Science.gov

Sample records for map kinase cascade

  1. Dominant Mutations of Drosophila Map Kinase Kinase and Their Activities in Drosophila and Yeast Map Kinase Cascades

    PubMed Central

    Lim, Y. M.; Tsuda, L.; Inoue, Y. H.; Irie, K.; Adachi-Yamada, T.; Hata, M.; Nishi, Y.; Matsumoto, K.; Nishida, Y.

    1997-01-01

    Eight alleles of Dsor1 encoding a Drosophila homologue of mitogen-activated protein (MAP) kinase kinase were obtained as dominant suppressors of the MAP kinase kinase kinase D-raf. These Dsor1 alleles themselves showed no obvious phenotypic consequences nor any effect on the viability of the flies, although they were highly sensitive to upstream signals and strongly interacted with gain-of-function mutations of upstream factors. They suppressed mutations for receptor tyrosine kinases (RTKs); torso (tor), sevenless (sev) and to a lesser extent Drosophila EGF receptor (DER). Furthermore, the Dsor1 alleles showed no significant interaction with gain-of-function mutations of DER. The observed difference in activity of the Dsor1 alleles among the RTK pathways suggests Dsor1 is one of the components of the pathway that regulates signal specificity. Expression of Dsor1 in budding yeast demonstrated that Dsor1 can activate yeast MAP kinase homologues if a proper activator of Dsor1 is coexpressed. Nucleotide sequencing of the Dsor1 mutant genes revealed that most of the mutations are associated with amino acid changes at highly conserved residues in the kinase domain. The results suggest that they function as suppressors due to increased reactivity to upstream factors. PMID:9136016

  2. The Potential for Signal Integration and Processing in Interacting Map Kinase Cascades

    PubMed Central

    Schwacke, John H.; Voit, Eberhard O.

    2009-01-01

    The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the Mitogen Activated Protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for

  3. Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades.

    PubMed

    Tiraboschi, Ettore; Tardito, Daniela; Kasahara, Jiro; Moraschi, Stefania; Pruneri, Paolo; Gennarelli, Massimo; Racagni, Giorgio; Popoli, Maurizio

    2004-10-01

    Regulation of gene expression is purported as a major component in the long-term action of antidepressants. The transcription factor cAMP-response element-binding protein (CREB) is activated by chronic antidepressant treatments, although a number of studies reported different effects on CREB, depending on drug types used and brain areas investigated. Furthermore, little is known as to what signaling cascades are responsible for CREB activation, although cAMP-protein kinase A (PKA) cascade was suggested to be a central player. We investigated how different drugs (fluoxetine (FLX), desipramine (DMI), reboxetine (RBX)) affect CREB expression and phosphorylation of Ser(133) in the hippocampus and prefrontal/frontal cortex (PFCX). Acute treatments did not induce changes in these mechanisms. Chronic FLX increased nuclear phospho-CREB (pCREB) far more markedly than pronoradrenergic drugs, particularly in PFCX. We investigated the function of the main signaling cascades that were shown to phosphorylate and regulate CREB. PKA did not seem to account for the selective increase of pCREB induced by FLX. All drug treatments markedly increased the enzymatic activity of nuclear Ca2+/calmodulin (CaM) kinase IV (CaMKIV), a major neuronal CREB kinase, in PFCX. Activation of this kinase was due to increased phosphorylation of the activatory residue Thr196, with no major changes in the expression levels of alpha- and beta-CaM kinase kinase, enzymes that phosphorylate CaMKIV. Again in PFCX, FLX selectively increased the expression level of MAP kinases Erk1/2, without affecting their phosphorylation. Our results show that FLX exerts a more marked effect on CREB phosphorylation and suggest that CaMKIV and MAP kinase cascades are involved in this effect.

  4. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  5. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion.

    PubMed

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D; Schulz, Stefan; Fleißner, André

    2016-10-18

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.

  6. Protein-Protein Interactions in the Yeast Pheromone Response Pathway: Ste5p Interacts with All Members of the Map Kinase Cascade

    PubMed Central

    Printen, J. A.; Sprague-Jr., G. F.

    1994-01-01

    We have used the two-hybrid system of Fields and Song to identify protein-protein interactions that occur in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Pathway components Ste4p, Ste5p, Ste7p, Ste11p, Ste12p, Ste20p, Fus3p and Kss1p were tested in all pairwise combinations. All of the interactions we detected involved at least one member of the MAP kinase cascade that is a central element of the response pathway. Ste5p, a protein of unknown biochemical function, interacted with protein kinases that operate at each step of the MAP kinase cascade, specifically with Ste11p (an MEKK), Ste7p (an MEK), and Fus3p (a MAP kinase). This finding suggests that one role of Ste5p is to serve as a scaffold to facilitate interactions among members of the kinase cascade. In this role as facilitator, Ste5p may make both signal propagation and signal attenuation more efficient. Ste5p may also help minimize cross-talk with other MAP kinase cascades and thus ensure the integrity of the pheromone response pathway. We also found that both Ste11p and Ste7p interact with Fus3p and Kss1p. Finally, we detected an interaction between one of the MAP kinases, Kss1p, and a presumptive target, the transcription factor Ste12p. We failed to detect interactions of Ste4p or Ste20p with any other component of the response pathway. PMID:7851759

  7. Activation of the MAP Kinase Cascade by Exogenous Calcium-Sensing Receptor

    SciTech Connect

    Hobson, Susan A.; Wright, Jay W.; Lee, Fred; Mcneil, Scott; Bilderback, Tim R.; Rodland, Karin D.

    2003-02-01

    In Rat-1 fibroblasts and ovarian surface epithelial cells, extracellular calcium induces a proliferative response which appears to be mediated by the G-protein coupled Calcium-sensing Receptor (CaR), as expression of the non-functional CaR-R795W mutant inhibits both thymidine incorporation and activation of the extracellular-regulated kinase (ERK) in response to calcium. In this report we utilized CaR-transfected HEK293 cells to demonstrate that functional CaR is necessary and sufficient for calcium-induced ERK activation. CaR-dependent ERK activation was blocked by co-expression of the Ras dominant-negative mutant, Ras N17, and by exposure to the phosphatidyl inositol 3' kinase inhibitors wortmannin and LY294002. In contrast to Rat-1 fibroblasts, CaR-mediated in vitro kinase activity of ERK2 was unaffected by tyrosine kinase inhibitor herbimycin in CaR-transfected HEK293 cells. These results suggest that usage of distinct pathways downstream of the CaR varies in a cell-type specific manner, suggesting a potential mechanism by which activation of the CaR could couple to distinct calcium-dependent responses.

  8. A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus.

    PubMed

    Paul, Priyanka; Singh, Sanjay K; Patra, Barunava; Sui, Xueyi; Pattanaik, Sitakanta; Yuan, Ling

    2017-02-01

    Catharanthus roseus produces bioactive terpenoid indole alkaloids (TIAs), including the chemotherapeutics, vincristine and vinblastine. Transcriptional regulation of TIA biosynthesis is not fully understood. The jasmonic acid (JA)-responsive AP2/ERF transcription factor (TF), ORCA3, and its regulator, CrMYC2, play key roles in TIA biosynthesis. ORCA3 forms a physical cluster with two uncharacterized AP2/ERFs, ORCA4 and 5. Here, we report that (1) the ORCA gene cluster is differentially regulated; (2) ORCA4, while overlapping functionally with ORCA3, modulates an additional set of TIA genes. Unlike ORCA3, ORCA4 overexpression resulted in dramatic increase of TIA accumulation in C. roseus hairy roots. In addition, CrMYC2 is capable of activating ORCA3 and co-regulating TIA pathway genes concomitantly with ORCA3. The ORCA gene cluster and CrMYC2 act downstream of a MAP kinase cascade that includes a previously uncharacterized MAP kinase kinase, CrMAPKK1. Overexpression of CrMAPKK1 in C. roseus hairy roots upregulated TIA pathways genes and increased TIA accumulation. This work provides detailed characterization of a TF gene cluster and advances our understanding of the transcriptional and post-translational regulatory mechanisms that govern TIA biosynthesis in C. roseus.

  9. Potentiation of Mitogenic Activity of Platelet-Derived Growth Factor by Physiological Concentrations of Insulin via the MAP Kinase Cascade in Rat A10 Vascular Smooth Muscle Cells

    PubMed Central

    Yamada, Hitomi; Murakami, Hitomi; Uchigata, Yasuko; Iwamoto, Yasuhiko

    2002-01-01

    Hyperinsulinemia has been shown to be associated with diabetic angiopathy. Migration and proliferation of vascular smooth muscle cells (VSMC) are the processes required for the development of atherosclerosis. In this study, we attempted to determine whether insulin affects mitogenic signaling induced by plateletderived growth factor (PDGF) in a rat VSMC cell line (A10 cells). PDGF stimulated DNA synthesis which was totally dependent on Ras, because transfection of dominant negative Ras resulted in complete loss of PDGF-stimulated DNA synthesis. Initiation of DNA synthesis was preceded by activation of Raf-1, MEK and MAP kinases (Erk 1 and Erk2). Treatment of the cells with PD98059, an inhibitor of MAPK kinase (MEK) attenuated but did not abolish PDGF-stimulated DNA synthesis, suggesting that MAPK is required but not essential for DNA synthesis. PDGF also stimulated phosphorylation of protein kinase B (Akt/PKB) and p70 S6Kinase (p70S6K) in a wortmannin-sensitive manner. Rapamycin, an inhibitor of p70S6K, markedly suppressed DNA synthesis. Low concentrations of insulin (1-10 nmol/l) alone showed little mitogenic activity and no significant effect on MAPK activity. However, the presence of insulin enhanced both DNA synthesis and MAPK activation by PDGF. The enhancing effect of insulin was not seen in cells treated with PD98059. Insulin was without effect on PDGF-stimulated activations of protein kinase B (Akt/PKB) and p70S6K. We conclude that insulin, at pathophysiologically relevant concentrations, potentiates the PDGFstimulated DNA synthesis, at least in part, by potentiating activation of the MAPK cascade. These results are consistent with the notion that hyperinsulinemia is a risk factor for the development of atherosclerosis. PMID:11991199

  10. Spatial gradients in kinase cascade regulation.

    PubMed

    Kazmierczak, B; Lipniacki, T

    2010-11-01

    The spatiotemporal kinetics of proteins and other substrates regulate cell fate and signaling. In this study, we consider a reaction-diffusion model of interaction of membrane receptors with a two-step kinase cascade. The receptors activate the 'up-stream' kinase, which may diffuse over cell volume and activate the 'down-stream' kinase, which is also diffusing. Both kinase species and receptors are inactivated by uniformly distributed phosphatases. The positive feedback, key to the considered dynamics, arises since the up-stream kinase activates the receptors. Such a mutual interaction is characteristic for immune cell receptors. Based on the proposed model, we demonstrated that cell sensitivity (measured as a critical value of phosphatase activity at which cell maybe activated) increases with decreasing motility of receptor-interacting kinases and with increasing polarity of receptors distribution. These two effects are cooperating, the effect of receptors localisation close to one pole of the cell grows with the decreasing kinase diffusion and vanishes in the infinite diffusion limit. As the cell sensitivity increases with decreasing diffusion of receptor-interacting kinase, the overall activity of the down-stream kinase increases with its diffusion. In conclusion, the analysis of the proposed model shows that, for the fixed substrate interaction rates, spatial distribution of the surface receptors together with the motility of intracellular kinases control cell signalling and sensitivity to extracellular signals. The increase of the cell sensitivity can be achieved by (i) localisation of receptors in a small subdomain of the cell membrane, (ii) lowering the motility of receptor-interacting kinase, (iii) increasing the motility of down-stream kinases which distribute the signal over the whole cell.

  11. Kinase cascades regulating entry into apoptosis.

    PubMed Central

    Anderson, P

    1997-01-01

    All cells are constantly exposed to conflicting environment cues that signal cell survival or cell death. Survival signals are delivered by autocrine or paracrine factors that actively suppress a default death pathway. In addition to survival factor withdrawal, cell death can be triggered by environmental stresses such as heat, UV light, and hyperosmolarity or by dedicated death receptors (e.g., FAS/APO-1 and tumor necrosis factor [TNF] receptors) that are counterparts of growth factor or survival receptors at the cell surface. One of the ways that cells integrate conflicting exogenous stimuli is by phosphorylation (or dephosphorylation) of cellular constituents by interacting cascades of serine/threonine and tyrosine protein kinases (and phosphatases). Survival factors (e.g., growth factors and mitogens) activate receptor tyrosine kinases and selected mitogen-activated, cyclin-dependent, lipid-activated, nucleic acid-dependent, and cyclic AMP-dependent kinases to promote cell survival and proliferation, whereas environmental stress (or death factors such as FAS/APO-1 ligand and TNF-alpha) activates different members of these kinase families to inhibit cell growth and, under some circumstances, promote apoptotic cell death. Because individual kinase cascades can interact with one another, they are able to integrate conflicting exogenous stimuli and provide a link between cell surface receptors and the biochemical pathways leading to cell proliferation or cell death. PMID:9106363

  12. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27.

    PubMed

    Freshney, N W; Rawlinson, L; Guesdon, F; Jones, E; Cowley, S; Hsuan, J; Saklatvala, J

    1994-09-23

    An IL-1-stimulated protein kinase cascade resulting in phosphorylation of the small heat shock protein hsp27 has been identified in KB cells. It is distinct from the p42 MAP kinase cascade. An upstream activator kinase phosphorylated a 40 kDa kinase (p40) upon threonine and tyrosine residues, which in turn phosphorylated a 50 kDa kinase (p50) upon threonine (and some serine) residues. p50 phosphorylated hsp27 upon serine. p40 and p50 were purified to near homogeneity. All three components were inactivated by protein phosphatase 2A, and p40 was inactivated by protein tyrosine phosphatase 1B. The substrate specificity of p40 differed from that of p42 and p54 MAP kinases. The upstream activator was not a MAP kinase kinase. p50 resembled MAPKAPK-2 and may be identical.

  13. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  14. AMP-activated protein kinase--an archetypal protein kinase cascade?

    PubMed

    Hardie, D G; MacKintosh, R W

    1992-10-01

    Mammalian AMP-activated protein kinase is the central component of a protein kinase cascade which inactivates three key enzymes involved in the synthesis or release of free fatty acids and cholesterol inside the cell. The kinase cascade is activated by elevation of AMP, and perhaps also by fatty acid and cholesterol metabolites. The system may fulfil a protective function, preventing damage caused by depletion of ATP or excessive intracellular release of free lipids, a type of stress response. Recent evidence suggests that it may have been in existence for at least a billion years, since a very similar protein kinase cascade is present in higher plants. This system therefore represents an early eukaryotic protein kinase cascade, which is unique in that it is regulated by intracellular metabolites rather than extracellular signals or cell cycle events.

  15. TNF and MAP kinase signaling pathways

    PubMed Central

    Sabio, Guadalupe; Davis, Roger J.

    2014-01-01

    The binding of tumor necrosis factor α (TNFα) to cell surface receptors engages multiple signal transduction pathways, including three groups of mitogen-activated protein (MAP) kinases: extracellular-signal-regulated kinases (ERKs); the cJun NH2-terminal kinases (JNKs); and the p38 MAP kinases. These MAP kinase signalling pathways induce a secondary response by increasing the expression of several inflammatory cytokines (including TNFα) that contribute to the biological activity of TNFα. MAP kinases therefore function both upstream and down-stream of signalling by TNFα receptors. Here we review mechanisms that mediate these actions of MAP kinases during the response to TNFα. PMID:24647229

  16. P38 MAP kinase mediates apoptosis after genipin treatment in non-small-cell lung cancer H1299 cells via a mitochondrial apoptotic cascade.

    PubMed

    Yang, Xue; Yao, Jie; Luo, Yue; Han, Yongguang; Wang, Zuobai; Du, Linfang

    2013-01-01

    Genipin, an active constituent of Gardenia fruit, has been reported to show an anti-tumor effect in several cancer cell systems. Here, we demonstrate how genipin exhibits a strong apoptotic cell death effect in human non-small-cell lung cancer H1299 cells. Genipin-mediated decrease in cell viability was observed through apoptosis as demonstrated by induction of a sub-G1 peak through flow cytometry, DNA fragmentation measured by TUNEL assay, and cleavage of poly ADP-ribose-polymerase. During genipin-induced apoptosis, the mitochondrial execution pathway was activated by caspase-9 and -3 activation as examined by a kinetic study, cytochrome c release, and a dose-dependent increase in Bax/Bcl-2 ratio. A search for the downstream pathway reveals that genipin-induced apoptosis was mediated by an increase in phosphorylated p38MAPK expression, which further activated downstream signaling by phosphorylating ATF-2. SB203580, a p38MAPK inhibitor, markedly blocked the formation of TUNEL-positive apoptotic cells in genipin-treated cells. Besides, the interference of p38MAPK inhibited Bax expression and cytochrome c release. Altogether, our observations imply that genipin causes increased levels of Bax in response to p38MAPK signaling, which results in the initiation of mitochondrial death cascade, and therefore it holds promise as a potential chemotherapeutic agent for the treatment of H1299 cells.

  17. Processive phosphorylation of ERK MAP kinase in mammalian cells

    PubMed Central

    Aoki, Kazuhiro; Yamada, Masashi; Kunida, Katsuyuki; Yasuda, Shuhei; Matsuda, Michiyuki

    2011-01-01

    The mitogen-activated protein (MAP) kinase pathway is comprised of a three-tiered kinase cascade. The distributive kinetic mechanism of two-site MAP kinase phosphorylation inherently generates a nonlinear switch-like response. However, a linear graded response of MAP kinase has also been observed in mammalian cells, and its molecular mechanism remains unclear. To dissect these input-output behaviors, we quantitatively measured the kinetic parameters involved in the MEK (MAPK/ERK kinase)-ERK MAP kinase signaling module in HeLa cells. Using a numerical analysis based on experimentally determined parameters, we predicted in silico and validated in vivo that ERK is processively phosphorylated in HeLa cells. Finally, we identified molecular crowding as a critical factor that converts distributive phosphorylation into processive phosphorylation. We proposed the term quasi-processive phosphorylation to describe this mode of ERK phosphorylation that is operated under the physiological condition of molecular crowding. The generality of this phenomenon may provide a new paradigm for a diverse set of biochemical reactions including multiple posttranslational modifications. PMID:21768338

  18. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    SciTech Connect

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  19. A mouse homolog to the avian sarcoma virus src protein is a member of a protein kinase cascade.

    PubMed

    Spector, M; Pepinsky, R B; Vogt, V M; Racker, E

    1981-07-01

    Recent work has identified a cascade of membrane bound protein kinases in Ehrlich ascites tumor cells. These enzymes, designated PKL, PKS and PKM, are present in both Ehrlich tumor and mouse brain, but the cascade is active only in the tumor tissue. We have now purified a fourth protein kinase, PKF, that is also associated with this cascade. Protein kinase F prosphorylates PKL and is phosphorylated by PKS. The position of this kinase in the cascade is as follows, where the arrows denote phosphorylation: [Formula: see text] The phosphorylation by PKF, like phosphorylation by the other kinases, is at a tyrosine residue and causes the substrate kinase (PKL) to become active. The role of the tyrosine phosphorylation in activating these kinases is described in detail elsewhere. One result of activation of the cascade is the phosphorylation of the beta subunit of the Na+K+-ATPase, which causes inefficient Na+ pumping and is at last in part responsible for the high aerobic glycolysis of Ehrlich ascites tumor cells. By several criteria protein kinase F from Ehrlich cells is homologous to the src gene product (pp60src) from avian sarcoma viruses. Antiserum raised against PKF and sera from rabbits bearing rous sarcoma virus (RSV)-induced tumors quantitatively precipitate the same 60 kd phosphoprotein from cell lysates of three different RSV-transformed cell lines. Both proteins phosphorylate PKL and a 130 kd cytoskeletal protein (vinculin). The tryptic maps of these proteins are closely similar. Both proteins bind specifically to PKL covalently coupled to Sepharose. We used this latter observation to facilitate the purification of pp60 src from RSV-transformed cells.

  20. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    PubMed

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling.

  1. Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade.

    PubMed Central

    Berra, E; Municio, M M; Sanz, L; Frutos, S; Diaz-Meco, M T; Moscat, J

    1997-01-01

    Recent studies have documented the involvement of the atypical protein kinase C (aPKC) isoforms in important cellular functions such as cell proliferation and survival. Exposure of cells to a genotoxic stimulus that induces apoptosis, such as UV irradiation, leads to a profound inhibition of the atypical PKC activity in vivo. In this study, we addressed the relationship between this phenomenon and different proteins involved in the apoptotic response. We show that (i) the inhibition of the aPKC activity precedes UV-induced apoptosis; (ii) UV-induced aPKC inhibition and apoptosis are independent of p53; (iii) Bcl-2 proteins are potent modulators of aPKC activity; and (iv) the aPKCs are located upstream of the interleukin-converting enzyme-like protease system, which is required for the induction of apoptosis by both Par-4 (a selective aPKC inhibitor) and UV irradiation. We also demonstrate here that inhibition of aPKC activity leads to a decrease in mitogen-activated protein (MAP) kinase activity and simultaneously an increase in p38 activity. Both effects are critical for the induction of apoptosis in response to Par-4 expression and UV irradiation. Collectively, these results clarify the position of the aPKCs in the UV-induced apoptotic pathway and strongly suggest that MAP kinases play a role in this signaling cascade. PMID:9234692

  2. Geologic Map of the North Cascade Range, Washington

    USGS Publications Warehouse

    Haugerud, Ralph A.; Tabor, Rowland W.

    2009-01-01

    The North Cascade Range, commonly referred to as the North Cascades, is the northern part of the Cascade Range that stretches from northern California into British Columbia, where it merges with the Coast Mountains of British Columbia at the Fraser River. The North Cascades are generally characterized by exposure of plutonic and metamorphic rocks in contrast to the volcanic terrain to the south. The rocks of the North Cascades are more resistant to erosion, display greater relief, and show evidence of more pronounced uplift and recent glaciation. Although the total length of the North Cascade Range, extending north from Snoqualmie Pass in Washington, is about 200 mi (320 km), this compilation map at 1:200,000 scale covers only that part (~150 mi) in the United States. The compilation map is derived mostly from eight 1:100,000-scale quadrangle maps that include all of the North Cascade Range in Washington and a bit of the mostly volcanic part of the Cascade Range to the south (fig. 1, sheet 2). Overall, the area represented by this compilation is about 12,740 mi2 (33,000 km2). The superb alpine scenery of the North Cascade Range and its proximity to major population centers has led to designation of much of the area for recreational use or wilderness preservation. A major part of the map area is in North Cascade National Park. Other restricted use areas are the Alpine Lakes, Boulder River, Clearwater, Glacier Peak, Henry M. Jackson, Lake Chelan-Sawtooth, Mount Baker, Noisy-Diobsud, Norse Peak, and Pasayten Wildernesses and the Mount Baker, Lake Chelan, and Ross Lake National Recreation Areas. The valleys traversed by Washington State Highway 20 east of Ross Lake are preserved as North Cascades Scenic Highway. The map area is traversed by three major highways: U.S. Interstate 90, crossing Snoqualmie Pass; Washington State Highway 2, crossing Stevens Pass; and Washington State Highway 20, crossing Washington Pass. Major secondary roads, as well as a network of U

  3. MAP kinases phosphorylate rice WRKY45.

    PubMed

    Ueno, Yoshihisa; Yoshida, Riichiro; Kishi-Kaboshi, Mitsuko; Matsushita, Akane; Jiang, Chang-Jie; Goto, Shingo; Takahashi, Akira; Hirochika, Hirohiko; Takatsuji, Hiroshi

    2013-06-01

    WRKY45 transcription factor is a central regulator of disease resistance mediated by the salicylic acid (SA) signaling pathway in rice. SA-activated WRKY45 protein induces the accumulation of its own mRNA. However, the mechanism underlying this regulation is still unknown. Here, we report three lines of evidence showing that a mitogen-activated protein kinase (MAPK) cascade is involved in this regulation. An inhibitor of MAPK kinase (MAPKK) suppressed the increase in WRKY45 transcript level in response to SA. Two MAPKs, OsMPK4 and OsMPK6, phosphorylated WRKY45 protein in vitro. The activity of OsMPK6 was rapidly upregulated by SA treatment in rice cells. These results suggest that WRKY45 is regulated by MAPK-dependent phosphorylation in the SA pathway.

  4. Inferring missing data in satellite chlorophyll maps using turbulent cascading

    NASA Astrophysics Data System (ADS)

    Pottier, C.; Turiel, A.; Garcon, V.

    2009-04-01

    Oceanic turbulent flows develop complicated patterns, with eddies, filaments and shear currents. Although usually referred as chaotic, their inner organization is strongly hierarchical: turbulent flows develop cascades, which transfer properties such as energy or scalar density from larger to smaller scales. We present a novel algorithm based on the cascade and able to fill data gaps in satellite images (particularly, chlorophyll concentration maps). The first step is to show that cascade processes for chlorophyll-a concentration images take a simple, explicit form when an appropriate wavelet (here Battle-Lemarié of order 3) representation is used. A reconstruction algorithm exploiting the cascade structure is then given with a detailed description. We discuss the validity and quality of this algorithm when applied to SeaWiFS and MODIS-Aqua ocean color images. An application to merging data from multiple satellite missions is presented together with a demonstration of the benefit of this algorithm over two other merging methods.

  5. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia*

    PubMed Central

    Roth Flach, Rachel J.; Danai, Laura V.; DiStefano, Marina T.; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B.; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K.; Bortell, Rita; Alonso, Laura C.; Czech, Michael P.

    2016-01-01

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  6. Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis

    PubMed Central

    Liang, Yan; Wu, Xiaowei; Cai, Yueyue; Zhang, Yuanya; Wang, Yingchun; Li, Jiayang; Wang, Yonghong

    2016-01-01

    Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development. PMID:27618482

  7. Dealing with osmostress through MAP kinase activation

    PubMed Central

    de Nadal, Eulàlia; Alepuz, Paula M.; Posas, Francesc

    2002-01-01

    In response to changes in the extracellular environment, cells coordinate intracellular activities to maximize their probability of survival and proliferation. Eukaryotic cells, from yeast to mammals, transduce diverse extracellular stimuli through the cell by multiple mitogen-activated protein kinase (MAPK) cascades. Exposure of cells to increases in extracellular osmolarity results in rapid activation of a highly conserved family of MAPKs, known as stress-activated MAPKs (SAPKs). Activation of SAPKs is essential for the induction of adaptive responses required for cell survival upon osmostress. Recent studies have begun to shed light on the broad effects of SAPK activation in the modulation of several aspects of cell physiology, ranging from the control of gene expression to the regulation of cell division. PMID:12151331

  8. Mitogen-activated protein kinase cascades in signaling plant growth and development.

    PubMed

    Xu, Juan; Zhang, Shuqun

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signaling modules in eukaryotes. Early research of plant MAPKs has been focused on their functions in immunity and stress responses. Recent studies reveal that they also play essential roles in plant growth and development downstream of receptor-like protein kinases (RLKs). With only a limited number of MAPK components, multiple functional pathways initiated from different receptors often share the same MAPK components or even a complete MAPK cascade. In this review, we discuss how MAPK cascades function as molecular switches in response to spatiotemporal-specific ligand-receptor interactions and the availability of downstream substrates. In addition, we discuss other possible mechanisms governing the functional specificity of plant MAPK cascades, a question central to our understanding of MAPK functions.

  9. MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase.

    PubMed Central

    Nakielny, S; Cohen, P; Wu, J; Sturgill, T

    1992-01-01

    A 'MAP kinase activator' was purified several thousand-fold from insulin-stimulated rabbit skeletal muscle, which resembled the 'activator' from nerve growth factor-stimulated PC12 cells in that it could be inactivated by incubation with protein phosphatase 2A, but not by protein tyrosine phosphatases and its apparent molecular mass was 45-50 kDa. In the presence of MgATP, 'MAP kinase activator' converted the normal 'wild-type' 42 kDa MAP kinase from an inactive dephosphorylated form to the fully active diphosphorylated species. Phosphorylation occurred on the same threonine and tyrosine residues which are phosphorylated in vivo in response to growth factors or phorbol esters. A mutant MAP kinase produced by changing a lysine at the active centre to arginine was phosphorylated in an identical manner by the 'MAP kinase activator', but no activity was generated. The results demonstrate that 'MAP kinase activator' is a protein kinase (MAP kinase kinase) and not a protein that stimulates the autophosphorylation of MAP kinase. MAP kinase kinase is the first established example of a protein kinase that can phosphorylate an exogenous protein on threonine as well as tyrosine residues. Images PMID:1318193

  10. Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress.

    PubMed

    Xing, Yu; Chen, Wei-hua; Jia, Wensuo; Zhang, Jianhua

    2015-09-01

    Superoxide dismutases (SODs) are involved in plant adaptive responses to biotic and abiotic stresses but the upstream signalling process that modulates their expression is not clear. Expression of two iron SODs, FSD2 and FSD3, was significantly increased in Arabidopsis in response to NaCl treatment but blocked in transgenic MKK5-RNAi plant, mkk5. Using an assay system for transient expression in protoplasts, it was found that mitogen-activated protein kinase kinase 5 (MKK5) was also activated in response to salt stress. Overexpression of MKK5 in wild-type plants enhanced their tolerance to salt treatments, while mkk5 mutant exhibited hypersensitivity to salt stress in germination on salt-containing media. Moreover, another kinase, MPK6, was also involved in the MKK5-mediated iron superoxide dismutase (FSD) signalling pathway in salt stress. The kinase activity of MPK6 was totally turned off in mkk5, whereas the activity of MPK3 was only partially blocked. MKK5 interacted with the MEKK1 protein that was also involved in the salt-induced FSD signalling pathway. These data suggest that salt-induced FSD2 and FSD3 expressions are influenced by MEKK1 via MKK5-MPK6-coupled signalling. This MAP kinase cascade (MEKK1, MKK5, and MPK6) mediates the salt-induced expression of iron superoxide dismutases.

  11. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  12. Lipopolysaccharide Activation of the TPL-2/MEK/Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Cascade Is Regulated by IκB Kinase-Induced Proteolysis of NF-κB1 p105†

    PubMed Central

    Beinke, S.; Robinson, M. J.; Hugunin, M.; Ley, S. C.

    2004-01-01

    The MEK kinase TPL-2 (also known as Cot) is required for lipopolysaccharide (LPS) activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase cascade in macrophages and consequent upregulation of genes involved in innate immune responses. In resting cells, TPL-2 forms a stoichiometric complex with NF-κB1 p105, which negatively regulates its MEK kinase activity. Here, it is shown that lipopolysaccharide (LPS) stimulation of primary macrophages causes the release of both long and short forms of TPL-2 from p105 and that TPL-2 MEK kinase activity is restricted to this p105-free pool. Activation of TPL-2, MEK, and ERK by LPS is also demonstrated to require proteasome-mediated proteolysis. p105 is known to be proteolysed by the proteasome following stimulus-induced phosphorylation of two serines in its PEST region by the IκB kinase (IKK) complex. Expression of a p105 point mutant, which is not susceptible to signal-induced proteolysis, in RAW264.7 macrophages impairs LPS-induced release of TPL-2 from p105 and its subsequent activation of MEK. Furthermore, expression of wild-type but not mutant p105 reconstitutes LPS stimulation of MEK and ERK phosphorylation in primary NF-κB1-deficient macrophages. Consistently, pharmacological blockade of IKK inhibits LPS-induced release of TPL-2 from p105 and TPL-2 activation. These data show that IKK-induced p105 proteolysis is essential for LPS activation of TPL-2, thus revealing a novel function of IKK in the regulation of the ERK MAP kinase cascade. PMID:15485931

  13. Effects of MAP kinase pathway and other factors on meiosis of Urechis unicinctus eggs.

    PubMed

    Tan, Xin; Wang, Yong-Chao; Sun, Qing-Yuan; Peng, An; Chen, Da-Yuan; Tang, Yong-Zheng

    2005-05-01

    The eggs of Urechis unicinctus Von Drasche, an echiuroid, are arrested at P-I stage in meiosis. The meiosis is reinitiated by fertilization. Immunoblotting analysis using anti-ERK2 and anti-phospho-MAPK antibodies revealed a 44 kDa MAP kinase species that was constantly expressed in U. unicinctus eggs, quickly phosphorylated after fertilization, and dephosphorylated slowly before the completion of meiosis I. Phosphorylation of the protein was not depressed by protein synthesis inhibitor Cycloheximide (CHX), but was depressed by the MEK1 inhibitor PD98059. Under PD98059 treatment, polar body extrusion was suppressed and the function of centrosome and spindle was abnormal though GVBD was not affected, indicating that MAP kinase cascade was important for meiotic division of U. unicinctus eggs. Other discovery includes: A23187 and OA could parthenogenetically activate U. unicinctus eggs and phosphorylated 44 kDa MAP kinase species, indicating that the effect of fertilization on reinitiating meiosis and phosphorylation of 44 kDa MAP kinase specie is mediated by raising intracellular free calcium and by phosphorylation of some proteins, and that phosphotase(s) sensitive to OA is responsible for arresting U. unicinctus eggs in prophase I. diC8, an activator of PKC, accelerated the process of U. unicinctus egg meiotic division after fertilization and accelerated the dephosphorylation of 44 kDa MAP kinase specie, which implied that the acceleration effect of PKC on meiotic division was mediated by inactivation of MAP kinase cascade. Elevating cAMP/PKA level in U. unicinctus eggs had no effect on meiotic division of the eggs.

  14. Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Chen, Jing; Kumar, Prashanth; Brown, James E P; Jöhren, Olaf; Lehnert, Hendrik; Stanfield, Peter R; Randeva, Harpal S

    2009-08-01

    Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly G(q)- and to a lesser extent G(s)-mediated; p38 activation even had a small G(i)-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.

  15. Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades

    PubMed Central

    Fey, Dirk; Croucher, David R.; Kolch, Walter; Kholodenko, Boris N.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) cascades control cell fate decisions, such as proliferation, differentiation, and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength, and dynamics. This implies that signaling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), c-Jun N-terminal kinase (JNK), and also include input from protein kinase B (AKT) signaling. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonizes different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38, and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP) mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signaling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure of certain drugs to

  16. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa

    DOE PAGES

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles; ...

    2014-11-20

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC1, MEK2 and MAK2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every 4 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a protein of unknown biochemical function. How this oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) thatmore » can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM5-GFP co-localized with NRC1, MEK2 and MAK2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK2 activity influences HAM5 function/localization. However, MAK2-GFP showed only cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta, as observed in wild type germlings. Via co-immunoprecipitation experiments, HAM5 was shown to physically interact with MAK2, MEK2 and NRC1, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members during oscillation and chemotropic interactions during both germling and hyphal fusion in N. crassa. The identification of HAM5 as a scaffold-like protein will help to link the activation of MAK2 to upstream factors and other proteins involved in this intriguing process of fungal

  17. Cadmium-induced activation of high osmolarity glycerol pathway through its Sln1 branch is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in budding yeast.

    PubMed

    Jiang, Linghuo; Cao, Chunlei; Zhang, Lilin; Lin, Wei; Xia, Jing; Xu, Huihui; Zhang, Yan

    2014-12-01

    Cadmium ions disrupt reactive oxygen species/Ca(2+) homeostasis and subsequently elicit cell death and adaptive signaling cascades in eukaryotic cells. Through a functional genomics approach, we have identified deletion mutants of 106 yeast genes, including three MAP kinase genes (HOG1, SLT2, and KSS1), are sensitive to a sublethal concentration of cadmium, and 64 mutants show elevated intracellular cadmium concentrations upon exposure to cadmium. Hog1 is phosphorylated, reaching a peak 30 min after the cadmium treatment. Both Sln1 and Sho1 upstream branches are involved in the cadmium-induced activation of high osmolarity glycerol (HOG) pathway. Cadmium-induced HOG activation is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in the Sln1 branch.

  18. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  19. Exploring a cascade Heck-Suzuki reaction based route to kinase inhibitors using design of experiments.

    PubMed

    Ekebergh, Andreas; Lingblom, Christine; Sandin, Peter; Wennerås, Christine; Mårtensson, Jerker

    2015-03-21

    Design of Experiments (DoE) has been used to optimize a diversity oriented palladium catalyzed cascade Heck-Suzuki reaction for the construction of 3-alkenyl substituted cyclopenta[b]indole compounds. The obtained DoE model revealed a reaction highly dependent on the ligand. Guided by the model, an optimal ligand was chosen that selectively delivered the desired products in high yields. The conditions were applicable with a variety of boronic acids and were used to synthesize a library of 3-alkenyl derivatized compounds. Focusing on inhibition of kinases relevant for combating melanoma, the library was used in an initial structure-activity survey. In line with the observed kinase inhibition, cellular studies revealed one of the more promising derivatives to inhibit cell proliferation via an apoptotic mechanism.

  20. c-Kit-kinase induces a cascade of protein tyrosine phosphorylation in normal human melanocytes in response to mast cell growth factor and stimulates mitogen-activated protein kinase but is down-regulated in melanomas.

    PubMed Central

    Funasaka, Y; Boulton, T; Cobb, M; Yarden, Y; Fan, B; Lyman, S D; Williams, D E; Anderson, D M; Zakut, R; Mishima, Y

    1992-01-01

    The proto-oncogene c-Kit, a transmembrane receptor tyrosine kinase, is an important regulator of cell growth whose constitutively active oncogenic counterpart, v-kit, induces sarcomas in cats. Mutations in murine c-kit that reduce the receptor tyrosine kinase activity cause deficiencies in the migration and proliferation of melanoblasts, hematopoietic stem cells, and primordial germ cells. We therefore investigated whether c-Kit regulates normal human melanocyte proliferation and plays a role in melanomas. We show that normal human melanocytes respond to mast cell growth factor (MGF), the Kit-ligand that stimulates phosphorylation of tyrosyl residues in c-Kit and induces sequential phosphorylation of tyrosyl residues in several other proteins. One of the phosphorylated intermediates in the signal transduction pathway was identified as an early response kinase (mitogen-activated protein [MAP] kinase). Dephosphorylation of a prominent 180-kDa protein suggests that MGF also activates a phosphotyrosine phosphatase. In contrast, MGF did not induce proliferation, the cascade of protein phosphorylations, or MAP kinase activation in the majority of cells cultured from primary nodular and metastatic melanomas that grow independently of exogenous factors. In the five out of eight human melanoma lines expressing c-kit mRNAs, c-Kit was not constitutively activated. Therefore, although c-Kit-kinase is a potent growth regulator of normal human melanocytes, its activity is not positively associated with malignant transformation. Images PMID:1372524

  1. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    SciTech Connect

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J.

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  2. Geologic map of Three Sisters volcanic cluster, Cascade Range, Oregon

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy; Calvert, Andrew T.

    2012-01-01

    The cluster of glaciated stratovolcanoes called the Three Sisters—South Sister, Middle Sister, and North Sister—forms a spectacular 20-km-long reach along the crest of the Cascade Range in Oregon. The three eponymous stratocones, though contiguous and conventionally lumped sororally, could hardly display less family resemblance. North Sister (10,085 ft), a monotonously mafic edifice at least as old as 120 ka, is a glacially ravaged stratocone that consists of hundreds of thin rubbly lava flows and intercalated falls that dip radially and steeply; remnants of two thick lava flows cap its summit. Middle Sister (10,047 ft), an andesite-basalt-dacite cone built between 48 and 14 ka, is capped by a thick stack of radially dipping, dark-gray, thin mafic lava flows; asymmetrically glaciated, its nearly intact west flank contrasts sharply with its steep east face. Snow and ice-filled South Sister is a bimodal rhyolitic-intermediate edifice that was constructed between 50 ka and 2 ka; its crater (rim at 10,358 ft) was created between 30 and 22 ka, during the most recent of several explosive summit eruptions; the thin oxidized agglutinate that mantles its current crater rim protects a 150-m-thick pyroclastic sequence that helped fill a much larger crater. For each of the three, the eruptive volume is likely to have been in the range of 15 to 25 km³, but such estimates are fairly uncertain, owing to glacial erosion. The map area consists exclusively of Quaternary volcanic rocks and derivative surficial deposits. Although most of the area has been modified by glaciation, the volcanoes are young enough that the landforms remain largely constructional. Furthermore, twelve of the 145 eruptive units on the map are postglacial, younger than the deglaciation that was underway by about 17 ka. The most recent eruptions were of rhyolite near South Sister, about 2,000 years ago, and of mafic magma near McKenzie Pass, about 1,500 years ago. As observed by trailblazing volcanologist

  3. Ras, Raf, and MAP kinase in melanoma.

    PubMed

    Solus, Jason F; Kraft, Stefan

    2013-07-01

    A growing understanding of the biology and molecular mechanisms of melanoma has led to the identification of a number of driver mutations for this aggressive tumor. The most common mutations affect signaling of the Ras/Raf/MAPK (mitogen-activated protein kinase) pathway. This review will focus on mutations in genes encoding proteins that play a role in the MAPK pathway and that have been implicated in melanoma biology, such as BRAF, NRAS, and MEK (MAPK kinase), and detail the current understanding of their role in melanoma progression from a molecular biology perspective. Furthermore, this review will also consider some additional mutations in genes such as KIT, GNAQ, and GNA11, which can be seen in certain subtypes of melanoma and whose gene products interact with the MAPK pathway. In addition, the association of these molecular changes with clinical and classical histopathologic characteristics of melanoma will be outlined and their role in diagnosis of melanocytic lesions discussed. Finally, a basic overview of the current targeted therapy landscape, as far as relevant to the pathologist, will be provided.

  4. Redundancy in the World of MAP Kinases: All for One

    PubMed Central

    Saba-El-Leil, Marc K.; Frémin, Christophe; Meloche, Sylvain

    2016-01-01

    The protein kinases ERK1 and ERK2 are the effector components of the prototypical ERK1/2 mitogen-activated protein (MAP) kinase pathway. This signaling pathway regulates cell proliferation, differentiation and survival, and is essential for embryonic development and cellular homeostasis. ERK1 and ERK2 homologs share similar biochemical properties but whether they exert specific physiological functions or act redundantly has been a matter of controversy. However, recent studies now provide compelling evidence in support of functionally redundant roles of ERK1 and ERK2 in embryonic development and physiology. In this review, we present a critical assessment of the evidence for the functional specificity or redundancy of MAP kinase isoforms. We focus on the ERK1/ERK2 pathway but also discuss the case of JNK and p38 isoforms. PMID:27446918

  5. Mathematical modelling of the MAP kinase pathway using proteomic datasets.

    PubMed

    Tian, Tianhai; Song, Jiangning

    2012-01-01

    The advances in proteomics technologies offer an unprecedented opportunity and valuable resources to understand how living organisms execute necessary functions at systems levels. However, little work has been done up to date to utilize the highly accurate spatio-temporal dynamic proteome data generated by phosphoprotemics for mathematical modeling of complex cell signaling pathways. This work proposed a novel computational framework to develop mathematical models based on proteomic datasets. Using the MAP kinase pathway as the test system, we developed a mathematical model including the cytosolic and nuclear subsystems; and applied the genetic algorithm to infer unknown model parameters. Robustness property of the mathematical model was used as a criterion to select the appropriate rate constants from the estimated candidates. Quantitative information regarding the absolute protein concentrations was used to refine the mathematical model. We have demonstrated that the incorporation of more experimental data could significantly enhance both the simulation accuracy and robustness property of the proposed model. In addition, we used the MAP kinase pathway inhibited by phosphatases with different concentrations to predict the signal output influenced by different cellular conditions. Our predictions are in good agreement with the experimental observations when the MAP kinase pathway was inhibited by phosphatase PP2A and MKP3. The successful application of the proposed modeling framework to the MAP kinase pathway suggests that our method is very promising for developing accurate mathematical models and yielding insights into the regulatory mechanisms of complex cell signaling pathways.

  6. Effect of prolonged hydroxytamoxifen treatment of MCF-7 cells on mitogen activated kinase cascade.

    PubMed

    Rabenoelina, Fanjaniriana; Semlali, Abdelhabib; Duchesne, Marie-Josèphe; Freiss, Gilles; Pons, Michel; Badia, Eric

    2002-04-10

    Resistance to the antiestrogen tamoxifen is the main stumbling block for the success of breast cancer therapy. We focused our study on cellular alterations induced by a prolonged treatment with the active tamoxifen metabolite hydroxytamoxifen (OHT). We show that a prolonged OHT treatment (for up to 7 days) led to a progressive increase in the level of phosphorylated p44/42 mitogen activated kinase (MAP kinase) induced by 10(-7) M TPA stimulation, without any significant change in the protein level. This effect was also observed in MCF-7 cells grown first in medium containing dextran-coated charcoal-treated FCS (DCC medium) for 20 days prior to OHT treatment, indicating a specific effect of the antiestrogen and not an effect of estrogen deprivation. It was prevented by cotreatment with estradiol and not observed in the estrogen receptor negative HeLa cell line, suggesting that it was mediated by the estrogen receptor. TPA induced phosphorylation of MEK1/2 was also raised by OHT treatment, without any change in their protein level or Raf-1 and H-Ras levels. When the MCF-7R OHT resistant cell line was grown in antiestrogen containing medium, the level of phosphorylated p44/42 MAP kinase was also high but reversed when the antiestrogen was removed. The 2 other MAP kinase, JNK and P38 pathways were not affected in the same way by OHT treatment. In conclusion, our data reveal that a prolonged OHT treatment, by increasing p44/42 MAPK activity, affects a key step in the growth control of MCF-7 cells, although not sufficiently to overcome the growth inhibitory effect of the drug.

  7. Cascades/Aleutian Play Fairway Analysis: Data and Map Files

    SciTech Connect

    Lisa Shevenell

    2015-11-15

    Contains Excel data files used to quantifiably rank the geothermal potential of each of the young volcanic centers of the Cascade and Aleutian Arcs using world power production volcanic centers as benchmarks. Also contains shapefiles used in play fairway analysis with power plant, volcano, geochemistry and structural data.

  8. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance.

    PubMed

    Yamamizo, Chihiro; Kuchimura, Kazuo; Kobayashi, Akira; Katou, Shinpei; Kawakita, Kazuhito; Jones, Jonathan D G; Doke, Noriyuki; Yoshioka, Hirofumi

    2006-02-01

    Late blight, caused by the notorious pathogen Phytophthora infestans, is a devastating disease of potato (Solanum tuberosum) and tomato (Solanum lycopersicum), and during the 1840s caused the Irish potato famine and over one million fatalities. Currently, grown potato cultivars lack adequate blight tolerance. Earlier cultivars bred for resistance used disease resistance genes that confer immunity only to some strains of the pathogen harboring corresponding avirulence gene. Specific resistance gene-mediated immunity and chemical controls are rapidly overcome in the field when new pathogen races arise through mutation, recombination, or migration from elsewhere. A mitogen-activated protein kinase (MAPK) cascade plays a pivotal role in plant innate immunity. Here we show that the transgenic potato plants that carry a constitutively active form of MAPK kinase driven by a pathogen-inducible promoter of potato showed high resistance to early blight pathogen Alternaria solani as well as P. infestans. The pathogen attack provoked defense-related MAPK activation followed by induction of NADPH oxidase gene expression, which is implicated in reactive oxygen species production, and resulted in hypersensitive response-like phenotype. We propose that enhancing disease resistance through altered regulation of plant defense mechanisms should be more durable and publicly acceptable than engineering overexpression of antimicrobial proteins.

  9. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro.

    PubMed

    Roth, G; Kotzka, J; Kremer, L; Lehr, S; Lohaus, C; Meyer, H E; Krone, W; Müller-Wieland, D

    2000-10-27

    Sterol regulatory element-binding protein (SREBP)-1a is a transcription factor sensing cellular cholesterol levels and integrating gene regulatory signals mediated by MAP kinase cascades. Here we report the identification of serine 117 in SREBP-1a as the major phosphorylation site of the MAP kinases Erk1/2. This site was identified by nanoelectrospray mass spectrometry and peptide sequencing of recombinant fusion proteins phosphorylated by Erk1/2 in vitro. Serine 117 was verified as the major phosphorylation site by in vitro mutagenesis. Mutation of serine 117 to alanine abolished Erk2-mediated phosphorylation in vitro and the MAP kinase-related transcriptional activation of SREBP-1a by insulin and platelet-derived growth factor in vivo. Our data indicate that the MAP kinase-mediated effects on SREBP-1a-regulated target genes are linked to this phosphorylation site.

  10. Kinase Cascades and Ligand-Directed Signaling at the Kappa Opioid Receptor

    PubMed Central

    Bruchas, Michael R.; Chavkin, Charles

    2013-01-01

    Background and Rationale The dynorphin / kappa-opioid receptor (KOR) system has been implicated as a critical component of the stress response. Stress-induced activation of dynorphin-KOR is well-known to produce analgesia, and more recently it has been implicated as a mediator of stress-induced responses including anxiety, depression, and reinstatement of drug seeking. Objective Drugs selectively targeting specific KOR signaling pathways may prove potentially useful as therapeutic treatments for mood and addiction disorders. Results KOR is a member of the seven transmembrane spanning (7TM) G-protein coupled receptor (GPCR) superfamily. KOR activation of pertussis toxin-sensitive G proteins leads to Gαi/o inhibition of adenylyl cyclase production of cAMP and releases Gβγ, which modulates the conductances of Ca+2 and K+ channels. In addition, KOR agonists activate kinase cascades including G-protein coupled Receptor Kinases (GRK) and members of the mitogen-activated protein kinase (MAPK) family: ERK1/2, p38 and JNK. Recent pharmacological data suggests that GPCRs exist as dynamic, multi-conformational protein complexes that can be directed by specific ligands towards distinct signaling pathways. Ligand-induced conformations of KOR that evoke β–arrestin-dependent p38 MAPK activation result in aversion; whereas ligand-induced conformations that activate JNK without activating arrestin produce long-lasting inactivation of KOR signaling. Conclusions In this review, we discuss the current status of KOR signal transduction research and the data that support two novel hypotheses: 1) KOR selective partial agonists that do not efficiently activate p38 MAPK may be useful analgesics without producing the dysphoric or hallucinogenic effects of selective, highly efficacious KOR agonists and 2) KOR antagonists that do not activate JNK may be effective short-acting drugs that may promote stress-resilience. PMID:20401607

  11. PAR2 exerts local protection against acute pancreatitis via modulation of MAP kinase and MAP kinase phosphatase signaling.

    PubMed

    Namkung, Wan; Yoon, Jae Seok; Kim, Kyung Hwan; Lee, Min Goo

    2008-11-01

    During acute pancreatitis, protease-activated receptor 2 (PAR2) can be activated by interstitially released trypsin. In the mild form of pancreatitis, PAR2 activation exerts local protection against intrapancreatic damage, whereas, in the severe form of pancreatitis, PAR2 activation mediates some systemic complications. This study aimed to identify the molecular mechanisms of PAR2-mediated protective effects against intrapancreatic damage. A mild form of acute pancreatitis was induced by an intraperitoneal injection of caerulein (40 microg/kg) in rats. Effects of PAR2 activation on intrapancreatic damage and on mitogen-activated protein (MAP) kinase signaling were assessed. Caerulein treatment activated extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) within 15 min and maintained phosphorylation of ERK and JNK for 2 h in the rat pancreas. Although PAR2 activation by the pretreatment with PAR2-activating peptide (AP) itself increased ERK phosphorylation in rat pancreas, the same treatment remarkably decreased caerulein-induced activation of ERK and JNK principally by accelerating their dephosphorylation. Inhibition of ERK and JNK phosphorylation by the pretreatment with MAP/ERK kinase (MEK) or JNK inhibitors decreased caerulein-induced pancreatic damage that was similar to the effect induced by PAR2-AP. Notably, in caerulein-treated rats, PAR2-AP cotreatment highly increased the expression of a group of MAP kinase phosphatases (MKPs) that deactivate ERK and JNK. The above results imply that downregulation of MAP kinase signaling by MKP induction is a key mechanism involved in the protective effects of PAR2 activation on caerulein-induced intrapancreatic damage.

  12. The c-Jun kinase signaling cascade promotes glial engulfment activity through activation of draper and phagocytic function.

    PubMed

    Macdonald, J M; Doherty, J; Hackett, R; Freeman, M R

    2013-09-01

    After neuronal injury or death glial cells become reactive, exhibiting dramatic changes in morphology and patterns of gene expression and ultimately engulfing neuronal debris. Rapid clearance of degenerating neuronal material is thought to be crucial for suppression of inflammation and promotion of functional recovery. Here we demonstrate that Drosophila c-Jun N-terminal kinase (dJNK) signaling is a critical in vivo mediator of glial engulfment activity. In response to axotomy, we find glial dJNK signals through a cascade involving the upstream mitogen-activated protein kinase kinase kinases Slipper and Tak1, the mitogen-activated protein kinase kinase MKK4, and ultimately the Drosophila activator protein 1 (AP-1) transcriptional complex composed of Jra and Kayak to initiate glial phagocytosis of degenerating axons. Interestingly, loss of dJNK also blocked injury-induced upregulation of Draper levels in glia, and glial-specific overexpression of Draper was sufficient to rescue engulfment defects associated with loss of dJNK signaling. This work identifies that the dJNK pathway is a novel mediator of glial engulfment activity and a primary role for the glial Slipper/Tak1 →MKK4 →dJNK →dAP-1 signaling cascade appears to be activation of draper expression after axon injury.

  13. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease

    PubMed Central

    Shen, Meng-Ru; Chou, Cheng-Yang; Browning, Joseph A; Wilkins, Robert J; Ellory, J Clive

    2001-01-01

    This study was aimed at identifying the signalling pathways involved in the activation of volume-regulatory mechanisms of human cervical cancer cells. Osmotic swelling of human cervical cancer cells induced a substantial increase in intracellular Ca2+ ([Ca2+]i) by the activation of Ca2+ entry across the cell membrane, as well as Ca2+ release from intracellular stores. This Ca2+ signalling was critical for the normal regulatory volume decrease (RVD) response. The activation of swelling-activated ion and taurine transport was significantly inhibited by tyrosine kinase inhibitors (genistein and tyrphostin AG 1478) and potentiated by the tyrosine phosphatase inhibitor Na3VO4. However, the Src family of tyrosine kinases was not involved in regulation of the swelling-activated Cl− channel. Cell swelling triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) and p38 kinase. The volume-responsive ERK1/ERK2 signalling pathway linked with the activation of K+ and Cl− channels, and taurine transport. However, the volume-regulatory mechanism was independent of the activation of p38 MAP kinase. The phosphorylated ERK1/ERK2 expression following a hypotonic shock was up-regulated by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and down-regulated by PKC inhibitor staurosporine. The response of ERK activation to hypotonicity also required Ca2+ entry and depended on tyrosine kinase and mitogen-activated/ERK-activating kinase (MEK) activity. Considering the results overall, osmotic swelling promotes the activation of tyrosine kinase and ERK1/ERK2 and raises intracellular Ca2+, all of which play a crucial role in the volume-regulatory mechanism of human cervical cancer cells. PMID:11731569

  14. Mating and Pathogenic Development of the Smut Fungus Ustilago maydis Are Regulated by One Mitogen-Activated Protein Kinase Cascade

    PubMed Central

    Müller, Philip; Weinzierl, Gerhard; Brachmann, Andreas; Feldbrügge, Michael; Kahmann, Regine

    2003-01-01

    In the phytopathogenic fungus Ustilago maydis, pheromone-mediated cell fusion is a prerequisite for the generation of the infectious dikaryon. The pheromone signal elevates transcription of the pheromone genes and elicits formation of conjugation hyphae. Cyclic AMP and mitogen-activated protein kinase (MAPK) signaling are involved in this process. The MAPK cascade is presumed to be composed of Ubc4 (MAPK kinase kinase), Fuz7 (MAPK kinase), and Ubc3/Kpp2 (MAPK). We isolated the kpp4 gene and found it to be allelic to ubc4. Epistasis analyses with constitutively active alleles of kpp4 and fuz7 substantiate that Kpp4, Fuz7, and Kpp2/Ubc3 are components of the same module. Moreover, we demonstrate that Fuz7 activates Kpp2 and shows interactions in vitro. Signaling via this cascade regulates expression of pheromone-responsive genes, presumably through acting on the transcription factor Prf1. Interestingly, the same cascade is needed for conjugation tube formation, and this process does not involve Prf1. In addition, fuz7 as well as kpp4 deletion strains are nonpathogenic, while kpp2 deletion mutants are only attenuated in pathogenesis. Here we show that strains expressing the unphosphorylatable allele kpp2T182A/Y184F are severely affected in tumor induction and display defects in early infection-related differentiation. PMID:14665454

  15. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis.

    PubMed

    Shim, Won-Bo; Dunkle, Larry D

    2003-09-01

    The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.

  16. AIK1, A Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade1[OPEN

    PubMed Central

    Li, Kun; Yang, Fengbo; Zhang, Guozeng; Song, Shufei; Li, Yuan; Ren, Dongtao; Miao, Yuchen

    2017-01-01

    The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade essentially consists of three components: a MAPK kinase kinase (MAPKKK), a MAPK kinase, and a MAPK, connected to each other by the event of phosphorylation. Here, we report the characterization of a MAPKKK, ABA-INSENSITIVE PROTEIN KINASE1 (AIK1), which regulates abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana). T-DNA insertion mutants of AIK1 showed insensitivity to ABA in terms of both root growth and stomatal response. AIK1 functions in ABA responses via regulation of root cell division and elongation, as well as stomatal responses. The activity of AIK1 is induced by ABA in Arabidopsis and tobacco (Nicotiana benthamiana), and the Arabidopsis protein phosphatase type 2C, ABI1, a negative regulator of ABA signaling, restricts AIK1 activity by dephosphorylation. Bimolecular fluorescence complementation analysis showed that MPK3, MPK6, and AIK1 interact with MKK5. The single mutant seedlings of mpk6 and mkk5 have similar phenotypes to aik1, but mkk4 does not. AIK1 was localized in the cytoplasm and shown to activate MKK5 by protein phosphorylation, which was an ABA-activated process. Constitutively active MKK5 in aik1 mutant seedlings complements the ABA-insensitive root growth phenotype of aik1. The activity of MPK6 was increased by ABA in wild-type seedlings, but its activation by ABA was impaired in aik1 and aik1 mkk5 mutants. These findings clearly suggest that the AIK1-MKK5-MPK6 cascade functions in the ABA regulation of primary root growth and stomatal response. PMID:27913741

  17. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa

    SciTech Connect

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles; Wang, Yuexi; Yang, Feng; Starr, Trevor L.; Camp, II, David G.; Smith, Richard D.; Glass, N. Louise; Heitman, Joseph

    2014-11-20

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC1, MEK2 and MAK2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every 4 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a protein of unknown biochemical function. How this oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM5-GFP co-localized with NRC1, MEK2 and MAK2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK2 activity influences HAM5 function/localization. However, MAK2-GFP showed only cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta, as observed in wild type germlings. Via co-immunoprecipitation experiments, HAM5 was shown to physically interact with MAK2, MEK2 and NRC1, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members during oscillation and chemotropic interactions during both germling and hyphal fusion in N. crassa. The identification of HAM5 as a scaffold-like protein will help to link the activation of MAK2 to upstream factors and other proteins involved in this intriguing process of fungal

  18. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    PubMed Central

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  19. Building keypoint mappings on multispectral images by a cascade of classifiers with a resurrection mechanism.

    PubMed

    Li, Yong; Jing, Jing; Jin, Hongbin; Qiao, Wei

    2015-05-21

    Inspired by the boosting technique for detecting objects, this paper proposes a cascade structure with a resurrection mechanism to establish keypoint mappings on multispectral images. The cascade structure is composed of four steps by utilizing best bin first (BBF), color and intensity distribution of segment (CIDS), global information and the RANSAC process to remove outlier keypoint matchings. Initial keypoint mappings are built with the descriptors associated with keypoints; then, at each step, only a small number of keypoint mappings of a high confidence are classified to be incorrect. The unclassified keypoint mappings will be passed on to subsequent steps for determining whether they are correct. Due to the drawback of a classification rule, some correct keypoint mappings may be misclassified as incorrect at a step. Observing this, we design a resurrection mechanism, so that they will be reconsidered and evaluated by the rules utilized in subsequent steps. Experimental results show that the proposed cascade structure combined with the resurrection mechanism can effectively build more reliable keypoint mappings on multispectral images than existing methods.

  20. The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction.

    PubMed Central

    Cohen, P

    1999-01-01

    Diabetes affects 3% of the European population and 140 million people worldwide, and is largely a disease of insulin resistance in which the tissues fail to respond to this hormone. This emphasizes the importance of understanding how insulin signals to the cell's interior. We have recently dissected a protein kinase cascade that is triggered by the formation of the insulin 'second messenger' phosphatidylinositide (3,4,5) trisphosphate (PtdIns (3,4,5)P3) and which appears to mediate many of the metabolic actions of this hormone. The first enzyme in the cascade is termed 3-phosphoinositide-dependent protein kinase-1 (PDK1), because it only activates protein kinase B (PKB), the next enzyme in the pathway, in the presence of PtdIns (3,4,5)P3. PKB then inactivates glycogen synthase kinase-3 (GSK3). PDK1, PKB and GSK3 regulate many physiological events by phosphorylating a variety of intracellular proteins. In addition, PKB plays an important role in mediating protection against apoptosis by survival factors, such as insulin-like growth factor-1. PMID:10212493

  1. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  2. Practical synthesis of a p38 MAP kinase inhibitor.

    PubMed

    Achmatowicz, Michał; Thiel, Oliver R; Wheeler, Philip; Bernard, Charles; Huang, Jinkun; Larsen, Robert D; Faul, Margaret M

    2009-01-16

    p38 MAP kinase inhibitors have attracted considerable interest as potential agents for the treatment of inflammatory diseases. Herein, we describe a concise and efficient synthesis of inhibitor 1 that is based on a phthalazine scaffold. Highlights of our approach include a practical synthesis of a 1,6-disubstituted phthalazine building block 24 as well as the one-pot formation of boronic acid 27. Significant synthetic work to understand the reactivity principles of the intermediates helped in selection of the final synthetic route. Subsequent optimization of the individual steps of the final sequence led to a practical synthesis of 1.

  3. A developmentally regulated MAP kinase activated by hydration in tobacco pollen.

    PubMed Central

    Wilson, C; Voronin, V; Touraev, A; Vicente, O; Heberle-Bors, E

    1997-01-01

    A novel mitogen-activated protein (MAP) kinase signaling pathway has been identified in tobacco. This pathway is developmentally regulated during pollen maturation and is activated by hydration during pollen germination. Analysis of different stages of pollen development showed that transcriptional and translational induction of MAP kinase synthesis occurs at the mid-bicellular stage of pollen maturation. However, the MAP kinase is stored in an inactive form in the mature, dry pollen grain. Kinase activation is very rapid after hydration of the dry pollen, peaking at approximately 5 min and decreasing thereafter. Immunoprecipitation of the kinase activity by an anti-phosphotyrosine antibody is consistent with the activation of a MAP kinase. The kinetics of activation suggest that the MAP kinase plays a role in the activation of the pollen grain after hydration rather than in pollen tube growth. PMID:9401129

  4. Preliminary Geologic Map of the Mount Hood 30- by 60-minute Quadrangle, Northern Cascade Range, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Scott, William E.

    1995-01-01

    This map shows the geology of the central and eastern parts of the Cascade Range in northern Oregon. The Quaternary andesitic stratovolcano of Mount Hood dominates the northwest quarter of the quadrangle, but nearly the entire area is underlain by arc-related volcanic and volcaniclastic rocks of the Cascade Range. Most stratigraphic units were emplaced since middle Miocene time, and all are Oligocene or younger. Despite the proximity of the map area to the Portland metropolitan area, large parts remained virtually unstudied or known only from limited reconnaissance until the late 1970s. A notable exception is the area surrounding Mount Hood, where mapping and chemical analyses by Wise (1969) provided a framework for geologic interpretation. Mapping since 1975 was conducted first to understand the stratigraphy and structure of the Columbia River Basalt Group (Anderson, 1978; Vogt, 1981; J.L. Anderson, in Swanson and others, 1981; Vandiver-Powell, 1978; Burck, 1986) and later to examine the geothermal potential of Mount Hood (Priest and others, 1982). Additional mapping was completed in 1985 for a geologic map of the Cascade Range in Oregon (Sherrod and Smith, 1989). From 1987 to 1990, detailed mapping was conducted in three 15-minute quadrangles on a limited basis (D.R. Sherrod, unpublished mapping) (see fig. 1 for index to mapping). An ongoing volcanic hazards study of Mount Hood by the U.S. Geological Survey (Scott and others, 1994) has provided the catalyst for completing the geologic map of the Mount Hood 30-minute by 60-minute quadrangle. As of June 1994, only two broad areas still remain largely unmapped. One of these areas, labeled 'unmapped' on the geologic map, lies in the Salmon River valley south of Zigzag along the west margin of the quadrangle. Although strata of the Columbia River Basalt Group in the Salmon River valley were mapped in detail by Burck (1986), the overlying middle and upper(?) Miocene lava flows, volcaniclastic strata, and intrusions

  5. Timing is everything: highly specific and transient expression of a MAP kinase determines auxin-induced leaf venation patterns in Arabidopsis.

    PubMed

    Stanko, Vera; Giuliani, Concetta; Retzer, Katarzyna; Djamei, Armin; Wahl, Vanessa; Wurzinger, Bernhard; Wilson, Cathal; Heberle-Bors, Erwin; Teige, Markus; Kragler, Friedrich

    2014-11-01

    Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPK10 has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPK10 is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpk10 mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPK10 expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpk10 mutant phenotype. These results suggest that the AtMKK2-AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency.

  6. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy?

    PubMed Central

    Buscà, Roser; Pouysségur, Jacques; Lenormand, Philippe

    2016-01-01

    The MAP kinase signaling cascade Ras/Raf/MEK/ERK has been involved in a large variety of cellular and physiological processes that are crucial for life. Many pathological situations have been associated to this pathway. More than one isoform has been described at each level of the cascade. In this review we devoted our attention to ERK1 and ERK2, which are the effector kinases of the pathway. Whether ERK1 and ERK2 specify functional differences or are in contrast functionally redundant, constitutes an ongoing debate despite the huge amount of studies performed to date. In this review we compiled data on ERK1 vs. ERK2 gene structures, protein sequences, expression levels, structural and molecular mechanisms of activation and substrate recognition. We have also attempted to perform a rigorous analysis of studies regarding the individual roles of ERK1 and ERK2 by the means of morpholinos, siRNA, and shRNA silencing as well as gene disruption or gene replacement in mice. Finally, we comment on a recent study of gene and protein evolution of ERK isoforms as a distinct approach to address the same question. Our review permits the evaluation of the relevance of published studies in the field especially when measurements of global ERK activation are taken into account. Our analysis favors the hypothesis of ERK1 and ERK2 exhibiting functional redundancy and points to the concept of the global ERK quantity, and not isoform specificity, as being the essential determinant to achieve ERK function. PMID:27376062

  7. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase.

    PubMed Central

    Stokoe, D; Campbell, D G; Nakielny, S; Hidaka, H; Leevers, S J; Marshall, C; Cohen, P

    1992-01-01

    A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates. Images PMID:1327754

  8. Salicylic acid activates a 48-kD MAP kinase in tobacco.

    PubMed Central

    Zhang, S; Klessig, D F

    1997-01-01

    The involvement of phosphorylation/dephosphorylation in the salicylic acid (SA) signal transduction pathway leading to pathogenesis-related gene induction has previously been demonstrated using kinase and phosphatase inhibitors. Here, we show that in tobacco suspension cells, SA induced a rapid and transient activation of a 48-kD kinase that uses myelin basic protein as a substrate. This kinase is called the p48 SIP kinase (for SA-Induced Protein kinase). Biologically active analogs of SA, which induce pathogenesis-related genes and enhanced resistance, also activated this kinase, whereas inactive analogs did not. Phosphorylation of a tyrosine residue(s) in the SIP kinase was associated with its activation. The SIP kinase was purified to homogeneity from SA-treated tobacco suspension culture cells. The purified SIP kinase is strongly phosphorylated on a tyrosine residue(s), and treatment with either protein tyrosine or serine/threonine phosphatases abolished its activity. Using primers corresponding to the sequences of internal tryptic peptides, we cloned the SIP kinase gene. Analysis of the SIP kinase sequence indicates that it belongs to the MAP kinase family and that it is distinct from the other plant MAP kinases previously implicated in stress responses, suggesting that different members of the MAP kinase family are activated by different stresses. PMID:9165755

  9. Sub-nanometrically resolved chemical mappings of quantum-cascade laser active regions

    NASA Astrophysics Data System (ADS)

    Pantzas, Konstantinos; Beaudoin, Grégoire; Patriarche, Gilles; Largeau, Ludovic; Mauguin, Olivia; Pegolotti, Giulia; Vasanelli, Angela; Calvar, Ariane; Amanti, Maria; Sirtori, Carlo; Sagnes, Isabelle

    2016-05-01

    A procedure that produces sub-nanometrically resolved chemical mappings of MOCVD-grown InGaAs/InAlAs/InP quantum cascade lasers is presented. The chemical mappings reveal that, although the structure is lattice-matched to InP, the InAlAs barriers do not attain the nominal aluminum content—48%—and are, in fact, InGaAlAs quaternaries. This information is used to adjust the aluminum precursor flow and fine-tune the composition of the barriers, resulting in a significant improvement of the fabricated lasers.

  10. Database for the Geologic Map of Upper Eocene to Holocene Volcanic and Related Rocks of the Cascade Range, Oregon

    USGS Publications Warehouse

    Nimz, Kathryn; Ramsey, David W.; Sherrod, David R.; Smith, James G.

    2008-01-01

    Since 1979, Earth scientists of the Geothermal Research Program of the U.S. Geological Survey have carried out multidisciplinary research in the Cascade Range. The goal of this research is to understand the geology, tectonics, and hydrology of the Cascades in order to characterize and quantify geothermal resource potential. A major goal of the program is compilation of a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanation. This map is one of three in a series that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of rock units distinguished by composition and age; map sheets of the Cascade Range in Washington (Smith, 1993) and California will complete the series. The complete series forms a guide to exploration and evaluation of the geothermal resources of the Cascade Range and will be useful for studies of volcano hazards, volcanology, and tectonics. This digital release contains all the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2569 (Sherrod and Smith, 2000). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2569.

  11. A Causal Gene for Seed Dormancy on Wheat Chromosome 4A Encodes a MAP Kinase Kinase.

    PubMed

    Torada, Atsushi; Koike, Michiya; Ogawa, Taiichi; Takenouchi, Yu; Tadamura, Kazuki; Wu, Jianzhong; Matsumoto, Takashi; Kawaura, Kanako; Ogihara, Yasunari

    2016-03-21

    Seed germination under the appropriate environmental conditions is important both for plant species survival and for successful agriculture. Seed dormancy, which controls germination time, is one of the adaptation mechanisms and domestication traits [1]. Seed dormancy is generally defined as the absence of germination of a viable seed under conditions that are favorable for germination [2]. The seed dormancy of cultivated plants has generally been reduced during domestication [3]. Bread wheat (Triticum aestivum L.) is one of the most widely grown crops in the world. Weak dormancy may be an advantage for the productivity due to uniform emergence and a disadvantage for the risks of pre-harvest sprouting (PHS), which decreases grain quality and yield [4]. A number of quantitative trait loci (QTLs) controlling natural variation of seed dormancy have been identified on various chromosomes [5]. A major QTL for seed dormancy has been consistently detected on chromosome 4A [6-13]. The QTL was designated as a major gene, Phs1, which could be precisely mapped within a 2.6 cM region [14]. Here, we identified a mitogen-activated protein kinase kinase 3 (MKK3) gene (designated TaMKK3-A) by a map-based approach as a candidate gene for the seed dormancy locus Phs1 on chromosome 4A in bread wheat. Complementation analysis showed that transformation of a dormant wheat cultivar with the TaMKK3-A allele from a nondormant cultivar clearly reduced seed dormancy. Cultivars differing in dormancy had a single nonsynonymous amino acid substitution in the kinase domain of the predicted MKK3 protein sequence, which may be associated with the length of seed dormancy.

  12. Early Colony Establishment in Neurospora crassa Requires a MAP Kinase Regulatory Network

    PubMed Central

    Leeder, Abigail C.; Jonkers, Wilfried; Li, Jingyi; Glass, N. Louise

    2013-01-01

    Vegetative fusion is essential for the development of an interconnected colony in many filamentous fungi. In the ascomycete fungus Neurospora crassa, vegetative fusion occurs between germinated conidia (germlings) via specialized structures termed “conidial anastomosis tubes” (CATs) and between hyphae within a mature colony. In N. crassa, both CAT and hyphal fusion are under the regulation of a conserved MAP kinase cascade (NRC1, MEK2, and MAK2). Here we show that the predicted downstream target of the MAK2 kinase pathway, a Ste12-like transcription factor known as PP1, regulates elements required for CAT and hyphal fusion. The PP1 regulatory network was revealed by expression profiling of wild type and the Δpp-1 mutant during conidial germination and colony establishment. To identify targets required for cell fusion more specifically, expression-profiling differences were assessed via inhibition of MAK2 kinase activity during chemotropic interactions and cell fusion. These approaches led to the identification of new targets of the cell fusion pathway that, when mutated, showed alterations in chemotropic signaling and cell fusion. In particular, conidial germlings carrying a deletion of NCU04732 (Δham-11) failed to show chemotropic interactions and cell fusion. However, signaling (as shown by oscillation of MAK2 and SO to CAT tips), chemotropism, and cell fusion were restored in Δham-11 germlings when matched with wild-type partner germlings. These data reveal novel insights into the complex process of self-signaling, germling fusion, and colony establishment in filamentous fungi. PMID:24037267

  13. Targeting chk2 kinase: molecular interaction maps and therapeutic rationale.

    PubMed

    Pommier, Yves; Sordet, Olivier; Rao, V Ashutosh; Zhang, Hongliang; Kohn, Kurt W

    2005-01-01

    Most anticancer drugs presently used clinically target genomic DNA. The selectivity of these anticancer drugs for tumor tissues is probably due to tumor-specific defects suppressing cell cycle checkpoints and DNA repair, and enhancing apoptotic response in the tumor. We will review the molecular interactions within the ATM-Chk2 pathway implicating the DNA damage sensor kinases (ATM, ATR and DNA-PK), the adaptor BRCT proteins (Nbs1, Brca1, 53BP1, MDC1) and the effector kinases (Chk2, Chk1, Plk3, JNK, p38). The molecular interaction map convention (MIM) will be used for presenting this molecular network (http://discover.nci.nih.gov/mim/). A characteristic of the ATM-Chk2 pathway is its redundancy. First, ATM and Chk2 phosphorylate common substrates including p53, E2F1, BRCA1, and Chk2 itself, which suggests that Chk2 (also known as CHECK2, Cds1 in fission yeast, and Dmchk2 or Dmnk or Loki in the fruit fly) acts as a relay for ATM and/or as a salvage pathway when ATM is inactivated. Secondly, redundancy is apparent for the substrates, which can be phosphorylated/activated at similar residues by Chk2, Chk1, and the polo kinases (Plk's). Functionally, Chk2 can activate both apoptosis (via p53, E2F1 and PML) and cell cycle checkpoint (via Cdc25A and Cdc25C, p53, and BRCA1). We will review the short list of published Chk2 inhibitors. We will also propose a novel paradigm for screening interfacial inhibitors of Chk2. Chk2 inhibitors might be used to enhance the tumor selectivity of DNA targeted agents in p53-deficient tumors, and for the treatment of tumors whose growth depends on enhanced Chk2 activity.

  14. Novel screening cascade identifies MKK4 as key kinase regulating Tau phosphorylation at Ser422.

    PubMed

    Grueninger, Fiona; Bohrmann, Bernd; Christensen, Klaus; Graf, Martin; Roth, Doris; Czech, Christian

    2011-11-01

    Phosphorylation of Tau at serine 422 promotes Tau aggregation. The kinase that is responsible for this key phosphorylation event has so far not been identified but could be a potential drug target for Alzheimer's disease. We describe here an assay strategy to identify this kinase. Using a combination of screening a library of 65'000 kinase inhibitors and in vitro inhibitor target profiling of the screening hits using the Ambit kinase platform, MKK4 was identified as playing a key role in Tau-S422 phosphorylation in human neuroblastoma cells.

  15. MAP KINASE ERK 1/2 INHIBITORS INDUCE DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    ROSEN, M.B. and E. S. HUNTER. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina. MAP kinase Erk1/2 inhibitors induce dysmorphology in mouse whole embryo culture.

    MAP Kinase signal transduction is associated with a variety ...

  16. Differential regulation of the mitogen-activated protein and stress-activated protein kinase cascades by adrenergic agonists in quiescent and regenerating adult rat hepatocytes.

    PubMed Central

    Spector, M S; Auer, K L; Jarvis, W D; Ishac, E J; Gao, B; Kunos, G; Dent, P

    1997-01-01

    To study the mechanisms by which catecholamines regulate hepatocyte proliferation after partial hepatectomy (PHX), hepatocytes were isolated from adult male rats 24 h after sham operation or two-thirds PHX and treated with catecholamines and other agonists. In freshly isolated sham cells, p42 mitogen-activated protein (MAP) kinase activity was stimulated by the alpha1-adrenergic agonist phenylephrine (PHE). Activation of p42 MAP kinase by growth factors was blunted by pretreatment of sham hepatocytes with glucagon but not by that with the beta2-adrenergic agonist isoproterenol (ISO). In PHX cells, the ability of PHE to activate p42 MAP kinase was dramatically reduced, whereas ISO became competent to inhibit p42 MAP kinase activation. PHE treatment of sham but not PHX and ISO treatment of PHX but not sham hepatocytes also activated the stress-activated protein (SAP) kinases p46/54 SAP kinase and p38 SAP kinase. These data demonstrate that an alpha1- to beta2-adrenergic receptor switch occurs upon PHX and results in an increase in SAP kinase versus MAP kinase signaling by catecholamines. In primary cultures of hepatocytes, ISO treatment of PHX but not sham cells inhibited [3H]thymidine incorporation. In contrast, PHE treatment of sham but not PHX cells stimulated [3H]thymidine incorporation, which was reduced by approximately 25 and approximately 95% with specific inhibitors of p42 MAP kinase and p38 SAP kinase function, respectively. Inhibition of the p38 SAP kinase also dramatically reduced basal [3H]thymidine incorporation. These data suggest that p38 SAP kinase plays a permissive role in liver regeneration. Alterations in the abilities of catecholamines to modulate the activities of protein kinase A and the MAP and SAP kinase pathways may represent one physiological mechanism by which these agonists can regulate hepatocyte proliferation after PHX. PMID:9199291

  17. Preparation of Residual Gravity Maps for the Southern Cascade Mountains, Washington Using Fourier Analysis

    SciTech Connect

    Dishberger, Debra McLean

    1983-04-01

    This report represents a continuation of gravity work in the Cascade Mountains of Washington supported by the Division of Geology and Earth Resources since 1974. The purpose of this research has been collection of baseline gravity data for use in geothermal resource evaluation. Results of the Division's gravity studies to date are given in Danes and Phillips (1983a, 1983b). One of the problems encountered when analyzing gravity data is distinguishing between those parts of the data that represent geologic structures of interest, and those that do not. In many cases, the features of interest are relatively small, near-surface features, such as those sought in mineral, petroleum, or geothermal exploration. Gravity anomalies caused by such structures may be distorted or masked by anomalies caused by larger, deeper geologic structures. Gravity anomalies caused by relatively shallow, small geologic structures are termed residual anomalies. Those due to broad, deep-seated features can be described as regional anomalies. The purpose of this report is to describe a Fourier analysis method for separating residual and regional gravity anomalies from a complete Bouguer gravity anomaly field. The technique has been applied to gravity data from the Southern Cascade Mountains, Washington. Residual gravity anomaly maps at a scale of 1:250,000 are presented for various regional wavelength filters, and a power spectrum of the frequency components in the South Cascade gravity data is displayed. No attempt is made to interpret the results of this study in terms of geologic structures.

  18. Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps.

    PubMed

    Sui, Liansheng; Duan, Kuaikuai; Liang, Junli; Hei, Xinhong

    2014-05-05

    A double-image encryption is proposed based on the discrete fractional random transform and logistic maps. First, an enlarged image is composited from two original images and scrambled in the confusion process which consists of a number of rounds. In each round, the pixel positions of the enlarged image are relocated by using cat maps which are generated based on two logistic maps. Then the scrambled enlarged image is decomposed into two components. Second, one of two components is directly separated into two phase masks and the other component is used to derive the ciphertext image with stationary white noise distribution by using the cascaded discrete fractional random transforms generated based on the logistic map. The cryptosystem is asymmetric and has high resistance against to the potential attacks such as chosen plaintext attack, in which the initial values of logistic maps and the fractional orders are considered as the encryption keys while two decryption keys are produced in the encryption process and directly related to the original images. Simulation results and security analysis verify the feasibility and effectiveness of the proposed encryption scheme.

  19. p38 MAP kinase regulates circadian rhythms in Drosophila.

    PubMed

    Vrailas-Mortimer, Alysia D; Ryan, Sarah M; Avey, Matthew J; Mortimer, Nathan T; Dowse, Harold; Sanyal, Subhabrata

    2014-12-01

    The large repertoire of circadian rhythms in diverse organisms depends on oscillating central clock genes, input pathways for entrainment, and output pathways for controlling rhythmic behaviors. Stress-activated p38 MAP Kinases (p38K), although sparsely investigated in this context, show circadian rhythmicity in mammalian brains and are considered part of the circadian output machinery in Neurospora. We find that Drosophila p38Kb is expressed in clock neurons, and mutants in p38Kb either are arrhythmic or have a longer free-running periodicity, especially as they age. Paradoxically, similar phenotypes are observed through either transgenic inhibition or activation of p38Kb in clock neurons, suggesting a requirement for optimal p38Kb function for normal free-running circadian rhythms. We also find that p38Kb genetically interacts with multiple downstream targets to regulate circadian locomotor rhythms. More specifically, p38Kb interacts with the period gene to regulate period length and the strength of rhythmicity. In addition, we show that p38Kb suppresses the arrhythmic behavior associated with inhibition of a second p38Kb target, the transcription factor Mef2. Finally, we find that manipulating p38K signaling in free-running conditions alters the expression of another downstream target, MNK/Lk6, which has been shown to cycle with the clock and to play a role in regulating circadian rhythms. These data suggest that p38Kb may affect circadian locomotor rhythms through the regulation of multiple downstream pathways.

  20. Computational Insights for the Discovery of Non-ATP Competitive Inhibitors of MAP Kinases

    PubMed Central

    Schnieders, Michael J.; Kaoud, Tamer S.; Yan, Chunli; Dalby, Kevin N.; Ren, Pengyu

    2014-01-01

    Due to their role in cellular signaling mitogen activated protein (MAP) kinases represent targets of pharmaceutical interest. However, the majority of known MAP kinase inhibitors compete with cellular ATP and target an ATP binding pocket that is highly conserved in the 500 plus representatives of the human protein kinase family. Here we review progress toward the development of non-ATP competitive MAP kinase inhibitors for the extracellular signal regulated kinases (ERK1/2), the c-jun N-terminal kinases (JNK1/2/3) and the p38 MAPKs (α, β, γ, and δ). Special emphasis is placed on the role of computational methods in the drug discovery process for MAP kinases. Topics include recent advances in X-ray crystallography theory that improve the MAP kinase structures essential to structure-based drug discovery, the use of molecular dynamics to understand the conformational heterogeneity of the activation loop and inhibitors discovered by virtual screening. The impact of an advanced polarizable force field such as AMOEBA used in conjunction with sophisticated kinetic and thermodynamic simulation methods is also discussed. PMID:22316156

  1. The p38 mitogen-activated protein kinase cascade modulates T helper type 17 differentiation and functionality in multiple sclerosis

    PubMed Central

    Di Mitri, Diletta; Sambucci, Manolo; Loiarro, Maria; De Bardi, Marco; Volpe, Elisabetta; Cencioni, Maria Teresa; Gasperini, Claudio; Centonze, Diego; Sette, Claudio; Akbar, Arne N; Borsellino, Giovanna; Battistini, Luca

    2015-01-01

    The p38 mitogen-activated protein kinase cascade is required for the induction of a T helper type 17 (Th17) -mediated autoimmune response, which underlies the development and progression of several autoimmune diseases, such as experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis (MS). However, the contribution of p38 phosphorylation to human Th cell differentiation has not been clarified. Here we demonstrate that the p38 signalling pathway is implicated in the generation of Th17 lymphocytes from human CD4+ CD27+ CD45RA+ naive T cells, both in healthy donors and in patients affected by the relapsing–remitting form of MS. Our data also indicate that p38 activation is essential for interleukin-17 release from central memory lymphocytes and committed Th17 cell clones. Furthermore, CD4+ T cells isolated from individuals with relapsing–remitting MS display an altered responsiveness of the p38 cascade, resulting in increased p38 phosphorylation upon stimulation. These findings suggest that the p38 signalling pathway, by modulating the Th17 differentiation and response, is involved in the pathogenesis of MS, and open new perspectives for the use of p38 inhibitors in the treatment of Th17-mediated autoimmune diseases. PMID:26095162

  2. Phosphorylation of the Drosophila transient receptor potential ion channel is regulated by the phototransduction cascade and involves several protein kinases and phosphatases.

    PubMed

    Voolstra, Olaf; Bartels, Jonas-Peter; Oberegelsbacher, Claudia; Pfannstiel, Jens; Huber, Armin

    2013-01-01

    Protein phosphorylation plays a cardinal role in regulating cellular processes in eukaryotes. Phosphorylation of proteins is controlled by protein kinases and phosphatases. We previously reported the light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel at multiple sites. TRP generates the receptor potential upon stimulation of the photoreceptor cell by light. An eye-enriched protein kinase C (eye-PKC) has been implicated in the phosphorylation of TRP by in vitro studies. Other kinases and phosphatases of TRP are elusive. Using phosphospecific antibodies and mass spectrometry, we here show that phosphorylation of most TRP sites depends on the phototransduction cascade and the activity of the TRP ion channel. A candidate screen to identify kinases and phosphatases provided in vivo evidence for an involvement of eye-PKC as well as other kinases and phosphatases in TRP phosphorylation.

  3. Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI3-kinase signaling cascade

    PubMed Central

    Harir, Noria; Boudot, Cédric; Friedbichler, Katrin; Sonneck, Karoline; Kondo, Rudin; Martin-Lannerée, Séverine; Kenner, Lukas; Kerenyi, Marc; Yahiaoui, Saliha; Gouilleux-Gruart, Valérie; Gondry, Jean; Bénit, Laurence; Dusanter-Fourt, Isabelle; Lassoued, Kaïss; Valent, Peter

    2008-01-01

    The D816V-mutated variant of Kit triggers multiple signaling pathways and is considered essential for malignant transformation in mast cell (MC) neoplasms. We here describe that constitutive activation of the Stat5-PI3K-Akt-cascade controls neoplastic MC development. Retrovirally transduced active Stat5 (cS5F) was found to trigger PI3K and Akt activation, and to transform murine bone marrow progenitors into tissue-infiltrating MCs. Primary neoplastic Kit D816V+ MCs in patients with mastocytosis also displayed activated Stat5, which was found to localize to the cytoplasm and to form a signaling complex with PI3K, with consecutive Akt activation. Finally, the knock-down of either Stat5 or Akt activity resulted in growth inhibition of neoplastic Kit D816V+ MCs. These data suggest that a downstream Stat5-PI3K-Akt signaling cascade is essential for Kit D816V-mediated growth and survival of neoplastic MCs. PMID:18579792

  4. Role of the extracellular signal-regulated kinase (Erk) signal transduction cascade in alpha(2) adrenoceptor-mediated vasoconstriction in porcine palmar lateral vein.

    PubMed

    Roberts, R E

    2001-07-01

    The mechanism of alpha(2) adrenoceptor-mediated vasoconstriction is unknown, but may involve activation of voltage-sensitive calcium channels, and/or a protein tyrosine kinase. Recently the extracellular signal-regulated kinase (Erk) cascade, often an event downstream of tyrosine kinase activation, has been shown to mediate vasoconstriction to a variety of agents. The aim of this present study was to determine the involvement of the Erk signal transduction cascade in alpha(2) adrenoceptor-mediated vasoconstriction, and to confirm the involvement of activation of voltage-sensitive calcium channels, and protein tyrosine kinase. Contractions to the alpha(2) adrenoceptor agonist UK14304 in the porcine palmar lateral vein in vitro were reduced 70 - 80% by the MEK inhibitors PD98059 (10 - 50 microM) and U0126 (10 - 50 microM), indicating the involvement of the Erk signal transduction cascade. Immunoblots also demonstrated an increase in the phosphorylated (activated) form of Erk in palmar lateral vein segments after contraction with UK14304, which was inhibited by PD98059 and U0126. The calcium channel blockers nifedipine and verapamil, or removal of extracellular calcium inhibited UK14304-induced contractions and phosphorylation of Erk, demonstrating the importance of an influx of extracellular calcium. UK14304-induced contractions were inhibited by PP2 (1 - 10 microM), a selective inhibitor of Src tyrosine kinases, but not by PP3, an inactive analogue. PP2 also prevented the phosphorylation of Erk by UK14304. These data demonstrate that alpha(2) adrenoceptor-mediated vasoconstriction in the porcine palmar lateral vein is dependent upon activation of the Erk signal transduction cascade, which is downstream of an influx of extracellular calcium, and activation of Src tyrosine kinases.

  5. Functional characterization of the three mitogen-activated protein kinase kinases (MAP2Ks) present in the Cryphonectria parasitica genome reveals the necessity of Cpkk1 and Cpkk2, but not Cpkk3, for pathogenesis on chestnut (Castanea spp.).

    PubMed

    Moretti, Marino; Rossi, Marika; Ciuffo, Marina; Turina, Massimo

    2014-06-01

    The biological function(s) of the cpkk1, cpkk2 and cpkk3 genes, encoding the three mitogen-activated protein kinase kinases (MAP2Ks) of Cryphonectria parasitica, the causal agent of chestnut blight, were examined through knockout strains. Cpkk1, the Mkk1 orthologue, acts in a phosphorylation cascade essential for cell integrity; Cpkk2 is the Ste7 orthologue involved in the pheromone response pathway; Cpkk3 is the Pbs2 orthologue, the MAP2K activated during the high-osmolarity response. Our analysis confirmed the role of each MAP2K in its respective signalling cascade with some peculiarities: abnormal hyphae with a reduced number of septa and thinner cell walls were observed in Δcpkk1 mutants, and a strong growth defect on solid media was evident in Δcpkk2 mutants, when compared with the controls. Virulence on chestnut was affected in both the Δcpkk1 and Δcpkk2 strains, which were also unable to complete the developmental steps essential for mating. No alterations were reported in Δcpkk3, except under hyperosmotic conditions and in the presence of fludioxonil. Δcpkk2 mutants, however, showed higher sensitivity during growth in medium containing the antibiotic G418 (Geneticin).

  6. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    PubMed Central

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the R7 photoreceptor cell. Components of the signal transduction pathway activated by Sev in the R7 precursor include proteins encoded by the gap1, drk, Sos, ras1 and raf loci. In this report we present evidence that a Drosophila MAP kinase, ERK-A, is encoded by the rolled locus and is required downstream of raf in the Sev signal transduction pathway. Images PMID:8157002

  7. Synaptic generation of an intracellular retrograde signal requires activation of the tyrosine kinase and mitogen-activated protein kinase signaling cascades in Aplysia.

    PubMed

    Stough, Shara; Kopec, Ashley M; Carew, Thomas J

    2015-11-01

    Cellular changes underlying memory formation can be generated in an activity-dependent manner at specific synapses. Thus an important question concerns the mechanisms by which synaptic signals communicate with the cell body to mediate these cellular changes. A monosynaptic circuit that is enhanced by sensitization in Aplysia is well-suited to study this question because three different subcellular compartments: (i) the sensorimotor SN-MN synapses, (ii) the SN projections to MNs via axonal connections, (iii) the SN cell bodies, can all be manipulated and studied independently. Here, we report that activity-dependent (AD) training in either the entire SN-MN circuit or in only the synaptic compartment, activates MAPK in a temporally and spatially specific pattern. Specifically, we find (i) MAPK activation is first transiently generated at SN-MN synapses during training, (ii) immediately after training MAPK is transiently activated in SN-MN axonal connections and persistently activated in SN cell bodies, and finally, (iii) MAPK is activated in SN cell bodies and SN-MN synapses 1h after training. These data suggest that there is an intracellularly transported retrograde signal generated at the synapse which is later responsible for delayed MAPK activation at SN somata. Finally, we find that this retrograde signal requires activation of tyrosine kinase (TK) and MEK signaling cascades at the synapses.

  8. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level.

    PubMed

    Jewaria, Pawan Kumar; Hara, Toshiaki; Tanaka, Hirokazu; Kondo, Tatsuhiko; Betsuyaku, Shigeyuki; Sawa, Shinichiro; Sakagami, Youji; Aimoto, Saburo; Kakimoto, Tatsuo

    2013-08-01

    The positioning and density of leaf stomata are regulated by three secretory peptides, EPIDERMAL PATTERNING FACTOR 1 (EPF1), EPF2 and stomagen. Several lines of published evidence have suggested a regulatory pathway as follows. EPF1 and EPF2 are perceived by receptor complexes consisting of a receptor-like protein, TOO MANY MOUTHS (TMM), and receptor kinases, ERECTA (ER), ERECTA-LIKE (ERL) 1 and ERL2. These receptors activate a mitogen-activated protein (MAP) kinase module. MAP kinases phosphorylate and destabilize the transcription factor SPEECHLESS (SPCH), resulting in a decrease in the number of stomatal lineage cells. Stomagen acts antagonistically to EPF1 and EPF2. However, there is no direct evidence that EPF1 and EPF2 activate or that stomagen inactivates the MAP kinase cascade, through which they might regulate the SPCH level. Experimental modulation of these peptides in Arabidopsis thaliana would change the number of stomatal lineage cells in developing leaves, which in turn would change the expression of SPCH, making the interpretation difficult. Here we reconstructed this signaling pathway in differentiated leaf cells of Nicotiana benthamiana to examine signaling without the confounding effect of cell type change. We show that EPF1 and EPF2 are able to activate the MAP kinase MPK6, and that both EPF1 and EPF2 are able to decrease the SPCH level, whereas stomagen is able to increase it. Our data also suggest that EPF1 can be recognized by TMM together with any ER family receptor kinase, whereas EPF2 can be recognized by TMM together with ERL1 or ERL2, but not by TMM together with ER.

  9. A crosslinker based on a tethered electrophile for mapping kinase-substrate networks.

    PubMed

    Riel-Mehan, Megan M; Shokat, Kevan M

    2014-05-22

    Despite the continuing progress made toward mapping kinase signaling networks, there are still many phosphorylation events for which the responsible kinase has not yet been identified. We are interested in addressing this problem through forming covalent crosslinks between a peptide substrate and the corresponding phosphorylating kinase. Previously we reported a dialdehyde-based kinase-binding probe capable of such a reaction with a peptide containing a cysteine substituted for the phosphorylatable ser/thr/tyr residue. Here, we examine the yield of a previously reported dialdehyde-based probe and report that the dialdehyde-based probes possess a significant limitation in terms of crosslinked kinase-substrate product yield. To address this limitation, we developed a crosslinking scheme based on a kinase activity-based probe, and this crosslinker provides an increase in efficiency and substrate specificity, including in the context of cell lysate.

  10. Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure.

    PubMed

    Bartha, Eva; Solti, Izabella; Szabo, Aliz; Olah, Gabor; Magyar, Klara; Szabados, Eszter; Kalai, Tamas; Hideg, Kalman; Toth, Kalman; Gero, Domokos; Szabo, Csaba; Sumegi, Balazs; Halmosi, Robert

    2011-10-01

    Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase-mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.

  11. Integration of Apoptosis Signal-Regulating Kinase 1-Mediated Stress Signaling with the Akt/Protein Kinase B-IκB Kinase Cascade

    PubMed Central

    Puckett, Mary C.; Goldman, Erinn H.; Cockrell, Lisa M.; Huang, Bei; Kasinski, Andrea L.; Du, Yuhong; Wang, Cun-Yu; Lin, Anning; Ichijo, Hidenori; Khuri, Fadlo

    2013-01-01

    Cellular processes are tightly controlled through well-coordinated signaling networks that respond to conflicting cues, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress signals, and survival factors to ensure proper cell function. We report here a direct interaction between inhibitor of κB kinase (IKK) and apoptosis signal-regulating kinase 1 (ASK1), unveiling a critical node at the junction of survival, inflammation, and stress signaling networks. IKK can be activated by growth factor stimulation or tumor necrosis factor alpha engagement. IKK forms a complex with and phosphorylates ASK1 at a sensor site, Ser967, leading to the recruitment of 14-3-3, counteracts stress signal-triggered ASK1 activation, and suppresses ASK1-mediated functions. An inhibitory role of IKK in JNK signaling has been previously reported to depend on NF-κB-mediated gene expression. Our data suggest that IKK has a dual role: a transcription-dependent and a transcription-independent action in controlling the ASK1-JNK axis, coupling IKK to ROS and ER stress response. Direct phosphorylation of ASK1 by IKK also defines a novel IKK phosphorylation motif. Because of the intimate involvement of ASK1 in diverse diseases, the IKK/ASK1 interface offers a promising target for therapeutic development. PMID:23530055

  12. Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3beta, beta-catenin, and neurotrophin cascades.

    PubMed

    Wada, Akihiko

    2009-05-01

    Mood disorders are not merely attributed to the functional defect of neurotransmission, but also are due to the structural impairment of neuroplasticity. Chronic stress decreases neurotrophin levels, precipitating or exacerbating depression; conversely, antidepressants increase expression of various neurotrophins (e.g., brain-derived neurotrophic factor and vascular endothelial growth factor), thereby blocking or reversing structural and functional pathologies via promoting neurogenesis. Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects, yet the therapeutic mechanisms at the cellular level remain not-fully defined. During the last five years, multiple lines of evidence have shown that the mood stabilization and neurogenesis by lithium are due to the lithium-induced inhibition of glycogen synthase kinase-3beta (GSK-3beta), allowing accumulation of beta-catenin and beta-catenin-dependent gene transcriptional events. Altered levels of GSK-3beta and beta-catenin are associated with various neuropsychiatric and neurodegenerative diseases, while various classical neuropsychiatric drugs inhibit GSK-3beta and up-regulate beta-catenin expression. In addition, evidence has emerged that insulin-like growth factor-I enhances antidepression, anti-anxiety, memory, neurogenesis, and angiogenesis; antidepressants up-regulate expression of insulin-like growth factor-I, while insulin-like growth factor-I up-regulates brain-derived neurotrophic factor expression and its receptor TrkB level, as well as brain-derived neurotrophic factor-induced synaptic protein levels. More importantly, physical exercise and healthy diet raise transport of peripheral circulating insulin-like growth factor I into the brain, reinforcing the expression of neurotrophins (e.g., brain-derived neurotrophic factor) and the strength of cell survival signalings (e.g., phosphoinositide 3-kinase / Akt / GSK-3beta pathway

  13. Cascaded Fresnel holographic image encryption scheme based on a constrained optimization algorithm and Henon map

    NASA Astrophysics Data System (ADS)

    Su, Yonggang; Tang, Chen; Chen, Xia; Li, Biyuan; Xu, Wenjun; Lei, Zhenkun

    2017-01-01

    We propose an image encryption scheme using chaotic phase masks and cascaded Fresnel transform holography based on a constrained optimization algorithm. In the proposed encryption scheme, the chaotic phase masks are generated by Henon map, and the initial conditions and parameters of Henon map serve as the main secret keys during the encryption and decryption process. With the help of multiple chaotic phase masks, the original image can be encrypted into the form of a hologram. The constrained optimization algorithm makes it possible to retrieve the original image from only single frame hologram. The use of chaotic phase masks makes the key management and transmission become very convenient. In addition, the geometric parameters of optical system serve as the additional keys, which can improve the security level of the proposed scheme. Comprehensive security analysis performed on the proposed encryption scheme demonstrates that the scheme has high resistance against various potential attacks. Moreover, the proposed encryption scheme can be used to encrypt video information. And simulations performed on a video in AVI format have also verified the feasibility of the scheme for video encryption.

  14. Rit-mediated Stress Resistance Involves a p38-Mitogen- and Stress-activated Protein Kinase 1 (MSK1)-dependent cAMP Response Element-binding Protein (CREB) Activation Cascade*

    PubMed Central

    Shi, Geng-Xian; Cai, Weikang; Andres, Douglas A.

    2012-01-01

    The cAMP response element (CRE)-binding protein (CREB) is a key regulatory factor of gene transcription, and plays an essential role in development of the central nervous system and for neuroprotection. Multiple signaling pathways have been shown to contribute to the regulation of CREB-dependent transcription, including both ERK and p38 mitogen-activated protein (MAP) kinases cascades. Recent studies have identified the Ras-related small G-protein, Rit, as a central regulator of a p38-MK2-HSP27 signaling cascade that functions as a critical survival mechanism for cells adapting to stress. Here, we examine the contribution of Rit-p38 signaling to the control of stress-dependent gene transcription. Using a pheochromocytoma cell model, we find that a novel Rit-p38-MSK1/2 pathway plays a critical role in stress-mediated CREB activation. RNAi-mediated Rit silencing, or inhibition of p38 or MSK1/2 kinases, was found to disrupt stress-mediated CREB-dependent transcription, resulting in increased cell death. Furthermore, ectopic expression of active Rit stimulates CREB-Ser133 phosphorylation, induces expression of the anti-apoptotic Bcl-2 and BclXL proteins, and promotes cell survival. These data indicate that the Rit-p38-MSK1/2 signaling pathway may have an important role in the stress-dependent regulation of CREB-dependent gene expression. PMID:23038261

  15. A Rice Kinase-Protein Interaction Map1[W][OA

    PubMed Central

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A.; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E.; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G.; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E.; Ronald, Pamela C.; Song, Wen-Yuan

    2009-01-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed. PMID:19109415

  16. Bioelectrocatalytic sensor for triglycerides in human skin sebum based on enzymatic cascade reaction of lipase, glycerol kinase and glycerophosphate oxidase.

    PubMed

    Jeong, Chi Yong; Han, Yong Duk; Yoon, Jae Ho; Yoon, Hyun C

    2014-04-10

    We report the development of an electrochemical biosensor for the quantification of triglycerides in human skin sebum, based on a multienzyme cascade reaction. The presence of excessive triglycerides in human sebum is one of the leading causes of various skin ailments. However, to the best of our knowledge, no bioelectrocatalytic approach for the quantification of sebum triglycerides has been made. In order to develop triglyceride biosensor, we fabricated a multienzyme-associated electrode incorporating lipase, glycerol kinase, and glycerophosphate oxidase. Enzymes were deposited by electrostatic force and further stabilized via crosslinking between enzymes and polymer matrices. The enzyme-modified biosensing electrode maintained its bioelectrocatalytic activity for five days. An additional constraint was the limited solubility of sebum triglycerides in aqueous electrolytes, impeding the analysis. To address this issue, triglyceride samples were prepared in the form of micelles, enabling efficient sample preparation for biosensor signaling. Calibration tests revealed that the designed assay had a detection range of 15-200mg/dL of micellar triglyceride, which covered the required determination range. The developed biosensing approach was successfully used to determine triglyceride concentrations in real sebum samples of unknown triglyceride content.

  17. A Cell-Autonomous Molecular Cascade Initiated by AMP-Activated Protein Kinase Represses Steroidogenesis

    PubMed Central

    Abdou, Houssein S.; Bergeron, Francis

    2014-01-01

    Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production. PMID:25225331

  18. Obesity-induced insulin resistance in human skeletal muscle is characterised by defective activation of p42/p44 MAP kinase.

    PubMed

    Ruiz-Alcaraz, Antonio J; Lipina, Christopher; Petrie, John R; Murphy, Michael J; Morris, Andrew D; Sutherland, Calum; Cuthbertson, Daniel J

    2013-01-01

    Insulin resistance (IR), an impaired cellular, tissue and whole body response to insulin, is a major pathophysiological defect of type 2 diabetes mellitus. Although IR is closely associated with obesity, the identity of the molecular defect(s) underlying obesity-induced IR in skeletal muscle remains controversial; reduced post-receptor signalling of the insulin receptor substrate 1 (IRS1) adaptor protein and downstream effectors such as protein kinase B (PKB) have previously been implicated. We examined expression and/or activation of a number of components of the insulin-signalling cascade in skeletal muscle of 22 healthy young men (with body mass index (BMI) range, 20-37 kg/m(2)). Whole body insulin sensitivity (M value) and body composition was determined by the hyperinsulinaemic (40 mU. min(-1).m(-2).), euglycaemic clamp and by dual energy X-ray absorptiometry (DEXA) respectively. Skeletal muscle (vastus lateralis) biopsies were taken before and after one hour of hyperinsulinaemia and the muscle insulin signalling proteins examined by western blot and immunoprecipitation assay. There was a strong inverse relationship between M-value and BMI. The most striking abnormality was significantly reduced insulin-induced activation of p42/44 MAP kinase, measured by specific assay, in the volunteers with poor insulin sensitivity. However, there was no relationship between individuals' BMI or M-value and protein expression/phosphorylation of IRS1, PKB, or p42/44 MAP kinase protein, under basal or hyperinsulinaemic conditions. In the few individuals with poor insulin sensitivity but preserved p42/44 MAP kinase activation, other signalling defects were evident. These findings implicate defective p42/44 MAP kinase signalling as a potential contributor to obesity-related IR in a non-diabetic population, although clearly multiple signalling defects underlie obesity associated IR.

  19. Brain tissue energy dependence of CaM kinase IV cascade activation during hypoxia in the cerebral cortex of newborn piglets.

    PubMed

    Delivoria-Papadopoulos, Maria; Ashraf, Qazi M; Mishra, Om Prakash

    2011-03-17

    The present study aims to investigate the dependence of CaM kinase IV cascade activation during hypoxia and tests the hypothesis that hypoxia-induced tyrosine phosphorylation of CaM and CaM kinase IV, activation of CaM kinase IV and phosphorylation of CREB protein during hypoxia increases as a function of increase in cerebral tissue hypoxia as measured by decrease in tissue ATP and phosphocreatine (PCr). 3-5 days old newborn piglets were divided into normoxic (Nx, FiO₂ of 0.21 for 1h) and hypoxic (Hx, FiO₂ of 0.07 for 1h) groups. Cerebral tissue hypoxia was documented by determining the levels of high energy phosphates ATP and phosphocreatine (PCr). Cerebral cortical neuronal nuclei were isolated and purified, and tyrosine phosphorylation of calmodulin (Tyr⁹⁹), the activator of CaM kinase IV, and CaM kinase IV determined by Western blot using anti-phospho-(pTyr⁹⁹)-calmodulin, anti-pTyrosine and anti-CaM kinase IV antibodies. The activity of CaM kinase IV and its consequence the phosphorylation of CREB protein at Ser¹³³ were determined. The levels of ATP (μmole/g brain) ranged from 3.48 to 5.28 in Nx, and 0.41 to 2.26 in Hx. The levels of PCr (μmole/g brain) ranged from 2.46 to 3.91 in Nx and 0.72 to 1.20 in Hx. The pTyr⁹⁹ calmodulin (OD x mm²) ranged from 20.35 to 54.47.60 in Nx, and 84.52 to 181.42 in Hx (r²=0.5309 vs ATP and r²=0.6899 vs PCr). Expression of tyrosine phosphorylated CaM kinase IV ranged from 32.86 to 82.46 in Nx and 96.70 to 131.62 in Hx (r²=0.5132 vs ATP and r²=0.4335 vs PCr). The activity of CaM kinase IV (pmole/mg protein/min) ranged from 1263 to 3448 in Nx and 3767 to 6633 in Hx (r²=0.7113 vs ATP and r²=0.6182 vs PCr). The expression of p-CREB at Ser¹³³ ranged from 44.26 to 70.28 in Nx and 82.70 to 182.86 in Hx (r²=0.6621 vs ATP and r²=0.5485 vs PCr). The data show that hypoxia results in increased tyrosine phosphorylation of calmodulin (Tyr⁹⁹), increased tyrosine phosphorylation of CaM kinase IV, increased

  20. Interferon-gamma expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway.

    PubMed Central

    Rincón, M; Enslen, H; Raingeaud, J; Recht, M; Zapton, T; Su, M S; Penix, L A; Davis, R J; Flavell, R A

    1998-01-01

    Signal transduction via MAP kinase pathways plays a key role in a variety of cellular responses, including growth factor-induced proliferation, differentiation and cell death. In mammalian cells, p38 MAP kinase can be activated by multiple stimuli, such as pro-inflammatory cytokines and environmental stress. Although p38 MAP kinase is implicated in the control of inflammatory responses, the molecular mechanisms remain unclear. Upon activation, CD4+ T cells differentiate into Th2 cells, which potentiate the humoral immune response or pro-inflammatory Th1 cells. Here, we show that pyridinyl imidazole compounds (specific inhibitors of p38 MAP kinase) block the production of interferon-gamma (IFNgamma) by Th1 cells without affecting IL-4 production by Th2 cells. These drugs also inhibit transcription driven by the IFNgamma promoter. In transgenic mice, inhibition of the p38 MAP kinase pathway by the expression of dominant-negative p38 MAP kinase results in selective impairment of Th1 responses. In contrast, activation of the p38 MAP kinase pathway by the expression of constitutivelyactivated MAP kinase kinase 6 in transgenic mice caused increased production of IFNgamma during the differentiation and activation of Th1 cells. Together, these data demonstrate that the p38 MAP kinase is relevant for Th1 cells, not Th2 cells, and that inhibition of p38 MAP kinase represents a possible site of therapeutic intervention in diseases where a predominant Th1 immune response leads to a pathological outcome. Moreover, our study provides an additional mechanism by which the p38 MAP kinase pathway controls inflammatory responses. PMID:9582275

  1. Database for the geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Barron, Andrew D.; Ramsey, David W.; Smith, James G.

    2014-01-01

    This digital database contains information used to produce the geologic map published as Sheet 1 in U.S. Geological Survey Miscellaneous Investigations Series Map I-2005. (Sheet 2 of Map I-2005 shows sources of geologic data used in the compilation and is available separately). Sheet 1 of Map I-2005 shows the distribution and relations of volcanic and related rock units in the Cascade Range of Washington at a scale of 1:500,000. This digital release is produced from stable materials originally compiled at 1:250,000 scale that were used to publish Sheet 1. The database therefore contains more detailed geologic information than is portrayed on Sheet 1. This is most noticeable in the database as expanded polygons of surficial units and the presence of additional strands of concealed faults. No stable compilation materials exist for Sheet 1 at 1:500,000 scale. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map sheet, main report text, and accompanying mapping reference sheet from Map I-2005. For more information on volcanoes in the Cascade Range in Washington, Oregon, or California, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  2. Dependence of Mos-induced Cdc2 activation on MAP kinase function in a cell-free system.

    PubMed Central

    Huang, C Y; Ferrell, J E

    1996-01-01

    The progression of G2-arrested Xenopus laevis oocytes into meiotic M-phase is accompanied by the nearly simultaneous activation of p42 MAP kinase and Cdc2/cyclin B. This timing raises the possibility that the activation of one kinase might depend upon the other. Here we have examined whether Cdc2 activation requires p42 MAP kinase function. We have reconstituted Mos-induced Cdc2 activation in cell-free Xenopus oocyte extracts, and have found that Mos-induced Cdc2 activation requires active p42 MAP kinase, is inhibited by a MAP kinase phosphatase and is independent of protein synthesis. These findings indicate that p42 MAP kinase is an essential component of the M phase trigger in this system. Images PMID:8641282

  3. Parallelizing Backpropagation Neural Network Using MapReduce and Cascading Model.

    PubMed

    Liu, Yang; Jing, Weizhe; Xu, Lixiong

    2016-01-01

    Artificial Neural Network (ANN) is a widely used algorithm in pattern recognition, classification, and prediction fields. Among a number of neural networks, backpropagation neural network (BPNN) has become the most famous one due to its remarkable function approximation ability. However, a standard BPNN frequently employs a large number of sum and sigmoid calculations, which may result in low efficiency in dealing with large volume of data. Therefore to parallelize BPNN using distributed computing technologies is an effective way to improve the algorithm performance in terms of efficiency. However, traditional parallelization may lead to accuracy loss. Although several complements have been done, it is still difficult to find out a compromise between efficiency and precision. This paper presents a parallelized BPNN based on MapReduce computing model which supplies advanced features including fault tolerance, data replication, and load balancing. And also to improve the algorithm performance in terms of precision, this paper creates a cascading model based classification approach, which helps to refine the classification results. The experimental results indicate that the presented parallelized BPNN is able to offer high efficiency whilst maintaining excellent precision in enabling large-scale machine learning.

  4. Parallelizing Backpropagation Neural Network Using MapReduce and Cascading Model

    PubMed Central

    Liu, Yang; Jing, Weizhe; Xu, Lixiong

    2016-01-01

    Artificial Neural Network (ANN) is a widely used algorithm in pattern recognition, classification, and prediction fields. Among a number of neural networks, backpropagation neural network (BPNN) has become the most famous one due to its remarkable function approximation ability. However, a standard BPNN frequently employs a large number of sum and sigmoid calculations, which may result in low efficiency in dealing with large volume of data. Therefore to parallelize BPNN using distributed computing technologies is an effective way to improve the algorithm performance in terms of efficiency. However, traditional parallelization may lead to accuracy loss. Although several complements have been done, it is still difficult to find out a compromise between efficiency and precision. This paper presents a parallelized BPNN based on MapReduce computing model which supplies advanced features including fault tolerance, data replication, and load balancing. And also to improve the algorithm performance in terms of precision, this paper creates a cascading model based classification approach, which helps to refine the classification results. The experimental results indicate that the presented parallelized BPNN is able to offer high efficiency whilst maintaining excellent precision in enabling large-scale machine learning. PMID:27217823

  5. Short-term cascaded hydroelectric system scheduling based on chaotic particle swarm optimization using improved logistic map

    NASA Astrophysics Data System (ADS)

    He, Yaoyao; Yang, Shanlin; Xu, Qifa

    2013-07-01

    In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.

  6. MAP kinase p38 is a novel target of CacyBP/SIP phosphatase.

    PubMed

    Topolska-Woś, Agnieszka M; Rosińska, Sara; Filipek, Anna

    2017-03-10

    Mitogen-activated protein (MAP) kinases are important players in cellular signaling pathways. Recently, it has been shown that CacyBP/SIP serves as a phosphatase for one of the MAP kinases, ERK1/2. Through dephosphorylation of this kinase CacyBP/SIP modulates the transcriptional activity of Elk-1 and the activity of the CREB-BDNF pathway. In this work, using NB2a cell lysate and recombinant proteins, we show that CacyBP/SIP binds and dephosphorylates another member of the MAP kinase family, p38. Analysis of recombinant full-length CacyBP/SIP and its three major domains, N-terminal, middle CS and C-terminal SGS, indicates that the middle CS domain is responsible for p38 dephosphorylation. Moreover, we show that CacyBP/SIP might be implicated in response to oxidative stress. Dephosphorylation of phospho-p38 by CacyBP/SIP in NB2a cells treated with hydrogen peroxide is much more effective than in control ones. In conclusion, involvement of CacyBP/SIP in the regulation of p38 kinase activity, in addition to that of ERK1/2, might point to the function of CacyBP/SIP in pro-survival and pro-apoptotic pathways.

  7. p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells.

    PubMed

    Cheng, A; Chan, S L; Milhavet, O; Wang, S; Mattson, M P

    2001-11-16

    Neural progenitor cells (NPC) can proliferate, differentiate into neurons or glial cells, or undergo a form of programmed cell death called apoptosis. Although death of NPC occurs during development of the nervous system and in the adult, the underlying mechanisms are unknown. Here we show that nitric oxide (NO) can induce death of C17.2 NPC by a mechanism requiring activation of p38 MAP kinase, poly(ADP-ribose) polymerase, and caspase-3. Nitric oxide causes release of cytochrome c from mitochondria, and Bcl-2 protects the neural progenitor cells against nitric oxide-induced death, consistent with a pivotal role for mitochondrial changes in controlling the cell death process. Inhibition of p38 MAP kinase by SB203580 abolished NO-induced cell death, cytochrome c release, and activation of caspase-3, indicating that p38 activation serves as an upstream mediator in the cell death process. The anti-apoptotic protein Bcl-2 protected NPC against nitric oxide-induced apoptosis and suppressed activation of p38 MAP kinase. The ability of nitric oxide to trigger death of NPC by a mechanism involving p38 MAP kinase suggests that this diffusible gas may regulate NPC fate in physiological and pathological settings in which NO is produced.

  8. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site.

  9. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.

    PubMed Central

    Migliaccio, A; Di Domenico, M; Castoria, G; de Falco, A; Bontempo, P; Nola, E; Auricchio, F

    1996-01-01

    The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol-dependent growth, estradiol treatment of human mammary cancer MCF-7 cells triggers rapid and transient activation of the mitogen-activated (MAP) kinases, erk-1 and erk-2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras-GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP-kinase pathway in MCF-7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild-type 67 kDa estradiol receptor cDNA that Cos cells become estradiol-responsive in terms of erk-2 activity. This finding, together with the inhibition by the pure anti-estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF-7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c-src show that the estradiol receptor activates c-src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c-src is an initial and integral part of the signaling events mediated by the estradiol receptor. Images PMID:8635462

  10. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    SciTech Connect

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel; Busenlehner, Laura; Marcus, Stevan

    2010-08-20

    Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  11. Overexpression of the MAP kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitogen-activated protein kinases (MAPK) signaling cascades are activated by extracellular stimuli such as environmental stresses and pathogens in higher eukaryotic plants. To know more about MAPK signaling in plants, a MAPK cDNA clone, OsMAPK33 was isolated from rice. The gene is mainly induced by ...

  12. MAP kinase dynamics in response to pheromones in budding yeast.

    PubMed

    van Drogen, F; Stucke, V M; Jorritsma, G; Peter, M

    2001-12-01

    Although scaffolding is a major regulator of mitogen-activated protein kinase (MAPK) pathways, scaffolding proteins are poorly understood. During yeast mating, MAPK Fus3p is phosphorylated by MAPKK Ste7p, which is activated by MAPKKK Ste11p. This MAPK module interacts with the scaffold molecule Ste5p. Here we show that Ste11p and Ste7p were predominantly cytoplasmic proteins, while Ste5p and Fus3p were found in the nucleus and the cytoplasm. Ste5p, Ste7p and Fus3p also localized to tips of mating projections in pheromone-treated cells. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that Fus3p rapidly shuttles between the nucleus and the cytoplasm independently of pheromones, Fus3p phosphorylation and Ste5p. Membrane-bound Ste5p can specifically recruit Fus3p and Ste7p to the cell cortex. Ste5p remains stably bound at the plasma membrane, unlike activated Fus3p, which dissociates from Ste5p and translocates to the nucleus.

  13. Cross-interactions of two p38 mitogen-activated protein (MAP) kinase inhibitors and two cholecystokinin (CCK) receptor antagonists with the CCK1 receptor and p38 MAP kinase.

    PubMed

    Morel, Caroline; Ibarz, Géraldine; Oiry, Catherine; Carnazzi, Eric; Bergé, Gilbert; Gagne, Didier; Galleyrand, Jean-Claude; Martinez, Jean

    2005-06-03

    Although SB202190 and SB203580 are described as specific p38 MAP kinase inhibitors, several reports have indicated that other enzymes are also sensitive to SB203580. Using a pharmacological approach, we report for the first time that compounds SB202190 and SB203580 were able to directly and selectively interact with a G-protein-coupled receptor, namely the cholecystokinin receptor subtype CCK1, but not with the CCK2 receptor. We demonstrated that these compounds were non-competitive antagonists of the CCK1 receptor at concentrations typically used to inhibit protein kinases. By chimeric construction of the CCK2 receptor, we determined the involvement of two CCK1 receptor intracellular loops in the binding of SB202190 and SB203580. We also showed that two CCK antagonists, L364,718 and L365,260, were able to regulate p38 mitogen-activated protein (MAP) kinase activity. Using a reporter gene strategy and immunoblotting experiments, we demonstrated that both CCK antagonists inhibited selectively the enzymatic activity of p38 MAP kinase. Kinase assays suggested that this inhibition resulted from a direct interaction with both CCK antagonists. Molecular modeling simulations suggested that this interaction occurs in the ATP binding pocket of p38 MAP kinase. These results suggest that SB202190 and SB203580 bind to the CCK1 receptor and, as such, these compounds should be used with caution in models that express this receptor. We also found that L364,718 and L365,260, two CCK receptor antagonists, directly interacted with p38 MAP kinase and inhibited its activity. These findings suggest that the CCK1 receptor shares structural analogies with the p38 MAP kinase ATP binding site. They open the way to potential design of either a new family of MAP kinase inhibitors from CCK1 receptor ligand structures or new CCK1 receptor ligands based on p38 MAP kinase inhibitor structures.

  14. Desnitro-imidacloprid activates the extracellular signal-regulated kinase cascade via the nicotinic receptor and intracellular calcium mobilization in N1E-115 cells.

    PubMed

    Tomizawa, Motohiro; Casida, John E

    2002-11-01

    Imidacloprid (IMI) is the principal neonicotinoid (the only major new class of synthetic insecticides of the past three decades). The excellent safety profile of IMI is not shared with a metabolite, desnitro-IMI (DNIMI), which displays high toxicity to mammals associated with agonist action at the alpha4beta2 nicotinic acetylcholine receptor (nAChR) in brain. This study examines the hypothesis that IMI, DNIMI, and (-)-nicotine activate the extracellular signal-regulated kinase (ERK) cascade via primary interaction with the alpha4beta2 nAChR in mouse neuroblastoma N1E-115 cells. These three nicotinic agonists induce phosphorylation of ERK (p44/p42) in a concentration-dependent manner with an optimal incubation period of 30 min. DNIMI (1 microM)-induced ERK activation is blocked by nicotinic antagonist mecamylamine but not by alpha-bungarotoxin and muscarinic antagonist atropine. This activation is prevented by intracellular Ca(2+) chelator BAPTA-AM but not by removal of external Ca(2+) using EGTA and Ca(2+)-free medium. 2-Aminoethoxy-diphenylborate, a blocker for inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from intracellular stores, inhibits DNIMI-induced ERK activation but a high level of ryanodine (to block ryanodine receptor-mediated Ca(2+) release) does not. The inhibitor U-73122 for phospholipase C (to suppress IP(3) production) prevents ERK activation evoked by DNIMI. Inhibitors for protein kinase C (PKC) (GF109203X) and ERK kinase (PD98059) block this activation whereas an inhibitor (H-89) for cyclic AMP-dependent protein kinase does not. Thus, neonicotinoids activate the ERK cascade triggered by primary action at the alpha4beta2 nAChR with an involvement of intracellular Ca(2+) mobilization possibly mediated by IP(3). It is further suggested that intracellular Ca(2+) activates a sequential pathway from PKC to ERK.

  15. The regulation of runt-related transcription factor 2 by fibroblast growth factor-2 and connexin43 requires the inositol polyphosphate/protein kinasecascade.

    PubMed

    Niger, Corinne; Luciotti, Maria A; Buo, Atum M; Hebert, Carla; Ma, Vy; Stains, Joseph P

    2013-06-01

    Connexin43 (Cx43) plays a critical role in osteoblast function and bone mass accrual, yet the identity of the second messengers communicated by Cx43 gap junctions, the targets of these second messengers and how they regulate osteoblast function remain largely unknown. We have shown that alterations of Cx43 expression in osteoblasts can impact the responsiveness to fibroblast growth factor-2 (FGF2), by modulating the transcriptional activity of runt-related transcription factor 2 (Runx2). In this study, we examined the contribution of the phospholipase Cγ1/inositol polyphosphate/protein kinase C delta (PKCδ) cascade to the Cx43-dependent transcriptional response of MC3T3 osteoblasts to FGF2. Knockdown of expression and/or inhibition of function of phospholipase Cγ1, inositol polyphosphate multikinase, which generates inositol 1,3,4,5-tetrakisphosphate (InsP₄) and InsP₅, and inositol hexakisphosphate kinase 1/2, which generates inositol pyrophosphates, prevented the ability of Cx43 to potentiate FGF2-induced signaling through Runx2. Conversely, overexpression of phospholipase Cγ1 and inositol hexakisphosphate kinase 1/2 enhanced FGF2 activation of Runx2 and the effect of Cx43 overexpression on this response. Disruption of these pathways blocked the nuclear accumulation of PKCδ and the FGF2-dependent interaction of PKCδ and Runx2, reducing Runx2 transcriptional activity. These data reveal that FGF2-signaling involves the inositol polyphosphate cascade, including inositol hexakisphosphate kinase (IP6K), and demonstrate that IP6K regulates Runx2 and osteoblast gene expression. Additionally, these data implicate the water-soluble inositol polyphosphates as mediators of the Cx43-dependent amplification of the osteoblast response to FGF2, and suggest that these low molecular weight second messengers may be biologically relevant mediators of osteoblast function that are communicated by Cx43-gap junctions.

  16. Involvement of protein kinases and calcium in the NO-signalling cascade for defence-gene induction in ozonated tobacco plants.

    PubMed

    Pasqualini, S; Reale, L; Calderini, O; Pagiotti, R; Ederli, L

    2012-07-01

    This study analyses the signalling pathways triggered by nitric oxide (NO) in response to ozone (O(3)) fumigation of tobacco plants, with particular attention to protein kinase cascades and free cytosolic Ca(2+) in defence-gene activation. NO was visualized with the NO probe DAF-FM. Using a pharmacological approach, the effects of different inhibitors on the expression profiles of NO-dependent defence genes were monitored using RT-PCR. The assay of the kinase activity of the immunoprecipitates complexes shows that O(3) stimulates a 48 kDa salicylic acid (SA)-induced protein kinase (SIPK) in an NO-dependent manner. The O(3)-induced alternative oxidase 1a (AOX1a) and phenylalanine ammonia lyase a (PALa) genes are modulated by phosphorylation by protein kinases, and SIPK might have a role in this up-regulation. By contrast, protein dephosphorylation mediates pathogenesis-related protein 1a (PR1a) expression in O(3)-treated tobacco plants. Ca(2+) is essential, but not sufficient, to promote NO accumulation in ozonated tobacco plants. Intracellular Ca(2+) transients are also essential for PALa up-regulation and cGMP-induced PR1a expression. Partial dependence on intracellular Ca(2+) suggests two different pathways of SA accumulation and PR1a induction. A model summarizing the signalling networks involving NO, SA, and the cellular messengers in this O(3)-induced defence gene activation is proposed.

  17. NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38γ

    PubMed Central

    Aoto, Phillip C.; Martin, Bryan T.; Wright, Peter E.

    2016-01-01

    The intramolecular network structure of a protein provides valuable insights into allosteric sites and communication pathways. However, a straightforward method to comprehensively map and characterize these pathways is not currently available. Here we present an approach to characterize intramolecular network structure using NMR chemical shift perturbations. We apply the method to the mitogen activated protein kinase (MAPK) p38γ. p38γ contains allosteric sites that are conserved among eukaryotic kinases as well as unique to the MAPK family. How these regulatory sites communicate with catalytic residues is not well understood. Using our method, we observe and characterize for the first time information flux between regulatory sites through a conserved kinase infrastructure. This network is accessed, reinforced, and broken in various states of p38γ, reflecting the functional state of the protein. We demonstrate that the approach detects critical junctions in the network corresponding to biologically significant allosteric sites and pathways. PMID:27353957

  18. BDNF stimulation of protein synthesis in cortical neurons requires the MAP kinase-interacting kinase MNK1.

    PubMed

    Genheden, Maja; Kenney, Justin W; Johnston, Harvey E; Manousopoulou, Antigoni; Garbis, Spiros D; Proud, Christopher G

    2015-01-21

    Although the MAP kinase-interacting kinases (MNKs) have been known for >15 years, their roles in the regulation of protein synthesis have remained obscure. Here, we explore the involvement of the MNKs in brain-derived neurotrophic factor (BDNF)-stimulated protein synthesis in cortical neurons from mice. Using a combination of pharmacological and genetic approaches, we show that BDNF-induced upregulation of protein synthesis requires MEK/ERK signaling and the downstream kinase, MNK1, which phosphorylates eukaryotic initiation factor (eIF) 4E. Translation initiation is mediated by the interaction of eIF4E with the m(7)GTP cap of mRNA and with eIF4G. The latter interaction is inhibited by the interactions of eIF4E with partner proteins, such as CYFIP1, which acts as a translational repressor. We find that BDNF induces the release of CYFIP1 from eIF4E, and that this depends on MNK1. Finally, using a novel combination of BONCAT and SILAC, we identify a subset of proteins whose synthesis is upregulated by BDNF signaling via MNK1 in neurons. Interestingly, this subset of MNK1-sensitive proteins is enriched for functions involved in neurotransmission and synaptic plasticity. Additionally, we find significant overlap between our subset of proteins whose synthesis is regulated by MNK1 and those encoded by known FMRP-binding mRNAs. Together, our data implicate MNK1 as a key component of BDNF-mediated translational regulation in neurons.

  19. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses.

    PubMed

    Zhang, Huajian; Li, Deqing; Wang, Meifang; Liu, Jiewen; Teng, Wenjun; Cheng, Baoping; Huang, Qian; Wang, Min; Song, Wenwen; Dong, Suomeng; Zheng, Xiaobo; Zhang, Zhengguang

    2012-12-01

    Many bacterial, fungal, and oomycete species secrete necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) that trigger programmed cell death (PCD) and innate immune responses in dicotyledonous plants. However, how NLP induce such immune responses is not understood. Here, we show that silencing of the MAPKKKα-MEK2-WIPK mitogen-activated protein kinase (MAPK) cascade through virus-induced gene silencing compromises hydrogen peroxide accumulation and PCD induced by Nep1(Mo) from Magnaporthe oryzae. WIPK interacts with NbWRKY2, a transcription factor in Nicotiana benthamiana, in vitro and in vivo, suggesting an effector pathway that mediates Nep1(Mo)-induced cell death. Unexpectedly, salicylic acid-induced protein kinase (SIPK)- and NbWRKY2-silenced plants showed impaired Nep1(Mo)-induced stomatal closure, decreased Nep1(Mo)-promoted nitric oxide (NO) production in guard cells, and a reduction in Nep1(Mo)-induced resistance against Phytophthora nicotianae. Expression studies by real-time polymerase chain reaction suggested that the MEK2-WIPK-NbWRKY2 pathway regulated Nep1(Mo)triggered NO accumulation could be partly dependent on nitrate reductase, which was implicated in NO synthesis. Taken together, these studies demonstrate that the MAPK cascade is involved in Nep1(Mo)-triggered plant responses and MAPK signaling associated with PCD exhibits shared and distinct components with that for stomatal closure.

  20. Dibutyltin activates MAP kinases in human natural killer cells, in vitro.

    PubMed

    Odman-Ghazi, Sabah O; Abraha, Abraham; Isom, Erica Taylor; Whalen, Margaret M

    2010-10-01

    Previous studies have shown that dibutyltin (DBT) interferes with the function of human natural killer (NK) cells, diminishing their capacity to destroy tumor cells, in vitro. DBT is a widespread environmental contaminant and has been found in human blood. As NK cells are our primary immune defense against tumor cells, it is important to understand the mechanism by which DBT interferes with their function. The current study examines the effects of DBT exposures on key enzymes in the signaling pathway that regulates NK responsiveness to tumor cells. These include several protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), and mitogen-activated protein kinase kinases (MAP2Ks). The results showed that in vitro exposures of NK cells to DBT had no effect on PTKs. However, exposures to DBT for as little as 10 min were able to increase the phosphorylation (activation) of the MAPKs. The DBT-induced activations of these MAPKs appear to be due to DBT-induced activations of the immediate upstream activators of the MAPKs, MAP2Ks. The results suggest that DBT-interference with the MAPK signaling pathway is a consequence of DBT exposures, which could account for DBT-induced decreases in NK function.

  1. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis.

    PubMed

    Kachaner, David; Pinson, Xavier; El Kadhi, Khaled Ben; Normandin, Karine; Talje, Lama; Lavoie, Hugo; Lépine, Guillaume; Carréno, Sébastien; Kwok, Benjamin H; Hickson, Gilles R; Archambault, Vincent

    2014-10-27

    Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks.

  2. Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis

    PubMed Central

    Hellesøy, Monica; Lorens, James B.

    2015-01-01

    The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089

  3. Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2

    PubMed Central

    Perander, Maria; Al-Mahdi, Rania; Jensen, Thomas C.; Nunn, Jennifer A. L.; Kildalsen, Hanne; Johansen, Bjarne; Gabrielsen, Mads; Keyse, Stephen M.; Seternes, Ole-Morten

    2017-01-01

    The atypical MAP kinases ERK3 and ERK4 are activated by phosphorylation of a serine residue lying within the activation loop signature sequence S-E-G. However, the regulation of ERK3 and ERK4 phosphorylation and activity is poorly understood. Here we report that the inducible nuclear dual-specificity MAP kinase phosphatase (MKP) DUSP2, a known regulator of the ERK and p38 MAPKs, is unique amongst the MKP family in being able to bind to both ERK3 and ERK4. This interaction is mediated by a conserved common docking (CD) domain within the carboxyl-terminal domains of ERK3 and ERK4 and the conserved kinase interaction motif (KIM) located within the non-catalytic amino terminus of DUSP2. This interaction is direct and results in the dephosphorylation of ERK3 and ERK4 and the stabilization of DUSP2. In the case of ERK4 its ability to stabilize DUSP2 requires its kinase activity. Finally, we demonstrate that expression of DUSP2 inhibits ERK3 and ERK4-mediated activation of its downstream substrate MK5. We conclude that the activity of DUSP2 is not restricted to the classical MAPK pathways and that DUSP2 can also regulate the atypical ERK3/4-MK5 signalling pathway in mammalian cells. PMID:28252035

  4. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction.

    PubMed

    Proft, Markus; Struhl, Kevin

    2004-08-06

    In yeast, hyperosmotic stress causes an immediate dissociation of most proteins from chromatin, presumably because cells are unprepared for, and initially unresponsive to, increased ion concentrations in the nucleus. Osmotic stress activates Hog1 MAP kinase, which phosphorylates at least two proteins located at the plasma membrane, the Nha1 Na+/H+ antiporter and the Tok1 potassium channel. Hog1 phosphorylation stimulates Nha1 activity, and this is crucial for the rapid reassociation of proteins with their target sites in chromatin. This initial response to hyperosmolarity precedes and temporally regulates the activation of stress-response genes that depends on Hog1 phosphorylation of transcription factors in the nucleus. Thus, a single MAP kinase coordinates temporally, spatially, and mechanistically distinct responses to stress, thereby providing very rapid stress relief that facilitates subsequent changes in gene expression that permit long-term adaptation to harsh environmental conditions.

  5. PD98059 and U0126 activate AMP-activated protein kinase by increasing the cellular AMP:ATP ratio and not via inhibition of the MAP kinase pathway.

    PubMed

    Dokladda, Kanchana; Green, Kevin A; Pan, David A; Hardie, D Grahame

    2005-01-03

    The MAP kinase pathway inhibitor U0126 caused phosphorylation and activation of AMP-activated protein kinase (AMPK) and increased phosphorylation of its downstream target acetyl-CoA carboxylase, in HEK293 cells. This effect only occurred in cells expressing the upstream kinase, LKB1. Of two other widely used MAP kinase pathway inhibitors not closely related in structure to U0126, PD98059 also activated AMPK but PD184352 did not. U0126 and PD98059, but not PD184352, also increased the cellular ADP:ATP and AMP:ATP ratios, accounting for their ability to activate AMPK. These results suggest the need for caution in interpreting experiments conducted using U0126 and PD98059.

  6. Sevoflurane Stimulates MAP Kinase Signal transduction through the Activation of PKC α and βII in Fetal Rat Cerebral Cortex Cultured Neuron

    PubMed Central

    Hasegawa, Jun; Takekoshi, Susumu; Nagata, Hidetaka; Osamura, R. Yoshiyuki; Suzuki, Toshiyasu

    2006-01-01

    Protein kinase C (PKC) is a key enzyme that participates in various neuronal functions. PKC has also been identified as a target molecule for general anesthetic actions. Raf, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK1/2) have been thought to be target effectors of PKC. In the present study, we attempted to evaluate the effect of sevoflurane on PKC/MAPK cascade signaling in cultured fetal rat cerebral ­cortex neurons, prepared from embryonic day 18 fetuses. The effects of sevoflurane on the translocation of 7 PKC isoforms (α, βI, βII, γ, δ, ɛ and ζ) were observed by immunoblotting using isoform-selective antibodies to PKCs. The treatment of neurons with sevoflurane induced the translocation of PKC α and PKC βII species from the cytosol to the membrane fraction, which indicated the activation of these PKC isoforms. In contrast, there was no clear change in the distribution of other PKC isoforms. We next examined whether the specific activation of PKC α and βII by sevoflurane could stimulate the MAP kinase signaling pathway in cultured neurons. Raf phosphorylation was increased by the administration of 0.25 mM sevoflurane. The phosphorylation of Raf proteins reached a maximum at 5–10 min. Subsequently, the phosphorylation of MEK proteins was increased at 10–15 min after sevoflurane treatments. That of ERK proteins was induced at 15–60 min. Moreover, the phosphorylation of ERK induced by sevoflurane was significantly decreased by the treatment of PKC inhibitor (staurosporine) and MEK inhibitor (PD98059). On the other hand, the contents of total Raf, MEK and ERK proteins were relatively constant at all times examined. To examine the ­localization of phosphorylated-ERK protein, immunohistochemical staining of sevoflurane-treated cultured neurons was performed. The phosphorylated-ERK proteins were markedly accumulated in both the cytosol of the cell body and the neurites in the neuronal cells with time after 0

  7. The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis

    PubMed Central

    Nadarajan, Saravanapriah; Mohideen, Firaz; Tzur, Yonatan B; Ferrandiz, Nuria; Crawley, Oliver; Montoya, Alex; Faull, Peter; Snijders, Ambrosius P; Cutillas, Pedro R; Jambhekar, Ashwini; Blower, Michael D; Martinez-Perez, Enrique; Harper, J Wade; Colaiacovo, Monica P

    2016-01-01

    Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.12039.001 PMID:26920220

  8. Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers.

    PubMed

    Bazargani, Hamed Pishvai; Azaña, José

    2015-09-07

    We propose and numerically validate a new design concept for on-chip optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers. We show that under weak-coupling conditions, the amplitude and phase of the discrete complex apodization profile of the device can be directly mapped into its temporal impulse response. In this scheme, the amplitude and phase of the apodization profile can be controlled by tuning the coupling strength and relative time delay between the couplers, respectively. The proposed concept enables direct synthesis of the target temporal waveforms over a very broad range of time-resolution, from the femtosecond to the sub-nanosecond regime, using readily feasible integrated waveguide technologies. Moreover, the device offers compactness and the potential for reconfigurability.

  9. MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula

    PubMed Central

    Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo

    2017-01-01

    Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors. PMID:28152300

  10. Combinatory action of VEGFR2 and MAP kinase pathways maintains endothelial-cell integrity.

    PubMed

    Zhong, Hanbing; Wang, Danyang; Wang, Nan; Rios, Yesenia; Huang, Haigen; Li, Song; Wu, Xinrong; Lin, Shuo

    2011-07-01

    Blood vessels normally maintain stereotyped lumen diameters and their stable structures are crucial for vascular function. However, very little is known about the molecular mechanisms controlling the maintenance of vessel diameters and the integrity of endothelial cells. We investigated this issue in zebrafish embryos by a chemical genetics approach. Small molecule libraries were screened using live Tg(kdrl:GRCFP)(zn1) transgenic embryos in which endothelial cells are specifically labeled with GFP. By analyzing the effects of compounds on the morphology and function of embryonic blood vessels after lumen formation, PP1, a putative Src kinase inhibitor, was identified as capable of specifically reducing vascular lumen size by interrupting endothelial-cell integrity. The inhibitory effect is not due to Src or general VEGF signaling inhibition because another Src inhibitor and Src morpholino as well as several VEGFR inhibitors failed to produce a similar phenotype. After profiling a panel of 22 representative mammalian kinases and surveying published data, we selected a few possible new candidates. Combinational analysis of these candidate kinase inhibitors established that PP1 induced endothelial collapse by inhibiting both the VEGFR2 and MAP kinase pathways. More importantly, combinatory use of two clinically approved drugs Dasatinib and Sunitinib produced the same phenotype. This is the first study to elucidate the pathways controlling maintenance of endothelial integrity using a chemical genetics approach, indicating that endothelial integrity is controlled by the combined action of the VEGFR2 and MAP kinase pathways. Our results also suggest the possible side effect of the combination of two anticancer drugs on the circulatory system.

  11. MST50 Is Involved in Multiple MAP Kinase Signaling Pathways in Magnaporthe oryzae.

    PubMed

    Li, Guotian; Zhang, Xue; Tian, Huan; Choi, Yoon-E; Andy Tao, W; Xu, Jin-Rong

    2017-02-28

    Appressorium formation plays a critical role in Magnaporthe oryzae. Mst50 is an adapter protein of the Mst11-Mst7-Pmk1 cascade that is essential for appressorium formation. To further characterize its functions, affinity purification was used to identify Mst50-interacting proteins (MIPs) in this study. Two of the MIPs are Mst11 and Mst7 that are known to interact with Mst50 for Pmk1 activation. Surprisingly, two other MIPs are Mck1 and Mkk2 that are the upstream kinases of the Mps1 pathway. Domain deletion analysis showed that the sterile alpha-motif of Mst50 but not the Ras-association domain was important for its interaction with Mck1 and responses to cell wall and oxidative stresses. The mst50 mutant was reduced in Mps1 activation under stress conditions. MIP11 encodes a RACK1 protein that also interacted with Mck1. Deletion of MIP11 resulted in defects in cell wall integrity, Mps1 phosphorylation, and plant infection. Furthermore, Mst50 interacted with histidine kinase Hik1, and the mst50 mutant was reduced in Osm1 phosphorylation. These results indicated that Mst50 is involved in all three MAPK pathways in M. oryzae although its functions differ in each pathway. Several MIPs are conserved hypothetical proteins and may be involved in responses to various signals and crosstalk among signaling pathways. This article is protected by copyright. All rights reserved.

  12. The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs.

    PubMed Central

    Nebreda, A R; Hunt, T

    1993-01-01

    During studies of the activation and inactivation of the cyclin B-p34cdc2 protein kinase (MPF) in cell-free extracts of Xenopus oocytes and eggs, we found that a bacterially expressed fusion protein between the Escherichia coli maltose-binding protein and the Xenopus c-mos protein kinase (malE-mos) activated a 42 kDa MAP kinase. The activation of MAP kinase on addition of malE-mos was consistent, whereas the activation of MPF was variable and failed to occur in some oocyte extracts in which cyclin A or okadaic acid activated both MPF and MAP kinase. In cases when MPF activation was transient, MAP kinase activity declined after MPF activity was lost, and MAP kinase, but not MPF, could be maintained at a high level by the presence of malE-mos. When intact oocytes were treated with progesterone, however, the activation of MPF and MAP kinase occurred simultaneously, in contrast to the behaviour of extracts. These observations suggest that one role of c-mos may be to maintain high MAP kinase activity in meiosis. They also imply that the activation of MPF and MAP kinase in vivo are synchronous events that normally rely on an agent that has still to be identified. Images PMID:8387916

  13. Lidar Mapping Documents Post-glacial Faulting West of the High Cascades Axis at Crater Lake National Park, Oregon

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Robinson, J. E.

    2014-12-01

    The Cascades magmatic arc lies mainly within the High Cascades graben system in the state of Oregon. Normal faults of the Klamath graben trend north into Mount Mazama, the volcano whose catastrophic eruption ~7700 cal y BP resulted in collapse of 8x10 km Crater Lake caldera. Geologic mapping of Mount Mazama (Bacon, USGS SIM 2832, 2008) delineated faults of the West Klamath Lake fault zone (WKLFZ) and their northern extensions through Crater Lake National Park west of the caldera. Outcrop patterns implied presence of normal faults farther west but dense conifer forest made discovery of subtle scarps impractical. Closer to the Cascades axis, successively decreasing offsets of mapped Mazama lava flows with decreasing age yielded a long-term vertical slip rate of ~0.3 mm/y on the principal fault segments of the WKLFZ near Crater Lake, where the youngest offset lavas are 35 ka in age. Other workers have found offset lateral moraine crests where Last Glacial Maximum (LGM) valley glaciers crossed the WKLFZ south of Crater Lake. A lidar survey of Crater Lake National Park in 2010 supported by the Oregon Lidar Consortium (Robinson, USGS Data Series 716, 2012) revealed meter-scale, dominantly N-S trending fault scarps with down-to-the-east displacement west of most previously mapped faults at the latitude of Crater Lake, increasing the known width of the fault zone there to as much as 11 km. Fault segments as long as 7-16 km form a semi-continuous system for virtually the entire 32 km N-S extent of lidar coverage. Along the western part of the fault zone, scarp height is as great as ~20 m. Scarp length and height imply that several M>6-7 earthquakes have occurred in late Pleistocene-Holocene time. Field observations show that the ignimbrite of the Mazama climactic eruption banks against or covers scarps. One fault vertically displaces a lateral moraine ~3 m. The moraine contains clasts of ~50 ka andesite and therefore likely dates from the LGM so that the most recent

  14. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    PubMed

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  15. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  16. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru

    NASA Astrophysics Data System (ADS)

    Schneider, D.; Huggel, C.; Cochachin, A.; Guillén, S.; García, J.

    2014-01-01

    Recent warming has had enormous impacts on glaciers and high-mountain environments. Hazards have changed or new ones have emerged, including those from glacier lakes that form as glaciers retreat. The Andes of Peru have repeatedly been severely impacted by glacier lake outburst floods in the past. An important recent event occurred in the Cordillera Blanca in 2010 when an ice avalanche impacted a glacier lake and triggered an outburst flood that affected the downstream communities and city of Carhuaz. In this study we evaluate how such complex cascades of mass movement processes can be simulated coupling different physically-based numerical models. We furthermore develop an approach that allows us to elaborate corresponding hazard maps according to existing guidelines for debris flows and based on modelling results and field work.

  17. Mapping the structural topology of IRS family cascades through computational biology.

    PubMed

    Chakraborty, Chiranjib; Doss, C George Priya; Bandyopadhyay, Sanghamitra; Sarkar, Bimal Kumar; Haneef, S A Syed

    2013-01-01

    Structural topologies of proteins play significant roles in analyzing their biological functions. Converting the amino acid data in a protein sequence into structural information to outline the function of a protein is a major challenge in post-genome research which can add an extra room in understanding the protein sequence-structure-function relationships. In this study, we performed a comprehensive bioinformatics analysis of structural topology of the IRS family members such as IRS-1, IRS-2, IRS-3, IRS-4, IRS-5 and IRS-6. Based on this assessment, we found that IRS-2 encloses the highest number of α helices, β sheets and β turns in the secondary structure topology compared to IRS-1 and IRS-6. IRS family members are rich in serine or leucine residues. Among the IRS family members, the highest percentage of serine and leucine was observed in IRS-1 (15%) and IRS-5 (10%), respectively. Notably, the highest number of disulphide bonds was observed in IRS-1 (10) which is responsible for structural stability of the protein. Hydrogen bond pattern in α helices and β sheet was recorded in IRS-1, IRS-2 and IRS-6. By conservation analysis, the longest protein IRS-3 was found to be highly conserved among the IRS family members. The cluster of sequence logo present in the N terminus of these cascades was noted, and highly conserved residues in N-terminal region help in the formation of the two highly conserved domains such as PH domain and PTB domain. Results generated from this analysis will be more beneficial to researchers in understanding more about insulin signalling mechanism(s) as well as insulin resistance pathway. We discuss here that bioinformatics tools utilized in this study can play a vital role in addressing the complexity of structural topology to understand structure-function relationships in insulin signalling cascades.

  18. Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase

    PubMed Central

    Morfini, Gerardo A.; Bosco, Daryl A.; Brown, Hannah; Gatto, Rodolfo; Kaminska, Agnieszka; Song, Yuyu; Molla, Linda; Baker, Lisa; Marangoni, M. Natalia; Berth, Sarah; Tavassoli, Ehsan; Bagnato, Carolina; Tiwari, Ashutosh; Hayward, Lawrence J.; Pigino, Gustavo F.; Watterson, D. Martin; Huang, Chun-Fang; Banker, Gary; Brown, Robert H.; Brady, Scott T.

    2013-01-01

    Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS. PMID:23776455

  19. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae

    PubMed Central

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-01-01

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes. PMID:27782169

  20. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis

    PubMed Central

    Brachmann, Andreas; Schirawski, Jan; Müller, Philip; Kahmann, Regine

    2003-01-01

    In Ustilago maydis, pathogenic development is controlled by a heterodimer of the two homeodomain proteins bW and bE. We have identified by RNA fingerprinting a b-regulated gene, kpp6, which encodes an unusual MAP kinase. Kpp6 is similar to a number of other fungal MAP kinases involved in mating and pathogenicity, but contains an additional N-terminal domain unrelated to other proteins. Transcription of the kpp6 gene yields two transcripts differing in length, but encoding proteins of identical mass. One transcript is upregulated by the bW/bE heterodimer, while the other is induced after pheromone stimulation. kpp6 deletion mutants are attenuated in pathogenicity. kpp6T355A,Y357F mutants carrying a non-activatable allele of kpp6 are more severely compromised in pathogenesis. These strains can still form appressoria, but are defective in the subsequent penetration of the plant cuticle. Kpp6 is expressed during all stages of the sexual life cycle except mature spores. We speculate that Kpp6 may respond to a plant signal and regulate the genes necessary for efficient penetration of plant tissue. PMID:12727886

  1. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis.

    PubMed

    Brachmann, Andreas; Schirawski, Jan; Müller, Philip; Kahmann, Regine

    2003-05-01

    In Ustilago maydis, pathogenic development is controlled by a heterodimer of the two homeodomain proteins bW and bE. We have identified by RNA fingerprinting a b-regulated gene, kpp6, which encodes an unusual MAP kinase. Kpp6 is similar to a number of other fungal MAP kinases involved in mating and pathogenicity, but contains an additional N-terminal domain unrelated to other proteins. Transcription of the kpp6 gene yields two transcripts differing in length, but encoding proteins of identical mass. One transcript is upregulated by the bW/bE heterodimer, while the other is induced after pheromone stimulation. kpp6 deletion mutants are attenuated in pathogenicity. kpp6(T355A,Y357F) mutants carrying a non-activatable allele of kpp6 are more severely compromised in pathogenesis. These strains can still form appressoria, but are defective in the subsequent penetration of the plant cuticle. Kpp6 is expressed during all stages of the sexual life cycle except mature spores. We speculate that Kpp6 may respond to a plant signal and regulate the genes necessary for efficient penetration of plant tissue.

  2. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    PubMed

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds.

  3. Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast.

    PubMed

    Shiozaki, K; Russell, P

    1995-02-01

    With the goal of discovering the cellular functions of type 2C protein phosphatases, we have cloned and analyzed two ptc (phosphatase two C) genes, ptc2+ and ptc3+, from the fission yeast Schizosaccharomyces pombe. Together with the previously identified ptc1+ gene, the enzymes encoded by these genes account for approximately 90% of the measurable PP2C activity in fission yeast cells. No obvious growth defects result from individual disruptions of ptc genes, but a delta ptc1 delta ptc3 double mutant displays aberrant cell morphology and temperature-sensitive cell lysis that is further accentuated in a delta ptc1 delta ptc2 delta ptc3 triple mutant. These phenotypes are almost completely suppressed by the presence of osmotic stabilizers, strongly indicating that PP2C has an important role in osmoregulation. Genetic suppression of delta ptc1 delta ptc3 lethality identified two loci, mutations of which render cells hypersensitive to high-osmolarity media. One locus is identical to wis1+, encoding a MAP kinase kinase (MEK) homolog. The Wis1 sequence is most closely related to the Saccharomyces cerevisiae MEK encoded by PBS2, which is required for osmoregulation. These data indicate that divergent yeasts have functionally conserved MAP kinase pathways, which are required to increase intracellular osmotic concentrations in response to osmotic stress. Moreover, our observations implicate PP2C enzymes as also having an important role in signal transduction processes involved in osmoregulation, probably acting to negatively regulate the osmosensing signal that is transmitted through Wis1 MAP kinase kinase.

  4. Chemical Genetics Approach Reveals Importance of cAMP and MAP Kinase Signaling to Lipid and Carotenoid Biosynthesis in Microalgae.

    PubMed

    Choi, Yoon-E; Rhee, Jin-Kyu; Kim, Hyun-Soo; Ahn, Joon-Woo; Hwang, Hyemin; Yang, Ji-Won

    2015-05-01

    In this study, we attempted to understand signaling pathways behind lipid biosynthesis by employing a chemical genetics approach based on small molecule inhibitors. Specific signaling inhibitors of MAP kinase or modulators of cAMP signaling were selected to evaluate the functional roles of each of the key signaling pathways in three different microalgal species: Chlamydomonas reinhardtii, Chlorella vulgaris, and Haematococcus pluvialis. Our results clearly indicate that cAMP signaling pathways are indeed positively associated with microalgal lipid biosynthesis. In contrast, MAP kinase pathways in three microalgal species are all negatively implicated in both lipid and carotenoid biosynthesis.

  5. Modeling and hazard mapping of complex cascading mass movement processes: the case of glacier lake 513, Carhuaz, Peru

    NASA Astrophysics Data System (ADS)

    Schneider, Demian; Huggel, Christian; García, Javier; Ludeña, Sebastian; Cochachin, Alejo

    2013-04-01

    that complex cascades of mass movement processes can realistically be modeled using different models and model parameters. The method to semi-automatically produce hazard maps is promising and should be applied in other case studies. Verification of model based results in the field remains an important requirement. Results from this study are important for the GLOF early warning system that is currently in an implementation phase, and for risk reduction efforts in general.

  6. The Luteinizing Hormone Receptor-Activated Extracellularly Regulated Kinase-1/2 Cascade Stimulates Epiregulin Release from Granulosa Cells

    PubMed Central

    Andric, Nebojsa; Ascoli, Mario

    2008-01-01

    We examine the pathways involved in the luteinizing hormone receptor (LHR)-dependent activation of the epidermal growth factor (EGF) network using cocultures of LHR-positive granulosa cells and LHR-negative test cells expressing an EGF receptor (EGFR)-green fluorescent protein fusion protein. Activation of the LHR in granulosa cells results in the release of EGF-like growth factors that are detected by measuring the phosphorylation of the EGFR-green fluorescent protein expressed only in the LHR-negative test cells. Using neutralizing antibodies and real-time PCR, we identified epiregulin as the main EGF-like growth factor produced upon activation of the LHR expressed in immature rat granulosa cells, and we show that exclusive inhibition or activation of the ERK1/2 cascade in granulosa cells prevents or enhances epiregulin release, respectively, with little or no effect on epiregulin expression. These results show that the LHR-stimulated ERK1/2 pathway stimulates epiregulin release. PMID:18653716

  7. Hormonal activation of a kinase cascade localized at the mitochondria is required for StAR protein activity.

    PubMed

    Poderoso, Cecilia; Maloberti, Paula; Duarte, Alejandra; Neuman, Isabel; Paz, Cristina; Cornejo Maciel, Fabiana; Podesta, Ernesto J

    2009-03-05

    It is known that ERK1/2 and MEK1/2 participate in the regulation of Star gene transcription. However, their role in StAR protein post-transcriptional regulation is not described yet. In this study we analyzed the relationship between the MAPK cascade and StAR protein phosphorylation and function. We have demonstrated that (a) steroidogenesis in MA-10 Leydig cells depends on the specific of ERK1/2 activation at the mitochondria; (b) ERK1/2 phosphorylation is driven by mitochondrial PKA and constitutive MEK1/2 in this organelle; (c) active ERK1/2 interacts with StAR protein, leads to StAR protein phosphorylation at Ser(232) only in the presence of cholesterol; (d) directed mutagenesis of Ser(232) (S232A) inhibited in vitro StAR protein phosphorylation by ERK1; (e) transient transfection of MA-10 cells with StAR S232A cDNA markedly reduced the yield of progesterone production. We show that StAR protein is a substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric complex that regulates cholesterol transport.

  8. Geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Smith, James G.

    1993-01-01

    For geothermal reasons, the maps emphasize Quaternary volcanic rocks. Large igneous-related geothermal systems that have high temperatures are associated with Quaternary volcanic fields, and geothermal potential declines rapidly as age increases (Smith and Shaw, 1975). Most high-grade recoverable geothermal energy is likely to be associated with silicic volcanism less than 1 Ma. Lower grade (= lower temperature) geothermal resources may be associated with somewhat older rocks; however, volcanic rocks older than about 2 Ma are unlikely geothermal targets (Smith and Shaw, 1975).

  9. The PTH-Gαs-Protein Kinase A Cascade Controls αNAC Localization To Regulate Bone Mass

    PubMed Central

    Pellicelli, Martin; Miller, Julie A.; Arabian, Alice; Gauthier, Claude; Akhouayri, Omar; Wu, Joy Y.; Kronenberg, Henry M.

    2014-01-01

    The binding of PTH to its receptor induces Gαs-dependent cyclic AMP (cAMP) accumulation to turn on effector kinases, including protein kinase A (PKA). The phenotype of mice with osteoblasts specifically deficient for Gαs is mimicked by a mutation leading to cytoplasmic retention of the transcriptional coregulator αNAC, suggesting that Gαs and αNAC form part of a common genetic pathway. We show that treatment of osteoblasts with PTH(1–34) or the PKA-selective activator N6-benzoyladenosine cAMP (6Bnz-cAMP) leads to translocation of αNAC to the nucleus. αNAC was phosphorylated by PKA at serine 99 in vitro. Phospho-S99-αNAC accumulated in osteoblasts exposed to PTH(1–34) or 6Bnz-cAMP but not in treated cells expressing dominant-negative PKA. Nuclear accumulation was abrogated by an S99A mutation but enhanced by a phosphomimetic residue (S99D). Chromatin immunoprecipitation (ChIP) analysis showed that PTH(1–34) or 6Bnz-cAMP treatment leads to accumulation of αNAC at the Osteocalcin (Ocn) promoter. Altered gene dosages for Gαs and αNAC in compound heterozygous mice result in reduced bone mass, increased numbers of osteocytes, and enhanced expression of Sost. Our results show that αNAC is a substrate of PKA following PTH signaling. This enhances αNAC translocation to the nucleus and leads to its accumulation at target promoters to regulate transcription and affect bone mass. PMID:24550008

  10. Thiazolides promote apoptosis in colorectal tumor cells via MAP kinase-induced Bim and Puma activation

    PubMed Central

    Brockmann, A; Bluwstein, A; Kögel, A; May, S; Marx, A; Tschan, M P; Brunner, T

    2015-01-01

    While many anticancer therapies aim to target the death of tumor cells, sophisticated resistance mechanisms in the tumor cells prevent cell death induction. In particular enzymes of the glutathion-S-transferase (GST) family represent a well-known detoxification mechanism, which limit the effect of chemotherapeutic drugs in tumor cells. Specifically, GST of the class P1 (GSTP1-1) is overexpressed in colorectal tumor cells and renders them resistant to various drugs. Thus, GSTP1-1 has become an important therapeutic target. We have recently shown that thiazolides, a novel class of anti-infectious drugs, induce apoptosis in colorectal tumor cells in a GSTP1-1-dependent manner, thereby bypassing this GSTP1-1-mediated drug resistance. In this study we investigated in detail the underlying mechanism of thiazolide-induced apoptosis induction in colorectal tumor cells. Thiazolides induce the activation of p38 and Jun kinase, which is required for thiazolide-induced cell death. Activation of these MAP kinases results in increased expression of the pro-apoptotic Bcl-2 homologs Bim and Puma, which inducibly bind and sequester Mcl-1 and Bcl-xL leading to the induction of the mitochondrial apoptosis pathway. Of interest, while an increase in intracellular glutathione levels resulted in increased resistance to cisplatin, it sensitized colorectal tumor cells to thiazolide-induced apoptosis by promoting increased Jun kinase activation and Bim induction. Thus, thiazolides may represent an interesting novel class of anti-tumor agents by specifically targeting tumor resistance mechanisms, such as GSTP1-1. PMID:26043078

  11. Flux Optimization in Human Specific Map-Kinase Pathways: A Systems Biology Approach to Study Cancer

    NASA Astrophysics Data System (ADS)

    Sahu, Sombeet

    2010-10-01

    Mitogen-Activated Protein Kinase (MAP kinases) transduces signals that are involved in a multitude of cellular pathways and functions in response to variety of ligands and cell stimuli. Aberrant or inappropriate functions of MAPKs have now been identified in diseases ranging from Cancer to Alzheimer disease to Leshmaniasis however the pathway is still growing and little is known about the dynamics of the pathway. Here we model the MAPK metabolic pathways and thus find the key metabolites or reactions involved on perturbing which the transcription factors are affected. The approach, which we used for modeling of this pathway, is Flux Balance Analysis (FBA). Further we established the growth factors EGF, PDGF were also responsible for the determination of downstream species concentrations. Tuning the parameters gave the optimum kinetics of the growth factor for which the downstream events were at the minimum. Also the Ras and Braf steady state concentrations were significantly affected when the Growth factor kinetics were tuned. This type of study can shed light on controlling various diseases and also may be helpful for identifying important drug targets.

  12. Stronger learning recruits additional cell-signaling cascades: c-Jun-N-terminal kinase 1 (JNK1) is necessary for expression of stronger contextual fear conditioning.

    PubMed

    Leach, Prescott T; Kenney, Justin W; Gould, Thomas J

    2015-02-01

    Increased training often results in stronger memories but the neural changes responsible for these stronger memories are poorly understood. It is proposed here that higher levels of training that result in stronger memories recruit additional cell signaling cascades. This study specifically examined if c-Jun N-terminal kinase 1 (JNK1) is involved in the formation of stronger fear conditioning memories. Wildtype (WT), JNK1 heterozygous (Het), and JNK1 knockout (KO) mice were fear conditioned with 1 trial, 2 trials, or 4 trials. All mice learned both contextual (hippocampus-dependent) and cued (hippocampus-independent) fear conditioning but for contextual fear conditioning only, the JNK1 KO mice did not show higher levels of learning with increased trials. That is, WT mice showed a significant linear increase in contextual fear conditioning as training trials increased from 1 to 2 to 4 trials whereas KO mice showed the same level of contextual fear conditioning as WT mice for 1 trial training but did not have increased levels of contextual fear conditioning with additional trials. These data suggest that JNK1 may not be critical for learning but when higher levels of hippocampus-dependent learning occur, JNK1 signaling is recruited and is necessary for stronger hippocampus-dependent memory formation.

  13. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade.

    PubMed

    Bahn, Yong-Sun; Hicks, Julie K; Giles, Steven S; Cox, Gary M; Heitman, Joseph

    2004-12-01

    The evolutionarily conserved cyclic AMP (cAMP) signaling pathway controls cell functions in response to environmental cues in organisms as diverse as yeast and mammals. In the basidiomycetous human pathogenic fungus Cryptococcus neoformans, the cAMP pathway governs virulence and morphological differentiation. Here we identified and characterized adenylyl cyclase-associated protein, Aca1, which functions in parallel with the Galpha subunit Gpa1 to control the adenylyl cyclase (Cac1). Aca1 interacted with the C terminus of Cac1 in the yeast two-hybrid system. By molecular and genetic approaches, Aca1 was shown to play a critical role in mating by regulating cell fusion and filamentous growth in a cAMP-dependent manner. Aca1 also regulates melanin and capsule production via the Cac1-cAMP-protein kinase A pathway. Genetic epistasis studies support models in which Aca1 and Gpa1 are necessary and sufficient components that cooperate to activate adenylyl cyclase. Taken together, these studies further define the cAMP signaling cascade controlling virulence of this ubiquitous human fungal pathogen.

  14. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade.

    PubMed Central

    Davis-Smyth, T; Chen, H; Park, J; Presta, L G; Ferrara, N

    1996-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic inducer that mediates its effects through two high affinity receptor tyrosine kinases, Flt-1 and KDR. Flt-1 is required for endothelial cell morphogenesis whereas KDR is involved primarily in mitogenesis. Flt-1 has an alternative ligand, placenta growth factor (PlGF). Both Flt-1 and KDR have seven immunoglobulin (Ig)-like domains in the extracellular domain. The significance and function of these domains for ligand binding and receptor activation are unknown. Here we show that deletion of the second domain of Flt-1 completely abolishes the binding of VEGF. Introduction of the second domain of KDR into an Flt-1 mutant lacking the homologous domain restored VEGF binding. However, the ligand specificity was characteristic of the KDR receptor. We then created chimeric receptors where the first three or just the second Ig-like domains of Flt-1 replaced the corresponding domains in Flt-4, a receptor that does not bind VEGF, and analyzed their ability to bind VEGF. Both swaps conferred upon Flt-4 the ability to bind VEGF with an affinity nearly identical to that of wild-type Flt-1. Furthermore, transfected cells expressing these chimeric Flt-4 receptors exhibited increased DNA synthesis in response to VEGF or PlGF. These results demonstrate that a single Ig-like domain is the major determinant for VEGF-PlGF interaction and that binding to this domain may initiate a signal transduction cascade. Images PMID:8890165

  15. Mapping Atmospheric Ammonia Emissions Using a Mobile Quantum Cascade Laser-based Open-path Sensor

    NASA Astrophysics Data System (ADS)

    Sun, K.; Tao, L.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.

    2012-12-01

    Ammonia (NH3) is a key precursor to atmospheric fine particulate matter, with strong implications for regional air quality and global climate change. Despite the importance of atmospheric ammonia, its spatial/temporal variation is poorly characterized, and the knowledge of its sources, sinks, and transport is severely limited. Existing measurements suggest that traffic exhaust may provide significant amounts of ammonia in urban areas, which cause greater impacts on particulate matter formation and urban air quality. To capture the spatial and temporal variation of ammonia emissions, a portable, low power sensor with high time resolution is necessary. We have developed a portable open-path ammonia sensor with a detection limit of 0.5 ppbv ammonia for 1 s measurements. The sensor has a power consumption of about 60 W and is capable of running on a car battery continuously for 24 hours. An additional laser has been coupled to the sensor to yield concurrent N2O and CO measurements as tracers for determining various sources. The overall sensor prototype fits on a 60 cm × 20 cm aluminum breadboard. Roadside measurements indicated NH3/CO emission ratios of 4.1±5.4 ppbv/ppmv from a fleet of 320 vehicles, which agree with existing on-ramp measurements. Urban measurements in the Baltimore and Washington, DC metropolitan areas have shown significant ammonia mixing ratios concurrent with carbon monoxide levels from the morning and evening rush hours. On-road measurements of our open-path sensor have also been performed continuously from the Midwest to Princeton, NJ including urban areas such as Pittsburgh, tunnels, and relatively clean conditions. The emission ratios of ammonia against CO and/or CO2 help identify the sources and amounts of both urban and agricultural ammonia emissions. Preliminary data from both spatial mapping, monitoring, and vehicle exhaust measurements suggest that urban ammonia emissions from fossil fuel combustion are significant and may provide an

  16. Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase.

    PubMed

    Rossi, Alessandra; Lord, Janet M

    2013-12-01

    Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1-10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.

  17. Overexpression of miR-199a-5p decreases esophageal cancer cell proliferation through repression of mitogen-activated protein kinase kinase kinase-11 (MAP3K11)

    PubMed Central

    Byrnes, Kimberly A.; Phatak, Pornima; Mansour, Daniel; Xiao, Lan; Zou, Tongtong; Rao, Jaladanki N.; Turner, Douglas J.; Wang, Jian-Ying; Donahue, James M.

    2016-01-01

    Studies examining the oncogenic or tumor suppressive functions of dysregulated microRNAs (miRs) in cancer cells may also identify novel miR targets, which can themselves serve as therapeutic targets. Using array analysis, we have previously determined that miR-199a-5p was the most downregulated miR in two esophageal cancer cell lines compared to esophageal epithelial cells. MiR-199a-5p is predicted to bind mitogen-activated protein kinase kinase kinase 11 (MAP3K11) mRNA with high affinity. In this study, we observed that MAP3K11 is markedly overexpressed in esophageal cancer cell lines. Forced expression of miR-199a-5p in these cells leads to a decrease in the mRNA and protein levels of MAP3K11, due to decreased MAP3K11 mRNA stability. A direct binding interaction between miR-199a-5p and MAP3K11 mRNA is demonstrated using biotin pull-down assays and heterologous luciferase reporter constructs and confirmed by mutational analysis. Finally, forced expression of miR-199a-5p decreases proliferation of esophageal cancer cells by inducing G2/M arrest. This effect is mediated, in part, by decreased transcription of cyclin D1, due to reduced MAP3K11-mediated phosphorylation of c-Jun. These findings suggest that miR-199a-5p acts as a tumor suppressor in esophageal cancer cells and that its downregulation contributes to enhanced cellular proliferation by targeting MAP3K11. PMID:26717044

  18. Characterization and mapping of the human rhodopsin kinase gene and screening of the gene for mutations in patients with retinitis pigmentosa

    SciTech Connect

    Khani, S.C.; Lin, D.; Magovcevic, I.

    1994-09-01

    Rhodopsin kinase (RK) is a cytosolic enzyme in rod photoreceptors that initiates the deactivation of the phototransductions cascade by phosphorylating photoactivated rhodopsin. Although the cDNA sequence of bovine RK has been determined previously, no human cDNA or genomic sequence has thus far been available for genetic studies. In order to investigate the possible role of this candidate gene in retinitis pigmentosa (RP) and allied diseases, we have isolated and characterized human cDNA and genomic clones derived from the RK locus. The coding sequence of the human gene is 1692 nucleotides in length and is split into seven exons. The human and the bovine sequence show 84% identity at the nucleotide level and 92% identity at the amino acid level. Thus far, the intronic sequences flanking each exon except for one have been determined. We have also mapped the human RK gene to chromosome 13q34 using fluorescence in situ hybridization. To our knowledge, no RP gene has as yet been linked to this region. However, since the substrate for RK (rhodopsin) and other members of the phototransduction cascade have been implicated in the pathogenesis of RP, it is conceivable that defects in RK can also cause some forms of this disease. We are evaluating this possibility by screening DNA from 173 patients with autosomal recessive RP and 190 patients with autosomal dominant RP. So far, we have found 11 patients with variant bands. In one patient with autosomal dominant RP we discovered the missense change Ser536Leu. Cosegregation studies and further sequencing of the variant bands are currently underway.

  19. Torilin Inhibits Inflammation by Limiting TAK1-Mediated MAP Kinase and NF-κB Activation

    PubMed Central

    Kim, Tae-Hwan; Kwak, Yi-Seong; Kim, Na-Mi; Kim, Seung-Hyung

    2017-01-01

    Torilin, a sesquiterpene isolated from the fruits of Torilis japonica, has shown antimicrobial, anticancer, and anti-inflammatory properties. However, data on the mechanism of torilin action against inflammation is limited. This study aimed at determining the anti-inflammatory property of torilin in LPS-induced inflammation using in vitro model of inflammation. We examined torilin's effect on expression levels of inflammatory mediators and cytokines in LPS-stimulated RAW 264.7 macrophages. The involvement of NF-kB and AP-1, MAP kinases, and adaptor proteins were assessed. Torilin strongly inhibited LPS-induced NO release, iNOS, PGE2, COX-2, NF-α, IL-1β, IL-6, and GM-CSF gene and protein expressions. In addition, MAPKs were also suppressed by torilin pretreatment. Involvement of ERK1/2, P38MAPK, and JNK1/2 was further confirmed by PD98059, SB203580, and SP600125 mediated suppression of iNOS and COX-2 proteins. Furthermore, torilin attenuated NF-kB and AP-1 translocation, DNA binding, and reporter gene transcription. Interestingly, torilin inhibited TAK1 kinase activation with the subsequent suppression of MAPK-mediated JNK, p38, ERK1/2, and AP-1 (ATF-2 and c-jun) activation and IKK-mediated I-κBα degradation, p65/p50 activation, and translocation. Together, the results revealed the suppression of NF-κB and AP-1 regulated inflammatory mediator and cytokine expressions, suggesting the test compound's potential as a candidate anti-inflammatory agent. PMID:28316375

  20. Panaxynol induces neurite outgrowth in PC12D cells via cAMP- and MAP kinase-dependent mechanisms.

    PubMed

    Wang, Ze-Jian; Nie, Bao-Ming; Chen, Hong-Zhuan; Lu, Yang

    2006-01-05

    Panaxynol, a polyacetylene ((3R)-heptadeca-1,9-diene-4,6-diyn-3-ol; syn. falcarinol), was isolated from the lipophilic fractions of Panax notoginseng, a Chinese traditional medicinal plant. In the present study, we reported the neurotrophic effects of panaxynol on PC12D cells and mechanism involved in neurite outgrowth of the cells. Panaxynol could morphologically promote neurite outgrowth in PC12D cells, concentration-dependently reduce cell division and up-regulate molecular marker (MAP1B) expression in PC12D cells. Panaxynol induces the elevation of intracellular cAMP in PC12D cells. The neurite outgrowth in PC12D cells induced by panaxynol could be inhibited by the protein kinase A inhibitor RpcAMPS and by MAP kinase kinase 1/2 inhibitor U0126. These observations reveal that panaxynol could induce the differentiation of PC12D cells in a process similar to but distinct from that of NGF and the panaxynol's effects were via cAMP- and MAP kinase-dependent mechanisms.

  1. Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy

    PubMed Central

    Cheng, Feixiong; Jia, Peilin; Wang, Quan; Zhao, Zhongming

    2014-01-01

    The human kinome is gaining importance through its promising cancer therapeutic targets, yet no general model to address the kinase inhibitor resistance has emerged. Here, we constructed a systems biology-based framework to catalogue the human kinome, including 538 kinase genes, in the broader context of the human interactome. Specifically, we constructed three networks: a kinase-substrate interaction network containing 7,346 pairs connecting 379 kinases to 36,576 phosphorylation sites in 1,961 substrates, a protein-protein interaction network (PPIN) containing 92,699 pairs, and an atomic resolution PPIN containing 4,278 pairs. We identified the conserved regulatory phosphorylation motifs (e.g., Ser/Thr-Pro) using a sequence logo analysis. We found the typical anticancer target selection strategy that uses network hubs as drug targets, might lead to a high adverse drug reaction risk. Furthermore, we found the distinct network centrality of kinases creates a high anticancer drug resistance risk by feedback or crosstalk mechanisms within cellular networks. This notion is supported by the systematic network and pathway analyses that anticancer drug resistance genes are significantly enriched as hubs and heavily participate in multiple signaling pathways. Collectively, this comprehensive human kinome interactome map sheds light on anticancer drug resistance mechanisms and provides an innovative resource for rational kinase inhibitor design. PMID:25003367

  2. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    PubMed Central

    2011-01-01

    Background MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer. Methods We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in MAP2K4 using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing MAP2K4 expression in cell lines. Results In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of MAP2K4 homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of MAP2K4 was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between MAP2K4 expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with MAP2K4 siRNA showed some reduction in proliferation. Conclusions MAP2K4 is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort. PMID:21575258

  3. Dysfunction of calcium/calmodulin/CaM kinase IIα cascades in the medial prefrontal cortex in post-traumatic stress disorder.

    PubMed

    Wen, Yu; Li, Bin; Han, Fang; Wang, Enhua; Shi, Yuxiu

    2012-11-01

    Post-traumatic stress disorder (PTSD) is a significant problem that may affect individuals who have been exposed to a traumatic event or events, including combat, violent crime or childhood abuse. The medial prefrontal cortex (mPFC) is known to be significantly involved in emotional adjustment, particularly introspection, amygdala inhibition and emotional memory. In the acute phase of severe traumatic stress, the mPFC appears to undergo a change in plasticity for a short time, which suggests that the mPFC may be the reponse-sensitizing region. Calcium (Ca2+) is one of most significant intracellular messengers; the appropriate concentration of Ca2+ is necessary for neuronal excitability. When the Ca2+ concentration increases, Ca2+, calmodulin (CaM) and CaM kinase IIα (CaMKIIα) combine together to form the Ca2+‑CaM‑CaMKIIα signaling pathway, which is important in the plasticity of the central nervous system, learning and memory, mind, behavior and other types of cognitive activities. Our team studied the changes in the Ca2+-CaM-CaMKIIα levels in the mPFC of rats following a single-prolonged stress (SPS). The SPS, a credible method for establishing a rat model of PTSD, has been internationally recognized. The free intracellular Ca2+ concentration in the mPFC in the PTSD group was significantly higher than that in the control group 1 day after SPS exposure (P<0.05) and decreased 7 days after SPS; CaM expression significantly increased, while CaMKIIα expression significantly decreased in the mPFC 1 day after SPS compared with the control group. These findings suggest dysfunction of the Ca2+-CaM-CaMKIIα cascades in the mPFC, which may relate to the pathogenesis of the abnormal functioning of the mPFC in PTSD.

  4. Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression1[OPEN

    PubMed Central

    Weimer, Annika K.; Stoppin-Mellet, Virginie; Kosetsu, Ken; Cedeño, Cesyen; Jaquinod, Michel; Njo, Maria; De Milde, Liesbeth; Tompa, Peter; Inzé, Dirk; Beeckman, Tom; Vantard, Marylin

    2017-01-01

    Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1—a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants—is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases. PMID:27879390

  5. Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression.

    PubMed

    Boruc, Joanna; Weimer, Annika K; Stoppin-Mellet, Virginie; Mylle, Evelien; Kosetsu, Ken; Cedeño, Cesyen; Jaquinod, Michel; Njo, Maria; De Milde, Liesbeth; Tompa, Peter; Gonzalez, Nathalie; Inzé, Dirk; Beeckman, Tom; Vantard, Marylin; Van Damme, Daniël

    2017-01-01

    Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1-a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants-is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases.

  6. IκB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases

    PubMed Central

    Ben-Addi, Abduelhakem; Mambole-Dema, Agnes; Brender, Christine; Martin, Stephen R.; Janzen, Julia; Kjaer, Sven; Smerdon, Stephen J.; Ley, Steven C.

    2014-01-01

    The MEK-1/2 kinase TPL-2 is critical for Toll-like receptor activation of the ERK-1/2 MAP kinase pathway during inflammatory responses, but it can transform cells following C-terminal truncation. IκB kinase (IKK) complex phosphorylation of the TPL-2 C terminus regulates full-length TPL-2 activation of ERK-1/2 by a mechanism that has remained obscure. Here, we show that TPL-2 Ser-400 phosphorylation by IKK and TPL-2 Ser-443 autophosphorylation cooperated to trigger TPL-2 association with 14-3-3. Recruitment of 14-3-3 to the phosphorylated C terminus stimulated TPL-2 MEK-1 kinase activity, which was essential for TPL-2 activation of ERK-1/2. The binding of 14-3-3 to TPL-2 was also indispensible for lipopolysaccharide-induced production of tumor necrosis factor by macrophages, which is regulated by TPL-2 independently of ERK-1/2 activation. Our data identify a key step in the activation of TPL-2 signaling and provide a mechanistic insight into how C-terminal deletion triggers the oncogenic potential of TPL-2 by rendering its kinase activity independent of 14-3-3 binding. PMID:24912162

  7. In vivo and in vitro correlation of pulmonary MAP kinase activation following metallic exposure.

    PubMed

    Silbajoris, R; Ghio, A J; Samet, J M; Jaskot, R; Dreher, K L; Brighton, L E

    2000-06-01

    Residual oil fly ash (ROFA) is a particulate pollutant produced in the combustion of fuel oil. Exposure to ROFA is associated with adverse respiratory effects in humans, induces lung inflammation in animals, and induces inflammatory mediator expression in cultured human airway epithelial cells (HAEC). ROFA has a high content of transition metals, including vanadium, a potent tyrosine phosphatase inhibitor that we have previously shown to disregulate phosphotyrosine metabolism and activate mitogen-activated protein kinase (MAPK) signaling cascades in HAEC. In order to study MAPK activation in response to in vivo metal exposure, we used immunohistochemical methods to detect levels of phosphorylated protein tyrosines (P-Tyr) and the MAPKs ERK1/2, JNK, and P38 in lung sections from rats intratracheally exposed to ROFA. After a 1-h exposure to 500 microg ROFA, rat lungs showed no histological changes and no significant increases in immunostaining for either P-Tyr or phospho-(P-) MAPKs compared to saline-instilled controls. At 4 h of exposure, there was mild and variable inflammation in the lung, which was accompanied by an increase in specific immunostaining for P-Tyr and P-MAPKs in airway and alveolar epithelial cells and resident macrophages. By 24 h of exposure, there was a pronounced inflammatory response to ROFA instillation and a marked increase in levels of P-Tyr and P-MAPKs present within the alveolar epithelium and in the inflammatory cells, while the airway epithelium showed a continued increase in the expression of P-ERK1/2. By comparison, HAEC cultures exposed to 100 microg/ml ROFA for 20 min resulted in marked increases in P-Tyr and P-MAPKs, which persisted after 24 h of exposure. P-Tyr levels continued to accumulate for up to 24 h in HAEC exposed to ROFA. These results demonstrate in vivo activation in cell signaling pathways in response to pulmonary exposure to particulate matter, and support the relevance of in vitro studies in the identification of

  8. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway

    PubMed Central

    Jandric, Zeljkica; Gregori, Christa; Klopf, Eva; Radolf, Martin; Schüller, Christoph

    2013-01-01

    Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in C. glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologs CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG) pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species and it required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway. PMID:24324463

  9. Regulation of the wheat MAP kinase phosphatase 1 by 14-3-3 proteins.

    PubMed

    Ghorbel, Mouna; Cotelle, Valérie; Ebel, Chantal; Zaidi, Ikram; Ormancey, Mélanie; Galaud, Jean-Philippe; Hanin, Moez

    2017-04-01

    Plant MAP kinase phosphatases (MKPs) are major regulators of MAPK signaling pathways and play crucial roles in controlling growth, development and stress responses. The presence of several functional domains in plant MKPs such as a dual specificity phosphatase catalytic domain, gelsolin, calmodulin-binding and serine-rich domains, suggests that MKPs can interact with distinct cellular partners, others than MAPKs. In this report, we identified a canonical mode I 14-3-3-binding motif (574KLPSLP579) located at the carboxy-terminal region of the wheat MKP, TMKP1. We found that this motif is well-conserved among other MKPs from monocots including Hordeum vulgare, Brachypodium distachyon and Aegilops taushii. Using co-immunoprecipitation assays, we provide evidence for interaction between TMKP1 and 14-3-3 proteins in wheat. Moreover, the phosphatase activity of TMKP1 is increased in a phospho-dependent manner by either Arabidopsis or yeast 14-3-3 isoforms. TMKP1 activation by 14-3-3 proteins is enhanced by Mn(2+), whereas in the presence of Ca(2+) ions, TMKP1 activation was limited to Arabidopsis 14-3-3φ (phi), an isoform harboring an EF-hand motif. Such findings strongly suggest that 14-3-3 proteins, in conjunction with specific divalent cations, may stimulate TMKP1 activity and point-out that 14-3-3 proteins bind and regulate the activity of a MKP in eukaryotes.

  10. A novel function for the MAP kinase SMA-5 in intestinal tube stability.

    PubMed

    Geisler, Florian; Gerhardus, Harald; Carberry, Katrin; Davis, Wayne; Jorgensen, Erik; Richardson, Christine; Bossinger, Olaf; Leube, Rudolf E

    2016-12-01

    Intermediate filaments are major cytoskeletal components whose assembly into complex networks and isotype-specific functions are still largely unknown. Caenorhabditis elegans provides an excellent model system to study intermediate filament organization and function in vivo. Its intestinal intermediate filaments localize exclusively to the endotube, a circumferential sheet just below the actin-based terminal web. A genetic screen for defects in the organization of intermediate filaments identified a mutation in the catalytic domain of the MAP kinase 7 orthologue sma-5(kc1) In sma-5(kc1) mutants, pockets of lumen penetrate the cytoplasm of the intestinal cells. These membrane hernias increase over time without affecting epithelial integrity and polarity. A more pronounced phenotype was observed in the deletion allele sma-5(n678) and in intestine-specific sma-5(RNAi) Besides reduced body length, an increased time of development, reduced brood size, and reduced life span were observed in the mutants, indicating compromised food uptake. Ultrastructural analyses revealed that the luminal pockets include the subapical cytoskeleton and coincide with local thinning and gaps in the endotube that are often enlarged in other regions. Increased intermediate filament phosphorylation was detected by two-dimensional immunoblotting, suggesting that loss of SMA-5 function leads to reduced intestinal tube stability due to altered intermediate filament network phosphorylation.

  11. A novel function for the MAP kinase SMA-5 in intestinal tube stability

    PubMed Central

    Geisler, Florian; Gerhardus, Harald; Carberry, Katrin; Davis, Wayne; Jorgensen, Erik; Richardson, Christine; Bossinger, Olaf; Leube, Rudolf E.

    2016-01-01

    Intermediate filaments are major cytoskeletal components whose assembly into complex networks and isotype-specific functions are still largely unknown. Caenorhabditis elegans provides an excellent model system to study intermediate filament organization and function in vivo. Its intestinal intermediate filaments localize exclusively to the endotube, a circumferential sheet just below the actin-based terminal web. A genetic screen for defects in the organization of intermediate filaments identified a mutation in the catalytic domain of the MAP kinase 7 orthologue sma-5(kc1). In sma-5(kc1) mutants, pockets of lumen penetrate the cytoplasm of the intestinal cells. These membrane hernias increase over time without affecting epithelial integrity and polarity. A more pronounced phenotype was observed in the deletion allele sma-5(n678) and in intestine-specific sma-5(RNAi). Besides reduced body length, an increased time of development, reduced brood size, and reduced life span were observed in the mutants, indicating compromised food uptake. Ultrastructural analyses revealed that the luminal pockets include the subapical cytoskeleton and coincide with local thinning and gaps in the endotube that are often enlarged in other regions. Increased intermediate filament phosphorylation was detected by two-dimensional immunoblotting, suggesting that loss of SMA-5 function leads to reduced intestinal tube stability due to altered intermediate filament network phosphorylation. PMID:27733627

  12. Aberrant Activation of p38 MAP Kinase-Dependent Innate Immune Responses Is Toxic to Caenorhabditis elegans

    PubMed Central

    Cheesman, Hilary K.; Feinbaum, Rhonda L.; Thekkiniath, Jose; Dowen, Robert H.; Conery, Annie L.; Pukkila-Worley, Read

    2016-01-01

    Inappropriate activation of innate immune responses in intestinal epithelial cells underlies the pathophysiology of inflammatory disorders of the intestine. Here we examine the physiological effects of immune hyperactivation in the intestine of the nematode Caenorhabditis elegans. We previously identified an immunostimulatory xenobiotic that protects C. elegans from bacterial infection by inducing immune effector expression via the conserved p38 MAP kinase pathway, but was toxic to nematodes developing in the absence of pathogen. To investigate a possible connection between the toxicity and immunostimulatory properties of this xenobiotic, we conducted a forward genetic screen for C. elegans mutants that are resistant to the deleterious effects of the compound, and identified five toxicity suppressors. These strains contained hypomorphic mutations in each of the known components of the p38 MAP kinase cassette (tir-1, nsy-1, sek-1, and pmk-1), demonstrating that hyperstimulation of the p38 MAPK pathway is toxic to animals. To explore mechanisms of immune pathway regulation in C. elegans, we conducted another genetic screen for dominant activators of the p38 MAPK pathway, and identified a single allele that had a gain-of-function (gf) mutation in nsy-1, the MAP kinase kinase kinase that acts upstream of p38 MAPK pmk-1. The nsy-1(gf) allele caused hyperinduction of p38 MAPK PMK-1-dependent immune effectors, had greater levels of phosphorylated p38 MAPK, and was more resistant to killing by the bacterial pathogen Pseudomonas aeruginosa compared to wild-type controls. In addition, the nsy-1(gf) mutation was toxic to developing animals. Together, these data suggest that the activity of the MAPKKK NSY-1 is tightly regulated as part of a physiological mechanism to control p38 MAPK-mediated innate immune hyperactivation, and ensure cellular homeostasis in C. elegans. PMID:26818074

  13. Reciprocal Regulation of Aquaporin-2 Abundance and Degradation by Protein Kinase A and p38-MAP Kinase

    PubMed Central

    Nedvetsky, Pavel I.; Tabor, Vedrana; Tamma, Grazia; Beulshausen, Sven; Skroblin, Philipp; Kirschner, Aline; Mutig, Kerim; Boltzen, Mareike; Petrucci, Oscar; Vossenkämper, Anna; Wiesner, Burkhard; Bachmann, Sebastian; Rosenthal, Walter

    2010-01-01

    Arginine-vasopressin (AVP) modulates the water channel aquaporin-2 (AQP2) in the renal collecting duct to maintain homeostasis of body water. AVP binds to vasopressin V2 receptors (V2R), increasing cAMP, which promotes the redistribution of AQP2 from intracellular vesicles into the plasma membrane. cAMP also increases AQP2 transcription, but whether altered degradation also modulates AQP2 protein levels is not well understood. Here, elevation of cAMP increased AQP2 protein levels within 30 minutes in primary inner medullary collecting duct (IMCD) cells, in human embryonic kidney (HEK) 293 cells ectopically expressing AQP2, and in mouse kidneys. Accelerated transcription or translation did not explain this increase in AQP2 abundance. In IMCD cells, cAMP inhibited p38-mitogen-activated protein kinase (p38-MAPK) via activation of protein kinase A (PKA). Inhibition of p38-MAPK associated with decreased phosphorylation (serine 261) and polyubiquitination of AQP2, preventing proteasomal degradation. Our results demonstrate that AVP enhances AQP2 protein abundance by altering its proteasomal degradation through a PKA- and p38-MAPK–dependent pathway. PMID:20724536

  14. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes

    PubMed Central

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626

  15. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels

    PubMed Central

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry

    2016-01-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  16. Schistosoma mansoni infection enhances host portal vein contraction: role of potassium channels and p38 MAP kinase.

    PubMed

    Araujo, F P; Quintas, L E M; Noël, F; Silva, C L M

    2007-07-01

    Murine Schistosoma mansoni infection is related to an increased contraction of portal vein in response to 5-hydroxytryptamine (5-HT). The present study addressed a putative alteration of ion channels and enzymes involved in vascular contraction. In control group, either inhibition of K+ channels sensitive to ATP (K(ATP)) or Ca2+ (BK(Ca)) increased 5-HT-induced contraction, but the same did not occur in infected mice. On the other hand, inhibition of p38 MAP kinase markedly decreased the vascular contraction to 5-HT in the infected mice with minor effects in the control group. Accordingly, we observed a higher density of phospho-p38 MAP kinase, that refers to the fully active state of the enzyme, in portal veins from infected mice as compared to control animals. These results suggest that the reduced function of K(ATP) and BK(Ca) channels along with an increased contribution of p38 MAP kinase contribute to the increased contraction of portal veins to 5-HT observed in murine schistosomiasis.

  17. The involvement of MAP kinases JNK and p38 in photodynamic injury of crayfish neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Petin, Y. O.; Bibov, M. Y.; Uzdensky, A. B.

    2007-05-01

    The role of JNK and p38 MAP kinases in functional inactivation and necrosis of mechanoreceptor neurons as well as necrosis, apoptosis and proliferation of satellite glial cells induced by photodynamic treatment (10 -7 M Photosens, 30 min incubation, 670 nm laser irradiation at 0.4 W/cm2) in the isolated crayfish stretch receptor was studied using specific inhibitors SP600125 and SB202190, respectively. SP600125 enhanced PDT-induced apoptosis of photosensitized glial cells but did not influence PDT-induced changes in neuronal activity, density of glial nuclei around neuron body, and necrosis of receptor neurons and glial cells. SB202190 did not influence neuron activity and survival as well but reduced PDT-induced necrosis but not apoptosis of glial cells. Therefore, both MAP kinases influenced glial cells but not neurons. JNK protected glial cells from PDT-induced apoptosis but did not influence necrosis and proliferation of these cells. In contrast, p38 did not influence apoptosis but contributed into PDT-induced necrosis of glial cells and PDT-induced gliosis. These MAP kinase inhibitors may be used for modulation of photodynamic therapy of brain tumors.

  18. Early events in the induction of apoptosis in ovarian carcinoma cells by CD437: activation of the p38 MAP kinase signal pathway.

    PubMed

    Holmes, William F; Soprano, Dianne Robert; Soprano, Kenneth J

    2003-09-25

    Retinoids have great potential in the areas of cancer therapy and chemoprevention. 6-[3-(1-admantyl)]-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) is a conformationally restricted synthetic retinoid that has been reported to induce growth arrest and apoptosis in ovarian tumor cell lines but the entire mechanism for apoptotic induction has not been fully defined. We set out to identify the early events of CD437-induced apoptosis of the CA-OV-3 cell line and determine if these occur in a CA-OV-3 cell line resistant to CD437 (CA-CD437R). Using inhibitors for the MAP kinase cascade, we determined that MEK and p38 inhibitors could block CD437-induced apoptosis of the CA-OV-3 cell line. Moreover, treatment of CA-OV-3 and CA-CD437R cells with CD437 resulted in increased phosphorylation and activity of p38 independent of caspase-3 activation. Furthermore, p38 induced the phosphorylation of MEF2 in both CA-OV-3 and CA-CD437R cells after CD437 treatment. Finally, GFP-TR3 protein translocated to the cytosol and associated with mitochondria in both cell lines in response to CD437 treatment. This leads to depolarization of mitochondria and subsequent induction of apoptosis only in CA-OV-3 cells. These results identify a number of initial molecular events in the induction of apoptosis by CD437 in CA-OV-3 cells and demonstrate that the alteration in CA-CD437R cells, which results in resistance to CD437 maps downstream of these early events after TR3 translocation but prior to mitochondrial depolarization.

  19. INTEGRATING DETAILED SOIL SURVEY AND LANDTYPE MAPPING FOR WATERSHED SCALE ASSESSMENTS IN THE WESTERN OREGON CASCADE MOUNTAINS

    EPA Science Inventory

    Although the Western Oregon Cascades is one of the most intensely managed and economically important forest regions in North America, a lack of detailed soil information has hindered watershed-scale assessments of forest productivity, water supply, sensitive wildlife species, and...

  20. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.

    PubMed

    Rundén-Pran, E; Tansø, R; Haug, F M; Ottersen, O P; Ring, A

    2005-01-01

    Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. Only a slight additional increase in propidium iodide uptake was seen at later intervals. The mitogen-activated protein kinases extracellular signal-regulated kinase 1 and extracellular signal-regulated kinase 2 were activated immediately after oxygen and glucose deprivation both in CA1 and in CA3/fascia dentata. Inhibition of the specific mitogen-activated protein kinase activator mitogen-activated protein kinase kinase by PD98059 or U0126 offered partial protection against oxygen and glucose deprivation-induced cell damage. The non-selective P2X receptor antagonist suramin gave neuroprotection of the same magnitude as the N-methyl-D-aspartate channel blocker MK-801 (approximately 70%). Neuroprotection was also observed with the P2 receptor blocker PPADS. Immunogold data indicated that hippocampal slice cultures (like intact hippocampi) express several isoforms of P2X receptors at the synaptic level, consistent with the idea that the effects of suramin and PPADS are mediated by P2X receptors. Virtually complete neuroprotection was obtained by combined blockade of N-methyl-D-aspartate receptors, P2X receptors, and mitogen-activated protein kinase kinase. Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the

  1. A MAP Kinase pathway in Caenorhabditis elegans is required for defense against infection by opportunistic Proteus species.

    PubMed

    JebaMercy, Gnanasekaran; Vigneshwari, Loganathan; Balamurugan, Krishnaswamy

    2013-01-01

    Caenorhabditis elegans innate immunity requires a conserved mitogen activated protein kinase (MAPK) pathway that regulates the basal and pathogen-induced expression of immune effectors. Being in the group of opportunistic pathogens, Proteus spp. cause large number of nosocomial infections. Since, Proteus spp. do not cause death in wild type C. elegans, to understand the role and contribution of MAP Kinase pathway, the mutants (sek-1 and pmk-1) of this pathway were employed. Physiological experiments revealed that the Proteus spp. were able to kill MAP Kinase pathway mutant's C. elegans significantly. To understand the involvement of innate immune pathways specific players at the mRNA level, the regulation of few candidate antimicrobial genes were kinetically investigated during Proteus spp. infections. Real-time PCR analysis indicated a regulation of few candidate immune regulatory genes (F08G5.6, lys-7, nlp-29, ATF-7 and daf-16) during the course of Proteus spp. infections. In addition, the lipopolysaccharides (LPS) isolated from Proteus mirabilis upon exposure to mutant C. elegans showed modifications at their functional regions suggesting that the pathogen modifies its internal machinery according to the specific host for effective pathogenesis.

  2. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190

    PubMed Central

    Gardner, Samantha; Gross, Sean M.; David, Larry L.; Klimek, John E.

    2015-01-01

    The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis. PMID:26246429

  3. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190.

    PubMed

    Gardner, Samantha; Gross, Sean M; David, Larry L; Klimek, John E; Rotwein, Peter

    2015-10-01

    The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis.

  4. Activation mechanisms of endothelial NF-kappaB, IKK, and MAP kinase by tert-butyl hydroperoxide.

    PubMed

    Lee, Ji Young; Yu, Byung Pal; Chung, Hae Young

    2005-04-01

    Lipid peroxidation plays a major role in vascular dysfunction and age-related cardiovascular diseases. A major product of lipid peroxidation, tert-butyl hydroperoxide (t-BHP), has been reported to modulate vascular reactivity and cellular signaling. To better understand vascular abnormality, we set out to delineate the activation mechanism of nuclear factor kappa B (NF-kappaB) by t-BHP and the regulation of MAPK in endothelial cells. The results showed that t-BHP induces NF-kappaB activation by an inhibitor of kappaB (IkappaB) phosphorylation through IkappaB kinase (IKK) activation. Our data from this t-BHP study also showed increased p38 MAP kinase and ERK activity; however, interestingly, t-BHP showed no influence on JNK. Pretreatment with the p38 MAP kinase inhibitor, SB203580 and the ERK1/2 inhibitor, PD98059, prevented t-BHP-induced increases in p65 translocation, NF-kappaB luciferase activity, and phospho-IKKalpha/beta. Data suggested that t-BHP induces NF-kappaB activation through the IKK pathway, which involves p38 MAPK and ERK activation. This study illustrates a role of t-BHP in NF-kappaB activation and MAPK related-signaling pathways. The t-BHP-induced activation of NF-kappaB and MAPK could be a major player in vascular dysfunctions, as seen in oxidative stressed responses and the vascular inflammatory process.

  5. Induction of Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK Signaling and Activation of MAP3K7 (TAK1) Protein Kinase

    PubMed Central

    Richter, Erik; Ventz, Katharina; Harms, Manuela; Mostertz, Jörg; Hochgräfe, Falko

    2016-01-01

    Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cyclin-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1) acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease. PMID:27066479

  6. Complexing of the CD-3 subunit by a monoclonal antibody activates a microtubule-associated protein 2 (MAP-2) serine kinase in Jurkat cells.

    PubMed Central

    Hanekom, C; Nel, A; Gittinger, C; Rheeder, A; Landreth, G

    1989-01-01

    Treatment of Jurkat T-cells with anti-CD-3 monoclonal antibodies resulted in the rapid and transient activation of a serine kinase which utilized the microtubule-associated protein, MAP-2, as a substrate in vitro. The kinase was also activated on treatment of Jurkat cells with phytohaemagglutinin, but with a different time course. The activation of the MAP-2 kinase by anti-CD-3 antibodies was dose-dependent, with maximal activity observed at concentrations of greater than 500 ng/ml. Normal human E-rosette-positive T-cells also exhibited induction of MAP-2 kinase activity during anti-CD-3 treatment. The enzyme was optimally active in the presence of 2 mM-Mn2+; lower levels of activity were observed with Mg2+, even at concentrations up to 20 mM. The kinase was partially purified by passage over DE-52 Sephacel with the activity eluting as a single peak at 0.25 M-NaCl. The molecular mass was estimated to be 45 kDa by gel filtration. The activation of the MAP-2 kinase was probably due to phosphorylation of this enzyme as treatment with alkaline phosphatase diminished its activity. These data demonstrate that the stimulation of T-cells through the CD-3 complex results in the activation of a novel serine kinase which may be critically involved in signal transduction in these cells. Images Fig. 1. Fig. 7. Fig. 8. PMID:2552997

  7. Network analysis of sediment cascades derived from a digital geomorphological map - an example from the Gradenbach catchment (Schober Mountains, Austrian Alps)

    NASA Astrophysics Data System (ADS)

    Götz, Joachim; Heckmann, Tobias; Schrott, Lothar

    2013-04-01

    A detailed geomorphological map of the Gradenbach catchment (32 km², Schober Mountains, Austrian Alps) is presented that focuses on the sediment transfer system. Data were acquired in the field and by the interpretation of orthophotos, LIDAR data and derivatives (slope, curvature, aspect, shaded relief). The resulting digital geomorphological map contains polygon representations of landforms together with their morphometric parameters and an assessment of recent geomorphic activity. Special attention was paid to landform coupling, i.e. an additional table was constructed that indicates recently observable coupling between specific landforms (based on their ID in the database). From these data, we can obtain sediment cascades as a succession of coupled landforms along which sediment transfer occurs through the activity of various geomorphic processes. Based on this digital landform inventory the sediment transfer system is analysed using graph theory. As a rather new approach in geomorphology (already established within several disciplines; e.g. hydrology, biogeography), graph theory provides a promising framework for connectivity analysis in geomorphologic systems and powerful tools to visualise and analyse catchment-wide sediment transfer networks. Since the concept is arbitrarily scalable it can be applied to discrete land surface units (e.g. mapped landforms) or to continuous surface data (e.g. grid cells). In combination with geomorphological mapping, the concept allows for the (abstracted) visualisation of complex coupling relationships between multiple sediment storage landforms. Graph networks can be analysed at the level of nodes (e.g. the number of incoming and/or outgoing edges and their character as sediment source, sink or link), edges (e.g. importance within the network as conveyors of sediment from different sources), pathways (e.g. edge sequences leading to the catchment outlet or to storage landforms; these can be termed sediment cascades), or the

  8. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling

    PubMed Central

    Findlay, Greg M.; Yan, Lijun; Procter, Julia; Mieulet, Virginie; Lamb, Richard F.

    2007-01-01

    The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3. PMID:17253963

  9. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice.

    PubMed

    Yeh, Chuan-Ming; Hsiao, Lin-June; Huang, Hao-Jen

    2004-09-01

    Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, it has been evidenced that MAPKs play a role in the signaling of biotic and abiotic stresses, plant hormones, and cell cycle cues. However, the effect of heavy metals on plant MAPKs has not been well examined. The Northern blot analysis of OsMAPK mRNA levels has shown that only OsMAPK2, but not OsMAPK3 and OsMAPK4, expressed in suspension-cultured cells in response to 100-400 microM Cd treatments. The OsMAPK2 transcripts increased within 12 h upon 400 microM Cd treatment. In addition, we found that 42- and 50-kDa MBP kinases were significantly activated by Cd treatment in rice suspension-cultured cells. And 40-, 42-, 50- and 64-kDa MBP kinases were activated in rice roots. Furthermore, GSH inhibits Cd-induced 40-kDa MBP kinase activation. By immunoblot analysis and immunoprecipitation followed by in-gel kinase assay, we confirmed that Cd-activated 42-kDa MBP kinase is a MAP kinase. Our results suggest that a MAP kinase cascade may function in the Cd-signalling pathway in rice.

  10. Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water: involvement of MAP kinases.

    PubMed

    Mundy, William R; Freudenrich, Theresa M

    2006-01-01

    Mono- and dialkyl organotin compounds are used primarily as heat stabilizers in polyvinyl chloride (PVC) plastics. Recently, monomethyltin (MMT), dimethyltin (DMT), monobutyltin (MBT), and dibutyltin (DBT) have been detected in water from homes and businesses served by PVC pipes. While trialkyl organotins such as trimethyltin (TMT) and triethyltin (TET) are well known neurotoxicants, the toxicity of the mono- and dialkyl organotins is not well described. The present study compared the cytotoxicity of organotins found in drinking water with the known neurotoxicant TMT in primary cultures of cerebellar granule cells, and examined the role of MAP kinase signaling in organotin-induced cell death. Twenty-four hour exposure to TMT resulted in a concentration-dependent decrease in cell viability with an EC(50) of 3 microM. Exposure to MMT, DMT, and MBT at concentrations up to 10 microM had no effect. DBT, however, was very potent, and decreased cell viability with an EC(50) of 0.3 microM. Staining of organotin-treated cerebellar granule cells with the nuclear dye Syto-13 revealed that TMT and DBT, but not MMT, DMT, or MBT, produced condensation and fragmentation of chromatin characteristic of apoptosis. TMT- and DBT-induced apoptosis was confirmed using TUNEL staining and measurement of PARP cleavage. Activation of MAP kinase pathways was examined after 6 h of exposure to the organotins which induced apoptosis. Both TMT and DBT activated ERK1/2, but only TMT activated the JNK/c-Jun and p38 pathways. Pharmacologic blockade of JNK/c-Jun and p38 activation significantly decreased apoptosis produced by TMT, but not by DBT. These results show that DBT is a potent neurotoxicant in vitro, but unlike TMT, does not induce cell death via activation of MAP kinase signaling.

  11. Substituted N-aryl-6-pyrimidinones: A new class of potent, selective, and orally active p38 MAP kinase inhibitors

    SciTech Connect

    Devadas, Balekudru; Selness, Shaun R.; Xing, Li; Madsen, Heather M.; Marrufo, Laura D.; Shieh, Huey; Messing, Dean M.; Yang, Jerry Z.; Morgan, Heidi M.; Anderson, Gary D.; Webb, Elizabeth G.; Zhang, Jian; Devraj, Rajesh V.; Monahan, Joseph B.

    2012-02-28

    A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.

  12. The gene for creatine kinase, mitochondrial 2 (sarcomeric; CKMT2), maps to chromosome 5q13. 3

    SciTech Connect

    Richard, I.; Devaud, C. ); Cherif, D.; Cohen, D.; Beckmann, J.S. )

    1993-10-01

    YAC clones for the creatine kinase, mitochrondial 2 (sarcomeric; CKMT2), gene were isolated. One of these YACs was localized on chromosome 5q13.3 by fluorescence in situ hybridization. A polymorphic dinucleotide repeat (heterozygosity 0.77) was identified within the seventh intron of the CKMT2 gene. Genotyping of CEPH families allowed positioning of CKMT2 on the multipoint map of chromosome 5 between D5S424 and D5S428, distal to spinal muscular atrophy (SMA) (5q12-q14). 8 refs., 1 fig., 2 tabs.

  13. Selective p38α MAP kinase/MAPK14 inhibition in enzymatically modified LDL-stimulated human monocytes: implications for atherosclerosis.

    PubMed

    Cheng, Fei; Twardowski, Laura; Fehr, Sarah; Aner, Christoph; Schaeffeler, Elke; Joos, Thomas; Knorpp, Thomas; Dorweiler, Bernhard; Laufer, Stefan; Schwab, Matthias; Torzewski, Michael

    2017-02-01

    The first ATP-competitive p38α MAPK/MAPK14 inhibitor with excellent in vivo efficacy and selectivity, skepinone-L, is now available. We investigated the impact of selective p38α MAPK/MAPK14 inhibition on enzymatically modified LDL (eLDL) stimulated human monocytes with its implications for atherosclerosis. Among the different p38 MAPK isoforms, p38α/MAPK14 was the predominantly expressed and activated isoform in isolated human peripheral blood monocytes. Moreover, eLDL colocalized with macrophages positive for p38α MAPK/MAPK14 in human carotid endarterectomy specimens. Using the human leukemia cell line THP-1 and/or primary monocyte-derived macrophages, skepinone-L inhibited eLDL-induced activation of the p38 MAPK pathway, inhibited eLDL induced expression of both cluster of differentiation 36 (CD36) and ATP-binding cassette, subfamily A, member 1 (ABCA1), without a net effect on foam cell formation, had a cell- and time-dependent effect on eLDL-triggered apoptosis, and inhibited eLDL-stimulated secretion of IL-8 and MIP-1β/CCL4 (macrophage inflammatory protein-1β/chemokine, CC motif, ligand 4). Inhibition of a key signaling molecule of the p38 MAPK pathway, p38α MAPK/MAPK14, by selective inhibitors like skepinone-L, conclusively facilitates elucidation of the impact of the complex network of p38 MAPK signaling on atherogenesis and might provide a promising therapeutic tool to prevent inflammatory cascades in atherosclerosis.-Cheng, F., Twardowski, L., Fehr, S., Aner, C., Schaeffeler, E., Joos, T., Knorpp, T., Dorweiler, B., Laufer, S., Schwab, M., Torzewski, M. Selective p38α MAP kinase/MAPK14 inhibition in enzymatically modified LDL-stimulated human monocytes: implications for atherosclerosis.

  14. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis*

    PubMed Central

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W.-Y.; Puga, Alvaro; Xia, Ying

    2015-01-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1+/− embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  15. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination

    PubMed Central

    Groves, Benjamin; Khakhar, Arjun; Nadel, Cory M; Gardner, Richard G; Seelig, Georg

    2016-01-01

    Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form. DOI: http://dx.doi.org/10.7554/eLife.15200.001 PMID:27525484

  16. Digital data for preliminary geologic map of the Mount Hood 30- by 60-minute quadrangle, northern Cascade Range, Oregon

    USGS Publications Warehouse

    Lina Ma,; Sherrod, David R.; Scott, William E.

    2014-01-01

    This geodatabase contains information derived from legacy mapping that was published in 1995 as U.S. Geological Survey Open-File Report 95-219. The main component of this publication is a geologic map database prepared using geographic information system (GIS) applications. Included are pdf files to view or print the map sheet, the accompanying pamphlet from Open-File Report 95-219, and links to the original publication, which is available as scanned files in pdf format.

  17. Identification of a 115kDa MAP-kinase activated by freezing and anoxic stresses in the marine periwinkle, Littorina littorea.

    PubMed

    MacDonald, Justin A; Storey, Kenneth B

    2006-06-15

    The mitogen-activated protein kinase (MAPK) cascade regulates changes in gene transcription by transmitting extracellular stimuli from the plasma membrane to the cell nucleus and has an important role to play in organismal responses to environmental stresses. The activities of MAPKs were investigated in the marine gastropod mollusk, Littorina littorea, a species that tolerates both extracellular freezing and long term oxygen deprivation. In-gel kinase assays revealed the presence of two MAPKs in foot muscle and hepatopancreas, a 42 and a 115kDa protein. Immunoblot analysis showed that both were MAPK proteins and that one was the periwinkle homologue of p42(ERK2). Size exclusion chromatography confirmed the 115kDa size of the novel snail MAPK and its role as the dominant MAPK activity in foot muscle. In-gel kinase assays, immunoblotting with phospho-specific ERK antibody, as well as kinase activity profiles from hydroxyapatite chromatography demonstrated that p115 MAPK kinase activity was increased in foot muscle in response to in vivo freezing or anoxia exposures. The results suggest a role for this novel kinase in environmental stress response.

  18. QSAR Analysis of Some Antagonists for p38 map kinase Using Combination of Principal Component Analysis and Artificial Intelligence.

    PubMed

    Doosti, Elham; Shahlaei, Mohsen

    2015-01-01

    Quantitative relationships between structures of a set of p38 map kinase inhibitors and their activities were investigated by principal component regression (PCR) and principal componentartificial neural network (PC-ANN). Latent variables (called components) generated by principal component analysis procedure were applied as the input of developed Quantitative structure- activity relationships (QSAR) models. An exact study of predictability of PCR and PC-ANN showed that the later model has much higher ability to calculate the biological activity of the investigated molecules. Also, experimental and estimated biological activities of compounds used in model development step have indicated a good correlation. Obtained results show that a non-linear model explaining the relationship between the pIC50s and the calculated principal components (that extract from structural descriptors of the studied molecules) is superior than linear model. Some typical figures of merit for QSAR studies explaining the accuracy and predictability of the suggested models were calculated. Therefore, to design novel inhibitors of p38 map kinase with high potency and low undesired effects the developed QSAR models were used to estimate biological pIC50 of the studied compounds.

  19. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism

    PubMed Central

    Seth, A.; Yan, Fang; Polk, D.Brent; Rao, R. K.

    2009-01-01

    Probiotics promote intestinal epithelial integrity and reduce infection and diarrhea. We evaluated the effect of Lactobacillus rhamnosus GG-produced soluble proteins (p40 and p75) on the hydrogen peroxide-induced disruption of tight junctions and barrier function in Caco-2 cell monolayers. Pretreatment of cell monolayers with p40 or p75 attenuated the hydrogen peroxide-induced decrease in transepithelial resistance and increase in inulin permeability in a time- and dose-dependent manner. p40 and p75 also prevented hydrogen peroxide-induced redistribution of occludin, ZO-1, E-cadherin, and β-catenin from the intercellular junctions and their dissociation from the detergent-insoluble fractions. Both p40 and p75 induced a rapid increase in the membrane translocation of PKCβI and PKCε. The attenuation of hydrogen peroxide-induced inulin permeability and redistribution of tight junction proteins by p40 and p75 was abrogated by Ro-32-0432, a PKC inhibitor. p40 and p75 also rapidly increased the levels of phospho-ERK1/2 in the detergent-insoluble fractions. U0126 (a MAP kinase inhibitor) attenuated the p40- and p75-mediated reduction of hydrogen peroxide-induced tight junction disruption and inulin permeability. These studies demonstrate that probiotic-secretory proteins protect the intestinal epithelial tight junctions and the barrier function from hydrogen peroxide-induced insult by a PKC- and MAP kinase-dependent mechanism. PMID:18292183

  20. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism.

    PubMed

    Seth, A; Yan, Fang; Polk, D Brent; Rao, R K

    2008-04-01

    Probiotics promote intestinal epithelial integrity and reduce infection and diarrhea. We evaluated the effect of Lactobacillus rhamnosus GG-produced soluble proteins (p40 and p75) on the hydrogen peroxide-induced disruption of tight junctions and barrier function in Caco-2 cell monolayers. Pretreatment of cell monolayers with p40 or p75 attenuated the hydrogen peroxide-induced decrease in transepithelial resistance and increase in inulin permeability in a time- and dose-dependent manner. p40 and p75 also prevented hydrogen peroxide-induced redistribution of occludin, ZO-1, E-cadherin, and beta-catenin from the intercellular junctions and their dissociation from the detergent-insoluble fractions. Both p40 and p75 induced a rapid increase in the membrane translocation of PKCbetaI and PKCepsilon. The attenuation of hydrogen peroxide-induced inulin permeability and redistribution of tight junction proteins by p40 and p75 was abrogated by Ro-32-0432, a PKC inhibitor. p40 and p75 also rapidly increased the levels of phospho-ERK1/2 in the detergent-insoluble fractions. U0126 (a MAP kinase inhibitor) attenuated the p40- and p75-mediated reduction of hydrogen peroxide-induced tight junction disruption and inulin permeability. These studies demonstrate that probiotic-secretory proteins protect the intestinal epithelial tight junctions and the barrier function from hydrogen peroxide-induced insult by a PKC- and MAP kinase-dependent mechanism.

  1. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    PubMed

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury.

  2. (-)-3,5-Dicaffeoyl-muco-quinic acid isolated from Aster scaber contributes to the differentiation of PC12 cells: through tyrosine kinase cascade signaling.

    PubMed

    Hur, Jin Young; Lee, Pyeongjae; Kim, Hocheol; Kang, Insug; Lee, Kang Ro; Kim, Sun Yeou

    2004-01-23

    Aster scaber T. (Asteraceae) has been used in traditional Korean and Chinese medicine to treat bruises, snakebites, headaches, and dizziness. (-)-3,5-Dicaffeoyl-muco-quinic acid (DQ) isolated from A. scaber induced neurite outgrowth in PC12 cells. It has been reported that the activation of the extracellular signal regulated kinase 1/2 (Erk 1/2) and phosphoinositide 3 (PI3) kinase plays a crucial role in the NGF-induced differentiation of PC12 cells. This study showed that the effect of DQ on neurite outgrowth is mediated via the Erk 1/2 and PI3 kinase-dependent pathways like NGF. Furthermore, DQ stimulated the phosphorylation of Trk A. Overall, DQ elicited the differentiation of PC12 cells through Trk A phosphorylation followed by Erk 1/2 and PI3 kinase activation.

  3. Requirement for Raf and MAP kinase function during the meiotic maturation of Xenopus oocytes

    PubMed Central

    1993-01-01

    The role of Raf and MAPK (mitogen-activated protein kinase) during the maturation of Xenopus oocytes was investigated. Treatment of oocytes with progesterone resulted in a shift in the electrophoretic mobility of Raf at the onset of germinal vesicle breakdown (GVBD), which was coincident with the activation of MAPK. Expression of a kinase- defective mutant of the human Raf-1 protein (KD-RAF) inhibited progesterone-mediated MAPK activation. MAPK activation was also inhibited by KD-Raf in oocytes expressing signal transducers of the receptor tyrosine kinase (RTK) pathway, including an activated tyrosine kinase (Tpr-Met), a receptor tyrosine kinase (EGFr), and Ha-RasV12. KD- RAF completely inhibited GVBD induced by the RTK pathway. In contrast, KD-RAF did not inhibit GVBD and the progression to Meiosis II in progesterone-treated oocytes. Injection of Mos-specific antisense oligodeoxyribonucleotides inhibited MAPK activation in response to progesterone and Tpr-Met, but failed to inhibit these events in oocytes expressing an oncogenic deletion mutant of Raf-1 (delta N'Raf). Injection of antisense oligodeoxyribonucleotides to Mos also reduced the progesterone- and Tpr-Met-induced electrophoretic mobility shift of Xenopus Raf. These results demonstrate that RTKs and progesterone participate in distinct yet overlapping signaling pathways resulting in the activation of maturation or M-phase promoting factor (MPF). Maturation induced by the RTK pathway requires activation of Raf and MAPK, while progesterone-induced maturation does not. Furthermore, the activation of MAPK in oocytes appears to require the expression of Mos. PMID:8335690

  4. Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry.

    PubMed

    Dangoria, N S; Breau, W C; Anderson, H A; Cishek, D M; Norkin, L C

    1996-09-01

    Simian virus 40 (SV40) binding to growth-arrested cells activated an intracellular signalling pathway that induced the up-regulation of the primary response genes c-myc, c-jun and c-sis within 30 min and of JE within 90 min. The up-regulation of the primary response genes occurred in the presence of cycloheximide and when UV-inactivated SV40 was adsorbed to cells. SV40 binding did not activate Raf or mitogen-activated protein kinase (MAP/ERK1), or mobilize intracellular Ca2+. The SV40-induced up-regulation of c-myc and c-jun was blocked by the tyrosine kinase inhibitor, genistein, and by the protein kinase C (PKC) inhibitor, calphostin C, but not by expression of the MAP kinase-specific phosphatase, MKP-1. These results suggest that the SV40-induced signalling pathway includes the activities of a tyrosine kinase and a Ca(2+)-independent isoform of PKC, but not of Raf or MAP kinase. Finally, SV40 infectious entry into cells was specifically and reversibly blocked by genistein.

  5. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  6. Functional mapping of protein kinase A reveals its importance in adult Schistosoma mansoni motor activity.

    PubMed

    de Saram, Paulu S R; Ressurreição, Margarida; Davies, Angela J; Rollinson, David; Emery, Aidan M; Walker, Anthony J

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and 'smart' anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology.

  7. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-alpha inhibition.

    PubMed

    Cho, Min Kyung; Jang, Young Pyo; Kim, Young Choong; Kim, Sang Geon

    2004-10-01

    Arctigenin, naturally occurring in Bardanae fructus, Saussurea medusa, Arctium lappa L., Torreya nucifera and Ipomea cairica, is a phenylpropanoid dibenzylbutyrolactone lignan with antioxidant and anti-inflammatory activities. Previously, we showed that arctigenin potently inhibited the induction of nitric oxide synthase (iNOS) by lipopolysaccharide (LPS), which involved suppression of NF-kappaB activation. In the present study, we examined the effects of arctigenin on mitogen-activated protein (MAP) kinase activation in Raw264.7 cells and MAP kinase kinase (MKK) activity. The effect of arctigenin on activator protein-1 (AP-1) activation was also studied in association with tumor necrosis factor-alpha (TNF-alpha) expression. Immunoblot analysis showed that arctigenin inhibited phosphorylation of MAP kinases ERK1/2, p38 kinase and JNK and their activities in Raw264.7 cells treated with LPS. Arctigenin potently inhibited the activity of MKK1 in vitro with the IC(50) value of 1 nM. Gel shift and reporter gene analyses revealed that arctigenin inhibited LPS-inducible AP-1 binding to the AP-1 consensus oligonucleotide and AP-1-mediated reporter gene expression. In view of the potential role of AP-1 in the induction of TNF-alpha, we next examined the inhibitory effects of arctigenin on the expression of TNF-alpha. Arctigenin blocked TNF-alpha production and decreased the level of TNF-alpha mRNA in the cells exposed to LPS. These results showed that arctigenin inhibited activation of MAP kinases including ERK1/2, p38 kinase and JNK through the inhibition of MKK activities, leading to AP-1 inactivation, which might, at least in part, contribute to the inhibition of TNF-alpha production.

  8. Lipoxin A4 antagonizes the mitogenic effects of leukotriene D4 in human renal mesangial cells. Differential activation of MAP kinases through distinct receptors.

    PubMed

    McMahon, B; Stenson, C; McPhillips, F; Fanning, A; Brady, H R; Godson, C

    2000-09-08

    The lipoxygenase-derived eicosanoids leukotrienes and lipoxins are well defined regulators of hemeodynamics and leukocyte recruitment in inflammatory conditions. Here, we describe a novel bioaction of lipoxin A(4) (LXA(4)), namely inhibition of leukotriene D(4) (LTD(4))-induced human renal mesangial cell proliferation, and investigate the signal transduction mechanisms involved. LXA(4) blocked LTD(4)-stimulated phosphatidylinositol 3-kinase (PI 3-kinase) activity in parallel to inhibition of LTD(4)-induced mesangial cell proliferation. Screening of a human mesangial cell cDNA library revealed expression of the recently described cys-leukotriene(1)/LTD(4) receptor. LTD(4)-induced mesangial cell proliferation required both extracellular-related signal regulated kinase (erk) and PI 3-kinase activation and may involve platelet-derived growth factor receptor transactivation. LTD(4)-stimulated the MAP kinases erk and p38 via a pertussis toxin (PTX)-sensitive pathway dependent on PI 3-kinase and protein kinase C activation. On screening a cDNA library, mesangial cells were found to express the previously described LXA(4) receptor. In contrast to LTD(4), LXA(4) showed differential activation of erk and p38. LXA(4) activation of erk was insensitive to PTX and PI 3-kinase inhibition, whereas LXA(4) activation of p38 was sensitive to PTX and could be blocked by the LTD(4) receptor antagonist SKF 104353. These data suggest that LXA(4) stimulation of the MAP kinase superfamily involves two distinct receptors: one shared with LTD(4) and coupled to a PTX-sensitive G protein (G(i)) and a second coupled via an alternative G protein, such as G(q) or G(12), to erk activation. These data expand on the spectrum of LXA(4) bioactions within an inflammatory milieu.

  9. Phosphorylation and localization of Kss1, a MAP kinase of the Saccharomyces cerevisiae pheromone response pathway.

    PubMed Central

    Ma, D; Cook, J G; Thorner, J

    1995-01-01

    Kss1 protein kinase, and the homologous Fus3 kinase, are required for pheromone signal transduction in Saccharomyces cerevisiae. In MATa haploids exposed to alpha-factor, Kss1 was rapidly phosphorylated on both Thr183 and Tyr185, and both sites were required for Kss1 function in vivo. De novo protein synthesis was required for sustained pheromone-induced phosphorylation of Kss1. Catalytically inactive Kss1 mutants displayed alpha-factor-induced phosphorylation on both residues, even in kss1 delta cells; hence, autophosphorylation is not obligatory for these modifications. In kss1 delta fus3 delta double mutants, Kss1 phosphorylation was elevated even in the absence of pheromone; thus, cross-phosphorylation by Fus3 is not responsible for Kss1 activation. In contrast, pheromone-induced Kss1 phosphorylation was eliminated in mutants deficient in two other protein kinases, Ste11 and Ste7. A dominant hyperactive allele of STE11 caused a dramatic increase in the phosphorylation of Kss1, even in the absence of pheromone stimulation, but required Ste7 for this effect, suggesting an order of function: Ste11-->Ste7-->Kss1. When overproduced, Kss1 stimulated recovery from pheromone-imposed G1 arrest. Catalytic activity was essential for Kss1 function in signal transmission, but not for its recovery-promoting activity. Kss1 was found almost exclusively in the particulate material and its subcellular fractionation was unaffected by pheromone treatment. Indirect immunofluorescence demonstrated that Kss1 is concentrated in the nucleus and that its distribution is not altered detectably during signaling. Images PMID:7579701

  10. Activation of several MAP kinases upon stimulation of rat alveolar macrophages: role of the NADPH oxidase.

    PubMed

    Torres, M; Forman, H J

    1999-06-15

    Zymosan-activated serum (ZAS), a source of C5a, stimulates the rat alveolar macrophages (AM) to release superoxide anion. Here we show that treatment of rat AM with ZAS induced a time-dependent increase in the tyrosine phosphorylation of several proteins (116, 105-110, 82-78, 66-72, 62, 45, 42, and 38 kDa). This increase was sensitive to genistein, a tyrosine kinase inhibitor. ZAS stimulated the tyrosine phosphorylation and activation of three members of a family of serine/threonine kinases known as the mitogen-activated protein kinases (MAPK), i.e., ERK1 and ERK2, as assessed by immunoblotting, immunoprecipitation, and phosphotransferase activity, and p38 MAPK, as determined by immunoblotting with phospho-specific antibodies. In addition, ZAS induced the tyrosine phosphorylation of the SHC proteins and their association with GRB2, suggesting a role for this complex in the activation of the ERK pathway. Addition of extracellular catalase during ZAS stimulation significantly reduced the tyrosine phosphorylation response and the activation of ERK1 and ERK2 and their activator MEK1/2 while it did not affect that of p38 MAPK and MKK3/MKK6. Superoxide dismutase marginally increased the response to ZAS, supporting a role for hydrogen peroxide. In contrast to the results with AM, stimulation of human neutrophils with ZAS in the presence of catalase minimally altered the activation of ERK1 and ERK2. These data show that, in ZAS-stimulated rat AM, activation of the respiratory burst and production of hydrogen peroxide via superoxide dismutation are largely responsible for the activation of the ERK pathway through an upstream target.

  11. Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation.

    PubMed

    Ma, W; Maric, D; Li, B S; Hu, Q; Andreadis, J D; Grant, G M; Liu, Q Y; Shaffer, K M; Chang, Y H; Zhang, L; Pancrazio, J J; Pant, H C; Stenger, D A; Barker, J L

    2000-04-01

    Increasing evidence has shown that some neurotransmitters act as growth-regulatory signals during brain development. Here we report a role for the classical neurotransmitter acetylcholine (ACh) to stimulate proliferation of neural stem cells and stem cell-derived progenitor cells during neural cell lineage progression in vitro. Neuroepithelial cells in the ventricular zone of the embryonic rat cortex were found to express the m2 subtype of the muscarinic receptor. Neural precursor cells dissociated from the embryonic rat cortical neuroepithelium were expanded in culture with basic fibroblast growth factor (bFGF). reverse transcriptase-polymerase chain reaction (RT-PCR) revealed the presence of m2, m3 and m4 muscarinic receptor subtype transcripts, while immunocytochemistry demonstrated m2 protein. ACh and carbachol induced an increase in cytosolic Ca2+ and membrane currents in proliferating (BrdU+) cells, both of which were abolished by atropine. Exposure of bFGF-deprived precursor cells to muscarinic agonists not only increased both cell number and DNA synthesis, but also enhanced differentiation of neurons. These effects were blocked by atropine, indicating the involvement of muscarinic ACh receptors. The growth-stimulating effects were also antagonized by a panel of inhibitors of second messengers, including 1,2-bis-(O-aminophenoxy)-ethane-N,N,N', N'-tetraacetic acid (BAPTA-AM) to chelate cytosolic Ca2+, EGTA to complex extracellular Ca2+, pertussis toxin, which uncouples certain G-proteins, the protein kinase C inhibitor H7 and the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Muscarinic agonists activated MAPK, which was significantly inhibited by atropine and the same panel of inhibitors. Thus, muscarinic receptors expressed by neural precursors transduce a growth-regulatory signal during neurogenesis via pathways involving pertussis toxin-sensitive G-proteins, Ca2+ signalling, protein kinase C activation, MAPK phosphorylation and DNA synthesis.

  12. Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma

    PubMed Central

    Capaldo, Brian J.; Roller, Devin; Axelrod, Mark J.; Koeppel, Alex F.; Petricoin, Emanuel F.; Slingluff, Craig L.; Weber, Michael J.; Mackey, Aaron J.; Gioeli, Daniel; Bekiranov, Stefan

    2015-01-01

    Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to mitogen-activated protein kinase (MAPK) pathway inhibition, we identified the combination of PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ErbB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720. To identify potential mechanisms of resistance to PLX4720 treatment and synergy with lapatinib treatment, we performed a multi-platform functional genomics analysis to profile the genome as well as the transcriptional and proteomic responses of these cell lines to treatment with PLX4720. We found modest levels of resistance correlated with the zygosity of the BRAF V600E allele and receptor tyrosine kinase (RTK) mutational status. Layered over base-line resistance was substantial upregulation of many ErbB pathway genes in response to BRaf inhibition, thus generating the vulnerability to combination with lapatinib. The transcriptional responses of ErbB pathway genes are associated with a number of transcription factors, including ETS2 and its associated cofactors that represent a convergent regulatory mechanism conferring synergistic drug susceptibility in the context of diverse mutational landscapes. PMID:26405815

  13. Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species Gossypium barbadense.

    PubMed

    Liu, H W; Shi, R F; Wang, X F; Pan, Y X; Zang, G Y; Ma, Z Y

    2012-09-25

    Sea Island cotton (Gossypium barbadense) is highly valued for its superior fiber qualities, especially fiber strength. Based on a transcript-derived fragment originated from transcriptome QTL mapping, a fiber strength related candidate gene of phosphatidylinositol 4-kinase cDNA, designated as GbPI4K, was first cloned, and its expression was characterized in the secondary cell wall thickening stage of G. barbadense fibers. The ORF of GbPI4K was found to be 1926 bp in length and encoded a predicted protein of 641 amino acid residues. The putative protein contained a clear PI3/4K kinase catalytic domain and fell into the plant type II PI4K cluster in phylogenetic analysis. In this study, the expression of cotton PI4K protein was also induced in Escherichia coli BL21 (DE3) as a fused protein. Semi-quantitative RT-PCR analysis showed that the gene expressed in the root, hypocotyl and leaf of the cotton plants. Real-time RT-PCR indicated that this gene in Sea Island cotton fibers expressed 10 days longer than that in Upland cotton fibers, and the main expression difference of PI4K between Sea Island cotton and Upland cotton in fibers was located in the secondary cell wall thickening stage of the fiber. Further analysis indicated that PI4K is a crucial factor in the ability of Rac proteins to regulate phospholipid signaling pathways.

  14. Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells

    PubMed Central

    Hamanoue, Makoto; Morioka, Kazuhito; Ohsawa, Ikuroh; Ohsawa, Keiko; Kobayashi, Masaaki; Tsuburaya, Kayo; Akasaka, Yoshikiyo; Mikami, Tetsuo; Ogata, Toru; Takamatsu, Ken

    2016-01-01

    Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration. PMID:27067799

  15. Multi-kinase inhibitors induce cutaneous toxicity through OAT6-mediated uptake and MAP3K7-driven cell death

    PubMed Central

    Zimmerman, Eric I.; Gibson, Alice A.; Hu, Shuiying; Vasilyeva, Aksana; Orwick, Shelley J.; Du, Guoqing; Mascara, Gerard P.; Ong, Su Sien; Chen, Taosheng; Vogel, Peter; Inaba, Hiroto; Maitland, Michael L.; Sparreboom, Alex; Baker, Sharyn D.

    2015-01-01

    The use of multi-kinase inhibitors (MKI) in oncology, such as sorafenib, is associated with a cutaneous adverse event called hand-foot skin reaction (HFSR) in which sites of pressure or friction become inflamed and painful, thus significantly impacting quality of life. The pathogenesis of MKI-induced HFSR is unknown, and the only available treatment options involve dose reduction or discontinuation of therapy, which have negative effects on primary disease management. To investigate the underlying mechanisms by which sorafenib promotes keratinocyte cytotoxicity and subsequent HFSR induction, we performed a transporter-directed RNAi screen in human epidermal keratinocytes and identified SLC22A20 (OAT6) as an uptake carrier of sorafenib. Further investigations into the intracellular mechanism of sorafenib activity through in situ kinome profiling identified the mitogen-activated protein kinase MAP3K7 (TAK1) as a target of sorafenib that induces cell death. Finally, we demonstrate that sorafenib induced keratinocyte injury in vivo, and that this effect could be reversed by co-treatment with the OAT6 inhibitor probenecid. Collectively, our findings reveal a novel pathway that regulates the entry of some MKIs into keratinocytes and explains the basis underlying sorafenib-induced skin toxicity, with important implications for the therapeutic management of HFSR. PMID:26677977

  16. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways

    SciTech Connect

    Menschikowski, Mario; Hagelgans, Albert; Eisenhofer, Graeme; Siegert, Gabriele

    2009-09-10

    The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1{beta} (IL-1{beta}) and tumor necrosis factor-{alpha} (TNF-{alpha}), but not interferon-{gamma} and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1{beta} and TNF-{alpha} correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1{beta} and TNF-{alpha}, and downstream by MAP kinase signaling pathways and metalloproteinases.

  17. Phosphorylation of P68 RNA Helicase by P38 MAP kinase contributes to colon cancer cells apoptosis induced by oxaliplatin

    PubMed Central

    2012-01-01

    Background We previously demonstrated that p68 phosphorylation at threonine residues correlates with cancer cell apoptosis under the treatments of TNF-α and TRAIL (Yang, L. Mol Cancer Res Vol 3, pp 355–63 2005). Results In this report, we characterized the role of p68 phosphorylation in apoptosis induction under the treatment of oxaliplatin in the colon cancer cells. Our data suggest that oxaliplatin treatment activates p38 MAP kinase, which subsequently phosphorylates p68 at T564 and/or T446. The phosphorylation of p68, at least partially, mediates the effects of the drug on apoptosis induction, as mutations at these two sites greatly reduce the cancer cell death. Conclusion Our studies reveal an important molecular mechanism that mediates the effects of anti-cancer drug, providing a potential strategy for improving cancer treatment. PMID:23110695

  18. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [North Cascades, Washington and Tweedsmuir Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Snowlines on a small (6 sq km) drainage basin were accurately measured without use of digital processing, and snow patches as small as 150 m (maximum dimension) were correctly identified, proving that the resolution of ERTS is ample for snow mapping needs. The area of snow cover on 10 individual drainage basins in the North Cascades, Washington, has been determined at 12 different times; these data can be used for more accurate forecasts of streamflow. Progress has been made in distinguishing snow in trees using multispectral analysis. Motion of the surging Tweedsmuir Glacier was measured. Velocities ranged from 2 to 88 m per day; a zone of intense crevassing also appeared to spread up and down the glacier (at about 200 m per day upglacier). This tentative result may be of great importance to an understanding of surging glacier dynamics. ERTS images also show that the most recent debris flow (20-21 August 1973) from Mount Baker can be clearly discerned and mapped, in order to monitor this potential hazard.

  19. The Pelargonium sidoides Extract EPs 7630 Drives the Innate Immune Defense by Activating Selected MAP Kinase Pathways in Human Monocytes

    PubMed Central

    Witte, Katrin; Koch, Egon; Volk, Hans-Dieter; Wolk, Kerstin; Sabat, Robert

    2015-01-01

    Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630) on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-α, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-α, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-α, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-α staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-α production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-α and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells. PMID:26406906

  20. Distinct steps in yeast spore morphogenesis require distinct SMK1 MAP kinase thresholds.

    PubMed Central

    Wagner, M; Briza, P; Pierce, M; Winter, E

    1999-01-01

    The SMK1 mitogen-activated protein kinase is required for spore morphogenesis in Saccharomyces cerevisiae. In contrast to the multiple aberrant spore wall assembly patterns seen even within a single smk1 null ascus, different smk1 missense mutants block in a coordinated fashion at intermediate stages. One smk1 mutant forms asci in which the four spores are surrounded only by prospore wall-like structures, while another smk1 mutant forms asci in which the spores are surrounded by inner but not outer spore wall layers. Stepwise increases in gene dosage of a hypomorphic smk1 allele allow for the completion of progressively later morphological and biochemical events and for the acquisition of distinct spore-resistance phenotypes. Furthermore, smk1 allelic spore phenotypes can be recapitulated by reducing wild-type SMK1 expression. The data demonstrate that SMK1 is required for the execution of multiple steps in spore morphogenesis that require increasing thresholds of SMK1 activity. These results suggest that quantitative changes in mitogen-activated protein kinase signaling play a role in coordinating multiple events of a single cellular differentiation program. PMID:10101160

  1. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases

    NASA Technical Reports Server (NTRS)

    Levonen, A. L.; Patel, R. P.; Brookes, P.; Go, Y. M.; Jo, H.; Parthasarathy, S.; Anderson, P. G.; Darley-Usmar, V. M.

    2001-01-01

    Many of the biological and pathological effects of nitric oxide (NO) are mediated through cell signaling pathways that are initiated by NO reacting with metalloproteins. More recently, it has been recognized that the reaction of NO with free radicals such as superoxide and the lipid peroxyl radical also has the potential to modulate redox signaling. Although it is clear that NO can exert both cytotoxic and cytoprotective actions, the focus of this overview are those reactions that could lead to protection of the cell against oxidative stress in the vasculature. This will include the induction of antioxidant defenses such as glutathione, activation of mitogen-activated protein kinases in response to blood flow, and modulation of mitochondrial function and its impact on apoptosis. Models are presented that show the increased synthesis of glutathione in response to shear stress and inhibition of cytochrome c release from mitochondria. It appears that in the vasculature NO-dependent signaling pathways are of three types: (i) those involving NO itself, leading to modulation of mitochondrial respiration and soluble guanylate cyclase; (ii) those that involve S-nitrosation, including inhibition of caspases; and (iii) autocrine signaling that involves the intracellular formation of peroxynitrite and the activation of the mitogen-activated protein kinases. Taken together, NO plays a major role in the modulation of redox cell signaling through a number of distinct pathways in a cellular setting.

  2. Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways.

    PubMed

    Menges, Margit; Dóczi, Róbert; Okrész, László; Morandini, Piero; Mizzi, Luca; Soloviev, Mikhail; Murray, James A H; Bögre, László

    2008-01-01

    * Mitogen activated protein kinase (MAPK) pathways are signal transduction modules with layers of protein kinases having c. 120 genes in Arabidopsis, but only a few have been linked experimentally to functions. * We analysed microarray expression data for 114 MAPK signalling genes represented on the ATH1 Affymetrix arrays; determined their expression patterns during development, and in a wide range of time-course microarray experiments for their signal-dependent transcriptional regulation and their coregulation with other signalling components and transcription factors. * Global expression correlation of the MAPK genes with each of the represented 21 692 Arabidopsis genes was determined by calculating Pearson correlation coefficients. To group MAPK signalling genes based on similarities in global regulation, we performed hierarchical clustering on the pairwise correlation values. This should allow inferring functional information from well-studied MAPK components to functionally uncharacterized ones. Statistical overrepresentation of specific gene ontology (GO) categories in the gene lists showing high expression correlation values with each of the MAPK components predicted biological themes for the gene functions. * The combination of these methods provides functional information for many uncharacterized MAPK genes, and a framework for complementary future experimental dissection of the function of this complex family.

  3. MAP KINASE SIGNALING IN PULMONARY FIBROBLASTS EXPOSED TO PARTICULATE MATTER (PM) AND BRONCHOAL VEOLAR LAVAGE FLUID (BALF) FROM HEALTHY AND HYPERTENSIVE RATS

    EPA Science Inventory

    MAP KINASE SIGNALING IN PULMONARY FIBROBLASTS EXPOSED TO PARTICULATE MATTER (PM) AND BRONCHOALVEOLAR LAVAGE FLUID (BALF) FROM HEALTHY AND HYPERTENSIVE RATS. 1P Zhang, UP Kodavanti. NHEERL, US EPA, Research Triangle Park, 1School of Vet Med, NCSU, Raleigh, NC
    Exposure to PM ma...

  4. Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells.

    PubMed

    Akhand, A A; Hossain, K; Mitsui, H; Kato, M; Miyata, T; Inagi, R; Du, J; Takeda, K; Kawamoto, Y; Suzuki, H; Kurokawa, K; Nakashima, I

    2001-07-01

    Carbonyl compounds with diverse carbon skeletons may be differentially related to the pathogenesis of vascular diseases. In this study, we compared intracellular signals delivered into cultured human umbilical vein endothelial cells (HUVECs) by glyoxal (GO) and methylglyoxal (MGO), which differ only by a methyl group. Depending on their concentrations, GO and MGO promoted phosphorylations of ERK1 and ERK2, which were blocked by the protein-tyrosine kinase (PTK) inhibitors herbimycin A and staurosporine, thereby being PTK-dependent. GO and MGO also induced phosphorylations of JNK, p38 MAPK, and c-Jun, either PTK-dependently (GO) or -independently (MGO). Next, we found that MGO, but not GO, induced degradation of poly(ADP-ribose) polymerase (PARP) as the intracellular substrate of caspase-3. Curcumin and SB203580, which inhibit JNK and p38 MAPK signaling pathways, but not herbimycin A/staurosporine, prevented the MGO-induced PARP degradation. We then found that MGO, but not GO, reduced the intracellular glutathione level, and that cysteine, but not cystine, inhibited the MGO-mediated activation of ERK, JNK, p38 MAPK, or c-Jun more extensively than did lysine or arginine. In addition, all the signals triggered by GO and MGO were blocked by amino guanidine (AG), which traps carbonyls. These results demonstrated that GO and MGO triggered two distinct signal cascades, one for PTK-dependent control of ERK and another for PTK-independent redox-linked activation of JNK/p38 MAPK and caspases in HUVECs, depending on the structure of the carbon skeleton of the chemicals.

  5. Combining Microinjection and Immunoblotting to Analyze MAP Kinase Phosphorylation in Single Starfish Oocytes and Eggs

    NASA Astrophysics Data System (ADS)

    Carroll, David J.; Hua, Wei

    The starfish oocyte has proven useful for studies involving microinjection because it is relatively large (190 μm) and optically clear. These oocytes are easily obtained from the ovary arrested at prophase of meiosis I, making them useful as a model system for the study of cell cycle-related events. In this chapter, a method for combining microinjection with immunoblotting of single cells is described. Individual starfish oocytes are injected, removed from the microinjection chamber, and analyzed by immunoblotting for the dual-phosphorylated form of mitogen-activated protein kinase (MAPK). This method will allow for experiments testing the regulation of MAPK in single cells and for the manipulation of these cells by a quantitative microinjection technique.

  6. Ethylene signaling pathway and MAPK cascades are required for AAL toxin-induced programmed cell death.

    PubMed

    Mase, Keisuke; Mizuno, Takahito; Ishihama, Nobuaki; Fujii, Takayuki; Mori, Hitoshi; Kodama, Motoichiro; Yoshioka, Hirofumi

    2012-08-01

    Programmed cell death (PCD), known as hypersensitive response cell death, has an important role in plant defense response. The signaling pathway of PCD remains unknown. We employed AAL toxin and Nicotiana umbratica to analysis plant PCD. AAL toxin is a pathogenicity factor of the necrotrophic pathogen Alternaria alternata f. sp. lycopersici. N. umbratica is sensitive to AAL toxin, susceptible to pathogens, and effective in Tobacco rattle virus-based virus-induced gene silencing (VIGS). VIGS analyses indicated that AAL toxin-triggered cell death (ACD) is dependent upon the mitogen-activated protein (MAP) kinase kinase MEK2, which is upstream of both salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) responsible for ethylene (ET) synthesis. ET treatment of MEK2-silenced N. umbratica re-established ACD. In SIPK- and WIPK-silenced N. umbratica, ACD was compromised and ET accumulation was not observed. However, in contrast to the case of MEK2-silenced plants, ET treatment did not induce cell death in SIPK- and WIPK-silenced plants. This work showed that ET-dependent pathway and MAP kinase cascades are required in ACD. Our results suggested that MEK2-SIPK/WIPK cascades have roles in ET biosynthesis; however, SIPK and WIPK have other roles in ET signaling or another pathway leading to cell death by AAL toxin.

  7. Mechano-transduction in periodontal ligament cells identifies activated states of MAP-kinases p42/44 and p38-stress kinase as a mechanism for MMP-13 expression

    PubMed Central

    2010-01-01

    Background Mechano-transduction in periodontal ligament (PDL) cells is crucial for physiological and orthodontic tooth movement-associated periodontal remodelling. On the mechanistic level, molecules involved in this mechano-transduction process in PDL cells are not yet completely elucidated. Results In the present study we show by western blot (WB) analysis and/or indirect immunofluorescence (IIF) that mechanical strain modulates the amount of the matrix metalloproteinase MMP-13, and induces non-coherent modulation in the amount and activity of signal transducing molecules, such as FAK, MAP-kinases p42/44, and p38 stress kinase, suggesting their mechanistic role in mechano-transduction. Increase in the amount of FAK occurs concomitant with increased levels of the focal contact integrin subunits β3 and β1, as indicated by WB or optionally by IIF. By employing specific inhibitors, we further identified p42/44 and p38 in their activated, i.e. phosphorylated state responsible for the expression of MMP-13. This finding may point to the obedience in the expression of this MMP as extracellular matrix (ECM) remodelling executioner from the activation state of mechano-transducing molecules. mRNA analysis by pathway-specific RT-profiler arrays revealed up- and/or down-regulation of genes assigning to MAP-kinase signalling and cell cycle, ECM and integrins and growth factors. Up-regulated genes include for example focal contact integrin subunit α3, MMP-12, MAP-kinases and associated kinases, and the transcription factor c-fos, the latter as constituent of the AP1-complex addressing the MMP-13 promotor. Among others, genes down-regulated are those of COL-1 and COL-14, suggesting that strain-dependent mechano-transduction may transiently perturbate ECM homeostasis. Conclusions Strain-dependent mechano-/signal-transduction in PDL cells involves abundance and activity of FAK, MAP-kinases p42/44, and p38 stress kinase in conjunction with the amount of MMP-13, and integrin

  8. Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system.

    PubMed

    Singh, Raksha; Lee, Jae-Eun; Dangol, Sarmina; Choi, Jihyun; Yoo, Ran Hee; Moon, Jae Sun; Shim, Jae-Kyung; Rakwal, Randeep; Agrawal, Ganesh Kumar; Jwa, Nam-Soo

    2014-01-01

    The mitogen-activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K-interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two-hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K-interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full-length cDNA in the rice KOME (http://cdna01.dna.affrc.go.jp/cDNA/) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead-associated domain-containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K-interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors.

  9. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [Cascade Mountains

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Snowlines on a small drainage basin were accurately identified on bulk ERTS-1 images without use of digital processing, and results checked with high altitude and ground-based photography. The area and approximate shape of snow patches as small as 20,000 sq m could be correctly identified with a magnifying scanning densitometer. The resolution of ERTS is more than ample for most snow mapping needs. Mount Baker, Washington, has a large crater south of the summit and an area north of the summit which emit considerable geothermal heat in the form of fumaroles and hot ground. Temperatures are being monitored using an ERTS DCS. Debris flows are occassionally released from the crater due to water saturation at the base of a heavy snowpack lying on hydrothermally altered hot ground. These debris flows present a possible hazard to life and property, as they are discharged down the Boulder Glacier toward Baker Lake, the upper of two major hydroelectric power reservoirs which are situated above the populated Skagit River Valley. ERTS-1 images show that the most recent debris flow (20-21 August 1973) can be clearly discerned and mapped. ERTS images provide another important tool for monitoring this potential hazard.

  10. Phospholipase C{gamma}1 stimulates transcriptional activation of the matrix metalloproteinase-3 gene via the protein kinase C/Raf/ERK cascade

    SciTech Connect

    Shin, Soon Young; Choi, Ha Young; Ahn, Bong-Hyun; Son, Sang Wook; Lee, Young Han . E-mail: younghan@hanyang.ac.kr

    2007-02-16

    The phospholipid hydrolase phospholipase C{gamma}1 (PLC{gamma}1) plays a major role in regulation of cell proliferation, development, and cell motility. Overexpression of PLC{gamma}1 is associated with tumor development, and it is overexpressed in some tumors. Matrix metalloproteinase-3 (MMP-3) is a protein involved in tumor invasion and metastasis. Here, we demonstrate that overexpression of PLC{gamma}1 stimulates MMP-3 expression at the transcriptional level via the PKC-mediated Raf/MEK1/ERK signaling cascade. We propose that modulation of PLC{gamma}1 activity might be of value in controlling the activity of MMPs, which are important regulators of invasion and metastasis in malignant tumors.

  11. Transcriptomic analysis of gene cascades involved in protein kinase A and C signalling in the KGN line of human ovarian granulosa tumour cells1.

    PubMed

    Tremblay, Patricia G; Sirard, Marc-André

    2017-04-05

    The developmental competence of an oocyte is its capacity to resume maturation, undergo successful fertilization and reach the blastocyst stage. This competence is acquired through interaction with somatic cells of the follicle. Cumulus and granulosa cells support oocyte development while the oocyte influences follicular cell growth and differentiation. Studies suggest that follicle-stimulating hormone and luteinizing hormone play an essential role in oocyte competence acquisition through signalling initiated by protein kinases A and C (PKA and PKC) in granulosa cells. Using a microarray and RT-qPCR, the transcriptome of human granulosa-like tumour cells (KGN) treated for 24 h with forskolin (FSK) or phorbol 12-myristate 13-acetate (PMA) was analyzed to determine the effects of PKA and PKC stimulation on gene expression. Protein-kinase-driven signalling appeared to involve five major upstream regulators, namely EGF, TGFB1, VEGF, FGF2 and HGF. Genes associations with seven major ovarian functions were identified: PTGS2, IL8 and IL6 with inflammation; STAR, CYP11A1 and CYP19A1 with steroidogenesis; VEGFC, VEGFA and CXCR4 with angiogenesis; AREG, EGFR and SPRY2 with differentiation, BAX, BCL2L12 and CASP1 with apoptosis, CCND1, CCNB1 and CCNB2 with division and MMP1, MMP9 and TIMP1 with ovulation. These results indicate overall that signalling via both PKA and PKC potentiates gene regulation of functions such as inflammation and apoptosis, while functions such as differentiation, ovulation and angiogenesis are partial to one kinase or the other. These results improve understanding of the pathways underlying the most important changes that occur in the follicle prior to ovulation.

  12. Opposing actions of TGF{beta} and MAP kinase signaling in undifferentiated hen granulosa cells

    SciTech Connect

    Woods, Dori C.; Haugen, Morgan J.; Johnson, A.L. . E-mail: johnson.128@nd.edu

    2005-10-21

    The present studies were conducted to establish interactions between transforming growth factor (TGF)-{beta} and the epidermal growth factor (EGF) family members, TGF{alpha} and betacellulin (BTC), relative to proliferation and differentiation of granulosa cells in hen ovarian follicles. Results presented demonstrate expression of TGF{beta} isoforms, plus TGF{alpha}, BTC, and ErbB receptors in prehierarchal follicles, thus establishing the potential for autocrine/paracrine signaling and cross-talk within granulosa cells at the onset of differentiation. Treatment with TGF{alpha} or BTC increases levels of TGF{beta}1 mRNA in undifferentiated granulosa cells, while the selective inhibitor of mitogen activated protein kinase signaling, U0126, reverses these effects. Moreover, TGF{beta}1 attenuates c-myc mRNA expression and granulosa cell proliferation, while TGF{alpha} blocks both these inhibitory effects. Collectively, these data provide evidence that EGF family ligands regulate both the expression and biological actions of TGF{beta}1 in hen granulosa cells, and indicate that the timely interaction of these opposing factors is an important modulator of both granulosa cell proliferation and differentiation.

  13. Network Modeling Reveals Cross Talk of MAP Kinases during Adaptation to Caspofungin Stress in Aspergillus fumigatus.

    PubMed

    Altwasser, Robert; Baldin, Clara; Weber, Jakob; Guthke, Reinhard; Kniemeyer, Olaf; Brakhage, Axel A; Linde, Jörg; Valiante, Vito

    2015-01-01

    Mitogen activated protein kinases (MAPKs) are highly conserved in eukaryotic organisms. In pathogenic fungi, their activities were assigned to different physiological functions including drug adaptation and resistance. Aspergillus fumigatus is a human pathogenic fungus, which causes life-threatening invasive infections. Therapeutic options against invasive mycoses are still limited. One of the clinically used drugs is caspofungin, which specifically targets the fungal cell wall biosynthesis. A systems biology approach, based on comprehensive transcriptome data sets and mathematical modeling, was employed to infer a regulatory network and identify key interactions during adaptation to caspofungin stress in A. fumigatus. Mathematical modeling and experimental validations confirmed an intimate cross talk occurring between the cell wall-integrity and the high osmolarity-glycerol signaling pathways. Specifically, increased concentrations of caspofungin promoted activation of these signalings. Moreover, caspofungin affected the intracellular transport, which caused an additional osmotic stress that is independent of glucan inhibition. High concentrations of caspofungin reduced this osmotic stress, and thus decreased its toxic activity. Our results demonstrated that MAPK signaling pathways play a key role during caspofungin adaptation and are contributing to the paradoxical effect exerted by this drug.

  14. Cascade Chaotic System With Applications.

    PubMed

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.

  15. MAP-kinase activity in etiolated Cucumis sativus cotyledons: the effect of red and far-red light irradiation.

    PubMed

    Alvarez-Flórez, Fagua; Vidal, Dolors; Simón, Esther

    2013-02-01

    Phytochrome (phy) signalling in plants may be transduced through protein phosphorylation. Mitogen-activated protein kinase (MAP-kinase, MAPK) activity and the effect of R (red) and FR (far-red) light irradiation on MAPK activity were studied in etiolated Cucumis sativus L. cotyledons. By in vitro protein phosphorylation and in-gel assays with myelin basic protein (MBP), a protein band (between 48 and 45 kDa) with MAPK-like activity was detected. The addition to the phosphorylation buffer of specific protein phosphatase (PTP) inhibitors (Na(3)VO(4) and NaF) and genistein, apigenin or PD98059 as MAPK inhibitors allowed us to confirm the MAPK activity of the protein band. Irradiation of etiolated cotyledons with FR light for 5, 10 or 60 min rapidly and transiently stimulated the MAPK activity of the protein band. This suggests that there was a very low fluence response (VLFR) of phys. In addition, 15 min of R light irradiation or a sequential treatment of 15 min of R plus 5 min of FR also increased MAPK activity. The stimulatory effect of R light was also attributed to the same photoreceptor, which suggests that MAPKs are involved in phytochrome signal transduction. Protein immunoprecipitation and immunoblotting analysis with the polyclonal antibody anti-pERK1/2 (Tyr 204) and the monoclonal antibody anti-phosphotyrosine PY20 allowed us to recognize the above mentioned protein band as two proteins with molecular masses (M(r)) of approximately 47 and 45 kDa, and MAPK activity. The biochemical and immunological properties showed by the proteins detected indicated that they were members of the MAPK family phosphorylated in tyrosine residues.

  16. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase.

    PubMed

    Zhang, Qin; Itagaki, Kiyoshi; Hauser, Carl J

    2010-07-01

    Bacterial DNA (bDNA) can activate an innate-immune stimulatory "danger" response via toll-like receptor 9 (TLR9). Mitochondrial DNA (mtDNA) is unique among endogenous molecules in that mitochondria evolved from prokaryotic ancestors. Thus, mtDNA retains molecular motifs similar to bDNA. It is unknown, however, whether mtDNA is released by shock or is capable of eliciting immune responses like bDNA. We hypothesized shock-injured tissues might release mtDNA and that mtDNA might act as a danger-associated molecular pattern (or "alarmin") that can activate neutrophils (PMNs) and contribute to systemic inflammatory response syndrome. Standardized trauma/hemorrhagic shock caused circulation of mtDNA as well as nuclear DNA. Human PMNs were incubated in vitro with purified mtDNA or nuclear DNA, with or without pretreatment by chloroquine (an inhibitor of endosomal receptors like TLR9). Neutrophil activation was assessed as matrix metalloproteinase (MMP) 8 and MMP-9 release as well as p38 and p44/42 mitogen-activated protein kinase (MAPK) phosphorylation. Mitochondrial DNA induced PMN MMP-8/MMP-9 release and p38 phosphorylation but did not activate p44/42. Responses were inhibited by chloroquine. Nuclear DNA did not induce PMN activation. Intravenous injection of disrupted mitochondria (mitochondrial debris) into rats induced p38 MAPK activation and IL-6 and TNF-alpha accumulation in the liver. In summary, mtDNA is released into the circulation by shock. Mitochondrial DNA activates PMN p38 MAPK, probably via TLR9, inducing an inflammatory phenotype. Mitochondrial DNA may act as a danger-associated molecular pattern or alarmin after shock, contributing to the initiation of systemic inflammatory response syndrome.

  17. Role played by Disabled-2 in albumin induced MAP Kinase signalling

    SciTech Connect

    Diwakar, Ramaswamy Pearson, Alexander L.; Colville-Nash, Paul; Baines, Deborah L.; Dockrell, Mark E.C.

    2008-02-15

    Albumin has been shown to activate the mitogen activated protein kinase (MAPK) pathway in proximal tubular cells (PTECs) of the kidney. Megalin, the putative receptor for albumin has potential signalling properties. However, the mechanisms by which megalin signals are unclear. The adaptor phosphoprotein Disabled-2 (Dab2) is known to interact with the cytoplasmic tail of megalin and may be involved in albumin-mediated MAPK signalling. In this study, we investigated the role of Dab2 in albumin-mediated MAPK signalling and further studied the role of Dab2 in albumin-induced TGF{beta}-1 secretion, a MAPK dependent event. We used RNA interference to knockdown Dab2 protein abundance in HKC-8 cells a model of human PTECs. Albumin activated ERK1,2 and Elk-1 in a MEK-1 dependent manner and resulted in secretion of TGF{beta}-1. In the absence of albumin, knockdown of Dab2 resulted in a trend towards increase in pERK1,2 consistent with its putative role as an inhibitor of cell proliferation. However albumin-induced ERK1,2 activation was completely abolished by Dab2 knockdown. Dab2 knockdown did not however result in inhibition of albumin-induced TGF{beta}-1 secretion. These results suggest that Dab2 is a ligand dependent bi-directional regulator of ERK1,2 activity by demonstrating that in addition to its more traditional role as an inhibitor of ERK1,2 it may also activate ERK1,2.

  18. Intein-mediated peptide arrays for epitope mapping and kinase/phosphatase assays.

    PubMed

    Xu, Ming-Qun; Ghosh, Inca; Kochinyan, Samvel; Sun, Luo

    2007-01-01

    Synthetic peptides are widely used for production and analysis of antibodies as well as in the study of protein modification enzymes. To circumvent the technical challenges of the existing techniques regarding peptide quantization and normalization, a new method of producing peptide arrays has been developed. This approach utilizes intein-mediated protein ligation that involves linkage of a carrier protein possessing a reactive carboxyl-terminal thioester to a peptide with an amino-terminal cysteine through a native peptide bond. Ligated protein substrates or enzyme-treated samples are arrayed on nitrocellulose membranes with a standard dot-blot apparatus and analyzed by immunoassay. This technique has improved sensitivity and reproducibility, and is suitable for various peptide-based applications. In this report, several experimental procedures including epitope mapping and the study of protein modifications were described.

  19. MAP kinase pathway gene copy alterations in NRAS/BRAF wild-type advanced melanoma.

    PubMed

    Orouji, Elias; Orouji, Azadeh; Gaiser, Timo; Larribère, Lionel; Gebhardt, Christoffer; Utikal, Jochen

    2016-05-01

    Recent therapeutic advances have improved melanoma patientś clinical outcome. Novel therapeutics targeting BRAF, NRAS and cKit mutant melanomas are widely used in clinical practice. However therapeutic options in NRAS(wild-type) /BRAF(wild-type) /cKit(wild-type) melanoma patients are limited. Our study shows that gene copy numbers of members of the MAPK signaling pathway vary in different melanoma subgroups. NRAS(wild-type) /BRAF(wild-type) melanoma metastases are characterized by significant gains of MAP2K1 (MEK1) and MAPK3 (ERK1) gene loci. These additional gene copies could lead to an activation of the MAPK signaling pathway via a gene-dosage effect. Our results suggest that downstream analyses of the pMEK and pERK expression status in NRAS(wild-type) /BRAF(wild-type) melanoma patients identify patients that could benefit from targeted therapies with MEK and ERK inhibitors.

  20. An inside job: hacking into Janus kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan Toxoplasma gondii.

    PubMed

    Denkers, Eric Y; Bzik, David J; Fox, Barbara A; Butcher, Barbara A

    2012-02-01

    The intracellular protozoan Toxoplasma gondii is well known for its skill at invading and living within host cells. New discoveries are now also revealing the astounding ability of the parasite to inject effector proteins into the cytoplasm to seize control of the host cell. This review summarizes recent advances in our understanding of one such secretory protein called ROP16. This molecule is released from rhoptries into the host cell during invasion. The ROP16 molecule acts as a kinase, directly activating both signal transducer and activator of transcription 3 (STAT3) and STAT6 signaling pathways. In macrophages, an important and preferential target cell of parasite infection, the injection of ROP16 has multiple consequences, including downregulation of proinflammatory cytokine signaling and macrophage deviation to an alternatively activated phenotype.

  1. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade.

    PubMed

    Magwenzi, Simbarashe; Woodward, Casey; Wraith, Katie S; Aburima, Ahmed; Raslan, Zaher; Jones, Huw; McNeil, Catriona; Wheatcroft, Stephen; Yuldasheva, Nadira; Febbriao, Maria; Kearney, Mark; Naseem, Khalid M

    2015-04-23

    Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36(-/-) murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2(-/-) mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3',5'-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling.

  2. Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide.

    PubMed

    Rösner, H; Williams, L A; Jung, A; Kraus, W

    2001-08-22

    Dibenzyl trisulphide (DTS), a main lipophilic compound in Petiveria alliacea L. (Phytolaccaceae), was identified as one of the active immunomodulatory compounds in extracts of the plant. To learn more about its biological activities and molecular mechanisms, we conducted one-dimensional NMR interaction studies with bovine serum albumin (BSA) and tested DTS and related compounds in two well-established neuronal cell-and-tissue culture systems. We found that DTS preferentially binds to an aromatic region of BSA which is rich in tyrosyl residues. In SH-SY5Y neuroblastoma cells, DTS attenuates the dephosphorylation of tyrosyl residues of MAP kinase (erk1/erk2). In the same neuroblastoma cell line and in Wistar 38 human lung fibroblasts, DTS causes a reversible disassembly of microtubules, but it did not affect actin dynamics. Probably due to the disruption of the microtubule dynamics, DTS also inhibits neuroblastoma cell proliferation and neurite outgrowth from spinal cord explants. Related dibenzyl compounds with none, one, or two sulphur atoms were found to be significantly less effective. These data confirmed that the natural compound DTS has a diverse spectrum of biological properties, including cytostatic and neurotoxic actions in addition to immunomodulatory activities.

  3. Intracellular signal transduction pathways in the regulation of fowl sperm motility: evidence for the involvement of phosphatidylinositol 3-kinase (PI3-K) cascade.

    PubMed

    Ashizawa, Koji; Omura, Yusuke; Katayama, Seiichi; Tatemoto, Hideki; Narumi, Kazunori; Tsuzuki, Yasuhiro

    2009-07-01

    The possible role of PI3-K in the reversible temperature-dependent immobilization of fowl sperm motility was investigated by using PI3-K inhibitor (LY294002) and its inactive analogue (LY303511). The existence of the PI3-K in fowl spermatozoa was also confirmed by Western blotting analysis. Fowl sperm motility in TES/NaCl buffer remained negligible at the avian body temperature of 40 degrees C but was maintained vigorously when the temperature was decreased to 30 degrees C. At 30 degrees C, no stimulation or inhibition of motility was observed after the addition of 2 mM CaCl2 and 10 microM LY294002 or LY303511: around 70-80% of spermatozoa remained motile. In contrast, at 40 degrees C, the motility of spermatozoa was activated immediately after the addition of Ca(2+), but the subsequent addition of LY294002 inhibited the motility again. The addition of LY303511 did not appreciably affect the Ca(2+)-supplemented sperm motility, which was maintained for at least 15 min. The ATP concentrations of spermatozoa after the addition of LY294002 + Ca(2+) or LY303511 + Ca(2+) were almost the same values compared with those of Ca(2+) alone at 40 degrees C, suggesting that the addition of LY294002 was not simply affecting membrane damage or inhibiting energy production in the spermatozoa, but may be acting on some part of the motility-regulating cascade. Immunoblotting of sperm extract using an antibody to PI3-K revealed a major cross-reacting protein of 85 kDa, which corresponds to the molecular weight of the subunit of PI3-K. These results suggest that PI3-K may be positively involved in the calcium-regulated maintenance of flagellar movement of fowl spermatozoa at 40 degrees C.

  4. MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397.

    PubMed

    Hayashida, Tomoko; Wu, Ming-Hua; Pierce, Amy; Poncelet, Anne-Christine; Varga, John; Schnaper, H William

    2007-12-01

    The signals mediating transforming growth factor beta (TGFbeta)-stimulated kidney fibrogenesis are poorly understood. We previously reported TGFbeta-stimulated, Smad-mediated collagen production by human kidney mesangial cells, and that ERK MAP kinase activity optimizes collagen expression and enhances phosphorylation of the Smad3 linker region. Furthermore, we showed that disrupting cytoskeletal integrity decreases type I collagen production. Focal adhesion kinase (FAK, PTK2) activity could integrate these findings. Adhesion-dependent FAK Y397 phosphorylation was detected basally, whereas FAK Y925 phosphorylation was TGFbeta1-dependent. By immunocytochemistry, TGFbeta1 stimulated the merging of phosphorylated FAK with the ends of thickening stress fibers. Cells cultured on poly-L-lysine (pLL) to promote integrin-independent attachment spread less than those on control substrate and failed to demonstrate focal adhesion (FA) engagement with F-actin. FAK Y397 phosphorylation and ERK activity were also decreased under these conditions. In cells with decreased FAK Y397 phosphorylation from either plating on pLL or overexpressing a FAK Y397F point mutant, serine phosphorylation of the Smad linker region, but not of the C-terminus, was reduced. Y397F and Y925F FAK point mutants inhibited TGFbeta-induced Elk-Gal activity, but only the Y397F mutant inhibited TGFbeta-stimulated collagen-promoter activity. The inhibition by the Y397F mutant or by culture on pLL was prevented by co-transfection of constitutively active ERK MAP kinase kinase (MEK), suggesting that FAK Y397 phosphorylation promotes collagen expression via ERK MAP kinase activity. Finally, Y397 FAK phosphorylation, and both C-terminal and linker-region Smad3 phosphorylation were detected in murine TGFbeta-dependent kidney fibrosis. Together, these data demonstrate adhesion-dependent FAK phosphorylation promoting TGFbeta-induced responses to regulate collagen production.

  5. Activation of cGMP-Dependent Protein Kinase Stimulates Cardiac ATP-Sensitive Potassium Channels via a ROS/Calmodulin/CaMKII Signaling Cascade

    PubMed Central

    Chai, Yongping; Zhang, Dai-Min; Lin, Yu-Fung

    2011-01-01

    Background Cyclic GMP (cGMP)-dependent protein kinase (PKG) is recognized as an important signaling component in diverse cell types. PKG may influence the function of cardiac ATP-sensitive potassium (KATP) channels, an ion channel critical for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was designed to address this issue. Methods and Findings Single-channel recordings of cardiac KATP channels were performed in both cell-attached and inside-out patch configurations using transfected human embryonic kidney (HEK)293 cells and rabbit ventricular cardiomyocytes. We found that Kir6.2/SUR2A (the cardiac-type KATP) channels were activated by cGMP-selective phosphodiesterase inhibitor zaprinast in a concentration-dependent manner in cell-attached patches obtained from HEK293 cells, an effect mimicked by the membrane-permeable cGMP analog 8-bromo-cGMP whereas abolished by selective PKG inhibitors. Intriguingly, direct application of PKG moderately reduced rather than augmented Kir6.2/SUR2A single-channel currents in excised, inside-out patches. Moreover, PKG stimulation of Kir6.2/SUR2A channels in intact cells was abrogated by ROS/H2O2 scavenging, antagonism of calmodulin, and blockade of calcium/calmodulin-dependent protein kinase II (CaMKII), respectively. Exogenous H2O2 also concentration-dependently stimulated Kir6.2/SUR2A channels in intact cells, and its effect was prevented by inhibition of calmodulin or CaMKII. PKG stimulation of KATP channels was confirmed in intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions. Conclusion The present study provides novel evidence that PKG exerts dual regulation of cardiac KATP channels, including marked stimulation resulting from intracellular signaling mediated by ROS (H2O2 in

  6. Differential modulation of evoked and spontaneous glycine release from rat spinal cord glycinergic terminals by the cyclic AMP/protein kinase A transduction cascade.

    PubMed

    Katsurabayashi, Shutaro; Kubota, Hisahiko; Moorhouse, Andrew J; Akaike, Norio

    2004-11-01

    The mechanisms underlying cyclic AMP modulation of action potential-dependent and -independent (spontaneous) release of glycine from terminals synapsing onto sacral dorsal commissural nucleus neurons of lamina X were studied in spinal cord slices using conventional patch-clamp recordings. 3-Isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, and forskolin increased the amplitude of evoked inhibitory postsynaptic currents (eIPSCs) in a sensitive manner to protein kinase A (PKA) inhibition (with KT-5720). Direct activation (with adenosine 3',5'-cyclic-monophosphothioate, Sp-isomer) and inhibition (with adenosine 3',5'-cyclic-monophosphothioate, Rp-isomer) of PKA increased and decreased the eIPSC amplitude, respectively. Paired pulse experiments and direct injection of PKA inhibitor fragment 6-22 amide (PKI(6-22)) into the recording neuron revealed that these effects on eIPSC amplitude occurred presynaptically, indicating that evoked glycine release is regulated by presynaptic cAMP via changes in PKA activity. Increasing cAMP also increased spontaneous release of glycine, causing an increased frequency of miniature IPSCs (mIPSCs). In contrast to the effects on evoked release, this response was not solely mediated via PKA, as it was not occluded by PKA inhibition, and both direct inhibition and direct activation of PKA actually enhanced mIPSC frequency. Direct inhibition of cAMP (with SQ 22536) did, however, reduce mIPSC frequency. These results suggest cAMP modulation of evoked and spontaneous release involves different presynaptic mechanisms and proteins.

  7. An interaction map of small-molecule kinase inhibitors with anaplastic lymphoma kinase (ALK) mutants in ALK-positive non-small cell lung cancer.

    PubMed

    Ai, Xinghao; Shen, Shengping; Shen, Lan; Lu, Shun

    2015-05-01

    Human anaplastic lymphoma kinase (ALK) has become a well-established target for the treatment of ALK-positive non-small cell lung cancer (NSCLC). Here, we have profiled seven small-molecule inhibitors, including 2 that are approved drugs, against a panel of clinically relevant mutations in ALK tyrosine kinase (TK) domain, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying inhibitor response to ALK TK mutation. We find that (i) the gatekeeper mutation L1196M causes crizotinib resistance by simultaneously increasing and decreasing the binding affinities of, respectively, ATP and inhibitor to ALK, whereas the secondary mutation C1156Y, which is located far away from the ATP-binding site of ALK TK domain, causes the resistance by inducing marked allosteric effect on the site, (ii) the 2nd and 3rd generation kinase inhibitors exhibit relatively high sensitivity towards ALK mutants as compared to 1st generation inhibitors, (iii) the pan-kinase inhibitor staurosporine is insensitive for most mutations due to its high structural compatibility, and (iv) ATP affinity to ALK is generally reduced upon most clinically relevant mutations. Furthermore, we also identify six novel mutation-inhibitor pairs that are potentially associated with drug resistance. In addition, the G1202R and C1156Y mutations are expected to generally cause resistance for many existing inhibitors, since they can address significant effect on the geometric shape and physicochemical property of ALK active pocket.

  8. Role of p38alpha/beta MAP Kinase in Cell Susceptibility to Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B

    PubMed Central

    Schelle, Ilona; Bruening, Janina; Buetepage, Mareike; Genth, Harald

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL), which is casually involved in the toxic shock syndrome and in gas gangrene, enters its target cells by receptor-mediated endocytosis. Inside the cell, TcsL mono-O-glucosylates and thereby inactivates Rac/Cdc42 and Ras subtype GTPases, resulting in actin reorganization and an activation of p38 MAP kinase. While a role of p38 MAP kinase in TcsL-induced cell death is well established, data on a role of p38 MAP kinase in TcsL-induced actin reorganization are not available. In this study, TcsL-induced Rac/Cdc42 glucosylation and actin reorganization are differentially analyzed in p38alpha−/− MSCV empty vector MEFs and the corresponding cell line with reconstituted p38alpha expression (p38alpha−/− MSCV p38alpha MEFs). Genetic deletion of p38alpha results in reduced susceptibility of cells to TcsL-induced Rac/Cdc42 glucosylation and actin reorganization. Furthermore, SB203580, a pyridinyl imidazole inhibitor of p38alpha/beta MAP kinase, also protects cells from TcsL-induced effects in both p38−/− MSCV empty vector MEFs and in p38alpha−/− MSCV p38alpha MEFs, suggesting that inhibition of p38beta contributes to the protective effect of SB203580. In contrast, the effects of the related C. difficile Toxin B are responsive neither to SB203580 treatment nor to p38alpha deletion. In conclusion, the protective effects of SB203580 and of p38alpha deletion are likely not based on inhibition of the toxins’ glucosyltransferase activity rather than on inhibited endocytic uptake of specifically TcsL into target cells. PMID:28025502

  9. Localization of the human stress responsive MAP kinase-like CSAIDs binding protein (CSBP) gene to chromosome 6p21.3/21.2

    SciTech Connect

    McDonnell, P.C.; Young, P.R.; DiLella, A.G.

    1995-09-01

    The proinflammatory cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) play a pivotal role in the initiation of inflammatory responses. Soluble protein antagonists of IL-1 and TNF, such as IL-1ra, sTNFR-Fc fusion, and monoclonal antibodies to TNF have proven to be effective at blocking acute and chronic responses in a number of animal models of inflammatory diseases such as rheumatoid arthritis, septic shock, and inflammatory bowel disease. Consequently, there has been considerable interest in discovering compounds that could inhibit the production of these cytokines and might therefore become treatments. Recently, a structurally related series of pyridinyl imidazoles was found to block IL-1 and TNF production from LPS-stimulated human monocytes and to ameliorate inflammatory diseases significantly in vivo, leading to their being named CSAIDs (cytokine suppressive anti-inflammatory drugs). The protein target of these compounds, termed CSBP (CSAID binding protein), was discovered to be a new member of the MAP kinase family of serine-threonine protein kinases whose kinase activity is activated by LPS in human monocytes. Independently, the same kinase, or its rodent homologues, was found to respond also to chemical, thermal, and osmotic stress and IL-1 treatment. Inhibition of this kinase correlated with reduction in inflammatory cytokine production from LPS-activated monocytes. 15 refs., 1 fig.

  10. Laminar shear stress upregulates endothelial Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 via a Ca²⁺/calmodulin-dependent protein kinase kinase/Akt/p300 cascade.

    PubMed

    Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto

    2013-08-15

    In endothelial cells (ECs), Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 play a crucial role in the regulation of arterial tone via producing NO and endothelium-derived hyperpolarizing factors. Since a rise in intracellular Ca²⁺ levels and activation of p300 histone acetyltransferase are early EC responses to laminar shear stress (LS) for the transcriptional activation of genes, we examined the role of Ca²⁺/calmodulin-dependent kinase kinase (CaMKK), the most upstream element of a Ca²⁺/calmodulin-kinase cascade, and p300 in LS-dependent regulation of KCa2.3 and KCa3.1 in ECs. Exposure to LS (15 dyn/cm²) for 24 h markedly increased KCa2.3 and KCa3.1 mRNA expression in cultured human coronary artery ECs (3.2 ± 0.4 and 45 ± 10 fold increase, respectively; P < 0.05 vs. static condition; n = 8-30), whereas oscillatory shear (OS; ± 5 dyn/cm² × 1 Hz) moderately increased KCa3.1 but did not affect KCa2.3. Expression of KCa2.1 and KCa2.2 was suppressed under both LS and OS conditions, whereas KCa1.1 was slightly elevated in LS and unchanged in OS. Inhibition of CaMKK attenuated LS-induced increases in the expression and channel activity of KCa2.3 and KCa3.1, and in phosphorylation of Akt (Ser473) and p300 (Ser1834). Inhibition of Akt abolished the upregulation of these channels by diminishing p300 phosphorylation. Consistently, disruption of the interaction of p300 with transcription factors eliminated the induction of these channels. Thus a CaMKK/Akt/p300 cascade plays an important role in LS-dependent induction of KCa2.3 and KCa3.1 expression, thereby regulating EC function and adaptation to hemodynamic changes.

  11. Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta.

    PubMed

    Van Brocklyn, James; Letterle, Catherine; Snyder, Pamela; Prior, Thomas

    2002-07-26

    The regulation of glioma cell proliferation by sphingosine-1-phosphate (S1P) was studied using the human glioblastoma cell line U-373 MG. U-373 MG cells responded mitogenically to nanomolar concentrations of S1P, and express mRNA encoding the S1P receptors S1P1/endothelial differentiation gene (EDG)-1, S1P3/EDG-3 and S1P2/EDG-5. S1P-induced proliferation required extracellular signal-regulated kinase activation and was partially sensitive to pertussis toxin and wortmannin, indicating involvement of a Gi-coupled receptor and phosphatidylinositol 3-kinase. Moreover, S1P1, S1P3 and S1P2 receptors are expressed in the majority of human glioblastomas as determined by reverse transcriptase-polymerase chain reaction analysis. Thus, S1P signaling through EDG receptors may contribute to glioblastoma growth in vivo.

  12. The Aspergillus fumigatus SchA(SCH9) kinase modulates SakA(HOG1) MAP kinase activity and it is essential for virulence.

    PubMed

    Alves de Castro, Patrícia; Dos Reis, Thaila Fernanda; Dolan, Stephen K; Oliveira Manfiolli, Adriana; Brown, Neil Andrew; Jones, Gary W; Doyle, Sean; Riaño-Pachón, Diego M; Squina, Fábio Márcio; Caldana, Camila; Singh, Ashutosh; Del Poeta, Maurizio; Hagiwara, Daisuke; Silva-Rocha, Rafael; Goldman, Gustavo H

    2016-11-01

    The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.

  13. The Aspergillus fumigatus SchASCH9 kinase modulates SakAHOG1 MAP kinase activity and it is essential for virulence

    PubMed Central

    Alves de Castro, Patrícia; dos Reis, Thaila Fernanda; Dolan, Stephen K.; Manfiolli, Adriana Oliveira; Brown, Neil Andrew; Jones, Gary W.; Doyle, Sean; Riaño-Pachón, Diego M.; Squina, Fábio Márcio; Caldana, Camila; Singh, Ashutosh; Del Poeta, Maurizio; Hagiwara, Daisuke; Silva-Rocha, Rafael; Goldman, Gustavo H.

    2016-01-01

    Summary The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways. PMID:27538790

  14. DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans

    PubMed Central

    van der Vaart, Aniek; Rademakers, Suzanne; Jansen, Gert

    2015-01-01

    Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT) plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL), resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis. PMID:26657059

  15. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala; Glas, Rickard

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  16. Inhibition of MAP kinase promotes the recruitment of corepressor SMRT by tamoxifen-bound estrogen receptor alpha and potentiates tamoxifen action in MCF-7 cells

    SciTech Connect

    Hong, Wei; Chen, Linfeng; Li, Juan; Yao, Zhi

    2010-05-28

    Estrogen receptor alpha (ER{alpha}), a ligand controlled transcription factor, plays an important role in breast cancer growth and endocrine therapy. Tamoxifen (TAM) antagonizes ER{alpha} activity and has been applied in breast cancer treatment. TAM-bound ER{alpha} associates with nuclear receptor-corepressors. Mitogen-activated protein kinase (MAPK) has been elucidated to result in cross-talk between growth factor and ER{alpha} mediated signaling. We show that activated MAPK represses interaction of TAM-bound ER{alpha} with silencing mediator for retinoid and thyroid hormone receptors (SMRT) and inhibits the recruitment of SMRT by ER{alpha} to certain estrogen target genes. Blockade of MAPK signaling cascade with MEK inhibitor U0126 promotes the interaction and subsequently inhibits ER{alpha} activity via enhanced recruitment of SMRT, leading to reduced expression of ER{alpha} target genes. The growth rate of MCF-7 cells was decelerated when treated with both TAM and U0126. Moreover, the growth of MCF-7 cells stably expressing SMRT showed a robust repression in the presence of TAM and U0126. These results suggest that activated MAPK signaling cascade attenuates antagonist-induced recruitment of SMRT to ER{alpha}, suggesting corepressor mediates inhibition of ER{alpha} transactivation and breast cancer cell growth by antagonist. Taken together, our finding indicates combination of antagonist and MAPK inhibitor could be a helpful approach for breast cancer therapy.

  17. Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae.

    PubMed

    Nomura, Wataru; Inoue, Yoshiharu

    2015-04-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr(1125) and Ser(1143). Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser(1143), which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1(T1125) affected the phosphorylation of Pkc1 at Ser(1143), in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser(473). Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes.

  18. Methylglyoxal Activates the Target of Rapamycin Complex 2-Protein Kinase C Signaling Pathway in Saccharomyces cerevisiae

    PubMed Central

    Nomura, Wataru

    2015-01-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr1125 and Ser1143. Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser1143, which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1T1125 affected the phosphorylation of Pkc1 at Ser1143, in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser473. Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes. PMID:25624345

  19. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B.

    PubMed

    Budagian, Vadim; Bulanova, Elena; Brovko, Luba; Orinska, Zane; Fayad, Raja; Paus, Ralf; Bulfone-Paus, Silvia

    2003-01-17

    ATP-gated ion channel P2X receptors are expressed on the surface of most immune cells and can trigger multiple cellular responses, such as membrane permeabilization, cytokine production, and cell proliferation or apoptosis. Despite broad distribution and pleiotropic activities, signaling pathways downstream of these ionotropic receptors are still poorly understood. Here, we describe intracellular signaling events in Jurkat cells treated with millimolar concentrations of extracellular ATP. Within minutes, ATP treatment resulted in the phosphorylation and activation of p56(lck) kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase but not p38 kinase. These effects were wholly dependent upon the presence of extracellular Ca(2+) ions in the culture medium. Nevertheless, calmodulin antagonist calmidazolium and CaM kinase inhibitor KN-93 both had no effect on the activation of p56(lck) and ERK, whereas a pretreatment of Jurkat cells with MAP kinase kinase inhibitor P098059 was able to abrogate phosphorylation of ERK. Further, expression of c-Jun and c-Fos proteins and activator protein (AP-1) DNA binding activity were enhanced in a time-dependent manner. In contrast, DNA binding activity of NF-kappa B was reduced. ATP failed to stimulate the phosphorylation of ERK and c-Jun N-terminal kinase and activation of AP-1 in the p56(lck)-deficient isogenic T cell line JCaM1, suggesting a critical role for p56(lck) kinase in downstream signaling. Regarding the biological significance of the ATP-induced signaling events we show that although extracellular ATP was able to stimulate proliferation of both Jurkat and JCaM1 cells, an increase in interleukin-2 transcription was observed only in Jurkat cells. The nucleotide selectivity and pharmacological profile data supported the evidence that the ATP-induced effects in Jurkat cells were mediated through the P2X7 receptor. Taken together, these results demonstrate the ability of extracellular ATP to activate

  20. Chromosome mapping of the human arrestin (SAG), {beta}-arrestin 2 (ARRB2), and {beta}-adrenergic receptor kinase 2 (ADRBK2) genes

    SciTech Connect

    Calabrese, G.; Sallese, M.; Stornaiuolo, A.

    1994-09-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor and its functional cofactor, {beta}-arrestin. Both {beta}ARK and {beta}-arrestin are members of multigene families. The family of G-protein-coupled receptor kinases includes rhodopsin kinase, {beta}ARK1, {beta}ARK2, IT11-A (GRK4), GRK5, and GRK6. The arrestin/{beta}-arrestin gene family includes arrestin (also known as S-antigen), {beta}-arrestin 1, and {beta}-arrestin 2. Here we report the chromosome mapping of the human genes for arrestin (SAG), {beta}arrestin 2 (ARRB2), and {beta}ARK2 (ADRBK2) by fluorescence in situ hybridization (FISH). FISH results confirmed the assignment of the gene coding for arrestin (SAG) to chromosome 2 and allowed us to refine its localization to band q37. The gene coding for {beta}-arrestin 2 (ARRB2) was mapped to chromosome 17p13 and that coding for {beta}ARK2 (ADRBK2) to chromosome 22q11. 17 refs., 1 fig.

  1. A novel PPAR{gamma} agonist, KR62776, suppresses RANKL-induced osteoclast differentiation and activity by inhibiting MAP kinase pathways

    SciTech Connect

    Park, Ju-Young; Bae, Myung-Ae; Cheon, Hyae Gyeong; Kim, Sung Soo; Hong, Jung-Min; Kim, Tae-Ho; Choi, Je-Yong; Kim, Sang-Hyun; Lim, Jiwon; Choi, Chang-Hyuk; Shin, Hong-In; Kim, Shin-Yoon Park, Eui Kyun

    2009-01-16

    We investigated the effects of a novel peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, KR62776, on osteoclast differentiation and function, and on the underlying signaling pathways. KR62776 markedly suppressed differentiation into osteoclasts in various osteoclast model systems, including bone marrow mononuclear (BMM) cells and a co-culture of calvarial osteoblasts and BMM cells. KR62776 suppressed the activation of tartrate-resistant acid phosphatase (TRAP) and the expression of genes associated with osteoclast differentiation, such as TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated receptor (OSCAR). Furthermore, KR62776 reduced resorption pit formation in osteoclasts, and down-regulated genes essential for osteoclast activity, such as Src and {alpha}v{beta}3 integrin. An analysis of a signaling pathway showed that KR62776 inhibited the receptor activator of nuclear factor-{kappa}B ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor-{kappa}B (NF-{kappa}B). Together, these results demonstrate that KR62776 negatively affects osteoclast differentiation and activity by inhibiting the RANKL-induced activation of MAP kinases and NF-{kappa}B.

  2. Impairment of the liver insulin receptor autoactivation cascade at full-term pregnancy in the rat.

    PubMed

    Martinez, C; Molero, J C; Ruiz, P; Del Arco, A; Andres, A; Carrascosa, J M

    1995-10-15

    Partially purified liver insulin receptors from full-term pregnant rats show decreased autophosphorylation rates if compared with receptors from virgins. We studied the molecular mechanism of this phenomenon, looking at possible structural and functional changes of several domains. The ATP-binding domain seems to be unaltered in receptors from pregnant rats since Km for ATP was similar to that observed in virgins. In contrast, the Vmax. is decreased some 45%, suggesting changes in the kinase domain. Truncation of a fragment of 10 kDa from the C-terminal tail does not normalize the kinase activity in receptors from pregnant rats, suggesting that this domain is not involved in the inhibitory regulation. Treatment with alkaline phosphatase increases the [32P]Pi incorporation into receptors from pregnant rats; however, the autophosphorylation remains lower than that observed in virgin rats. Tryptic phosphopeptide maps of phosphorylated receptors show that the same phosphopeptides are present in receptors from virgin and pregnant rats. However, the progression through the autoactivation cascade in the kinase domain is impaired in receptors from pregnant rats. Differences in the cleavage by trypsin at the two alternative sites in the kinase domain were observed, indicating possible structural changes in receptors from pregnant rats that could be related to the impairment of the autoactivation cascade. Integrity of the alpha- and beta-subunits, as well as differential expression of the two receptor isotypes, were shown to be unaltered. We conclude that (1) the decreased autophosphorylation rate of the liver insulin receptor from pregnant rats is associated with the impairment of its autoactivation cascade, probably as a consequence of the basal Ser/Thr phosphorylation; and (2) the inhibition of the autoactivation cascade does not account for the overall inhibition of autophosphorylation observed in receptors from pregnant rats.

  3. Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes, IbMPK3 and IbMPK6, in sweetpotato.

    PubMed

    Kim, Ho Soo; Park, Sung-Chul; Ji, Chang Yoon; Park, Seyeon; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2016-11-01

    Plants are continually exposed to numerous environmental stresses. To decrease damage caused by these potentially detrimental factors, various stress-related signaling cascades are activated in plants. One such stress-responsive signaling pathway, the mitogen-activated protein kinase (MAPK) module, plays a critical role in diverse plant stress responses. Here, we functionally characterized biotic and abiotic stress-responsive MAPK genes, IbMPK3 and IbMPK6, from sweetpotato. IbMPK3/6 contain totally 11 MAPK conserved subdomains and the phosphorylating motif TEY. Bacterially expressed IbMPK3/6 could be autophosphorylated in vitro, and these proteins phosphorylated universal kinase substrate, such as myelin basic protein. IbMPK3/6 transcripts were expressed in leaf, stem, and root of sweetpotato cultivars with storage roots of various colors. IbMPK3 and IbMPK6 were induced by various biotic/abiotic stress treatments. Furthermore, the kinase activity of IbMPK3/6 was induced during early NaCl, SA, H2O2, and ABA treatment. IbMPK3/6 were predominantly localized to the nucleus. To determine the biological functions of IbMPK3/6, we transiently expressed the IbMPK genes in tobacco (Nicotiana benthamiana) leaves, which resulted in enhanced tolerance to bacterial pathogen and increased expression of pathogenesis-related (PR) genes. These data demonstrate that IbMPK3 and IbMPK6 play significant roles in plant responses to environmental stress.

  4. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes

    PubMed Central

    Rodríguez, Javier; Calvo, Fernando; José; González, M.; Casar, Berta; Andrés, Vicente

    2010-01-01

    As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation. PMID:21115804

  5. SRC family kinase (SFK) inhibition reduces rhabdomyosarcoma cell growth in vitro and in vivo and triggers p38 MAP kinase-mediated differentiation

    PubMed Central

    Casini, Nadia; Forte, Iris Maria; Mastrogiovanni, Gianmarco; Pentimalli, Francesca; Angelucci, Adriano; Festuccia, Claudio; Tomei, Valentina; Ceccherini, Elisa; Di Marzo, Domenico; Schenone, Silvia; Botta, Maurizio; Giordano, Antonio; Indovina, Paola

    2015-01-01

    Recent data suggest that SRC family kinases (SFKs) could represent potential therapeutic targets for rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. Here, we assessed the effect of a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221) on RMS cell lines. SI221, which showed to be mainly effective against the SFK member YES, significantly reduced cell viability and induced apoptosis, without affecting non-tumor cells, such as primary human skin fibroblasts and differentiated C2C12 cells. Moreover, SI221 decreased in vitro cell migration and invasion and reduced tumor growth in a RMS xenograft model. SFK inhibition also induced muscle differentiation in RMS cells by affecting the NOTCH3 receptor-p38 mitogen-activated protein kinase (MAPK) axis, which regulates the balance between proliferation and differentiation. Overall, our findings suggest that SFK inhibition, besides reducing RMS cell growth and invasive potential, could also represent a differentiation therapeutic strategy for RMS. PMID:25762618

  6. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes.

    PubMed

    Rodríguez, Javier; Calvo, Fernando; González, José M; Casar, Berta; Andrés, Vicente; Crespo, Piero

    2010-11-29

    As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation.

  7. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles. Involvement of a protein kinase C mediated MAP kinase 3/1 self- activation loop

    PubMed Central

    Yang, Peixin; Roy, Shyamal K.

    2006-01-01

    Summary FSH- or EGF-induced granulosa cell proliferation in intact preantral follicles depends on a novel PKC-mediated MAPK3/1 self-activation loop. The objective was to reveal whether a PKC-mediated self-sustaining MAPK3/1 activation loop was necessary for FSH- or EGF-induced DNA synthesis in the granulosa cells of intact preantral follicles. For this purpose, hamster preantral follicles were cultured with FSH or EGF in the presence of selective kinase inhibitors. FSH or EGF phosphorylated RAF1, MAP2K1 and MAPK3/1. However, relatively higher dose of EGF was necessary to sustain the MAPK3/1 activity, which was essential for CDK4 activation and DNA synthesis. In intact preantral follicles, FSH or EGF stimulated DNA synthesis only in the granulosa cells. Sustained activation of MAPK3/1 beyond 3h was independent of EGFR kinase activity, but dependent on PKC activity, which appeared to form a self-sustaining MAPK3/1 activation loop by activating RAF1, MAP2K1 and PLA2G4. Inhibition of PKC activity as late as 4h after the administration of FSH or EGF arrested DNA synthesis, which corresponded with attenuated phosphorylation of RAF1 and MAPK3/1, thus suggesting an essential role of PKC in MAPK3/1 activation. Collectively, these data present a novel self-sustaining mechanism comprised of MAPK3/1, PLA2G4, PKC and RAF1 for CDK4 activation leading to DNA synthesis in granulosa cells. Either FSH or EGF can activate the loop to activate CDK4 and initiate DNA synthesis; however, consistent with our previous findings, FSH effect seems to be mediated by EGF, which initiates the event by stimulating EGFR kinase. PMID:16525034

  8. Geologic Map of the Bodie Hills Volcanic Field, California and Nevada: Anatomy of Miocene Cascade Arc Magmatism in the Western Great Basin

    NASA Astrophysics Data System (ADS)

    John, D. A.; du Bray, E. A.; Blakely, R. J.; Box, S.; Fleck, R. J.; Vikre, P. G.; Rytuba, J. J.; Moring, B. C.

    2011-12-01

    The Bodie Hills Volcanic Field (BHVF) is a >700 km2, long-lived (~9 Ma) but episodic, Miocene eruptive center in the southern part of the ancestral Cascade magmatic arc. A 1:50,000-scale geologic map based on extensive new mapping, combined with 40Ar/39Ar dates, geochemical data, and detailed gravity and aeromagnetic surveys, defines late Miocene magmatic and hydrothermal evolution of the BHVF and contrasts the subduction-related BHVF with the overlying, post-subduction, bimodal Plio-Pleistocene Aurora Volcanic Field (AVF). Important features of the BHVF include: Eruptions occurred during 3 major eruptive stages: dominantly trachyandesite stratovolcanoes (~14.7 to 12.9 Ma), mixed silicic trachyandesite, dacite, and rhyolite (~11.3 to 9.6 Ma), and dominantly silicic trachyandesite to dacite domes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Trachyandesitic stratovolcanoes with extensive debris flow aprons form the outer part of BHVF, whereas silicic trachyandesite to rhyolite domes are more centrally located. Geophysical data suggest that many BHVF volcanoes have shallow plutonic roots that extend to depths ≥1-2 km below the surface, and much of the Bodie Hills may be underlain by low density plutons presumably related to BHVF volcanism. BHVF rocks contain ~50 to 78% SiO2 (though few rocks have <55% SiO2), have high-K calc-alkaline compositions, and have negative Ti-P-Nb-Ta anomalies and high Ba/Nb, Ba/Ta, and La/Nb typical of subduction-related continental margin arcs. BHVF rocks include mafic trachyandesite/basaltic andesite (50%), silicic trachyandesite-dacite (40%), and rhyolite (10%). Approximately circular, polygenetic volcanoes and scarcity of dikes suggest a low differential horizontal stress field during formation of BHVF. Subduction ceased beneath the Bodie Hills at ~10 Ma, but the composition and eruptive style of volcanism continued unchanged for 2 Ma. However, kinematic data for veins and faults in mining districts suggest a change

  9. Reversal of the TPA-induced inhibition of gap junctional intercellular communication by Chaga mushroom (Inonotus obliquus) extracts: effects on MAP kinases.

    PubMed

    Park, Jung-Ran; Park, Joon-Suk; Jo, Eun-Hye; Hwang, Jae-Woong; Kim, Sun-Jung; Ra, Jeong-Chan; Aruoma, Okezie I; Lee, Yong-Soon; Kang, Kyung-Sun

    2006-01-01

    Chaga mushroom (Inonotus obliquus) has continued to receive attention as a folk medicine with indications for the treatment of cancers and digestive diseases. The anticarcinogenic effect of Chaga mushroom extract was investigated using a model system of gap junctional intercellular communication (GJIC) in WB-F344 normal rat liver epithelial cells. The cells were pre-incubated with Chaga mushroom extracts (5, 10, 20 microg/ml) for 24 h and this was followed by co-treatment with Chaga mushroom extracts and TPA (12-O-tetradecanoylphorbol-13-acetate, 10 ng/ml) for 1 h. The inhibition of GJIC by TPA (12-O-tetradecanoylphorbol-13-acetate), promoter of cancer, was prevented with treatment of Chaga mushroom extracts. Similarly, the increased phosphorylated ERK1/2 and p38 protein kinases were markedly reduced in Chaga mushroom extracts-treated cells. There was no change in the JNK kinase protein level, suggesting that Chaga mushroom extracts could only block the activation of ERK1/2 and p38 MAP kinase. The Chaga mushroom extracts further prevented the inhibition of GJIC through the blocking of Cx43 phosphorylation. Indeed cell-to-cell communication through gap junctional channels is a critical factor in the life and death balance of cells because GJIC has an important function in maintaining tissue homeostasis through the regulation of cell growth, differentiation, apoptosis and adaptive functions of differentiated cells. Thus Chaga mushroom may act as a natural anticancer product by preventing the inhibition of GJIC through the inactivation of ERK1/2 and p38 MAP kinase.

  10. Effects of the brominated flame retardant tetrabromobisphenol-A (TBBPA) on cell signaling and function of Mytilus hemocytes: involvement of MAP kinases and protein kinase C.

    PubMed

    Canesi, Laura; Lorusso, Lucia Cecilia; Ciacci, Caterina; Betti, Michele; Gallo, Gabriella

    2005-11-10

    Brominated flame retardants (BFRs) are a large group of compounds added to or applied as a treatment to polymeric materials to prevent fires. Tetrabisphenol A (TBBPA) is the most important individual BFR used in industry. Although TBBPA and its derivatives can be found in environmental samples, data are very limited on the presence of this compound in biota. Research on mammals indicates that TBBPA has low toxicity in vivo; however, in vitro TBBPA can act as a cytotoxicant, neurotoxicant, immunotoxicant, thyroid hormone agonist and has a weak estrogenic activity; in particular, the effects of TBBPA have been recently ascribed to its interactions with cellular signaling pathways, in particular with mitogen activated protein kinases (MAPKs). TBBPA has high acute toxicity to aquatic organisms, such as algae, molluscs, crustaceans and fish; however, little is known on the mechanisms of action of this compound in the cells of aquatic species. In this work, we investigated the possible effects and mechanisms of action of TBBPA on the immune cells, the hemocytes, of the marine mussel Mytilus galloprovincialis. The results demonstrate that TBBPA in the low micromolar range induces hemocyte lysosomal membrane destabilization. The effect was reduced or prevented by hemocyte pre-treatment by specific inhibitors of MAPKs and of protein kinase C (PKC). TBBPA stimulated phosphorylation of MAPK members and PKC, as evaluated by electrophoresis and Western blotting with anti-phospho-antibodies, although to a different extent and with distinct time-courses. A rapid (from 5 min) and transient increase in phosphoryation of the stress-activated JNK MAPKs and of PKC was observed, followed by a later increase (at 30-60 min) in phosphorylation of extracellularly regulated MAPKs (ERK2 MAPK) and of the stress-activated p38 MAPK. TBBPA significantly stimulated the hemocyte microbicidal activity towards E. coli, lysosomal enzyme release, phagocytic activity and extracellular superoxide (O2

  11. A soluble factor from Trypanosoma cruzi inhibits transforming growth factor-ß-induced MAP kinase activation and gene expression in dermal fibroblasts.

    PubMed

    Mott, G Adam; Costales, Jaime A; Burleigh, Barbara A

    2011-01-01

    The protozoan parasite Trypanosoma cruzi, which causes human Chagas' disease, exerts a variety of effects on host extracellular matrix (ECM) including proteolytic degradation of collagens and dampening of ECM gene expression. Exposure of primary human dermal fibroblasts to live infective T. cruzi trypomastigotes or their shed/secreted products results in a rapid down-regulation of the fibrogenic genes collagenIα1, fibronectin and connective tissue growth factor (CTGF/CCN2). Here we demonstrate the ability of a secreted/released T. cruzi factor to antagonize ctgf/ccn2 expression in dermal fibroblasts in response to TGF-ß, lysophosphatidic acid or serum, where agonist-induced phosphorylation of the mitogen-activated protein (MAP) kinases Erk1/2, p38 and JNK was also inhibited. Global analysis of gene expression in dermal fibroblasts identified a discrete subset of TGF-ß-inducible genes involved in cell proliferation, wound repair, and immune regulation that are inhibited by T. cruzi secreted/released factors, where the genes exhibiting the highest sensitivity to T. cruzi are known to be regulated by MAP kinase-activated transcription factors. Consistent with this observation, the Ets-family transcription factor binding site in the proximal promoter region of the ctgf/ccn2 gene (-91 bp to -84 bp) was shown to be required for T. cruzi-mediated down-regulation of ctgf/ccn2 reporter expression. The cumulative data suggest a model in which T. cruzi-derived molecules secreted/released early in the infective process dampen MAP kinase signaling and the activation of transcription factors that regulate expression of fibroblast genes involved in wound repair and tissue remodelling, including ctgf/ccn2. These findings have broader implications for local modulation of ECM synthesis/remodelling by T. cruzi during the early establishment of infection in the mammalian host and highlight the potential for pathogen-derived molecules to be exploited as tools to modulate the

  12. Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers.

    PubMed

    Adderley, Shaquria P; Lawrence, Curtis; Madonia, Eyong; Olubadewo, Joseph O; Breslin, Jerome W

    2015-07-01

    The role of the actin cytoskeleton in endothelial barrier function has been debated for nearly four decades. Our previous investigation revealed spontaneous local lamellipodia in confluent endothelial monolayers that appear to increase overlap at intercellular junctions. We tested the hypothesis that the barrier-disrupting agent histamine would reduce local lamellipodia protrusions and investigated the potential involvement of p38 mitogen-activated protein (MAP) kinase activation and actin stress fiber formation. Confluent monolayers of human umbilical vein endothelial cells (HUVEC) expressing green fluorescent protein-actin were studied using time-lapse fluorescence microscopy. The protrusion and withdrawal characteristics of local lamellipodia were assessed before and after addition of histamine. Changes in barrier function were determined using electrical cell-substrate impedance sensing. Histamine initially decreased barrier function, lamellipodia protrusion frequency, and lamellipodia protrusion distance. A longer time for lamellipodia withdrawal and reduced withdrawal distance and velocity accompanied barrier recovery. After barrier recovery, a significant number of cortical fibers migrated centrally, eventually resembling actin stress fibers. The p38 MAP kinase inhibitor SB203580 attenuated the histamine-induced decreases in barrier function and lamellipodia protrusion frequency. SB203580 also inhibited the histamine-induced decreases in withdrawal distance and velocity, and the subsequent actin fiber migration. These data suggest that histamine can reduce local lamellipodia protrusion activity through activation of p38 MAP kinase. The findings also suggest that local lamellipodia have a role in maintaining endothelial barrier integrity. Furthermore, we provide evidence that actin stress fiber formation may be a reaction to, rather than a cause of, reduced endothelial barrier integrity.

  13. Multiperiod quantum-cascade nanoheterostructures: Epitaxy and diagnostics

    SciTech Connect

    Egorov, A. Yu. Brunkov, P. N.; Nikitina, E. V.; Pirogov, E. V.; Sobolev, M. S.; Lazarenko, A. A.; Baidakova, M. V.; Kirilenko, D. A.; Konnikov, S. G.

    2014-12-15

    Advances in the production technology of multiperiod nanoheterostructures of quantum-cascade lasers with 60 cascades by molecular-beam epitaxy (MBE) on an industrial multiple-substrate MBE machine are discussed. The results obtained in studying the nanoheterostructures of quantum-cascade lasers by transmission electron microscopy, high-resolution X-ray diffraction analysis, and photoluminescence mapping are presented.

  14. Gonadotropin regulation of testosterone production by primary cultured theca and granulosa cells of Atlantic croaker: II. Involvement of a mitogen-activated protein kinase pathway.

    PubMed

    Benninghoff, Abby D; Thomas, Peter

    2006-07-01

    Previous investigations in Atlantic croaker ovaries and primary co-cultured theca and granulosa cells have identified multiple signal transduction pathways involved in the control of gonadotropin-induced steroidogenesis, including adenylyl cyclase- and calcium-dependent signaling pathways. In the present study, evidence was obtained for an involvement of a third signal transduction pathway, a mitogen-activated protein kinase (MAP kinase) signaling cascade, in the regulation of gonadal steroidogenesis in this lower vertebrate teleost model. Gonadotropin-stimulated testosterone synthesis was markedly attenuated by two antagonists of mitogen-activated protein kinase kinases 1/2 (MEK1/2, also known as Map2k1/Map2k2). Moreover, treatment with gonadotropin-induced MEK1/2-dependent phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2, also known as Mapk3/Mapk1) in a concentration- and time-dependent manner in co-cultured croaker theca and granulosa cells. Active MEK1/2 was required for a complete steroidogenic response to activators of the adenylyl cyclase pathway, including forskolin and dbcAMP, suggesting that the target(s) of MAP kinase signaling are distal to cAMP generation and activation of cAMP-dependent protein kinase (PKA). Interestingly, dbcAMP caused a similar increase of ERK1/2 phosphorylation as was observed with gonadotropin treatment, although an inhibitor of PKA did not attenuate this response. Finally, there was no evidence of cross-talk between calcium-dependent signaling pathways and this MAP kinase cascade. While drugs that block calcium-dependent signal transduction, including inhibitors of voltage-sensitive calcium channels, calmodulin, and calcium/calmodulin-dependent kinases, significantly reduced gonadotropin-induced testosterone accumulation, these drugs had no apparent effect on hCG-induced ERK1/2 phosphorylation.

  15. [INHIBITORS OF MAP-KINASE PATHWAY U0126 AND PD98059 DIFFERENTLY AFFECT ORGANIZATION OF TUBULIN CYTOSKELETON AFTER STIMULATION OF EGF RECEPTOR ENDOCYTOSIS].

    PubMed

    Zlobina, M V; Steblyanko, Yu Yu; Shklyaeva, M A; Kharchenko, V V; Salova, A V; Kornilova, E S

    2015-01-01

    To confirm the hypothesis about the involvement of EGF-stimulated MAP-kinase ERK1/2 in the regulation of microtubule (MT) system, the influence of two widely used ERK1/2 inhibitors, U0126 and PD98059, on the organization of tubulin cytoskeleton in interphase HeLa cells during EGF receptor endocytosis has been investigated. We have found that addition of U0126 or PD98059 to not-stimulated with EGF ells for 30 min has no effect on radially organized MT system. However, in the case of U0126 addition before EGF endocytosis stimulation, the number of MT per cell decreased within 15 min after such stimulation and was followed by complete MT depolymerization by 60-90 min. Stimulation of EGF endocytosis in the presence of PD98059 resulted only in insignificant depolymerization of MT and it could be detected mainly from their minus-ends. At the same time, MT regions close to plasma membrane became stabilized, which was proved by increase in tubulin acetylation level. This situation was characteristic for all period of the experiment. It has been also found that the inhibitors affect endocytosis dynamics of EGF-receptor complexes. Quantitative analysis demonstrated that the stimulation of endocytosis in the presence of U0126 generated a greater number of endosomes compared to control cells, and their number did not change significantly during the experiment. All these endosomes were localized peripherally. Effect of PD98059 resulted in the formation of lower number of endosomes that in control, but they demonstrated very slow clusterization despite the presence of some intact MT. Both inhibitors decreased EGFR colocolization with early endosomal marker EEA1, which indicated a delay in endosome fusions and maturation. The inhibitors were also shown to affect differently phospho-ERK 1 and 2 forms: U0126 completely inhibited phospho-ERK1 and 2, white, in the presence of PD98059, the two ERK forms demonstrated sharp transient activation in 15 min after stimulation, but only

  16. The ubiquitous mitochondrial creatine kinase gene maps to a conserved region on human chromosome 15q15 and mouse chromosome 2 bands F1-F3

    SciTech Connect

    Steeghs, K.; Wieringa, B.; Merkx, G.

    1994-11-01

    Members of the creatine kinase isoenzyme family (CKs; EC 2.7.3.2) are found in mitochondria and specialized subregions of the cytoplasm and catalyze the reversible exchange of high-energy phosphoryl between ATP and phosphocreatine. At least four functionally active genes, which encode the distinct CK subunits CKB, CKM, CKMT1 (ubiquitous), and CKMT2 (sarcomeric), and a variable number of CKB pseudogenes have been identified. Here, we report the use of a CKMT1 containing phage to map the CKMT1 gene by in situ hybridization on both human and mouse chromosomes.

  17. GRAVITY STUDIES IN THE CASCADE RANGE.

    USGS Publications Warehouse

    Finn, Carol; Williams, David

    1983-01-01

    A compatible set of gravity data has been compiled for the entire Cascade Range. From this data set a series of interpretive color gravity maps have been prepared, including a free air anomaly map, Bouguer anomaly map at a principle, and an alternate reduction density, and filtered and derivative versions of the Bouguer anomaly map. The regional anomaly pattern and gradients outline the various geological provinces adjacent to the Cascade Range and delineate major structural elements in the range. The more local anomalies and gradients may delineate low density basin and caldera fill, faults, and shallow plutons. Refs.

  18. Genes encoding a callose synthase and phytochrome A are adjacent to a MAP3Ka-like gene in Beta vulgaris USH20

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MAP3Ka encodes a key conserved protein kinase responsible for orchestrating a rapid cascade of cellular events ultimately leading to localized cell death. Hypersensitive response, as it is termed, enables genetically-resistant plants to limit microbial invasion under the right environmental conditio...

  19. Mapping of the NEP receptor tyrosine kinase gene to human chromosome 6p21.3 and mouse chromosome 17C

    SciTech Connect

    Edelhoff, S.; Disteche, C.M.; Sweetser, D.A.

    1995-01-01

    The mouse receptor tyrosine kinase (RTK) NEP, also called Ptk-3, is widely expressed, with high levels in proliferating neuroepithelia of mouse embryos. The recently described human discoidin domain receptor (DDR) has a predicted amino acid sequence 93% identical to that of murine NEP and may be its human homologue. We have mapped the gene encoding NEP in human and mouse by fluorescence in situ hybridization using a mouse cDNA probe. The NEP/Nep gene maps to human chromosome 6p21.3 and mouse chromosome 17C, respectively. This places the NEP/Nep gene at, or near, the major histocompatibility (MHC) locus-HLA in human and H2 in mouse, respectively. Based on its pattern of expression during development, NEP and Nep represent candidate genes for several MHC-linked developmental abnormalities in human and mouse. 19 refs., 1 fig.

  20. The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells.

    PubMed Central

    Okazaki, K; Sagata, N

    1995-01-01

    The c-mos proto-oncogene product, Mos, is a serine/threonine kinase that can activate ERK1 and 2 mitogen-activated protein (MAP) kinases by direct phosphorylation of MAPK/ERK kinase (MEK). ERK activation is essential for oncogenic transformation of NIH 3T3 cells by Mos. In this study, we examined how mitogenic and oncogenic signalling from the Mos/MEK/ERK pathway reaches the nucleus to activate downstream target genes. We show that c-Fos (the c-fos protooncogene product), which is an intrinsically unstable nuclear protein, is metabolically highly stabilized, and greatly enhances the transforming efficiency of NIH 3T3 cells, by Mos. This stabilization of c-Fos required Mos-induced phosphorylation of its C-terminal region on Ser362 and Ser374, and double replacements of these serines with acidic (Asp) residues markedly increased the stability and transforming efficiency of c-Fos even in the absence of Mos. Moreover, activation of the ERK pathway was necessary and sufficient for the c-Fos phosphorylation and stabilization by Mos. These results indicate that c-Fos undergoes stabilization, and mediates at least partly the oncogenic signalling, by the Mos/MEK/ERK pathway. The present findings also suggest that, in general, the ERK pathway may regulate the cell fate and function by affecting the metabolic stability of c-Fos. Images PMID:7588633

  1. FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen

    PubMed Central

    Zhang, Chengkang; Wang, Jianqiang; Tao, Hong; Dang, Xie; Wang, Yang; Chen, Miaoping; Zhai, Zhenzhen; Yu, Wenying; Xu, Liping; Shim, Won-Bo; Lu, Guodong; Wang, Zonghua

    2015-01-01

    Fusarium verticillioides (formerly F. moniliforme) is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a possibly carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane. PMID:26500635

  2. Nitric oxide affects ERK signaling through down-regulation of MAP kinase phosphatase levels during larval development of the ascidian Ciona intestinalis.

    PubMed

    Castellano, Immacolata; Ercolesi, Elena; Palumbo, Anna

    2014-01-01

    In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO) production, MAP kinases (ERK, JNK) and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps) expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways.

  3. Reversion of apoptotic resistance of TP53-mutated Burkitt lymphoma B-cells to spindle poisons by exogenous activation of JNK and p38 MAP kinases

    PubMed Central

    Farhat, M; Poissonnier, A; Hamze, A; Ouk-Martin, C; Brion, J-D; Alami, M; Feuillard, J; Jayat-Vignoles, C

    2014-01-01

    Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated. PMID:24787013

  4. The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast.

    PubMed Central

    Zarzov, P; Mazzoni, C; Mann, C

    1996-01-01

    The SLT2(MPK1) mitogen-activated protein kinase signal transduction pa thway has been implicated in several biological processes in Saccharomyces cerevisiae, including the regulation of cytoskeletal and cell wall structure, polarized cell growth, and response to nutrient availability, hypo-osmotic shock and heat shock. We examined the conditions under which the SLT2 pathway is activated. We found that the SLT2 kinase is tyrosine phosphorylated and activated during periods in which yeast cells are undergoing polarized cell growth, namely during bud formation of vegetative cell division and during projection formation upon treatment with mating pheromone. BCK1(SLK1), a MEK kinase, is required for SLT2 activation in both of these situations. Upstream of BCK1(SLK1), we found that the STE20 kinase was required for SLT2 activation by mating pheromone, but was unnecessary for its activation during the vegetative cell cycle. Finally, SLT2 activation during vegetative growth was partially dependent on CDC28 in that the stimulation of SLT2 tyrosine phosphorylation was significantly reduced directly after a temperature shift in cdc28 ts mutants. Our data are consistent with a role for SLT2 in promoting polarized cell growth. Images PMID:8598209

  5. Induction of B(1)-kinin receptors in vascular smooth muscle cells: cellular mechanisms of map kinase activation.

    PubMed

    Christopher, J; Velarde, V; Jaffa, A A

    2001-09-01

    Vascular smooth muscle cell (VSMC) proliferation is a prominent feature of the atherosclerotic process that occurs after endothelial injury. Although a vascular wall kallikrein-kinin system has been described, its contribution to vascular disease remains undefined. Because the B(1)-kinin receptor subtype (B1KR) is induced in VSMCs only in response to injury, we hypothesize that this receptor may be mediating critical events in the progression of vascular disease. In the present study, we provide evidence that des-Arg(9)-bradykinin (dABK) (10(-8) M), acting through B1KR, stimulates the phosphorylation of mitogen-activated protein kinase (MAPK) (p42(mapk) and p44(mapk)). Activation of MAPK by dABK is mediated via a cholera toxin-sensitive pathway and appears to involve protein kinase C, Src kinase, and MAPK kinase. These findings demonstrate that the activation of B1KR in VSMCs leads to the generation of second messengers that converge to activate MAPK and provide a rationale to investigate the mitogenic actions of dABK in vascular injury.

  6. Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway.

    PubMed Central

    Migliaccio, E; Mele, S; Salcini, A E; Pelicci, G; Lai, K M; Superti-Furga, G; Pawson, T; Di Fiore, P P; Lanfrancone, L; Pelicci, P G

    1997-01-01

    Shc proteins are targets of activated tyrosine kinases and are implicated in the transmission of activation signals to Ras. The p46shc and p52shc isoforms share a C-terminal SH2 domain, a proline- and glycine-rich region (collagen homologous region 1; CH1) and a N-terminal PTB domain. We have isolated cDNAs encoding for a third Shc isoform, p66shc. The predicted amino acid sequence of p66shc overlaps that of p52shc and contains a unique N-terminal region which is also rich in glycines and prolines (CH2). p52shc/p46shc is found in every cell type with invariant reciprocal relationship, whereas p66shc expression varies from cell type to cell type. p66shc differs from p52shc/p46shc in its inability to transform mouse fibroblasts in vitro. Like p52shc/p46shc, p66shc is tyrosine-phosphorylated upon epidermal growth factor (EGF) stimulation, binds to activated EGF receptors (EGFRs) and forms stable complexes with Grb2. However, unlike p52shc/p46shc it does not increase EGF activation of MAP kinases, but inhibits fos promoter activation. The isolated CH2 domain retains the inhibitory effect of p66shc on the fos promoter. p52shc/p46shc and p66shc, therefore, appear to exert different effects on the EGFR-MAP kinase and other signalling pathways that control fos promoter activity. Regulation of p66shc expression might, therefore, influence the cellular response to growth factors. PMID:9049300

  7. The ω-3 epoxide of eicosapentaenoic acid inhibits endothelial cell proliferation by p38 MAP kinase activation and cyclin D1/CDK4 down-regulation

    PubMed Central

    Cui, Pei H; Petrovic, Nenad; Murray, Michael

    2011-01-01

    BACKGROUND AND PURPOSE Dietary intake of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) like eicosapentaenoic acid (EPA) decreases cancer risk, while arachidonic acid and other ω-6 PUFAs increase risk, but the underlying mechanisms are unclear. Cytochrome P450 (CYP)-derived epoxides contribute to enhanced tumourigenesis due to ω-6 PUFA intake. Thus, ω-6 arachidonic acid epoxides (EETs) inhibit apoptosis and stimulate proliferation by up-regulating cyclin D1 expression in cells. The present study evaluated the corresponding ω-3 PUFA epoxides and assessed their role in the regulation of cell proliferation. EXPERIMENTAL APPROACH Four chemically stable EPA epoxides (formed at the 8,9-, 11,12-, 14,15- and 17,18-olefinic bonds) were synthesized and tested against growth-related signalling pathways in brain microvascular endothelial bEND.3 cells. Cell cycle distribution was determined by flow cytometry and cyclin gene expression by immunoblotting and real-time PCR. The role of the p38 mitogen-activated protein (MAP) kinase in cyclin D1 dysregulation was assessed using specific inhibitors and dominant-negative expression plasmids. KEY RESULTS The ω-3 17,18-epoxide of EPA decreased cell proliferation, interrupted the cell cycle in S-phase and down-regulated the cyclin D1/cyclin-dependent kinase (CDK)-4 complex, whereas the 8,9-, 11,12- and 14,15-epoxides were either inactive or enhanced proliferation. Cyclin D1 down-regulation by 17,18-epoxy-EPA was mediated by activation of the growth-suppressing p38 MAP kinase, but the alternate EPA-epoxides were inactive. CONCLUSIONS AND IMPLICATIONS The present findings suggest that the epoxide formed by CYP enzymes at the ω-3 olefinic bond may contribute to the beneficial effects of ω-3 PUFA by down-regulating cyclin D1 and suppressing cell proliferation. PMID:21077851

  8. Preventing phosphorylation of sterol regulatory element-binding protein 1a by MAP-kinases protects mice from fatty liver and visceral obesity.

    PubMed

    Kotzka, Jorg; Knebel, Birgit; Haas, Jutta; Kremer, Lorena; Jacob, Sylvia; Hartwig, Sonja; Nitzgen, Ulrike; Muller-Wieland, Dirk

    2012-01-01

    The transcription factor sterol regulatory element binding protein (SREBP)-1a plays a pivotal role in lipid metabolism. Using the SREBP-1a expressing human hepatoma cell line HepG2 we have shown previously that human SREBP-1a is phosphorylated at serine 117 by ERK-mitogen-activated protein kinases (MAPK). Using a combination of cell biology and protein chemistry approach we show that SREBP-1a is also target of other MAPK-families, i.e. c-JUN N-terminal protein kinases (JNK) or p38 stress activated MAP kinases. Serine 117 is also the major phosphorylation site in SREBP-1a for JNK. In contrast to that the major phosphorylation sites of p38 MAPK family are serine 63 and threonine 426. Functional analyses reveal that phosphorylation of SREBP-1a does not alter protein/DNA interaction. The identified phosphorylation sites are specific for both kinase families also in cellular context. To provide direct evidence that phosphorylation of SREBP-1a is a regulatory principle of biological and clinical relevance, we generated transgenic mice expressing mature transcriptionally active N-terminal domain of human SREBP-1a variant lacking all identified phosphorylaton sites designed as alb-SREBP-1aΔP and wild type SREBP-1a designed as alb-SREBP-1a liver specific under control of the albumin promoter and a liver specific enhancer. In contrast to alb-SREBP-1a mice the phosphorylation-deficient mice develop no enlarged fatty livers under normocaloric conditions. Phenotypical examination reveales a massive accumulation of adipose tissue in alb-SREBP-1a but not in the phosphorylation deficient alb-SREBP-1aΔP mice. Moreover, preventing phosphorylation of SREBP-1a protects mice also from dyslipidemia. In conclusion, phosphorylation of SREBP-1a by ERK, JNK and p38 MAPK-families resembles a biological principle and plays a significant role, in vivo.

  9. MsERK1: a mitogen-activated protein kinase from a flowering plant.

    PubMed Central

    Duerr, B; Gawienowski, M; Ropp, T; Jacobs, T

    1993-01-01

    The induction of proliferation and differentiation in cultured mammalian cells is mediated by a cascade of protein phosphorylations. A key enzyme in this signaling pathway is mitogen-activated protein (MAP) kinase (or ERK, extracellular signal-regulated kinase). We report the recovery of a full-length cDNA clone encoding a MAP kinase from alfalfa. We have named the 44-kD protein encoded by this clone MsERK1. Recombinant MsERK1 (rMsERK1), when overexpressed in Escherichia coli, is recognized by antibodies raised against MAP kinases from rat, Xenopus, and sea star and by anti-phosphotyrosine antibodies. Site-directed mutagenesis of MsERK1 demonstrated that Tyr-215 is either directly or indirectly responsible for recognition of the protein by anti-phosphotyrosine antibodies. Semipurified rMsERK1 phosphorylated itself and a model substrate, myelin basic protein, in vitro, but the Tyr-215 mutant did neither. Genomic DNA gel blot analysis suggested that the gene that encodes MsERK1 is either a member of a small multigene family or a member of a polymorphic allelic series in alfalfa. Because MAP kinase activation has been associated with mitotic stimulation in animal systems, such an enzyme may play a role in the mitogenic induction of symbiotic root nodules on alfalfa by Rhizobium signal molecules. PMID:8439746

  10. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase

    PubMed Central

    Lee, Younghyun; Yang, Hee; Heo, Yong-Seok; Bode, Ann M.; Lee, Ki Won; Dong, Zigang

    2016-01-01

    Bakuchiol is a meroterpene present in the medicinal plant Psoralea corylifolia, which has been traditionally used in China, India, Japan and Korea for the treatment of premature ejaculation, knee pain, alopecia spermatorrhea, enuresis, backache, pollakiuria, vitiligo, callus, and psoriasis. Here, we report the chemopreventive properties of bakuchiol, which acts by inhibiting epidermal growth factor (EGF)-induced neoplastic cell transformation. Bakuchiol also decreased viability and inhibited anchorage-independent growth of A431 human epithelial carcinoma cells. Bakuchiol reduced A431 xenograft tumor growth in an in vivo mouse model. Using kinase profiling, we identified Hck, Blk and p38 mitogen activated protein kinase (MAPK) as targets of bakuchiol, which directly bound to each kinase in an ATP-competitive manner. Bakuchiol also inhibited EGF-induced signaling pathways downstream of Hck, Blk and p38 MAPK, including the MEK/ERKs, p38 MAPK/MSK1 and AKT/p70S6K pathways. This report is the first mechanistic study identifying molecular targets for the anticancer activity of bakuchiol and our findings indicate that bakuchiol exhibits potent anticancer activity by targeting Hck, Blk and p38 MAPK. PMID:26910280

  11. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    SciTech Connect

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; and others

    2014-10-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE{sub 2} and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE{sub 2} production. • C3G

  12. The Ral/Exocyst Effector Complex Counters c-Jun N-Terminal Kinase-Dependent Apoptosis in Drosophila melanogaster▿ †

    PubMed Central

    Balakireva, Maria; Rossé, Carine; Langevin, Johanna; Chien, Yu-chen; Gho, Michel; Gonzy-Treboul, Geneviève; Voegeling-Lemaire, Stéphanie; Aresta, Sandra; Lepesant, Jean-Antoine; Bellaiche, Yohanns; White, Michael; Camonis, Jacques

    2006-01-01

    Ral GTPase activity is a crucial cell-autonomous factor supporting tumor initiation and progression. To decipher pathways impacted by Ral, we have generated null and hypomorph alleles of the Drosophila melanogaster Ral gene. Ral null animals were not viable. Reduced Ral expression in cells of the sensory organ lineage had no effect on cell division but led to postmitotic cell-specific apoptosis. Genetic epistasis and immunofluorescence in differentiating sensory organs suggested that Ral activity suppresses c-Jun N-terminal kinase (JNK) activation and induces p38 mitogen-activated protein (MAP) kinase activation. HPK1/GCK-like kinase (HGK), a MAP kinase kinase kinase kinase that can drive JNK activation, was found as an exocyst-associated protein in vivo. The exocyst is a Ral effector, and the epistasis between mutants of Ral and of msn, the fly ortholog of HGK, suggest the functional relevance of an exocyst/HGK interaction. Genetic analysis also showed that the exocyst is required for the execution of Ral function in apoptosis. We conclude that in Drosophila Ral counters apoptotic programs to support cell fate determination by acting as a negative regulator of JNK activity and a positive activator of p38 MAP kinase. We propose that the exocyst complex is Ral executioner in the JNK pathway and that a cascade from Ral to the exocyst to HGK would be a molecular basis of Ral action on JNK. PMID:17000765

  13. Dynamics robustness of cascading systems.

    PubMed

    Young, Jonathan T; Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko

    2017-03-01

    A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a

  14. Convergent evidence identifying MAP/microtubule affinity-regulating kinase 1 (MARK1) as a susceptibility gene for autism.

    PubMed

    Maussion, Gilles; Carayol, Jérôme; Lepagnol-Bestel, Aude-Marie; Tores, Frédéric; Loe-Mie, Yann; Milbreta, Ulla; Rousseau, Francis; Fontaine, Karine; Renaud, Julie; Moalic, Jean-Marie; Philippi, Anne; Chedotal, Alain; Gorwood, Philip; Ramoz, Nicolas; Hager, Jörg; Simonneau, Michel

    2008-08-15

    Autism spectrum disorders (ASDs) are common, heritable, but genetically heterogeneous neurodevelopmental conditions. We recently defined a susceptibility locus for ASDs on chromosome 1q41-q42. High-resolution single-nucleotide polymorphisms (126 SNPs) genotyping across the chromosome 1q41-q42 region, followed by a MARK1 (microtubule affinity-regulating kinase 1)-tagged-SNP association study in 276 families with autism from the Autism Genetic Research Exchange, showed that several SNPs within the MARK1 gene were significantly associated with ASDs by transmission disequilibrium tests. Haplotype rs12740310*C-rs3737296*G-rs12410279*A was overtransmitted (P(corrected)= 0.0016), with a relative risk for autism of 1.8 in homozygous carriers. Furthermore, ASD-associated SNP rs12410279 modulates the level of transcription of MARK1. We found that MARK1 was overexpressed in the prefrontal cortex (BA46) but not in cerebellar granule cells, on postmortem brain tissues from patients. MARK1 displayed an accelerated evolution along the lineage leading to humans, suggesting possible involvement of this gene in cognition. MARK1 encodes a kinase-regulating microtubule-dependent transport in axons and dendrites. Both overexpression and silencing of MARK1 resulted in significantly shorter dendrite length in mouse neocortical neurons and modified dendritic transport speed. As expected for a gene encoding a key polarity determinant Par-1 protein kinase, MARK1 is involved in axon-dendrite specification. Thus, MARK1 overexpression in humans may be responsible for subtle changes in dendritic functioning.

  15. A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata.

    PubMed

    Chen, Li-Hung; Tsai, Hsieh-Chin; Yu, Pei-Ling; Chung, Kuang-Ren

    2017-01-01

    Major Facilitator Superfamily (MFS) transporters play an important role in multidrug resistance in fungi. We report an AaMFS19 gene encoding a MFS transporter required for cellular resistance to oxidative stress and fungicides in the phytopathogenic fungus Alternaria alternata. AaMFS19, containing 12 transmembrane domains, displays activity toward a broad range of substrates. Fungal mutants lacking AaMFS19 display profound hypersensitivities to cumyl hydroperoxide, potassium superoxide, many singlet oxygen-generating compounds (eosin Y, rose Bengal, hematoporphyrin, methylene blue, and cercosporin), and the cell wall biosynthesis inhibitor, Congo red. AaMFS19 mutants also increase sensitivity to copper ions, clotrimazole, fludioxonil, and kocide fungicides, 2-chloro-5-hydroxypyridine (CHP), and 2,3,5-triiodobenzoic acid (TIBA). AaMFS19 mutants induce smaller necrotic lesions on leaves of a susceptible citrus cultivar. All observed phenotypes in the mutant are restored by introducing and expressing a wild-type copy of AaMFS19. The wild-type strain of A. alternata treated with either CHP or TIBA reduces radial growth and formation and germination of conidia, increases hyphal branching, and results in decreased expression of the AaMFS19 gene. The expression of AaMFS19 is regulated by the Yap1 transcription activator, the Hog1 and Fus3 mitogen-activated protein (MAP) kinases, the 'two component' histidine kinase, and the Skn7 response regulator. Our results demonstrate that A. alternata confers resistance to different chemicals via a membrane-bound MFS transporter.

  16. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases

    PubMed Central

    Engstrom, Anna; Wang, Hao; Xia, Zhengui

    2015-01-01

    Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults. PMID:25967738

  17. CREB, AP‐1, ternary complex factors and MAP kinases connect transient receptor potential melastatin‐3 (TRPM3) channel stimulation with increased c‐Fos expression

    PubMed Central

    Rubil, Sandra; Rössler, Oliver G.

    2016-01-01

    Background and Purpose The rise in intracellular Ca2+ stimulates the expression of the transcription factor c‐Fos. Depending on the mode of entry of Ca2+ into the cytosol, distinct signal transducers and transcription factors are required. Here, we have analysed the signalling pathway connecting a Ca2+ influx via activation of transient receptor potential melastatin‐3 (TRPM3) channels with enhanced c‐Fos expression. Experimental Approach Transcription of c‐Fos promoter/reporter genes that were integrated into the chromatin via lentiviral gene transfer was analysed in HEK293 cells overexpressing TRPM3. The transcriptional activation potential of c‐Fos was measured using a GAL4‐c‐Fos fusion protein. Key Results The signalling pathway connecting TRPM3 stimulation with enhanced c‐Fos expression requires the activation of MAP kinases. On the transcriptional level, three Ca2+‐responsive elements, the cAMP‐response element and the binding sites for the serum response factor (SRF) and AP‐1, are essential for the TRPM3‐mediated stimulation of the c‐Fos promoter. Ternary complex factors are additionally involved in connecting TRPM3 stimulation with the up‐regulation of c‐Fos expression. Stimulation of TRPM3 channels also increases the transcriptional activation potential of c‐Fos. Conclusions and Implications Signalling molecules involved in connecting TRPM3 with the c‐Fos gene are MAP kinases and the transcription factors CREB, SRF, AP‐1 and ternary complex factors. As c‐Fos constitutes, together with other basic region leucine zipper transcription factors, the AP‐1 transcription factor complex, the results of this study explain TRPM3‐induced activation of AP‐1 and connects TRPM3 with the biological functions regulated by AP‐1. © 2015 The British Pharmacological Society PMID:26493679

  18. Cyanidin-3-Glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signalling pathways in SKH-1 hairless mice skin

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2015-01-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-Glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. PMID:25062774

  19. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signalling pathways in SKH-1 mice skin

    PubMed Central

    Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-01-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm2) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicates that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. PMID:25680589

  20. Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana.

    PubMed

    Huang, Shuaishuai; He, Zhangjiang; Zhang, Shiwei; Keyhani, Nemat O; Song, Yulin; Yang, Zhi; Jiang, Yahui; Zhang, Wenli; Pei, Yan; Zhang, Yongjun

    2015-10-01

    The entomopathogenic fungus, Beauveria bassiana, is of environmental and economic importance as an insect pathogen, currently used for the biological control of a number of pests. Cell wall integrity and conidiation are critical parameters for the ability of the fungus to infect insects and for production of the infectious propagules. The contribution of calcineurin and the Slt2 MAP kinase to cell wall integrity and development in B. bassiana was investigated. Gene knockouts of either the calcineurin CNA1 subunit or the Slt2 MAP kinase resulted in decreased tolerance to calcofluor white and high temperature. In contrast, the Δcna1 strain was more tolerant to Congo red but more sensitive to osmotic stress (NaCl, sorbitol) than the wild type, whereas the Δslt2 strain had the opposite phenotype. Changes in cell wall structure and composition were seen in the Δslt2 and Δcna1 strains during growth under cell wall stress as compared to the wild type. Both Δslt2 and Δcna1 strains showed significant alterations in growth, conidiation, and viability. Elevation of intracellular ROS levels, and decreased conidial hydrophobicity and adhesion to hydrophobic surfaces, were also seen for both mutants, as well as decreased virulence. Under cell wall stress conditions, inactivation of Slt2 significantly repressed CN-mediated phosphatase activity suggesting some level of cross talk between the two pathways. Comparative transcriptome profiling of the Δslt2 and Δcna1 strains revealed alterations in the expression of distinct gene sets, with overlap in transcripts involved in cell wall integrity, stress response, conidiation and virulence. These data illustrate convergent and divergent phenotypes and targets of the calcineurin and Slt2 pathways in B. bassiana.

  1. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin.

    PubMed

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm(2)) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways.

  2. Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide

    SciTech Connect

    Black, Adrienne T.; Joseph, Laurie B.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-06-15

    Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 {mu}M) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A{sub 4} (LTA{sub 4}) hydrolase and leukotriene C{sub 4} (LTC{sub 4}) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA{sub 4} hydrolase and LTC{sub 4} synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.

  3. 22(R)-hydroxycholesterol induces HuR-dependent MAP kinase phosphatase-1 expression via mGluR5-mediated Ca(2+)/PKCα signaling.

    PubMed

    Kim, Hyunmi; Woo, Joo Hong; Lee, Jee Hoon; Joe, Eun-Hye; Jou, Ilo

    2016-08-01

    MAP kinase phosphatase (MKP)-1 plays a pivotal role in controlling MAP kinase (MAPK)-dependent (patho) physiological processes. Although MKP-1 gene expression is tightly regulated at multiple levels, the underlying mechanistic details remain largely unknown. In this study, we demonstrate that MKP-1 expression is regulated at the post-transcriptional level by 22(R)-hydroxycholesterol [22(R)-HC] through a novel mechanism. 22(R)-HC induces Hu antigen R (HuR) phosphorylation, cytoplasmic translocation and binding to MKP-1 mRNA, resulting in stabilization of MKP-1 mRNA. The resulting increase in MKP-1 leads to suppression of JNK-mediated inflammatory responses in brain astrocytes. We further demonstrate that 22(R)-HC-induced phosphorylation of nuclear HuR is mediated by PKCα, which is activated in the cytosol by increases in intracellular Ca(2+) levels mediated by the phospholipase C/inositol 1,4,5-triphosphate receptor (PLC/IP3R) pathway and translocates from cytoplasm to nucleus. In addition, pharmacological interventions reveal that metabotropic glutamate receptor5 (mGluR5) is responsible for the increases in intracellular Ca(2+) that underlie these actions of 22(R)-HC. Collectively, our findings identify a novel anti-inflammatory mechanism of 22(R)-HC, which acts through PKCα-mediated cytoplasmic shuttling of HuR to post-transcriptionally regulate MKP-1 expression. These findings provide an experimental basis for the development of a RNA-targeted therapeutic agent to control MAPK-dependent inflammatory responses.

  4. Aloe-Emodin Induces Chondrogenic Differentiation of ATDC5 Cells via MAP Kinases and BMP-2 Signaling Pathways.

    PubMed

    Yang, Ming; Li, Liang; Heo, Seok-Mo; Soh, Yunjo

    2016-07-01

    Endochondral bone formation is the process by which mesenchymal cells condense into chondrocytes, which are ultimately responsible for new bone formation. The processes of chondrogenic differentiation and hypertrophy are critical for bone formation and are therefore highly regulated. The present study was designed to investigate the effect of aloe-emodin on chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Aloe-emodin treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. ATDC5 cells were treated with aloe-emodin and stained with alcian blue. Compared with the control cells, the ATDC5 cells showed more intense alcian blue staining. This finding suggested that aloe-emodin induced the synthesis of matrix proteoglycans and increased the activity of alkaline phosphatase. Aloe-emodin also enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, BSP and RunX2 in a time-dependent manner. Furthermore, examination of the MAPK signaling pathway showed that aloe-emodin increased the activation of extracellular signal-regulated kinase (ERK), but had no effect on p38 and c-jun N-terminal kinase (JNK). Aloe-emodin also enhanced the protein expression of BMP-2 in a time-dependent manner. Thus, these results showed that aloe-emodin exhibited chodromodulating effects via the BMP-2 or ERK signaling pathway. Aloe-emodin may have potential future applications for the treatment of growth disorders.

  5. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis.

    PubMed

    Di Pietro, A; García-MacEira, F I; Méglecz, E; Roncero, M I

    2001-03-01

    The soil-borne vascular wilt fungus Fusarium oxysporum infects a wide variety of plant species by directly penetrating roots, invading the cortex and colonizing the vascular tissue. We have identified fmk1, encoding a mitogen-activated protein kinase (MAPK) of F. oxysporum that belongs to the yeast and fungal extracellular signal-regulated kinase (YERK1) subfamily. Targeted mutants of F. oxysporum f. sp. lycopersici carrying an inactivated copy of fmk1 have lost pathogenicity on tomato plants but show normal vegetative growth and conidiation in culture. Colonies of the fmk1 mutants are easily wettable, and hyphae are impaired in breaching the liquid-air interface, suggesting defects in surface hydrophobicity. Fmk1 mutants also show reduced invasive growth on tomato fruit tissue and drastically reduced transcript levels of pl1 encoding the cell wall-degrading enzyme pectate lyase. Conidia of the mutants germinating in the tomato rhizosphere fail to differentiate penetration hyphae, resulting in greatly impaired root attachment. The orthologous MAPK gene Pmk1 from the rice leaf pathogen Magnaporthe grisea complements invasive growth and partially restores surface hydrophobicity, root attachment and pathogenicity in an fmk1 mutant. These results demonstrate that FMK1 controls several key steps in the pathogenesis of F. oxysporum and suggest a fundamentally conserved role for the corresponding MAPK pathway in soil-borne and foliar plant pathogens.

  6. Inhibition of pacemaker activity in interstitial cells of Cajal by LPS via NF-κB and MAP kinase

    PubMed Central

    Zuo, Dong Chuan; Choi, Seok; Shahi, Pawan Kumar; Kim, Man Yoo; Park, Chan Guk; Kim, Young Dae; Lee, Jun; Chang, In Yeoup; So, Insuk; Jun, Jae Yeoul

    2013-01-01

    AIM: To investigate lipopolysaccharide (LPS) related signal transduction in interstitial cells of Cajal (ICCs) from mouse small intestine. METHODS: For this study, primary culture of ICCs was prepared from the small intestine of the mouse. LPS was treated to the cells prior to measurement of the membrane currents by using whole-cell patch clamp technique. Immunocytochemistry was used to examine the expression of the proteins in ICCs. RESULTS: LPS suppressed the pacemaker currents of ICCs and this could be blocked by AH6809, a prostaglandin E2-EP2 receptor antagonist or NG-Nitro-L-arginine Methyl Ester, an inhibitor of nitric oxide (NO) synthase. Toll-like receptor 4, inducible NO synthase or cyclooxygenase-2 immunoreactivity by specific antibodies was detected on ICCs. Catalase (antioxidant agent) had no action on LPS-induced action in ICCs. LPS actions were blocked by nuclear factor κB (NF-κB) inhibitor, actinomycin D (a gene transcription inhibitor), PD 98059 (a p42/44 mitogen-activated protein kinases inhibitor) or SB 203580 [a p38 mitogen-activated protein kinases (MAPK) inhibitor]. SB 203580 also blocked the prostaglandin E2-induced action on pacemaker currents in ICCs but not NO. CONCLUSION: LPS inhibit the pacemaker currents in ICCs via prostaglandin E2- and NO-dependent mechanism through toll-like receptor 4 and suggest that MAPK and NF-κB are implicated in these actions. PMID:23482668

  7. cAMP-Induced Histones H3 Dephosphorylation Is Independent of PKA and MAP Kinase Activations and Correlates With mTOR Inactivation.

    PubMed

    Rodriguez, Pedro; Rojas, Juan

    2016-03-01

    cAMP is a second messenger well documented to be involved in the phosphorylation of PKA, MAP kinase, and histone H3 (H3). Early, we reported that cAMP also induced H3 dephosphorylation in a variety of proliferating cell lines. Herein, it is shown that cAMP elicits a biphasic H3 dephosphorylation independent of PKA activation in cycling cells. H89, a potent inhibitor of PKA catalytic sub-unite, could not abolish this effect. Additionally, H89 induces a rapid and biphasic H3 serine 10 dephosphorylation, while a decline in the basal phosphorylation of CREB/ATF-1 is observed. Rp-cAMPS, an analog of cAMP and specific inhibitor of PKA, is unable to suppress cAMP-mediated H3 dephosphorylation, whereas Rp-cAMPS effectively blocks CREB/ATF-1 hyper-phosphorylation by cAMP and its inducers. Interestingly, cAMP exerts a rapid and profound H3 dephosphorylation at much lower concentration (50-fold lower, 0.125 mM) than the concentration required for maximal CREB/ATF-1 phosphorylation (5 mM). Much higher cAMP concentration is required to fully induce CREB/ATF-1 gain in phosphate (5 mM), which correlates with the inhibition of H3 dephosphorylation. Also, the dephosphorylation of H3 does not overlap at onset of MAP kinase phosphorylation pathways, p38 and ERK. Surprisingly, rapamycin (an mTOR inhibitor), cAMP, and its natural inducer isoproterenol, elicit identical dephosphorylation kinetics on both S6K1 ribosomal kinase (a downstream mTOR target) and H3. Finally, cAMP-induced H3 dephosphorylation is PP1/2-dependent. The results suggest that a pathway, requiring much lower cAMP concentration to that required for CREB/ATF-1 hyper-phosphorylation, is responsible for histone H3 dephosphorylation and may be linked to mTOR down regulation.

  8. Circadian and photic regulation of MAP kinase by Ras- and protein phosphatase-dependent pathways in the chick pineal gland.

    PubMed

    Hayashi, Y; Sanada, K; Fukada, Y

    2001-02-23

    Chick pineal mitogen-activated protein kinase (MAPK) exhibits circadian activation and light-dependent deactivation at nighttime. Here we report that, in the chick pineal gland, levels of active forms of MAPK, MEK, Raf-1 and Ras exhibited synchronous circadian rhythms with peaks during the subjective night, suggesting a sequential activation of components in the classical Ras-MAPK pathway in a circadian manner. In contrast, the light-dependent deactivation of MAPK was not accompanied by any change of MEK activity, but it was attributed to the light-dependent activation of protein phosphatase dephosphorylating MAPK. These results indicate that the photic and clock signals regulate MAPK activity via independent pathways, and suggest a pivotal role of MAPK in photic entrainment and maintenance of the circadian oscillation.

  9. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.

    PubMed

    Minkenberg, Bastian; Xie, Kabin; Yang, Yinong

    2017-02-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system depends on a guide RNA (gRNA) to specify its target. By efficiently co-expressing multiple gRNAs that target different genomic sites, the polycistronic tRNA-gRNA gene (PTG) strategy enables multiplex gene editing in the family of closely related mitogen-activated protein kinase (MPK) genes in Oryza sativa (rice). In this study, we identified MPK1 and MPK6 (Arabidopsis AtMPK6 and AtMPK4 orthologs, respectively) as essential genes for rice development by finding the preservation of MPK functional alleles and normal phenotypes in CRISPR-edited mutants. The true knock-out mutants of MPK1 were severely dwarfed and sterile, and homozygous mpk1 seeds from heterozygous parents were defective in embryo development. By contrast, heterozygous mpk6 mutant plants completely failed to produce homozygous mpk6 seeds. In addition, the functional importance of specific MPK features could be evaluated by characterizing CRISPR-induced allelic variation in the conserved kinase domain of MPK6. By simultaneously targeting between two and eight genomic sites in the closely related MPK genes, we demonstrated 45-86% frequency of biallelic mutations and the successful creation of single, double and quadruple gene mutants. Indels and fragment deletion were both stably inherited to the next generations, and transgene-free mutants of rice MPK genes were readily obtained via genetic segregation, thereby eliminating any positional effects of transgene insertions. Taken together, our study reveals the essentiality of MPK1 and MPK6 in rice development, and enables the functional discovery of previously inaccessible genes or domains with phenotypes masked by lethality or redundancy.

  10. Endocytosis separates EGF receptors from endogenous fluorescently labeled HRas and diminishes receptor signaling to MAP kinases in endosomes

    PubMed Central

    Pinilla-Macua, Itziar; Watkins, Simon C.; Sorkin, Alexander

    2016-01-01

    Signaling from epidermal growth factor receptor (EGFR) to extracellular-stimuli–regulated protein kinase 1/2 (ERK1/2) is proposed to be transduced not only from the cell surface but also from endosomes, although the role of endocytosis in this signaling pathway is controversial. Ras is the only membrane-anchored component in the EGFR–ERK signaling axis, and therefore, its location determines intracellular sites of downstream signaling. Hence, we labeled endogenous H-Ras (HRas) with mVenus fluorescent protein using gene editing in HeLa cells. mVenus-HRas was primarily located at the plasma membrane, and in small amounts in tubular recycling endosomes and associated vesicles. EGF stimulation resulted in fast but transient activation of mVenus-HRas. Although EGF:EGFR complexes were rapidly accumulated in endosomes together with the Grb2 adaptor, very little, if any, mVenus-HRas was detected in these endosomes. Interestingly, the activities of MEK1/2 and ERK1/2 remained high beyond the point of the physical separation of HRas from EGF:EGFR complexes and down-regulation of Ras activity. Paradoxically, this sustained MEK1/2 and ERK1/2 activation was dependent on the active EGFR kinase. Cell surface biotinylation and selective inactivation of surface EGFRs suggested that a small fraction of active EGFRs remaining in the plasma membrane is responsible for continuous signaling to MEK1/2 and ERK1/2. We propose that, under physiological conditions of cell stimulation, EGFR endocytosis serves to spatially separate EGFR–Grb2 complexes and Ras, thus terminating Ras-mediated signaling. However, sustained minimal activation of Ras by a small pool of active EGFRs in the plasma membrane is sufficient for extending MEK1/2 and ERK1/2 activities. PMID:26858456

  11. Tat engagement of p38 MAP kinase and IRF7 pathways leads to activation of interferon-stimulated genes in antigen-presenting cells.

    PubMed

    Kim, Nayoung; Kukkonen, Sami; Martinez-Viedma, Maria Del Pilar; Gupta, Sumeet; Aldovini, Anna

    2013-05-16

    As a result of its interaction with transcription factors, HIV type 1 (HIV-1) Tat can modulate the expression of both HIV and cellular genes. In antigen-presenting cells Tat induces the expression of a subset of interferon (IFN)-stimulated genes (ISGs) in the absence of IFNs. We investigated the genome-wide Tat association with promoters in immature dendritic cells and in monocyte-derived macrophages. Among others, Tat associated with the MAP2K6, MAP2K3, and IRF7 promoters that are functionally part of IL-1 and p38 mitogen-activated protein kinase (MAPK) signaling pathways. The association correlated with their increased gene expression, increased activation of p38 MAPK and of phosphorylated signal transducer and activator of transcription 1 (STAT1), and consequent induction of ISGs. Probing these pathways with RNA interference, pharmacological p38 MAPK inhibition, and in cell lines lacking STAT1s or the type I IFN receptor chain confirmed the role of MAPKKs and IRF7 in Tat-mediated modulation of ISGs and excluded the involvement of IFNs in this modulation. Tat interaction with the 2 MAPKK and IRF7 promoters in HIV-1-infected cells and the resulting persistent activation of ISGs, which include inflammatory cytokines and chemokines, can contribute to the increased immune activation that characterizes HIV infection.

  12. Kinase suppressor of Ras1 compartmentalizes hippocampal signal transduction and subserves synaptic plasticity and memory formation.

    PubMed

    Shalin, Sara C; Hernandez, Caterina M; Dougherty, Michele K; Morrison, Deborah K; Sweatt, J David

    2006-06-01

    The ERK/MAP kinase cascade is important for long-term memory formation and synaptic plasticity, with a myriad of upstream signals converging upon ERK activation. Despite this convergence of signaling, neurons routinely activate appropriate biological responses to different stimuli. Scaffolding proteins represent a mechanism to achieve compartmentalization of signaling and the appropriate targeting of ERK-dependent processes. We report that kinase suppressor of Ras (KSR1) functions biochemically in the hippocampus to scaffold the components of the ERK cascade, specifically regulating the cascade when a membrane fraction of ERK is activated via a PKC-dependent pathway but not via a cAMP/PKA-dependent pathway. Specificity of KSR1-dependent signaling also extends to specific downstream targets of ERK. Behaviorally and physiologically, we found that the absence of KSR1 leads to deficits in associative learning and theta burst stimulation-induced LTP. Our report provides novel insight into the endogenous scaffolding role of KSR1 in controlling kinase activation within the nervous system.

  13. A RING to rule them all? Insights into the Map3k1 PHD motif provide a new mechanistic understanding into the diverse roles of Map3k1.

    PubMed

    Suddason, T; Gallagher, E

    2015-04-01

    Despite the sizable number of components that comprise Mapk cascades, Map3k1 is the only element that contains both a kinase domain and a plant homeodomain (PHD) motif, allowing Map3k1 to regulate the protein phosphorylation and ubiquitin proteasome systems. As such, Map3k1 has complex roles in the regulation of cell death, survival, migration and differentiation. Numerous mouse and human genetic analyses have demonstrated that Map3k1 is of critical importance for the immune system, cardiac tissue, testis, wound healing, tumorigenesis and cancer. Recent gene knockin of Map3k1 to mutate the E2 binding site within the Map3k1 PHD motif and high throughput ubiquitin protein array screening for Map3k1 PHD motif substrates provide critical novel insights into Map3k1 PHD motif signal transduction and bring a brand-new understanding to Map3k1 signaling in mammalian biology.

  14. Dynamics robustness of cascading systems

    PubMed Central

    Kaneko, Kunihiko

    2017-01-01

    A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade’s kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a

  15. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation.

    PubMed

    Clause, Kelly C; Tinney, Joseph P; Liu, Li J; Keller, Bradley B; Tobita, Kimimasa

    2009-06-01

    Cardiomyocyte (CM) transplantation is one therapeutic option for cardiac repair. Studies suggest that fetal CMs display the best cell type for cardiac repair, which can finitely proliferate, integrate with injured host myocardium, and restore cardiac function. We have recently developed an engineered early embryonic cardiac tissue (EEECT) using embryonic cardiac cells and have shown that EEECT contractile properties and cellular proliferative response to cyclic mechanical stretch stimulation mimic developing fetal myocardium. However, it remains unknown whether cyclic mechanical stretch-mediated high cellular proliferation activity within EEECT reflects CM or non-CM population. Studies have shown that p38-mitogen-activated protein kinase (p38MAPK) plays an important role in both cyclic mechanical stretch stimulation and cellular proliferation. Therefore, in the present study, we tested the hypothesis that cyclic mechanical stretch (0.5 Hz, 5% strain for 48 h) specifically increases EEECT CM proliferation mediated by p38MAPK activity. Cyclic mechanical stretch increased CM, but not non-CM, proliferation and increased p38MAPK phosphorylation. Treatment of EEECT with the p38MAPK inhibitor, SB202190, reduced CM proliferation. The negative CM proliferation effects of SB202190 were not reversed by concurrent stretch stimulation. Results suggest that immature CM proliferation within EEECT can be positively regulated by mechanical stretch and negatively regulated by p38MAPK inhibition.

  16. Inhibition of the MAP kinase activity suppresses estrogen-induced breast tumor growth both in vitro and in vivo.

    PubMed

    Reddy, Kaladhar B; Glaros, Selina

    2007-04-01

    Elevated expression of mitogen-activated protein kinase (Erk/MAPK) has been noted in a significant percentage of primary human breast cancers. To directly assess the importance of Erk/MAPK activation in estrogen (E2)-induced tumor progression, we blocked E2-signaling with MEK-inhibitor CI-1040 and/or tamoxifen (Tam). Our data show that both MEK-inhibitor CI-1040 and Tam blocked E2-induced MAPK phosphorylation and cell proliferation in MCF-7 breast cancer cells in vitro. However, in vivo studies show that anti-tumor efficacy of combining the CI-1040 and Tam was similar to single agent(s). Furthermore, sequential treatment with Tam followed by CI-1040 or CI-1040 followed by Tam did not significantly reduce E2-induced tumor growth. This suggests that the combination of CI-1040 and Tam may not be synergistic in inhibiting E2-induced tumor growth. However, these findings also indicate that MAPK plays a critical role in E2-induced tumor growth, and that this could be a potential therapeutic target to combat hormonally regulated growth in ER-positive tumors.

  17. MAP kinase phosphatase 2 deficient mice develop attenuated experimental autoimmune encephalomyelitis through regulating dendritic cells and T cells

    PubMed Central

    Barbour, Mark; Plevin, Robin; Jiang, Hui-Rong

    2016-01-01

    Mitogen-activated protein kinase phosphatases (MKPs) play key roles in inflammation and immune mediated diseases. Here we investigated the mechanisms by which MKP-2 modulates central nervous system (CNS) inflammation in experimental autoimmune encephalomyelitis (EAE). Our results show that MKP-2 mRNA levels in the spinal cord and lymphoid organs of EAE mice were increased compared with naive controls, indicating an important role for MKP-2 in EAE development. Indeed, MKP-2−/− mice developed reduced EAE severity, associated with diminished CNS immune cell infiltration, decreased proinflammatory cytokine production and reduced frequency of CD4+ and CD8+ T cells in spleens and lymph nodes. In addition, MKP-2−/− CD11c+ dendritic cells (DCs) had reduced expression of MHC-II and CD40 compared with MKP-2+/+ mice. Subsequent experiments revealed that CD4+ T cells from naïve MKP-2−/− mice had decreased cell proliferation and IL-2 and IL-17 production relative to wild type controls. Furthermore, co-culture experiments showed that bone marrow derived DCs of MKP-2−/− mice had impaired capability in antigen presentation and T cell activation. While MKP-2 also modulates macrophage activation, our study suggests that MKP-2 is essential to the pathogenic response of EAE, and it acts mainly via regulating the important antigen presenting DC function and T cell activation. PMID:27958388

  18. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant.

    PubMed

    Plesofsky, Nora; Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies.

  19. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant

    PubMed Central

    Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869

  20. C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation

    PubMed Central

    Corson, Glen M.; McCleskey, Maxwell; Oyer, Jon A.; Mandel, Gail

    2014-01-01

    The repressor element 1 (RE1) silencing transcription factor (REST) in stem cells represses hundreds of genes essential to neuronal function. During neurogenesis, REST is degraded in neural progenitors to promote subsequent elaboration of a mature neuronal phenotype. Prior studies indicate that part of the degradation mechanism involves phosphorylation of two sites in the C terminus of REST that require activity of beta-transducin repeat containing E3 ubiquitin protein ligase, βTrCP. We identify a proline-directed phosphorylation motif, at serines 861/864 upstream of these sites, which is a substrate for the peptidylprolyl cis/trans isomerase, Pin1, as well as the ERK1/2 kinases. Mutation at S861/864 stabilizes REST, as does inhibition of Pin1 activity. Interestingly, we find that C-terminal domain small phosphatase 1 (CTDSP1), which is recruited by REST to neuronal genes, is present in REST immunocomplexes, dephosphorylates S861/864, and stabilizes REST. Expression of a REST peptide containing S861/864 in neural progenitors inhibits terminal neuronal differentiation. Together with previous work indicating that both REST and CTDSP1 are expressed to high levels in stem cells and down-regulated during neurogenesis, our results suggest that CTDSP1 activity stabilizes REST in stem cells and that ERK-dependent phosphorylation combined with Pin1 activity promotes REST degradation in neural progenitors. PMID:25197063

  1. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway.

    PubMed

    Suhasini, M; Li, H; Lohmann, S M; Boss, G R; Pilz, R B

    1998-12-01

    Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3', 5'-cyclic monophosphate and 8-bromoguanosine-3',5'-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Ibeta expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by

  2. Actinobacillus actinomycetemcomitans lipopolysaccharide stimulates the phosphorylation of p44 and p42 MAP kinases through CD14 and TLR-4 receptor activation in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Kawasaki-Cárdenas, Perla; Cruz-Arroyo, Santa Rita; Pérez-Garzón, Miguel; Maldonado-Frías, Silvia

    2006-04-25

    Tyrosine phosphorylation is an early step in lipopolysaccharide (LPS) stimulated monocytes and macrophages that appears to play a key role in signal transduction. We have demonstrated that LPS purified from Actinobacillus actinomycetemcomitans also increases protein tyrosine phosphorylation in human gingival fibroblasts (HGF). This effect was elicited rapidly after LPS stimulation at concentrations that stimulate anti-bacterial responses in human gingival fibroblasts. Two main proteins, with an apparent molecular weight of 44 and 42 kDa, were phosphorylated after LPS stimulation of the human gingival fibroblasts. The phosphorylation was detected after 5 to 15 min and reached the maximum at 30 min of treatment. The increase in tyrosine phosphorylation was apparent following stimulation with LPS at 10 ng/ml and the response was dose dependent up to 10 microg/ml. Pretreatment with the tyrosine kinase inhibitors, herbimycin A and genistein inhibited the LPS-stimulated phosphorylation of p44 and p42 MAP kinases in a dose dependent manner. Pretreatment of human gingival fibroblasts with antibodies anti-CD14 or anti-TLR-4 but not anti-TLR-2 inhibited the LPS-induced tyrosine phosphorylation of p44 and p42. Additionally, LPS-induced p44 and p42 phosphorylation was inhibited by polymyxin treatment. These findings demonstrate that LPS from A. actinomycetemcomintans increases rapidly p44 and p42 phosphorylation (ERK 1 and ERK 2, respectively) in human gingival fibroblasts. Our data also suggest that CD14 and TLR-4 receptors are involved in the LPS effects in human gingival fibroblasts.

  3. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation

    PubMed Central

    Ruzafa-Martínez, María; Ramos-Morcillo, Antonio Jesús

    2017-01-01

    During wound healing, skin function is restored by the action of several cell types that undergo differentiation, migration, proliferation and/or apoptosis. These dynamics are tightly regulated by the evolution of the extra cellular matrix (ECM) contents along the process. Pharmacologically active flavonoids have shown to exhibit useful physiological properties interesting in pathological states. Among them, oleanolic acid (OA), a pentacyclic triterpene, shows promising properties over wound healing, as increased cell migration in vitro and improved wound resolution in vivo. In this paper, we pursued to disclose the molecular mechanisms underlying those effects, by using an in vitro scratch assay in two epithelial cell lines of different linage: non-malignant mink lung epithelial cells, Mv1Lu; and human breast cancer cells, MDA-MB-231. In every case, we observed that OA clearly enhanced cell migration for in vitro scratch closure. This correlated with the stimulation of molecular pathways related to mitogen-activated protein (MAP) kinases, as ERK1,2 and Jun N-terminal kinase (JNK) 1,2 activation and c-Jun phosphorylation. Moreover, MDA-MB-231 cells treated with OA displayed an altered gene expression profile affecting transcription factor genes (c-JUN) as well as proteins involved in migration and ECM dynamics (PAI1), in line with the development of an epithelial to mesenchymal transition (EMT) status. Strikingly, upon OA treatment, we observed changes in the epidermal growth factor receptor (EGFR) subcellular localization, while interfering with its signalling completely prevented migration effects. This data provides a physiological framework supporting the notion that lipophilic plant extracts used in traditional medicine, might modulate wound healing processes in vivo through its OA contents. The molecular implications of these observations are discussed. PMID:28231262

  4. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation.

    PubMed

    Bernabé-García, Ángel; Armero-Barranco, David; Liarte, Sergio; Ruzafa-Martínez, María; Ramos-Morcillo, Antonio Jesús; Nicolás, Francisco José

    2017-01-01

    During wound healing, skin function is restored by the action of several cell types that undergo differentiation, migration, proliferation and/or apoptosis. These dynamics are tightly regulated by the evolution of the extra cellular matrix (ECM) contents along the process. Pharmacologically active flavonoids have shown to exhibit useful physiological properties interesting in pathological states. Among them, oleanolic acid (OA), a pentacyclic triterpene, shows promising properties over wound healing, as increased cell migration in vitro and improved wound resolution in vivo. In this paper, we pursued to disclose the molecular mechanisms underlying those effects, by using an in vitro scratch assay in two epithelial cell lines of different linage: non-malignant mink lung epithelial cells, Mv1Lu; and human breast cancer cells, MDA-MB-231. In every case, we observed that OA clearly enhanced cell migration for in vitro scratch closure. This correlated with the stimulation of molecular pathways related to mitogen-activated protein (MAP) kinases, as ERK1,2 and Jun N-terminal kinase (JNK) 1,2 activation and c-Jun phosphorylation. Moreover, MDA-MB-231 cells treated with OA displayed an altered gene expression profile affecting transcription factor genes (c-JUN) as well as proteins involved in migration and ECM dynamics (PAI1), in line with the development of an epithelial to mesenchymal transition (EMT) status. Strikingly, upon OA treatment, we observed changes in the epidermal growth factor receptor (EGFR) subcellular localization, while interfering with its signalling completely prevented migration effects. This data provides a physiological framework supporting the notion that lipophilic plant extracts used in traditional medicine, might modulate wound healing processes in vivo through its OA contents. The molecular implications of these observations are discussed.

  5. A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata

    PubMed Central

    Chen, Li-Hung; Tsai, Hsieh-Chin; Yu, Pei-Ling

    2017-01-01

    Major Facilitator Superfamily (MFS) transporters play an important role in multidrug resistance in fungi. We report an AaMFS19 gene encoding a MFS transporter required for cellular resistance to oxidative stress and fungicides in the phytopathogenic fungus Alternaria alternata. AaMFS19, containing 12 transmembrane domains, displays activity toward a broad range of substrates. Fungal mutants lacking AaMFS19 display profound hypersensitivities to cumyl hydroperoxide, potassium superoxide, many singlet oxygen-generating compounds (eosin Y, rose Bengal, hematoporphyrin, methylene blue, and cercosporin), and the cell wall biosynthesis inhibitor, Congo red. AaMFS19 mutants also increase sensitivity to copper ions, clotrimazole, fludioxonil, and kocide fungicides, 2-chloro-5-hydroxypyridine (CHP), and 2,3,5-triiodobenzoic acid (TIBA). AaMFS19 mutants induce smaller necrotic lesions on leaves of a susceptible citrus cultivar. All observed phenotypes in the mutant are restored by introducing and expressing a wild-type copy of AaMFS19. The wild-type strain of A. alternata treated with either CHP or TIBA reduces radial growth and formation and germination of conidia, increases hyphal branching, and results in decreased expression of the AaMFS19 gene. The expression of AaMFS19 is regulated by the Yap1 transcription activator, the Hog1 and Fus3 mitogen-activated protein (MAP) kinases, the ‘two component’ histidine kinase, and the Skn7 response regulator. Our results demonstrate that A. alternata confers resistance to different chemicals via a membrane-bound MFS transporter. PMID:28060864

  6. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  7. Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

    PubMed Central

    Lu, Yue; Jeong, Yong-Tae; Li, Xian; Kim, Mi Jin; Park, Pil-Hoon; Hwang, Seung-Lark; Son, Jong Keun; Chang, Hyeun Wook

    2013-01-01

    Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-α and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-κB p65 and its DNA-binding activity by reducing the phosphorylation and degradation of IκBα and the phosphorylation of IκB kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-κB activation and of the MAPK pathway. PMID:24404333

  8. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation.

    PubMed

    Romanov, Victor; Whyard, Terry C; Waltzer, Wayne C; Grollman, Arthur P; Rosenquist, Thomas

    2015-01-01

    Ingestion of aristolochic acids (AAs) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adducts formation, is well documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. To better elucidate some aspects of this process, we studied cell cycle distribution and cell survival of renal epithelial cells treated with AAI at low and high doses. A low dose of AA induces cell cycle arrest in G2/M phase via activation of DNA damage checkpoint pathway ATM-Chk2-p53-p21. DNA damage signaling pathway is activated more likely via increased production of reactive oxygen species (ROS) caused by AA treatment then via DNA damage induced directly by AA. Higher AA concentration induced cell death partly via apoptosis. Since mitogen-activated protein kinases play an important role in cell survival, death and cell cycle progression, we assayed their function in AA-treated renal tubular epithelial cells. ERK1/2 and p38 but not JNK were activated in cells treated with AA. In addition, pharmacological inhibition of ERK1/2 and p38 as well as suppression of ROS generation with N-acetyl-L-cysteine resulted in the partial relief of cells from G2/M checkpoint and a decline of apoptosis level. Cell cycle arrest may be a mechanism for DNA repair, cell survival and reprogramming of epithelial cells to the fibroblast type. An apoptosis of renal epithelial cells at higher AA dose might be necessary to provide space for newly reprogrammed fibrotic cells.

  9. Network effects, cascades and CCP interoperability

    NASA Astrophysics Data System (ADS)

    Feng, Xiaobing; Hu, Haibo; Pritsker, Matthew

    2014-03-01

    To control counterparty risk, financial regulations such as the Dodd Frank Act are increasingly requiring standardized derivatives trades to be cleared by central counterparties (CCPs). It is anticipated that in the near-term future, CCPs across the world will be linked through interoperability agreements that facilitate risk-sharing but also serve as a conduit for transmitting shocks. This paper theoretically studies a network with CCPs that are linked through interoperability arrangements, and studies the properties of the network that contribute to cascading failures. The magnitude of the cascading is theoretically related to the strength of network linkages, the size of the network, the logistic mapping coefficient, a stochastic effect and CCP's defense lines. Simulations indicate that larger network effects increase systemic risk from cascading failures. The size of the network N raises the threshold value of shock sizes that are required to generate cascades. Hence, the larger the network, the more robust it will be.

  10. Involvement of OS-2 MAP kinase in regulation of the large-subunit catalases CAT-1 and CAT-3 in Neurospora crassa.

    PubMed

    Yamashita, Kazuhiro; Shiozawa, Azusa; Banno, Shinpei; Fukumori, Fumiyasu; Ichiishi, Akihiko; Kimura, Makoto; Fujimura, Makoto

    2007-08-01

    Neurospora crassa has four catalase genes--cat-1, cat-2, cat-3, and ctt-1/cat-4. cat-1 and cat-3 encode two fungal-specific large-subunit catalases CAT-1 and CAT-3 normally produced in conidia and growing hyphae, respectively. cat-2 encodes CAT-2 catalase-peroxidase normally produced in conidia. ctt-1 (or cat-4), of which expression was controlled by OS-2 MAP kinase (Noguchi et al., Fungal Genet. Biol. 44, 208-218), encodes a small-subunit catalase with unknown function. To clarify the contribution of OS-2 on the regulation of CAT-1, CAT-2, and CAT-3, we performed quantitative RT-PCR and in-gel catalase activity analyses. When the hyphae were treated with a fungicide (1 mug/ml fludioxonil) or subjected to an osmotic stress (1 M sorbitol), cat-1 was strongly upregulated and CAT-1 was reasonably induced in the wild-type strain. Interestingly, fludioxonil caused not only the CAT-1 induction but also a remarkable CAT-3 decrease in the wild-type hyphae, implying of an abnormal stimulation of asexual differentiation. These responses were not observed in an os-2 mutant hyphae, indicating an involvement of OS-2 in the cat-1 expression; however, os-2 was dispensable for the production of CAT-1 in conidia. In contrast, the expression of cat-2 was significantly induced by heat shock (45 degrees C) and that of cat-3 was moderately stimulated by an oxidative stress (50 microg/ml methyl viologen) in both the wild-type strain and the os-2 mutant, and corresponding enzyme activities were detected after the treatments. Although basal levels of transcription of cat-1 and cat-3 in an os-2 mutant hyphae were a few-fold lower than in the wild-type hyphae, the os-2 mutant exhibited a considerably lower levels of CAT-3 activity than the wild-type strain. These findings suggest that OS-2 MAP kinase regulated the expression of cat-1 and cat-3 transcriptionally, and probably that of cat-3 posttranscriptionally, even though the presence of another regulatory system for each of these two

  11. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    SciTech Connect

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion.

  12. MAP kinases p38 and JNK are activated by the steroid hormone 1alpha,25(OH)2-vitamin D3 in the C2C12 muscle cell line.

    PubMed

    Buitrago, Claudia G; Ronda, Ana C; de Boland, Ana Russo; Boland, Ricardo

    2006-03-01

    In chick skeletal muscle cell primary cultures, we previously demonstrated that 1alpha,25(OH)2-vitamin D3 [1alpha,25(OH)2D3], the hormonally active form of vitamin D, increases the phosphorylation and activity of the extracellular signal-regulated mitogen-activated protein (MAP) kinase isoforms ERK1 and ERK2, their subsequent translocation to the nucleus and involvement in DNA synthesis stimulation. In this study, we show that other members of the MAP kinase superfamily are also activated by the hormone. Using the muscle cell line C2C12 we found that 1alpha,25(OH)2D3 within 1 min phosphorylates and increases the activity of p38 MAPK. The immediately upstream mitogen-activated protein kinase kinases 3/6 (MKK3/MKK6) were also phosphorylated by the hormone suggesting their participation in p38 activation. 1Alpha,25(OH)2D3 was able to dephosphorylate/activate the ubiquitous cytosolic tyrosine kinase c-Src in C2C12 cells and studies with specific inhibitors imply that Src participates in hormone induced-p38 activation. Of relevance, 1alpha,25(OH)2D3 induced in the C2C12 line the stimulation of mitogen-activated protein kinase activating protein kinase 2 (MAPKAP-kinase 2) and subsequent phosphorylation of heat shock protein 27 (HSP27) in a p38 kinase activation-dependent manner. Treatment with the p38 inhibitor, SB203580, blocked p38 phosphorylation caused by the hormone and inhibited the phosphorylation of its downstrean substrates. 1Alpha,25(OH)2D3 also promotes the phosphorylation of c-jun N-terminal protein kinases (JNK 1/2), the response is fast (0.5-1 min) and maximal phosphorylation of the enzyme is observed at physiological doses of 1alpha,25(OH)2D3 (1 nM). The relative contribution of ERK-1/2, p38, and JNK-1/2 and their interrelationships in hormonal regulation of muscle cell proliferation and differentiation remain to be established.

  13. p38 MAP kinase-dependent phosphorylation of the Gp78 E3 ubiquitin ligase controls ER-mitochondria association and mitochondria motility.

    PubMed

    Li, Lei; Gao, Guang; Shankar, Jay; Joshi, Bharat; Foster, Leonard J; Nabi, Ivan R

    2015-11-01

    Gp78 is an ERAD-associated E3 ubiquitin ligase that induces degradation of the mitofusin mitochondrial fusion proteins and mitochondrial fission. Gp78 is localized throughout the ER; however, the anti-Gp78 3F3A monoclonal antibody (mAb) recognizes Gp78 selectively in mitochondria-associated ER domains. Epitope mapping localized the epitope of 3F3A and a commercial anti-Gp78 mAb to an 8-amino acid motif (533-541) in mouse Gp78 isoform 2 that forms part of a highly conserved 41-amino acid region containing 14-3-3- and WW-binding domains and a p38 MAP kinase (p38 MAPK) consensus site on Ser-538 (S538). 3F3A binds selectively to nonphosphorylated S538 Gp78. Using 3F3A as a reporter, we induced Gp78 S538 phosphorylation by serum starvation and showed it to be mediated by p38 MAPK. Mass spectroscopy analysis of Gp78 phosphopeptides confirmed S538 as a major p38 MAPK phosphorylation site on Gp78. Gp78 S538 phosphorylation limited its ability to induce mitochondrial fission and degrade MFN1 and MFN2 but did not affect in vitro Gp78 ubiquitin E3 ligase activity. Phosphomimetic Gp78 S538D mutation prevented Gp78 promotion of ER-mitochondria interaction, and SB203580 inhibition of p38 MAPK increased ER-mitochondria association. p38 MAPK phosphorylation of Gp78 S538 therefore regulates Gp78-dependent ER-mitochondria association and mitochondria motility.

  14. Suppression of Heregulin-β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation

    PubMed Central

    Pan, Min-Hsiung; Lin, Ying-Ting; Lin, Chih-Li; Wei, Chi-Shiang; Ho, Chi-Tang; Chen, Wei-Jen

    2011-01-01

    Invasive breast cancer is the major cause of death among females and its incidence is closely linked to HER2 (human epidermal growth factor receptor 2) overexpression. Pterostilbene, a natural analog of resveratrol, exerts its cancer chemopreventive activity similar to resveratrol by inhibiting cancer cell proliferation and inducing apoptosis. However, the anti-invasive effect of pterostilbene on HER2-bearing breast cancer has not been evaluated. Here, we used heregulin-β1 (HRG-β1), a ligand for HER3, to transactivate HER2 signaling. We found that pterostilbene was able to suppress HRG-β1-mediated cell invasion, motility and cell transformation of MCF-7 human breast carcinoma through down-regulation of matrix metalloproteinase-9 (MMP-9) activity and growth inhibition. In parallel, pterostilbene also inhibited protein and mRNA expression of MMP-9 driven by HRG-β1, suggesting that pterostilbene decreased HRG-β1-mediated MMP-9 induction via transcriptional regulation. Examining the signaling pathways responsible for HRG-β1-associated MMP-9 induction and growth inhibition, we observed that pterostilbene, as well as SB203580 (p38 kinase inhibitor), can abolish the phosphorylation of p38 mitogen-activated protein kinase (p38 kinase), a downstream HRG-β1-responsive kinase responsible for MMP-9 induction. In addition, HRG-β1-driven Akt phosphorylation required for cell proliferation was also suppressed by pterostilbene. Taken together, our present results suggest that pterostilbene may serve as a chemopreventive agent to inhibit HRG-β1/HER2-mediated aggressive and invasive phenotype of breast carcinoma through down-regulation of MMP-9, p38 kinase and Akt activation. PMID:19617202

  15. Heparin-binding epidermal-growth-factor-like growth factor gene expression is induced by scrape-wounding epithelial cell monolayers: involvement of mitogen-activated protein kinase cascades.

    PubMed Central

    Ellis, P D; Hadfield, K M; Pascall, J C; Brown, K D

    2001-01-01

    Peptide growth factors can promote the cell migration and proliferation that is needed to repair epithelia after mechanical or chemical injury. We report here that scrape-wounding rat intestinal epithelial (RIE-1) cell monolayers caused a rapid increase in levels of heparin-binding epidermal-growth-factor-like growth factor (HB-EGF) mRNA, with a maximal response at approx. 1 h. Hybridization in situ showed that transcript induction occurred primarily in cells at or near wound borders. The increase in HB-EGF mRNA was preceded by activation of the p42 mitogen-activated protein kinase (MAPK) in the wounded cell cultures. Moreover, the induction of HB-EGF mRNA was blocked by PD098059 and U0126, inhibitors that prevent the activation of p42/p44 MAPKs and extracellular signal-regulated protein kinase 5 (ERK5). Both p42 MAPK activation and HB-EGF mRNA induction were inhibited by genistein, indicating a requirement for an upstream tyrosine kinase activity. In contrast, neither response was affected by inhibition of phosphoinositide 3-kinase activity, down-regulation of protein kinase C, or disruption of the actin cytoskeleton with cytochalasin B. We conclude that scrape-wounding epithelial cell monolayers induces HB-EGF mRNA expression by a mechanism that most probably requires p42/p44 MAPK activation, although we cannot exclude a role for ERK5. Our results suggest a physiological role for locally synthesized HB-EGF in promoting epithelial repair after injury. PMID:11171084

  16. Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase

    PubMed Central

    Alam, Md Badrul; Bajpai, Vivek K.; Lee, JungIn; Zhao, Peijun; Byeon, Jung-Hee; Ra, Jeong-Sic; Majumder, Rajib; Lee, Jong Sung; Yoon, Jung-In; Rather, Irfan A.; Park, Yong-Ha; Kim, Kangmin; Na, MinKyun; Lee, Sang-Han

    2017-01-01

    In this study, the authors investigated the anti-melanogenic effects of 3,8-dihydroxyquinoline (jineol) isolated from Scolopendra subspinipes mutilans, the mechanisms responsible for its inhibition of melanogenesis in melan-a cells, and its antioxidant efficacy. Mushroom tyrosinase activities and melanin contents were determined in melan-a cells, and the protein and mRNA levels of MITF, tyrosinase, TYRP-1, and TYRP-2 were assessed. Jineol exhibited significant, concentration-dependent antioxidant effects as determined by DPPH, ABTS, CUPRAC, and FRAP assays. Jineol significantly inhibited mushroom tyrosinase activity by functioning as an uncompetitive inhibitor, and markedly inhibited melanin production and intracellular tyrosinase activity in melan-a cells. In addition, jineol abolished the expressions of tyrosinase, TYRP-1, TYRP-2, and MITF, thereby blocking melanin production and interfering with the phosphorylations of ERK1/2 and p38. Furthermore, specific inhibitors of ERK1/2 and p38 prevented melanogenesis inhibition by jineol, and the proteasome inhibitor (MG-132) prevented jineol-induced reductions in cellular tyrosinase levels. Taken together, jineol was found to stimulate MAP-kinase (ERK1/2 and p38) phosphorylation and the proteolytic degradation pathway, which led to the degradations of MITF and tyrosinase, and to suppress the productions of melanin. PMID:28393917

  17. The Gα4 G protein subunit interacts with the MAP kinase ERK2 using a D-motif that regulates developmental morphogenesis in Dictyostelium

    PubMed Central

    Nguyen, Hoai-Nghia; Hadwiger, Jeffrey A.

    2009-01-01

    G protein Gα subunits contribute to the specificity of different signal transduction pathways in Dictyostelium discoideum but Gα subunit-effector interactions have not been previously identified. The requirement of the Dictyostelium Gα4 subunit for MAP kinase (MAPK) activation and the identification of a putative MAPK docking site (D-motif) in this subunit suggested a possible interaction between the Gα4 subunit and MAPKs. In vivo association of the Gα4 subunit and ERK2 was demonstrated by pull-down and co-immunoprecipitation assays. Alteration of the D-motif reduced Gα4 subunit-ERK2 interactions but only slightly altered MAPK activation in response to folate. Expression of the Gα4 subunit with the altered D-motif in gα4− cells allowed for slug formation but not the morphogenesis associated with culmination. Expression of this mutant Gα4 subunit was sufficient to rescue chemotactic movement to folate. Alteration of the D-motif also reduced the aggregation defect associated with constitutively active Gα4 subunits. These results suggest Gα4 subunit-MAPK interactions are necessary for developmental morphogenesis but not for chemotaxis to folate. PMID:19765570

  18. Inhibition of Adult Neurogenesis by Inducible and Targeted Deletion of ERK5 MAP Kinase Specifically in Adult Neurogenic Regions Impairs Contextual Fear Memory Extinction and Remote Fear Memory

    PubMed Central

    Pan, Yung-Wei; Chan, Guy C.K.; Kuo, Chay T.; Storm, Daniel R.; Xia, Zhengui

    2012-01-01

    Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 MAP kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knockout (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory including contextual fear conditioning generated by a weak foot shock. The ERK5 icKO mice were also deficient in extinction of contextual fear memory and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis is important for learning that requires active forgetting of a prior memory. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 days post-training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation including memory extinction, and for the expression of remote memory. PMID:22573667

  19. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants

    PubMed Central

    Jogawat, Abhimanyu; Vadassery, Jyothilakshmi; Verma, Nidhi; Oelmüller, Ralf; Dua, Meenakshi; Nevo, Eviatar; Johri, Atul Kumar

    2016-01-01

    In this study, yeast HOG1 homologue from the root endophyte Piriformospora indica (PiHOG1) was isolated and functionally characterized. Functional expression of PiHOG1 in S. cerevisiae ∆hog1 mutant restored osmotolerance under high osmotic stress. Knockdown (KD) transformants of PiHOG1 generated by RNA interference in P. indica showed that genes for the HOG pathway, osmoresponse and salinity tolerance were less stimulated in KD-PiHOG1 compared to the wild-type under salinity stress. Furthermore, KD lines are impaired in the colonization of rice roots under salinity stress of 200 mM NaCl, and the biomass of the host plants, their shoot and root lengths, root number, photosynthetic pigment and proline contents were reduced as compared to rice plants colonized by WT P. indica. Therefore, PiHOG1 is critical for root colonisation, salinity tolerance and the performance of the host plant under salinity stress. Moreover, downregulation of PiHOG1 resulted not only in reduced and delayed phosphorylation of the remaining PiHOG1 protein in colonized salinity-stressed rice roots, but also in the downregulation of the upstream MAP kinase genes PiPBS2 and PiSSK2 involved in salinity tolerance signalling in the fungus. Our data demonstrate that PiHOG1 is not only involved in the salinity response of P. indica, but also helping host plant to overcome salinity stress. PMID:27849025

  20. CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain.

    PubMed

    Wu, Xiao-Bo; Cao, De-Li; Zhang, Xin; Jiang, Bao-Chun; Zhao, Lin-Xia; Qian, Bin; Gao, Yong-Jing

    2016-10-06

    CXCL13 is a B lymphocyte chemoattractant and activates CXCR5 receptor in the immune system. Here we investigated whether CXCL13/CXCR5 mediates inflammatory pain in dorsal root ganglia (DRG) and the underlying mechanisms. Peripheral injection of complete Freund's Adjuvant (CFA) increased the expression of CXCL13 and CXCR5 in DRG neurons. In Cxcr5(-/-) mice, CFA-induced pain hypersensitivity were attenuated. Whole-cell patch-clamp recording showed that the excitability of dissociated DRG neurons was increased after CFA injection or CXCL13 incubation from wild-type (WT) mice, but not from Cxcr5(-/-) mice. Additionally, sodium channel Nav1.8 was co-expressed with CXCR5 in dissociated DRG neurons, and the increased neuronal excitability induced by CFA or CXCL13 was reduced by Nav1.8 blocker. Intrathecal injection of Nav1.8 blocker also attenuated intrathecal injection of CXCL13-induced pain hypersensitivity. Furthermore, CXCL13 increased Nav1.8 current density in DRG neurons, which was inhibited by p38 MAP kinase inhibitor. CFA and CXCL13 increased p38 phosphorylation in the DRG of WT mice but not Cxcr5(-/-) mice. Finally, intrathecal p38 inhibitor alleviated CXCL13-induced pain hypersensitivity. Taken together, these results demonstrated that CXCL13, upregulated by peripheral inflammation, acts on CXCR5 on DRG neurons and activates p38, which increases Nav1.8 current density and further contributes to the maintenance of inflammatory pain.

  1. Mutated KRAS Results in Overexpression of DUSP4, a MAP-Kinase Phosphatase, and SMYD3, a Histone Methyltransferase, in Rectal Carcinomas

    PubMed Central

    Gaedcke, Jochen; Grade, Marian; Jung, Klaus; Camps, Jordi; Jo, Peter; Emons, Georg; Gehoff, Anastasia; Sax, Ulrich; Schirmer, Markus; Becker, Heinz; Beissbarth, Tim; Ried, Thomas; Ghadimi, B. Michael

    2012-01-01

    Mutations of the KRAS oncogene are predictive for resistance to treatment with antibodies against the epithelial growth factor receptor in patients with colorectal cancer. Overcoming this therapeutic dilemma could potentially be achieved by the introduction of drugs that inhibit signaling pathways that are activated by KRAS mutations. To identify comprehensively such signaling pathways we profiled pretreatment biopsies and normal mucosa from 65 patients with locally advanced rectal cancer - 30 of which carried mutated KRAS - using global gene expression microarrays. By comparing all tumor tissues exclusively to matched normal mucosa, we could improve assay sensitivity, and identified a total of 22,297 features that were differentially expressed (adjusted P-value <0.05) between normal mucosa and cancer, including several novel potential rectal cancer genes. We then used this comprehensive description of the rectal cancer transcriptome as the baseline for identifying KRAS-dependent alterations. The presence of activating KRAS mutations is significantly correlated to an upregulation of 13 genes (adjusted P-value <0.05), among them DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase. Inhibition of the expression of both genes has previously been shown using the MEK1-inhibitor PD98059 and the antibacterial compound Novobiocin, respectively. These findings suggest a potential approach to overcome resistance to treatment with antibodies against the epithelial growth factor receptor in patients with KRAS-mutant rectal carcinomas. PMID:20725992

  2. South Cascade Glacier bibliography

    SciTech Connect

    Fountain, A.G.; Fulk, M.A.

    1984-01-01

    South Cascade Glacier, in Washington State, resides in a well-defined basin with mainly unglacierized divides making it ideal for most glaciological and hydrological studies. This bibliography is divided into three cateogories: (1) studies done about South Cascade Glacier specifically; (2) studies that use data from South Cascade Glacier but do not focus on or give insight to the glacier itself; and (3) instrumentation studies and non-glacier projects including snow studies done in the basin. (ACR)

  3. Cascade photo production at CLAS

    SciTech Connect

    Goetz, John; Hicks, Kenneth H.

    2014-09-01

    The famous discovery of the Omega in 1964 put the quark model on firm ground and since then a lot of effort has been spent on mapping out the baryonic and mesonic states. Over the following decades, many excited baryons with light quarks (up, down and strange) have been measured, but by most predictions, only a small percentage of those expected have been found. In this talk, I will discuss a newly developing technique using an (unflavored) photon beam to excite protons to doubly-strange "Cascade" (Xi) states. Advantages of such an experiment and associated difficulties will be presented, along with recent results from the CLAS detector at Jefferson Lab in Virginia.

  4. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger.

    PubMed

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A K; Dickschat, Jeroen S; Fleißner, André

    2015-06-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi.

  5. CASCADED BINARY ERROR CODES. PART 2. DECODING ALGORITHM FOR COMPONENT CODES,

    DTIC Science & Technology

    COMPUTER PROGRAMMING, *DIGITAL COMPUTERS, ERRORS , CONTROL SYSTEMS, OPTIMIZATION, PROGRAMMING LANGUAGES, INPUT OUTPUT DEVICES, NETWORKS, PROBABILITY, CASCADE STRUCTURES, COMBINATORIAL ANALYSIS, CONFORMAL MAPPING.

  6. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  7. Inhibition of neurite outgrowth in differentiating mouse N2a neuroblastoma cells by phenyl saligenin phosphate: effects on MAP kinase (ERK 1/2) activation, neurofilament heavy chain phosphorylation and neuropathy target esterase activity.

    PubMed

    Hargreaves, Alan J; Fowler, Maxine J; Sachana, Magdalini; Flaskos, John; Bountouri, Mary; Coutts, Ian C; Glynn, Paul; Harris, Wayne; Graham McLean, W

    2006-04-14

    Sub-lethal concentrations of the organophosphate phenyl saligenin phosphate (PSP) inhibited the outgrowth of axon-like processes in differentiating mouse N2a neuroblastoma cells (IC(50) 2.5 microM). A transient rise in the phosphorylation state of neurofilament heavy chain (NFH) was detected on Western blots of cell extracts treated with 2.5 microM PSP for 4 h compared to untreated controls, as determined by a relative increase in reactivity with monoclonal antibody Ta51 (anti-phosphorylated NFH) compared to N52 (anti-total NFH). However, cross-reactivity of PSP-treated cell extracts was lower than that of untreated controls after 24 h exposure, as indicated by decreased reactivity with both antibodies. Indirect immunofluorescence analysis with these antibodies revealed the appearance of neurofilament aggregates in the cell bodies of treated cells and reduced axonal staining compared to controls. By contrast, there was no significant change in reactivity with anti-alpha-tubulin antibody B512 at either time point. The activation state of the MAP kinase ERK 1/2 increased significantly after PSP treatment compared to controls, particularly at 4 h, as indicated by increased reactivity with monoclonal antibody E-4 (anti-phosphorylated MAP kinase) but not with polyclonal antibody K-23 (anti-total MAP kinase). The observed early changes were concomitant with almost complete inhibition of the activity of neuropathy target esterase (NTE), one of the proposed early molecular targets in organophosphate-induced delayed neuropathy (OPIDN).

  8. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP).

    PubMed

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A

    2013-07-26

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.

  9. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  10. Phosphatidylinositol 3'-kinase associates with an insulin receptor substrate-1 serine kinase distinct from its intrinsic serine kinase.

    PubMed Central

    Cengel, K A; Kason, R E; Freund, G G

    1998-01-01

    Serine phosphorylation of insulin receptor substrate-1 (IRS-1) has been proposed as a counter-regulatory mechanism in insulin and cytokine signalling. Here we report that IRS-1 is phosphorylated by a wortmannin insensitive phosphatidylinositol 3'-kinase (PI 3-kinase)-associated serine kinase (PAS kinase) distinct from PI 3-kinase serine kinase. We found that PI 3-kinase immune complexes contain 5-fold more wortmannin-insensitive serine kinase activity than SH2-containing protein tyrosine phosphatase-2 (SHP2) and IRS-1 immune complexes. Affinity chromatography of cell lysates with a glutathione S-transferase fusion protein for the p85 subunit of PI 3-kinase showed that PAS kinase associated with the p85 subunit of PI 3-kinase. This interaction required unoccupied SH2 domain(s) but did not require the PI 3-kinase p110 subunit binding domain. In terms of function, PAS kinase phosphorylated IRS-1 and, after insulin stimulation, PAS kinase phosphorylated IRS-1 in PI 3-kinase-IRS-1 complexes. Phosphopeptide mapping showed that insulin-dependent in vivo sites of IRS-1 serine phosphorylation were comparable to those of PAS kinase phosphorylated IRS-1. More importantly, PAS kinase-dependent phosphorylation of IRS-1 reduced by 4-fold the ability of IRS-1 to act as an insulin receptor substrate. Taken together, these findings indicate that: (a) PAS kinase is distinct from the intrinsic serine kinase activity of PI 3-kinase, (b) PAS kinase associates with the p85 subunit of PI 3-kinase through SH2 domain interactions, and (c) PAS kinase is an IRS-1 serine kinase that can reduce the ability of IRS-1 to serve as an insulin receptor substrate. PMID:9761740

  11. Cascade vulnerability for risk analysis of water infrastructure.

    PubMed

    Sitzenfrei, R; Mair, M; Möderl, M; Rauch, W

    2011-01-01

    One of the major tasks in urban water management is failure-free operation for at least most of the time. Accordingly, the reliability of the network systems in urban water management has a crucial role. The failure of a component in these systems impacts potable water distribution and urban drainage. Therefore, water distribution and urban drainage systems are categorized as critical infrastructure. Vulnerability is the degree to which a system is likely to experience harm induced by perturbation or stress. However, for risk assessment, we usually assume that events and failures are singular and independent, i.e. several simultaneous events and cascading events are unconsidered. Although failures can be causally linked, a simultaneous consideration in risk analysis is hardly considered. To close this gap, this work introduces the term cascade vulnerability for water infrastructure. Cascade vulnerability accounts for cascading and simultaneous events. Following this definition, cascade risk maps are a merger of hazard and cascade vulnerability maps. In this work cascade vulnerability maps for water distribution systems and urban drainage systems based on the 'Achilles-Approach' are introduced and discussed. It is shown, that neglecting cascading effects results in significant underestimation of risk scenarios.

  12. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function

    PubMed Central

    Guo, Chang-An; Danai, Laura V.; Yawe, Joseph C.; Gujja, Sharvari; Edwards, Yvonne J. K.

    2016-01-01

    The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate. PMID:27044870

  13. Design of supercritical cascades with high solidity

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1982-01-01

    The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.

  14. Design of supercritical cascades with high solidity

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1982-01-01

    The method of complex characteristics of Garabedian and Korn has been successfully used to design shockless cascades with solidities of up to one. A new code has been developed using this method and a new hodograph transformation of the flow onto an ellipse. This new code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph-like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.

  15. Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression.

    PubMed

    Sengupta, Neelanjan; Vinod, P K; Venkatesh, K V

    2007-01-01

    Signal transduction pathways crosstalk with one another and play a central role in regulation of cellular events. Crosstalk brings complexity to the system, and hence, a systematic analysis of these crosstalks helps in relating the signaling network structure to its function. Here, we present a modular steady state approach to quantify the network comprising of cAMP-PKA and MAP kinase pathways involved in the regulation of FLO11, a gene which is required for pseudohyphae growth in Saccharomyces cerevisiae under nitrogen starvation. These two pathways crosstalk by converging on the same target, i.e., FLO11 and through Ras2p, an upstream activator of both cAMP and MAPK pathway. Analysis of crosstalk at the gene level revealed that cAMP-PKA and MAPK pathways are indispensable to FLO11 expression. The dose response was highly sensitive and primarily controlled by cAMP-PKA pathway. We demonstrate that the highly sensitive response in the cAMP-PKA pathway was due to crosstalk and inhibitor ultrsensitivity, key regulatory designs present at the downstream of cAMP-PKA pathway. The analysis of the role of Ras2p in the crosstalk between the cAMP-PKA and MAPK pathways indicated that crosstalk essentially helped in amplification of the Gpa2p signal, another upstream activator of the cAMP-PKA pathway. However, the effect of crosstalk due to Ras2p on FLO11 expression was minimal under normal activation levels of Ras2p. Whereas, the crosstalk itself can bring about FLO11 expression under the hyperactivated Ras2p conditions thereby eliminating the requirement for the other activator Gpa2p. We also observed the presence of system level properties such as amplification, inhibitor ultrasensitvity and bistability, which can be attributed to the regulatory design present in the FLO11 expression system. These system level properties might help the organism to respond to varying nutritional status.

  16. Eicosapentaenoic acid prevents TCDD-induced oxidative stress and inflammatory response by modulating MAP kinases and redox-sensitive transcription factors

    PubMed Central

    Palanisamy, Kalaiselvi; Krishnaswamy, Rajashree; Paramasivan, Poornima; Chih-Yang, Huang; Vishwanadha, Vijaya Padma

    2015-01-01

    Background and Purpose Oxidative stress and subsequent activation of inflammatory responses is a widely accepted consequence of exposure to environmental toxins. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a well-known environmental toxin, exerts its toxicity through many signalling mechanisms, with liver being the principal organ affected. However, an effective antidote to TCDD-induced toxicity is unknown. The present study evaluated the effect of eicosapentaenoic acid (EPA), an n3 fatty acid, on TCDD-induced toxicity. Experimental Approach In cultures of HepG2 cells, the EPA/AA ratio was determined using gas chromatography, oxidative stress and inflammatory responses through reactive oxygen species (ROS) levels, antioxidant status, [Ca2+]i, nuclear migration of two redox-sensitive transcription factors, NF-κB p65 and Nrf-2, expression of MAP kinase (p-Erk, p-p38), NF-κB p65, COX-2 and Nrf-2. Cellular changes in ΔΨm, acidic vesicular organelle formation, cell cycle analysis and scanning electron microscopy analysis were performed. Key Results EPA offered significant cytoprotection by increasing EPA/AA ratios in cell membranes, inhibiting ROS generation, enhancing antioxidant status and modulating nuclear translocation of redox-sensitive transcription factors (NF-κB p65 and Nrf-2) and expression of NF-κB p65, COX-2 and Nrf-2. Furthermore, TCDD-induced upstream events of MAPK phosphorylation, the increase in [Ca2+]i levels and cell surface changes in microvilli were significantly inhibited by EPA. EPA treatment maintained ΔΨm and prevented formation of acidic vesicular organelles. Conclusion and Implications The present study demonstrates for the first time some underlying molecular mechanisms of cytoprotection exerted by EPA against TCDD-induced oxidative stress and inflammatory responses. PMID:26177858

  17. The Erk MAP kinase pathway is activated at muscle spindles and is required for induction of the muscle spindle-specific gene Egr3 by neuregulin1.

    PubMed

    Herndon, Carter A; Ankenbruck, Nick; Fromm, Larry

    2014-02-01

    Muscle spindles are sensory receptors composed of specialized muscle fibers, known as intrafusal muscle fibers, along with the endings of sensory neuron axons that innervate these muscle fibers. Formation of muscle spindles requires neuregulin1 (NRG1), which is released by sensory axons, activating ErbB receptors in muscle cells that are contacted. The transcription factor Egr3 is transcriptionally induced by NRG1, which in turn activates various target genes involved in forming intrafusal fibers. We have previously shown that, in cultured muscle cells, NRG1 signaling activates the Egr3 gene through SRF and CREB, which bind to a composite regulatory element, and that NRG1 signaling targets SRF by stimulating nuclear translocation of SRF coactivators myocardin-related transcription factor (MRTF)-A and MRTF-B and targets CREB by phosphorylation. The current studies examined signaling relays that might function in the NRG1 pathway upstream of SRF and CREB. We found that transcriptional induction of Egr3 in response to NRG1 requires the MAP kinase Erk1/2, which acts upstream of CREB to induce its phosphorylation. MRTFs are targeted by the Rho-actin pathway, yet in the absence of Rho-actin signaling, even though MRTFs fail to be translocated to the nucleus, NRG1 induces Egr3 transcription. In mouse muscle in vivo, activation of Erk1/2 is enhanced selectively where muscle spindles are located. These results suggest that Erk1/2 acts in intrafusal fibers of muscle spindles to induce transcription of Egr3 and that Egr3 induction occurs independently of MRTFs and involves Erk1/2 acting on other transcriptional regulatory targets that interact with the SRF-CREB regulatory element.

  18. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy

    PubMed Central

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  19. Effects of interleukins 2 and 12 on TBT-induced alterations of MAP kinases p38 and p44/42 in human natural killer cells.

    PubMed

    Aluoch, Aloice O; Whalen, Margaret M

    2006-01-01

    NK cells are lymphocytes in the non-adaptive immune system that protect the body against intracellular pathogens and eliminate tumor cells. Tributyltin (TBT) is a toxic chemical that has been detected in human foods as well as in human blood. The role of TBT in immunosuppression has been described, including inhibition of the human NK-cell cytotoxic function. Previous studies indicated that exposure of NK cells to TBT for 1 h induced progressive and irreversible inhibition of cytotoxic function. However, it was found that if NK cells were incubated in TBT-free media with either IL-2 or IL-12, loss of cytotoxic function was prevented/reversed within 24 h. Molecular studies established that loss of cytotoxic function is accompanied by alteration of MAP kinases (MAPKs) p38 and p44/42 phosphorylation. This study examined whether interleukin-mediated recovery of cytotoxicity involved reversal of tributyltin-altered p38 and p44/42 phosphorylation. The results indicated that there was no substantial IL-2 prevention/reversal of the TBT-induced alteration of phosphorylation of either p38 or p44/42 after either a 24 or 48 h recovery period. Additionally, IL-12 caused no substantial prevention/reversal of the TBT-induced alteration of phosphorylation of the MAPKs seen after either 24 or 48 h. These data suggest that IL-2 and/or IL-12-mediated recovery of NK cytotoxic function is not a result of prevention/reversal of TBT-induced phosphorylation of p38 and p44/42 MAPKs at the 24 or 48 h time points.

  20. Systematic identifiability testing for unambiguous mechanistic modeling – application to JAK-STAT, MAP kinase, and NF-κB signaling pathway models

    PubMed Central

    Quaiser, Tom; Mönnigmann, Martin

    2009-01-01

    Background When creating mechanistic mathematical models for biological signaling processes it is tempting to include as many known biochemical interactions into one large model as possible. For the JAK-STAT, MAP kinase, and NF-κB pathways a lot of biological insight is available, and as a consequence, large mathematical models have emerged. For large models the question arises whether unknown model parameters can uniquely be determined by parameter estimation from measured data. Systematic approaches to answering this question are indispensable since the uniqueness of model parameter values is essential for predictive mechanistic modeling. Results We propose an eigenvalue based method for efficiently testing identifiability of large ordinary differential models and compare this approach to three existing ones. The methods are benchmarked by applying them to models of the signaling pathways mentioned above. In all cases the eigenvalue method proposed here and the orthogonal method find the largest set of identifiable parameters, thus clearly outperforming the other approaches. The identifiability analysis shows that the pathway models are not identifiable, even under the strong assumption that all system state variables are measurable. We demonstrate how the results of the identifiability analysis can be used for model simplification. Conclusion While it has undoubtedly contributed to recent advances in systems biology, mechanistic modeling by itself does not guarantee unambiguous descriptions of biological processes. We show that some recent signal transduction pathway models have reached a level of detail that is not warranted. Rigorous identifiability tests reveal that even if highly idealized experiments could be carried out to measure all state variables of these signaling pathways, some unknown parameters could still not be estimated. The identifiability tests therefore show that the level of detail of the investigated models is too high in principle, not

  1. CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain

    PubMed Central

    Wu, Xiao-Bo; Cao, De-Li; Zhang, Xin; Jiang, Bao-Chun; Zhao, Lin-Xia; Qian, Bin; Gao, Yong-Jing

    2016-01-01

    CXCL13 is a B lymphocyte chemoattractant and activates CXCR5 receptor in the immune system. Here we investigated whether CXCL13/CXCR5 mediates inflammatory pain in dorsal root ganglia (DRG) and the underlying mechanisms. Peripheral injection of complete Freund’s Adjuvant (CFA) increased the expression of CXCL13 and CXCR5 in DRG neurons. In Cxcr5−/− mice, CFA-induced pain hypersensitivity were attenuated. Whole-cell patch-clamp recording showed that the excitability of dissociated DRG neurons was increased after CFA injection or CXCL13 incubation from wild-type (WT) mice, but not from Cxcr5−/− mice. Additionally, sodium channel Nav1.8 was co-expressed with CXCR5 in dissociated DRG neurons, and the increased neuronal excitability induced by CFA or CXCL13 was reduced by Nav1.8 blocker. Intrathecal injection of Nav1.8 blocker also attenuated intrathecal injection of CXCL13-induced pain hypersensitivity. Furthermore, CXCL13 increased Nav1.8 current density in DRG neurons, which was inhibited by p38 MAP kinase inhibitor. CFA and CXCL13 increased p38 phosphorylation in the DRG of WT mice but not Cxcr5−/− mice. Finally, intrathecal p38 inhibitor alleviated CXCL13-induced pain hypersensitivity. Taken together, these results demonstrated that CXCL13, upregulated by peripheral inflammation, acts on CXCR5 on DRG neurons and activates p38, which increases Nav1.8 current density and further contributes to the maintenance of inflammatory pain. PMID:27708397

  2. Neuronal migration and protein kinases

    PubMed Central

    Ohshima, Toshio

    2015-01-01

    The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration. PMID:25628530

  3. Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis.

    PubMed

    Pyakurel, Aswin; Savoia, Claudia; Hess, Daniel; Scorrano, Luca

    2015-04-16

    Controlled changes in mitochondrial morphology participate in cellular signaling cascades. However, the molecular mechanisms modifying mitochondrial shape are largely unknown. Here we show that the mitogen-activated protein (MAP) kinase cascade member extracellular-signal-regulated kinase (ERK) phosphorylates the pro-fusion protein mitofusin (MFN) 1, modulating its participation in apoptosis and mitochondrial fusion. Phosphoproteomic and biochemical analyses revealed that MFN1 is phosphorylated at an atypical ERK site in its heptad repeat (HR) 1 domain. This site proved essential to mediate MFN1-dependent mitochondrial elongation and apoptosis regulation by the MEK/ERK cascade. A mutant mimicking constitutive MFN1 phosphorylation was less efficient in oligomerizing and mitochondria tethering but bound more avidly to the proapoptotic BCL-2 family member BAK, facilitating its activation and cell death. Moreover, neuronal apoptosis following oxygen glucose deprivation and MEK/ERK activation required an intact MFN1(T562). Our data identify MFN1 as an ERK target to modulate mitochondrial shape and apoptosis.

  4. Phosphorylation of ERK/MAP Kinase Is Required for Long-Term Potentiation in Anatomically Restricted Regions of the Lateral Amygdala in Vivo

    ERIC Educational Resources Information Center

    Schafe, Glenn E.; Swank, Michael W.; Rodriguez, Sarina M.; Debiec, Jacek; Doyere, Valerie

    2008-01-01

    We have previously shown that the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) is transiently activated in anatomically restricted regions of the lateral amygdala (LA) following Pavlovian fear conditioning and that blockade of ERK/MAPK activation in the LA impairs both fear memory consolidation and long-term…

  5. 5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE CREEK FROM 100 YARDS WEST OF THE ROSTRUM (ROCK FORMATION ON SOUTH SIDE OF MERCED RIVER). HIGHWAY 140 IS AT BOTTOM OF FRAME. HIGHWAY 120, THE BIG OAK FLAT ROAD CROSSES FRAME JUST ABOVE CENTER. - Cascade Creek Bridge, Spanning Cascade Creek on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  6. Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants.

    PubMed

    Lee, Hyoung Yool; Back, Kyoungwhan

    2016-04-01

    Melatonin enhances pathogen resistance by inducing the expression of a number of plant defense-related genes. To examine whether the melatonin-mediated pathogen resistance is associated with mitogen-activated protein kinase (MAPK) cascades, Arabidopsis and tobacco leaves were treated with melatonin and investigated for MAPK activation using an antiphospho-p44/42 MAPK (Erk1/2) monoclonal antibody. Two MAPKs, MPK3 and MPK6, were activated rapidly and transiently by 1 μm melatonin treatment in Arabidopsis. Its tobacco ortholog MAPKs were also activated. The activation of MPK3 and MPK6 by 2-hydroxymelatonin and N-acetylserotonin was also observed, albeit to a lesser degree than that by melatonin. Furthermore, MAPK activation by melatonin was uncoupled from G-protein signaling, because melatonin efficiently activated two MAPKs in a G-protein β knockout mutant (agb1). Suppression of both MPK3 and MPK6 in transgenic Arabidopsis exhibited significant decreases in the induction of defense-related gene expression and pathogen resistance relative to wild-type plants. Using an array of MAP kinase kinase (MKK) knockout mutants, we found that four MKKs, namely MKK4, MKK5, MKK7, and MKK9, are responsible for the activation of MPK3 and MPK6 by melatonin, indicating that melatonin-mediated innate immunity is triggered by MAPK signaling through MKK4/5/7/9-MPK3/6 cascades.

  7. RETRACTED: S-allyl cysteine protects against 6-hydroxydopamine-induced neurotoxicity in the rat striatum: involvement of Nrf2 transcription factor activation and modulation of signaling kinase cascades.

    PubMed

    Tobón-Velasco, Julio César; Vázquez-Victorio, Genaro; Macías-Silva, Marina; Cuevas, Elvis; Ali, Syed F; Maldonado, Perla D; González-Trujano, María Eva; Cuadrado, Antonio; Pedraza-Chaverrí, José; Santamaría, Abel

    2012-09-01

    Pharmacological activation at the basal ganglia of the transcription factor Nrf2, guardian of redox homeostasis, holds a strong promise for the slow progression of Parkinson's disease (PD). However, a potent Nrf2 activator in the brain still must be found. In this study, we have investigated the potential use of the antioxidant compound S-allyl cysteine (SAC) in the activation of Nrf2 in 6-hydoxydopamine (6-OHDA)-intoxicated rats. In the rat striatum, SAC by itself promoted the Nrf2 dissociation of Keap-1, its nuclear translocation, the subsequent association with small MafK protein, and further binding of the Nrf2/MafK complex to ARE sequence, as well as the up-regulation of Nrf2-dependent genes encoding the antioxidant enzymes HO-1, NQO-1, GR, and SOD-1. In vivo and in vitro experiments to identify signaling pathways activated by SAC pointed to Akt as the most likely kinase participating in Nrf2 activation by SAC. In PC12 cells, SAC stimulated the activation of Akt and ERK1/2 and inhibited JNK1/2/3 activation. In the rat striatum, the SAC-induced activation of Nrf2 is likely to contribute to inhibit the toxic effects of 6-OHDA evidenced by phase 2 antioxidant enzymes up-regulation, glutathione recovery, and attenuation of reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxides formation. These early protective effects correlated with the long-term preservation of the cellular redox status, the striatal dopamine (DA) and tyrosine hydroxylase (TH) levels, and the improvement of motor skills. Therefore, this study indicates that, in addition to direct scavenging actions, the activation of Nrf2 by SAC might confer neuroprotective responses through the modulation of kinase signaling pathways in rodent models of PD, and suggests that this antioxidant molecule may have a therapeutic value in this human pathology.

  8. A regulatory cascade involving AarG, a putative sensor kinase, controls the expression of the 2'-N-acetyltransferase and an intrinsic multiple antibiotic resistance (Mar) response in Providencia stuartii.

    PubMed

    Rather, P N; Paradise, M R; Parojcic, M M; Patel, S

    1998-06-01

    A recessive mutation, aarG1, has been identified that resulted in an 18-fold increase in the expression of beta-galactosidase from an aac(2')-lacZ fusion. Transcriptional fusions and Northern blot analysis demonstrated that the aarG1 allele also resulted in a large increase in the expression of aarP, a gene encoding a transcriptional activator of aac(2')-Ia. The effects of aarG1 on aac(2')-Ia expression were mediated by aarP-dependent and -independent mechanisms. The aarG1 allele also resulted in a multiple antibiotic resistance (Mar) phenotype, which included increased chloramphenicol, tetracycline and fluoroquinolone resistance. This Mar phenotype also resulted from aarP-dependent and -independent mechanisms. Sequence analysis of the aarG locus revealed the presence of two open reading frames, designated aarR and aarG, organized in tandem. The putative AarR protein displayed 75% amino acid identity to the response regulator PhoP, and the AarG protein displayed 57% amino acid identity to the sensor kinase PhoQ. The aarG1 mutation, a C to T substitution, resulted in a threonine to isoleucine substitution at position 279 (T279I) in the putative sensor kinase. The AarG product was functionally similar to PhoQ, as it was able to restore wild-type levels of maganin resistance to a Salmonella typhimurium phoQ mutant. However, expression of the aarP and aac(2')-Ia genes was not significantly affected by the levels of Mg2+ or Ca2+, suggesting that aarG senses a signal other than divalent cations.

  9. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  10. Geothermal research, Oregon Cascades: Final technical report

    SciTech Connect

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  11. Crystal structure of non-phosphorylated MAP2K6 in a putative auto-inhibition state.

    PubMed

    Matsumoto, Takashi; Kinoshita, Takayoshi; Matsuzaka, Hitomi; Nakai, Ryoko; Kirii, Yasuyuki; Yokota, Koichi; Tada, Toshiji

    2012-05-01

    Mitogen-activated protein kinase kinase 6 (MAP2K6) plays a crucial role in the p38 MAP kinase signal cascade that regulates various stress-induced responses and is associated with pathological conditions. The crystal structure of human non-phosphorylated MAP2K6 (npMAP2K6) complexed with an ATP analogue was determined at 2.6 Å resolution and represents an auto-inhibition state of MAP2K6. Three characteristics of short α-helices configured in the activation loop region, termed activation helices (AH1, AH2 and AH3), are important in controlling the auto-inhibition mechanism. AH1 displaces the αC-helix, a component essential for forming the active configuration, away from the active site. AH1 and AH2 were found to enclose the γ-phosphate, the leaving group of ATP. A comparison with the related enzymes, MAP2K1 and MAP2K4 reveals that MAP2K6 has the unique auto-inhibition mechanism mediated by the three activation helices.

  12. Comprehensive analysis of three-dimensional activity cliffs formed by kinase inhibitors with different binding modes and cliff mapping of structural analogues.

    PubMed

    Furtmann, Norbert; Hu, Ye; Bajorath, Jürgen

    2015-01-08

    Kinases are among the structurally most extensively characterized therapeutic targets. For many kinases, X-ray structures of inhibitor complexes are publicly available. We have identified all three-dimensional activity cliffs (3D-cliffs) formed by kinase inhibitors. More than 1300 X-ray structures of unique kinase-inhibitor complexes and associated activity data were analyzed. On the basis of binding mode comparison and 3D similarity calculations, 105 3D-cliffs were detected for type I, type II, or type III inhibitors of 13 different kinases. Many of these activity cliffs revealed clear interaction differences between highly and weakly potent inhibitors. More than 200 structural analogues of 3D-cliff compounds were identified whose structure-activity relationships (SARs) can be further explored in three dimensions on the basis of the corresponding 3D-cliffs. In addition to SAR exploration, 3D-cliffs provide useful interaction hypotheses for structure-based design. The kinase inhibitor and activity cliff information is made freely available as a part of our study.

  13. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  14. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    SciTech Connect

    Arai, Roberto J.; Debbas, Victor; Stern, Arnold; Monteiro, Hugo P.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.

  15. p38 MAP kinase-dependent regulation of the expression level and subcellular distribution of heterogeneous nuclear ribonucleoprotein A1 and its involvement in cellular senescence in normal human fibroblasts

    PubMed Central

    Shimada, Naoko; Rios, Ileana; Moran, Heriberto; Sayers, Brendan; Hubbard, Karen

    2010-01-01

    Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a RNA binding protein that plays important role in the biogenesis of mRNA, such as alternative splicing and mRNA stability. We have previously demonstrated that hnRNP A1 has diminished protein levels and shows cytoplasmic accumulation in senescent human diploid fibroblasts. Recent reports showed that p38 MAP kinase (p38 MAPK), a member of the MAP kinase family is necessary and sufficient for the cytoplasmic accumulation of hnRNP A1 by stress stimuli such as osmotic shock. p38 MAP kinase has been shown to be involved in cell proliferation and the induction of senescence in response to extracellular stimuli. However, the relationship between hnRNP A1 and p38 MAPK and the roles of hnRNP A1 in cellular senescence have not yet been elucidated. Here we show that hnRNP A1 forms a complex with phospho-p38 MAPK in vivo. Inhibition of p38 MAPK activity with SB203580 elevated hnRNP A1 protein levels and prohibited the cytoplasmic accumulation of the protein, but not hnRNP A2, in senescent cells. The phosphorylation level of hnRNP A1 was elevated in senescent cells. Reduction of hnRNP A1 and A2 levels by siRNA transfection induced a senescence-like morphology and elevated the level of F-actin, a marker of senescence. These results suggest that the expression levels and subcellular distribution of hnRNP A1 are regulated in a p38 MAPK-dependent manner, probably via its phosphorylation. Our results also suggest that hnRNP A2 in addition to hnRNP A1 may play a role in establishing the senescence phenotype. PMID:19430204

  16. In vivo Evaluation of Two Thiazolidin-4-one Derivatives in High Sucrose Diet Fed Pre-diabetic Mice and Their Modulatory Effect on AMPK, Akt and p38 MAP Kinase in L6 Cells

    PubMed Central

    Mudgal, Jayesh; Shetty, Priya; Reddy, Neetinkumar D.; Akhila, H. S.; Gourishetti, Karthik; Mathew, Geetha; Nayak, Pawan G.; Kumar, Nitesh; Kishore, Anoop; Kutty, Nampurath G.; Nandakumar, Krishnadas; Shenoy, Rekha R.; Rao, Chamallamudi M.; Joseph, Alex

    2016-01-01

    We had previously demonstrated the anti-diabetic potential and pancreatic protection of two thiazolidin-4-one derivatives containing nicotinamide moiety (NAT-1 and NAT-2) in STZ-induced diabetic mice. However, due to the limitations of the STZ model, we decided to undertake a detailed evaluation of anti-diabetic potential of the molecules on a high sucrose diet (HSD) fed diabetic mouse model. Further, in vitro mechanistic studies on the phosphorylation of AMPK, Akt and p38 MAP kinase in L6 myotubes and anti-inflammatory studies in RAW264.7 mouse monocyte macrophage cells were performed. 15 months of HSD induced fasting hyperglycaemia and impaired glucose tolerance in mice. Treatment with NAT-1 and NAT-2 (100 mg/kg) for 45 days significantly improved the glucose tolerance and lowered fasting blood glucose levels compared to untreated control. An improvement in the elevated triglycerides and total cholesterol levels, and favorable rise in HDL cholesterol were also observed with test drug treatment. Also, no major changes were observed in the liver (albumin, AST and ALT) and kidney (creatinine and urea) parameters. This was further confirmed in their respective histology profiles which revealed no gross morphological changes. In L6 cells, significant phosphorylation of Akt and p38 MAP kinase proteins were observed with 100 μM of NAT-1 and NAT-2 with no significant changes in phosphorylation of AMPK. The molecules failed to exhibit anti-inflammatory activity as observed by their effect on the generation of ROS and nitrite, and nuclear levels of NF-κB in LPS-stimulated RAW264.7 cells. In summary, the molecules activated Akt and p38 MAP kinase which could have partly contributed to their anti-hyperglycaemic and hypolipidemic activities in vivo. PMID:27790148

  17. Tracking Earthquake Cascades

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2011-12-01

    In assessing their risk to society, earthquakes are best characterized as cascades that can propagate from the natural environment into the socio-economic (built) environment. Strong earthquakes rarely occur as isolated events; they usually cluster in foreshock-mainshock-aftershock sequences, seismic swarms, and extended sequences of large earthquakes that propagate along major fault systems. These cascades are regulated by stress-mediated interactions among faults driven by tectonic loading. Within these cascades, each large event can itself cause a chain reaction in which the primary effects of faulting and ground shaking induce secondary effects, including tsunami, landslides, liquefaction, and set off destructive processes within the built environment, such as fires and radiation leakage from nuclear plants. Recent earthquakes have demonstrated how the socio-economic effects of large earthquakes can reverberate for many years. To reduce earthquake risk and improve the resiliency of communities to earthquake damage, society depends on five geotechnologies for tracking earthquake cascades: long-term probabilistic seismic hazard analysis (PSHA), short-term (operational) earthquake forecasting, earthquake early warning, tsunami warning, and the rapid production of post-event information for response and recovery (see figure). In this presentation, I describe how recent advances in earthquake system science are leading to improvements in this geotechnology pipeline. In particular, I will highlight the role of earthquake simulations in predicting strong ground motions and their secondary effects before and during earthquake cascades

  18. Microfluidic IEF technique for sequential phosphorylation analysis of protein kinases

    NASA Astrophysics Data System (ADS)

    Choi, Nakchul; Song, Simon; Choi, Hoseok; Lim, Bu-Taek; Kim, Young-Pil

    2015-11-01

    Sequential phosphorylation of protein kinases play the important role in signal transduction, protein regulation, and metabolism in living cells. The analysis of these phosphorylation cascades will provide new insights into their physiological functions in many biological functions. Unfortunately, the existing methods are limited to analyze the cascade activity. Therefore, we suggest a microfluidic isoelectric focusing technique (μIEF) for the analysis of the cascade activity. Using the technique, we show that the sequential phosphorylation of a peptide by two different kinases can be successfully detected on a microfluidic chip. In addition, the inhibition assay for kinase activity and the analysis on a real sample have also been conducted. The results indicate that μIEF is an excellent means for studies on phosphorylation cascade activity.

  19. Hadron cascades produced by electromagnetic cascades

    SciTech Connect

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps.

  20. Resonant Cascaded Downconversion

    SciTech Connect

    Weedbrook, Christian; Parrett, Ben; Kheruntsyan, Karen; Drummond, Peter; Pooser, Raphael C; Pfister, Olivier

    2012-01-01

    We analyze an optical parametric oscillator (OPO) in which cascaded down-conversion occurs inside a cavity resonant for all modes but the initial pump. Due to the resonant cascade design, the OPO presents two {chi}{sup (2)}-level oscillation thresholds that are therefore much lower than for a {chi}{sup (3)} OPO. This is promising for reaching the regime of an effective third-order nonlinearity well above both thresholds. Such a {chi}{sup (2)} cascaded device also has potential applications in frequency conversion to far-infrared regimes. But, most importantly, it can generate novel multipartite quantum correlations in the output radiation, which represent a step beyond squeezed or entangled light. The output can be highly non-Gaussian and therefore not describable by any semiclassical model. In this paper, we derive quantum stochastic equations in the positive-P representation and undertake an analysis of steady-state and dynamical properties of this system.

  1. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region

    SciTech Connect

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L.; Hood, Molly M.; Lord, John W.; Lu, Wei-Ping; Miller, David F.; Patt, William C.; Smith, Bryan D.; Vogeti, Lakshminarayana; Kaufman, Michael D.; Petillo, Peter A.; Wise, Scott C.; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L.

    2012-01-20

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  2. Cascades Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Driedger, Carolyn; Pallister, John

    2008-01-01

    Washington's Mount St. Helens volcano reawakens explosively on October 1, 2004, after 18 years of quiescence. Scientists at the U.S. Geological Survey's Cascades Volcano Observatory (CVO) study and observe Mount St. Helens and other volcanoes of the Cascade Range in Washington, Oregon, and northern California that hold potential for future eruptions. CVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Mount St. Helens and CVO at http://vulcan.wr.usgs.gov/.

  3. Triangular rogue wave cascades.

    PubMed

    Kedziora, David J; Ankiewicz, Adrian; Akhmediev, Nail

    2012-11-01

    By numerically applying the recursive Darboux transformation technique, we study high-order rational solutions of the nonlinear Schrödinger equation that appear spatiotemporally as triangular arrays of Peregrine solitons. These can be considered as rogue wave cascades and complement previously discovered circular cluster forms. In this analysis, we reveal a general parametric restriction for their existence and investigate the interplay between cascade and cluster forms. As a result, we demonstrate how to generate many more hybrid rogue wave solutions, including semicircular clusters that resemble claws.

  4. Mitogen-Activated Protein Kinase Kinase 2, a Novel E2-Interacting Protein, Promotes the Growth of Classical Swine Fever Virus via Attenuation of the JAK-STAT Signaling Pathway

    PubMed Central

    Wang, Jinghan; Chen, Shucheng; Liao, Yajin; Zhang, Enyu; Feng, Shuo; Yu, Shaoxiong; Li, Lian-Feng; He, Wen-Rui; Li, Yongfeng; Luo, Yuzi; Sun, Yuan; Zhou, Mo; Wang, Xiao; Munir, Muhammad

    2016-01-01

    ABSTRACT The mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK1/2/ERK1/2) cascade is involved in the replication of several members of the Flaviviridae family, including hepatitis C virus and dengue virus. The effects of the cascade on the replication of classical swine fever virus (CSFV), a fatal pestivirus of pigs, remain unknown. In this study, MEK2 was identified as a novel binding partner of the E2 protein of CSFV using yeast two-hybrid screening. The E2-MEK2 interaction was confirmed by glutathione S-transferase pulldown, coimmunoprecipitation, and laser confocal microscopy assays. The C termini of E2 (amino acids [aa] 890 to 1053) and MEK2 (aa 266 to 400) were mapped to be crucial for the interaction. Overexpression of MEK2 significantly promoted the replication of CSFV, whereas knockdown of MEK2 by lentivirus-mediated small hairpin RNAs dramatically inhibited CSFV replication. In addition, CSFV infection induced a biphasic activation of ERK1/2, the downstream signaling molecules of MEK2. Furthermore, the replication of CSFV was markedly inhibited in PK-15 cells treated with U0126, a specific inhibitor for MEK1/2/ERK1/2, whereas MEK2 did not affect CSFV replication after blocking the interferon-induced Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway by ruxolitinib, a JAK-STAT-specific inhibitor. Taken together, our results indicate that MEK2 positively regulates the replication of CSFV through inhibiting the JAK-STAT signaling pathway. IMPORTANCE Mitogen-activated protein kinase kinase 2 (MEK2) is a kinase that operates immediately upstream of extracellular regulated kinase 1/2 (ERK1/2) and links to Raf and ERK via phosphorylation. Currently, little is known about the role of MEK2 in the replication of classical swine fever virus (CSFV), a devastating porcine pestivirus. Here, we investigated the roles of MEK2 and the MEK2/ERK1/2 cascade in the growth of CSFV for the first time. We show

  5. Cascaded thermoacoustic devices

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  6. 'Cascade Gold' raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cascade Gold’ is a new gold fruited, floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). It has been evaluated at Puyallup, Wash. in plantings from 1988 to 2008. ...

  7. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  8. Quantum Cascade Lasers

    DTIC Science & Technology

    2007-11-02

    predicted small linewidth enhancement factor of QC lasers was measured in outside collaboration ( Prof . Shun-Lien Chuang at UIUC) and confirmed to be...Gmachl, Michael C. Wanke, Federico Capasso, Albert L. Hutchinson, Deborah L. Sivco, Sung- Nee G. Chu, and Alfred Y. Cho “Surface plasmon quantum cascade

  9. Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors.

    PubMed

    Wakamatsu, Nobuko; Collins, Jennifer B; Parker, Joel S; Tessema, Mathewos; Clayton, Natasha P; Ton, Thai-Vu T; Hong, Hue-Hua L; Belinsky, Steven; Devereux, Theodora R; Sills, Robert C; Lahousse, Stephanie A

    2008-07-01

    National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K-ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K-ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K-ras mutations compared to tumors without K-ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K-ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K-ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K-ras, which results in increased Erk MAP kinase signaling and modification of histones.

  10. The NO-cGMP-PKG Signaling Pathway Regulates Synaptic Plasticity and Fear Memory Consolidation in the Lateral Amygdala via Activation of ERK/MAP Kinase

    ERIC Educational Resources Information Center

    Ota, Kristie T.; Pierre, Vicki J.; Ploski, Jonathan E.; Queen, Kaila; Schafe, Glenn E.

    2008-01-01

    Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and…

  11. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  12. Characterization of microtubule-associated protein 1-associated protein kinases from rat brain.

    PubMed

    Fujii, T; Watanabe, M; Nakamura, A

    1996-01-01

    The microtubule-associated protein (MAP) 1 preparation, MAP1A and 1B, obtained from rat brain microtubules was associated with protein kinases that were insensitive to cAMP, cGMP, calcium, calcium/calmodulin and calcium/phosphatidylserine. The fractionation of highly purified MAP1 by phosphocellulose chromatography revealed that protein kinase activity to phosphorylate phosvitin was separated into three major peaks (MAP1 kinases A, B and C). MAP1 was recovered in the MAP1 kinase A fraction and phosphorylated by the contained kinase. MAP1 kinase A is a novel protein kinase that is remarkably activated by poly-L-lysine and poly-L-arginine, but very insensitive to heparin among the kinases. Photoaffinity labeling using [alpha-32P]8-azido ATP indicated that the 65 kDa polypeptide is identified as an ATP-binding protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the highly purified MAP1 and MAP1 kinase A fractions. MAP1 kinases B and C may be identified as casein kinase I- and II-like kinases. The present results show that MAP1 is associated with at least three kinases and provide an insight for understanding thoroughly the MAP1-mediated microtubule functions.

  13. In the rostral ventrolateral medulla, the 70-kDa heat shock protein (HSP70), but not HSP90, confers neuroprotection against fatal endotoxemia via augmentation of nitric-oxide synthase I (NOS I)/protein kinase G signaling pathway and inhibition of NOS II/peroxynitrite cascade.

    PubMed

    Li, Faith C H; Chan, Julie Y H; Chan, Samuel H H; Chang, Alice Y W

    2005-07-01

    Heat shock proteins (HSPs) represent a group of highly conserved intracellular proteins that participate in protective adaptation against cellular stress. We evaluated the neuroprotective role of the 70-kDa HSP (HSP70) and the 90-kDa HSP (HSP90) at the rostral ventrolateral medulla (RVLM), the medullary origin of sympathetic vasomotor tone, during fatal endotoxemia. In Sprague-Dawley rats maintained under propofol anesthesia, Escherichia coli lipopolysaccharide (30 mg/kg, i.v.) induced a decrease (phase I), followed by an increase (phase II; "pro-life" phase) and a secondary decrease (phase III; "pro-death" phase) in the power density of the vasomotor component of systemic arterial pressure spectrum, along with progressive hypotension or bradycardia. Proteomic and Western blot analyses revealed that whereas HSP70 expression in the RVLM was significantly augmented during phases I and II and returned to baseline during phase III endotoxemia, HSP90 protein expression remained constant. The increase in HSP70 level was significantly blunted on pretreatment with microinjection of the transcription inhibitor actinomycin D or protein synthesis inhibitor cycloheximide into the bilateral RVLM. Functional blockade of HSP70 in the RVLM by an anti-HSP70 antiserum or prevention of synthesis by an antisense hsp70 oligonucleotide exacerbated mortality or potentiated the cardiovascular depression during experimental endotoxemia, alongside significantly reduced nitric-oxide synthase (NOS) I or protein kinase G (PKG) level or augmented NOS II or peroxynitrite level in the RVLM. We conclude that whereas HSP90 is ineffective, de novo synthesis of HSP70 in the RVLM may confer neuroprotection during fatal endotoxemia by preventing cardiovascular depression via enhancing the sympathoexcitatory NOS I/PKG signaling pathway and inhibiting the sympathoinhibitory NOS II/peroxynitrite cascade in the RVLM.

  14. Cadmium and cellular signaling cascades: To be or not to be?

    SciTech Connect

    Thevenod, Frank

    2009-08-01

    The cellular effects of the toxic metal cadmium (Cd) are manifold. A large proportion of the cellular reactions affected by ionic Cd{sup 2+} are mediated by cellular signaling cascades. The aim of this review is to provide a principal understanding of the known physiological signaling cascades, which are recruited by Cd{sup 2+}, and to highlight the fact that Cd{sup 2+}, similarly to other toxic metals, disrupts physiological signal transduction. In principle, second messengers are generated at the time of receptor activation, are short-lived, and act specifically in space and time through non-covalent binding on effectors to transiently alter their activity. Signaling dysregulation induced by Cd{sup 2+} is reflected by a permanent disruption of transducing modules, resulting in low and/or elevated and constant levels of second messengers, which overwhelm the control mechanisms of signaling. This disturbs physiological cellular functions, gene transcription and regulation and may result in cell death and/or stress-induced adaptation and survival as well as carcinogenesis. The impact of Cd{sup 2+} on Ca{sup 2+}-, cAMP-, NO-, ROS-, MAP-kinase-, PKB/Akt-, nuclear factor-kappa B-, and developmental signaling is critically discussed. The hierarchical as well as cooperative and integrative character of signaling cascades activated by Cd{sup 2+} is illustrated in the kidney proximal tubule, a major target of Cd{sup 2+} toxicity. This review also aspires to pinpoint new avenues of research that may contribute to a more differentiated view of the complex mechanisms underlying Cd{sup 2+} toxicity in target tissues and eventually lead to rationales and strategies for prevention and therapy of Cd{sup 2+} toxicity.

  15. C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival.

    PubMed

    Kritikou, Ekaterini A; Milstein, Stuart; Vidalain, Pierre-Olivier; Lettre, Guillaume; Bogan, Erica; Doukoumetzidis, Kimon; Gray, Phillip; Chappell, Thomas G; Vidal, Marc; Hengartner, Michael O

    2006-08-15

    During oocyte development in Caenorhabditis elegans, approximately half of all developing germ cells undergo apoptosis. While this process is evolutionarily conserved from worms to humans, the regulators of germ cell death are still largely unknown. In a genetic screen for novel genes involved in germline apoptosis in Caenorhabditis elegans, we identified and cloned gla-3. Loss of gla-3 function results in increased germline apoptosis and reduced brood size due to defective pachytene exit from meiosis I. gla-3 encodes a TIS11-like zinc-finger-containing protein that is expressed in the germline, from the L4 larval stage to adulthood. Biochemical evidence and genetic epistasis analysis revealed that GLA-3 participates in the MAPK signaling cascade and directly interacts with the C. elegans MAPK MPK-1, an essential meiotic regulator. Our results show that GLA-3 is a new component of the MAPK cascade that controls meiotic progression and apoptosis in the C. elegans germline and functions as a negative regulator of the MAPK signaling pathway during vulval development and in muscle cells.

  16. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed Central

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-01-01

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a major role for MAP kinase phosphatase-1 in termination of the MAP kinase signal. Raising intracellular cyclic AMP may also be involved but only after an initial protein-synthesis step and by a mechanism that does not involve the inactivation of c-Raf-1 or MAP kinase kinase. PMID:8615830

  17. Design, Synthesis, and Characterization of a Highly Effective Hog1 Inhibitor: A Powerful Tool for Analyzing MAP Kinase Signaling in Yeast

    PubMed Central

    Migdal, Iwona; Andersson, Terese; Gebbia, Marinella; Giaever, Guri; Nislow, Corey; Hohmann, Stefan; Wysocki, Robert; Tamás, Markus J.; Grøtli, Morten

    2011-01-01

    The Saccharomyces cerevisiae High-Osmolarity Glycerol (HOG) pathway is a conserved mitogen-activated protein kinase (MAPK) signal transduction system that often serves as a model to analyze systems level properties of MAPK signaling. Hog1, the MAPK of the HOG-pathway, can be activated by various environmental cues and it controls transcription, translation, transport, and cell cycle adaptations in response to stress conditions. A powerful means to study signaling in living cells is to use kinase inhibitors; however, no inhibitor targeting wild-type Hog1 exists to date. Herein, we describe the design, synthesis, and biological application of small molecule inhibitors that are cell-permeable, fast-acting, and highly efficient against wild-type Hog1. These compounds are potent inhibitors of Hog1 kinase activity both in vitro and in vivo. Next, we use these novel inhibitors to pinpoint the time of Hog1 action during recovery from G1 checkpoint arrest, providing further evidence for a specific role of Hog1 in regulating cell cycle resumption during arsenite stress. Hence, we describe a novel tool for chemical genetic analysis of MAPK signaling and provide novel insights into Hog1 action. PMID:21655328

  18. Structure-based design, synthesis and biological evaluation of N-pyrazole, N'-thiazole urea inhibitors of MAP kinase p38α.

    PubMed

    Getlik, Matthäus; Grütter, Christian; Simard, Jeffrey R; Nguyen, Hoang D; Robubi, Armin; Aust, Beate; van Otterlo, Willem A L; Rauh, Daniel

    2012-02-01

    In this paper, we present the structure-based design, synthesis and biological activity of N-pyrazole, N'-thiazole-ureas as potent inhibitors of p38α mitogen-activated protein kinase (p38α MAPK). Guided by complex crystal structures, we employed the initially identified N-aryl, N'-thiazole urea scaffold and introduced key structural elements that allowed the formation of novel hydrogen bonding interactions within the allosteric site of p38α, resulting in potent type III inhibitors. [4-(3-tert-Butyl-5-{[(1,3-thiazol-2-ylamino)carbonyl]amino}-1H-pyrazol-1-yl)-phenyl]acetic acid 18c was found to be the most potent compound within this series and inhibited p38α activity with an IC(50) of 135 ± 21 nM. Its closest analog, ethyl [4-(3-tert-butyl-5-{[(1,3-thiazol-2-ylamino)carbonyl]amino}-1H-pyrazol-1-yl)phenyl]acetate 18b, effectively inhibited p38α mediated phosphorylation of the mitogen activated protein kinase activated protein kinase 2 (MK2) in HeLa cells.

  19. Thimerosal-induced apoptosis in human SCM1 gastric cancer cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation.

    PubMed

    Liu, Shiuh-Inn; Huang, Chorng-Chih; Huang, Chun-Jen; Wang, Being-Whey; Chang, Po-Min; Fang, Yi-Chien; Chen, Wei-Chuan; Wang, Jue-Long; Lu, Yih-Chau; Chu, Sau-Tung; Chou, Chiang-Ting; Jan, Chung-Ren

    2007-11-01

    Thimerosal is a mercury-containing preservative in some vaccines. The effect of thimerosal on human gastric cancer cells is unknown. This study shows that in cultured human gastric cancer cells (SCM1), thimerosal reduced cell viability in a concentration- and time-dependent manner. Thimerosal caused apoptosis as assessed by propidium iodide-stained cells and caspase-3 activation. Although immunoblotting data revealed that thimerosal could activate the phosphorylation of extracellular signal-regulated kinase, c-Jun NH2-terminal protein kinase, and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Thimerosal also induced [Ca2+](i) increases via Ca2+ influx from the extracellular space. However, pretreatment with (bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate)/AM, a Ca2+ chelator, to prevent thimerosal-induced [Ca2+](i) increases did not protect cells from death. The results suggest that in SCM1 cells, thimerosal caused Ca2+-independent apoptosis via phosphorylating p38 MAPK resulting in caspase-3 activation.

  20. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca{sup 2+}]{sub i} elevation

    SciTech Connect

    Chou, C.-T.; He Shiping; Jan, C.-R. . E-mail: crjan@isca.vghks.gov.tw

    2007-02-01

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH{sub 2}-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca{sup 2+}]{sub i} increases which involved the mobilization of intracellular Ca{sup 2+} stored in the endoplasmic reticulum and Ca{sup 2+} influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca{sup 2+} chelator, to prevent paroxetine-induced [Ca{sup 2+}]{sub i} increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca{sup 2+}-independent apoptosis via inducing p38 MAPK-associated caspase-3 activation.

  1. Therapy of B-cell malignancies by anti–HLA-DR humanized monoclonal antibody, IMMU-114, is mediated through hyperactivation of ERK and JNK MAP kinase signaling pathways

    PubMed Central

    Gupta, Pankaj; Chen, Xiaochuan; Cardillo, Thomas M.; Furman, Richard R.; Chen, Susan; Chang, Chien-Hsing; Goldenberg, David M.

    2010-01-01

    A humanized IgG4 anti–HLA-DR monoclonal antibody (IMMU-114), engineered to avoid side effects associated with complement activation, was examined for binding and cytotoxicity on leukemia, lymphoma, and multiple myeloma cell lines and chronic lymphocytic leukemia (CLL) patient specimens, followed by evaluation of the effects of IMMU-114 on extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways. HLA-DR was expressed on the majority of these cells at markedly higher levels than CD20, CD22, and CD74. IMMU-114 was toxic to mantle cell lymphoma, CLL, acute lymphoblastic leukemia, hairy cell leukemia, non-Hodgkin lymphoma (including rituximab-resistant), and multiple myeloma cell lines, and also patient CLL cells. IMMU-114 induced disease-free survival in tumor-bearing SCID mice with early-stage disease and in models that are relatively resistant to anti-CD20 monoclonal antibodies. Despite positive staining, acute myelogenous leukemic cells were not killed by IMMU-114. The ability of IMMU-114 to induce activation of ERK and JNK signaling correlated with cytotoxicity and differentiates the mechanism of action of IMMU-114 from monoclonal antibodies against CD20 and CD74. Thus, antigen expression is not sufficient for cytotoxicity; antibody-induced hyperactivation of ERK and JNK mitogen activated protein kinase signaling pathways are also required. PMID:20101022

  2. Information cascade on networks

    NASA Astrophysics Data System (ADS)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  3. Cascade ICF power reactor

    SciTech Connect

    Hogan, W.J.; Pitts, J.H.

    1986-05-20

    The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO/sub 2/. The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor.

  4. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    SciTech Connect

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  5. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    PubMed

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2015-11-27

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.

  6. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger

    PubMed Central

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A. K.; Dickschat, Jeroen S.

    2015-01-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi. PMID:25888553

  7. Discovery of 4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a Clinical p38[alpha] MAP Kinase Inhibitor for the Treatment of Inflammatory Diseases

    SciTech Connect

    Liu, Chunjian; Lin, James; Wrobleski, Stephen T.; Lin, Shuqun; Hynes, Jr., John; Wu, Hong; Dyckman, Alaric J.; Li, Tianle; Wityak, John; Gillooly, Kathleen M.; Pitt, Sidney; Shen, Ding Ren; Zhang, Rosemary F.; McIntyre, Kim W.; Salter-Cid, Luisa; Shuster, David J.; Zhang, Hongjian; Marathe, Punit H.; Doweyko, Arthur M.; Sack, John S.; Kiefer, Susan E.; Kish, Kevin F.; Newitt, John A.; McKinnon, Murray; Dodd, John H.; Barrish, Joel C.; Schieven, Gary L.; Leftheris, Katerina

    2013-11-20

    The discovery and characterization of 7k (BMS-582949), a highly selective p38{alpha} MAP kinase inhibitor that is currently in phase II clinical trials for the treatment of rheumatoid arthritis, is described. A key to the discovery was the rational substitution of N-cyclopropyl for N-methoxy in 1a, a previously reported clinical candidate p38{alpha} inhibitor. Unlike alkyl and other cycloalkyls, the sp{sup 2} character of the cyclopropyl group can confer improved H-bonding characteristics to the directly substituted amide NH. Inhibitor 7k is slightly less active than 1a in the p38{alpha} enzymatic assay but displays a superior pharmacokinetic profile and, as such, was more effective in both the acute murine model of inflammation and pseudoestablished rat AA model. The binding mode of 7k with p38{alpha} was confirmed by X-ray crystallographic analysis.

  8. Scaffold-Hopping and Structure-Based Discovery of Potent, Selective, And Brain Penetrant N-(1H-Pyrazol-3-yl)pyridin-2-amine Inhibitors of Dual Leucine Zipper Kinase (DLK, MAP3K12).

    PubMed

    Patel, Snahel; Harris, Seth F; Gibbons, Paul; Deshmukh, Gauri; Gustafson, Amy; Kellar, Terry; Lin, Han; Liu, Xingrong; Liu, Yanzhou; Liu, Yichin; Ma, Changyou; Scearce-Levie, Kimberly; Ghosh, Arundhati Sengupta; Shin, Young G; Solanoy, Hilda; Wang, Jian; Wang, Bei; Yin, Jianping; Siu, Michael; Lewcock, Joseph W

    2015-10-22

    Recent data suggest that inhibition of dual leucine zipper kinase (DLK, MAP3K12) has therapeutic potential for treatment of a number of indications ranging from acute neuronal injury to chronic neurodegenerative disease. Thus, high demand exists for selective small molecule DLK inhibitors with favorable drug-like properties and good CNS penetration. Herein we describe a shape-based scaffold hopping approach to convert pyrimidine 1 to a pyrazole core with improved physicochemical properties. We also present the first crystal structures of DLK. By utilizing a combination of property and structure-based design, we identified inhibitor 11, a potent, selective, and brain-penetrant inhibitor of DLK with activity in an in vivo nerve injury model.

  9. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo.

    PubMed

    Kamaraju, Anil K; Roberts, Anita B

    2005-01-14

    TGF-beta is a multifunctional cytokine known to exert its biological effects through a variety of signaling pathways of which Smad signaling is considered to be the main mediator. At present, the Smad-independent pathways, their interactions with each other, and their roles in TGF-beta-mediated growth inhibitory effects are not well understood. To address these questions, we have utilized a human breast cancer cell line MCF10CA1h and demonstrate that p38 MAP kinase and Rho/ROCK pathways together with Smad2 and Smad3 are necessary for TGF-beta-mediated growth inhibition of this cell line. We show that Smad2/3 are indispensable for TGF-beta-mediated growth inhibition, and that both p38 and Rho/ROCK pathways affect the linker region phosphorylation of Smad2/3. Further, by using Smad3 mutated at the putative phosphorylation sites in the linker region, we demonstrate that phosphorylation at Ser203 and Ser207 residues is required for the full transactivation potential of Smad3, and that these residues are targets of the p38 and Rho/ROCK pathways. We demonstrate that activation of the p38 MAP kinase pathway is necessary for the full transcriptional activation potential of Smad2/Smad3 by TGF-beta, whereas activity of Rho/ROCK is necessary for both down-regulation of c-Myc protein and up-regulation of p21waf1 protein, directly interfering with p21waf1 transcription. Our results not only implicate Rho/ROCK and p38 MAPK pathways as necessary for TGF-beta-mediated growth inhibition, but also demonstrate their individual contributions and the basis for their cooperation with each other.

  10. AccERK2, a map kinase gene from Apis cerana cerana, plays roles in stress responses, developmental processes, and the nervous system.

    PubMed

    Li, Yuzhen; Zhang, Liang; Kang, Mingjiang; Guo, Xingqi; Baohua Xu

    2012-03-01

    Extracellular signal-regulated kinase (ERK), a mitogen-activated protein kinase (MAPK), plays roles in a variety of cellular responses. However, limited information is available on the relationship between ERKs and environmental stresses. In this report, an ERK gene, AccERK2, was cloned and characterized from Apis cerana cerana. Polypeptide sequence alignment revealed that the single-copied AccERK2 shares high identity with other known ERKs and contains the typical conserved Thr-Glu-Tyr (TEY) motif in its activation loop. Genomic sequence analysis revealed that the seven exons of AccERK2 are interrupted by six introns, and the seventh intron is located in the 3' untranslated region. Semi-quantitative reverse transcription (RT-PCR) indicated that AccERK2 was expressed at higher levels in the larval and pupal stages than in the adult stage. AccERK2 was also most highly expressed in the brain. The expression of AccERK2 was induced by abiotic stresses, including heat, ion irradiation, oxidative stress, and heavy metal ions. Based on these results, it appears that AccERK2 in A. cerana cerana participates in developmental processes, the nervous system, and responses to environmental stressors.

  11. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes.

    PubMed

    Im, Hee-Jeong; Sharrocks, Andrew D; Lin, Xia; Yan, Dongyao; Kim, Jaesung; van Wijnen, Andre J; Hipskind, Robert A

    2009-01-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and release of basic fibroblast growth factor (bFGF) are principal aspects of the pathology of osteoarthritis (OA). ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO) serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation-dependent transactivation capacity of Elk-1. This attenuates transcription of its downstream target gene MMP-13 to maintain the integrity of cartilage ECM homeostasis.

  12. JS-K, a novel non-ionic diazeniumdiolate derivative, inhibits Hep 3B hepatoma cell growth and induces c-Jun phosphorylation via multiple MAP kinase pathways.

    PubMed

    Ren, Zhenggang; Kar, Siddhartha; Wang, Ziqiu; Wang, Meifang; Saavedra, Joseph E; Carr, Brian I

    2003-12-01

    JS-K, a non-ionic diazeniumdiolate derivative, is capable of arylating nucleophiles and spontaneously generating nitric oxide (NO) at physiological pH. This recently synthesized low molecular weight compound is shown here to be an inhibitor of cell growth with concomitant activation of mitogen-activated protein kinase (MAPK) members ERK, JNK, and p38 and their downstream effectors c-Jun and AP-1. Inhibitors of these MAPK pathways abrogated the growth inhibitory actions of JS-K. In addition to the well-described actions of JNK as a kinase for c-Jun, we show that c-Jun is also an ERK target. Furthermore, JS-K generated NO in culture and NO inhibitors antagonized both MAPK induction and the growth inhibitory effects of JS-K. These results suggest two possible mechanisms for the mediation of JS-K growth inhibitory actions, namely NO-induction of MAPK pathway constituents as well as possible arylation reactions. The data support the idea that prolonged MAPK activation by JS-K action is important in mediating its growth-inhibitory actions. JS-K thus represents a promising platform for novel growth inhibitory analog synthesis.

  13. The Ufm1 Cascade

    PubMed Central

    Daniel, Jens; Liebau, Eva

    2014-01-01

    The ubiquitin-fold modifier 1 (Ufm1) is a posttranslational modifier that belongs to the ubiquitin-like protein (UBL) family. Ufm1 is present in nearly all eukaryotic organisms, with the exception of fungi. It resembles ubiquitin in its ability to be ligated to other proteins, as well as in the mechanism of ligation. While the Ufm1 cascade has been implicated in endoplasmic reticulum functions and cell cycle control, its biological role still remains poorly understood. In this short review, we summarize the current state of Ufm1 research and its potential role in human diseases, like diabetes, ischemic heart disease and cancer. PMID:24921187

  14. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  15. p53 Protein-mediated Up-regulation of MAP Kinase Phosphatase 3 (MKP-3) Contributes to the Establishment of the Cellular Senescent Phenotype through Dephosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2)*

    PubMed Central

    Zhang, Hui; Chi, Yuan; Gao, Kun; Zhang, Xiling; Yao, Jian

    2015-01-01

    Growth arrest is one of the essential features of cellular senescence. At present, the precise mechanisms responsible for the establishment of the senescence-associated arrested phenotype are still incompletely understood. Given that ERK1/2 is one of the major kinases controlling cell growth and proliferation, we examined the possible implication of ERK1/2. Exposure of normal rat epithelial cells to etoposide caused cellular senescence, as manifested by enlarged cell size, a flattened cell body, reduced cell proliferation, enhanced β-galactosidase activity, and elevated p53 and p21. Senescent cells displayed a blunted response to growth factor-induced cell proliferation, which was preceded by impaired ERK1/2 activation. Further analysis revealed that senescent cells expressed a significantly higher level of mitogen-activated protein phosphatase 3 (MKP-3, a cytosolic ERK1/2-targeted phosphatase), which was suppressed by blocking the transcriptional activity of the tumor suppressor p53 with pifithrin-α. Inhibition of MKP-3 activity with a specific inhibitor or siRNA enhanced basal ERK1/2 phosphorylation and promoted cell proliferation. Apart from its role in growth arrest, impairment of ERK1/2 also contributed to the resistance of senescent cells to oxidant-elicited cell injury. These results therefore indicate that p53-mediated up-regulation of MKP-3 contributes to the establishment of the senescent cellular phenotype through dephosphorylating ERK1/2. Impairment of ERK1/2 activation could be an important mechanism by which p53 controls cellular senescence. PMID:25414256

  16. Deletion of a Tandem Gene Family in Arabidopsis: Increased MEKK2 Abundance Triggers Autoimmunity when the MEKK1-MKK1/2-MPK4 Signaling Cascade Is Disrupted[C][W

    PubMed Central

    Su, Shih-Heng; Bush, Susan M.; Zaman, Najia; Stecker, Kelly; Sussman, Michael R.; Krysan, Patrick

    2013-01-01

    An Arabidopsis thaliana mitogen-activated protein (MAP) kinase cascade composed of MEKK1, MKK1/MKK2, and MPK4 was previously described as a negative regulator of defense response. MEKK1 encodes a MAP kinase kinase kinase and is a member of a tandemly duplicated gene family with MEKK2 and MEKK3. Using T-DNA insertion lines, we isolated a novel deletion mutant disrupting this gene family and found it to be phenotypically wild-type, in contrast with the mekk1 dwarf phenotype. Follow-up genetic analyses indicated that MEKK2 is required for the mekk1, mkk1 mkk2, and mpk4 autoimmune phenotypes. We next analyzed a T-DNA insertion in the MEKK2 promoter region and found that although it does not reduce the basal expression of MEKK2, it does prevent the upregulation of MEKK2 that is observed in mpk4 plants. This mekk2 allele can rescue the mpk4 autoimmune phenotype in a dosage-dependent manner. We also found that expression of constitutively active MPK4 restored MEKK2 abundance to wild-type levels in mekk1 mutant plants. Finally, using mass spectrometry, we showed that MEKK2 protein levels mirror MEKK2 mRNA levels. Taken together, our results indicate that activated MPK4 is responsible for regulating MEKK2 RNA abundance. In turn, the abundance of MEKK2 appears to be under cellular surveillance such that a modest increase can trigger defense response activation. PMID:23695980

  17. Crossover behavior in driven cascades.

    PubMed

    Burridge, James

    2013-09-01

    We propose a model which explains how power-law crossover behavior can arise in a system which is capable of experiencing cascading failure. In our model the susceptibility of the system to cascades is described by a single number, the propagation power, which measures the ease with which cascades propagate. Physically, such a number could represent the density of unstable material in a system, its internal connectivity, or the mean susceptibility of its component parts to failure. We assume that the propagation power follows an upward drifting Brownian motion between cascades, and drops discontinuously each time a cascade occurs. Cascades are described by a continuous state branching process with distributional properties determined by the value of the propagation power when they occur. In common with many cascading models, pure power-law behavior is exhibited at a critical level of propagation power, and the mean cascade size diverges. This divergence constrains large systems to the subcritical region. We show that as a result, crossover behavior appears in the cascade distribution when an average is performed over the distribution of propagation power. We are able to analytically determine the exponents before and after the crossover.

  18. Expression and activity of the 5'-AMP-activated protein kinase pathway in selected tissues during chicken embryonic development.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 5’-AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine protein kinase and a key part of a kinase signaling cascade that senses cellular energy status (AMP/ATP ratio) and acts to maintain energy homeostasis by coordinately regulating energy-consuming and energy-generating m...

  19. Oregon Cascades Play Fairway Analysis: Raster Datasets and Models

    SciTech Connect

    Adam Brandt

    2015-11-15

    This submission includes maps of the spatial distribution of basaltic, and felsic rocks in the Oregon Cascades. It also includes a final Play Fairway Analysis (PFA) model, with the heat and permeability composite risk segments (CRS) supplied separately. Metadata for each raster dataset can be found within the zip files, in the TIF images

  20. Mesoderm patterning and morphogenesis in the polychaete Alitta virens (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling.

    PubMed

    Kozin, Vitaly V; Filimonova, Daria A; Kupriashova, Ekaterina E; Kostyuchenko, Roman P

    2016-05-01

    Mesoderm represents the evolutionary youngest germ layer and forms numerous novel tissues in bilaterian animals. Despite the established conservation of the gene regulatory networks that drive mesoderm differentiation (e.g. myogenesis), mechanisms of mesoderm specification are highly variable in distant model species. Thus, broader phylogenetic sampling is required to reveal common features of mesoderm formation across bilaterians. Here we focus on a representative of Spiralia, the marine annelid Alitta virens, whose mesoderm development is still poorly investigated on the molecular level. We characterize three novel early mesodermal markers for A. virens - Twist, Mox, and Evx - which are differentially expressed within the mesodermal lineages. The Twist mRNA is ubiquitously distributed in the fertilized egg and exhibits specific expression in endomesodermal- and ectomesodermal-founder cells at gastrulation. Twist is expressed around the blastopore and later in a segmental metameric pattern. We consider this expression to be ancestral, and in support of the enterocoelic hypothesis of mesoderm evolution. We also revealed an early pattern of the MAPK activation in A. virens that is different from the previously reported pattern in spiralians. Inhibition of the MAPK pathway by U0126 disrupts the metameric Twist and Mox expression, indicating an early requirement of the MAPK cascade for proper morphogenesis of endomesodermal tissues.

  1. Silencing two herbivory-activated MAP kinases, SIPK and WIPK, does not increase Nicotiana attenuata's susceptibility to herbivores in the glasshouse and in nature.

    PubMed

    Meldau, Stefan; Wu, Jianqiang; Baldwin, Ian T

    2009-01-01

    Salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) are activated by Manduca sexta attack and elicitors to mediate defense signaling in Nicotiana attenuata. Here, the ecological consequences of SIPK and WIPK silencing for N. attenuata's resistance to M. sexta and its other native herbivores were analyzed. Stably transformed plants with reduced expression of NaSIPK (irNaSIPK) and NaWIPK(irNaWIPK) were generated and characterized in field and glasshouse experiments. Both irNaSIPK and irNaWIPK plants had reduced direct and indirect defenses but were not particularly susceptible in nature. In the glasshouse, M. sexta larvae consumed less and gained the same mass on irNaSIPK and irNaWIPK as on wild-type (WT) plants. Green leaf volatile (GLV) emission was highly attenuated in irNaSIPK and irNaWIPK plants, and complementation with synthetic GLVs increased M. sexta performance. To test the hypothesis that reduced GLV emissions account for the lack of herbivory phenotype, GLV emissions were attenuated by silencing NaHPL in jasmonate-deficient plants (asNaLOX3), which are highly susceptible to herbivores. Reducing GLV emissions in asNaLOX3 plants 'rescued' these plants from being heavily damaged by M. sexta. GLV emissions in irNaSIPK and irNaWIPK plants may compensate for the impaired defenses of NaSIPK- and NaWIPK-silenced plants in nature by reducing their apparency to herbivores.

  2. Effects of doxepin on gene expressions of Bcl-2 family, TNF-α, MAP kinase 14, and Akt1 in the hippocampus of rats exposed to stress.

    PubMed

    Reisi, Parham; Eidelkhani, Nastaran; Rafiee, Laleh; Kazemi, Mohammad; Radahmadi, Maryam; Alaei, Hojjatallah

    2017-02-01

    Stress is one of the effective factors in the development of depressive disorders that performs some parts of its effects by affecting hippocampus. Since doxepin has been shown to have neuroprotective effects, in this study, we focused on the effects of doxepin on the expression of involved genes in neuronal survival and plasticity in the rat hippocampus following chronic stress. Male Wistar rats were divided into four groups, the control, the stress, the stress-doxepin 1 mg/kg and the stress-doxepin 5 mg/kg, respectively. To induce stress, the rats were placed within adjustable restraint chambers for 6 h/day, for 21 days. Before daily induction of the stress, rats received an i.p. injection of doxepin. At the end of experiments, expression of Bax, Bad, Bcl-2, tumor necrosis factor alpha (TNF-α), mitogen-activated protein kinase 14 (MAPK14) and serine-threonine protein kinase AKT1 genes were detected by reverse transcription polymerase chain reaction (RT-PCR) in the hippocampus. Results showed significant enhancements in expression of Bax, Bad and Bcl-2 genes in the stressed rats, whereas expression of TNF-α, MAPK14, and AKT1 genes didn't show significant differences. Doxepin could decrease the expression of Bax and Bad genes in the stress group, but had no significant effects on the expression of other genes. The present findings indicated that doxepin can probably change the pattern of gene expression in the hippocampus to maintain neurons against destructive effects of stress.

  3. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    PubMed

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions.

  4. Effects of doxepin on gene expressions of Bcl-2 family, TNF-α, MAP kinase 14, and Akt1 in the hippocampus of rats exposed to stress

    PubMed Central

    Reisi, Parham; Eidelkhani, Nastaran; Rafiee, Laleh; Kazemi, Mohammad; Radahmadi, Maryam; Alaei, Hojjatallah

    2017-01-01

    Stress is one of the effective factors in the development of depressive disorders that performs some parts of its effects by affecting hippocampus. Since doxepin has been shown to have neuroprotective effects, in this study, we focused on the effects of doxepin on the expression of involved genes in neuronal survival and plasticity in the rat hippocampus following chronic stress. Male Wistar rats were divided into four groups, the control, the stress, the stress-doxepin 1 mg/kg and the stress-doxepin 5 mg/kg, respectively. To induce stress, the rats were placed within adjustable restraint chambers for 6 h/day, for 21 days. Before daily induction of the stress, rats received an i.p. injection of doxepin. At the end of experiments, expression of Bax, Bad, Bcl-2, tumor necrosis factor alpha (TNF-α), mitogen-activated protein kinase 14 (MAPK14) and serine-threonine protein kinase AKT1 genes were detected by reverse transcription polymerase chain reaction (RT-PCR) in the hippocampus. Results showed significant enhancements in expression of Bax, Bad and Bcl-2 genes in the stressed rats, whereas expression of TNF-α, MAPK14, and AKT1 genes didn’t show significant differences. Doxepin could decrease the expression of Bax and Bad genes in the stress group, but had no significant effects on the expression of other genes. The present findings indicated that doxepin can probably change the pattern of gene expression in the hippocampus to maintain neurons against destructive effects of stress. PMID:28255309

  5. The Role of HAP Kinases in Breast Cancer.

    DTIC Science & Technology

    1997-09-01

    center kinase ( GCK ) and receptor interacting protein (RIP). GCK and RIP, in turn, associate with mitogen-activated protein Icinase-kinase-kinases...MAP3Ks) upstream of the SAPKs and p38s. We have succeeded in generating an MCF7 breast carcinoma cell line which stably expresses GCK under the control

  6. Interleukin (IL)-1 Receptor–associated Kinase (IRAK) Requirement for Optimal Induction of Multiple IL-1 Signaling Pathways and IL-6 Production

    PubMed Central

    Kanakaraj, Palanisamy; Schafer, Peter H.; Cavender, Druie E.; Wu, Ying; Ngo, Karen; Grealish, Patrick F.; Wadsworth, Scott A.; Peterson, Per A.; Siekierka, John J.; Harris, Crafford A.; Fung-Leung, Wai-Ping

    1998-01-01

    Interleukin (IL)-1 is a proinflammatory cytokine with pleiotropic effects in inflammation. IL-1 binding to its receptor triggers a cascade of signaling events, including activation of the stress-activated mitogen-activated protein (MAP) kinases, c-Jun NH2-terminal kinase (JNK) and p38 MAP kinase, as well as transcription factor nuclear factor κB (NF-κB). IL-1 signaling results in cellular responses through induction of inflammatory gene products such as IL-6. One of the earliest events in IL-1 signaling is the rapid interaction of IL-1 receptor–associated kinases, IRAK and IRAK-2, with the receptor complex. The relative roles of IRAK and IRAK-2 in IL-1 signaling pathways and subsequent cellular responses have not been previously determined. To evaluate the importance of IRAK in IL-1 signaling, IRAK-deficient mouse fibroblast cells were prepared and studied. Here we report that IL-1–mediated activation of JNK, p38, and NF-κB were all reduced in embryonic fibroblasts deficient in IRAK expression. In addition, IL-6 production in response to IL-1 was also dramatically reduced in IRAK-deficient embryonic fibroblasts and in skin fibroblasts prepared from IRAK-deficient mice. Our results demonstrate that IRAK plays an essential proximal role in coordinating multiple IL-1 signaling pathways for optimal induction of cellular responses. PMID:9625767

  7. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Cascade Distillation System Development

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  9. MAP2K1 — EDRN Public Portal

    Cancer.gov

    MAP2K1, or mitogen-activated protein kinase kinase 1, is a dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals. MAP2K1 is located upstream of MAP kinases and stimulates the enzymatic activity of MAP kinases upon wide variety of extra- and intracellular signals. MAP2K1 is thought to be involved in binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors, as well as cellular processes such as proliferation, differentiation, transcription regulation and development.

  10. Unsteady turbulence cascades.

    PubMed

    Goto, Susumu; Vassilicos, J C

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5/3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935)1364-502110.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  11. Unsteady turbulence cascades

    NASA Astrophysics Data System (ADS)

    Goto, Susumu; Vassilicos, J. C.

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5 /3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935), 10.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  12. Differential Phosphoproteomics of Fibroblast Growth Factor Signaling: Identification of Src Family Kinase-Mediated Phosphorylation Events

    PubMed Central

    2010-01-01

    Activation of signal transduction by the receptor tyrosine kinase, fibroblast growth factor receptor (FGFR), results in a cascade of protein−protein interactions that rely on the occurrence of specific tyrosine phosphorylation events. One such protein recruited to the activated receptor complex is the nonreceptor tyrosine kinase, Src, which is involved in both initiation and termination of further signaling events. To gain a further understanding of the tyrosine phosphorylation events that occur during FGF signaling, with a specific focus on those that are dependent on Src family kinase (SFK) activity, we have applied SILAC combined with chemical inhibition of SFK activity to search for phosphorylation events that are dependent on SFK activity in FGF stimulated cells. In addition, we used a more targeted approach to carry out high coverage phosphopeptide mapping of one Src substrate protein, the multifunctional adaptor Dok1, and to identify SFK-dependent Dok1 binding partners. From these analyses we identify 80 SFK-dependent phosphorylation events on 40 proteins. We further identify 18 SFK-dependent Dok1 interactions and 9 SFK-dependent Dok1 phosphorylation sites, 6 of which had not previously been known to be SFK-dependent. PMID:20225815

  13. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases.

    PubMed

    Verstraete, Kenneth; Savvides, Savvas N

    2012-11-01

    Intracellular signalling cascades initiated by class III receptor tyrosine kinases (RTK-IIIs) and their cytokine ligands contribute to haematopoiesis and mesenchymal tissue development. They are also implicated in a wide range of inflammatory disorders and cancers. Recent snapshots of RTK-III ectodomains in complex with cognate cytokines have revealed timely insights into the structural determinants of RTK-III activation, evolution and pathology. Importantly, candidate 'driver' and 'passenger' mutations that have been identified in RTK-IIIs can now be collectively mapped for the first time to structural scaffolds of the corresponding RTK-III ectodomains. Such insights will generate a renewed interest in dissecting the mechanistic effects of such mutations and their therapeutic relevance.

  14. Protein Kinases in Mammary Gland Development and Carcinogenesis

    DTIC Science & Technology

    1998-10-01

    cellular process including cell motility, metabolism, proliferation and differentiation. Aberrant expression or mutations in kinases has been shown to...transduction cascades leading to differentiation in normal breast tissue. Carcinogenic transformation often results from mutations or aberrant...expression of molecules such as c- erbB2 /HER2/neu, the EGF receptor, the FGF receptor family, and Met(I-4).1-4 The aforementioned kinases are examples of the

  15. Extracellular Signal-Regulated Protein Kinase, c-Jun N-terminal Protein Kinase, and Calcineurin Regulate Transient Receptor Potential M3 (TRPM3) Induced Activation of AP-1.

    PubMed

    Lesch, Andrea; Rössler, Oliver G; Thiel, Gerald

    2017-01-23

    Stimulation of transient receptor potential M3 (TRPM3) cation channels with pregnenolone sulfate induces an influx of Ca(2+) ions into the cells and a rise in the intracellular Ca(2+) concentration, leading to the activation of the activator protein-1 (AP-1) transcription factor. Here, we show that expression of a constitutively active mutant of the Ca(2+) /calmodulin-dependent protein phosphatase calcineurin attenuated pregnenolone sulfate-induced AP-1 activation in TRPM3-expressing cells. Likewise, expression of the regulatory B subunit of calcineurin reduced AP-1 activity in the cells following stimulation of TRPM3 channels. MAP kinase phosphatase-1 has been shown to attenuate TRPM3-mediated AP-1 activation. Here, we show that pregnenolone sulfate-induced stimulation of TRPM3 triggers the phosphorylation and activation of the MAP kinase extracellular signal-regulated protein kinase (ERK1/2). Pharmacological and genetic experiments revealed that stimulation of ERK1/2 is essential for the activation of AP-1 in cells expressing stimulated TRPM3 channels. ERK1/2 is required for the activation of the transcription factor c-Jun, a key component of the AP-1 transcription factor, and regulates c-Fos promoter activity. In addition, we identified c-Jun N-terminal protein kinase (JNK1/2) as a second signal transducer of activated TRPM3 channels. Together, the data show that calcineurin and the protein kinases ERK1/2 and JNK1/2 are important regulators within the signaling cascade connecting TRPM3 channel stimulation with increased AP-1-regulated transcription. This article is protected by copyright. All rights reserved.

  16. cAMP-pKA signaling regulates multiple steps of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium.

    PubMed

    Yamauchi, Junko; Takayanagi, Naoyuki; Komeda, Kenichi; Takano, Yoshitaka; Okuno, Tetsuro

    2004-12-01

    In Colletotrichum lagenarium, RPK1 encoding the regulatory subunit of PKA is required for pathogenicity. From the rpkl mutant that forms small colonies, we isolated three growth-suppressor mutants. All rpk1-suppressor mutants are nonpathogenic and contain amino acid changes in the PKA catalytic subunit Cpkl. To assess the roles of cyclic AMP (cAMP) signaling in detail, we generated knockout mutants of CPK1 and the adenylate cyclase gene CAC1. The cpk1 and cac1 mutants are nonpathogenic on cucumber. Interestingly, both of the mutants germinated poorly, suggesting involvement of cAMP signaling in germination. Germination defect in the cpk1 and cac1 mutants is partially rescued by incubation of the conidia at lower concentrations. Germinating conidia of the cpk1 and cac1 mutants can form appressoria, but the appressoria formed by them are nonfunctional, like those of the rpk1 mutant. Cytological analysis indicates that the appressoria of the cpk1 mutant contain larger numbers of lipid bodies compared with the wild type, whereas lipid levels in the rpk1 mutants are lower, suggesting cAMP-mediated regulation of lipid metabolism for appressorium functionality. Furthermore, the cpk1 and cacl mutants have a defect in infectious growth in plant. In C. lagenarium, Cmkl mitogen-activated protein kinase (MAPK) regulates germination, appressorium formation, and infectious growth. These results suggest that cAMP signaling controls multiple steps of fungal infection in cooperative regulation with Cmkl MAPK in C. lagenarium.

  17. Differential signalling pathways for EGF versus PDGF activation of Erk1/2 MAP kinase and cell proliferation in brown pre-adipocytes

    SciTech Connect

    Holmstroem, Therese E.; Mattsson, Charlotte L.; Faelting, Johanna M.; Nedergaard, Jan

    2008-11-15

    Stimulation by both adrenergic and non-adrenergic pathways can induce proliferation of brown pre-adipocytes. To understand the signalling pathways involved in non-adrenergic stimulation of cell proliferation, we examined Erk1/2 activation. In primary cultures of mouse brown pre-adipocytes, both EGF (epidermal growth factor) and PDGF (platelet-derived growth factor) induced Erk1/2 activation. EGF-stimulated Erk1/2 activation involved Src tyrosine kinases, but not PKC or PI3K, whereas in PDGF-induced Erk1/2 activation, PI3K, PKC (probably the atypical {zeta} isoform) and Src were involved sequentially. Both EGF and PDGF induced PI3K-dependent Akt activation that was not involved in Erk1/2 activation. By comparing effects of signalling inhibitors (wortmannin, SH-6, TPA, Goe6983, PP2, PD98059) on EGF- and PDGF-induced Erk1/2 activation and cell proliferation ({sup 3}H-thymidine incorporation), we conclude that while the signal transduction pathways initiated by these growth factors are clearly markedly different, their effects on cell proliferation can be fully explained through their stimulation of Erk1/2 activation; thus Erk1/2 is a common, essential step for stimulation of proliferation in these cells.

  18. Endothelin-1 induces proliferation of human lung fibroblasts and IL-11 secretion through an ET(A) receptor-dependent activation of MAP kinases.

    PubMed

    Gallelli, Luca; Pelaia, Girolamo; D'Agostino, Bruno; Cuda, Giovanni; Vatrella, Alessandro; Fratto, Donatella; Gioffrè, Vincenza; Galderisi, Umberto; De Nardo, Marilisa; Mastruzzo, Claudio; Salinaro, Elisa Trovato; Maniscalco, Mauro; Sofia, Matteo; Crimi, Nunzio; Rossi, Francesco; Caputi, Mario; Costanzo, Francesco S; Maselli, Rosario; Marsico, Serafino A; Vancheri, Carlo

    2005-11-01

    Endothelin-1 (ET-1) is implicated in the fibrotic responses characterizing interstitial lung diseases, as well as in the airway remodeling process occurring in asthma. Within such a context, the aim of our study was to investigate, in primary cultures of normal human lung fibroblasts (NHLFs), the ET-1 receptor subtypes, and the intracellular signal transduction pathways involved in the proliferative effects of this peptide. Therefore, cells were exposed to ET-1 in the presence or absence of an overnight pre-treatment with either ET(A) or ET(B) selective receptor antagonists. After cell lysis, immunoblotting was performed using monoclonal antibodies against the phosphorylated, active forms of mitogen-activated protein kinases (MAPK). ET-1 induced a significant increase in MAPK phosphorylation pattern, and also stimulated fibroblast proliferation and IL-6/IL-11 release into cell culture supernatants. All these effects were inhibited by the selective ET(A) antagonist BQ-123, but not by the specific ET(B) antagonist BQ-788. The stimulatory influence of ET-1 on IL-11, but not on IL-6 secretion, was prevented by MAPK inhibitors. Therefore, such results suggest that in human lung fibroblasts ET-1 exerts a profibrogenic action via an ET(A) receptor-dependent, MAPK-mediated induction of IL-11 release and cell proliferation.

  19. The MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin production and iron adaptation in Aspergillus fumigatus.

    PubMed

    Jain, Radhika; Valiante, Vito; Remme, Nicole; Docimo, Teresa; Heinekamp, Thorsten; Hertweck, Christian; Gershenzon, Jonathan; Haas, Hubertus; Brakhage, Axel A

    2011-10-01

    The saprophytic fungus Aspergillus fumigatus is the most important air-borne fungal pathogen. The cell wall of A. fumigatus has been studied intensively as a potential target for development of effective antifungal agents. A major role in maintaining cell wall integrity is played by the mitogen-activated protein kinase (MAPK) MpkA. To gain a comprehensive insight into this central signal transduction pathway, we performed a transcriptome analysis of the ΔmpkA mutant under standard and cell wall stress conditions. Besides genes involved in cell wall remodelling, protection against ROS and secondary metabolism such as gliotoxin, pyomelanin and pseurotin A, also genes involved in siderophore biosynthesis were regulated by MpkA. Consistently, northern and western blot analyses indicated that iron starvation triggers phosphorylation and thus activation of MpkA. Furthermore, localization studies indicated that MpkA accumulates in the nucleus under iron depletion. Hence, we report the first connection between a MAPK pathway and siderophore biosynthesis. The measurement of amino acid pools and of the pools of polyamines indicated that arginine was continuously converted into ornithine to fuel the siderophore pool in the ΔmpkA mutant strain. Based on our data, we propose that MpkA fine-tunes the balance between stress response and energy consuming cellular processes.

  20. A cotton Raf-like MAP3K gene, GhMAP3K40, mediates reduced tolerance to biotic and abiotic stress in Nicotiana benthamiana by negatively regulating growth and development.

    PubMed

    Chen, Xiaobo; Wang, Ji; Zhu, Ming; Jia, Haihong; Liu, Dongdong; Hao, Lili; Guo, Xingqi

    2015-11-01

    Mitogen-activated protein kinase (MAPK) cascades mediate various responses in plants. As the top component, MAP3Ks deserve more attention; however, little is known about the role of MAP3Ks, especially in cotton, a worldwide economic crop. In this study, a gene encoding a putative Raf-like MAP3K, GhMAP3K40, was isolated. GhMAP3K40 expression was induced by stress and multiple signal molecules. The plants overexpressing GhMAP3K40 had an enhanced tolerance to drought and salt stress at the germination stage. However, at the seedling stage, the transgenic plants suffered more severe damage after drought, exposure to pathogens and oxidative stress. The defence-related genes and the antioxidant system were activated in transgenic palnts, suggesting that GhMAP3K40 positively regulate the defence response. The transgenic plants were less able to prevent pathogenic invasion, which was due to defects in the cell structure of the leaves. The root system of the control plants were stronger compared with the transgenic plants. These results indicated a negative role of GhMAP3K40 in growth and development and GhMAP3K40 possibly caused the defects by down-regulating the lignin biosynthesis. Overall, these results suggest that GhMAP3K40 may positively regulate defence response but cause reduced tolerance to biotic and abiotic stress by negatively regulating growth and development.

  1. Protein phosphatase 2A is a critical regulator of protein kinase C zeta signaling targeted by SV40 small t to promote cell growth and NF-kappaB activation.

    PubMed Central

    Sontag, E; Sontag, J M; Garcia, A

    1997-01-01

    We have reported that inhibition of protein phosphatase 2A (PP2A) by expression of SV40 small t stimulates the mitogenic MAP kinase cascade. Here, we show that SV40 small t can substitute for tumor necrosis factor-alpha (TNF-alpha) or serum and stimulate atypical protein kinase C zeta (PKC zeta) activity, resulting in MEK activation, cell proliferation and NF-kappaB-dependent gene transcriptional activation in CV-1 and NIH 3T3 cells. These effects were abrogated by co-expression of kinase-deficient PKC zeta and inhibition of phosphatidylinositol 3-kinase p85alpha-p110 by wortmannin, LY294002 and a dominant-negative mutant of p85alpha. In contrast, expression of kinase-inactive ERK2 inhibited small t-dependent cell growth but was unable to abolish small t-induced NF-kappaB transactivation. Our results provide the first in vivo evidence for a critical regulatory role of PP2A in bifunctional PKC zeta signaling pathways controlled by phosphatidylinositol 3-kinase. Constitutive activation of PKC zeta and NF-kappaB following inhibition of PP2A supports new mechanisms by which SV40 small t promotes cell growth and transformation. By establishing PP2A as a key player in the response of cells to growth factors and stress signals like TNF-alpha, our findings could explain why PP2A is a primary target utilized during SV40 infection to alter cellular behavior. PMID:9312025

  2. Genetic analysis of rolled, which encodes a Drosophila mitogen-activated protein kinase.

    PubMed Central

    Lim, Y M; Nishizawa, K; Nishi, Y; Tsuda, L; Inoue, Y H; Nishida, Y

    1999-01-01

    Genetic and molecular characterization of the dominant suppressors of D-raf(C110) on the second chromosome identified two gain-of-function alleles of rolled (rl), which encodes a mitogen-activated protein (MAP) kinase in Drosophila. One of the alleles, rl(Su23), was found to bear the same molecular lesion as rl(Sem), which has been reported to be dominant female sterile. However, rl(Su23) and the current stock of rl(Sem) showed only a weak dominant female sterility. Detailed analyses of the rl mutations demonstrated moderate dominant activities of these alleles in the Torso (Tor) signaling pathway, which explains the weak dominant female sterility observed in this study. The dominant rl mutations failed to suppress the terminal class maternal-effect mutations, suggesting that activation of Rl is essential, but not sufficient, for Tor signaling. Involvement of rl in cell proliferation was also demonstrated by clonal analysis. Branching and integration of signals in the MAP kinase cascade is discussed. PMID:10511556

  3. Effects of butyltins on mitogen-activated-protein kinase kinase kinase and Ras activity in human natural killer cells.

    PubMed

    Celada, Lindsay J; Whalen, Margaret M

    2014-09-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT) diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 min of TBT exposure and the MAP3K, ASK1, after 1 h exposures to TBT. In addition, our results suggest that both TBT and DBT affect the regulation of c-Raf.

  4. Kinase activity profiling of gram-negative pneumonia.

    PubMed

    Hoogendijk, Arie J; Diks, Sander H; Peppelenbosch, Maikel P; Van Der Poll, Tom; Wieland, Catharina W

    2011-01-01

    Pneumonia is a severe disease with high morbidity and mortality. A major causative pathogen is the Gram-negative bacterium Klebsiella (K.) pneumoniae. Kinases play an integral role in the transduction of intracellular signaling cascades and regulate a diverse array of biological processes essential to immune cells. The current study explored signal transduction events during murine Gram-negative pneumonia using a systems biology approach. Kinase activity arrays enable the analysis of 1,024 consensus sequences of protein kinase substrates. Using a kinase activity array on whole lung lysates, cellular kinase activities were determined in a mouse model of K. pneumoniae pneumonia. Notable kinase activities also were validated with phospho-specific Western blots. On the basis of the profiling data, mitogen-activated protein kinase (MAPK) signaling via p42 mitogen-activated protein kinase (p42) and p38 mitogen-activated protein kinase (p38) and transforming growth factor β (TGFβ) activity were reduced during infection, whereas v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) activity generally was enhanced. AKT signaling was represented in both metabolic and inflammatory (mitogen-activated protein kinase kinase 2 [MKK], apoptosis signal-regulating kinase/mitogen-activated protein kinase kinase kinase 5 [ASK] and v-raf murine sarcoma viral oncogene homolog B1 [b-RAF]) context. This study reaffirms the importance of classic inflammation pathways, such as MAPK and TGFβ signaling and reveals less known involvement of glycogen synthase kinase 3β (GSK-3β), AKT and SRC signaling cassettes in pneumonia.

  5. Anti-inflammatory Effects of Mapracorat, a Novel Selective Glucocorticoid Receptor Agonist, Is Partially Mediated by MAP Kinase Phosphatase-1 (MKP-1)

    PubMed Central

    Vollmer, Thomas R.; Stockhausen, Anthony; Zhang, Jin-Zhong

    2012-01-01

    Mapracorat is a novel selective glucocorticoid receptor agonist (SEGRA), structurally distinct from corticosteroids. In preclinical studies, mapracorat potently inhibits the production of a variety of inflammatory mediators including cytokines and prostaglandin E2 (PGE2), with limited side effects associated with traditional corticosteroids. The objective of this study was to delineate the mechanisms underlying the anti-inflammatory properties of mapracorat. We found that mapracorat potently inhibited the production of GM-CSF and TNF-α in LPS-stimulated Raw 264.7 macrophages. Mapracorat also substantially attenuated the expression of COX-2 and the production of PGE2. The inhibition of mapracorat on the inflammatory response was dose-dependent, and substantially inhibitory effects were observed at concentrations in the 10–100 nm range. Examination of the activation kinetics of p38 and its downstream target MAPK-activated protein kinase-2 (MK-2) revealed a shortened activation course after LPS stimulation in cells pretreated with mapracorat. Supporting the notion that mapracorat augments a feedback control mechanism restraining the p38 pathway, we found that mapracorat enhanced the expression of MAPK phosphatase-1 (MKP-1), a critical negative regulator of MAPKs that drive the production of cytokines and other inflammatory mediators. While mapracorat alone did not stimulate MKP-1 expression, it markedly enhanced the expression of MKP-1 in cells stimulated by LPS, in a similar manner and potency to the augmenting effect of dexamethasone. Blocking MKP-1 expression by triptolide also abolished the accelerating effects of mapracorat on p38 and MK-2 deactivation, further supporting a role of MKP-1 in the anti-inflammatory mechanism of mapracorat. Taken together, these results indicate that mapracorat exerts its anti-inflammatory effects, at least in part, by augmenting MKP-1 expression. PMID:22898817

  6. Different muscarinic receptor subtypes modulate proliferation of primary human detrusor smooth muscle cells via Akt/PI3K and map kinases.

    PubMed

    Arrighi, Nicola; Bodei, Serena; Zani, Danilo; Michel, Martin C; Simeone, Claudio; Cosciani Cunico, Sergio; Spano, Pierfranco; Sigala, Sandra

    2013-08-01

    While acetylcholine (ACh) and muscarinic receptors in the bladder are mainly known for their role in the regulation of smooth muscle contractility, in other tissues they are involved in tissue remodelling and promote cell growth and proliferation. In the present study we have used primary cultures of human detrusor smooth muscle cells (HDSMCs), in order to investigate the role of muscarinic receptors in HDSMC proliferation. Samples were obtained as discarded tissue from men >65 years undergoing radical cystectomy for bladder cancer and cut in pieces that were either immediately frozen or placed in culture medium for the cell culture establishment. HDSMCs were isolated from samples, propagated and maintained in culture. [(3)H]-QNB radioligand binding on biopsies revealed the presence of muscarinic receptors, with a Kd of 0.10±0.02nM and a Bmax of 72.8±0.1fmol/mg protein. The relative expression of muscarinic receptor subtypes, based on Q-RT-PCR, was similar in biopsies and HDSMC with a rank order of M2≥M3>M1>M4>M5. The cholinergic agonist carbachol (CCh, 1-100μM) concentration-dependently increased [(3)H]-thymidine incorporation (up to 46±4%). This was concentration-dependently inhibited by the general muscarinic receptor antagonist atropine and by subtype-preferring antagonists with an order of potency of darifenacin >4-DAMP>AF-DX 116. The CCh-induced cell proliferation was blocked by selective PI-3 kinase and ERK activation inhibitors, strongly suggesting that these intracellular pathways mediate, at least in part, the muscarinic receptor-mediated cell proliferation. This work shows that M2 and M3 receptors can mediate not only HDSM contraction but also proliferation; they may also contribute bladder remodelling including detrusor hypertrophy.

  7. Effects of TGF-beta and glucocorticoids on map kinase phosphorylation, IL-6/IL-11 secretion and cell proliferation in primary cultures of human lung fibroblasts.

    PubMed

    Pelaia, Girolamo; Gallelli, Luca; D'Agostino, Bruno; Vatrella, Alessandro; Cuda, Giovanni; Fratto, Donatella; Renda, Teresa; Galderisi, Umberto; Piegari, Elena; Crimi, Nunzio; Rossi, Francesco; Caputi, Mario; Costanzo, Francesco S; Vancheri, Carlo; Maselli, Rosario; Marsico, Serafino A

    2007-02-01

    Transforming growth factor-beta1 (TGF-beta1) is crucially involved in the fibrotic events characterizing interstitial lung diseases (ILDs), as well as in the airway remodeling process typical of asthma. Within such a context, the aim of our study was to investigate, in primary cultures of normal and fibrotic human lung fibroblasts (HLFs), the effects of TGF-beta1 on mitogen-activated protein kinase (MAPK) phosphorylation, cell proliferation, and production of interleukins 6 (IL-6) and 11 (IL-11), in the presence or absence of a pretreatment with budesonide (BUD). MAPK phosphorylation was detected by Western blotting, cell viability and proliferation were evaluated using Trypan blue staining and [(3)H]-thymidine incorporation assay, respectively, and the release of IL-6 and IL-11 into cell culture supernatants was assessed by ELISA. TGF-beta1 (10 ng/ml) significantly stimulated MAPK phosphorylation (P < 0.01), and also enhanced cell proliferation as well as the secretion of both IL-6 and IL-11, which reached the highest increases at the 72nd h of cell exposure to this growth factor. All such effects were prevented by BUD (10(-8) M) and, with the exception of IL-6 release, also by a mixture of MAPK inhibitors. Therefore, our findings suggest that the fibrotic action exerted by TGF-beta1 in the lung is mediated at least in part by MAPK activation and by an increased synthesis of the profibrogenic cytokines IL-6 and IL-11; all these effects appear to be prevented by corticosteroids via inhibition of MAPK phosphorylation.

  8. Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Yang, Yinong; Vera Cruz, Casiana; Höfte, Monica

    2010-01-01

    The plant hormone abscisic acid (ABA) is involved in an array of plant processes, including the regulation of gene expression during adaptive responses to various environmental cues. Apart from its well-established role in abiotic stress adaptation, emerging evidence indicates that ABA is also prominently involved in the regulation and integration of pathogen defense responses. Here, we demonstrate that exogenously administered ABA enhances basal resistance of rice (Oryza sativa) against the brown spot-causing ascomycete Cochliobolus miyabeanus. Microscopic analysis of early infection events in control and ABA-treated plants revealed that this ABA-inducible resistance (ABA-IR) is based on restriction of fungal progression in the mesophyll. We also show that ABA-IR does not rely on boosted expression of salicylic acid-, jasmonic acid -, or callose-dependent resistance mechanisms but, instead, requires a functional Gα-protein. In addition, several lines of evidence are presented suggesting that ABA steers its positive effect on brown spot resistance through antagonistic cross talk with the ethylene (ET) response pathway. Exogenous ethephon application enhances susceptibility, whereas genetic disruption of ET signaling renders plants less vulnerable to C. miyabeanus attack, thereby inducing a level of resistance similar to that observed on ABA-treated wild-type plants. Moreover, ABA treatment alleviates C. miyabeanus-induced activation of the ET reporter gene EBP89, while derepression of pathogen-triggered EBP89 transcription via RNA interference-mediated knockdown of OsMPK5, an ABA-primed mitogen-activated protein kinase gene, compromises ABA-IR. Collectively, these data favor a model whereby exogenous ABA enhances resistance against C. miyabeanus at least in part by suppressing pathogen-induced ET action in an OsMPK5-dependent manner. PMID:20130100

  9. Human p38{delta} MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    SciTech Connect

    Ozawa, Shigeyuki; Ito, Shin; Kato, Yasumasa; Kubota, Eiro; Hata, Ryu-Ichiro

    2010-06-11

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38{alpha}, {beta}, {gamma} and {delta}. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38{alpha} and {beta}, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38{gamma} and/or {delta} was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38{delta} attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38{delta} with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38{delta} isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38{alpha} and/or {beta} isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  10. REGIONALLY-SPECIFIC REGULATION OF pERK1/2 MAP KINASE IN A MODEL OF ANTIDEPRESSANT-SENSITIVE CHRONIC DEPRESSION

    PubMed Central

    Gourley, Shannon L.; Wu, Florence J.; Kiraly, Drew D.; Ploski, Jonathan E.; Kedves, Alexia T.; Duman, Ronald S.; Taylor, Jane R.

    2008-01-01

    Background Elevated phosphorylation of neurotophin-regulated transcription factors, such as cAMP-response Element Binding Protein (CREB), in the hippocampus has been proposed as a common mediator of antidepressant (ADT) efficacy in otherwise naïve rodents. The intracellular factors by which ADTs and glucocorticoids, causal factors in depression, regulate depression-like behavior remain unclear, but Extracellular signal-Regulated Kinase 1/2 (ERK1/2), upstream of CREB, is a likely candidate. Methods We explored the long-term consequences of glucocorticoid exposure and subsequent ADT treatment in a novel model of chronic depression. Motivated behaviors, immobility during tail suspension, and ERK1/2, known to be required for behavioral response to ADTs, were quantified. Results Chronic corticosterone (CORT) increased immobility, decreased responding in an operant conditioning task of motivation, and selectively reduced pERK1/2 in the dentate gyrus. Behavioral and biochemical measures were restored to baseline by amitriptyline (AMI) treatment. CORT regulated pERK1/2 on a timecourse that paralleled increases in heat-shock proteins associated with depression and decreased trkB receptor phosphorylation. Chronic AMI also produced regionally-dissociable effects on pERK1/2 in CA1/CA3, amygdala, and striatum, but not prefrontal cortex. Conclusions ADT efficacy in a motivational task and “behavioral despair” assay is associated with altered limbic pERK1/2, including restored pERK1/2 in the dentate gyrus after stress-related insult. PMID:17889834

  11. Expression of Pseudomonas syringae type III effectors in yeast under stress conditions reveals that HopX1 attenuates activation of the high osmolarity glycerol MAP kinase pathway.

    PubMed

    Salomon, Dor; Bosis, Eran; Dar, Daniel; Nachman, Iftach; Sessa, Guido

    2012-11-01

    The Gram-negative bacterium Pseudomonas syringae pv. tomato (Pst) is the causal agent of speck disease in tomato. Pst pathogenicity depends on a type III secretion system that delivers effector proteins into host cells, where they promote disease by manipulating processes to the advantage of the pathogen. Previous studies identified seven Pst effectors that inhibit growth when expressed in yeast under normal growth conditions, suggesting that they interfere with cellular processes conserved in yeast and plants. We hypothesized that effectors also target conserved cellular processes that are required for yeast growth only under stress conditions. We therefore examined phenotypes induced by expression of Pst effectors in yeast grown in the presence of various stressors. Out of 29 effectors tested, five (HopX1, HopG1, HopT1-1, HopH1 and AvrPtoB) displayed growth inhibition phenotypes only in combination with stress conditions. Viability assays revealed that the HopX1 effector caused loss of cell viability under prolonged osmotic stress. Using transcription reporters, we found that HopX1 attenuated the activation of the high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway, which is responsible for yeast survival under osmotic stress, while other MAPK pathways were mildly affected by HopX1. Interestingly, HopX1-mediated phenotypes in yeast were dependent on the putative transglutaminase catalytic triad of the effector. This study enlarges the pool of phenotypes available for the functional analysis of Pst type III effectors in yeast, and exemplifies how analysis of phenotypes detected in yeast under stress conditions can lead to the identification of eukaryotic cellular processes affected by bacterial effectors.

  12. Central SDF-1/CXCL12 expression and its cardiovascular and sympathetic effects: the role of angiotensin II, TNF-α, and MAP kinase signaling.

    PubMed

    Wei, Shun-Guang; Zhang, Zhi-Hua; Yu, Yang; Felder, Robert B

    2014-12-01

    The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptors are expressed by neurons and glial cells in cardiovascular autonomic regions of the brain, including the hypothalamic paraventricular nucleus (PVN), and contribute to neurohumoral excitation in rats with ischemia-induced heart failure. The present study examined factors regulating the expression of SDF-1 in the PVN and mechanisms mediating its sympatho-excitatory effects. In urethane anesthetized rats, a 4-h intracerebroventricular (ICV) infusion of angiotensin II (ANG II) or tumor necrosis factor-α (TNF-α) in doses that increase mean blood pressure (MBP) and sympathetic drive increased the expression of SDF-1 in PVN. ICV administration of SDF-1 increased the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), JNK, and p38 MAPK in PVN, along with MBP, heart rate (HR), and renal sympathetic nerve activity (RSNA), but did not affect total p44/42 MAPK, JNK, and p38 MAPK levels. ICV pretreatment with the selective p44/42 MAPK inhibitor PD98059 prevented the SDF-1-induced increases in MBP, HR, and RSNA; ICV pretreatment with the selective JNK and p38 MAPK inhibitors attenuated but did not block these SDF-1-induced excitatory responses. ICV PD98059 also prevented the sympatho-excitatory response to bilateral PVN microinjections of SDF-1. ICV pretreatment with SDF-1 short-hairpin RNA significantly reduced ANG II- and TNF-α-induced phosphorylation of p44/42 MAPK in PVN. These findings identify TNF-α and ANG II as drivers of SDF-1 expression in PVN and suggest that the full expression of their cardiovascular and sympathetic effects depends upon SDF-1-mediated activation of p44/42 MAPK signaling.

  13. Nitric Oxide-Proton Stimulation of Trigeminal Ganglion Neurons Increases MAP Kinase and Phosphatase Expression in Neurons and Satellite Glial Cells

    PubMed Central

    Freeman, Stacy E.; Patil, Vinit V.; Durham, Paul L.

    2008-01-01

    Elevated nitric oxide (NO) and proton levels in synovial fluid are implicated in joint pathology. However, signaling pathways stimulated by these molecules that mediate inflammation and pain in the temporomandibular joint (TMJ) have not been investigated. The goal of this study was to determine the effect of NO-proton stimulation of trigeminal neurons on the in vivo expression of mitogen-activated protein kinases (MAPKs) and phosphatases (MKPs) in trigeminal ganglion neurons and satellite glial cells. Low levels of the active MAPKs ERK, JNK, and p38 were localized in the cytosol of neurons and satellite glial cells in unstimulated animals. However, increased levels of active ERK and p38, but not JNK, were detected in the cytosol and nucleus of V3 neurons and satellite glial cells 15 min and 2 h following bilateral TMJ injections of a NO donor diluted in pH 5.5 medium. While ERK levels returned to near basal levels 24 h after stimulation, p38 levels remained significantly elevated. In contrast to MKP-2 and MKP-3 levels that were barely detectable in neurons or satellite glial cells, MKP-1 staining was readily observed in satellite glial cells in ganglia from unstimulated animals. However, neuronal and satellite glial cell staining for MKP-1, MKP-2, and MKP-3 were all significantly increased in response to NO-protons. Increased active ERK and p38 levels as well as elevated MKP levels were also detected in neurons and satellite glial cells located in V2 and V1 regions of the ganglion. Our data provide evidence that NO-proton stimulation of V3 neurons results in temporal and spatial changes in expression of active ERK and p38 and MKPs in all regions of the ganglion. We propose that in trigeminal ganglia these cellular events, which are involved in peripheral sensitization as well as control of inflammatory and nociceptive responses, may play a role in TMJ pathology. PMID:18938228

  14. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells.

    PubMed

    Hayashida, Tomoko; Decaestecker, Mark; Schnaper, H William

    2003-08-01

    Transforming growth factor beta (TGF-beta) stimulates renal cell fibrogenesis by a poorly understood mechanism. Previously, we suggested a synergy between TGF-beta1 activated extracellular signal-regulated kinase (ERK) and Smad signaling in collagen production by human glomerular mesangial cells. In a heterologous DNA binding transcription assay, biochemical or dominant-negative ERK blockade reduced TGF-beta1 induced Smad3 activity. Total serine phosphorylation of Smad2/3, but not phosphorylation of the C-terminal SS(P)XS(P) motif, was decreased by pretreatment with the MEK/ERK inhibitors, PD98059 (10 microM) or U0126 (25 microM). This effect was not seen in the mouse mammary epithelial NMuMG cell line, indicating that ERK-dependent activation of Smad2/3 occurs only in certain cell types. TGF-beta stimulated phosphorylation of an expressed Smad3A construct, with a mutated C-terminal SS(P)XS(P) motif, was reduced by a MEK/ERK inhibitor. In contrast, MEK/ERK inhibition did not affect phosphorylation of a Smad3 construct mutated at consensus phosphorylation sites in the linker region (Smad3EPSM). Constitutively active MEK (caMEK) induced alpha2(I) collagen promoter activity, an effect blocked by co-transfected Smad3EPSM, but not Smad3A. The effects of caMEK and TGF-beta1 on collagen promoter activity were additive. These results indicate that ERK-dependent R-Smad linker region phosphorylation enhances collagen I synthesis and imply positive cross talk between the ERK and Smad pathways in human mesangial cells.

  15. Hyperbaric Oxygen Reduces Production of Reactive Oxygen Species in Neutrophils from Polytraumatized Patients Yielding in the Inhibition of p38 MAP Kinase and Downstream Pathways

    PubMed Central

    Windolf, Joachim; Wahlers, Thorsten

    2016-01-01

    Trauma represents the leading cause of death among young people in western countries. Among the beneficial role of neutrophils in host defence, excessive priming and activation of neutrophils after major trauma lead to an overwhelming inflammatory response and secondary host tissue injury due to the release of toxic metabolites and enzymes. Hyperbaric oxygen (HBO) therapy has been proposed to possess antiinflammatory effects and might represent an appropriate therapeutic option to lower inflammation in a broad range of patients. Here, we studied the effects of HBO on the activity of neutrophils isolated from severely injured patients (days 1–2 after trauma), in fact on the production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs). We found exposure to HBO therapy to significantly diminish phorbol-12-myristate-13-acetate (PMA)-induced ROS production in neutrophils isolated from patients and healthy volunteers. At the same time, marked decrease in NETs release was found in control cells and a less pronounced reduction in patient neutrophils. Impaired ability to produce ROS following exposure to HBO was demonstrated to be linked to a strong downregulation of the activity of p38 MAPK. Only slight suppression of ERK activity could be found. In addition, HBO did not influence neutrophil chemotaxis or apoptosis, respectively. Collectively, this study shows for the first time that HBO therapy suppresses ROS production in inflammatory human neutrophils, and thus might impair ROS-dependent pathways, e.g. kinases activation and NETs release. Thus, HBO might represent a feasible therapy for patients suffering from systemic inflammation, including those with multiple trauma. PMID:27529549

  16. RAF protein-serine/threonine kinases: Structure and regulation

    SciTech Connect

    Roskoski, Robert

    2010-08-27

    Research highlights: {yields} The formation of unique side-to-side RAF dimers is required for full kinase activity. {yields} RAF kinase inhibitors block MEK activation in cells containing oncogenic B-RAF. {yields} RAF kinase inhibitors can lead to the paradoxical increase in RAF kinase activity. -- Abstract: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.

  17. Error bounds in cascading regressions

    USGS Publications Warehouse

    Karlinger, M.R.; Troutman, B.M.

    1985-01-01

    Cascading regressions is a technique for predicting a value of a dependent variable when no paired measurements exist to perform a standard regression analysis. Biases in coefficients of a cascaded-regression line as well as error variance of points about the line are functions of the correlation coefficient between dependent and independent variables. Although this correlation cannot be computed because of the lack of paired data, bounds can be placed on errors through the required properties of the correlation coefficient. The potential meansquared error of a cascaded-regression prediction can be large, as illustrated through an example using geomorphologic data. ?? 1985 Plenum Publishing Corporation.

  18. Terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Koehler, Ruedeger; Tredicucci, Alessandro; Beltram, Fabio; Beere, Harvey E.; Linfield, Edmund H.; Davies, A. G.; Ritchie, David A.

    2003-07-01

    The terahertz region (1-10 THz) of the electromagnetic spectrum offers ample opportunities in spectroscopy, free space communications, remote sensing and medical imaging. Yet, the use of THz radiation in all these fields has been hampered by the lack of appropriate, convenient sources. We here report on unipolar semiconductor injection lasers that emit at THz frequencies (4.3 THz, λ ~ 69μm and 3.5 THz, λ ~ 85μm) and possess the potential for device-like implementation. They are based on the quantum cascade scheme employing interminiband transitions in the technologically mature AlGaAs/GaAs material system and feature a novel kind of waveguide loosely relying on the surface plasmon concpt. Continuous-wave laser emission is achieved with low thresholds of a few hundred A/cm2 up to 45 K heat sink temperature and maximum output powers of more than 4mW. Under pulsed excitation, peak output powers of 4.5mW at low temperatures and still 1 mW at 65 K are measured. The amximum operating temperature is 67 K.

  19. Trophic cascades across ecosystems.

    PubMed

    Knight, Tiffany M; McCoy, Michael W; Chase, Jonathan M; McCoy, Krista A; Holt, Robert D

    2005-10-06

    Predation can be intense, creating strong direct and indirect effects throughout food webs. In addition, ecologists increasingly recognize that fluxes of organisms across ecosystem boundaries can have major consequences for community dynamics. Species with complex life histories often shift habitats during their life cycles and provide potent conduits coupling ecosystems. Thus, local interactions that affect predator abundance in one ecosystem (for example a larval habitat) may have reverberating effects in another (for example an adult habitat). Here we show that fish indirectly facilitate terrestrial plant reproduction through cascading trophic interactions across ecosystem boundaries. Fish reduce larval dragonfly abundances in ponds, leading to fewer adult dragonflies nearby. Adult dragonflies consume insect pollinators and alter their foraging behaviour. As a result, plants near ponds with fish receive more pollinator visits and are less pollen limited than plants near fish-free ponds. Our results confirm that strong species interactions can reverberate across ecosystems, and emphasize the importance of landscape-level processes in driving local species interactions.

  20. Cascading Effects Following Intervention

    PubMed Central

    Patterson, Gerald R.; Forgatch, Marion S.; DeGarmo, David S.

    2010-01-01

    Four different sources for cascade effects were examined using 9-year process and outcome data from a randomized controlled trial (RCT) of a preventive intervention using Parent Management Training – Oregon Model (PMTO™). The social interaction learning (SIL) model of child antisocial behavior serves as one basis for predicting change. A second source addresses the issue of comorbid relationships among clinical diagnoses. The third source, collateral changes, describes events in which changes in one family member correlate with changes in another. The fourth component is based on the long-term effects of reducing coercion and increasing positive interpersonal processes within the family. New findings from the 9-year follow-up show that mothers experienced benefits as measured by standard of living (i.e., income, occupation, education, and financial stress) and frequency of police arrests. It is assumed that PMTO reduces the level of coercion, which sets the stage for a massive increase in positive social interaction. In effect, PMTO alters the family environment and thereby opens doors to healthy new social environments. PMID:20883592

  1. Increased sensitivity to alcohol induced changes in ERK Map kinase phosphorylation and memory disruption in adolescent as compared to adult C57BL/6J mice.

    PubMed

    Spanos, Marina; Besheer, Joyce; Hodge, Clyde W

    2012-04-21

    Adolescence is a critical period of brain development that is accompanied by increased probability of risky behavior, such as alcohol use. Emerging research indicates that adolescents are differentially sensitive to the behavioral effects of acute ethanol as compared to adults but the neurobiological mechanisms of this effect remain to be fully elucidated. This study was designed to evaluate effects of acute ethanol on extracellular signal-regulated kinase phosphorylation (p-ERK1/2) in mesocorticolimbic brain regions. We also sought to determine if age-specific effects of ethanol on p-ERK1/2 are associated with ethanol-induced behavioral deficits on acquisition of the hippocampal-dependent novel object recognition (NOR) test. Adolescent and adult C57BL/6J mice were administered acute ethanol (0 0.5, 1, or 3g/kg, i.p.). Brains were removed 30-min post injection and processed for analysis of p-ERK1/2 immunoreactivity (IR). Additional groups of mice were administered ethanol (0 or 1g/kg) prior to the NOR test. Analysis of p-ERK1/2 IR showed that untreated adolescent mice had significantly higher levels of p-ERK1/2 IR in the nucleus accumbens shell, basolateral amygdala (BLA), central amygdala (CeA), and medial prefrontal cortex (mPFC) as compared to adults. Ethanol (1g/kg) selectively reduced p-ERK1/2 IR in the dentate gyrus and increased p-ERK1/2 IR in the BLA only in adolescent mice. Ethanol (3g/kg) produced the same effects on p-ERK1/2 IR in both age groups with increases in CeA and mPFC, but a decrease in the dentate gyrus, as compared to age-matched saline controls. Pretreatment with ethanol (1g/kg) disrupted performance on the NOR test specifically in adolescents, which corresponds with the ethanol-induced inhibition of p-ERK1/2 IR in the hippocampus. These data show that adolescent mice have differential expression of basal p-ERK1/2 IR in mesocorticolimbic brain regions. Acute ethanol produces a unique set of changes in ERK1/2 phosphorylation in the adolescent

  2. Sphingosine-1-phosphate inhibits high glucose-mediated ERK1/2 action in endothelium through induction of MAP kinase phosphatase-3

    PubMed Central

    Whetzel, Angela M.; Bolick, David T.; Hedrick, Catherine C.

    2009-01-01

    Endothelial activation is a key early event in vascular complications of Type 1 diabetes. The nonobese diabetic (NOD) mouse is a well-characterized model of Type 1 diabetes. We previously reported that Type 1 diabetic NOD mice have increased endothelial activation, with increased production of monocyte chemoattractant protein (MCP)-1 and IL-6, and a 30% increase of surface VCAM-1 expression leading to a fourfold increase in monocyte adhesion to the endothelium. Sphingosine-1-phosphate (S1P) prevents monocyte:endothelial interactions in these diabetic NOD mice. Incubation of diabetic NOD endothelial cells (EC) with S1P (100 nmol/l) reduced ERK1/2 phosphorylation by 90%, with no significant changes in total ERK1/2 protein. In the current study, we investigated the mechanism of S1P action on ERK1/2 to reduce activation of diabetic endothelium. S1P caused a significant threefold increase in mitogen-activated kinase phosphatase-3 (MKP-3) expression in EC. MKP-3 selectively regulates ERK1/2 activity through dephosphorylation. Incubation of diabetic NOD EC with S1P and the S1P1-selective agonist SEW2871 significantly increased expression of MKP-3 and reduced ERK1/2 phosphorylation, while incubation with the S1P1/S1P3 antagonist VPC23019 decreased the expression of MKP-3, both results supporting a ro