor tests--VMI, ROCF, SWT--and the measures of a child's participation. Seventy-five typically developing children aged 4 to 9 years were individually evaluated using the graphomotor tests and their parents completed a participation questionnaire. After controlling for child's age, the…
NASA Astrophysics Data System (ADS)
Othman, Yahia Abdelrahman
Demand for New Mexico's limited water resources coupled with periodic drought has increased the need to schedule irrigation of pecan orchards based on tree water status. The overall goal of this research was to develop advanced tree water status sensing techniques to optimize irrigation scheduling of pecan orchards. To achieve this goal, I conducted three studies in the La Mancha and Leyendecker orchards, both mature pecan orchards located in the Mesilla Valley, New Mexico. In the first study, I screened leaf-level physiological changes that occurred during cyclic irrigation to determine parameters that best represented changes in plant moisture status. Then, I linked plant physiological changes to remotely-sensed surface reflectance data derived from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+). In the second study, I assessed the impact of water deficits that developed during the flood irrigation dry-down cycles on photosynthesis (A) and gas exchange and established preliminary water deficit thresholds of midday stem water potential (Psi smd) critical to A and gas exchange of pecans. In a third study, I investigated whether hyperspectral data obtained from a handheld spectroradiometer and multispectral remotely-sensed data derived from Landsat 7 ETM+ and Landsat 8 Operational Land Imager (OLI) could detect moisture status in pecans during cyclic flood irrigations. I conducted the first study simultaneously in both orchards. Leaf-level physiological responses and remotely-sensed surface reflectance data were collected from trees that were either well watered or in water deficit. Midday stem water potential was the best leaf-level physiological response to detect moisture status in pecans. Multiple linear regression between Psismd and vegetation indices revealed a significant relationship (R 2 = 0.54) in both orchards. Accordingly, I concluded that remotely-sensed multispectral data form Landsat TMETM+ holds promise for detecting the moisture status of pecans. I conducted the second study simultaneously on the same mature pecan orchards that were used in the first study. Photosynthesis and gas exchange were assessed at Psismd of -0.4 to -2.0 MPa. This study established preliminary values of Psismd that significantly impacted A and gas exchange of field-grown pecans. I recommended that pecan orchards be maintained at Psismd that ranged between -0.80 to -0.90 MPa to prevent significant reductions in A and gas exchange. Broken-line analysis revealed that A remained relatively constant when Psismd was above -0.65 MPa. Conversely, there was linear positive relationship between Psi smd and A when Psismd was less than -0.65 MPa. In the third study, again conducted on both orchards, leaf-level physiological measurements and remotely-sensed data were taken at Psismd levels of -0.40 to -0.85 MPa, -0.95 to -1.45 MPa , and -1.5 to -2.0 MPa. Hyperspectral reflectance indices (from handheld spectroradiometer) detected moisture status in pecan trees better than multispectral reflectance indices (from Landsat ETM+OLI). Vegetation moisture index-I (VMI-I) and vegetation moisture index-II (VMI-II) significantly correlated with Psismd (VMI-I, 0.88 > r > 0.87; VMI-II, -0.68 > r > -0.65). Vegetation moisture index-I Boxplot analysis did not clearly separate moderate water status (-0.95 to -1.45 MPa) at La Mancha, but did so at Leyendecker. However, multispectral reflectance indices had a limited capacity to precisely detect the moderate water status at both orchards (the time when A declined by 15 - 40 %). Given that Psi smd of-0.90 to -1.45 MPa is a critical range for irrigating pecans, I concluded that vegetation indices derived only from hyperspectral reflectance data could be used to detect plant physiological responses that are related to plant water status.
Longitudinal evaluation of fine motor skills in children with leukemia.
Hockenberry, Marilyn; Krull, Kevin; Moore, Ki; Gregurich, Mary Ann; Casey, Marissa E; Kaemingk, Kris
2007-08-01
Improved survival for children with acute lymphocytic leukemia (ALL) has allowed investigators to focus on the adverse or side effects of treatment and to develop interventions that promote cure while decreasing the long-term effects of therapy. Although much attention has been given to the significant neurocognitive sequelae that can occur after ALL therapy, limited investigation is found addressing fine motor function in these children and motor function that may contribute to neurocognitive deficits in ALL survivors. Fine motor and sensory-perceptual performances were examined in 82 children with ALL within 6-months of diagnosis and annually for 2 years (year 1 and year 2, respectively) during therapy. Purdue Pegboard assessments indicated significant slowing of fine motor speed and dexterity for the dominant hand, nondominant hand, and both hands simultaneously for children in this study. Mean Visual-Motor Integration (VMI) scores for children with low-risk and high-risk ALL decreased from the first evaluation to year 1 and again at year 2. Mean VMI scores for children with standard risk ALL increased from the first evaluation to year 1 and then decreased at year 2. Significant positive correlations were found between the Purdue and the VMI at both year 1 and year 2, suggesting that the Pegboard performance consistently predicts the later decline in visual-motor integration. Significant correlations were found between the Purdue Pegboard at baseline and the Performance IQ during year 1, though less consistently during year 2. A similar pattern was also observed between the baseline Pegboard performance and performance on the Coding and Symbol Search subtests during year 1 and year 2. In this study, children with ALL experienced significant and persistent visual-motor problems throughout therapy. These problems continued during the first and second years of treatment. These basic processing skills are necessary to the development of higher-level cognitive abilities, including nonverbal intelligence and academic achievement, particularly in arithmetic and written language.
Farrell, S; Barker, M L; Gerlach, R W; Putt, M S; Milleman, J L
2009-01-01
This randomized controlled clinical trial was conducted to evaluate whether daily use of a hydrogen peroxide/ pyrophosphate-containing antitartar whitening strip might safely yield clinical reductions in post-prophylaxis calculus accumulation. A three-month, randomized controlled trial was conducted to compare calculus accumulation with a daily 6% hydrogen peroxide/pyrophosphate strip versus regular brushing. After an eight-week run-in phase to identify calculus formers, a prophylaxis was administered, and 77 subjects were randomly assigned to daily strip or brushing only groups. All subjects received an anticavity dentifrice (Crest Cavity Protection) and manual brush for use throughout the three-month study; for subjects assigned to the experimental group, strip application was once daily for five minutes on the facial and lingual surfaces of the mandibular teeth. Efficacy was measured as mm calculus (VMI) before prophylaxis and after six and 12 weeks of treatment, while safety was assessed from examination and interview. Subjects ranged in age from 21-87 years, with groups balanced (p > 0.26) on pertinent demographic and behavioral parameters, and pre-prophylaxis calculus baseline mean scores (16.0 mm). At Week 6, calculus accumulation was lower in the strip group, with adjusted mean (SE) lingual VMI of 12.0 (0.87) for the strip group and 17.0 (0.88) for the brushing control. At Week 12, calculus accumulation was lower in the strip group, with adjusted mean (SE) lingual VMI of 14.3 (0.85) for the strip group and 17.2 (0.86) for the brushing control. Treatments differed significantly (p < 0.02) on calculus accumulation at both time points. A total of three subjects (8%) in the strip group and two subjects (5%) in the brushing control had mild oral irritation or tooth sensitivity during treatment; no one discontinued early due to an adverse event. Daily use of hydrogen peroxide whitening strips with pyrophosphate reduced calculus formation by up to 29% versus regular brushing, without meaningful adverse events.
Pienaar, A E; Barhorst, R; Twisk, J W R
2014-05-01
Perceptual-motor skills contribute to a variety of basic learning skills associated with normal academic success. This study aimed to determine the relationship between academic performance and perceptual-motor skills in first grade South African learners and whether low SES (socio-economic status) school type plays a role in such a relationship. This cross-sectional study of the baseline measurements of the NW-CHILD longitudinal study included a stratified random sample of first grade learners (n = 812; 418 boys and 394 boys), with a mean age of 6.78 years ± 0.49 living in the North West Province (NW) of South Africa. The Beery-Buktenica Developmental Test of Visual-Motor Integration-4 (VMI) was used to assess visual-motor integration, visual perception and hand control while the Bruininks Oseretsky Test of Motor Proficiency, short form (BOT2-SF) assessed overall motor proficiency. Academic performance in math, reading and writing was assessed with the Mastery of Basic Learning Areas Questionnaire. Linear mixed models analysis was performed with spss to determine possible differences between the different VMI and BOT2-SF standard scores in different math, reading and writing mastery categories ranging from no mastery to outstanding mastery. A multinomial multilevel logistic regression analysis was performed to assess the relationship between a clustered score of academic performance and the different determinants. A strong relationship was established between academic performance and VMI, visual perception, hand control and motor proficiency with a significant relationship between a clustered academic performance score, visual-motor integration and visual perception. A negative association was established between low SES school types on academic performance, with a common perceptual motor foundation shared by all basic learning areas. Visual-motor integration, visual perception, hand control and motor proficiency are closely related to basic academic skills required in the first formal school year, especially among learners in low SES type schools. © 2013 John Wiley & Sons Ltd.
Quantum State-Resolved Reactive and Inelastic Scattering at Gas-Liquid and Gas-Solid Interfaces
NASA Astrophysics Data System (ADS)
Grütter, Monika; Nelson, Daniel J.; Nesbitt, David J.
2012-06-01
Quantum state-resolved reactive and inelastic scattering at gas-liquid and gas-solid interfaces has become a research field of considerable interest in recent years. The collision and reaction dynamics of internally cold gas beams from liquid or solid surfaces is governed by two main processes, impulsive scattering (IS), where the incident particles scatter in a few-collisions environment from the surface, and trapping-desorption (TD), where full equilibration to the surface temperature (T{TD}≈ T{s}) occurs prior to the particles' return to the gas phase. Impulsive scattering events, on the other hand, result in significant rotational, and to a lesser extent vibrational, excitation of the scattered molecules, which can be well-described by a Boltzmann-distribution at a temperature (T{IS}>>T{s}). The quantum-state resolved detection used here allows the disentanglement of the rotational, vibrational, and translational degrees of freedom of the scattered molecules. The two examples discussed are (i) reactive scattering of monoatomic fluorine from room-temperature ionic liquids (RTILs) and (ii) inelastic scattering of benzene from a heated (˜500 K) gold surface. In the former experiment, rovibrational states of the nascent HF beam are detected using direct infrared absorption spectroscopy, and in the latter, a resonace-enhanced multi-photon-ionization (REMPI) scheme is employed in combination with a velocity-map imaging (VMI) device, which allows the detection of different vibrational states of benzene excited during the scattering process. M. E. Saecker, S. T. Govoni, D. V. Kowalski, M. E. King and G. M. Nathanson Science 252, 1421, 1991. A. M. Zolot, W. W. Harper, B. G. Perkins, P. J. Dagdigian and D. J. Nesbitt J. Chem. Phys 125, 021101, 2006. J. R. Roscioli and D. J. Nesbitt Faraday Disc. 150, 471, 2011.
Berthias, F; Feketeová, L; Abdoul-Carime, H; Calvo, F; Farizon, B; Farizon, M; Märk, T D
2018-06-22
Velocity distributions of neutral water molecules evaporated after collision induced dissociation of protonated water clusters H+(H2O)n≤10 were measured using the combined correlated ion and neutral fragment time-of-flight (COINTOF) and velocity map imaging (VMI) techniques. As observed previously, all measured velocity distributions exhibit two contributions, with a low velocity part identified by statistical molecular dynamics (SMD) simulations as events obeying the Maxwell-Boltzmann statistics and a high velocity contribution corresponding to non-ergodic events in which energy redistribution is incomplete. In contrast to earlier studies, where the evaporation of a single molecule was probed, the present study is concerned with events involving the evaporation of up to five water molecules. In particular, we discuss here in detail the cases of two and three evaporated molecules. Evaporation of several water molecules after CID can be interpreted in general as a sequential evaporation process. In addition to the SMD calculations, a Monte Carlo (MC) based simulation was developed allowing the reconstruction of the velocity distribution produced by the evaporation of m molecules from H+(H2O)n≤10 cluster ions using the measured velocity distributions for singly evaporated molecules as the input. The observed broadening of the low-velocity part of the distributions for the evaporation of two and three molecules as compared to the width for the evaporation of a single molecule results from the cumulative recoil velocity of the successive ion residues as well as the intrinsically broader distributions for decreasingly smaller parent clusters. Further MC simulations were carried out assuming that a certain proportion of non-ergodic events is responsible for the first evaporation in such a sequential evaporation series, thereby allowing to model the entire velocity distribution.
Visuomotor Integration and Inhibitory Control Compensate for Each Other in School Readiness
ERIC Educational Resources Information Center
Cameron, Claire E.; Brock, Laura L.; Hatfield, Bridget E.; Cottone, Elizabeth A.; Rubinstein, Elise; LoCasale-Crouch, Jennifer; Grissmer, David W.
2015-01-01
Visuomotor integration (VMI), or the ability to copy designs, and 2 measures of executive function were examined in a predominantly low-income, typically developing sample of children (n = 467, mean age 4.2 years) from 5 U.S. states. In regression models controlling for age and demographic variables, we tested the interaction between visuomotor…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... Corporate Park, 5675 N. Blackstock Rd., Spartanburg; Site 5 (118 acres)--Key Logistics, 101 Michelin Dr... Site 13 (318 acres)--VMI Logistics Park, Victor Hill Rd., Greer. Because the ASF only pertains to... Center, Brookshire Rd. and SC Hwy. 101, Greer; Site 3 (116 acres total)--Highway 290 Commerce Park, 201...
ERIC Educational Resources Information Center
University City School District, MO.
The development and content of the Early Education Screening Test Battery are described elsewhere (TM 000 184). This report provides norms for the Gross Motor Test (GMO), Visual-Motor Integration (VMI), four scales of the Illinois Test of Psycholinguistic Abilities (ITPA), Peabody Picture Vocabulary Test (PPVT), and the Behavior Rating Scale…
Visual, Motor, and Visual-Motor Integration Difficulties in Students with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Oliver, Kimberly
2013-01-01
Autism spectrum disorders (ASDs) affect 1 in every 88 U.S. children. ASDs have been described as neurological and developmental disorders impacting visual, motor, and visual-motor integration (VMI) abilities that affect academic achievement (CDC, 2010). Forty-five participants (22 ASD and 23 Typically Developing [TD]) 8 to 14 years old completed…
ERIC Educational Resources Information Center
Sutton, Griffin P.; Barchard, Kimberly A.; Bello, Danielle T.; Thaler, Nicholas S.; Ringdahl, Erik; Mayfield, Joan; Allen, Daniel N.
2011-01-01
Evaluation of visuoconstructional abilities is a common part of clinical neuropsychological assessment, and the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI; K. E. Beery & N. A. Beery, 2004) is often used for this purpose. However, few studies have examined its psychometric properties when used to assess children and…
Handwriting capacity in children newly diagnosed with Attention Deficit Hyperactivity Disorder.
Brossard-Racine, Marie; Majnemer, Annette; Shevell, Michael; Snider, Laurie; Bélanger, Stacey Ageranioti
2011-01-01
Preliminary evidence suggests that children with Attention Deficit Hyperactivity Disorder (ADHD) may exhibit handwriting difficulties. However, the exact nature of these difficulties and the extent to which they may relate to motor or behavioural difficulties remains unclear. The aim of this study was to describe handwriting capacity in children newly diagnosed with ADHD and identify predictors of performance. Forty medication-naïve children with ADHD (mean age 8.1 years) were evaluated with the Evaluation Tool of Children's Handwriting-Manuscript, the Movement Assessment Battery for Children (M-ABC), the Developmental Test of Visual Motor Integration (VMI) and the Conner Global Index. An important subset (85.0%) exhibited manual dexterity difficulties. Handwriting performance was extremely variable in terms of speed and legibility. VMI was the most important predictor of legibility. Upper extremity coordination, as measured by the M-ABC ball skills subtest, was also a good predictor of word legibility. Poor handwriting legibility and slow writing speed were common in children newly diagnosed with ADHD and were associated with motor abilities. Future studies are needed to determine whether interventions, including stimulant medications, can improve handwriting performance and related motor functioning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lahav, Orit; Apter, Alan; Ratzon, Navah Z
2013-01-01
This study evaluates how much the effects of intervention programs are influenced by pre-existing psychological adjustment and self-esteem levels in kindergarten and first grade children with poor visual-motor integration skills, from low socioeconomic backgrounds. One hundred and sixteen mainstream kindergarten and first-grade children, from low socioeconomic backgrounds, scoring below the 25th percentile on a measure of visual-motor integration (VMI) were recruited and randomly divided into two parallel intervention groups. One intervention group received directive visual-motor intervention (DVMI), while the second intervention group received a non-directive supportive intervention (NDSI). Tests were administered to evaluate visual-motor integration skills outcome. Children with higher baseline measures of psychological adjustment and self-esteem responded better in NDSI while children with lower baseline performance on psychological adjustment and self-esteem responded better in DVMI. This study suggests that children from low socioeconomic backgrounds with low VMI performance scores will benefit more from intervention programs if clinicians choose the type of intervention according to baseline psychological adjustment and self-esteem measures. Copyright © 2012 Elsevier Ltd. All rights reserved.
Temple, V; Drummond, C; Valiquette, S; Jozsvai, E
2010-06-01
Video conferencing (VC) technology has great potential to increase accessibility to healthcare services for those living in rural or underserved communities. Previous studies have had some success in validating a small number of psychological tests for VC administration; however, VC has not been investigated for use with persons with intellectual disabilities (ID). A comparison of test results for two well known and widely used assessment instruments was undertaken to establish if scores for VC administration would differ significantly from in-person assessments. Nineteen individuals with ID aged 23-63 were assessed once in-person and once over VC using the Wechsler Abbreviated Scale of Intelligence (WASI) and the Beery-Buktenica Test of Visual-Motor Integration (VMI). Highly similar results were found for test scores. Full-scale IQ on the WASI and standard scores for the VMI were found to be very stable across the two administration conditions, with a mean difference of less than one IQ point/standard score. Video conferencing administration does not appear to alter test results significantly for overall score on a brief intelligence test or a test of visual-motor integration.
A Cooperative Approach to Virtual Machine Based Fault Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton III, Thomas J; Engelmann, Christian; Vallee, Geoffroy R
Resilience investigations often employ fault injection (FI) tools to study the effects of simulated errors on a target system. It is important to keep the target system under test (SUT) isolated from the controlling environment in order to maintain control of the experiement. Virtual machines (VMs) have been used to aid these investigations due to the strong isolation properties of system-level virtualization. A key challenge in fault injection tools is to gain proper insight and context about the SUT. In VM-based FI tools, this challenge of target con- text is increased due to the separation between host and guest (VM).more » We discuss an approach to VM-based FI that leverages virtual machine introspection (VMI) methods to gain insight into the target s context running within the VM. The key to this environment is the ability to provide basic information to the FI system that can be used to create a map of the target environment. We describe a proof- of-concept implementation and a demonstration of its use to introduce simulated soft errors into an iterative solver benchmark running in user-space of a guest VM.« less
Introspections on the Semantic Gap
2015-04-14
cloud comput - ing. Zhang received an MS in computer science from Stony Brook University. Contact him at dozhang@ cs.stonybrook.edu. Donald E. Porter...designated by other documentation. ... 2 March/April 2015 Copublished by the IEEE Computer and Reliability Societies 1540-7993/15/$31.00 © 2015 IEEE IEEE S...pauses the VM, and the VMI tool introspects the process descriptor list. In contrast, an asynchronous mechanism would intro - spect memory
Bo, Jin; Colbert, Alison; Lee, Chi-Mei; Schaffert, Jeffrey; Oswald, Kaitlin; Neill, Rebecca
2014-09-01
Children with Developmental Coordination Disorder (DCD) often experience difficulties in handwriting. The current study examined the relationships between three motor assessments and the spatial and temporal consistency of handwriting. Twelve children with probable DCD and 29 children from 7 to 12 years who were typically developing wrote the lowercase letters "e" and "l" in cursive and printed forms repetitively on a digitizing tablet. Three behavioral assessments, including the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI), the Minnesota Handwriting Assessment (MHA) and the Movement Assessment Battery for Children (MABC), were administered. Children with probable DCD had low scores on the VMI, MABC and MHA and showed high temporal, not spatial, variability in the letter-writing task. Their MABC scores related to temporal consistency in all handwriting conditions, and the Legibility scores in their MHA correlated with temporal consistency in cursive "e" and printed "l". It appears that children with probable DCD have prominent difficulties on the temporal aspect of handwriting. While the MHA is a good product-oriented assessment for measuring handwriting deficits, the MABC shows promise as a good assessment for capturing the temporal process of handwriting in children with DCD. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mashuri, Chamdan; Suryono; Suseno, Jatmiko Endro
2018-02-01
This research was conducted by prediction of safety stock using Fuzzy Time Series (FTS) and technology of Radio Frequency Identification (RFID) for stock control at Vendor Managed Inventory (VMI). Well-controlled stock influenced company revenue and minimized cost. It discussed about information system of safety stock prediction developed through programming language of PHP. Input data consisted of demand got from automatic, online and real time acquisition using technology of RFID, then, sent to server and stored at online database. Furthermore, data of acquisition result was predicted by using algorithm of FTS applying universe of discourse defining and fuzzy sets determination. Fuzzy set result was continued to division process of universe of discourse in order to be to final step. Prediction result was displayed at information system dashboard developed. By using 60 data from demand data, prediction score was 450.331 and safety stock was 135.535. Prediction result was done by error deviation validation using Mean Square Percent Error of 15%. It proved that FTS was good enough in predicting demand and safety stock for stock control. For deeper analysis, researchers used data of demand and universe of discourse U varying at FTS to get various result based on test data used.
Efficient Checkpointing of Virtual Machines using Virtual Machine Introspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderholdt, Ferrol; Han, Fang; Scott, Stephen L
Cloud Computing environments rely heavily on system-level virtualization. This is due to the inherent benefits of virtualization including fault tolerance through checkpoint/restart (C/R) mechanisms. Because clouds are the abstraction of large data centers and large data centers have a higher potential for failure, it is imperative that a C/R mechanism for such an environment provide minimal latency as well as a small checkpoint file size. Recently, there has been much research into C/R with respect to virtual machines (VM) providing excellent solutions to reduce either checkpoint latency or checkpoint file size. However, these approaches do not provide both. This papermore » presents a method of checkpointing VMs by utilizing virtual machine introspection (VMI). Through the usage of VMI, we are able to determine which pages of memory within the guest are used or free and are better able to reduce the amount of pages written to disk during a checkpoint. We have validated this work by using various benchmarks to measure the latency along with the checkpoint size. With respect to checkpoint file size, our approach results in file sizes within 24% or less of the actual used memory within the guest. Additionally, the checkpoint latency of our approach is up to 52% faster than KVM s default method.« less
Limitations of the Neurological Evolutional Exam (ENE) as a motor assessment for first graders.
Caçola, Priscila M; Bobbio, Tatiana G; Arias, Amabile V; Gonçalves, Vanda G; Gabbard, Carl
2010-01-01
many clinicians and researchers in Brazil consider the Neurological Developmental Exam (NDE), a valid and reliable assessment for Brazilian school-aged children. However, since its inception, several tests have emerged that, according to some researchers, provide more in-depth evaluation of motor ability and go beyond the detection of general motor status (soft neurological signs). to highlight the limitations of the NDE as a motor skill assessment for first graders. thirty-five children were compared on seven selected items of the NDE, seven of the Bruininks-Oseretsky Test (BOT), and seven of the Visual-Motor Integration test (VMI). Participants received a "pass" or "fail" score for each item, as prescribed by the respective test manual. chi-square and ANOVA results indicated that the vast majority of children (74%) passed the NDE items, whereas values for the other tests were 29% (BOT) and 20% (VMI). Analysis of specific categories (e.g. visual, fine, and gross motor coordination) revealed a similar outcome. our data suggest that while the NDE may be a valid and reliable test for the detection of general motor status, its use as a diagnostic/remedial tool for identifying motor ability is questionable. One of our recommendations is the consideration of a revised NDE in light of the current needs of clinicians and researchers.
Fairbrother, K J; Kowolik, M J; Curzon, M E; Müller, I; McKeown, S; Hill, C M; Hannigan, C; Bartizek, R D; White, D J
1997-01-01
Three triclosan-containing "multi-benefit" dentifrices were compared for clinical efficacy in reducing supragingival calculus formation following a dental prophylaxis. A total of 544 subjects completed a double-blind parallel-group clinical study using the Volpe-Manhold Index (VMI) to record severity and occurrence of supragingival calculus. The study design included a pre-test period where the calculus formation rate was measured in subjects brushing with a placebo dentifrice. Following a prophylaxis, subjects were stratified for age, gender and VMI scores and assigned to one of four treatments: 1) a dentifrice containing 5.0% soluble pyrophosphate/0.145% fluoride as NaF/silica abrasive/0.28% triclosan (hereafter PPi/TCS-comparable to Crest Complete dentifrice, Procter & Gamble, UK); 2) a commercial dentifrice containing 2.0% Gantrez acid copolymer/ 0.145% fluoride as NaF/silica abrasive/0.30% triclosan (hereafter Gan/TCS-Colgate Total dentifrice, Colgate-Palmolive Company, UK); 3) a commercial dentifrice containing 0.5% zinc citrate trihydrate/0.15% fluoride as sodium monofluorophosphate/silica abrasive/0.20% triclosan (hereafter Zn/TCS-Mentadent P dentifrice, Unilever, UK); and 4) a control dentifrice comprised of 0.145% fluoride as NaF/silica abrasive (hereafter Control). Subjects were instructed to use their assigned dentifrice at least twice per day and to brush as they do normally. Supragingival calculus formation was assesed at two and four months using site-specific and whole-mouth VMI indices for both calculus severity and occurrence. Following four months of use, the PPi/TCS dentifrice provided statistically significant reductions in calculus severity (22-23%) and occurrence (15%) as compared with the Control dentifrice. The Zn/TCS dentifrice also provided significant reductions in calculus severity (17-19%) and occurrence (12-13%) as compared with the Control. The Gan/TCS produced no statistically significant reductions in calculus formation (occurrence or severity) compared with the Control. The PPi/TCS dentifrice provided statistically significant reductions in calculus severity (15-21%) and occurrence (12-16%) as compared with the Gan/TCS dentifrice. These results support the clinical effectiveness of PPi/TCS and Zn/TCS dentifrices for the reduction of supragingival dental calculus formation following a dental prophylaxis.
Role of p53 in cdk Inhibitor VMY-1-103-induced Apoptosis in Prostate Cancer
2013-11-01
DAOY medulloblastoma cells, which have a p53 mutation (6). In order to examine if this holds true in prostate cancer cell lines, I stably transfected...disrupts chromosome organization and delays metaphase progression in medulloblastoma cells. Cancer Biol Ther. 2011 Nov 1;12(9):818-26 Other...1-103 is a novel CDK inhibitor that disrupts chromosome organization and delays metaphase progression in medulloblastoma cells. Cancer Biol Ther
Role of p53 in cdk Inhibitor VMY-1-103-Induced Apoptosis in Prostate Cancer
2012-09-01
trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog /GLI pathway. J Clin Invest. 2011 Jan 4;121(1):148- 60...subclassified the tumors based on gene expression patterns and chromosomal abnormalities.4-6 Dysregulation of Hedgehog (Hh) signaling, defined as the c3...Eberhart CG. Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am J Pathol 2007; 170:347-55; PMID:17200206; DOI:10.2353/ajpath
A novel approach for inventory problem in the pharmaceutical supply chain.
Candan, Gökçe; Yazgan, Harun Reşit
2016-02-24
In pharmaceutical enterprises, keeping up with global market conditions is possible with properly selected supply chain management policies. Generally; demand-driven classical supply chain model is used in the pharmaceutical industry. In this study, a new mathematical model is developed to solve an inventory problem in the pharmaceutical supply chain. Unlike the studies in literature, the "shelf life and product transition times" constraints are considered, simultaneously, first time in the pharmaceutical production inventory problem. The problem is formulated as a mixed-integer linear programming (MILP) model with a hybrid time representation. The objective is to maximize total net profit. Effectiveness of the proposed model is illustrated considering a classical and a vendor managed inventory (VMI) supply chain on an experimental study. To show the effectiveness of the model, an experimental study is performed; which contains 2 different supply chain policy (Classical and VMI), 24 and 30 months planning horizon, 10 and 15 different cephalosporin products. Finally the mathematical model is compared to another model in literature and the results show that proposed model is superior. This study suggest a novel approach for solving pharmaceutical inventory problem. The developed model is maximizing total net profit while determining optimal production plan under shelf life and product transition constraints in the pharmaceutical industry. And we believe that the proposed model is much more closed to real life unlike the other studies in literature.
Ehlers, Justis P; Han, Jaehong; Petkovsek, Daniel; Kaiser, Peter K; Singh, Rishi P; Srivastava, Sunil K
2015-11-01
To assess retinal architectural alterations that occur following membrane peeling procedures and the impact of peel technique on these alterations utilizing intraoperative optical coherence tomography (iOCT). This is a subanalysis of the prospective PIONEER iOCT study of eyes undergoing a membrane peeling for a vitreomacular interface (VMI) disorder. Intraoperative scanning was performed with a microscope-mounted OCT system. Macroarchitectural alterations (e.g., full-thickness retinal elevations) and microarchitectural alterations (e.g., relative layer thickness alterations) were analyzed. Video/iOCT correlation was performed to identify instrument-tissue manipulations resulting in macroarchitectural alterations. One hundred sixty-three eyes were included in the macroarchitectural analysis. Instrumentation utilized for membrane peeling included forceps alone for 73 eyes (45%), combined diamond-dusted membrane scraper (DDMS) and forceps for 87 eyes (53%), and other techniques in three eyes (2%). Focal retinal elevations were identified in 45 of 163 eyes (28%). Video/iOCT correlation identified 69% of alterations involved forceps compared to 26% due to DDMS. Sixteen percent of retinal alterations persisted 1 month following surgery. The microarchitectural analysis included 134 eyes. Immediately following membrane peeling, there was a significant increase in the ellipsoid zone to retinal pigment epithelium height (+20%, P < 0.00001) and the cone outer segment tips to retinal pigment epithelium height (+18%, P < 0.00001). Significant subclinical retinal architectural changes occur during membrane peeling for VMI conditions. Differences in surgical instruments may impact these architectural alterations.
Turner, Benjamin; Kennedy, Areti; Kendall, Melissa; Muenchberger, Heidi
2014-01-01
To examine the effectiveness of a targeted training approach to foster and support a peer-professional workforce in the delivery of a community rehabilitation program for adults with acquired brain injury (ABI) and their families. A prospective longitudinal design was used to evaluate the effectiveness of a targeted two-day training forum for peer (n = 25) and professional (n = 15) leaders of the Skills to Enable People and Communities Program. Leaders completed a set of questionnaires (General Self-Efficacy Scale - GSES, Rosenberg Self-Esteem Scale, Volunteer Motivation Inventory - VMI and Community Involvement Scale - CIS) both prior to and immediately following the forum. Data analysis entailed paired sample t-test to explore changes in scores over time, and independent sample t-tests for comparisons between the two participant groups. The results indicated a significant increase in scores over time for the GSES (p = 0.047). Improvements in leaders' volunteer motivations and community involvement were also observed between the two time intervals. The between group comparisons highlighted that the peer leader group scored significantly higher than the professional leader group on the CIS and several domains of the VMI at both time intervals. The study provides an enhanced understanding of the utility of innovative workforce solutions for community rehabilitation after ABI; and further highlights the benefits of targeted training approaches to support the development of such workforce configurations.
Image enhancement by non-linear extrapolation in frequency space
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)
1998-01-01
An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.
Advantage of spatial map ion imaging in the study of large molecule photodissociation
NASA Astrophysics Data System (ADS)
Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung
2017-07-01
The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.
Swift, Andrew J.; Wild, Jim M.; Nagle, Scott K.; Roldán-Alzate, Alejandro; François, Christopher J.; Fain, Sean; Johnson, Kevin; Capener, Dave; van Beek, Edwin J. R.; Kiely, David G.; Wang, Kang; Schiebler, Mark L.
2014-01-01
Pulmonary hypertension (PH) is a condition of varied aetiology, commonly associated with a poor clinical outcome. Patients are categorised on the basis of pathophysiological, clinical, radiological and therapeutic similarities. Pulmonary arterial hypertension (PAH) is often diagnosed late in its disease course with outcome dependent on aetiology, disease severity and response to treatment. Recent advances in quantitative MR imaging allow for a better initial characterization and measurement of the morphologic and flow related changes that accompany the response of the heart-lung axis to prolonged elevation of pulmonary arterial pressure and resistance and provide a reproducible, comprehensive and non-invasive means of assessing the course of the disease and response to treatment. Typical features of pulmonary arterial hypertension (PAH) occur primarily as a result of increased pulmonary vascular resistance and resultant increased RV afterload. Several MRI derived diagnostic markers have emerged, such as ventricular mass index (VMI), interventricular septal configuration and average pulmonary artery velocity having reported diagnostic accuracy similar to Doppler echocardiography. Furthermore, prognostic markers have been identified with independent predictive value for identification of treatment failure. Such markers include: large right ventricular end-diastolic volume index (RVEDVI), low left ventricular end diastolic volume index (LVEDVI), low right ventricular ejection fraction (RVEF) and relative area change of the pulmonary trunk. MRI is ideally suited to longitudinal follow-up of patients with PAH due to its non-invasive nature, high reproducibility and has the advantage over other biomarkers in PAH due to its sensitivity to change in morphological, functional and flow related parameters. Further study the role of MR imaging as a biomarker in the clinical environment is warranted. PMID:24552882
Criteria for the optimal selection of remote sensing optical images to map event landslides
NASA Astrophysics Data System (ADS)
Fiorucci, Federica; Giordan, Daniele; Santangelo, Michele; Dutto, Furio; Rossi, Mauro; Guzzetti, Fausto
2018-01-01
Landslides leave discernible signs on the land surface, most of which can be captured in remote sensing images. Trained geomorphologists analyse remote sensing images and map landslides through heuristic interpretation of photographic and morphological characteristics. Despite a wide use of remote sensing images for landslide mapping, no attempt to evaluate how the image characteristics influence landslide identification and mapping exists. This paper presents an experiment to determine the effects of optical image characteristics, such as spatial resolution, spectral content and image type (monoscopic or stereoscopic), on landslide mapping. We considered eight maps of the same landslide in central Italy: (i) six maps obtained through expert heuristic visual interpretation of remote sensing images, (ii) one map through a reconnaissance field survey, and (iii) one map obtained through a real-time kinematic (RTK) differential global positioning system (dGPS) survey, which served as a benchmark. The eight maps were compared pairwise and to a benchmark. The mismatch between each map pair was quantified by the error index, E. Results show that the map closest to the benchmark delineation of the landslide was obtained using the higher resolution image, where the landslide signature was primarily photographical (in the landslide source and transport area). Conversely, where the landslide signature was mainly morphological (in the landslide deposit) the best mapping result was obtained using the stereoscopic images. Albeit conducted on a single landslide, the experiment results are general, and provide useful information to decide on the optimal imagery for the production of event, seasonal and multi-temporal landslide inventory maps.
Samango-Sprouse, Carole; Lawson, Patrick; Sprouse, Courtney; Stapleton, Emily; Sadeghin, Teresa; Gropman, Andrea
2016-05-01
Kleefstra syndrome (KS) is a rare neurogenetic disorder most commonly caused by deletion in the 9q34.3 chromosomal region and is associated with intellectual disabilities, severe speech delay, and motor planning deficits. To our knowledge, this is the first patient (PQ, a 6-year-old female) with a 9q34.3 deletion who has near normal intelligence, and developmental dyspraxia with childhood apraxia of speech (CAS). At 6, the Wechsler Preschool and Primary Intelligence testing (WPPSI-III) revealed a Verbal IQ of 81 and Performance IQ of 79. The Beery Buktenica Test of Visual Motor Integration, 5th Edition (VMI) indicated severe visual motor deficits: VMI = 51; Visual Perception = 48; Motor Coordination < 45. On the Receptive One Word Picture Vocabulary Test-R (ROWPVT-R), she had standard scores of 96 and 99 in contrast to an Expressive One Word Picture Vocabulary-R (EOWPVT-R) standard scores of 73 and 82, revealing a discrepancy in vocabulary domains on both evaluations. Preschool Language Scale-4 (PLS-4) on PQ's first evaluation reveals a significant difference between auditory comprehension and expressive communication with standard scores of 78 and 57, respectively, further supporting the presence of CAS. This patient's near normal intelligence expands the phenotypic profile as well as the prognosis associated with KS. The identification of CAS in this patient provides a novel explanation for the previously reported speech delay and expressive language disorder. Further research is warranted on the impact of CAS on intelligence and behavioral outcome in KS. Therapeutic and prognostic implications are discussed. © 2016 Wiley Periodicals, Inc.
Axford, Caitlin; Joosten, Annette V; Harris, Courtenay
2018-04-01
Children are reported to spend less time engaged in outdoor activity and object-related play than in the past. The increased use and mobility of technology, and the ease of use of tablet devices are some of the factors that have contributed to these changes. Concern has been raised that the use of such screen and surface devices in very young children is reducing their fine motor skill development. We examined the effectiveness of iPad applications that required specific motor skills designed to improve fine motor skills. We conducted a two-group non-randomised controlled trial with two pre-primary classrooms (53 children; 5-6 years) in an Australian co-educational school, using a pre- and post-test design. The effectiveness of 30 minutes daily use of specific iPad applications for 9 weeks was compared with a control class. Children completed the Beery Developmental Test of Visual Motor Integration (VMI) and observation checklist, the Shore Handwriting Screen, and self-care items from the Hawaii Early Learning Profile. On post testing, the experimental group made a statistically and clinically significant improvement on the VMI motor coordination standard scores with a moderate clinical effect size (P < 0.001; d = 0.67). Children's occupational performance in daily tasks also improved. Preliminary evidence was gained for using the iPad, with these motor skill-specific applications as an intervention in occupational therapy practice and as part of at home or school play. © 2018 Occupational Therapy Australia.
Zhou, Zhengdong; Guan, Shaolin; Xin, Runchao; Li, Jianbo
2018-06-01
Contrast-enhanced subtracted breast computer tomography (CESBCT) images acquired using energy-resolved photon counting detector can be helpful to enhance the visibility of breast tumors. In such technology, one challenge is the limited number of photons in each energy bin, thereby possibly leading to high noise in separate images from each energy bin, the projection-based weighted image, and the subtracted image. In conventional low-dose CT imaging, iterative image reconstruction provides a superior signal-to-noise compared with the filtered back projection (FBP) algorithm. In this paper, maximum a posteriori expectation maximization (MAP-EM) based on projection-based weighting imaging for reconstruction of CESBCT images acquired using an energy-resolving photon counting detector is proposed, and its performance was investigated in terms of contrast-to-noise ratio (CNR). The simulation study shows that MAP-EM based on projection-based weighting imaging can improve the CNR in CESBCT images by 117.7%-121.2% compared with FBP based on projection-based weighting imaging method. When compared with the energy-integrating imaging that uses the MAP-EM algorithm, projection-based weighting imaging that uses the MAP-EM algorithm can improve the CNR of CESBCT images by 10.5%-13.3%. In conclusion, MAP-EM based on projection-based weighting imaging shows significant improvement the CNR of the CESBCT image compared with FBP based on projection-based weighting imaging, and MAP-EM based on projection-based weighting imaging outperforms MAP-EM based on energy-integrating imaging for CESBCT imaging.
Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y
2018-04-01
Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping; they were worse on preconditioned quantitative susceptibility mapping. Preconditioned quantitative susceptibility mapping MR imaging can bring the benefits of quantitative susceptibility mapping imaging to clinical practice without the limitations of mask-based quantitative susceptibility mapping, especially for evaluating cerebral microhemorrhage-associated pathologies, such as traumatic brain injury. © 2018 by American Journal of Neuroradiology.
Measurable realistic image-based 3D mapping
NASA Astrophysics Data System (ADS)
Liu, W.; Wang, J.; Wang, J. J.; Ding, W.; Almagbile, A.
2011-12-01
Maps with 3D visual models are becoming a remarkable feature of 3D map services. High-resolution image data is obtained for the construction of 3D visualized models.The3D map not only provides the capabilities of 3D measurements and knowledge mining, but also provides the virtual experienceof places of interest, such as demonstrated in the Google Earth. Applications of 3D maps are expanding into the areas of architecture, property management, and urban environment monitoring. However, the reconstruction of high quality 3D models is time consuming, and requires robust hardware and powerful software to handle the enormous amount of data. This is especially for automatic implementation of 3D models and the representation of complicated surfacesthat still need improvements with in the visualisation techniques. The shortcoming of 3D model-based maps is the limitation of detailed coverage since a user can only view and measure objects that are already modelled in the virtual environment. This paper proposes and demonstrates a 3D map concept that is realistic and image-based, that enables geometric measurements and geo-location services. Additionally, image-based 3D maps provide more detailed information of the real world than 3D model-based maps. The image-based 3D maps use geo-referenced stereo images or panoramic images. The geometric relationships between objects in the images can be resolved from the geometric model of stereo images. The panoramic function makes 3D maps more interactive with users but also creates an interesting immersive circumstance. Actually, unmeasurable image-based 3D maps already exist, such as Google street view, but only provide virtual experiences in terms of photos. The topographic and terrain attributes, such as shapes and heights though are omitted. This paper also discusses the potential for using a low cost land Mobile Mapping System (MMS) to implement realistic image 3D mapping, and evaluates the positioning accuracy that a measureable realistic image-based (MRI) system can produce. The major contribution here is the implementation of measurable images on 3D maps to obtain various measurements from real scenes.
Lossless Compression of Classification-Map Data
NASA Technical Reports Server (NTRS)
Hua, Xie; Klimesh, Matthew
2009-01-01
A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.
Client-Side Image Maps: Achieving Accessibility and Section 508 Compliance
ERIC Educational Resources Information Center
Beasley, William; Jarvis, Moana
2004-01-01
Image maps are a means of making a picture "clickable", so that different portions of the image can be hyperlinked to different URLS. There are two basic types of image maps: server-side and client-side. Besides requiring access to a CGI on the server, server-side image maps are undesirable from the standpoint of accessibility--creating…
RECENT DEVELOPMENTS IN THE U. S. GEOLOGICAL SURVEY'S LANDSAT IMAGE MAPPING PROGRAM.
Brownworth, Frederick S.; Rohde, Wayne G.
1986-01-01
At the 1984 ASPRS-ACSM Convention in Washington, D. C. a paper on 'The Emerging U. S. Geological Survey Image Mapping Program' was presented that discussed recent satellite image mapping advancements and published products. Since then Landsat image mapping has become an integral part of the National Mapping Program. The Survey currently produces about 20 Landsat multispectral scanner (MSS) and Thematic Mapper (TM) image map products annually at 1:250,000 and 1:100,000 scales, respectively. These Landsat image maps provide users with a regional or synoptic view of an area. The resultant geographical presentation of the terrain and cultural features will help planners and managers make better decisions regarding the use of our national resources.
Sparsity-constrained PET image reconstruction with learned dictionaries
NASA Astrophysics Data System (ADS)
Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie
2016-09-01
PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.
NASA Astrophysics Data System (ADS)
Stack, K. M.; Edwards, C. S.; Grotzinger, J. P.; Gupta, S.; Sumner, D. Y.; Calef, F. J.; Edgar, L. A.; Edgett, K. S.; Fraeman, A. A.; Jacob, S. R.; Le Deit, L.; Lewis, K. W.; Rice, M. S.; Rubin, D.; Williams, R. M. E.; Williford, K. H.
2016-12-01
This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.
Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.
2016-01-01
This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.
Raines, Gary L.; Bretz, R.F.; Shurr, George W.
1979-01-01
From analysis of a color-coded Landsat 5/6 ratio, image, a map of the vegetation density distribution has been produced by Raines of 25,000 sq km of western South Dakota. This 5/6 ratio image is produced digitally calculating the ratios of the bands 5 and 6 of the Landsat data and then color coding these ratios in an image. Bretz and Shurr compared this vegetation density map with published and unpublished data primarily of the U.S. Geological Survey and the South Dakota Geological Survey; good correspondence is seen between this map and existing geologic maps, especially with the soils map. We believe that this Landsat ratio image can be used as a tool to refine existing maps of surficial geology and bedrock, where bedrock is exposed, and to improve mapping accuracy in areas of poor exposure common in South Dakota. In addition, this type of image could be a useful, additional tool in mapping areas that are unmapped.
Software for Verifying Image-Correlation Tie Points
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Yagi, Gary
2008-01-01
A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.
Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.
Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz
2015-01-01
To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.
Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy
Francis, Andrew W.; Wanek, Justin; Lim, Jennifer I.; Shahidi, Mahnaz
2015-01-01
Purpose To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. Methods High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. Results In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Conclusions Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR. PMID:26699878
User Preferences in Image Map Using
NASA Astrophysics Data System (ADS)
Vondráková, A.; Vozenilek, V.
2016-06-01
In the process of map making, the attention is given to the resulting image map (to be accurate, readable, and suit the primary purpose) and its user aspects. Current cartography understands the user issues as all matters relating to user perception, map use and also user preferences. Most commercial cartographic production is strongly connected to economic circumstances. Companies are discovering user's interests and market demands. However, is it sufficient to focus just on the user's preferences? Recent research on user aspects at Palacký University Olomouc addresses a much wider scope of user aspects. The user's preferences are very often distorting - the users think that the particular image map is kind, beautiful, and useful and they wants to buy it (or use it - it depends on the form of the map production). But when the same user gets the task to use practically this particular map (such as finding the shortest way), so the user concludes that initially preferred map is useless, and uses a map, that was worse evaluated according to his preferences. It is, therefore, necessary to evaluate not only the correctness of image maps and their aesthetics but also to assess the user perception and other user issues. For the accomplishment of such testing, eye-tracking technology is a useful tool. The research analysed how users read image maps, or if they prefer image maps over traditional maps. The eye tracking experiment on the comparison of the conventional and image map reading was conducted. The map readers were asked to solve few simple tasks with either conventional or image map. The readers' choice of the map to solve the task was one of investigated aspect of user preferences. Results demonstrate that the user preferences and user needs are often quite different issues. The research outcomes show that it is crucial to implement map user testing into the cartographic production process.
Higher resolution satellite remote sensing and the impact on image mapping
Watkins, Allen H.; Thormodsgard, June M.
1987-01-01
Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.
Guided filter-based fusion method for multiexposure images
NASA Astrophysics Data System (ADS)
Hou, Xinglin; Luo, Haibo; Qi, Feng; Zhou, Peipei
2016-11-01
It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range camera. A weighted sum-based image fusion (IF) algorithm is proposed so as to express an HDR scene with a high-quality image. This method mainly includes three parts. First, two image features, i.e., gradients and well-exposedness are measured to estimate the initial weight maps. Second, the initial weight maps are refined by a guided filter, in which the source image is considered as the guidance image. This process could reduce the noise in initial weight maps and preserve more texture consistent with the original images. Finally, the fused image is constructed by a weighted sum of source images in the spatial domain. The main contributions of this method are the estimation of the initial weight maps and the appropriate use of the guided filter-based weight maps refinement. It provides accurate weight maps for IF. Compared to traditional IF methods, this algorithm avoids image segmentation, combination, and the camera response curve calibration. Furthermore, experimental results demonstrate the superiority of the proposed method in both subjective and objective evaluations.
Neurodevelopmental outcomes in HIV-exposed-uninfected children versus those not exposed to HIV
Kerr, Stephen J.; Puthanakit, Thanyawee; Vibol, Ung; Aurpibul, Linda; Vonthanak, Sophan; Kosalaraksa, Pope; Kanjanavanit, Suparat; Hansudewechakul, Rawiwan; Wongsawat, Jurai; Luesomboon, Wicharn; Ratanadilok, Kattiya; Prasitsuebsai, Wasana; Pruksakaew, Kanchana; van der Lugt, Jasper; Paul, Robert; Ananworanich, Jintanat; Valcour, Victor
2014-01-01
Human immunodeficiency virus (HIV)-negative children born to HIV-infected mothers may exhibit differences in neurodevelopment (ND) compared to age- and gender-matched controls whose lives have not been affected by HIV. This could occur due to exposure to HIV and antiretroviral agents in utero and perinatally, or differences in the environment in which they grow up. This study assessed neurodevelopmental outcomes in HIV-exposed uninfected (HEU) and HIV-unexposed uninfected (HUU) children enrolled as controls in a multicenter ND study from Thailand and Cambodia. One hundred sixty HEU and 167 HUU children completed a neurodevelopmental assessment using the Beery Visual Motor Integration (VMI) test, Color Trails, Perdue Pegboard, and Child Behavior Checklist (CBCL). Thai children (n = 202) also completed the Wechsler Intelligence Scale (IQ) and Stanford-Binet II memory tests. In analyses adjusted for caregiver education, parent as caregiver, household income, age, and ethnicity, statistically significant lower scores were seen on verbal IQ (VIQ), full-scale IQ (FSIQ), and Binet Bead Memory among HEU compared to HUU. The mean (95% CI) differences were −6.13 (−10.3 to −1.96), p = 0.004; −4.57 (−8.80 to −0.35), p = 0.03; and −3.72 (−6.57 to −0.88), p = 0.01 for VIQ, FSIQ, and Binet Bead Memory, respectively. We observed no significant differences in performance IQ, other Binet memory domains, Color Trail, Perdue Pegboard, Beery VMI, or CBCL test scores. We conclude that HEU children evidence reductions in some neurodevelopmental outcomes compared to HUU; however, these differences are small and it remains unclear to what extent they have immediate and long-term clinical significance. PMID:24878112
Neurodevelopmental outcomes in HIV-exposed-uninfected children versus those not exposed to HIV.
Kerr, Stephen J; Puthanakit, Thanyawee; Vibol, Ung; Aurpibul, Linda; Vonthanak, Sophan; Kosalaraksa, Pope; Kanjanavanit, Suparat; Hansudewechakul, Rawiwan; Wongsawat, Jurai; Luesomboon, Wicharn; Ratanadilok, Kattiya; Prasitsuebsai, Wasana; Pruksakaew, Kanchana; van der Lugt, Jasper; Paul, Robert; Ananworanich, Jintanat; Valcour, Victor
2014-01-01
Human immunodeficiency virus (HIV)-negative children born to HIV-infected mothers may exhibit differences in neurodevelopment (ND) compared to age- and gender-matched controls whose lives have not been affected by HIV. This could occur due to exposure to HIV and antiretroviral agents in utero and perinatally, or differences in the environment in which they grow up. This study assessed neurodevelopmental outcomes in HIV-exposed uninfected (HEU) and HIV-unexposed uninfected (HUU) children enrolled as controls in a multicenter ND study from Thailand and Cambodia. One hundred sixty HEU and 167 HUU children completed a neurodevelopmental assessment using the Beery Visual Motor Integration (VMI) test, Color Trails, Perdue Pegboard, and Child Behavior Checklist (CBCL). Thai children (n = 202) also completed the Wechsler Intelligence Scale (IQ) and Stanford-Binet II memory tests. In analyses adjusted for caregiver education, parent as caregiver, household income, age, and ethnicity, statistically significant lower scores were seen on verbal IQ (VIQ), full-scale IQ (FSIQ), and Binet Bead Memory among HEU compared to HUU. The mean (95% CI) differences were -6.13 (-10.3 to -1.96), p = 0.004; -4.57 (-8.80 to -0.35), p = 0.03; and -3.72 (-6.57 to -0.88), p = 0.01 for VIQ, FSIQ, and Binet Bead Memory, respectively. We observed no significant differences in performance IQ, other Binet memory domains, Color Trail, Perdue Pegboard, Beery VMI, or CBCL test scores. We conclude that HEU children evidence reductions in some neurodevelopmental outcomes compared to HUU; however, these differences are small and it remains unclear to what extent they have immediate and long-term clinical significance.
Motor, cognitive, and behavioural disorders in children born very preterm.
Foulder-Hughes, L A; Cooke, R W I
2003-02-01
Children born preterm have been shown to exhibit poor motor function and behaviour that is associated with school failure in the presence of average intelligence. A geographically determined cohort of two-hundred and eighty preterm children (151 males, 129 females) born before 32 weeks' gestation and attending mainstream schools were examined at 7 to 8 years of age together with 210 (112 males, 98 females) age- and sex-matched control participants were tested for motor, cognitive, and behavioural problems. Tests applied were the Movement Assessment Battery for Children (MABC), Clinical Observations of Motor and Postural Skills (COMPS), Developmental Test of Visual-Motor Integration (VMI), Wechsler Intelligence Scale for Children, and Connors' Teacher Rating Scale for attention-deficit-hyperactivity disorder (ADHD). Control children scored significantly better than the preterm group on all motor, cognitive, and behavioural measures. The lowest birthweight and most preterm individuals tended to score the lowest. Motor impairment was diagnosed in 86 (30.7%) of the preterm group and 14 (6.7%) of the control children using the MABC; 97 (42.7%) and 18 (10.2%) using the COMPS; and 68 (24.3%) and 17 (8.1%) respectively using the VMI. Each test of motor function identified different children with disability, although 23 preterm children were identified as having motor disability by all three tests. Preterm children were more likely to have signs of inattention and impulsivity and have a diagnosis of ADHD. Minor motor disabilities persist in survivors of preterm birth despite improvements in care and are not confined to the smallest or most preterm infants. They may exist independently of cognitive and behavioural deficits, although they often co-exist. The condition is heterogeneous and may require more than one test to identify all children with potential learning problems.
Image display device in digital TV
Choi, Seung Jong [Seoul, KR
2006-07-18
Disclosed is an image display device in a digital TV that is capable of carrying out the conversion into various kinds of resolution by using single bit map data in the digital TV. The image display device includes: a data processing part for executing bit map conversion, compression, restoration and format-conversion for text data; a memory for storing the bit map data obtained according to the bit map conversion and compression in the data processing part and image data inputted from an arbitrary receiving part, the receiving part receiving one of digital image data and analog image data; an image outputting part for reading the image data from the memory; and a display processing part for mixing the image data read from the image outputting part and the bit map data converted in format from the a data processing part. Therefore, the image display device according to the present invention can convert text data in such a manner as to correspond with various resolution, carry out the compression for bit map data, thereby reducing the memory space, and support text data of an HTML format, thereby providing the image with the text data of various shapes.
Image processing for optical mapping.
Ravindran, Prabu; Gupta, Aditya
2015-01-01
Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.
,
1992-01-01
An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.
An improved image non-blind image deblurring method based on FoEs
NASA Astrophysics Data System (ADS)
Zhu, Qidan; Sun, Lei
2013-03-01
Traditional non-blind image deblurring algorithms always use maximum a posterior(MAP). MAP estimates involving natural image priors can reduce the ripples effectively in contrast to maximum likelihood(ML). However, they have been found lacking in terms of restoration performance. Based on this issue, we utilize MAP with KL penalty to replace traditional MAP. We develop an image reconstruction algorithm that minimizes the KL divergence between the reference distribution and the prior distribution. The approximate KL penalty can restrain over-smooth caused by MAP. We use three groups of images and Harris corner detection to prove our method. The experimental results show that our algorithm of non-blind image restoration can effectively reduce the ringing effect and exhibit the state-of-the-art deblurring results.
Objective quality assessment of tone-mapped images.
Yeganeh, Hojatollah; Wang, Zhou
2013-02-01
Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.
Fully Convolutional Network-Based Multifocus Image Fusion.
Guo, Xiaopeng; Nie, Rencan; Cao, Jinde; Zhou, Dongming; Qian, Wenhua
2018-07-01
As the optical lenses for cameras always have limited depth of field, the captured images with the same scene are not all in focus. Multifocus image fusion is an efficient technology that can synthesize an all-in-focus image using several partially focused images. Previous methods have accomplished the fusion task in spatial or transform domains. However, fusion rules are always a problem in most methods. In this letter, from the aspect of focus region detection, we propose a novel multifocus image fusion method based on a fully convolutional network (FCN) learned from synthesized multifocus images. The primary novelty of this method is that the pixel-wise focus regions are detected through a learning FCN, and the entire image, not just the image patches, are exploited to train the FCN. First, we synthesize 4500 pairs of multifocus images by repeatedly using a gaussian filter for each image from PASCAL VOC 2012, to train the FCN. After that, a pair of source images is fed into the trained FCN, and two score maps indicating the focus property are generated. Next, an inversed score map is averaged with another score map to produce an aggregative score map, which take full advantage of focus probabilities in two score maps. We implement the fully connected conditional random field (CRF) on the aggregative score map to accomplish and refine a binary decision map for the fusion task. Finally, we exploit the weighted strategy based on the refined decision map to produce the fused image. To demonstrate the performance of the proposed method, we compare its fused results with several start-of-the-art methods not only on a gray data set but also on a color data set. Experimental results show that the proposed method can achieve superior fusion performance in both human visual quality and objective assessment.
Interactive Map | USDA Plant Hardiness Zone Map
Choose Basemap: Terrain Road Map Satellite Image Turn on Basemap Roads and Labels Zone Color Transparency menu to switch between Terrain, Road Map, and Satellite Image. Turn on Basemap Roads and Labels Click option is available only for Terrain and Satellite Image basemap choices. Zone Color Transparency The
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-08-31
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-01-01
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284
Cartographic quality of ERTS-1 images
NASA Technical Reports Server (NTRS)
Welch, R. I.
1973-01-01
Analyses of simulated and operational ERTS images have provided initial estimates of resolution, ground resolution, detectability thresholds and other measures of image quality of interest to earth scientists and cartographers. Based on these values, including an approximate ground resolution of 250 meters for both RBV and MSS systems, the ERTS-1 images appear suited to the production and/or revision of planimetric and photo maps of 1:500,000 scale and smaller for which map accuracy standards are compatible with the imaged detail. Thematic mapping, although less constrained by map accuracy standards, will be influenced by measurement thresholds and errors which have yet to be accurately determined for ERTS images. This study also indicates the desirability of establishing a quantitative relationship between image quality values and map products which will permit both engineers and cartographers/earth scientists to contribute to the design requirements of future satellite imaging systems.
Palaniyandi, P; Rangarajan, Govindan
2017-08-21
We propose a mathematical model for storage and recall of images using coupled maps. We start by theoretically investigating targeted synchronization in coupled map systems wherein only a desired (partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling coefficients such that targeted synchronization is ensured. The principle of this method is extended to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics the process of adjusting synaptic strengths between neurons to store memories. Our method uses both synchronisation and synaptic weight modification, as the human brain is thought to do. The stored image can be recalled by providing an initial random pattern to the dynamical system. The storage and recall of the standard image of Lena is explicitly demonstrated.
Depth map generation using a single image sensor with phase masks.
Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki
2016-06-13
Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.
Vector Meson Production at Hera
NASA Astrophysics Data System (ADS)
Szuba, Dorota
The diffractive production of vector mesons ep→eVMY, with VM=ρ0, ω, ϕ, J/ψ, ψ‧ or ϒ and with Y being either the scattered proton or a low mass hadronic system, has been extensively investigated at HERA. HERA offers a unique opportunity to study the dependences of diffractive processes on different scales: the mass of the vector meson, mVM, the centre-of-mass energy of the γp system, W, the photon virtuality, Q2 and the four-momentum transfer squared at the proton vertex, |t|. Strong interactions can be investigated in the transition from the hard to the soft regime, where the confinement of quarks and gluons occurs.
Application of Acoustic Signal Processing Techniques to Seismic Data.
1977-06-30
Sr(U So 9RU FEND LOA SUNIT STA PLC3 LOA I STA OLC4 F A FORRE-C ;3f F’RARD I REC9; T9 3ET PAST T-4E E24F LIZE 2 0’ LC3 r ZE 0 PLC4 t~zs 0 FEND STZ 3AKSCN...0)0.4 E 4.1 33 Ŕ. 37.0 12-46-22.9 1?-34-07 .1 M VMiHM ,P1W LJ 31 wEST ER"’ %EDITEPRANFAN AqPA 301 ALBANIA P62 1220 F2 6P 2 2? 243990 al.0 N 20.4 E
Gamut mapping in a high-dynamic-range color space
NASA Astrophysics Data System (ADS)
Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp
2014-01-01
In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.
Image Maps in the World-Wide Web: The Uses and Limitations.
ERIC Educational Resources Information Center
Cochenour, John J.; And Others
A study of nine different image maps from World Wide Web home pages was conducted to evaluate their effectiveness in information display and access, relative to visual, navigational, and practical characteristics. Nine independent viewers completed 20-question surveys on the image maps, in which they evaluated the characteristics of the maps on a…
A natural-color mapping for single-band night-time image based on FPGA
NASA Astrophysics Data System (ADS)
Wang, Yilun; Qian, Yunsheng
2018-01-01
A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.
Using image mapping towards biomedical and biological data sharing
2013-01-01
Image-based data integration in eHealth and life sciences is typically concerned with the method used for anatomical space mapping, needed to retrieve, compare and analyse large volumes of biomedical data. In mapping one image onto another image, a mechanism is used to match and find the corresponding spatial regions which have the same meaning between the source and the matching image. Image-based data integration is useful for integrating data of various information structures. Here we discuss a broad range of issues related to data integration of various information structures, review exemplary work on image representation and mapping, and discuss the challenges that these techniques may bring. PMID:24059352
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Preliminary Image Map of the 2007 Ranch Fire Perimeter, Piru Quadrangle, Ventura County, California
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.
2008-01-01
In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.
An Integrated Tone Mapping for High Dynamic Range Image Visualization
NASA Astrophysics Data System (ADS)
Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun
2018-01-01
There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.
Computed inverse resonance imaging for magnetic susceptibility map reconstruction.
Chen, Zikuan; Calhoun, Vince
2012-01-01
This article reports a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a 2-step computational approach. The forward T2*-weighted MRI (T2*MRI) process is broken down into 2 steps: (1) from magnetic susceptibility source to field map establishment via magnetization in the main field and (2) from field map to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes 2 inverse steps to reverse the T2*MRI procedure: field map calculation from MR-phase image and susceptibility source calculation from the field map. The inverse step from field map to susceptibility map is a 3-dimensional ill-posed deconvolution problem, which can be solved with 3 kinds of approaches: the Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from an MR-phase image with high fidelity (spatial correlation ≈ 0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by 2 computational steps: calculating the field map from the phase image and reconstructing the susceptibility map from the field map. The crux of CIMRI lies in an ill-posed 3-dimensional deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm.
NASA Technical Reports Server (NTRS)
Batson, R. M.; Bridges, P. M.; Mullins, K. F.
1985-01-01
The Jovian and Saturnian satellites are being mapped at several scales from Voyager 1 and 2 data. The maps include specially formatted color mosaics, controlled photomosaics, and airbrush maps. More than 500 Voyager images of the Jovian and Saturnian satellites were radiometrically processed in preparation for cartographic processing. Of these images, 235 were geometrically transformed to map projections for base mosaic compilations. Special techniques for producing hybrid photomosaic/airbrush maps of Callisto are under investigation. The techniques involve making controlled computer mosaics of all available images with highest resolution images superimposed on lowest resolution images. The mosaics are then improved by airbrushing: seams and artifacts are removed, and image details enhanced that had been lost by saturation in some images. A controlled mosaic of the northern hemisphere of Rhea is complete, as is all processing for a similar mosaic of the equatorial region. Current plans and status of the various series are shown in a table.
Infrared and visible image fusion method based on saliency detection in sparse domain
NASA Astrophysics Data System (ADS)
Liu, C. H.; Qi, Y.; Ding, W. R.
2017-06-01
Infrared and visible image fusion is a key problem in the field of multi-sensor image fusion. To better preserve the significant information of the infrared and visible images in the final fused image, the saliency maps of the source images is introduced into the fusion procedure. Firstly, under the framework of the joint sparse representation (JSR) model, the global and local saliency maps of the source images are obtained based on sparse coefficients. Then, a saliency detection model is proposed, which combines the global and local saliency maps to generate an integrated saliency map. Finally, a weighted fusion algorithm based on the integrated saliency map is developed to achieve the fusion progress. The experimental results show that our method is superior to the state-of-the-art methods in terms of several universal quality evaluation indexes, as well as in the visual quality.
Geologic map of Ophir and central Candor Chasmata (MTM -05072) of Mars
Lucchitta, Baerbel K.
1999-01-01
The geologic map of Ophir and central Candor Chasmata is one of a series of 1:500,000 scale maps prepared for areas on Mars that are of particular scientific interest and may serve as potential future landing sites. This map is also part of a set that includes east Candor Chasma, west Candor Chasma, and Melas Chasma. The geologic interpretations are based dominantly on medium- and high-resolution Viking images, many of them stereoscopic, and supplemented by lower resolution apoapsis and other color images. A strip of very high resolution stereoscopic images (~20 m/pixel) crosses the central part of the quadrangle from northwest to southeast and served to clarify detailed relations not obvious on other images. A topographic map with contour intervals of 200 m was also used, as were multidirectional oblique images derived from merged image mosaics and topography (see fig. 1) (Bertolini and McEwen, 1990). Geologic relations and interpretations are based on the entire central Valles Marineris map set. The map area is included in the Valles Marineris map of Witbeck and others (1991), but units were defined independently. Age assignments, however, were integrated with those by Witbeck and others and Scott and Tanaka (1986).
Multispectral Landsat images of Antartica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchitta, B.K.; Bowell, J.A.; Edwards, K.L.
1988-01-01
The U.S. Geological Survey has a program to map Antarctica by using colored, digitally enhanced Landsat multispectral scanner images to increase existing map coverage and to improve upon previously published Landsat maps. This report is a compilation of images and image mosaic that covers four complete and two partial 1:250,000-scale quadrangles of the McMurdo Sound region.
Saliency detection using mutual consistency-guided spatial cues combination
NASA Astrophysics Data System (ADS)
Wang, Xin; Ning, Chen; Xu, Lizhong
2015-09-01
Saliency detection has received extensive interests due to its remarkable contribution to wide computer vision and pattern recognition applications. However, most existing computational models are designed for detecting saliency in visible images or videos. When applied to infrared images, they may suffer from limitations in saliency detection accuracy and robustness. In this paper, we propose a novel algorithm to detect visual saliency in infrared images by mutual consistency-guided spatial cues combination. First, based on the luminance contrast and contour characteristics of infrared images, two effective saliency maps, i.e., the luminance contrast saliency map and contour saliency map are constructed, respectively. Afterwards, an adaptive combination scheme guided by mutual consistency is exploited to integrate these two maps to generate the spatial saliency map. This idea is motivated by the observation that different maps are actually related to each other and the fusion scheme should present a logically consistent view of these maps. Finally, an enhancement technique is adopted to incorporate spatial saliency maps at various scales into a unified multi-scale framework to improve the reliability of the final saliency map. Comprehensive evaluations on real-life infrared images and comparisons with many state-of-the-art saliency models demonstrate the effectiveness and superiority of the proposed method for saliency detection in infrared images.
EnGeoMAP - geological applications within the EnMAP hyperspectral satellite science program
NASA Astrophysics Data System (ADS)
Boesche, N. K.; Mielke, C.; Rogass, C.; Guanter, L.
2016-12-01
Hyperspectral investigations from near field to space substantially contribute to geological exploration and mining monitoring of raw material and mineral deposits. Due to their spectral characteristics, large mineral occurrences and minefields can be identified from space and the spatial distribution of distinct proxy minerals be mapped. In the frame of the EnMAP hyperspectral satellite science program a mineral and elemental mapping tool was developed - the EnGeoMAP. It contains a basic mineral mapping and a rare earth element mapping approach. This study shows the performance of EnGeoMAP based on simulated EnMAP data of the rare earth element bearing Mountain Pass Carbonatite Complex, USA, and the Rodalquilar and Lomilla Calderas, Spain, which host the economically relevant gold-silver, lead-zinc-silver-gold and alunite deposits. The mountain pass image data was simulated on the basis of AVIRIS Next Generation images, while the Rodalquilar data is based on HyMap images. The EnGeoMAP - Base approach was applied to both images, while the mountain pass image data were additionally analysed using the EnGeoMAP - REE software tool. The results are mineral and elemental maps that serve as proxies for the regional lithology and deposit types. The validation of the maps is based on chemical analyses of field samples. Current airborne sensors meet the spatial and spectral requirements for detailed mineral mapping and future hyperspectral space borne missions will additionally provide a large coverage. For those hyperspectral missions, EnGeoMAP is a rapid data analysis tool that is provided to spectral geologists working in mineral exploration.
Making a georeferenced mosaic of historical map series using constrained polynomial fit
NASA Astrophysics Data System (ADS)
Molnár, G.
2009-04-01
Present day GIS software packages make it possible to handle several hundreds of rasterised map sheets. For proper usage of such datasets we usually have two requirements: First these map sheets should be georeferenced, secondly these georeferenced maps should fit properly together, without overlap and short. Both requirements can be fulfilled easily, if the geodetic background for the map series is accurate, and the projection of the map series is known. In this case the individual map sheets should be georeferenced in the projected coordinate system of the map series. This means every individual map sheets are georeferenced using overprinted coordinate grid or image corner projected coordinates as ground control points (GCPs). If after this georeferencing procedure the map sheets do not fit together (for example because of using different projection for every map sheet, as it is in the case of Third Military Survey) a common projection can be chosen, and all the georeferenced maps should be transformed to this common projection using a map-to-map transformation. If the geodetic background is not so strong, ie. there are distortions inside the map sheets, a polynomial (linear quadratic or cubic) polynomial fit can be used for georeferencing the map sheets. Finding identical surface objects (as GCPs) on the historical map and on a present day cartographic map, let us to determine a transformation between raw image coordinates (x,y) and the projected coordinates (Easting, Northing, E,N). This means, for all the map sheets, several GCPs should be found, (for linear, quadratic of cubic transformations at least 3, 5 or 10 respectively) and every map sheets should be transformed to a present day coordinate system individually using these GCPs. The disadvantage of this method is that, after the transformation, the individual transformed map sheets not necessarily fit together properly any more. To overcome this problem neither the reverse order of procedure helps: if we make the mosaic first (eg. graphically) and we try the polynomial fit of this mosaic afterwards, neither using this can we reduce the error of internal inaccuracy of the map-sheets. We can overcome this problem by calculating the transformation parameters of polynomial fit with constrains (Mikhail, 1976). The constrain is that the common edge of two neighboring map-sheets should be transformed identically, ie. the right edge of the left image and the left edge of the right image should fit together after the transformation. This condition should fulfill for all the internal (not only the vertical, but also for the horizontal) edges of the mosaic. Constrains are expressed as a relationship between parameters: The parameters of the polynomial transformation should fulfill not only the least squares adjustment criteria but also the constrain: the transformed coordinates should be identical on the image edges. (With the example mentioned above, for image points of the rightmost column of the left image the transformed coordinates should be the same a for the image points of the leftmost column of the right image, and these transformed coordinates can depend on the line number image coordinate of the raster point.) The normal equation system can be calculated with Lagrange-multipliers. The resulting set of parameters for all map-sheets should be applied on the transformation of the images. This parameter set can not been directly applied in GIS software for the transformation. The simplest solution applying this parameters is ‘simulating' GCPs for every image, and applying these simulated GCPs for the georeferencing of the individual map sheets. This method is applied on a set of map-sheets of the First military Survey of the Habsburg Empire with acceptable results. Reference: Mikhail, E. M.: Observations and Least Squares. IEP—A Dun-Donnelley Publisher, New York, 1976. 497 pp.
Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.
2014-01-01
In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz) / proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3–carbamoyl–proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease. PMID:22296801
NASA Astrophysics Data System (ADS)
Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.
2012-03-01
In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.
A novel algorithm for thermal image encryption.
Hussain, Iqtadar; Anees, Amir; Algarni, Abdulmohsen
2018-04-16
Thermal images play a vital character at nuclear plants, Power stations, Forensic labs biological research, and petroleum products extraction. Safety of thermal images is very important. Image data has some unique features such as intensity, contrast, homogeneity, entropy and correlation among pixels that is why somehow image encryption is trickier as compare to other encryptions. With conventional image encryption schemes it is normally hard to handle these features. Therefore, cryptographers have paid attention to some attractive properties of the chaotic maps such as randomness and sensitivity to build up novel cryptosystems. That is why, recently proposed image encryption techniques progressively more depends on the application of chaotic maps. This paper proposed an image encryption algorithm based on Chebyshev chaotic map and S8 Symmetric group of permutation based substitution boxes. Primarily, parameters of chaotic Chebyshev map are chosen as a secret key to mystify the primary image. Then, the plaintext image is encrypted by the method generated from the substitution boxes and Chebyshev map. By this process, we can get a cipher text image that is perfectly twisted and dispersed. The outcomes of renowned experiments, key sensitivity tests and statistical analysis confirm that the proposed algorithm offers a safe and efficient approach for real-time image encryption.
Multimodal Image Alignment via Linear Mapping between Feature Modalities.
Jiang, Yanyun; Zheng, Yuanjie; Hou, Sujuan; Chang, Yuchou; Gee, James
2017-01-01
We propose a novel landmark matching based method for aligning multimodal images, which is accomplished uniquely by resolving a linear mapping between different feature modalities. This linear mapping results in a new measurement on similarity of images captured from different modalities. In addition, our method simultaneously solves this linear mapping and the landmark correspondences by minimizing a convex quadratic function. Our method can estimate complex image relationship between different modalities and nonlinear nonrigid spatial transformations even in the presence of heavy noise, as shown in our experiments carried out by using a variety of image modalities.
NASA Astrophysics Data System (ADS)
Wuhrer, R.; Moran, K.
2014-03-01
Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.
Earth Resources Technology Satellite data collection project, ERTS - Bolivia. [thematic mapping
NASA Technical Reports Server (NTRS)
Brockmann, C. E.
1974-01-01
The Earth Resources Technology Satellite program of Bolivia has developed a multidisciplinary project to carry out investigations in cartography and to prepare various thematic maps. In cartography, investigations are being carried out with the ERTS-1 images and with existing maps, to determine their application to the preparation of new cartographic products on one hand and on the other to map those regions where the cartography is still deficient. The application of the MSS images to the geological mapping has given more than satisfactory results. Working with conventional photointerpretation, it has been possible to prepare regional geological maps, tectonic maps, studies relative to mining, geomorphological maps, studies relative to petroleum exploration, volcanological maps and maps of hydrologic basins. In agriculture, the ERTS images are used to study land classification and forest and soils mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hub, Martina; Thieke, Christian; Kessler, Marc L.
2012-04-15
Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts formore » the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well.« less
NASA Astrophysics Data System (ADS)
Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu
2017-10-01
Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.
Hub, Martina; Thieke, Christian; Kessler, Marc L.; Karger, Christian P.
2012-01-01
Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts for the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well. PMID:22482640
Landsat Image Map Production Methods at the U. S. Geological Survey
Kidwell, R.D.; Binnie, D.R.; Martin, S.
1987-01-01
To maintain consistently high quality in satellite image map production, the U. S. Geological Survey (USGS) has developed standard procedures for the photographic and digital production of Landsat image mosaics, and for lithographic printing of multispectral imagery. This paper gives a brief review of the photographic, digital, and lithographic procedures currently in use for producing image maps from Landsat data. It is shown that consistency in the printing of image maps is achieved by standardizing the materials and procedures that affect the image detail and color balance of the final product. Densitometric standards are established by printing control targets using the pressplates, inks, pre-press proofs, and paper to be used for printing.
Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration
Chen, Shoubin; Liu, Jingbin; Huang, Wenchao
2018-01-01
The development of Earth observation systems has changed the nature of survey and mapping products, as well as the methods for updating maps. Among optical satellite mapping methods, the multiline array stereo and agile stereo modes are the most common methods for acquiring stereo images. However, differences in temporal resolution and spatial coverage limit their application. In terms of this issue, our study takes advantage of the wide spatial coverage and high revisit frequencies of wide swath images and aims at verifying the feasibility of stereo mapping with the wide swath stereo mode and reaching a reliable stereo accuracy level using calibration. In contrast with classic stereo modes, the wide swath stereo mode is characterized by both a wide spatial coverage and high-temporal resolution and is capable of obtaining a wide range of stereo images over a short period. In this study, Gaofen-1 (GF-1) wide-field-view (WFV) images, with total imaging widths of 800 km, multispectral resolutions of 16 m and revisit periods of four days, are used for wide swath stereo mapping. To acquire a high-accuracy digital surface model (DSM), the nonlinear system distortion in the GF-1 WFV images is detected and compensated for in advance. The elevation accuracy of the wide swath stereo mode of the GF-1 WFV images can be improved from 103 m to 30 m for a DSM with proper calibration, meeting the demands for 1:250,000 scale mapping and rapid topographic map updates and showing improved efficacy for satellite imaging. PMID:29494540
Enhanced visual perception through tone mapping
NASA Astrophysics Data System (ADS)
Harrison, Andre; Mullins, Linda L.; Raglin, Adrienne; Etienne-Cummings, Ralph
2016-05-01
Tone mapping operators compress high dynamic range images to improve the picture quality on a digital display when the dynamic range of the display is lower than that of the image. However, tone mapping operators have been largely designed and evaluated based on the aesthetic quality of the resulting displayed image or how perceptually similar the compressed image appears relative to the original scene. They also often require per image tuning of parameters depending on the content of the image. In military operations, however, the amount of information that can be perceived is more important than the aesthetic quality of the image and any parameter adjustment needs to be as automated as possible regardless of the content of the image. We have conducted two studies to evaluate the perceivable detail of a set of tone mapping algorithms, and we apply our findings to develop and test an automated tone mapping algorithm that demonstrates a consistent improvement in the amount of perceived detail. An automated, and thereby predictable, tone mapping method enables a consistent presentation of perceivable features, can reduce the bandwidth required to transmit the imagery, and can improve the accessibility of the data by reducing the needed expertise of the analyst(s) viewing the imagery.
A novel false color mapping model-based fusion method of visual and infrared images
NASA Astrophysics Data System (ADS)
Qi, Bin; Kun, Gao; Tian, Yue-xin; Zhu, Zhen-yu
2013-12-01
A fast and efficient image fusion method is presented to generate near-natural colors from panchromatic visual and thermal imaging sensors. Firstly, a set of daytime color reference images are analyzed and the false color mapping principle is proposed according to human's visual and emotional habits. That is, object colors should remain invariant after color mapping operations, differences between infrared and visual images should be enhanced and the background color should be consistent with the main scene content. Then a novel nonlinear color mapping model is given by introducing the geometric average value of the input visual and infrared image gray and the weighted average algorithm. To determine the control parameters in the mapping model, the boundary conditions are listed according to the mapping principle above. Fusion experiments show that the new fusion method can achieve the near-natural appearance of the fused image, and has the features of enhancing color contrasts and highlighting the infrared brilliant objects when comparing with the traditional TNO algorithm. Moreover, it owns the low complexity and is easy to realize real-time processing. So it is quite suitable for the nighttime imaging apparatus.
Postprocessing classification images
NASA Technical Reports Server (NTRS)
Kan, E. P.
1979-01-01
Program cleans up remote-sensing maps. It can be used with existing image-processing software. Remapped images closely resemble familiar resource information maps and can replace or supplement classification images not postprocessed by this program.
NASA Astrophysics Data System (ADS)
Akay, S. S.; Sertel, E.
2016-06-01
Urban land cover/use changes like urbanization and urban sprawl have been impacting the urban ecosystems significantly therefore determination of urban land cover/use changes is an important task to understand trends and status of urban ecosystems, to support urban planning and to aid decision-making for urban-based projects. High resolution satellite images could be used to accurately, periodically and quickly map urban land cover/use and their changes by time. This paper aims to determine urban land cover/use changes in Gaziantep city centre between 2010 and 2105 using object based images analysis and high resolution SPOT 5 and SPOT 6 images. 2.5 m SPOT 5 image obtained in 5th of June 2010 and 1.5 m SPOT 6 image obtained in 7th of July 2015 were used in this research to precisely determine land changes in five-year period. In addition to satellite images, various ancillary data namely Normalized Difference Vegetation Index (NDVI), Difference Water Index (NDWI) maps, cadastral maps, OpenStreetMaps, road maps and Land Cover maps, were integrated into the classification process to produce high accuracy urban land cover/use maps for these two years. Both images were geometrically corrected to fulfil the 1/10,000 scale geometric accuracy. Decision tree based object oriented classification was applied to identify twenty different urban land cover/use classes defined in European Urban Atlas project. Not only satellite images and satellite image-derived indices but also different thematic maps were integrated into decision tree analysis to create rule sets for accurate mapping of each class. Rule sets of each satellite image for the object based classification involves spectral, spatial and geometric parameter to automatically produce urban map of the city centre region. Total area of each class per related year and their changes in five-year period were determined and change trend in terms of class transformation were presented. Classification accuracy assessment was conducted by creating a confusion matrix to illustrate the thematic accuracy of each class.
Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.
Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki
2017-12-09
Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.
Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor
Park, Jinho; Park, Hasil
2017-01-01
Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826
Solution of the problem of superposing image and digital map for detection of new objects
NASA Astrophysics Data System (ADS)
Rizaev, I. S.; Miftakhutdinov, D. I.; Takhavova, E. G.
2018-01-01
The problem of superposing the map of the terrain with the image of the terrain is considered. The image of the terrain may be represented in different frequency bands. Further analysis of the results of collation the digital map with the image of the appropriate terrain is described. Also the approach to detection of differences between information represented on the digital map and information of the image of the appropriate area is offered. The algorithm for calculating the values of brightness of the converted image area on the original picture is offered. The calculation is based on using information about the navigation parameters and information according to arranged bench marks. For solving the posed problem the experiments were performed. The results of the experiments are shown in this paper. The presented algorithms are applicable to the ground complex of remote sensing data to assess differences between resulting images and accurate geopositional data. They are also suitable for detecting new objects in the image, based on the analysis of the matching the digital map and the image of corresponding locality.
Nomura, J-I; Uwano, I; Sasaki, M; Kudo, K; Yamashita, F; Ito, K; Fujiwara, S; Kobayashi, M; Ogasawara, K
2017-12-01
Preoperative hemodynamic impairment in the affected cerebral hemisphere is associated with the development of cerebral hyperperfusion following carotid endarterectomy. Cerebral oxygen extraction fraction images generated from 7T MR quantitative susceptibility mapping correlate with oxygen extraction fraction images on positron-emission tomography. The present study aimed to determine whether preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping could identify patients at risk for cerebral hyperperfusion following carotid endarterectomy. Seventy-seven patients with unilateral internal carotid artery stenosis (≥70%) underwent preoperative 3D T2*-weighted imaging using a multiple dipole-inversion algorithm with a 7T MR imager. Quantitative susceptibility mapping images were then obtained, and oxygen extraction fraction maps were generated. Quantitative brain perfusion single-photon emission CT was also performed before and immediately after carotid endarterectomy. ROIs were automatically placed in the bilateral middle cerebral artery territories in all images using a 3D stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on quantitative susceptibility mapping-oxygen extraction fraction images. Ten patients (13%) showed post-carotid endarterectomy hyperperfusion (cerebral blood flow increases of ≥100% compared with preoperative values in the ROIs on brain perfusion SPECT). Multivariate analysis showed that a high quantitative susceptibility mapping-oxygen extraction fraction ratio was significantly associated with the development of post-carotid endarterectomy hyperperfusion (95% confidence interval, 33.5-249.7; P = .002). Sensitivity, specificity, and positive- and negative-predictive values of the quantitative susceptibility mapping-oxygen extraction fraction ratio for the prediction of the development of post-carotid endarterectomy hyperperfusion were 90%, 84%, 45%, and 98%, respectively. Preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping identifies patients at risk for cerebral hyperperfusion following carotid endarterectomy. © 2017 by American Journal of Neuroradiology.
Geologic Mapping of Athabasca Valles
NASA Technical Reports Server (NTRS)
Keszthelyi, L. P.; Jaeger, W. L.; Tanaka, K.; Hare, T.
2008-01-01
Two factors drive us to map the Athabasca Valles area in unusual detail: (1) the extremely well-preserved and exposed surface morphologies and (2) the extensive high resolution imaging. In particular, the near-complete CTX coverage of Athabasca Valles proper and the extensive coverage of its surroundings have been invaluable. The mapping has been done exclusively in ArcGIS, using individual CTX, THEMIS VIS, and MOC frames overlying the THEMIS IR daytime basemap. MOLA shot points and gridded DTMs are also included. It was found that CTX images processed through ISIS are almost always within 300 m of the MOLA derived locations, and usually within tens of meters, with no adjustments to camera pointing. THEMIS VIS images appear to be systematically shifted to the southwest of their correct positions and MOC images are often kilometers off. The good SNR and minimal artifacts make the CTX images vastly more useful than the THEMIS VIS or MOC images. The bulk of the mapping was done at 1:50,000 scale on CTX images. In more complex areas, mapping at 1:24,000 proved necessary. The CTX images were usually simultaneously viewed on a second monitor using the ISIS3 qview program to display the full dynamic range of the CTX data. Where CTX data was not available, mapping was often done at 1:100,000 and most contacts are mapped as approximate.
Mapped Landmark Algorithm for Precision Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew; Ansar, Adnan; Matthies, Larry
2007-01-01
A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.
Detection of endometrial lesions by degree of linear polarization maps
NASA Astrophysics Data System (ADS)
Kim, Jihoon; Fazleabas, Asgerally; Walsh, Joseph T.
2010-02-01
Endometriosis is one of the most common causes of chronic pelvic pain and infertility and is characterized by the presence of endometrial glands and stroma outside of the uterine cavity. A novel laparoscopic polarization imaging system was designed to detect endometriosis by imaging endometrial lesions. Linearly polarized light with varying incident polarization angles illuminated endometrial lesions. Degree of linear polarization image maps of endometrial lesions were constructed by using remitted polarized light. The image maps were compared with regular laparoscopy image. The degree of linear polarization map contributed to the detection of endometriosis by revealing structures inside the lesion. The utilization of rotating incident polarization angle (IPA) for the linearly polarized light provides extended understanding of endometrial lesions. The developed polarization system with varying IPA and the collected image maps could provide improved characterization of endometrial lesions via higher visibility of the structure of the lesions and thereby improve diagnosis of endometriosis.
Spatial data software integration - Merging CAD/CAM/mapping with GIS and image processing
NASA Technical Reports Server (NTRS)
Logan, Thomas L.; Bryant, Nevin A.
1987-01-01
The integration of CAD/CAM/mapping with image processing using geographic information systems (GISs) as the interface is examined. Particular emphasis is given to the development of software interfaces between JPL's Video Image Communication and Retrieval (VICAR)/Imaged Based Information System (IBIS) raster-based GIS and the CAD/CAM/mapping system. The design and functions of the VICAR and IBIS are described. Vector data capture and editing are studied. Various software programs for interfacing between the VICAR/IBIS and CAD/CAM/mapping are presented and analyzed.
Mapping broom snakeweed through image analysis of color-infrared photography and digital imagery.
Everitt, J H; Yang, C
2007-11-01
A study was conducted on a south Texas rangeland area to evaluate aerial color-infrared (CIR) photography and CIR digital imagery combined with unsupervised image analysis techniques to map broom snakeweed [Gutierrezia sarothrae (Pursh.) Britt. and Rusby]. Accuracy assessments performed on computer-classified maps of photographic images from two sites had mean producer's and user's accuracies for broom snakeweed of 98.3 and 88.3%, respectively; whereas, accuracy assessments performed on classified maps from digital images of the same two sites had mean producer's and user's accuracies for broom snakeweed of 98.3 and 92.8%, respectively. These results indicate that CIR photography and CIR digital imagery combined with image analysis techniques can be used successfully to map broom snakeweed infestations on south Texas rangelands.
Northern Everglades, Florida, satellite image map
Thomas, Jean-Claude; Jones, John W.
2002-01-01
These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.
New segmentation-based tone mapping algorithm for high dynamic range image
NASA Astrophysics Data System (ADS)
Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong
2017-07-01
The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.
A novel color image encryption scheme using alternate chaotic mapping structure
NASA Astrophysics Data System (ADS)
Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang
2016-07-01
This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.
Determination of skeleton and sign map for phase obtaining from a single ESPI image
NASA Astrophysics Data System (ADS)
Yang, Xia; Yu, Qifeng; Fu, Sihua
2009-06-01
A robust method of determining the sign map and skeletons for ESPI images is introduced in this paper. ESPI images have high speckle noise which makes it difficult to obtain the fringe information, especially from a single image. To overcome the effects of high speckle noise, local directional computing windows are designed according to the fringe directions. Then by calculating the gradients from the filtered image in directional windows, sign map and good skeletons can be determined robustly. Based on the sign map, single image phase-extracting methods such as quadrature transform can be improved. And based on skeletons, fringe phases can be obtained directly by normalization methods. Experiments show that this new method is robust and effective for extracting phase from a single ESPI fringe image.
Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2
Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.
2013-01-01
This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.
D. A. WALKER; W. A. GOULD; MAIERH. A.; M. K. RAYNOLDS
2002-01-01
A new false-colour-infrared image derived from biweekly 1993 and 1995 Advanced Very High Resolution Radiometer (AVHRR) data provides a snow-free and cloud-free base image for the interpretation of vegetation as part of a 1:7.5M-scale Circumpolar Arctic Vegetation Map (CAVM). A maximum-NDVI (Normalized DiVerence Vegetation Index) image prepared from the same data...
System and method for image mapping and visual attention
NASA Technical Reports Server (NTRS)
Peters, II, Richard A. (Inventor)
2010-01-01
A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing attentional locations at each node.
System and method for image mapping and visual attention
NASA Technical Reports Server (NTRS)
Peters, II, Richard A. (Inventor)
2011-01-01
A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing all attentional locations at each node.
A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Lin, Jun; Miao, Suoxia; Liu, Bocheng
2017-06-01
The digital Baker map is widely used in different kinds of cryptosystems, especially for image encryption. However, any chaotic map which is realized on the finite precision device (e.g. computer) will suffer from dynamical degradation, which refers to short cycle lengths, low complexity and strong correlations. In this paper, a novel double perturbation method is proposed for reducing the dynamical degradation of the digital Baker map. Both state variables and system parameters are perturbed by the digital logistic map. Numerical experiments show that the perturbed Baker map can achieve good statistical and cryptographic properties. Furthermore, a new image encryption algorithm is provided as a simple application. With a rather simple algorithm, the encrypted image can achieve high security, which is competitive to the recently proposed image encryption algorithms.
OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.
Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M
2007-01-01
Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.
2D and 3D visualization methods of endoscopic panoramic bladder images
NASA Astrophysics Data System (ADS)
Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til
2011-03-01
While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.
A self-trained classification technique for producing 30 m percent-water maps from Landsat data
Rover, Jennifer R.; Wylie, Bruce K.; Ji, Lei
2010-01-01
Small bodies of water can be mapped with moderate-resolution satellite data using methods where water is mapped as subpixel fractions using field measurements or high-resolution images as training datasets. A new method, developed from a regression-tree technique, uses a 30 m Landsat image for training the regression tree that, in turn, is applied to the same image to map subpixel water. The self-trained method was evaluated by comparing the percent-water map with three other maps generated from established percent-water mapping methods: (1) a regression-tree model trained with a 5 m SPOT 5 image, (2) a regression-tree model based on endmembers and (3) a linear unmixing classification technique. The results suggest that subpixel water fractions can be accurately estimated when high-resolution satellite data or intensively interpreted training datasets are not available, which increases our ability to map small water bodies or small changes in lake size at a regional scale.
NASA Astrophysics Data System (ADS)
Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas
1996-04-01
The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.
Wang, Guizhou; Liu, Jianbo; He, Guojin
2013-01-01
This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808
NASA Astrophysics Data System (ADS)
Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen
2017-09-01
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
Harvesting geographic features from heterogeneous raster maps
NASA Astrophysics Data System (ADS)
Chiang, Yao-Yi
2010-11-01
Raster maps offer a great deal of geospatial information and are easily accessible compared to other geospatial data. However, harvesting geographic features locked in heterogeneous raster maps to obtain the geospatial information is challenging. This is because of the varying image quality of raster maps (e.g., scanned maps with poor image quality and computer-generated maps with good image quality), the overlapping geographic features in maps, and the typical lack of metadata (e.g., map geocoordinates, map source, and original vector data). Previous work on map processing is typically limited to a specific type of map and often relies on intensive manual work. In contrast, this thesis investigates a general approach that does not rely on any prior knowledge and requires minimal user effort to process heterogeneous raster maps. This approach includes automatic and supervised techniques to process raster maps for separating individual layers of geographic features from the maps and recognizing geographic features in the separated layers (i.e., detecting road intersections, generating and vectorizing road geometry, and recognizing text labels). The automatic technique eliminates user intervention by exploiting common map properties of how road lines and text labels are drawn in raster maps. For example, the road lines are elongated linear objects and the characters are small connected-objects. The supervised technique utilizes labels of road and text areas to handle complex raster maps, or maps with poor image quality, and can process a variety of raster maps with minimal user input. The results show that the general approach can handle raster maps with varying map complexity, color usage, and image quality. By matching extracted road intersections to another geospatial dataset, we can identify the geocoordinates of a raster map and further align the raster map, separated feature layers from the map, and recognized features from the layers with the geospatial dataset. The road vectorization and text recognition results outperform state-of-art commercial products, and with considerably less user input. The approach in this thesis allows us to make use of the geospatial information of heterogeneous maps locked in raster format.
Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J
2007-08-22
Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.
Susceptibility-based functional brain mapping by 3D deconvolution of an MR-phase activation map.
Chen, Zikuan; Liu, Jingyu; Calhoun, Vince D
2013-05-30
The underlying source of T2*-weighted magnetic resonance imaging (T2*MRI) for brain imaging is magnetic susceptibility (denoted by χ). T2*MRI outputs a complex-valued MR image consisting of magnitude and phase information. Recent research has shown that both the magnitude and the phase images are morphologically different from the source χ, primarily due to 3D convolution, and that the source χ can be reconstructed from complex MR images by computed inverse MRI (CIMRI). Thus, we can obtain a 4D χ dataset from a complex 4D MR dataset acquired from a brain functional MRI study by repeating CIMRI to reconstruct 3D χ volumes at each timepoint. Because the reconstructed χ is a more direct representation of neuronal activity than the MR image, we propose a method for χ-based functional brain mapping, which is numerically characterised by a temporal correlation map of χ responses to a stimulant task. Under the linear imaging conditions used for T2*MRI, we show that the χ activation map can be calculated from the MR phase map by CIMRI. We validate our approach using numerical simulations and Gd-phantom experiments. We also analyse real data from a finger-tapping visuomotor experiment and show that the χ-based functional mapping provides additional activation details (in the form of positive and negative correlation patterns) beyond those generated by conventional MR-magnitude-based mapping. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John
2016-01-01
In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.
South Florida Everglades: satellite image map
Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.
2001-01-01
These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.
Mapping biomass for a northern forest ecosystem using multi-frequency SAR data
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Sun, Guoqing
1992-01-01
Image processing methods for mapping standing biomass for a forest in Maine, using NASA/JPL airborne synthetic aperture radar (AIRSAR) polarimeter data, are presented. By examining the dependence of backscattering on standing biomass, it is determined that the ratio of HV backscattering from a longer wavelength (P- or L-band) to a shorter wavelength (C) is a good combination for mapping total biomass. This ratio enhances the correlation of the image signature to the standing biomass and compensates for a major part of the variations in backscattering attributed to radar incidence angle. The image processing methods used include image calibration, ratioing, filtering, and segmentation. The image segmentation algorithm uses both means and variances of the image, and it is combined with the image filtering process. Preliminary assessment of the resultant biomass maps suggests that this is a promising method.
Multi-focus image fusion using a guided-filter-based difference image.
Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Yang, Tingwu
2016-03-20
The aim of multi-focus image fusion technology is to integrate different partially focused images into one all-focused image. To realize this goal, a new multi-focus image fusion method based on a guided filter is proposed and an efficient salient feature extraction method is presented in this paper. Furthermore, feature extraction is primarily the main objective of the present work. Based on salient feature extraction, the guided filter is first used to acquire the smoothing image containing the most sharpness regions. To obtain the initial fusion map, we compose a mixed focus measure by combining the variance of image intensities and the energy of the image gradient together. Then, the initial fusion map is further processed by a morphological filter to obtain a good reprocessed fusion map. Lastly, the final fusion map is determined via the reprocessed fusion map and is optimized by a guided filter. Experimental results demonstrate that the proposed method does markedly improve the fusion performance compared to previous fusion methods and can be competitive with or even outperform state-of-the-art fusion methods in terms of both subjective visual effects and objective quality metrics.
Okubo, Chris H.; Gaither, Tenielle A.
2017-05-12
This map product contains a set of three 1:18,000-scale maps showing the geology and structure of study areas in the western Candor Chasma region of Valles Marineris, Mars. These maps are part of an informal series of large-scale maps and map-based topical studies aimed at refining current understanding of the geologic history of western Candor Chasma. The map bases consist of digital elevation models and orthorectified images derived from High Resolution Imaging Science Experiment (HiRISE) data. These maps are accompanied by geologic cross sections, colorized elevation maps, and cutouts of HiRISE images showing key superposition relations. Also included in this product is a Correlation of Map Units that integrates units across all three map areas, as well as an integrated Description of Map Units and an integrated Explanation of Map Symbols. The maps were assembled using ArcGIS software produced by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS projects and databases associated with each map are included online as supplemental data.
Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark
2018-02-01
To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. Strategically acquired gradient echo (STAGE) imaging includes two fully flow compensated double echo gradient echo acquisitions with a resolution of 0.67×1.33×2.0mm 3 acquired in 5min for 64 slices. Ten subjects were recruited and scanned at 3 Tesla. The optimum pair of flip angles (6° and 24° with TR=25ms at 3T) were used for both T1 mapping with radio frequency (RF) transmit field correction and creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.
Using satellite data in map design and production
Hutchinson, John A.
2002-01-01
Satellite image maps have been produced by the U.S. Geological Survey (USGS) since shortly after the launch of the first Landsat satellite in 1972. Over the years, the use of image data to design and produce maps has developed from a manual and photographic process to one that incorporates geographic information systems, desktop publishing, and digital prepress techniques. At the same time, the content of most image-based maps produced by the USGS has shifted from raw image data to land cover or other information layers derived from satellite imagery, often portrayed in combination with shaded relief.
Topographic map of the western region of Dao Vallis in Hellas Planitia, Mars; MTM 500k -40/082E OMKT
Rosiek, Mark R.; Redding, Bonnie L.; Galuszka, Donna M.
2006-01-01
This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. Contours were derived from a digital terrain model (DTM) compiled on a digital photogrammetric workstation using Viking Orbiter stereo image pairs with orientation parameters derived from an analytic aerotriangulation. The image base for this map employs Viking Orbiter images from orbits 406 and 363. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models.
2010-05-13
This map sheet covers a 15-series image set covering the entire surface of Enceladus. The map data was acquired by NASA Cassini imaging experiment. Individual images can be viewed via the Photojournal.
Texture Analysis of Chaotic Coupled Map Lattices Based Image Encryption Algorithm
NASA Astrophysics Data System (ADS)
Khan, Majid; Shah, Tariq; Batool, Syeda Iram
2014-09-01
As of late, data security is key in different enclosures like web correspondence, media frameworks, therapeutic imaging, telemedicine and military correspondence. In any case, a large portion of them confronted with a few issues, for example, the absence of heartiness and security. In this letter, in the wake of exploring the fundamental purposes of the chaotic trigonometric maps and the coupled map lattices, we have presented the algorithm of chaos-based image encryption based on coupled map lattices. The proposed mechanism diminishes intermittent impact of the ergodic dynamical systems in the chaos-based image encryption. To assess the security of the encoded image of this scheme, the association of two nearby pixels and composition peculiarities were performed. This algorithm tries to minimize the problems arises in image encryption.
Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.
Xiang, Lei; Wang, Qian; Nie, Dong; Zhang, Lichi; Jin, Xiyao; Qiao, Yu; Shen, Dinggang
2018-07-01
Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis result back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeating this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate imaging datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding operations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image. Copyright © 2018. Published by Elsevier B.V.
Images of the World: Mental Maps of U.S. Military Officers
1992-05-01
only displayed the geographic characteristics of the countries, (the direction, distance, and size; all relative to the U.S.) but the maps also indicate...individual’s mental map is based upon learned facts and exposure to impressionable images. Facts and images of the world constitute the foundation from... characteristics of the world are mostly static, images people have of places are dynamic and fluid. Graphically, this is the main difference between
36 CFR 1194.22 - Web-based intranet and internet information and applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... active region of a server-side image map. (f) Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined with an available geometric shape. (g) Row...) Frames shall be titled with text that facilitates frame identification and navigation. (j) Pages shall be...
36 CFR 1194.22 - Web-based intranet and internet information and applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... active region of a server-side image map. (f) Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined with an available geometric shape. (g) Row...) Frames shall be titled with text that facilitates frame identification and navigation. (j) Pages shall be...
36 CFR § 1194.22 - Web-based intranet and internet information and applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... active region of a server-side image map. (f) Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined with an available geometric shape. (g) Row...) Frames shall be titled with text that facilitates frame identification and navigation. (j) Pages shall be...
P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin
2000-01-01
Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...
A chaotic cryptosystem for images based on Henon and Arnold cat map.
Soleymani, Ali; Nordin, Md Jan; Sundararajan, Elankovan
2014-01-01
The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications.
A Chaotic Cryptosystem for Images Based on Henon and Arnold Cat Map
Sundararajan, Elankovan
2014-01-01
The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications. PMID:25258724
Enhancing scattering images for orientation recovery with diffusion map
Winter, Martin; Saalmann, Ulf; Rost, Jan M.
2016-02-12
We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America
Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope
NASA Astrophysics Data System (ADS)
Li, Tianwei; Zou, Qingze
2017-12-01
In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.
Seamless Warping of Diffusion Tensor Fields
Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425
Performance Evaluation of Dsm Extraction from ZY-3 Three-Line Arrays Imagery
NASA Astrophysics Data System (ADS)
Xue, Y.; Xie, W.; Du, Q.; Sang, H.
2015-08-01
ZiYuan-3 (ZY-3), launched in January 09, 2012, is China's first civilian high-resolution stereo mapping satellite. ZY-3 is equipped with three-line scanners (nadir, backward and forward) for stereo mapping, the resolutions of the panchromatic (PAN) stereo mapping images are 2.1-m at nadir looking and 3.6-m at tilt angles of ±22° forward and backward looking, respectively. The stereo base-height ratio is 0.85-0.95. Compared with stereo mapping from two views images, three-line arrays images of ZY-3 can be used for DSM generation taking advantage of one more view than conventional photogrammetric methods. It would enrich the information for image matching and enhance the accuracy of DSM generated. The primary result of positioning accuracy of ZY-3 images has been reported, while before the massive mapping applications of utilizing ZY-3 images for DSM generation, the performance evaluation of DSM extraction from three-line arrays imagery of ZY-3 has significant meaning for the routine mapping applications. The goal of this research is to clarify the mapping performance of ZY-3 three-line arrays scanners on china's first civilian high-resolution stereo mapping satellite of ZY-3 through the accuracy evaluation of DSM generation. The comparison of DSM product in different topographic areas generated with three views images with different two views combination images of ZY-3 would be presented. Besides the comparison within different topographic study area, the accuracy deviation of the DSM products with different grid size including 25-m, 10-m and 5-m is delineated in order to clarify the impact of grid size on accuracy evaluation.
Surface-material maps of Viking landing sites on Mars
NASA Technical Reports Server (NTRS)
Moore, H. J.; Keller, J. M.
1991-01-01
Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.
A scene-analysis approach to remote sensing. [San Francisco, California
NASA Technical Reports Server (NTRS)
Tenenbaum, J. M. (Principal Investigator); Fischler, M. A.; Wolf, H. C.
1978-01-01
The author has identified the following significant results. Geometric correspondance between a sensed image and a symbolic map is established in an initial stage of processing by adjusting parameters of a sensed model so that the image features predicted from the map optimally match corresponding features extracted from the sensed image. Information in the map is then used to constrain where to look in an image, what to look for, and how to interpret what is seen. For simple monitoring tasks involving multispectral classification, these constraints significantly reduce computation, simplify interpretation, and improve the utility of the resulting information. Previously intractable tasks requiring spatial and textural analysis may become straightforward in the context established by the map knowledge. The use of map-guided image analysis in monitoring the volume of water in a reservoir, the number of boxcars in a railyard, and the number of ships in a harbor is demonstrated.
Automated thermal mapping techniques using chromatic image analysis
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
1989-01-01
Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.
Restoration of distorted depth maps calculated from stereo sequences
NASA Technical Reports Server (NTRS)
Damour, Kevin; Kaufman, Howard
1991-01-01
A model-based Kalman estimator is developed for spatial-temporal filtering of noise and other degradations in velocity and depth maps derived from image sequences or cinema. As an illustration of the proposed procedures, edge information from image sequences of rigid objects is used in the processing of the velocity maps by selecting from a series of models for directional adaptive filtering. Adaptive filtering then allows for noise reduction while preserving sharpness in the velocity maps. Results from several synthetic and real image sequences are given.
1998-03-28
This image-based surface map of Pluto was assembled by computer image processing software from four separate images of Pluto disk taken with the European Space Agency Faint Object Camera aboard NASA Hubble Space Telescope.
Design of an image encryption scheme based on a multiple chaotic map
NASA Astrophysics Data System (ADS)
Tong, Xiao-Jun
2013-07-01
In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.
Providing Internet Access to High-Resolution Lunar Images
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2008-01-01
The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.
Providing Internet Access to High-Resolution Mars Images
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2008-01-01
The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.
Software For Tie-Point Registration Of SAR Data
NASA Technical Reports Server (NTRS)
Rignot, Eric; Dubois, Pascale; Okonek, Sharon; Van Zyl, Jacob; Burnette, Fred; Borgeaud, Maurice
1995-01-01
SAR-REG software package registers synthetic-aperture-radar (SAR) image data to common reference frame based on manual tie-pointing. Image data can be in binary, integer, floating-point, or AIRSAR compressed format. For example, with map of soil characteristics, vegetation map, digital elevation map, or SPOT multispectral image, as long as user can generate binary image to be used by tie-pointing routine and data are available in one of the previously mentioned formats. Written in FORTRAN 77.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin
2013-01-01
Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mappingmore » of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.« less
NASA Technical Reports Server (NTRS)
Morrison, R. B. (Principal Investigator); Hallberg, G. R.
1973-01-01
The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be differentiated, primarily by information on landforms and soils. Maps showing the Quaternary geologic-terrain units that can be differentiated from the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps at 1:1 million scale are given of two of the study areas, the Peoria and Decatur, Illinois, 1 deg x 2 quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from ERTS-1 images alone, without input of additional data. These maps shown that commonly the boundaries of geologic-terrain units can be identified more accurately on ERTS-1 images than on topographic maps of 1:250,000 scale. From analysis of drainage patterns, stream-divide relations, and tone and textural variations on the ERTS-1 images, the trends of numerous moraines of Wisconsinan and possibly some of Illinoian age were mapped. In the Peoria study area the trend of a buried valley of the Mississippi River is revealed.
Tone mapping infrared images using conditional filtering-based multi-scale retinex
NASA Astrophysics Data System (ADS)
Luo, Haibo; Xu, Lingyun; Hui, Bin; Chang, Zheng
2015-10-01
Tone mapping can be used to compress the dynamic range of the image data such that it can be fitted within the range of the reproduction media and human vision. The original infrared images that captured with infrared focal plane arrays (IFPA) are high dynamic images, so tone mapping infrared images is an important component in the infrared imaging systems, and it has become an active topic in recent years. In this paper, we present a tone mapping framework using multi-scale retinex. Firstly, a Conditional Gaussian Filter (CGF) was designed to suppress "halo" effect. Secondly, original infrared image is decomposed into a set of images that represent the mean of the image at different spatial resolutions by applying CGF of different scale. And then, a set of images that represent the multi-scale details of original image is produced by dividing the original image pointwise by the decomposed image. Thirdly, the final detail image is reconstructed by weighted sum of the multi-scale detail images together. Finally, histogram scaling and clipping is adopted to remove outliers and scale the detail image, 0.1% of the pixels are clipped at both extremities of the histogram. Experimental results show that the proposed algorithm efficiently increases the local contrast while preventing "halo" effect and provides a good rendition of visual effect.
Puthanakit, Thanyawee; Ananworanich, Jintanat; Vonthanak, Saphonn; Kosalaraksa, Pope; Hansudewechakul, Rawiwan; van der Lugt, Jasper; Kerr, Stephen J.; Kanjanavanit, Suparat; Ngampiyaskul, Chaiwat; Wongsawat, Jurai; Luesomboon, Wicharn; Vibol, Ung; Pruksakaew, Kanchana; Suwarnlerk, Tulathip; Apornpong, Tanakorn; Ratanadilok, Kattiya; Paul, Robert; Mofenson, Lynne M.; Fox, Lawrence; Valcour, Victor; Brouwers, Pim; Ruxrungtham, Kiat
2013-01-01
Background We previously reported similar AIDS-free survival at 3 years in children who were >1 year old initiating antiretroviral therapy (ART) and randomized to early vs. deferred ART in the PREDICT Study. We now report neurodevelopmental outcomes. Methods 284 HIV-infected Thai and Cambodian children aged 1–12 years with CD4 counts between 15–24% and no AIDS-defining illness were randomized to initiate ART at enrollment (“early”, n=139) or when CD4 count became <15% or a CDC C event developed (“deferred”, n=145). All underwent age-appropriate neurodevelopment testing including Beery Visual Motor Integration (VMI), Purdue Pegboard, Color Trails and Child Behavioral Checklist (CBCL). Thai children (n=170) also completed Wechsler Intelligence Scale (IQ) and Stanford Binet Memory test. We compared week 144 measures by randomized group and to HIV-uninfected children (n=319). Results At week 144, the median age was 9 years and 69 (48%) of the deferred arm children had initiated ART. The early arm had a higher CD4 (33% vs. 24%, p<0.001) and a greater percentage of children with viral suppression (91% vs. 40%, p<0.001). Neurodevelopmental scores did not differ by arm and there were no differences in changes between arms across repeated assessments in time-varying multivariate models. HIV-infected children performed worse than uninfected children on IQ, Beery VMI, Binet memory and CBCL Conclusions In HIV-infected children surviving beyond one year of age without ART, neurodevelopmental outcomes were similar with ART initiation at CD4 15–24% vs. < 15%; but both groups performed worse than HIV-uninfected children. The window of opportunity for a positive effect of ART initiation on neurodevelopment may remain in infancy. PMID:23263176
An authenticated image encryption scheme based on chaotic maps and memory cellular automata
NASA Astrophysics Data System (ADS)
Bakhshandeh, Atieh; Eslami, Ziba
2013-06-01
This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.
Self-Organizing-Map Program for Analyzing Multivariate Data
NASA Technical Reports Server (NTRS)
Li, P. Peggy; Jacob, Joseph C.; Block, Gary L.; Braverman, Amy J.
2005-01-01
SOM_VIS is a computer program for analysis and display of multidimensional sets of Earth-image data typified by the data acquired by the Multi-angle Imaging Spectro-Radiometer [MISR (a spaceborne instrument)]. In SOM_VIS, an enhanced self-organizing-map (SOM) algorithm is first used to project a multidimensional set of data into a nonuniform three-dimensional lattice structure. The lattice structure is mapped to a color space to obtain a color map for an image. The Voronoi cell-refinement algorithm is used to map the SOM lattice structure to various levels of color resolution. The final result is a false-color image in which similar colors represent similar characteristics across all its data dimensions. SOM_VIS provides a control panel for selection of a subset of suitably preprocessed MISR radiance data, and a control panel for choosing parameters to run SOM training. SOM_VIS also includes a component for displaying the false-color SOM image, a color map for the trained SOM lattice, a plot showing an original input vector in 36 dimensions of a selected pixel from the SOM image, the SOM vector that represents the input vector, and the Euclidean distance between the two vectors.
Modeling a color-rendering operator for high dynamic range images using a cone-response function
NASA Astrophysics Data System (ADS)
Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju
2015-09-01
Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.
Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy
Boujraf, Saïd
2018-01-01
Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631
Assessing the impact of graphical quality on automatic text recognition in digital maps
NASA Astrophysics Data System (ADS)
Chiang, Yao-Yi; Leyk, Stefan; Honarvar Nazari, Narges; Moghaddam, Sima; Tan, Tian Xiang
2016-08-01
Converting geographic features (e.g., place names) in map images into a vector format is the first step for incorporating cartographic information into a geographic information system (GIS). With the advancement in computational power and algorithm design, map processing systems have been considerably improved over the last decade. However, the fundamental map processing techniques such as color image segmentation, (map) layer separation, and object recognition are sensitive to minor variations in graphical properties of the input image (e.g., scanning resolution). As a result, most map processing results would not meet user expectations if the user does not "properly" scan the map of interest, pre-process the map image (e.g., using compression or not), and train the processing system, accordingly. These issues could slow down the further advancement of map processing techniques as such unsuccessful attempts create a discouraged user community, and less sophisticated tools would be perceived as more viable solutions. Thus, it is important to understand what kinds of maps are suitable for automatic map processing and what types of results and process-related errors can be expected. In this paper, we shed light on these questions by using a typical map processing task, text recognition, to discuss a number of map instances that vary in suitability for automatic processing. We also present an extensive experiment on a diverse set of scanned historical maps to provide measures of baseline performance of a standard text recognition tool under varying map conditions (graphical quality) and text representations (that can vary even within the same map sheet). Our experimental results help the user understand what to expect when a fully or semi-automatic map processing system is used to process a scanned map with certain (varying) graphical properties and complexities in map content.
Active edge maps for medical image registration
NASA Astrophysics Data System (ADS)
Kerwin, William; Yuan, Chun
2001-07-01
Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.
2015-04-16
During NASA MESSENGER four-year orbital mission, the spacecraft X-Ray Spectrometer XRS instrument mapped out the chemical composition of Mercury and discovered striking regions of chemical diversity. These maps of magnesium/silicon (left) and aluminium/silicon (right) use red colors to indicate high values and blue colors for low values. In the maps shown here, the Caloris basin can be identified as a region with low Mg/Si and high Ca/Si on the upper left of each map. An extensive region with high Mg/Si is also clearly visible in the maps but is not correlated with any visible impact basin. Instrument: X-Ray Spectrometer (XRS) and Mercury Dual Imaging System (MDIS) Left Image: Map of Mg/Si Right Image: Map of Al/Si http://photojournal.jpl.nasa.gov/catalog/PIA19417
Bas-relief map using texture analysis with application to live enhancement of ultrasound images.
Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing
2015-05-01
For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Karteris, M. A. (Principal Investigator)
1980-01-01
A winter black and white band 5, a winter color, a fall color, and a diazo color composite of the fall scene were used to assess the use and potential of LANDSAT images for mapping and estimating acreage of small scattered forest tracts in Barry County, Michigan. Forests as small as 2.5 acres were mapped from each LANDSAT data source. The maps for each image were compared with an available forest-type map. Mapping errors detected were categorized as boundary and identification errors. The most frequently misclassified areas were agriculture lands, treed-bogs, brushlands and lowland and mixed hardwood stands. Stocking level affected interpretation more than stand size. The overall level of the interpretation performance was expressed through the estimation of classification, interpretation, and mapping accuracies. These accuracies ranged from 74 between 74% and 98%. Considering errors, accuracy, and cost, winter color imagery is the best LANDSAT alternative for mapping small forest tracts. However, since the availability of cloud-free winter images of the study area is significantly lower than images for other seasons, a diazo enhanced image of a fall scene is recommended as the best next best alternative.
The National Map - Orthoimagery
Mauck, James; Brown, Kim; Carswell, William J.
2009-01-01
Orthorectified digital aerial photographs and satellite images of 1-meter (m) pixel resolution or finer make up the orthoimagery component of The National Map. The process of orthorectification removes feature displacements and scale variations caused by terrain relief and sensor geometry. The result is a combination of the image characteristics of an aerial photograph or satellite image and the geometric qualities of a map. These attributes allow users to: *Measure distance *Calculate areas *Determine shapes of features *Calculate directions *Determine accurate coordinates *Determine land cover and use *Perform change detection *Update maps The standard digital orthoimage is a 1-m or finer resolution, natural color or color infra-red product. Most are now produced as GeoTIFFs and accompanied by a Federal Geographic Data Committee (FGDC)-compliant metadata file. The primary source for 1-m data is the National Agriculture Imagery Program (NAIP) leaf-on imagery. The U.S. Geological Survey (USGS) utilizes NAIP imagery as the image layer on its 'Digital- Map' - a new generation of USGS topographic maps (http://nationalmap.gov/digital_map). However, many Federal, State, and local governments and organizations require finer resolutions to meet a myriad of needs. Most of these images are leaf-off, natural-color products at resolutions of 1-foot (ft) or finer.
2015-10-09
The northern and southern hemispheres of Titan are seen in these polar stereographic maps, assembled in 2015 using the best-available images of the giant Saturnian moon from NASA's Cassini mission. The images were taken by Cassini's imaging cameras using a spectral filter centered at 938 nanometers, allowing researchers to examine variations in albedo (or inherent brightness) across the surface of Titan. These maps utilize imaging data collected through Cassini's flyby on April 7, 2014, known as "T100." Titan's north pole was not well illuminated early in Cassini's mission, because it was winter in the northern hemisphere when the spacecraft arrived at Saturn. Cassini has been better able to observe northern latitudes in more recent years due to seasonal changes in solar illumination. Compared to the previous version of Cassini's north polar map (see PIA11146), this map provides much more detail and fills in a large area of missing data. The imaging data in these maps complement Cassini synthetic aperture radar (SAR) mapping of Titan's north pole (see PIA17655). The uniform gray area in the northern hemisphere indicates a gap in the imaging coverage of Titan's surface, to date. The missing data will be imaged by Cassini during flybys on December 15, 2016 and March 5, 2017. Lakes are also seen in the southern hemisphere map, but they are much less common than in the north polar region. Only a lakes have been confirmed in the south. The dark, footprint-shaped feature at 180 degrees west is Ontario Lacus; a smaller lake named Crveno Lacus can be seen as a very dark spot just above Ontario. The dark-albedo area seen at the top of the southern hemisphere map (at 0 degrees west) is an area called Mezzoramia. Each map is centered on one of the poles, and surface coverage extends southward to 60 degrees latitude. Grid lines indicate latitude in 10-degree increments and longitude in 30-degree increments. The scale in the full-size versions of these maps is 4,600 feet (1,400 meters) per pixel. The mean radius of Titan used for projection of these maps is 1,600 miles (2,575 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19657
Contour-Driven Atlas-Based Segmentation
Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina
2016-01-01
We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202
NASA Astrophysics Data System (ADS)
Liu, Chunhui; Zhang, Duona; Zhao, Xintao
2018-03-01
Saliency detection in synthetic aperture radar (SAR) images is a difficult problem. This paper proposed a multitask saliency detection (MSD) model for the saliency detection task of SAR images. We extract four features of the SAR image, which include the intensity, orientation, uniqueness, and global contrast, as the input of the MSD model. The saliency map is generated by the multitask sparsity pursuit, which integrates the multiple features collaboratively. Detection of different scale features is also taken into consideration. Subjective and objective evaluation of the MSD model verifies its effectiveness. Based on the saliency maps obtained by the MSD model, we apply the saliency map of the SAR image to the SAR and color optical image fusion. The experimental results of real data show that the saliency map obtained by the MSD model helps to improve the fusion effect, and the salient areas in the SAR image can be highlighted in the fusion results.
NASA Astrophysics Data System (ADS)
Amit, S. N. K.; Saito, S.; Sasaki, S.; Kiyoki, Y.; Aoki, Y.
2015-04-01
Google earth with high-resolution imagery basically takes months to process new images before online updates. It is a time consuming and slow process especially for post-disaster application. The objective of this research is to develop a fast and effective method of updating maps by detecting local differences occurred over different time series; where only region with differences will be updated. In our system, aerial images from Massachusetts's road and building open datasets, Saitama district datasets are used as input images. Semantic segmentation is then applied to input images. Semantic segmentation is a pixel-wise classification of images by implementing deep neural network technique. Deep neural network technique is implemented due to being not only efficient in learning highly discriminative image features such as road, buildings etc., but also partially robust to incomplete and poorly registered target maps. Then, aerial images which contain semantic information are stored as database in 5D world map is set as ground truth images. This system is developed to visualise multimedia data in 5 dimensions; 3 dimensions as spatial dimensions, 1 dimension as temporal dimension, and 1 dimension as degenerated dimensions of semantic and colour combination dimension. Next, ground truth images chosen from database in 5D world map and a new aerial image with same spatial information but different time series are compared via difference extraction method. The map will only update where local changes had occurred. Hence, map updating will be cheaper, faster and more effective especially post-disaster application, by leaving unchanged region and only update changed region.
Mukherjee, Ankur; Morton, Simon; Fraser, Sioban; Salmond, Jonathan; Baxter, Grant; Leung, Hing Y
2014-11-01
Transperineal prostatic biopsy is firmly established as an important tool in the diagnosis of prostate cancer. The benefit of additional imaging (magnetic resonance imaging) to target biopsy remains to be fully addressed. Using a cohort of consecutive patients undergoing transperineal template mapping biopsies, we studied positive biopsies in the context of magnetic resonance imaging findings and examined the accuracy of magnetic resonance imaging in predicting the location of transperineal template mapping biopsies-detected prostate cancer. Forty-four patients (mean age: 65 years, range 53-78) underwent transperineal template mapping biopsies. Thirty-four patients had 1-2 and 10 patients had ≥3 previous transrectal ultrasound scan-guided biopsies. The mean prostate-specific antigen was 15 ng/mL (range 2.5-79 ng/mL). High-grade prostatic intraepithelial neoplasia was found in 12 (27%) patients and prostate cancer with Gleason <7, 7 and >7 in 13, 10 and 8 patients, respectively. Suspicious lesions on magnetic resonance imaging scans were scored from 1 to 5. In 28 patients, magnetic resonance imaging detected lesions with score ≥3. Magnetic resonance imaging correctly localised transperineal template mapping biopsies-detected prostate cancer in a hemi-gland approach, particularly in a right to left manner (79% positive prediction rate), but not in a quadrant approach (33% positive prediction rate). Our findings support the notion of magnetic resonance imaging-based selection of patients for transperineal template mapping biopsies and that lesions revealed by magnetic resonance imaging are likely useful for targeted biopsies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
A device for multimodal imaging of skin
NASA Astrophysics Data System (ADS)
Spigulis, Janis; Garancis, Valerijs; Rubins, Uldis; Zaharans, Eriks; Zaharans, Janis; Elste, Liene
2013-03-01
A compact prototype device for diagnostic imaging of skin has been developed and tested. Polarized LED light at several spectral regions is used for illumination, and round skin spot of diameter 30mm is imaged by a CMOS sensor via crossoriented polarizing filter. Four consecutive imaging series are performed: (1) RGB image at white LED illumination for revealing subcutaneous structures; (2) four spectral images at narrowband LED illumination (450nm, 540nm, 660nm, 940nm) for mapping of the main skin chromophores; (3) video-imaging under green LED illumination for mapping of skin blood perfusion; (4) autofluorescence video-imaging under UV (365nm) LED irradiation for mapping of the skin fluorophores. Design details of the device as well as preliminary results of clinical tests are presented.
Perfusion weighted imaging and its application in stroke
NASA Astrophysics Data System (ADS)
Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Xingfeng; Zhu, Fuping
2003-05-01
To study the technique and application of perfusion weighted imaging (PWI) in the diagnosis and medical treatment of acute stroke, 25 patients were examined by 1.5 T or 1.0 T MRI scanner. The Data analysis was done with "3D Med System" developed by our Lab to process the data and obtain apparent diffusion coefficient (ADC) map, cerebral blood volume (CBV) map, cerebral blood flow (CBF) map as well as mean transit time (MTT) map. In accute stage of stroke, normal or slightly hypointensity in T1-, hyperintensity in T2- and diffusion-weighted images were seen in the cerebral infarction areas. There were hypointensity in CBV map, CBF map and ADC map; and hyperintensity in MTT map that means this infarct area could be saved. If the hyperintensity area in MTT map was larger than the area in diffusion weighted imaging (DWI), the larger part was called penumbra and could be cured by an appropriate thrombolyitic or other therapy. The CBV, CBF and MTT maps are very important in the diagnosis and medical treatment of acute especially hyperacute stroke. Comparing with DWI, we can easily know the situation of penumbra and the effect of curvative therapy. Besides, we can also make a differential diagnosis with this method.
The iMars WebGIS - Spatio-Temporal Data Queries and Single Image Map Web Services
NASA Astrophysics Data System (ADS)
Walter, Sebastian; Steikert, Ralf; Schreiner, Bjoern; Muller, Jan-Peter; van Gasselt, Stephan; Sidiropoulos, Panagiotis; Lanz-Kroechert, Julia
2017-04-01
Introduction: Web-based planetary image dissemination platforms usually show outline coverages of the data and offer querying for metadata as well as preview and download, e.g. the HRSC Mapserver (Walter & van Gasselt, 2014). Here we introduce a new approach for a system dedicated to change detection by simultanous visualisation of single-image time series in a multi-temporal context. While the usual form of presenting multi-orbit datasets is the merge of the data into a larger mosaic, we want to stay with the single image as an important snapshot of the planetary surface at a specific time. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs. Additionally we make use of the existing bundle-adjusted HRSC single images available at the PDS archives. A prototype demonstrating the presented features is available at http://imars.planet.fu-berlin.de. Multi-temporal database: In order to locate multiple coverage of images and select images based on spatio-temporal queries, we converge available coverage catalogs for various NASA imaging missions into a relational database management system with geometry support. We harvest available metadata entries during our processing pipeline using the Integrated Software for Imagers and Spectrometers (ISIS) software. Currently, this database contains image outlines from the MGS/MOC, MRO/CTX and the MO/THEMIS instruments with imaging dates ranging from 1996 to the present. For the MEx/HRSC data, we already maintain a database which we automatically update with custom software based on the VICAR environment. Web Map Service with time support: The MapServer software is connected to the database and provides Web Map Services (WMS) with time support based on the START_TIME image attribute. It allows temporal WMS GetMap requests by setting additional TIME parameter values in the request. The values for the parameter represent an interval defined by its lower and upper bounds. As the WMS time standard only supports one time variable, only the start times of the images are considered. If no time values are submitted with the request, the full time range of all images is assumed as the default. Dynamic single image WMS: To compare images from different acquisition times at sites of multiple coverage, we have to load every image as a single WMS layer. Due to the vast amount of single images we need a way to set up the layers in a dynamic way - the map server does not know the images to be served beforehand. We use the MapScript interface to dynamically access MapServer's objects and configure the file name and path of the requested image in the map configuration. The layers are created on-the-fly each representing only one single image. On the frontend side, the vendor-specific WMS request parameter (PRODUCTID) has to be appended to the regular set of WMS parameters. The request is then passed on to the MapScript instance. Web Map Tile Cache: In order to speed up access of the WMS requests, a MapCache instance has been integrated in the pipeline. As it is not aware of the available PDS product IDs which will be queried, the PRODUCTID parameter is configured as an additional dimension of the cache. The WMS request is received by the Apache webserver configured with the MapCache module. If the tile is available in the tile cache, it is immediately commited to the client. If not available, the tile request is forwarded to Apache and the MapScript module. The Python script intercepts the WMS request and extracts the product ID from the parameter chain. It loads the layer object from the map file and appends the file name and path of the inquired image. After some possible further image processing inside the script (stretching, color matching), the request is submitted to the MapServer backend which in turn delivers the response back to the MapCache instance. Web frontend: We have implemented a web-GIS frontend based on various OpenLayers components. The basemap is a global color-hillshaded HRSC bundle-adjusted DTM mosaic with a resolution of 50 m per pixel. The new bundle-block-adjusted qudrangle mosaics of the MC-11 quadrangle, both image and DTM, are included with opacity slider options. The layer user interface has been adapted on the base of the ol3-layerswitcher and extended by foldable and switchable groups, layer sorting (by resolution, by time and alphabeticallly) and reordering (drag-and-drop). A collapsible time panel accomodates a time slider interface where the user can filter the visible data by a range of Mars or Earth dates and/or by solar longitudes. The visualisation of time-series of single images is controlled by a specific toolbar enabling the workflow of image selection (by point or bounding box), dynamic image loading and playback of single images in a video player-like environment. During a stress-test campaign we could demonstrate that the system is capable of serving up to 10 simultaneous users on its current lightweight development hardware. It is planned to relocate the software to more powerful hardware by the time of this conference. Conclusions/Outlook: The iMars webGIS is an expert tool for the detection and visualization of surface changes. We demonstrate a technique to dynamically retrieve and display single images based on the time-series structure of the data. Together with the multi-temporal database and its MapServer/MapCache backend it provides a stable and high performance environment for the dissemination of the various iMars products. Acknowledgements: This research has received funding from the EU's FP7 Programme under iMars 607379 and by the German Space Agency (DLR Bonn), grant 50 QM 1301 (HRSC on Mars Express).
Utilization of LANDSAT images in cartography
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Alburquerque, P. C. G.
1981-01-01
The use of multispectral imagery obtained from LANDSAT for mapping purposes is discussed with emphasis on geometric rectification, image resolution, and systematic topographic mapping. A method is given for constructing 1:250,000 scale maps. The limitations for satellite cartography are examined.
Taguchi, Katsuyuki; Itoh, Toshihide; Fuld, Matthew K; Fournie, Eric; Lee, Okkyun; Noguchi, Kyo
2018-03-14
A novel imaging technique ("X-map") has been developed to identify acute ischemic lesions for stroke patients using non-contrast-enhanced dual-energy computed tomography (NE-DE-CT). Using the 3-material decomposition technique, the original X-map ("X-map 1.0") eliminates fat and bone from the images, suppresses the gray matter (GM)-white matter (WM) tissue contrast, and makes signals of edema induced by severe ischemia easier to detect. The aim of this study was to address the following 2 problems with the X-map 1.0: (1) biases in CT numbers (or artifacts) near the skull of NE-DE-CT images and (2) large intrapatient and interpatient variations in X-map 1.0 values. We improved both an iterative beam-hardening correction (iBHC) method and the X-map algorithm. The new iBHC (iBHC2) modeled x-ray physics more accurately. The new X-map ("X-map 2.0") estimated regional GM values-thus, maximizing the ability to suppress the GM-WM contrast, make edema signals quantitative, and enhance the edema signals that denote an increased water density for each pixel. We performed a retrospective study of 11 patients (3 men, 8 women; mean age, 76.3 years; range, 68-90 years) who presented to the emergency department with symptoms of acute stroke. Images were reconstructed with the old iBHC (iBHC1) and the iBHC2, and biases in CT numbers near the skull were measured. Both X-map 2.0 maps and X-map 1.0 maps were computed from iBHC2 images, both with and without a material decomposition-based edema signal enhancement (ESE) process. X-map values were measured at 5 to 9 locations on GM without infarct per patient; the mean value was calculated for each patient (we call it the patient-mean X-map value) and subtracted from the measured X-map values to generate zero-mean X-map values. The standard deviation of the patient-mean X-map values over multiple patients denotes the interpatient variation; the standard deviation over multiple zero-mean X-map values denotes the intrapatient variation. The Levene F test was performed to assess the difference in the standard deviations with different algorithms. Using 5 patient data who had diffusion weighted imaging (DWI) within 2 hours of NE-DE-CT, mean values at and near ischemic lesions were measured at 7 to 14 locations per patient with X-map images, CT images (low kV and high kV), and DWI images. The Pearson correlation coefficient was calculated between a normalized increase in DWI signals and either X-map or CT. The bias in CT numbers was lower with iBHC2 than with iBHC1 in both high- and low-kV images (2.5 ± 2.0 HU [95% confidence interval (CI), 1.3-3.8 HU] for iBHC2 vs 6.9 ± 2.3 HU [95% CI, 5.4-8.3 HU] for iBHC1 with high-kV images, P < 0.01; 1.5 ± 3.6 HU [95% CI, -0.8 to 3.7 HU] vs 12.8 ± 3.3 HU [95% CI, 10.7-14.8 HU] with low-kV images, P < 0.01). The interpatient variation was smaller with X-map 2.0 than with X-map 1.0, both with and without ESE (4.3 [95% CI, 3.0-7.6] for X-map 2.0 vs 19.0 [95% CI, 13.3-22.4] for X-map 1.0, both with ESE, P < 0.01; 3.0 [95% CI, 2.1-5.3] vs 12.0 [95% CI, 8.4-21.0] without ESE, P < 0.01). The intrapatient variation was also smaller with X-map 2.0 than with X-map 1.0 (6.2 [95% CI, 5.3-7.3] vs 8.5 [95% CI, 7.3-10.1] with ESE, P = 0.0122; 4.1 [95% CI, 3.6-4.9] vs 6.3 [95% CI, 5.5-7.6] without ESE, P < 0.01). The best 3 correlation coefficients (R) with DWI signals were -0.733 (95% CI, -0.845 to -0.560, P < 0.001) for X-map 2.0 with ESE, -0.642 (95% CI, -0.787 to -0.429, P < 0.001) for high-kV CT, and -0.609 (95% CI, -0.766 to -0.384, P < 0.001) for X-map 1.0 with ESE. Both of the 2 problems outlined in the objectives have been addressed by improving both iBHC and X-map algorithm. The iBHC2 improved the bias in CT numbers and the visibility of GM-WM contrast throughout the brain space. The combination of iBHC2 and X-map 2.0 with ESE decreased both intrapatient and interpatient variations of edema signals significantly and had a strong correlation with DWI signals in terms of the strength of edema signals.
Validation of Satellite Snow Cover Maps in North America and Norway
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Solberg, Rune; Riggs, George A.
2002-01-01
Satellite-derived snow maps from NASA's Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) have been produced since February of 2000. The global maps are available daily at 500-m resolution, and at a climate-modeling grid (CMG) resolution of 1/20 deg (approximately 5.6 km). We compared the 8-day composite CMG MODIS-derived global maps from November 1,2001, through March 21,2002, and daily CMG maps from February 26 - March 5,2002, with National Oceanic and Atmospheric Administration (NOAA) Interactive Multisensor Snow and Ice Mapping System (IMS) 25-km resolution maps for North America. For the Norwegian study area, national snow maps, based on synoptic measurements as well as visual interpretation of AVHRR images, published by the Det Norske Meteorologiske Institutt (Norwegian Meteorological Institute) (MI) maps, as well as Landsat ETM+ images were compared with the MODIS maps. The MODIS-derived maps agreed over most areas with the IMS or MI maps, however, there are important areas of disagreement between the maps, especially when the 8-day composite maps were used. It is concluded that MODIS daily CMG maps should be studied for validation purposes rather than the 8-day composite maps, despite the limitations imposed by cloud obscuration when using the daily maps.
NASA Astrophysics Data System (ADS)
Eugster, H.; Huber, F.; Nebiker, S.; Gisi, A.
2012-07-01
Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations - in our case of the imaging sensors - normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.
Liu, Huiling; Xia, Bingbing; Yi, Dehui
2016-01-01
We propose a new feature extraction method of liver pathological image based on multispatial mapping and statistical properties. For liver pathological images of Hematein Eosin staining, the image of R and B channels can reflect the sensitivity of liver pathological images better, while the entropy space and Local Binary Pattern (LBP) space can reflect the texture features of the image better. To obtain the more comprehensive information, we map liver pathological images to the entropy space, LBP space, R space, and B space. The traditional Higher Order Local Autocorrelation Coefficients (HLAC) cannot reflect the overall information of the image, so we propose an average correction HLAC feature. We calculate the statistical properties and the average gray value of pathological images and then update the current pixel value as the absolute value of the difference between the current pixel gray value and the average gray value, which can be more sensitive to the gray value changes of pathological images. Lastly the HLAC template is used to calculate the features of the updated image. The experiment results show that the improved features of the multispatial mapping have the better classification performance for the liver cancer. PMID:27022407
Dual-contrast agent photon-counting computed tomography of the heart: initial experience.
Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir
2017-08-01
To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.
Near-Infrared Coloring via a Contrast-Preserving Mapping Model.
Chang-Hwan Son; Xiao-Ping Zhang
2017-11-01
Near-infrared gray images captured along with corresponding visible color images have recently proven useful for image restoration and classification. This paper introduces a new coloring method to add colors to near-infrared gray images based on a contrast-preserving mapping model. A naive coloring method directly adds the colors from the visible color image to the near-infrared gray image. However, this method results in an unrealistic image because of the discrepancies in the brightness and image structure between the captured near-infrared gray image and the visible color image. To solve the discrepancy problem, first, we present a new contrast-preserving mapping model to create a new near-infrared gray image with a similar appearance in the luminance plane to the visible color image, while preserving the contrast and details of the captured near-infrared gray image. Then, we develop a method to derive realistic colors that can be added to the newly created near-infrared gray image based on the proposed contrast-preserving mapping model. Experimental results show that the proposed new method not only preserves the local contrast and details of the captured near-infrared gray image, but also transfers the realistic colors from the visible color image to the newly created near-infrared gray image. It is also shown that the proposed near-infrared coloring can be used effectively for noise and haze removal, as well as local contrast enhancement.
Digital Shaded-Relief Image of Alaska
Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.
1997-01-01
Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image of Alaska at 1:2,500,000 scale (Alaska Department of Natural Resources, 1994), using the 1,000-m digital elevation data set referred to below. An important difference between our image and these previous ones is the method of reproduction: like the Thelin and Pike (1991) image, our image is a composite of halftone images that yields sharp resolution and preserves contrast. Indeed, the first impression of many viewers is that the Alaskan image and the Thelin and Pike image are composites of satellite-generated photographs rather than an artificial rendering of a digital elevation model. A shaded-relief image represents landforms in a natural fashion; that is, a viewer perceives the image as a rendering of reality. Thus a shaded-relief image is intrinsically appealing, especially in areas of spectacular relief. In addition, even subtle physiographic features that reflect geologic structures or the type of bedrock are visible. To our knowledge, some of these Alaskan features have not been depicted before and so the image should provide earth scientists with a new 'look' at fundamental geologic features of Alaska.
NASA Technical Reports Server (NTRS)
Giddings, L.; Boston, S.
1976-01-01
A method for digitizing zone maps is presented, starting with colored images and producing a final one-channel digitized tape. This method automates the work previously done interactively on the Image-100 and Data Analysis System computers of the Johnson Space Center (JSC) Earth Observations Division (EOD). A color-coded map was digitized through color filters on a scanner to form a digital tape in LARSYS-2 or JSC Universal format. The taped image was classified by the EOD LARSYS program on the basis of training fields included in the image. Numerical values were assigned to all pixels in a given class, and the resulting coded zone map was written on a LARSYS or Universal tape. A unique spatial filter option permitted zones to be made homogeneous and edges of zones to be abrupt transitions from one zone to the next. A zoom option allowed the output image to have arbitrary dimensions in terms of number of lines and number of samples on a line. Printouts of the computer program are given and the images that were digitized are shown.
Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano
2006-11-01
In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.
Spaceborne imaging radar research in the 90's
NASA Technical Reports Server (NTRS)
Elachi, Charles
1986-01-01
The imaging radar experiments on SEASAT and on the space shuttle (SIR-A and SIR-B) have led to a wide interest in the use of spaceborne imaging radars in Earth and planetary sciences. The radar sensors provide unique and complimentary information to what is acquired with visible and infrared imagers. This includes subsurface imaging in arid regions, all weather observation of ocean surface dynamic phenomena, structural mapping, soil moisture mapping, stereo imaging and resulting topographic mapping. However, experiments up to now have exploited only a very limited range of the generic capability of radar sensors. With planned sensor developments in the late 80's and early 90's, a quantum jump will be made in our ability to fully exploit the potential of these sensors. These developments include: multiparameter research sensors such as SIR-C and X-SAR, long-term and global monitoring sensors such as ERS-1, JERS-1, EOS, Radarsat, GLORI and the spaceborne sounder, planetary mapping sensors such as the Magellan and Cassini/Titan mappers, topographic three-dimensional imagers such as the scanning radar altimeter and three-dimensional rain mapping. These sensors and their associated research are briefly described.
New Topographic Maps of Io Using Voyager and Galileo Stereo Imaging and Photoclinometry
NASA Astrophysics Data System (ADS)
White, O. L.; Schenk, P. M.; Hoogenboom, T.
2012-03-01
Stereo and photoclinometry processing have been applied to Voyager and Galileo images of Io in order to derive regional- and local-scale topographic maps of 20% of the moon’s surface to date. We present initial mapping results.
Global Boreal Forest Mapping with JERS-1: North America
NASA Technical Reports Server (NTRS)
Williams, Cynthia L.; McDonald, Kyle; Chapman, Bruce
2000-01-01
Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.
NASA Technical Reports Server (NTRS)
Park, K. Y.; Miller, L. D.
1978-01-01
Computer analysis was applied to single date LANDSAT MSS imagery of a sample coastal area near Seoul, Korea equivalent to a 1:50,000 topographic map. Supervised image processing yielded a test classification map from this sample image containing 12 classes: 5 water depth/sediment classes, 2 shoreline/tidal classes, and 5 coastal land cover classes at a scale of 1:25,000 and with a training set accuracy of 76%. Unsupervised image classification was applied to a subportion of the site analyzed and produced classification maps comparable in results in a spatial sense. The results of this test indicated that it is feasible to produce such quantitative maps for detailed study of dynamic coastal processes given a LANDSAT image data base at sufficiently frequent time intervals.
Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors
Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar
2015-01-01
This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289
Spectral edge: gradient-preserving spectral mapping for image fusion.
Connah, David; Drew, Mark S; Finlayson, Graham D
2015-12-01
This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.
An imaging-based stochastic model for simulation of tumour vasculature
NASA Astrophysics Data System (ADS)
Adhikarla, Vikram; Jeraj, Robert
2012-10-01
A mathematical model which reconstructs the structure of existing vasculature using patient-specific anatomical, functional and molecular imaging as input was developed. The vessel structure is modelled according to empirical vascular parameters, such as the mean vessel branching angle. The model is calibrated such that the resultant oxygen map modelled from the simulated microvasculature stochastically matches the input oxygen map to a high degree of accuracy (R2 ≈ 1). The calibrated model was successfully applied to preclinical imaging data. Starting from the anatomical vasculature image (obtained from contrast-enhanced computed tomography), a representative map of the complete vasculature was stochastically simulated as determined by the oxygen map (obtained from hypoxia [64Cu]Cu-ATSM positron emission tomography). The simulated microscopic vasculature and the calculated oxygenation map successfully represent the imaged hypoxia distribution (R2 = 0.94). The model elicits the parameters required to simulate vasculature consistent with imaging and provides a key mathematical relationship relating the vessel volume to the tissue oxygen tension. Apart from providing an excellent framework for visualizing the imaging gap between the microscopic and macroscopic imagings, the model has the potential to be extended as a tool to study the dynamics between the tumour and the vasculature in a patient-specific manner and has an application in the simulation of anti-angiogenic therapies.
Gradient-based multiresolution image fusion.
Petrović, Valdimir S; Xydeas, Costas S
2004-02-01
A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.
Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes
Laughner, Jacob I.; Ng, Fu Siong; Sulkin, Matthew S.; Arthur, R. Martin
2012-01-01
Optical mapping has become an increasingly important tool to study cardiac electrophysiology in the past 20 years. Multiple methods are used to process and analyze cardiac optical mapping data, and no consensus currently exists regarding the optimum methods. The specific methods chosen to process optical mapping data are important because inappropriate data processing can affect the content of the data and thus alter the conclusions of the studies. Details of the different steps in processing optical imaging data, including image segmentation, spatial filtering, temporal filtering, and baseline drift removal, are provided in this review. We also provide descriptions of the common analyses performed on data obtained from cardiac optical imaging, including activation mapping, action potential duration mapping, repolarization mapping, conduction velocity measurements, and optical action potential upstroke analysis. Optical mapping is often used to study complex arrhythmias, and we also discuss dominant frequency analysis and phase mapping techniques used for the analysis of cardiac fibrillation. PMID:22821993
NASA Astrophysics Data System (ADS)
Qin, Y.; Lu, P.; Li, Z.
2018-04-01
Landslide inventory mapping is essential for hazard assessment and mitigation. In most previous studies, landslide mapping was achieved by visual interpretation of aerial photos and remote sensing images. However, such method is labor-intensive and time-consuming, especially over large areas. Although a number of semi-automatic landslide mapping methods have been proposed over the past few years, limitations remain in terms of their applicability over different study areas and data, and there is large room for improvement in terms of the accuracy and automation degree. For these reasons, we developed a change detection-based Markov Random Field (CDMRF) method for landslide inventory mapping. The proposed method mainly includes two steps: 1) change detection-based multi-threshold for training samples generation and 2) MRF for landslide inventory mapping. Compared with the previous methods, the proposed method in this study has three advantages: 1) it combines multiple image difference techniques with multi-threshold method to generate reliable training samples; 2) it takes the spectral characteristics of landslides into account; and 3) it is highly automatic with little parameter tuning. The proposed method was applied for regional landslides mapping from 10 m Sentinel-2 images in Western China. Results corroborated the effectiveness and applicability of the proposed method especially the capability of rapid landslide mapping. Some directions for future research are offered. This study to our knowledge is the first attempt to map landslides from free and medium resolution satellite (i.e., Sentinel-2) images in China.
Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica
Ferrigno, Jane G.; Mullins, Jerry L.; Stapleton, Jo Anne; Bindschadler, Robert; Scambos, Ted A.; Bellisime, Lynda B.; Bowell, Jo-Ann; Acosta, Alex V.
1994-01-01
Fifteen 1: 250000 and one 1: 1000 000 scale Landsat Thematic Mapper (TM) image mosaic maps are currently being produced of the West Antarctic ice streams on the Shirase and Siple Coasts. Landsat TM images were acquired between 1984 and 1990 in an area bounded approximately by 78°-82.5°S and 120°- 160° W. Landsat TM bands 2, 3 and 4 were combined to produce a single band, thereby maximizing data content and improving the signal-to-noise ratio. The summed single band was processed with a combination of high- and low-pass filters to remove longitudinal striping and normalize solar elevation-angle effects. The images were mosaicked and transformed to a Lambert conformal conic projection using a cubic-convolution algorithm. The projection transformation was controled with ten weighted geodetic ground-control points and internal image-to-image pass points with annotation of major glaciological features. The image maps are being published in two formats: conventional printed map sheets and on a CD-ROM.
Robb, Paul D; Craven, Alan J
2008-12-01
An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.
TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oines, A; Oines, A; Kilian-Meneghin, J
2016-06-15
Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Kutbay, Uğurhan; Hardalaç, Fırat; Akbulut, Mehmet; Akaslan, Ünsal; Serhatlıoğlu, Selami
2016-06-01
This study aims investigating adjustable distant fuzzy c-means segmentation on carotid Doppler images, as well as quaternion-based convolution filters and saliency mapping procedures. We developed imaging software that will simplify the measurement of carotid artery intima-media thickness (IMT) on saliency mapping images. Additionally, specialists evaluated the present images and compared them with saliency mapping images. In the present research, we conducted imaging studies of 25 carotid Doppler images obtained by the Department of Cardiology at Fırat University. After implementing fuzzy c-means segmentation and quaternion-based convolution on all Doppler images, we obtained a model that can be analyzed easily by the doctors using a bottom-up saliency model. These methods were applied to 25 carotid Doppler images and then interpreted by specialists. In the present study, we used color-filtering methods to obtain carotid color images. Saliency mapping was performed on the obtained images, and the carotid artery IMT was detected and interpreted on the obtained images from both methods and the raw images are shown in Results. Also these results were investigated by using Mean Square Error (MSE) for the raw IMT images and the method which gives the best performance is the Quaternion Based Saliency Mapping (QBSM). 0,0014 and 0,000191 mm(2) MSEs were obtained for artery lumen diameters and plaque diameters in carotid arteries respectively. We found that computer-based image processing methods used on carotid Doppler could aid doctors' in their decision-making process. We developed software that could ease the process of measuring carotid IMT for cardiologists and help them to evaluate their findings.
A method to estimate the effect of deformable image registration uncertainties on daily dose mapping
Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin
2012-01-01
Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766
Dooley, Kathryn A; Conover, Damon M; Glinsman, Lisha Deming; Delaney, John K
2014-12-08
Two imaging modalities based on molecular and elemental spectroscopy were used to characterize a painting by Cosimo Tura. Visible-to-near-infrared (400-1680 nm) reflectance imaging spectroscopy (RIS) and X-ray fluorescence (XRF) imaging spectroscopy were employed to identify pigments and determine their spatial distribution with higher confidence than from either technique alone. For example, Mary's red robe was modeled through the distribution of an insect-derived red lake (RIS map) and lead white (XRF lead map), rather than a layer of red lake on vermilion. The RIS image cube was also used to isolate the preparatory design by mapping the reflectance spectra associated with it. In conjunction with results from an earlier RIS study (1650-2500 nm) to map and identify the binding media, a more thorough understanding was gained of the materials and techniques used in the painting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.
2012-01-01
I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815
Narayan, Sreenath; Kalhan, Satish C; Wilson, David L
2013-05-01
To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.
Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy
NASA Astrophysics Data System (ADS)
Tang, Jing; Rahmim, Arman
2015-01-01
A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.
Implicit multiplane 3D camera calibration matrices for stereo image processing
NASA Astrophysics Data System (ADS)
McKee, James W.; Burgett, Sherrie J.
1997-12-01
By implicit camera calibration, we mean the process of calibrating cameras without explicitly computing their physical parameters. We introduce a new implicit model based on a generalized mapping between an image plane and multiple, parallel calibration planes (usually between four to seven planes). This paper presents a method of computing a relationship between a point on a three-dimensional (3D) object and its corresponding two-dimensional (2D) coordinate in a camera image. This relationship is expanded to form a mapping of points in 3D space to points in image (camera) space and visa versa that requires only matrix multiplication operations. This paper presents the rationale behind the selection of the forms of four matrices and the algorithms to calculate the parameters for the matrices. Two of the matrices are used to map 3D points in object space to 2D points on the CCD camera image plane. The other two matrices are used to map 2D points on the image plane to points on user defined planes in 3D object space. The mappings include compensation for lens distortion and measurement errors. The number of parameters used can be increased, in a straight forward fashion, to calculate and use as many parameters as needed to obtain a user desired accuracy. Previous methods of camera calibration use a fixed number of parameters which can limit the obtainable accuracy and most require the solution of nonlinear equations. The procedure presented can be used to calibrate a single camera to make 2D measurements or calibrate stereo cameras to make 3D measurements. Positional accuracy of better than 3 parts in 10,000 have been achieved. The algorithms in this paper were developed and are implemented in MATLABR (registered trademark of The Math Works, Inc.). We have developed a system to analyze the path of optical fiber during high speed payout (unwinding) of optical fiber off a bobbin. This requires recording and analyzing high speed (5 microsecond exposure time), synchronous, stereo images of the optical fiber during payout. A 3D equation for the fiber at an instant in time is calculated from the corresponding pair of stereo images as follows. In each image, about 20 points along the 2D projection of the fiber are located. Each of these 'fiber points' in one image is mapped to its projection line in 3D space. Each projection line is mapped into another line in the second image. The intersection of each mapped projection line and a curve fitted to the fiber points of the second image (fiber projection in second image) is calculated. Each intersection point is mapped back to the 3D space. A 3D fiber coordinate is formed from the intersection, in 3D space, of a mapped intersection point with its corresponding projection line. The 3D equation for the fiber is computed from this ordered list of 3D coordinates. This process requires a method of accurately mapping 2D (image space) to 3D (object space) and visa versa.3173
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Dwyer, John L.
1993-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.
NASA Technical Reports Server (NTRS)
Wynn, L. K.
1985-01-01
The Image-Based Information System (IBIS) was used to automate the cross country movement (CCM) mapping model developed by the Defense Mapping Agency (DMA). Existing terrain factor overlays and a CCM map, produced by DMA for the Fort Lewis, Washington area, were digitized and reformatted into geometrically registered images. Terrain factor data from Slope, Soils, and Vegetation overlays were entered into IBIS, and were then combined utilizing IBIS-programmed equations to implement the DMA CCM model. The resulting IBIS-generated CCM map was then compared with the digitized manually produced map to test similarity. The numbers of pixels comprising each CCM region were compared between the two map images, and percent agreement between each two regional counts was computed. The mean percent agreement equalled 86.21%, with an areally weighted standard deviation of 11.11%. Calculation of Pearson's correlation coefficient yielded +9.997. In some cases, the IBIS-calculated map code differed from the DMA codes: analysis revealed that IBIS had calculated the codes correctly. These highly positive results demonstrate the power and accuracy of IBIS in automating models which synthesize a variety of thematic geographic data.
NASA Technical Reports Server (NTRS)
Borella, H. M.; Estes, J. E.; Ezra, C. E.; Scepan, J.; Tinney, L. R.
1982-01-01
For two test sites in Pennsylvania the interpretability of commercially acquired low-altitude and existing high-altitude aerial photography are documented in terms of time, costs, and accuracy for Anderson Level II land use/land cover mapping. Information extracted from the imagery is to be used in the evaluation process for siting energy facilities. Land use/land cover maps were drawn at 1:24,000 scale using commercially flown color infrared photography obtained from the United States Geological Surveys' EROS Data Center. Detailed accuracy assessment of the maps generated by manual image analysis was accomplished employing a stratified unaligned adequate class representation. Both 'area-weighted' and 'by-class' accuracies were documented and field-verified. A discrepancy map was also drawn to illustrate differences in classifications between the two map scales. Results show that the 1:24,000 scale map set was more accurate (99% to 94% area-weighted) than the 1:62,500 scale set, especially when sampled by class (96% to 66%). The 1:24,000 scale maps were also more time-consuming and costly to produce, due mainly to higher image acquisition costs.
Registration of Heat Capacity Mapping Mission day and night images
NASA Technical Reports Server (NTRS)
Watson, K.; Hummer-Miller, S.; Sawatzky, D. L. (Principal Investigator)
1982-01-01
Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer.
Boleneus, David E.; Appelgate, Larry M.; Joseph, Nancy L.; Brandt, Theodore R.
2001-01-01
Geologic maps of the western part of the Belt Basin of western Montana and northern Idaho were converted into digital raster (TIFF image) format to facilitate their manipulation in geographic information systems. The 85-mile x 100-mile map area mostly contains rocks belonging to the lower and middle Belt Supergroup. The area is of interest as these Middle Proterozoic strata contain vein-type lead-zinc-silver deposits in the Coeur d?Alene Mining District in the St. Regis and Revett formations and strata-bound copper-silver deposits, such as the Troy mine, within the Revett Formation. The Prichard Formation is also prospective for strata-bound lead-zinc deposits because equivalent Belt strata in southern British Columbia, Canada host the Sullivan lead-zinc deposit. Map data converted to digital images include 13 geological maps at scales ranging from 1:48,000 to 1:12,000. Geologic map images produced from these maps by color scanning were registered to grid tick coverages in a Universal Transverse Mercator (North American Datum of 1927, zone 11) projection using ArcView Image Analysis. Geo-registering errors vary from 10 ft to 114 ft.
Earth mapping - aerial or satellite imagery comparative analysis
NASA Astrophysics Data System (ADS)
Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo
Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.
Satellite image maps of Pakistan
,
1997-01-01
Georeferenced Landsat satellite image maps of Pakistan are now being made available for purchase from the U.S. Geological Survey (USGS). The first maps to be released are a series of Multi-Spectral Scanner (MSS) color image maps compiled from Landsat scenes taken before 1979. The Pakistan image maps were originally developed by USGS as an aid for geologic and general terrain mapping in support of the Coal Resource Exploration and Development Program in Pakistan (COALREAP). COALREAP, a cooperative program between the USGS, the United States Agency for International Development, and the Geological Survey of Pakistan, was in effect from 1985 through 1994. The Pakistan MSS image maps (bands 1, 2, and 4) are available as a full-country mosaic of 72 Landsat scenes at a scale of 1:2,000,000, and in 7 regional sheets covering various portions of the entire country at a scale of 1:500,000. The scenes used to compile the maps were selected from imagery available at the Eros Data Center (EDC), Sioux Falls, S. Dak. Where possible, preference was given to cloud-free and snow-free scenes that displayed similar stages of seasonal vegetation development. The data for the MSS scenes were resampled from the original 80-meter resolution to 50-meter picture elements (pixels) and digitally transformed to a geometrically corrected Lambert conformal conic projection. The cubic convolution algorithm was used during rotation and resampling. The 50-meter pixel size allows for such data to be imaged at a scale of 1:250,000 without degradation; for cost and convenience considerations, however, the maps were printed at 1:500,000 scale. The seven regional sheets have been named according to the main province or area covered. The 50-meter data were averaged to 150-meter pixels to generate the country image on a single sheet at 1:2,000,000 scale
Time-efficient high-resolution whole-brain three-dimensional macromolecular proton fraction mapping
Yarnykh, Vasily L.
2015-01-01
Purpose Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole-brain MPF mapping technique utilizing a minimal possible number of source images for scan time reduction. Methods The described technique is based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole-brain three-dimensional MPF mapping with isotropic 1.25×1.25×1.25 mm3 voxel size and scan time of 20 minutes. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from 8 healthy subjects. Results Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (<2%). High-resolution MPF maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details including gray matter structures with high iron content. Conclusions Synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. PMID:26102097
Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach.
Zhang, Jianming; Sclaroff, Stan
2016-05-01
We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.
Land use and land cover mapping: City of Palm Bay, Florida
NASA Technical Reports Server (NTRS)
Barile, D. D.; Pierce, R.
1977-01-01
Two different computer systems were compared for use in making land use and land cover maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban areas were unclassified. The General Electric Image 100 produced a map depicting eight land cover categories classifying 68 percent of the total area. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test areas compared and Image 100 was in agreement 70 percent and 80 percent.
Optical Potential Field Mapping System
NASA Technical Reports Server (NTRS)
Reid, Max B. (Inventor)
1996-01-01
The present invention relates to an optical system for creating a potential field map of a bounded two dimensional region containing a goal location and an arbitrary number of obstacles. The potential field mapping system has an imaging device and a processor. Two image writing modes are used by the imaging device, electron deposition and electron depletion. Patterns written in electron deposition mode appear black and expand. Patterns written in electron depletion mode are sharp and appear white. The generated image represents a robot's workspace. The imaging device under processor control then writes a goal location in the work-space using the electron deposition mode. The black image of the goal expands in the workspace. The processor stores the generated images, and uses them to generate a feedback pattern. The feedback pattern is written in the workspace by the imaging device in the electron deposition mode to enhance the expansion of the original goal pattern. After the feedback pattern is written, an obstacle pattern is written by the imaging device in the electron depletion mode to represent the obstacles in the robot's workspace. The processor compares a stored image to a previously stored image to determine a change therebetween. When no change occurs, the processor averages the stored images to produce the potential field map.
Chromatic Image Analysis For Quantitative Thermal Mapping
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
1995-01-01
Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.
Colour application on mammography image segmentation
NASA Astrophysics Data System (ADS)
Embong, R.; Aziz, N. M. Nik Ab.; Karim, A. H. Abd; Ibrahim, M. R.
2017-09-01
The segmentation process is one of the most important steps in image processing and computer vision since it is vital in the initial stage of image analysis. Segmentation of medical images involves complex structures and it requires precise segmentation result which is necessary for clinical diagnosis such as the detection of tumour, oedema, and necrotic tissues. Since mammography images are grayscale, researchers are looking at the effect of colour in the segmentation process of medical images. Colour is known to play a significant role in the perception of object boundaries in non-medical colour images. Processing colour images require handling more data, hence providing a richer description of objects in the scene. Colour images contain ten percent (10%) additional edge information as compared to their grayscale counterparts. Nevertheless, edge detection in colour image is more challenging than grayscale image as colour space is considered as a vector space. In this study, we implemented red, green, yellow, and blue colour maps to grayscale mammography images with the purpose of testing the effect of colours on the segmentation of abnormality regions in the mammography images. We applied the segmentation process using the Fuzzy C-means algorithm and evaluated the percentage of average relative error of area for each colour type. The results showed that all segmentation with the colour map can be done successfully even for blurred and noisy images. Also the size of the area of the abnormality region is reduced when compare to the segmentation area without the colour map. The green colour map segmentation produced the smallest percentage of average relative error (10.009%) while yellow colour map segmentation gave the largest percentage of relative error (11.367%).
Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K.; Schad, Lothar R.; Zöllner, Frank Gerrit
2015-01-01
Background Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. Methods and Results In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin—3,3’-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. Validation To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Context Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics. PMID:26717571
Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K; Schad, Lothar R; Zöllner, Frank Gerrit
2015-01-01
Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin-3,3'-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics.
A Reassessment of the Mars Ocean Hypothesis
NASA Technical Reports Server (NTRS)
Parker, T. J.
2004-01-01
Initial work on the identification and mapping of potential ancient shorelines on Mars was based on Viking Orbiter image data (Parker et al., 1987, 1989, 1993). The Viking Orbiters were designed to locate landing site for the two landers and were not specifically intended to map the entire planet. Fortunately, they mapped the entire planet. Unfortunately, they did so at an average resolution of greater than 200m/pixel. Higher resolution images, even mosaics of interesting regions, are available, but relatively sparse. Mapping of shorelines on Earth requires both high-resolution aerial photos or satellite images and good topographic information. Three significant sources of additional data from missions subsequent to Viking are useful for reassessing the ocean hypothesis. These are: MGS MOC images; MGS MOLA topography; Odyssey THEMIS IR and VIS images; and MER surface geology at Meridiani and Gusev. Okay, my mistake: Four.
The Identification of War-Fighting Symbology With the Use of a Small Display
2006-05-01
decreases in performance. Eight active-duty Soldiers determined if target symbols were present on or absent from map images containing distractor symbols...5 Figure 2. Examples of the no-map and map environments (not drawn to scale).............................8 Figure 3. Images presented in...a no-map or map background. Symbol size (i.e., stimulus intensity) was measured in “points”. “In typography , a point is about 1/72 of an inch
SOHO EIT Carrington maps from synoptic full-disk data
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Newmark, J. S.; Gurman, J. B.; Delaboudiniere, J. P.; Clette, F.; Gibson, S. E.
1997-01-01
The solar synoptic maps, obtained from observations carried out since May 1996 by the extreme-ultraviolet imaging telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO), are presented. The maps were constructed for each Carrington rotation with the calibrated data. The off-limb maps at 1.05 and 1.10 solar radii were generated for three coronal lines using the standard applied to coronagraph synoptic maps. The maps reveal several aspects of the solar structure over the entire rotation and are used in the whole sun month modeling campaign. @txt extreme-ultraviolet imaging telescope
2015-07-27
The science team of NASA's New Horizons mission has produced an updated global map of the dwarf planet Pluto. The map includes all resolved images of the surface acquired between July 7-14, 2015, at pixel resolutions ranging from 40 kilometers (24 miles) on the Charon-facing hemisphere (left and right sides of the map) to 400 meters (1,250 feet) on the anti-Charon facing hemisphere (map center). Many additional images are expected in fall of 2015 and these will be used to complete the global map. http://photojournal.jpl.nasa.gov/catalog/PIA19858
In, Myung-Ho; Posnansky, Oleg; Speck, Oliver
2016-05-01
To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.
Snow Cover Mapping and Ice Avalanche Monitoring from the Satellite Data of the Sentinels
NASA Astrophysics Data System (ADS)
Wang, S.; Yang, B.; Zhou, Y.; Wang, F.; Zhang, R.; Zhao, Q.
2018-04-01
In order to monitor ice avalanches efficiently under disaster emergency conditions, a snow cover mapping method based on the satellite data of the Sentinels is proposed, in which the coherence and backscattering coefficient image of Synthetic Aperture Radar (SAR) data (Sentinel-1) is combined with the atmospheric correction result of multispectral data (Sentinel-2). The coherence image of the Sentinel-1 data could be segmented by a certain threshold to map snow cover, with the water bodies extracted from the backscattering coefficient image and removed from the coherence segment result. A snow confidence map from Sentinel-2 was used to map the snow cover, in which the confidence values of the snow cover were relatively high. The method can make full use of the acquired SAR image and multispectral image under emergency conditions, and the application potential of Sentinel data in the field of snow cover mapping is exploited. The monitoring frequency can be ensured because the areas obscured by thick clouds are remedied in the monitoring results. The Kappa coefficient of the monitoring results is 0.946, and the data processing time is less than 2 h, which meet the requirements of disaster emergency monitoring.
Ghosh, Adarsh; Singh, Tulika; Singla, Veenu; Bagga, Rashmi; Khandelwal, Niranjan
2017-12-01
Apparent diffusion coefficient (ADC) maps are usually generated by builtin software provided by the MRI scanner vendors; however, various open-source postprocessing software packages are available for image manipulation and parametric map generation. The purpose of this study is to establish the reproducibility of absolute ADC values obtained using different postprocessing software programs. DW images with three b values were obtained with a 1.5-T MRI scanner, and the trace images were obtained. ADC maps were automatically generated by the in-line software provided by the vendor during image generation and were also separately generated on postprocessing software. These ADC maps were compared on the basis of ROIs using paired t test, Bland-Altman plot, mountain plot, and Passing-Bablok regression plot. There was a statistically significant difference in the mean ADC values obtained from the different postprocessing software programs when the same baseline trace DW images were used for the ADC map generation. For using ADC values as a quantitative cutoff for histologic characterization of tissues, standardization of the postprocessing algorithm is essential across processing software packages, especially in view of the implementation of vendor-neutral archiving.
Medical Image Fusion Based on Feature Extraction and Sparse Representation
Wei, Gao; Zongxi, Song
2017-01-01
As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246
Flood mapping from Sentinel-1 and Landsat-8 data: a case study from river Evros, Greece
NASA Astrophysics Data System (ADS)
Kyriou, Aggeliki; Nikolakopoulos, Konstantinos
2015-10-01
Floods are suddenly and temporary natural events, affecting areas which are not normally covered by water. The influence of floods plays a significant role both in society and the natural environment, therefore flood mapping is crucial. Remote sensing data can be used to develop flood map in an efficient and effective way. This work is focused on expansion of water bodies overtopping natural levees of the river Evros, invading the surroundings areas and converting them in flooded. Different techniques of flood mapping were used using data from active and passive remote sensing sensors like Sentinlel-1 and Landsat-8 respectively. Space borne pairs obtained from Sentinel-1 were processed in this study. Each pair included an image during the flood, which is called "crisis image" and another one before the event, which is called "archived image". Both images covering the same area were processed producing a map, which shows the spread of the flood. Multispectral data From Landsat-8 were also processed in order to detect and map the flooded areas. Different image processing techniques were applied and the results were compared to the respective results of the radar data processing.
Crumpler, L.S.; Craddock, R.A.; Aubele, J.C.
2001-01-01
This map uses Viking Orbiter image data and Viking 1 Lander image data to evaluate the geologic history of a part of Chryse Planitia, Mars. The map area lies at the termini of the Maja and Kasei Valles outwash channels and includes the site of the Viking 1 Lander. The photomosaic base for these quadrangles was assembled from 98 Viking Orbiter frames comprising 1204 pixels per line and 1056 lines and ranging in resolution from 20 to 200 m/pixel. These orbital image data were supplemented with images of the surface as seen from the Viking 1 Lander, one of only three sites on the martian surface where planetary geologic mapping is assisted by ground truth.
LANDSAT (ERTS) used as a basis for geological volcanological mapping in the central Andes
NASA Technical Reports Server (NTRS)
Kussmaul, S.; Brockman, C. E.
1977-01-01
LANDSAT images of the central Andes (N-Chile, W-Bolivia) were effectively used for volcanological mapping of an area about 160,000 km. The map shown exhibits more and better details than the older small scale geological maps of that area. Even on a scale of 1:1,000,000 details greater than 200 m in size are recognizable. The interpretation of LANDSAT images makes it possible to establish relative age sequences of strato-volcanoes. Finally, the images will also be helpful in prospecting for mineral deposits and geothermal sources.
NASA Astrophysics Data System (ADS)
Hafizt, M.; Manessa, M. D. M.; Adi, N. S.; Prayudha, B.
2017-12-01
Benthic habitat mapping using satellite data is one challenging task for practitioners and academician as benthic objects are covered by light-attenuating water column obscuring object discrimination. One common method to reduce this water-column effect is by using depth-invariant index (DII) image. However, the application of the correction in shallow coastal areas is challenging as a dark object such as seagrass could have a very low pixel value, preventing its reliable identification and classification. This limitation can be solved by specifically applying a classification process to areas with different water depth levels. The water depth level can be extracted from satellite imagery using Relative Water Depth Index (RWDI). This study proposed a new approach to improve the mapping accuracy, particularly for benthic dark objects by combining the DII of Lyzenga’s water column correction method and the RWDI of Stumpt’s method. This research was conducted in Lintea Island which has a high variation of benthic cover using Sentinel-2A imagery. To assess the effectiveness of the proposed new approach for benthic habitat mapping two different classification procedures are implemented. The first procedure is the commonly applied method in benthic habitat mapping where DII image is used as input data to all coastal area for image classification process regardless of depth variation. The second procedure is the proposed new approach where its initial step begins with the separation of the study area into shallow and deep waters using the RWDI image. Shallow area was then classified using the sunglint-corrected image as input data and the deep area was classified using DII image as input data. The final classification maps of those two areas were merged as a single benthic habitat map. A confusion matrix was then applied to evaluate the mapping accuracy of the final map. The result shows that the new proposed mapping approach can be used to map all benthic objects in all depth ranges and shows a better accuracy compared to that of classification map produced using only with DII.
Investigation of 1 : 1,000 Scale Map Generation by Stereo Plotting Using Uav Images
NASA Astrophysics Data System (ADS)
Rhee, S.; Kim, T.
2017-08-01
Large scale maps and image mosaics are representative geospatial data that can be extracted from UAV images. Map drawing using UAV images can be performed either by creating orthoimages and digitizing them, or by stereo plotting. While maps generated by digitization may serve the need for geospatial data, many institutions and organizations require map drawing using stereoscopic vision on stereo plotting systems. However, there are several aspects to be checked for UAV images to be utilized for stereo plotting. The first aspect is the accuracy of exterior orientation parameters (EOPs) generated through automated bundle adjustment processes. It is well known that GPS and IMU sensors mounted on a UAV are not very accurate. It is necessary to adjust initial EOPs accurately using tie points. For this purpose, we have developed a photogrammetric incremental bundle adjustment procedure. The second aspect is unstable shooting conditions compared to aerial photographing. Unstable image acquisition may bring uneven stereo coverage, which will result in accuracy loss eventually. Oblique stereo pairs will create eye fatigue. The third aspect is small coverage of UAV images. This aspect will raise efficiency issue for stereo plotting of UAV images. More importantly, this aspect will make contour generation from UAV images very difficult. This paper will discuss effects relate to these three aspects. In this study, we tried to generate 1 : 1,000 scale map from the dataset using EOPs generated from software developed in-house. We evaluated Y-disparity of the tie points extracted automatically through the photogrammetric incremental bundle adjustment process. We could confirm that stereoscopic viewing is possible. Stereoscopic plotting work was carried out by a professional photogrammetrist. In order to analyse the accuracy of the map drawing using stereoscopic vision, we compared the horizontal and vertical position difference between adjacent models after drawing a specific model. The results of analysis showed that the errors were within the specification of 1 : 1,000 map. Although the Y-parallax can be eliminated, it is still necessary to improve the accuracy of absolute ground position error in order to apply this technique to the actual work. There are a few models in which the difference in height between adjacent models is about 40 cm. We analysed the stability of UAV images by checking angle differences between adjacent images. We also analysed the average area covered by one stereo model and discussed the possible difficulty associated with this narrow coverage. In the future we consider how to reduce position errors and improve map drawing performances from UAVs.
Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service
NASA Astrophysics Data System (ADS)
Nonogaki, S.; Nemoto, T.
2014-12-01
Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.
NASA Astrophysics Data System (ADS)
Williams, Godfried B.
2005-03-01
This paper attempts to demonstrate a novel based idea for transforming statistical image data to text using autoassociative and unsupervised artificial neural network and iconic image maps using the shape and texture genetic algorithm, underlying concepts translating the image data to text. Full details of experiments could be assessed at http://www.uel.ac.uk/seis/applications/.
Technique of diffusion weighted imaging and its application in stroke
NASA Astrophysics Data System (ADS)
Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Wu; He, Huiguang
2003-05-01
To study the application of diffusion weighted imaging and image post processing in the diagnosis of stroke, especially in acute stroke, 205 patients were examined by 1.5 T or 1.0 T MRI scanner and the images such as T1, T2 and diffusion weighted images were obtained. Image post processing was done with "3D Med System" developed by our lab to analyze data and acquire the apparent diffusion coefficient (ADC) map. In acute and subacute stage of stroke, the signal in cerebral infarction areas changed to hyperintensity in T2- and diffusion-weighted images, normal or hypointensity in T1-weighted images. In hyperacute stage, however, the signal was hyperintense just in the diffusion weighted imaes; others were normal. In the chronic stage, the signal in T1- and diffusion-weighted imaging showed hypointensity and hyperintensity in T2 weighted imaging. Because ADC declined obviously in acute and subacute stage of stroke, the lesion area was hypointensity in ADC map. With the development of the disease, ADC gradually recovered and then changed to hyperintensity in ADC map in chronic stage. Using diffusion weighted imaging and ADC mapping can make a diagnosis of stroke, especially in the hyperacute stage of stroke, and can differentiate acute and chronic stroke.
NASA Technical Reports Server (NTRS)
Winikka, C. C.; Schumann, H. H.
1975-01-01
Utilization of new sources of statewide remote sensing data, taken from high-altitude aircraft and from spacecraft is discussed along with incorporation of information extracted from these sources into on-going land and resources management programs in Arizona. Statewide cartographic applications of remote sensor data taken by NASA high-altitude aircraft include the development of a statewide semi-analytic control network, the production of nearly 1900 orthophotoquads (image maps) that are coincident in scale and area with the U.S. Geological Survey (USGS) 7. 5 minute topographic quadrangle map series, and satellite image maps of Arizona produced from LANDSAt multispectral scanner imagery. These cartographic products are utilized for a wide variety of experimental and operational earth resources applications. Applications of the imagery, image maps, and derived information discussed include: soils and geologic mapping projects, water resources investigations, land use inventories, environmental impact studies, highway route locations and mapping, vegetation cover mapping, wildlife habitat studies, power plant siting studies, statewide delineation of irrigation cropland, position determination of drilling sites, pictorial geographic bases for thematic mapping, and court exhibits.
NASA Technical Reports Server (NTRS)
Sabol, Donald E., Jr.; Roberts, Dar A.; Adams, John B.; Smith, Milton O.
1993-01-01
An important application of remote sensing is to map and monitor changes over large areas of the land surface. This is particularly significant with the current interest in monitoring vegetation communities. Most of traditional methods for mapping different types of plant communities are based upon statistical classification techniques (i.e., parallel piped, nearest-neighbor, etc.) applied to uncalibrated multispectral data. Classes from these techniques are typically difficult to interpret (particularly to a field ecologist/botanist). Also, classes derived for one image can be very different from those derived from another image of the same area, making interpretation of observed temporal changes nearly impossible. More recently, neural networks have been applied to classification. Neural network classification, based upon spectral matching, is weak in dealing with spectral mixtures (a condition prevalent in images of natural surfaces). Another approach to mapping vegetation communities is based on spectral mixture analysis, which can provide a consistent framework for image interpretation. Roberts et al. (1990) mapped vegetation using the band residuals from a simple mixing model (the same spectral endmembers applied to all image pixels). Sabol et al. (1992b) and Roberts et al. (1992) used different methods to apply the most appropriate spectral endmembers to each image pixel, thereby allowing mapping of vegetation based upon the the different endmember spectra. In this paper, we describe a new approach to classification of vegetation communities based upon the spectra fractions derived from spectral mixture analysis. This approach was applied to three 1992 AVIRIS images of Jasper Ridge, California to observe seasonal changes in surface composition.
A pseudoinverse deformation vector field generator and its applications
Yan, C.; Zhong, H.; Murphy, M.; Weiss, E.; Siebers, J. V.
2010-01-01
Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets. Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVFR–S). The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator is used to create PIDVFS–R. Back-and-forth mapping of a set of points (used as surrogates of contours) using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure. Results: Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and PIDVFS–R can be used as a criteria to check the quality of the DVF. Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy. PMID:20384247
How To Put Your Maps on the Internet.
ERIC Educational Resources Information Center
Allen, David Yehling
Many libraries are creating raster images of paper maps and making them available over the Internet. This presentation provides an overview of imaging technology for map librarians and administrators considering such projects. References in footnotes and the bibliography enable those interested to explore technical questions in depth. There are…
Mapping as a visual health communication tool: promises and dilemmas.
Parrott, Roxanne; Hopfer, Suellen; Ghetian, Christie; Lengerich, Eugene
2007-01-01
In the era of evidence-based public health promotion and planning, the use of maps as a form of evidence to communicate about the multiple determinants of cancer is on the rise. Geographic information systems and mapping technologies make future proliferation of this strategy likely. Yet disease maps as a communication form remain largely unexamined. This content analysis considers the presence of multivariate information, credibility cues, and the communication function of publicly accessible maps for cancer control activities. Thirty-six state comprehensive cancer control plans were publicly available in July 2005 and were reviewed for the presence of maps. Fourteen of the 36 state cancer plans (39%) contained map images (N = 59 static maps). A continuum of map inter activity was observed, with 10 states having interactive mapping tools available to query and map cancer information. Four states had both cancer plans with map images and interactive mapping tools available to the public on their Web sites. Of the 14 state cancer plans that depicted map images, two displayed multivariate data in a single map. Nine of the 10 states with interactive mapping capability offered the option to display multivariate health risk messages. The most frequent content category mapped was cancer incidence and mortality, with stage at diagnosis infrequently available. The most frequent communication function served by the maps reviewed was redundancy, as maps repeated information contained in textual forms. The social and ethical implications for communicating about cancer through the use of visual geographic representations are discussed.
Single-Frame Terrain Mapping Software for Robotic Vehicles
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.
2011-01-01
This software is a component in an unmanned ground vehicle (UGV) perception system that builds compact, single-frame terrain maps for distribution to other systems, such as a world model or an operator control unit, over a local area network (LAN). Each cell in the map encodes an elevation value, terrain classification, object classification, terrain traversability, terrain roughness, and a confidence value into four bytes of memory. The input to this software component is a range image (from a lidar or stereo vision system), and optionally a terrain classification image and an object classification image, both registered to the range image. The single-frame terrain map generates estimates of the support surface elevation, ground cover elevation, and minimum canopy elevation; generates terrain traversability cost; detects low overhangs and high-density obstacles; and can perform geometry-based terrain classification (ground, ground cover, unknown). A new origin is automatically selected for each single-frame terrain map in global coordinates such that it coincides with the corner of a world map cell. That way, single-frame terrain maps correctly line up with the world map, facilitating the merging of map data into the world map. Instead of using 32 bits to store the floating-point elevation for a map cell, the vehicle elevation is assigned to the map origin elevation and reports the change in elevation (from the origin elevation) in terms of the number of discrete steps. The single-frame terrain map elevation resolution is 2 cm. At that resolution, terrain elevation from 20.5 to 20.5 m (with respect to the vehicle's elevation) is encoded into 11 bits. For each four-byte map cell, bits are assigned to encode elevation, terrain roughness, terrain classification, object classification, terrain traversability cost, and a confidence value. The vehicle s current position and orientation, the map origin, and the map cell resolution are all included in a header for each map. The map is compressed into a vector prior to delivery to another system.
Dartnell, Peter; Gardiner, James V.
1999-01-01
Accurate base maps are a prerequisite for any geologic study, regardless of the objectives. Land-based studies commonly utilize aerial photographs, USGS 7.5-minute quadrangle maps, and satellite images as base maps. Until now, studies that involve the ocean floor have been at a disadvantage due to an almost complete lack of accurate marine base maps. Many base maps of the sea floor have been constructed over the past century but with a wide range in navigational and depth accuracies. Only in the past few years has marine surveying technology advanced far enough to produce navigational accuracy of 1 meter and depth resolutions of 50 centimeters. The Pacific Seafloor Mapping Project of the U.S. Geological Survey's, Western Coastal and Marine Geology Program, Menlo Park, California, U.S.A., in cooperation with the Ocean Mapping Group, University of New Brunswick, Fredericton, Canada, is using this new technology to systematically map the ocean floor and lakes. This type of marine surveying, called multibeam surveying, collects high-resolution bathymetric and backscatter data that can be used for various base maps, GIS coverages, and scientific visualization methods. This is an interactive CD-ROM that contains images, movies, and data of all the surveys the Pacific Seafloor Mapping Project has completed up to January 1999. The images and movies on this CD-ROM, such as shaded relief of the bathymetry, backscatter, oblique views, 3-D views, and QuickTime movies help the viewer to visualize the multibeam data. This CD-ROM also contains ARC/INFO export (.e00) files and full-resolution TIFF images of all the survey sites that can be downloaded and used in many GIS packages.
Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej
2011-01-01
A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. PMID:21708116
NASA Astrophysics Data System (ADS)
Alrassi, Fitzastri; Salim, Emil; Nina, Anastasia; Alwi, Luthfi; Danoedoro, Projo; Kamal, Muhammad
2016-11-01
The east coast of Banyuwangi regency has a diverse variety of land use such as ponds, mangroves, agricultural fields and settlements. WorldView-2 is a multispectral image with high spatial resolution that can display detailed information of land use. Geographic Object Based Image Analysis (GEOBIA) classification technique uses object segments as the smallest unit of analysis. The segmentation and classification process is not only based on spectral value of the image but also considering other elements of the image interpretation. This gives GEOBIA an opportunities and challenges in the mapping and monitoring of land use. This research aims to assess the GEOBIA classification method for generating the classification of land use in coastal areas of Banyuwangi. The result of this study is land use classification map produced by GEOBIA classification. We verified the accuracy of the resulted land use map by comparing the map with result from visual interpretation of the image that have been validated through field surveys. Variation of land use in most of the east coast of Banyuwangi regency is dominated by mangrove, agricultural fields, mixed farms, settlements and ponds.
Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.
Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus
We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.
Expert system-based mineral mapping using AVIRIS
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Lefkoff, A. B.; Dietz, J. B.
1992-01-01
Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showing the principal surface mineralogy. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rock-forming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image-maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface. The 'northern Grapevine Mountains' (NGM) study area was reported on in numerous papers. This area is an unnamed northwestward extension of the range. Most of the research here has concentrated on mapping of Jurassic-age plutons and associated hydrothermal alteration, however, the nature and scope of these studies is much broader, pertaining to the geologic history and development of the entire Death Valley region. AVIRIS data for the NGM site were obtained during May 1989. Additional AVIRIS data were acquired during September 1989 as part of the Geologic Remote Sensing Field Experiment (GRSFE). The area covered by these data overlaps slightly with the May 1989 data. Three and one-half AVIRIS scenes total were analyzed.
Geological mapping of the Schuppen belt of north-east India using geospatial technology
NASA Astrophysics Data System (ADS)
Ghosh, Tanaya; Basu, Surajit; Hazra, Sugata
2014-01-01
A revised geologic map of the Schuppen belt of northeast India has been prepared based on interpretation of digitally enhanced satellite images. The satellite image interpretation is supported by limited field work and existing geologic maps. Available geological maps of this fold thrust belt are discontinuous and multi-scaled. The authors are of multiple opinions regarding the trajectory of formation boundaries and fault contacts. Digital image processing of satellite images and limited field surveys have been used to reinterpret and modify the existing geological maps of this fold thrust belt. Optical data of Landsat Thematic Mapper, Enhanced Thematic Mapper and elevation data of ASTER have been used to prepare this revised geological map. The study area extends from Hajadisa in south to Digboi oilfield in north, bounded by Naga thrust in the west and Disang thrust in the east. PCA, Image fusion, Linear Contrast stretch, Histogram Equalization and Painted relief algorithms have been used for the delineation of major geological lineaments like lithological boundary, thrust and strike slip faults. Digital elevation maps have enabled in the discrimination between thrust contacts and lithological boundaries, with the former being located mostly in the valleys. Textural enhancements of PCA, colour composites and Painted relief algorithm have been used to discriminate between different rock types. Few geological concepts about the terrain have been revisited and modified. It is assumed that this revised map should be of practical use as this terrain promises unexploited hydrocarbon reserves.
Images Are Not the (Only) Truth: Brain Mapping, Visual Knowledge, and Iconoclasm.
ERIC Educational Resources Information Center
Beaulieu, Anne
2002-01-01
Debates the paradoxical nature of claims about the emerging contributions of functional brain mapping. Examines the various ways that images are deployed and rejected and highlights an approach that provides insight into the current demarcation of imaging. (Contains 68 references.) (DDR)
Fourier-Mellin moment-based intertwining map for image encryption
NASA Astrophysics Data System (ADS)
Kaur, Manjit; Kumar, Vijay
2018-03-01
In this paper, a robust image encryption technique that utilizes Fourier-Mellin moments and intertwining logistic map is proposed. Fourier-Mellin moment-based intertwining logistic map has been designed to overcome the issue of low sensitivity of an input image. Multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) based on Reinforcement Learning (MNSGA-RL) has been used to optimize the required parameters of intertwining logistic map. Fourier-Mellin moments are used to make the secret keys more secure. Thereafter, permutation and diffusion operations are carried out on input image using secret keys. The performance of proposed image encryption technique has been evaluated on five well-known benchmark images and also compared with seven well-known existing encryption techniques. The experimental results reveal that the proposed technique outperforms others in terms of entropy, correlation analysis, a unified average changing intensity and the number of changing pixel rate. The simulation results reveal that the proposed technique provides high level of security and robustness against various types of attacks.
Depth profile measurement with lenslet images of the plenoptic camera
NASA Astrophysics Data System (ADS)
Yang, Peng; Wang, Zhaomin; Zhang, Wei; Zhao, Hongying; Qu, Weijuan; Zhao, Haimeng; Asundi, Anand; Yan, Lei
2018-03-01
An approach for carrying out depth profile measurement of an object with the plenoptic camera is proposed. A single plenoptic image consists of multiple lenslet images. To begin with, these images are processed directly with a refocusing technique to obtain the depth map, which does not need to align and decode the plenoptic image. Then, a linear depth calibration is applied based on the optical structure of the plenoptic camera for depth profile reconstruction. One significant improvement of the proposed method concerns the resolution of the depth map. Unlike the traditional method, our resolution is not limited by the number of microlenses inside the camera, and the depth map can be globally optimized. We validated the method with experiments on depth map reconstruction, depth calibration, and depth profile measurement, with the results indicating that the proposed approach is both efficient and accurate.
NASA Astrophysics Data System (ADS)
Liu, Zhanwen; Feng, Yan; Chen, Hang; Jiao, Licheng
2017-10-01
A novel and effective image fusion method is proposed for creating a highly informative and smooth surface of fused image through merging visible and infrared images. Firstly, a two-scale non-subsampled shearlet transform (NSST) is employed to decompose the visible and infrared images into detail layers and one base layer. Then, phase congruency is adopted to extract the saliency maps from the detail layers and a guided filtering is proposed to compute the filtering output of base layer and saliency maps. Next, a novel weighted average technique is used to make full use of scene consistency for fusion and obtaining coefficients map. Finally the fusion image was acquired by taking inverse NSST of the fused coefficients map. Experiments show that the proposed approach can achieve better performance than other methods in terms of subjective visual effect and objective assessment.
Extraction of Rocky Desertification from Disp Imagery: a Case Study of Liupanshui, Guizhou, China
NASA Astrophysics Data System (ADS)
Zhou, G.; Wu, Z.; Wang, W.; Shi, Y.; Mao, G.; Huang, Y.; Jia, B.; Gao, G.; Chen, P.
2017-09-01
Karst rocky desertification is a typical type of land degradation in Guizhou Province, China. It causes great ecological and economical implications to the local people. This paper utilized the declassified intelligence satellite photography (DISP) of 1960s to extract the karst rocky desertification area to analyze the early situation of karst rocky desertification in Liupanshui, Guizhou, China. Due to the lack of ground control points and parameters of the satellite, a polynomial orthographic correction model with considering altitude difference correction is proposed for orthorectification of DISP imagery. With the proposed model, the 96 DISP images from four missions are orthorectified. The images are assembled into a seamless image map of the karst area of Guizhou, China. The assembled image map is produced to thematic map of karst rocky desertification by visual interpretation in Liupanshui city. With the assembled image map, extraction of rocky desertification is conducted.
Bittersohl, Bernd; Kircher, Jörn; Miese, Falk R; Dekkers, Christin; Habermeyer, Peter; Fröbel, Julia; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph
2015-10-01
Cartilage biochemical imaging modalities that include the magnetic resonance imaging (MRI) techniques of T2* mapping (sensitive to water content and collagen fiber network) and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, sensitive to the glycosaminoglycan content) can be effective instruments for early diagnosis and reliable follow-up of cartilage damage. The purpose of this study was to provide T2* mapping and dGEMRIC values in various histologic grades of cartilage degeneration in humeral articular cartilage. A histologically controlled in vitro study was conducted that included human humeral head cartilage specimens with various histologic grades of cartilage degeneration. High-resolution, 3-dimensional (3D) T2* mapping and dGEMRIC were performed that enabled the correlation of MRI and histology data. Cartilage degeneration was graded according to the Mankin score, which evaluates surface morphology, cellularity, toluidine blue staining, and tidemark integrity. SPSS software was used for statistical analyses. Both MRI mapping values decreased significantly (P < .001) with increasing cartilage degeneration. Spearman rank analysis revealed a significant correlation (correlation coefficients ranging from -0.315 to 0.784; P < .001) between the various histologic parameters and the T2* and T1Gd mapping values. This study demonstrates the feasibility of 3D T2* and dGEMRIC to identify various histologic grades of cartilage damage of humeral articular cartilage. With regard to the advantages of these mapping techniques with high image resolution and the ability to accomplish a 3D biochemically sensitive imaging, we consider that these imaging techniques can make a positive contribution to the currently evolving science and practice of cartilage biochemical imaging. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Investigation of stratigraphic mapping in paintings using micro-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Karagiannis, Georgios Th.; Apostolidis, Georgios K.
2016-04-01
In this work, microRaman spectroscopy is used to investigate the stratigraphic mapping in paintings. The objective of mapping imaging is to segment the dataset, here spectra, into clusters each of which consisting spectra that have similar characteristics; hence, similar chemical composition. The spatial distribution of such clusters can be illustrated in pseudocolor images, in which each pixel of image is colored according to its cluster membership. Such mapping images convey information about the spatial distribution of the chemical substances in an object. Moreover, the laser light source that is used has excitation in 1064 nm, i.e., near infrared (NIR), allowing the penetration of the radiation in deeper layers. Thus, the mapping images that are produced by clustering the acquired spectra (specifying specific bands of Raman shifts) can provide stratigraphic information in the mapping images, i.e., images that convey information of the distribution of substances from deeper, as well. To cluster the spectra, unsupervised machine learning algorithms are applied, e.g., hierarchical clustering. Furthermore, the optical microscopy camera (×50), where the Raman probe (B and WTek iRaman EX) is plugged in, is attached to a computerized numerical control (CNC) system which is driven by a software that is specially developed for Raman mapping. This software except for the conventional CNC operation allows the user to parameterize the spectrometer and check each and every measurement to ensure proper acquisition. This facility is important in painting investigation because some materials are vulnerable to such specific parameterization that other materials demand. The technique is tested on a portable experimental overpainted icon of a known stratigraphy. Specifically, the under icon, i.e., the wavy hair of "Saint James", can be separated from upper icon, i.e., the halo of Mother of God in the "Descent of the Cross".
The cartography of Venus with Magellan data
NASA Technical Reports Server (NTRS)
Kirk, R. L.; Morgan, H. F.; Russell, J. F.
1993-01-01
Maps of Venus based on Magellan data are being compiled at 1:50,000,000, 1:5,000,000 and 1:1,500,000 scales. Topographic contour lines based on radar altimetry data are overprinted on the image maps, along with feature nomenclature. Map controls are based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control for bodies where framing cameras were used, is not feasible with the radar images of Venus. Preliminary synthetic aperture radar (SAR) image maps have some data gaps and cosmetic inconsistencies, which will be corrected on final compilations. Eventual revision of geodetic controls and of the adopted Venusian spin-axis location will result in geometric adjustments, particularly on large-scale maps.
NASA Astrophysics Data System (ADS)
Heleno, Sandra; Matias, Magda; Pina, Pedro
2015-04-01
Visual interpretation of satellite imagery remains extremely demanding in terms of resources and time, especially when dealing with numerous multi-scale landslides affecting wide areas, such as is the case of rainfall-induced shallow landslides. Applying automated methods can contribute to more efficient landslide mapping and updating of existing inventories, and in recent years the number and variety of approaches is rapidly increasing. Very High Resolution (VHR) images, acquired by space-borne sensors with sub-metric precision, such as Ikonos, Quickbird, Geoeye and Worldview, are increasingly being considered as the best option for landslide mapping, but these new levels of spatial detail also present new challenges to state of the art image analysis tools, asking for automated methods specifically suited to map landslide events on VHR optical images. In this work we develop and test a methodology for semi-automatic landslide recognition and mapping of landslide source and transport areas. The method combines object-based image analysis and a Support Vector Machine supervised learning algorithm, and was tested using a GeoEye-1 multispectral image, sensed 3 days after a damaging landslide event in Madeira Island, together with a pre-event LiDAR DEM. Our approach has proved successful in the recognition of landslides on a 15 Km2-wide study area, with 81 out of 85 landslides detected in its validation regions. The classifier also showed reasonable performance (false positive rate 60% and false positive rate below 36% in both validation regions) in the internal mapping of landslide source and transport areas, in particular in the sunnier east-facing slopes. In the less illuminated areas the classifier is still able to accurately map the source areas, but performs poorly in the mapping of landslide transport areas.
NASA Astrophysics Data System (ADS)
Mafanya, Madodomzi; Tsele, Philemon; Botai, Joel; Manyama, Phetole; Swart, Barend; Monate, Thabang
2017-07-01
Invasive alien plants (IAPs) not only pose a serious threat to biodiversity and water resources but also have impacts on human and animal wellbeing. To support decision making in IAPs monitoring, semi-automated image classifiers which are capable of extracting valuable information in remotely sensed data are vital. This study evaluated the mapping accuracies of supervised and unsupervised image classifiers for mapping Harrisia pomanensis (a cactus plant commonly known as the Midnight Lady) using two interlinked evaluation strategies i.e. point and area based accuracy assessment. Results of the point-based accuracy assessment show that with reference to 219 ground control points, the supervised image classifiers (i.e. Maxver and Bhattacharya) mapped H. pomanensis better than the unsupervised image classifiers (i.e. K-mediuns, Euclidian Length and Isoseg). In this regard, user and producer accuracies were 82.4% and 84% respectively for the Maxver classifier. The user and producer accuracies for the Bhattacharya classifier were 90% and 95.7%, respectively. Though the Maxver produced a higher overall accuracy and Kappa estimate than the Bhattacharya classifier, the Maxver Kappa estimate of 0.8305 is not significantly (statistically) greater than the Bhattacharya Kappa estimate of 0.8088 at a 95% confidence interval. The area based accuracy assessment results show that the Bhattacharya classifier estimated the spatial extent of H. pomanensis with an average mapping accuracy of 86.1% whereas the Maxver classifier only gave an average mapping accuracy of 65.2%. Based on these results, the Bhattacharya classifier is therefore recommended for mapping H. pomanensis. These findings will aid in the algorithm choice making for the development of a semi-automated image classification system for mapping IAPs.
Geologic Map of the Hellas Region of Mars
Leonard, Gregory J.; Tanaka, Kenneth L.
2001-01-01
INTRODUCTION This geologic map of the Hellas region focuses on the stratigraphic, structural, and erosional histories associated with the largest well-preserved impact basin on Mars. Along with the uplifted rim and huge, partly infilled inner basin (Hellas Planitia) of the Hellas basin impact structure, the map region includes areas of ancient highland terrain, broad volcanic edifices and deposits, and extensive channels. Geologic activity recorded in the region spans all major epochs of martian chronology, from the early formation of the impact basin to ongoing resurfacing caused by eolian activity. The Hellas region, whose name refers to the classical term for Greece, has been known from telescopic observations as a prominent bright feature on the surface of Mars for more than a century (see Blunck, 1982). More recently, spacecraft imaging has greatly improved our visual perception of Mars and made possible its geologic interpretation. Here, our mapping at 1:5,000,000 scale is based on images obtained by the Viking Orbiters, which produced higher quality images than their predecessor, Mariner 9. Previous geologic maps of the region include those of the 1:5,000,000-scale global series based on Mariner 9 images (Potter, 1976; Peterson, 1977; King, 1978); the 1:15,000,000-scale global series based on Viking images (Greeley and Guest, 1987; Tanaka and Scott, 1987); and detailed 1:500,000-scale maps of Tyrrhena Patera (Gregg and others, 1998), Dao, Harmakhis, and Reull Valles (Price, 1998; Mest and Crown, in press), Hadriaca Patera (D.A. Crown and R. Greeley, map in preparation), and western Hellas Planitia (J.M. Moore and D.E. Wilhelms, map in preparation). We incorporated some of the previous work, but our map differs markedly in the identification and organization of map units. For example, we divide the Hellas assemblage of Greeley and Guest (1987) into the Hellas Planitia and Hellas rim assemblages and change the way units within these groupings are identified and mapped (table 1). The new classification scheme includes broad, geographically related categories and local, geologically and geomorphically related subgroups. Because of our mapping at larger scale, many of our map units were incorporated within larger units of the global-scale mapping (see table 1). Available Viking images of the Hellas region vary greatly in several aspects, which has complicated the task of producing a consistent photogeologic map. Best available image resolution ranges from about 30 to 300 m/pixel from place to place. Many images contain haze caused by dust clouds, and contrast and shading vary among images because of dramatic seasonal changes in surface albedo, opposing sun azimuths, and solar inclination. Enhancement of selected images on a computer-display system has greatly improved our ability to observe key geologic relations in several areas. Determination of the geologic history of the region includes reconstruction of the origin and sequence of formation, deformation, and modification of geologic units constituting (1) the impact-basin rim and surrounding highlands, (2) volcanic and channel assemblages on the northeast and south sides of the basin, (3) interior basin deposits, and (4) slope and surficial materials throughout the map area. Various surface modifications are attributed to volcanic, fluvial, eolian, mass-wasting, and possibly glacial and periglacial processes. Structures include basin faults (mostly inferred), wrinkle ridges occurring mainly in volcanic terrains and interior plains, volcanic collapse craters, and impact craters. Our interpretations in some cases rely on previous work, but in many significant cases we have offered new interpretations that we believe are more consistent with the observations documented by our mapping. Our primary intent for this mapping has been to elucidate the history of emplacement and modification of Hellas Planitia materials, which form the basis for analysis of their r
Imaging Cerebral Microhemorrhages in Military Service Members with Chronic Traumatic Brain Injury.
Liu, Wei; Soderlund, Karl; Senseney, Justin S; Joy, David; Yeh, Ping-Hong; Ollinger, John; Sham, Elyssa B; Liu, Tian; Wang, Yi; Oakes, Terrence R; Riedy, Gerard
2016-02-01
To detect cerebral microhemorrhages in military service members with chronic traumatic brain injury by using susceptibility-weighted magnetic resonance (MR) imaging. The longitudinal evolution of microhemorrhages was monitored in a subset of patients by using quantitative susceptibility mapping. The study was approved by the Walter Reed National Military Medical Center institutional review board and is compliant with HIPAA guidelines. All participants underwent two-dimensional conventional gradient-recalled-echo MR imaging and three-dimensional flow-compensated multiecho gradient-recalled-echo MR imaging (processed to generate susceptibility-weighted images and quantitative susceptibility maps), and a subset of patients underwent follow-up imaging. Microhemorrhages were identified by two radiologists independently. Comparisons of microhemorrhage number, size, and magnetic susceptibility derived from quantitative susceptibility maps between baseline and follow-up imaging examinations were performed by using the paired t test. Among the 603 patients, cerebral microhemorrhages were identified in 43 patients, with six excluded for further analysis owing to artifacts. Seventy-seven percent (451 of 585) of the microhemorrhages on susceptibility-weighted images had a more conspicuous appearance than on gradient-recalled-echo images. Thirteen of the 37 patients underwent follow-up imaging examinations. In these patients, a smaller number of microhemorrhages were identified at follow-up imaging compared with baseline on quantitative susceptibility maps (mean ± standard deviation, 9.8 microhemorrhages ± 12.8 vs 13.7 microhemorrhages ± 16.6; P = .019). Quantitative susceptibility mapping-derived quantitative measures of microhemorrhages also decreased over time: -0.85 mm(3) per day ± 1.59 for total volume (P = .039) and -0.10 parts per billion per day ± 0.14 for mean magnetic susceptibility (P = .016). The number of microhemorrhages and quantitative susceptibility mapping-derived quantitative measures of microhemorrhages all decreased over time, suggesting that hemosiderin products undergo continued, subtle evolution in the chronic stage. © RSNA, 2015.
2017-05-14
AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a. CONTRACT NUMBER 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Brain stress level measurement (non-invasively) in quantitative term is very helpful to correlate with various
2017-05-14
AFRL-AFOSR-JP-TR-2017-0052 Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions...invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognative Functions 5a. CONTRACT NUMBER 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Brain stress level measurement (non-invasively) in quantitative term is very helpful to correlate with various
Mapping land cover from satellite images: A basic, low cost approach
NASA Technical Reports Server (NTRS)
Elifrits, C. D.; Barney, T. W.; Barr, D. J.; Johannsen, C. J.
1978-01-01
Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products.
Quantitative use of multiincidence-angle SAR for geologic mapping
NASA Technical Reports Server (NTRS)
Farr, T. G.; Albee, A. L.; Evans, D. L.; Solomon, J. E.; Daily, M. I.; Labotka, T. C.; Smith, M. O.
1984-01-01
It is proposed that techniques be developed and used for quantitative interpretation of shuttle imaging radar-B (SIR-B) data for lithologic identification and mapping. The use of backscatter versus incidence angle signatures derived from SIR-B images is to be investigated. The use of SIR-B with other sensors for geologic mapping is also to be considered. Anticipated results are discussed in terms of geologic mapping.
Topological visual mapping in robotics.
Romero, Anna; Cazorla, Miguel
2012-08-01
A key problem in robotics is the construction of a map from its environment. This map could be used in different tasks, like localization, recognition, obstacle avoidance, etc. Besides, the simultaneous location and mapping (SLAM) problem has had a lot of interest in the robotics community. This paper presents a new method for visual mapping, using topological instead of metric information. For that purpose, we propose prior image segmentation into regions in order to group the extracted invariant features in a graph so that each graph defines a single region of the image. Although others methods have been proposed for visual SLAM, our method is complete, in the sense that it makes all the process: it presents a new method for image matching; it defines a way to build the topological map; and it also defines a matching criterion for loop-closing. The matching process will take into account visual features and their structure using the graph transformation matching (GTM) algorithm, which allows us to process the matching and to remove out the outliers. Then, using this image comparison method, we propose an algorithm for constructing topological maps. During the experimentation phase, we will test the robustness of the method and its ability constructing topological maps. We have also introduced new hysteresis behavior in order to solve some problems found building the graph.
An interactive method for digitizing zone maps
NASA Technical Reports Server (NTRS)
Giddings, L. E.; Thompson, E. J.
1975-01-01
A method is presented for digitizing maps that consist of zones, such as contour or climatic zone maps. A color-coded map is prepared by any convenient process. The map is then read into memory of an Image 100 computer by means of its table scanner, using colored filters. Zones are separated and stored in themes, using standard classification procedures. Thematic data are written on magnetic tape and these data, appropriately coded, are combined to make a digitized image on tape. Step-by-step procedures are given for digitization of crop moisture index maps with this procedure. In addition, a complete example of the digitization of a climatic zone map is given.
NASA Technical Reports Server (NTRS)
Morrison, R. B. (Principal Investigator); Hallberg, G. R.
1973-01-01
The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be determined primarily by information on landforms and soils (obtained by analysis of stream dissection and drainage and stream-divide patterns, land use patterns, etc.). Maps showing the Quaternary geologic-terrain units that can be distinguished on the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps of 1:1,000,000 scale are included for three of the study areas: the Grand Island and Fremont, Nebraska, and the Davenport, Iowa-Illinois, 1 deg x 2 deg quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from the ERTS-1 images alone, with no additional information. These maps show that commonly the boundaries of geologic-terrain units can be delineated more accurately on ERTS-1 images than on topographic maps at 1:250,000 scale.
Text image authenticating algorithm based on MD5-hash function and Henon map
NASA Astrophysics Data System (ADS)
Wei, Jinqiao; Wang, Ying; Ma, Xiaoxue
2017-07-01
In order to cater to the evidentiary requirements of the text image, this paper proposes a fragile watermarking algorithm based on Hash function and Henon map. The algorithm is to divide a text image into parts, get flippable pixels and nonflippable pixels of every lump according to PSD, generate watermark of non-flippable pixels with MD5-Hash, encrypt watermark with Henon map and select embedded blocks. The simulation results show that the algorithm with a good ability in tampering localization can be used to authenticate and forensics the authenticity and integrity of text images
Attack to AN Image Encryption Based on Chaotic Logistic Map
NASA Astrophysics Data System (ADS)
Wang, Xing-Yuan; Chen, Feng; Wang, Tian; Xu, Dahai; Ma, Yutian
2013-10-01
This paper offers two different attacks on a freshly proposed image encryption based on chaotic logistic map. The cryptosystem under study first uses a secret key of 80-bit and employed two chaotic logistic maps. We derived the initial conditions of the logistic maps from using the secret key by providing different weights to all its bits. Additionally, in this paper eight different types of procedures are used to encrypt the pixels of an image in the proposed encryption process of which one of them will be used for a certain pixel which is determined by the product of the logistic map. The secret key is revised after encrypting each block which consisted of 16 pixels of the image. The encrypting process have weakness, worst of which is that every byte of plaintext is independent when substituted, so the cipher text of the byte will not change even the other bytes have changed. As a result of weakness, a chosen plaintext attack and a chosen cipher text attack can be completed without any knowledge of the key value to recuperate the ciphered image.
Forward and backward tone mapping of high dynamic range images based on subband architecture
NASA Astrophysics Data System (ADS)
Bouzidi, Ines; Ouled Zaid, Azza
2015-01-01
This paper presents a novel High Dynamic Range (HDR) tone mapping (TM) system based on sub-band architecture. Standard wavelet filters of Daubechies, Symlets, Coiflets and Biorthogonal were used to estimate the proposed system performance in terms of Low Dynamic Range (LDR) image quality and reconstructed HDR image fidelity. During TM stage, the HDR image is firstly decomposed in sub-bands using symmetrical analysis-synthesis filter bank. The transform coefficients are then rescaled using a predefined gain map. The inverse Tone Mapping (iTM) stage is straightforward. Indeed, the LDR image passes through the same sub-band architecture. But, instead of reducing the dynamic range, the LDR content is boosted to an HDR representation. Moreover, in our TM sheme, we included an optimization module to select the gain map components that minimize the reconstruction error, and consequently resulting in high fidelity HDR content. Comparisons with recent state-of-the-art methods have shown that our method provides better results in terms of visual quality and HDR reconstruction fidelity using objective and subjective evaluations.
JIGSAW: Joint Inhomogeneity estimation via Global Segment Assembly for Water-fat separation.
Lu, Wenmiao; Lu, Yi
2011-07-01
Water-fat separation in magnetic resonance imaging (MRI) is of great clinical importance, and the key to uniform water-fat separation lies in field map estimation. This work deals with three-point field map estimation, in which water and fat are modelled as two single-peak spectral lines, and field inhomogeneities shift the spectrum by an unknown amount. Due to the simplified spectrum modelling, there exists inherent ambiguity in forming field maps from multiple locally feasible field map values at each pixel. To resolve such ambiguity, spatial smoothness of field maps has been incorporated as a constraint of an optimization problem. However, there are two issues: the optimization problem is computationally intractable and even when it is solved exactly, it does not always separate water and fat images. Hence, robust field map estimation remains challenging in many clinically important imaging scenarios. This paper proposes a novel field map estimation technique called JIGSAW. It extends a loopy belief propagation (BP) algorithm to obtain an approximate solution to the optimization problem. The solution produces locally smooth segments and avoids error propagation associated with greedy methods. The locally smooth segments are then assembled into a globally consistent field map by exploiting the periodicity of the feasible field map values. In vivo results demonstrate that JIGSAW outperforms existing techniques and produces correct water-fat separation in challenging imaging scenarios.
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca
2015-08-12
Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping
Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca
2015-01-01
Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960
Mapping spatial patterns with morphological image processing
Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham
2006-01-01
We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...
Pal, Raj P; Ahmad, Ros; Trecartan, Shaun; Voss, James; Ahmed, Shaista; Bazo, Alvaro; Lloyd, Jon; Walton, Thomas J
2018-03-01
In this study we evaluated the diagnostic performance of transrectal ultrasound guided biopsy and multiparametric magnetic resonance imaging to detect prostate cancer against transperineal prostate mapping biopsy as the reference test. Transrectal ultrasound guided biopsy, multiparametric magnetic resonance imaging and transperineal prostate mapping biopsy were performed in 426 patients between April 2012 and January 2016. Patients initially underwent systematic 12 core transrectal ultrasound guided biopsy followed 3 months later by 1.5 Tesla, high resolution T2, diffusion-weighted, dynamic contrast enhanced multiparametric magnetic resonance imaging. Two specialist uroradiologists blinded to the results of transperineal prostate mapping biopsy allocated a PI-RADS™ (Prostate Imaging-Reporting and Data System) score to each multiparametric magnetic resonance imaging study. Transperineal prostate mapping biopsy with 5 mm interval sampling, which was performed within 6 months of multiparametric magnetic resonance imaging, served as the reference test. Transrectal ultrasound guided biopsy identified 247 of 426 patients with prostate cancer and 179 of 426 with benign histology. Transperineal prostate mapping biopsy detected prostate cancer in 321 of 426 patients. On transperineal prostate mapping biopsy 94 of 179 patients with benign transrectal ultrasound guided biopsy had prostate cancer and 95 of 247 with prostate cancer on transrectal ultrasound guided biopsy were identified with cancer of higher grade. Using a multiparametric magnetic resonance imaging PI-RADS score of 3 or greater to detect significant prostate cancer, defined as any core containing Gleason 4 + 3 or greater prostate cancer on transperineal prostate mapping biopsy, the ROC AUC was 0.754 (95% CI 0.677-0.819) with 87.0% sensitivity (95% CI 77.3-97.0), 55.3% specificity (95% CI 50.2-60.4) and 97.1% negative predictive value (95% CI 94.8-99.4). Multiparametric magnetic resonance imaging is a more accurate diagnostic test than transrectal ultrasound guided biopsy. However, a significant proportion of ISUP (International Society of Urological Pathology) Grade Group 2 prostate cancer remained undetected following multiparametric magnetic resonance imaging. Although multiparametric magnetic resonance imaging could avoid unnecessary biopsy in many patients with ISUP Grade Group 3 or greater prostate cancer, at less stringent definitions of significant cancer a substantial proportion of prostate cancer would remain undetected after multiparametric magnetic resonance imaging. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Lo, T Y; Sim, K S; Tso, C P; Nia, M E
2014-01-01
An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, E. R., E-mail: ewhite@physics.ucla.edu; Kerelsky, Alexander; Hubbard, William A.
2015-11-30
Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS{sub 2} heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrentmore » collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.« less
Davis, Philip A.
2013-01-01
The Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey (USGS) periodically collects airborne image data for the Colorado River corridor within Arizona (fig. 1) to allow scientists to study the impacts of Glen Canyon Dam water release on the corridor’s natural and cultural resources. These data are collected from just above Glen Canyon Dam (in Lake Powell) down to the entrance of Lake Mead, for a total distance of 450 kilometers (km) and within a 500-meter (m) swath centered on the river’s mainstem and its seven main tributaries (fig. 1). The most recent airborne data collection in 2009 acquired image data in four wavelength bands (blue, green, red, and near infrared) at a spatial resolution of 20 centimeters (cm). The image collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits. Davis (2012) reported on the performance of the SH52 sensor and on the processing steps required to produce the nearly flawless four-band image mosaic (sectioned into map tiles) for the river corridor. The final image mosaic has a total of only 3 km of surface defects in addition to some areas of cloud shadow because of persistent inclement weather during data collection. The 2009 four-band image mosaic is perhaps the best image dataset that exists for the entire Arizona part of the Colorado River. Some analyses of these image mosaics do not require the full 12-bit dynamic range or all four bands of the calibrated image database, in which atmospheric scattering (or haze) had not been removed from the four bands. To provide scientists and the general public with image products that are more useful for visual interpretation, the 12-bit image data were converted to 8-bit natural-color and color-infrared images, which also removed atmospheric scattering within each wavelength-band image. The conversion required an evaluation of the histograms of each band’s digital-number population within each map tile throughout the corridor and the determination of the digital numbers corresponding to the lower and upper one percent of the picture-element population within each map tile. Visual examination of the image tiles that were given a 1-percent stretch (whereby the lower 1- percent 12-bit digital number is assigned an 8-bit value of zero and the upper 1-percent 12-bit digital number is assigned an 8-bit value of 255) indicated that this stretch sufficiently removed atmospheric scattering, which provided improved image clarity and true natural colors for all surface materials. The lower and upper 1-percent, 12-bit digital numbers for each wavelength-band image in the image tiles exhibit erratic variations along the river corridor; the variations exhibited similar trends in both the lower and upper 1-percent digital numbers for all four wavelength-band images (figs. 2–5). The erratic variations are attributed to (1) daily variations in atmospheric water-vapor content due to monsoonal storms, (2) variations in channel water color due to variable sediment input from tributaries, and (3) variations in the amount of topographic shadows within each image tile, in which reflectance is dominated by atmospheric scattering. To make the surface colors of the stretched, 8-bit images consistent among adjacent image tiles, it was necessary to average both the lower and upper 1-percent digital values for each wavelength-band image over 20 river miles to subdue the erratic variations. The average lower and upper 1-percent digital numbers for each image tile (figs. 2–5) were used to convert the 12-bit image values to 8-bit values and the resulting 8-bit four-band images were stored as natural-color (red, green, and blue wavelength bands) and color-infrared (near-infrared, red, and green wavelength bands) images in embedded geotiff format, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. All image data are projected in the State Plane (SP) map projection using the central Arizona zone (202) and the North American Datum of 1983 (NAD83). The map-tile scheme used to segment the corridor image mosaic followed the standard USGS quarter-quadrangle (QQ) map borders, but the high resolution (20 cm) of the images required further quarter segmentation (QQQ) of the standard QQ tiles, where the image mosaic covered a large fraction of a QQ map tile (segmentation shown in (figure 6), where QQ_1 to QQ_4 shows the number convention used to designate a quarter of a QQ tile). To minimize the size of each image tile, each image or map tile was subset to only include that part of the tile that had image data. In addition, some QQQ image tiles within a QQ tile were combined when adjacent QQQ map tiles were small. Thus, some image tiles consist of combinations of QQQ map tiles, some consist of an entire QQ map tile, and some consist of two adjoining QQ map tiles. The final image tiles number 143, which is a large number of files to list on the Internet for both the natural-color and color-infrared images. Thus, the image tiles were placed in seven file folders based on the one-half-degree geographic boundaries within the study area (fig. 7). The map tiles in each file folder were compressed to minimize folder size for more efficient downloading. The file folders are sequentially referred to as zone 1 through zone 7, proceeding down river (fig. 7). The QQ designations of the image tiles contained within each folder or zone are shown on the index map for each respective zone (figs. 8–14).
EXIF Custom: Automatic image metadata extraction for Scratchpads and Drupal.
Baker, Ed
2013-01-01
Many institutions and individuals use embedded metadata to aid in the management of their image collections. Many deskop image management solutions such as Adobe Bridge and online tools such as Flickr also make use of embedded metadata to describe, categorise and license images. Until now Scratchpads (a data management system and virtual research environment for biodiversity) have not made use of these metadata, and users have had to manually re-enter this information if they have wanted to display it on their Scratchpad site. The Drupal described here allows users to map metadata embedded in their images to the associated field in the Scratchpads image form using one or more customised mappings. The module works seamlessly with the bulk image uploader used on Scratchpads and it is therefore possible to upload hundreds of images easily with automatic metadata (EXIF, XMP and IPTC) extraction and mapping.
Geometric processing of digital images of the planets
NASA Technical Reports Server (NTRS)
Edwards, Kathleen
1987-01-01
New procedures and software have been developed for geometric transformation of images to support digital cartography of the planets. The procedures involve the correction of spacecraft camera orientation of each image with the use of ground control and the transformation of each image to a Sinusoidal Equal-Area map projection with an algorithm which allows the number of transformation calculations to vary as the distortion varies within the image. When the distortion is low in an area of an image, few transformation computations are required, and most pixels can be interpolated. When distortion is extreme, the location of each pixel is computed. Mosaics are made of these images and stored as digital databases. Completed Sinusoidal databases may be used for digital analysis and registration with other spatial data. They may also be reproduced as published image maps by digitally transforming them to appropriate map projections.
New method for identifying features of an image on a digital video display
NASA Astrophysics Data System (ADS)
Doyle, Michael D.
1991-04-01
The MetaMap process extends the concept of direct manipulation human-computer interfaces to new limits. Its specific capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. The correlation is accomplished through reprogramming of both the color map and the image so that discrete image elements comprise unique sets of color indices. This process allows the correlation to be accomplished with very efficient data storage and program execution times. Image databases adapted to this process become object-oriented as a result. Very sophisticated interrelationships can be set up between images text and program control mechanisms using this process. An application of this interfacing process to the design of an interactive atlas of medical histology as well as other possible applications are described. The MetaMap process is protected by U. S. patent #4
EXIF Custom: Automatic image metadata extraction for Scratchpads and Drupal
2013-01-01
Abstract Many institutions and individuals use embedded metadata to aid in the management of their image collections. Many deskop image management solutions such as Adobe Bridge and online tools such as Flickr also make use of embedded metadata to describe, categorise and license images. Until now Scratchpads (a data management system and virtual research environment for biodiversity) have not made use of these metadata, and users have had to manually re-enter this information if they have wanted to display it on their Scratchpad site. The Drupal described here allows users to map metadata embedded in their images to the associated field in the Scratchpads image form using one or more customised mappings. The module works seamlessly with the bulk image uploader used on Scratchpads and it is therefore possible to upload hundreds of images easily with automatic metadata (EXIF, XMP and IPTC) extraction and mapping. PMID:24723768
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S
2005-10-01
To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.
Local search for optimal global map generation using mid-decadal landsat images
Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.
2007-01-01
NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Shuttle radar images for geologic mapping in tropical rainforest
NASA Technical Reports Server (NTRS)
Ford, J. P.; Da Cunha, R.
1986-01-01
Images of forested low-relief terrain in the Amazon basin of Brazil, obtained with airborne imaging radar in the Radambrasil project, are compared with SIR-A and Landsat MSS band-7 images to evaluate their usefulness in constructing geologic maps. Sample images are shown, and it is found that Radam images are more useful in distinguishing drainage patterns and mapping the region distribution of stream channels due to their relatively low depression angles (less than 25 deg as opposed to 43-37 deg for SIR-A), but that SIR-A images give superior discrimination of alluvial forest, where trees stand in water, due to the higher reflectivity of branches and water at the SIR-A wavelength (23.5 cm as opposed to 3 cm for Radam). Alluvial forest is also identified by Landsat band 7.
Karydas, Christos G; Sekuloska, Tijana; Silleos, Georgios N
2009-02-01
Due to inappropriate agricultural management practices, soil erosion is becoming one of the most dangerous forms of soil degradation in many olive farming areas in the Mediterranean region, leading to significant decrease of soil fertility and yield. In order to prevent further soil degradation, proper measures are necessary to be locally implemented. In this perspective, an increase in the spatial accuracy of remote sensing datasets and advanced image analysis are significant tools necessary and efficient for mapping soil erosion risk on a fine scale. In this study, the Revised Universal Soil Loss Equation (RUSLE) was implemented in the spatial domain using GIS, while a very high resolution satellite image, namely a QuickBird image, was used for deriving cover management (C) and support practice (P) factors, in order to map the risk of soil erosion in Kolymvari, a typical olive farming area in the island of Crete, Greece. The results comprised a risk map of soil erosion when P factor was taken uniform (conventional approach) and a risk map when P factor was quantified site-specifically using object-oriented image analysis. The results showed that the QuickBird image was necessary in order to achieve site-specificity of the P factor and therefore to support fine scale mapping of soil erosion risk in an olive cultivation area, such as the one of Kolymvari in Crete. Increasing the accuracy of the QB image classification will further improve the resulted soil erosion mapping.
Single Point vs. Mapping Approach for Spectral Cytopathology (SCP)
Schubert, Jennifer M.; Mazur, Antonella I.; Bird, Benjamin; Miljković, Miloš; Diem, Max
2011-01-01
In this paper we describe the advantages of collecting infrared microspectral data in imaging mode opposed to point mode. Imaging data are processed using the PapMap algorithm, which co-adds pixel spectra that have been scrutinized for R-Mie scattering effects as well as other constraints. The signal-to-noise quality of PapMap spectra will be compared to point spectra for oral mucosa cells deposited onto low-e slides. Also the effects of software atmospheric correction will be discussed. Combined with the PapMap algorithm, data collection in imaging mode proves to be a superior method for spectral cytopathology. PMID:20449833
Lunar Terrain and Albedo Reconstruction from Apollo Imagery
NASA Technical Reports Server (NTRS)
Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach
2010-01-01
Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.
Geologic Map of the MTM-85000 Quadrangle, Planum Australe Region of Mars
Herkenhoff, Ken E.
2001-01-01
Introduction The polar deposits on Mars probably record martian climate history over the last 107 to 109 years (for example, Thomas and others, 1992). The area shown on this map includes layered polar deposits and residual polar ice, as well as some exposures of older terrain. Howard and others (1982) noted that an area (at lat 84.8 S., long 356 W.) near a 23-km diameter impact crater (Plaut and others, 1988) appears to have undergone recent deposition, as evidenced by the partial burial of secondary craters. Herkenhoff and Murray (1990a) mapped this area as a mixture of frost and defrosted ground and suggested that the presence of frost throughout the year stabilizes dust deposited in this area. This quadrangle was mapped using high-resolution Mariner 9 (table 1) and Viking Orbiter images in order to study the relations among erosional, cratering, and depositional processes on the polar layered deposits and to search for further evidence of recent deposition. Published geologic maps of the south polar region of Mars are based on images acquired by Mariner 9 (Condit and Soderblom, 1978; Scott and Carr, 1978) and the Viking Orbiters (Tanaka and Scott, 1987). The extent of the layered deposits mapped previously from Mariner 9 data is different from that mapped using Viking Orbiter images, and the present map agrees with the map by Tanaka and Scott (1987): the layered deposits extend to the northern boundary of the map area. However, the oldest unit in this area is mapped as undivided material (unit HNu) rather than the hilly unit in the plateau sequence (unit Nplh; Tanaka and Scott, 1987). The residual polar ice cap, areas of partial frost cover, the layered deposits, and two nonvolatile surface units-the dust mantle and the dark material-were mapped by Herkenhoff and Murray (1990a) at 1:2,000,000 scale using a color mosaic of Viking Orbiter images. This mosaic was used to confirm the identification of the non-volatile Amazonian units for this map and to test hypotheses for their origin and evolution. The colors and albedos of these units, as measured in places both within and outside of this map area, are presented in table 2 and figure 1. The red/violet ratio image was particularly useful in distinguishing the various low-albedo materials, as brightness variations due to topography are essentially removed in such ratio images and color variations are easily seen. Because the resolution of the color mosaics is not sufficient to map these units in detail at 1:500,000 scale, contacts between them were recognized and mapped using higher resolution black and white Viking and Mariner 9 images. The largest impact crater in the layered deposits, 23 km in diameter at lat 84.5 S., long 359 W., now named 'McMurdo,' was recognized by Plaut and others (1988). The northern rim of this crater is missing, perhaps due to erosion of the layered deposits in which it was formed (fig. 2). Secondary craters from this impact are not observed north of the crater but are abundant to the south. Although the crater statistics are poor (only 16 likely impact craters found in Viking Orbiter images of the south polar layered deposits), these observations generally support the conclusions that the south polar layered deposits are Late Amazonian in age and that some areas have been exposed for about 120 million years (Plaut and others, 1988; Herkenhoff and Murray, 1992, 1994; Herkenhoff, 1998). However, the recent cratering flux on Mars is poorly constrained, so inferred ages of surface units are uncertain. The Viking Orbiter 2 images used to construct the base were taken during the southern summer of 1977, with resolutions no better than 130 m/pixel. A digital mosaic of Mariner 9 images also was constructed to aid in mapping. The Mariner 9 images were taken during the southern summer of 1971 and 1972 and have resolutions as high as 85 m/pixel (table 1). However, the usefulness of the Mariner 9 mosaic image is limited by incomplete coverag
Topographic map of part of the Kasei Valles and Sacra Fossae regions of Mars - MTM 500k 20/287E OMKT
Rosiek, Mark R.; Redding, Bonnie L.; Galuszca, Donna M.
2005-01-01
This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetrically using Viking Orbiter stereo image pairs and photoclinometry from a Viking Orbiter image. The contour interval is 250 m. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).
Web Image Retrieval Using Self-Organizing Feature Map.
ERIC Educational Resources Information Center
Wu, Qishi; Iyengar, S. Sitharama; Zhu, Mengxia
2001-01-01
Provides an overview of current image retrieval systems. Describes the architecture of the SOFM (Self Organizing Feature Maps) based image retrieval system, discussing the system architecture and features. Introduces the Kohonen model, and describes the implementation details of SOFM computation and its learning algorithm. Presents a test example…
Plenoptic mapping for imaging and retrieval of the complex field amplitude of a laser beam.
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C
2016-12-26
The plenoptic sensor has been developed to sample complicated beam distortions produced by turbulence in the low atmosphere (deep turbulence or strong turbulence) with high density data samples. In contrast with the conventional Shack-Hartmann wavefront sensor, which utilizes all the pixels under each lenslet of a micro-lens array (MLA) to obtain one data sample indicating sub-aperture phase gradient and photon intensity, the plenoptic sensor uses each illuminated pixel (with significant pixel value) under each MLA lenslet as a data point for local phase gradient and intensity. To characterize the working principle of a plenoptic sensor, we propose the concept of plenoptic mapping and its inverse mapping to describe the imaging and reconstruction process respectively. As a result, we show that the plenoptic mapping is an efficient method to image and reconstruct the complex field amplitude of an incident beam with just one image. With a proof of concept experiment, we show that adaptive optics (AO) phase correction can be instantaneously achieved without going through a phase reconstruction process under the concept of plenoptic mapping. The plenoptic mapping technology has high potential for applications in imaging, free space optical (FSO) communication and directed energy (DE) where atmospheric turbulence distortion needs to be compensated.
Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao
2015-05-12
As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems.
Okur, Aylin; Kantarcı, Mecit; Kızrak, Yeşim; Yıldız, Sema; Pirimoğlu, Berhan; Karaca, Leyla; Oğul, Hayri; Sevimli, Serdar
2014-01-01
PURPOSE We aimed to use a noninvasive method for quantifying T1 values of chronic myocardial infarction scar by cardiac magnetic resonance imaging (MRI), and determine its diagnostic performance. MATERIALS AND METHODS We performed cardiac MRI on 29 consecutive patients with known coronary artery disease (CAD) on 3.0 Tesla MRI scanner. An unenhanced T1 mapping technique was used to calculate T1 relaxation time of myocardial scar tissue, and its diagnostic performance was evaluated. Chronic scar tissue was identified by delayed contrast-enhancement (DE) MRI and T2-weighted images. Sensitivity, specificity, and accuracy values were calculated for T1 mapping using DE images as the gold standard. RESULTS Four hundred and forty-two segments were analyzed in 26 patients. While myocardial chronic scar was demonstrated in 45 segments on DE images, T1 mapping MRI showed a chronic scar area in 54 segments. T1 relaxation time was higher in chronic scar tissue, compared with remote areas (1314±98 ms vs. 1099±90 ms, P < 0.001). Therefore, increased T1 values were shown in areas of myocardium colocalized with areas of DE and normal signal on T2-weighted images. There was a significant correlation between T1 mapping and DE images in evaluation of myocardial wall injury extent (P < 0.05). We calculated sensitivity, specificity, and accuracy as 95.5%, 97%, and 96%, respectively. CONCLUSION The results of the present study reveal that T1 mapping MRI combined with T2-weighted images might be a feasible imaging modality for detecting chronic myocardial infarction scar tissue. PMID:25010366
Comparison of CT-derived Ventilation Maps with Deposition Patterns of Inhaled Microspheres in Rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, Rick E.; Lamm, W. J.; Einstein, Daniel R.
2015-04-01
Purpose: Computer models for inhalation toxicology and drug-aerosol delivery studies rely on ventilation pattern inputs for predictions of particle deposition and vapor uptake. However, changes in lung mechanics due to disease can impact airflow dynamics and model results. It has been demonstrated that non-invasive, in vivo, 4DCT imaging (3D imaging at multiple time points in the breathing cycle) can be used to map heterogeneities in ventilation patterns under healthy and disease conditions. The purpose of this study was to validate ventilation patterns measured from CT imaging by exposing the same rats to an aerosol of fluorescent microspheres (FMS) and examiningmore » particle deposition patterns using cryomicrotome imaging. Materials and Methods: Six male Sprague-Dawley rats were intratracheally instilled with elastase to a single lobe to induce a heterogeneous disease. After four weeks, rats were imaged over the breathing cycle by CT then immediately exposed to an aerosol of ~1µm FMS for ~5 minutes. After the exposure, the lungs were excised and prepared for cryomicrotome imaging, where a 3D image of FMS deposition was acquired using serial sectioning. Cryomicrotome images were spatially registered to match the live CT images to facilitate direct quantitative comparisons of FMS signal intensity with the CT-based ventilation maps. Results: Comparisons of fractional ventilation in contiguous, non-overlapping, 3D regions between CT-based ventilation maps and FMS images showed strong correlations in fractional ventilation (r=0.888, p<0.0001). Conclusion: We conclude that ventilation maps derived from CT imaging are predictive of the 1µm aerosol deposition used in ventilation-perfusion heterogeneity inhalation studies.« less
NASA Technical Reports Server (NTRS)
Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.
1993-01-01
Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.
Jeong, Jong Seok; Mkhoyan, K Andre
2016-06-01
Acquiring an atomic-resolution compositional map of crystalline specimens has become routine practice, thus opening possibilities for extracting subatomic information from such maps. A key challenge for achieving subatomic precision is the improvement of signal-to-noise ratio (SNR) of compositional maps. Here, we report a simple and reliable solution for achieving high-SNR energy-dispersive X-ray (EDX) spectroscopy spectrum images for individual atomic columns. The method is based on standard cross-correlation aided by averaging of single-column EDX maps with modifications in the reference image. It produces EDX maps with minimal specimen drift, beam drift, and scan distortions. Step-by-step procedures to determine a self-consistent reference map with a discussion on the reliability, stability, and limitations of the method are presented here.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-09-21
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Natural-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Natural-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Natural-Color-Image Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Natural-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
NASA Astrophysics Data System (ADS)
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-10-01
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
New false color mapping for image fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Walraven, Jan
1996-03-01
A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor-specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the common component of the two original input images is determined. Second, the common component is subtracted from the original images to obtain the unique component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of a fused image is therefore directly related to the resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image- processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous (an important consideration when it has to fit in an airplane, for instance).
Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A
2016-12-01
Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.
Geologic and topographic maps of the Kabul South 30' x 60' quadrangle, Afghanistan
Bohannon, Robert G.
2010-01-01
This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with three highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in Geospatial PDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts to rebuild the energy and mineral sectors of their economy. The U.S. Geological Survey has also produced a variety of geological, topographic, Landsat natural-color, and Landsat false-color maps covering Afghanistan at the 1:250,000 scale. These maps may be used to compliment the information presented here. For more information about USGS activities in Afghanistan, visit the USGS Projects in Afghanistan Web site at http://afghanistan.cr.usgs.gov/ For scientific questions or comments, please send inquiries to Robert G. Bohannon.
Geologic and Topographic Maps of the Kabul North 30' x 60' Quadrangle, Afghanistan
Bohannon, Robert G.
2010-01-01
This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with two highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in GeoPDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts to rebuild the energy and mineral sectors of their economy. The U.S. Geological Survey has also produced a variety of geological, topographic, Landsat natural-color, and Landsat false-color maps covering Afghanistan at the 1:250,000 scale. These maps may be used to compliment the information presented here. For more information about USGS activities in Afghanistan, visit the USGS Projects in Afghanistan Web site at http://gisdata.usgs.net/Website/Afghan/ For scientific questions or comments, please send inquiries to Robert G. Bohannon.
2015-10-09
This global digital map of Saturn's moon Titan was created using images taken by NASA's Cassini spacecraft's imaging science subsystem (ISS). The map was produced in June 2015 using data collected through Cassini's flyby on April 7, 2014, known as "T100." The images were taken using a filter centered at 938 nanometers, allowing researchers to examine variations in albedo (or inherent brightness) across the surface of Titan. Because of the scattering of light by Titan's dense atmosphere, no topographic shading is visible in these images. The map is an equidistant projection and has a scale of 2.5 miles (4 kilometers) per pixel. Actual resolution varies greatly across the map, with the best coverage (close to the map scale) along the equator near the center of the map at 180 degrees west longitude. The lowest resolution coverage can be seen in the northern mid-latitudes on the sub-Saturn hemisphere. Mapping coverage in the northern polar region has greatly improved since the previous version of this map in 2011 (see PIA14908). Large dark areas, now known to be liquid-hydrocarbon-filled lakes and seas, have since been documented at high latitudes. Titan's north pole was not well illuminated early in Cassini's mission, because it was winter in the northern hemisphere when the spacecraft arrived at Saturn. Cassini has been better able to observe northern latitudes in more recent years due to seasonal changes in solar illumination. This map is an update to the previous versions released in April 2011 and February 2009 (see PIA11149). Data from the past four years (the most recent data in the map is from April 2014) has completely filled in missing data in the north polar region and replaces the earlier imagery of the Xanadu region with higher quality data. A data gap of about 3 to 5 percent of Titan's surface still remains, located in the northern mid-latitudes on the sub-Saturn hemisphere of Titan. The uniform gray area in the northern hemisphere indicates a gap in the imaging coverage of Titan's surface, to date. The missing data will be imaged by Cassini during flybys on December 15, 2016 and March 5, 2017. The mean radius of Titan used for projection of this map is 1,600 miles (2,575 kilometers). Titan is assumed to be spherical until a control network -- a model of the moon's shape based on multiple images tied together at defined points on the surface -- is created at some point in the future. http://photojournal.jpl.nasa.gov/catalog/PIA19658
Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan
2017-04-01
In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.
space Radar Image of Long Valley, California
1999-05-01
An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. http://photojournal.jpl.nasa.gov/catalog/PIA01749
NASA Astrophysics Data System (ADS)
Tian, Qingjiu; Chen, Jing M.; Zheng, Guang; Xia, Xueqi; Chen, Junying
2006-09-01
Forest ecosystem is an important component of terrestrial ecosystem and plays an important role in global changes. Aboveground biomass (AGB) of forest ecosystem is an important factor in global carbon cycle studies. The purpose of this study was to retrieve the yearly Net Primary Productivity (NPP) of forest from the 8-days-interval MODIS-LAI images of a year and produce a yearly NPP distribution map. The LAI, DBH (diameter at breast height), tree height, and tree age field were measured in different 80 plots for Chinese fir, Masson pine, bamboo, broadleaf, mix forest in Liping County. Based on the DEM image and Landsat TM images acquired on May 14th, 2000, the geometric correction and terrain correction were taken. In addition, the "6S"model was used to gain the surface reflectance image. Then the correlation between Leaf Area Index (LAI) and Reduced Simple Ratio (RSR) was built. Combined with the Landcover map, forest stand map, the LAI, aboveground biomass, tree age map were produced respectively. After that, the 8-days- interval LAI images of a year, meteorology data, soil data, forest stand image and Landcover image were inputted into the BEPS model to get the NPP spatial distribution. At last, the yearly NPP spatial distribution map with 30m spatial resolution was produced. The values in those forest ecological parameters distribution maps were quite consistent with those of field measurements. So it's possible, feasible and time-saving to estimate forest ecological parameters at a large scale by using remote sensing.
Hierarchical tone mapping for high dynamic range image visualization
NASA Astrophysics Data System (ADS)
Qiu, Guoping; Duan, Jiang
2005-07-01
In this paper, we present a computationally efficient, practically easy to use tone mapping techniques for the visualization of high dynamic range (HDR) images in low dynamic range (LDR) reproduction devices. The new method, termed hierarchical nonlinear linear (HNL) tone-mapping operator maps the pixels in two hierarchical steps. The first step allocates appropriate numbers of LDR display levels to different HDR intensity intervals according to the pixel densities of the intervals. The second step linearly maps the HDR intensity intervals to theirs allocated LDR display levels. In the developed HNL scheme, the assignment of LDR display levels to HDR intensity intervals is controlled by a very simple and flexible formula with a single adjustable parameter. We also show that our new operators can be used for the effective enhancement of ordinary images.
NASA Technical Reports Server (NTRS)
Liebes, S., Jr.
1982-01-01
Half size reproductions are presented of the extensive set of systematic map products generated for the two Mars Viking landing sites from stereo pairs of images radioed back to Earth. The maps span from the immediate foreground to the remote limits of ranging capability, several hundred meters from the spacecraft. The maps are of two kinds - elevation contour and vertical profile. Background and explanatory material important for understanding and utilizing the map collection included covers the Viking Mission, lander locations, lander cameras, the stereo mapping system and input images to this system.
Schleeweis, Karen; Goward, Samuel N.; Huang, Chengquan; Dwyer, John L.; Dungan, Jennifer L.; Lindsey, Mary A.; Michaelis, Andrew; Rishmawi, Khaldoun; Masek, Jeffery G.
2016-01-01
Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986–2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and cloud contamination can be sources of error. We discuss the NAFD image selection and processing stream (NISPS) that was designed to minimize these sources of error. The NISPS image quality assessments highlighted issues with the Landsat archive and metadata including inadequate georegistration, unreliability of the pre-2009 L5 cloud cover assessments algorithm, missing growing-season imagery and paucity of clear views. Assessment maps of Landsat 5–7 image quantities and qualities are presented that offer novel perspectives on the growing-season archive considered for this study. Over 150,000+ Landsat images were considered for the NAFD project. Optimally, one high quality cloud-free image in each year or a total of 12,152 images would be used. However, to accommodate data gaps and cloud/shadow contamination 23,338 images were needed. In 220 specific path-row image years no acceptable images were found resulting in data gaps in the annual national map products.
Panoramic Images Mapping Tools Integrated Within the ESRI ArcGIS Software
NASA Astrophysics Data System (ADS)
Guo, Jiao; Zhong, Ruofei; Zeng, Fanyang
2014-03-01
There is a general study on panoramic images which are presented along with appearance of the Google street map. Despite 360 degree viewing of street, we can realize more applications over panoramic images. This paper developed a toolkits plugged in ArcGIS, which can view panoramic photographs at street level directly from ArcMap and measure and capture all visible elements as frontages, trees and bridges. We use a series of panoramic images adjoined with absolute coordinate through GPS and IMU. There are two methods in this paper to measure object from these panoramic images: one is to intersect object position through a stereogram; the other one is multichip matching involved more than three images which all cover the object. While someone wants to measure objects from these panoramic images, each two panoramic images which both contain the object can be chosen to display on ArcMap. Then we calculate correlation coefficient of the two chosen panoramic images so as to calculate the coordinate of object. Our study test different patterns of panoramic pairs and compare the results of measurement to the real value of objects so as to offer the best choosing suggestion. The article has mainly elaborated the principles of calculating correlation coefficient and multichip matching.
Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.
Arikan, Murat; Preiner, Reinhold; Wimmer, Michael
2016-02-01
With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.